WO2021190619A1 - 弹性体复合材料的制备方法及通过所述方法制备的产品 - Google Patents

弹性体复合材料的制备方法及通过所述方法制备的产品 Download PDF

Info

Publication number
WO2021190619A1
WO2021190619A1 PCT/CN2021/083161 CN2021083161W WO2021190619A1 WO 2021190619 A1 WO2021190619 A1 WO 2021190619A1 CN 2021083161 W CN2021083161 W CN 2021083161W WO 2021190619 A1 WO2021190619 A1 WO 2021190619A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
elastomer
grams
rubber
composite material
Prior art date
Application number
PCT/CN2021/083161
Other languages
English (en)
French (fr)
Inventor
王任飞
李超
丁小芳
李德新
孙世海
冯富强
吴文康
陈垂生
王宁
王婷
Original Assignee
海南天然橡胶产业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南天然橡胶产业集团股份有限公司 filed Critical 海南天然橡胶产业集团股份有限公司
Publication of WO2021190619A1 publication Critical patent/WO2021190619A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/14Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • C08L7/02Latex

Definitions

  • the present disclosure relates to a preparation method of an elastomer composite material and a product prepared by the method. More specifically, the present disclosure relates to a method for preparing an elastomer composite material including natural rubber and white carbon black and a product prepared by the method.
  • the new method of the present disclosure can produce high-performance elastomer composite materials to meet the society's increasing performance requirements for rubber products.
  • elastomer compositions in which particulate reinforcing materials such as carbon black and silica (also known as white carbon black) are dispersed in various synthetic rubbers, natural rubbers and rubber blends .
  • Silica-reinforced natural rubber not only has good physical properties, but also has good dynamic properties, so it can be used in the production of various rubber products, and it is used in the production of tires.
  • wet mixing is an important method for preparing high-performance rubber/filler composites, in which liquid rubber latex and filler slurry are usually mixed with or without a coagulant, and are prepared through processes such as coagulation, co-precipitation, dehydration and drying. A rubber/filler composite material with uniform filler dispersion is obtained.
  • WO99/16600 discloses a method for preparing elastomeric composite blends containing elastomers and particulate fillers, which includes making a first stream containing elastomer latex and a first stream containing elastomer latex added under pressure and containing particulates in the mixing zone of a coagulation reactor The second stream of shaped filler is combined to coagulate the elastomer. It is said that efficient and effective coagulation of elastomers can be achieved without including a coagulation step including exposure to acid or salt solutions or the like.
  • WO2017/011548 discloses a method for preparing a silica-reinforced elastomer composite material, which includes making a continuous flow of a first fluid containing a destabilized silica dispersion and a continuous flow of a second fluid containing elastomer latex in sufficient Combine under energy shock conditions to distribute silica into the elastomer latex.
  • WO2011/066044 discloses doping silica with at least divalent metal elements and using it as a filler for wet mixing to prepare silica/natural rubber masterbatch.
  • An object of the present disclosure is to provide a continuous method for preparing elastomer composite materials, which includes the following steps:
  • the at least one coagulant is selected from specified compounds having relatively long linear alkyl groups.
  • Another object of the present disclosure is to provide elastomer composite materials prepared by the method of the present disclosure, especially natural rubber/silica composite materials.
  • Another object of the present disclosure is to provide the application of the elastomer composite material in the preparation of rubber products, especially tires.
  • the wet mixing method of the present disclosure can prepare an elastomer/filler composite material in which the filler is more uniformly and finely distributed in the rubber; compared with the wet mixing method developed in recent years In comparison, the wet mixing method of the present disclosure shows greater flexibility in terms of fillers and elastomers that can be used.
  • silica as used herein can be used interchangeably with the term “silica” and refers to particulate silica or particulate materials coated with silica.
  • the silica may include any form of precipitated silica, colloidal silica, fumed silica, and any combination thereof.
  • slurry refers to a suspension/dispersion of solid particles in an aqueous fluid.
  • the slurry is generally stable enough, that is, it will not settle to the extent that it hinders the progress of the process or significantly affects the quality of the product obtained.
  • aqueous as used herein means that the dispersion medium mainly (ie, in an amount greater than 50% by weight) contains water or even consists entirely of water.
  • the aqueous medium may contain one or more water-miscible solvents, such as lower alcohols.
  • the term "stream” as used herein refers to the material that flows from a first point (e.g., source) to a second point (e.g., mixing device).
  • the stream can include any phase or material, but is generally liquid in this disclosure.
  • continuous flow refers to a steady or constant flow of fluid from a supply source, such as a storage tank. However, it should be understood that a flow that has a short intermittent (e.g., a few minutes or a few seconds or shorter time) is still considered a continuous flow (e.g., when switching between different supply sources such as storage tanks).
  • the water-phase latex mentioned in this article is a suspension system in which organic polymers are uniformly suspended and dispersed in water in the package of oil-water two-phase surface active substances.
  • Surfactants are generally called emulsifiers, and the process of "taking out” organic polymers from the encapsulated surfactants is called demulsification.
  • Organic polymer is insoluble in water. When it is not wrapped by emulsifier, it separates from water and gathers together. This process is called flocculation. The substance that causes the flocculation process to occur is often called a flocculant or coagulant.
  • the organic polymer encapsulated in the surfactant may deform under the action of mechanical shearing force, "break through” the coating layer, and flocculate in the water.
  • the time required for latex to see flocculated particles under specified conditions is mechanical stability, expressed in seconds.
  • Rubber refers to any polymer or polymer composition that meets the definition of ASTM D1566: "It is capable of recovering from large deformations and can or has been modified so that it is essentially insoluble (but swellable) in boiling solvents. substance". Moreover, rubber is an amorphous material. Elastomer is a term that can be used interchangeably with the term rubber. An elastomer composition refers to any composition containing at least one elastomer as defined above. Elastomeric composite material refers to any composition containing at least one elastomer as defined above and particulate fillers.
  • the vulcanized rubber compound defined in ASTM D1566 refers to "cross-linked, elastic material compounded by elastomers. It is easy to produce large deformations through small forces, and once the deformation force is removed, it can quickly and forcefully recover To roughly its original size and shape".
  • a cured elastomer composition refers to any elastomer composition that has undergone a curing process and/or contains an effective amount of curing agent or curing package or is produced using an effective amount of curing agent or curing package, and is vulcanizable with the term Rubber compound term used interchangeably.
  • phr refers to parts or "parts" per 100 parts of rubber, and is a common unit of measurement in the art, where each component of the composition is measured by weight relative to the total weight of all elastomer components.
  • the total phr or parts of all rubber components (regardless of the presence of 1, 2, 3 or more different rubber components in a given formulation) is always defined as 100 phr.
  • the ratio of all other non-rubber components relative to the 100 parts of rubber is calculated by weight and expressed in phr. In this way, people can easily compare the curing agent level or filler loading between different compositions based on the same relative rubber ratio, without the need to recalculate after adjusting the content of only one or more components. The percentage of each component.
  • alkyl refers to a paraffinic hydrocarbon group that can be derived from alkane by removing one or more hydrogens from the chemical formula, such as methyl (CH 3 ), ethyl (CH 3 CH 2 ), propyl (CH 3 CH 2 CH 2 ), hexylene ((CH 2 ) 6 ), etc.
  • alkylene refers to a paraffinic alkylene group that can be derived from an alkane by removing two hydrogens from the chemical formula, such as 1,6-hexylene. Unless specifically indicated otherwise, the term “alkylene” as used herein refers to ⁇ , ⁇ -alkylene.
  • long-chain alkyl group refers to an alkyl group having 4-20, preferably 4-12 carbon atoms.
  • substantially linear alkyl/alkylene refers to having no more than 2, preferably no more than 1.8, more preferably no more than 1.6, still more preferably no more than 2, per 10 carbon atoms in the chain 1.4, still more preferably not more than 1.2, still more preferably not more than 1.0, still more preferably not more than 0.8, still more preferably not more than 0.5 short-chain branched alkyl groups with not more than 3 carbon atoms. alkyl.
  • the present disclosure provides a continuous method for preparing an elastomer composite material, the method includes, consists essentially of, or consists of the following steps:
  • the coagulant is at least one compound having a relatively long (for example, 4-20, preferably 4-12 carbon atoms), substantially linear alkyl/alkylene compound.
  • the aqueous elastomer latex comprises at least one elastomer latex selected from the group consisting of natural rubber latex, such as fresh natural rubber latex and concentrated natural rubber latex, and can be polymerized by an emulsion method.
  • natural rubber latex such as fresh natural rubber latex and concentrated natural rubber latex
  • the aqueous elastomer latex comprises natural rubber latex. These latex raw materials are commercially available from many suppliers.
  • the dry rubber content of the elastomer latex raw material there is no strict limit on the dry rubber content of the elastomer latex raw material.
  • the elastomer latex can be used directly in the obtained form.
  • the dry rubber content of fresh natural rubber latex is in the range of about 20-40% by weight
  • the dry rubber content of concentrated natural rubber latex is about 60.5% by weight
  • the dry rubber content of synthetic latex is in the range of about 20-40% by weight.
  • the aqueous elastomer latex comprises natural rubber latex and at least one other synthetic latex that can be prepared by an emulsion polymerization method, such as ESBR latex, wherein the weight of the natural rubber latex and the synthetic latex
  • the ratio can be in the range of 100:0 to 0:100, for example, in the range of 100:0 to 20:80, or in the range of 100:0 to 30:70, or in the range of 100:0 to 40:60 In the range, or in the range of 100:0 to 50:50, or in the range of 80:20-20:80, or in the range of 80:20-50:50, or in the range of 80:20-60: Within the range of 40.
  • the filler includes at least one selected from the group consisting of silica, carbon black, graphite, and clay.
  • the filler contains silica.
  • the average particle size (D50) of the filler may be in the range of 0.1-20 microns, for example, in the range of 1-20 microns, or in the range of 2-15 microns, or in the range of 3-12 microns, Or in the range of 4-10 microns.
  • the filler comprises white carbon black and at least one additional filler such as carbon black, wherein the weight ratio of the white carbon black to the additional filler such as carbon black can range from 100:0 to 0. : 100 in the range, for example, in the range of 100:0 to 20:80, or in the range of 90:10-10:90, or in the range of 80:20-20:80, or in the range of 70:30 -30:70.
  • the solid content of the aqueous filler slurry is usually in the range of about 3 to about 30 weight, for example, in the range of about 5 to about 25 weight. Or in the range of about 6 to about 20 weight.
  • the method includes contacting and mixing the continuous flow of the aqueous elastomer latex and the continuous flow of the aqueous filler slurry in the presence of at least one coagulant, wherein the two
  • the volumetric flow rate of the continuous flow can be adjusted to produce a filler content of 8-150phr, such as 10-120phr, or 20-120phr, or 20-100phr, or 30-120phr, or 30-100phr, or 35-120phr, or 35- 100phr, or 40-100phr, or 40-90phr elastomer composite material.
  • the coagulant is represented by the following formula: X-L-Y,
  • X represents H, OH, -Si(OR) 3 , -Ge(OR) 3 , where R independently represents a C1-C3 alkyl group
  • L represents a substantially linear alkylene group having 4-20, preferably 4-12 carbon atoms, and a non-terminal CH 2 group in the alkylene chain is optionally substituted by a disulfide group (-SS- ) Or tetrasulfide group (-SSSS-) substitution, and
  • Y represents hydrogen, halogen, -Si(OR) 3 or -Ge(OR) 3 , wherein R independently represents a C1-C3 alkyl group.
  • coagulants examples include, but are not limited to, C4-C12 alkyltris(C1-C3)alkoxysilane, C4-C12alkyltris(C1-C3)alkoxygermane, C4- C20 substantially linear alkane, C4-C12 substantially linear aliphatic alcohol, various silane coupling agents with long-chain alkyl groups.
  • the coagulant is selected from the following group: n-octyl triethoxy silane (commercially available under the trade name K08E from Nanjing Nengde New Material Technology Co., Ltd.); n-hexyl triethyl Oxysilane (commercially available under the trade name K06E from Nanjing Nengde New Material Technology Co., Ltd.); n-butyl triethoxysilane (commercially available under the trade name K04E from Nanjing Nengde New Material Technology Co., Ltd.), isobutyl Triethoxysilane (commercially available from Nanjing Nengde New Material Technology Co., Ltd.
  • n-butanol under the trade name Si75
  • n-pentanol n-hexanol
  • n Heptanol n-octanol
  • 2-ethylhexanol n-nonanol
  • n-decanol n-undecyl alcohol
  • n-dodecanol n-tridecyl alcohol
  • n-tetradecanol n-pentane, N-hexane, n-heptane, n-octane and kerosene.
  • no acid and/or salt are used as a coagulant.
  • the coagulant does not include halosilane.
  • the coagulant does not include a halogen group.
  • the coagulant does not include silyl groups.
  • the added amount of the coagulant is 0.1-15 phr, for example, 0.2-12 phr, or 0.5-10 phr, or 0.6-8 phr, or 0.8-6 phr, relative to the elastomer composite material All elastomers in the meter.
  • the coagulant can be introduced into the mixing system in any suitable manner.
  • the coagulant may be added to the mixing system alone, or it may be added to the mixing system together with the filler slurry.
  • the coagulant may be added during the preparation of the filler slurry to form an aqueous slurry containing both the filler and the coagulant, and then the stream of the aqueous slurry is contacted and mixed with the stream of the aqueous elastomer latex.
  • the equipment used for the contact and mixing may be an ejector, a high-speed agitator, a low-speed agitator, or a screw mixer.
  • the temperature of the contact and mixing operation may be in the range of 5-100°C.
  • the contacting and mixing operations are performed at room temperature (23 ⁇ 2°C).
  • the pressure of the contact and mixing operation may be in the range of 0-30 MPa.
  • the contacting and mixing operations are performed under ambient pressure.
  • the continuous flow of the aqueous elastomer latex and the continuous flow of the aqueous filler slurry are at least one
  • the duration of contact and mixing in the presence of the coagulant may be 0.01-600 seconds, such as 0.05-300 seconds, or 0.1-120 seconds, or 0.1-60 seconds, or 0.1-30 seconds.
  • the step of recovering the elastomer composite material from the contact stream can be performed according to a method known per se.
  • the coagulated composite material can be dehydrated using a screw dehydrator. Then, the dehydrated composite material can be dried using a twin-screw extruder. Then, the dried composite material can be pelletized using a pelletizer.
  • the present disclosure provides an elastomer composite material prepared by the above-described method of the present disclosure.
  • the elastomer composite material prepared by the method of the present disclosure has excellent filler dispersion and the interaction between filler and rubber, and shows performance beyond traditional rubber.
  • the elastomer composite material prepared by the method of the present disclosure has good processing properties and superior dynamic mechanical properties, including high elasticity, low frictional heat generation, and good flexural crack resistance.
  • the elastomer composite material can be used in the preparation of various rubber products such as high-performance tires, seals and damping parts.
  • the present disclosure provides a method of preparing a rubber product, the method comprising:
  • the present disclosure provides a rubber product made by the method of the present disclosure.
  • rubber products are, for example, tires, seals or dampers.
  • the coagulant used in the method of the present invention is a highly effective demulsifier for natural rubber latex. Therefore, the method of the present invention can realize the rapid demulsification of the natural rubber latex, so as to realize the continuous production of the elastomer composite material. Moreover, the method of the present disclosure can avoid the use of conventional demulsifiers such as acids or salts, thereby saving production costs related to wastewater treatment. In addition, some coagulants used in the present disclosure, such as the silane coupling agent Si69, may remain in the resulting elastomer composite material (which may also function as a coupling agent or processing aid). Therefore, the method of the present disclosure can not only realize continuous production of elastomer composite materials, but also avoid the problem that the residual demulsifier may affect the performance of elastomer composite materials when conventional demulsifiers such as acid or salt are used.
  • a latex mechanical stability tester (L15240, KLAXON) was used to test the influence of the slurry prepared in Preparation Examples 1-12 on the mechanical stability of the latex.
  • Long machine stabilization time means low demulsification efficiency; short machine stabilization time means high demulsification efficiency.
  • a latex mechanical stability tester (L15240, KLAXON) was used to test the effect of the slurry 6 prepared in Preparation Example 6 (invention) or the slurry 14 prepared in Preparation Example 14 (comparative) in flocculating the mixture of natural latex and synthetic latex.
  • Add appropriate amount of synthetic latex (ESBR, Qilu Branch of China Petroleum & Chemical Corporation, combined with styrene content of 23%, dry glue content of 21.5%, and the usage ratio in Table 3) and 10 grams of white carbon black slurry into the cup.
  • the experiment of this example confirmed the effect of the coagulant of the present disclosure in demulsifying natural rubber latex.
  • a latex mechanical stability tester (L15240, KLAXON) was used to test the influence of alkyl-containing compounds on the mechanical stability of latex.
  • the internal mixer is preheated to 50°C, and 100 grams of SCR-WF (full latex natural rubber, Hainan Natural Rubber Industry Group) is added to the internal mixer, and the rotor speed is 40 rpm. When the temperature of the compound reaches 100°C, 50 grams of white carbon black (NEWSIL175) and 5 grams of Si69 are added. The rotor speed is increased to 120rpm, and when the temperature of the rubber material reaches 150°C, the rubber is discharged.
  • SCR-WF full latex natural rubber, Hainan Natural Rubber Industry Group
  • the internal mixer is preheated to 50°C, 100 grams of SCR-WF is added to the internal mixer, and the rotor speed is 40 rpm. When the temperature of the compound reaches 100°C, add 50 grams of carbon black (N134). The rotor speed is increased to 120rpm, and when the temperature of the rubber material reaches 150°C, the rubber is discharged.
  • the internal mixer is preheated to 50°C, and 432 grams of SCR-WF is added to the internal mixer, and the rotor speed is 80 rpm. When the temperature of the rubber compound reached 100°C, 238 grams of white carbon black (NEWSIL175) and 24 grams of Si69 were added. The rotor speed is increased to 100 rpm, and the glue is discharged when the temperature of the rubber material reaches 150°C.
  • the internal mixer is preheated to 50°C, and 416 grams of SCR-WF is added to the internal mixer, and the rotor speed is 80 rpm. When the temperature of the compound reached 100°C, 271 grams of white carbon black (NEWSIL175) and 27 grams of Si69 were added. The rotor speed is increased to 100 rpm, and the glue is discharged when the temperature of the rubber material reaches 150°C.
  • the internal mixer is preheated to 50°C, and 402 grams of SCR-WF is added to the internal mixer, and the rotor speed is 80 rpm. When the temperature of the rubber compound reached 100°C, 301 grams of white carbon black (NEWSIL175) and 30 grams of Si69 were added. The rotor speed is increased to 100 rpm, and the glue is discharged when the temperature of the rubber material reaches 150°C.
  • the internal mixer is preheated to 50°C, and 447 grams of SCR-WF is added to the internal mixer, and the rotor speed is 80 rpm.
  • the temperature of the compound reaches 100°C, 112 grams of white carbon black (NEWSIL175) and 11 grams of Si69 are added, and then 89 grams of carbon black (N134) are added.
  • the rotor speed is increased to 100 rpm, and the glue is discharged when the temperature of the rubber material reaches 150°C.
  • the internal mixer is preheated to 50°C, and 444 grams of SCR-WF is added to the internal mixer, and the rotor speed is 80 rpm.
  • the temperature of the compound reaches 100°C, 133 grams of white carbon black (NEWSIL175) and 13 grams of Si69 are added, and then 75 grams of carbon black (N134) are added.
  • the rotor speed is increased to 100 rpm, and the glue is discharged when the temperature of the rubber material reaches 150°C.
  • the internal mixer is preheated to 50°C, and 434 grams of SCR-WF is added to the internal mixer, and the rotor speed is 80 rpm.
  • the temperature of the compound reaches 100°C, 165 grams of white carbon black (NEWSIL175) and 16 grams of Si69 are added, and then 65 grams of carbon black (N134) are added.
  • the rotor speed is increased to 100 rpm, and the glue is discharged when the temperature of the rubber material reaches 150°C.
  • the internal mixer is preheated to 50°C, and 432 grams of SCR-WF is added to the internal mixer, and the rotor speed is 80 rpm. When the temperature of the compound reaches 100°C, 225 grams of carbon black (N134) is added. The rotor speed is increased to 100 rpm, and the glue is discharged when the temperature of the rubber material reaches 150°C.
  • the compound of the working example and the rubber compound of the comparative working example were mixed in the internal mixer according to the following formula and procedure for two-stage and final mixing.
  • Si69 (addition amount is 10% of the amount of silica in the composite); antioxidant 4020/1.5; zinc oxide/4; stearic acid/1; accelerator D/1.5.
  • the temperature of the internal mixer is raised to 100°C, the composite material and Si69 are added to the internal mixer, the rotor speed is slowly increased from 20rpm to 120rpm, when the temperature of the rubber material reaches 100°C, the small material is added and the mixing continues to the rubber temperature When it reaches 150°C-155°C, discharge the material and press it into tablets on an open mill.
  • the temperature of the internal mixer is raised to 100°C, and a section of dry rubber is added, and when the temperature of the rubber material reaches 100°C, small materials are added.
  • the rotor speed is increased to 120rpm, and when the temperature of the rubber material reaches 150°C, the material is discharged and pressed into tablets on an open mill.
  • ⁇ Type of internal mixer XSM-1/10-120 rubber-plastic test internal mixer
  • the internal mixer is preheated to 50°C, the composite material and Si69 are added to the internal mixer, and the rotor speed is 80 rpm. When the temperature of the rubber material reaches 100°C, add the small material. The rotor speed is increased to 100 rpm, and when the temperature of the rubber material reaches 150°C, the rubber is discharged and compressed into tablets on the open mill.
  • the internal mixer is preheated to 50°C, a section of dry rubber is added, and the rotor speed is 80 rpm. When the temperature of the rubber material reaches 100°C, add the small material. The rotor speed is increased to 120rpm, and when the temperature of the rubber material reaches 150°C, the material is discharged and pressed into tablets on an open mill.
  • the temperature of the internal mixer is increased to 75°C, the second stage rubber is added to the internal mixer, and the accelerator and sulfur are added at the same time.
  • the rotor speed is increased to 40rpm, and when the temperature of the rubber material reaches 95°C, the material is discharged. Rolling and triangulation are performed on the open mill 3 times each.
  • ⁇ Type of internal mixer XSM-1/10-120 rubber-plastic test internal mixer
  • the temperature of the internal mixer is increased to 50°C, the second stage rubber is added to the internal mixer, and the accelerator and sulfur are added at the same time.
  • the rotor speed is increased to 40rpm, and when the temperature of the rubber material reaches 95°C, the material is discharged. Rolling and triangulation are performed on the open mill 3 times each. Vulcanization conditions: 150°C, 15 minutes (thin products) and 25 minutes (thick products)
  • test standards are listed in Table 5 below.
  • the elastic composite of the present disclosure has better filler-rubber interaction, which is characterized by good processing performance and superior dynamic mechanical properties, that is, high elasticity, low heat generation, and resistance to flexure and cracking.
  • This working example exemplifies the preparation of natural rubber/silica/graphite composite materials by dry method and wet method, respectively, and compares the properties of the resulting composite materials.
  • the internal mixer is preheated to 50°C, and 504.07 grams of SCR-WF is added to the internal mixer, and the rotor speed is 40 rpm.
  • the rotor torque is gentle, add 151.22 grams of white carbon black (NEWSIL175), 15.12 grams of Si69 and 151.22 grams of graphite (D97 ⁇ 3 ⁇ m, purity C ⁇ 97%, Hunan Lengshuijiang Development Zone) in 3 times.
  • the rotor speed is increased to 100 rpm, and when the temperature of the rubber material reaches 150°C, the rubber is discharged to obtain a natural rubber/white carbon black/graphite composite material (30/30).
  • the internal mixer is preheated to 50°C, and 505.12 grams of SCR-WF is added to the internal mixer, and the rotor speed is 40 rpm.
  • the rotor torque is gentle, add 202.05 grams of white carbon black (NEWSIL175), 20.20 grams of Si69 and 101.02 grams of graphite (D97 ⁇ 3 ⁇ m, purity C ⁇ 97%, Hunan Lengshuijiang Development Zone) in 3 times.
  • the rotor speed is increased to 100rpm, and when the temperature of the rubber material reaches 150°C, the rubber is discharged to obtain a natural rubber/white carbon black/graphite composite material (40/20).
  • the internal mixer is preheated to 50°C, and 506.11 grams of SCR-WF is added to the internal mixer, and the rotor speed is 40 rpm.
  • the rotor torque is flat, add 253.05 grams of white carbon black (NEWSIL175), 25.30 grams of Si69 and 50.61 grams of graphite (D97 ⁇ 3 ⁇ m, purity C ⁇ 97%, Hunan Lengshuijiang Development Zone) in 3 times.
  • the rotor speed was increased to 100 rpm, and when the temperature of the rubber material reached 150 °C, the rubber was discharged to obtain a natural rubber/white carbon black/graphite composite material (50/10).
  • the internal mixer is preheated to 50°C, and 507.13 grams of SCR-WF is added to the internal mixer, and the rotor speed is 40 rpm.
  • 304.26 grams of white carbon black (NEWSIL175) and 30.43 grams of Si69 are added in 3 times.
  • the rotor speed is increased to 100rpm, and when the temperature of the rubber material reaches 150°C, the rubber is discharged to obtain a natural rubber/white carbon black/graphite composite material (60/0).
  • This working example illustrates the preparation of natural rubber/ESBR/silica materials by dry and wet methods, respectively, and compares the properties of the resulting composite materials.
  • XSM-1/10-120 rubber-plastic test internal mixer Use XSM-1/10-120 rubber-plastic test internal mixer.
  • the internal mixer is preheated to 50°C, 253.56 grams of SCR-WF and 253.56 grams of ESBR1502 (Sinopec Qilu Branch) are added to the internal mixer, and the rotor speed is 40 rpm.
  • ESBR1502 Seopec Qilu Branch
  • the rotor speed is 40 rpm.
  • 304.26 grams of white carbon black (NEWSIL175) and 30.43 grams of Si69 are added in 3 times.
  • the rotor speed is increased to 100rpm, and when the temperature of the rubber material reaches 150°C, the rubber is discharged to obtain the NR/ESBR/white carbon black composite material (50/50).
  • XSM-1/10-120 rubber-plastic test internal mixer The internal mixer was preheated to 50°C, and 304.28 grams of SCR-WF and 202.85 grams of ESBR1502 (Sinopec Qilu Branch) were added to the internal mixer, and the rotor speed was 40 rpm. When the rotor torque is flat, 304.26 grams of white carbon black (NEWSIL175) and 30.43 grams of Si69 are added in 3 times. The rotor speed is increased to 100rpm, and when the temperature of the rubber material reaches 150°C, the rubber is discharged to obtain the NR/ESBR/white carbon black composite material (60/40).
  • XSM-1/10-120 rubber-plastic test internal mixer The internal mixer was preheated to 50°C, and 354.99 grams of SCR-WF and 152.14 grams of ESBR1502 (Sinopec Qilu Branch) were added to the internal mixer, and the rotor speed was 40 rpm. When the rotor torque is flat, 304.26 grams of white carbon black (NEWSIL175) and 30.43 grams of Si69 are added in 3 times. The rotor speed is increased to 100 rpm, and when the temperature of the rubber material reaches 150 °C, the rubber is discharged to obtain the NR/ESBR/white carbon black composite material (70/30).
  • XSM-1/10-120 rubber-plastic test internal mixer The internal mixer was preheated to 50°C, and 405.70 grams of SCR-WF and 101.43 grams of ESBR1502 (Sinopec Qilu Branch) were added to the internal mixer, and the rotor speed was 40 rpm. When the rotor torque is flat, 304.26 grams of white carbon black (NEWSIL175) and 30.43 grams of Si69 are added in 3 times. The rotor speed is increased to 100rpm, and when the temperature of the rubber material reaches 150°C, the rubber is discharged to obtain the NR/ESBR/white carbon black composite material (80/20).
  • XSM-1/10-120 rubber-plastic test internal mixer Use XSM-1/10-120 rubber-plastic test internal mixer.
  • the internal mixer is preheated to 50°C, and 507.13 grams of SCR-WF is added to the internal mixer, and the rotor speed is 40 rpm.
  • 304.26 grams of white carbon black (NEWSIL175) and 30.43 grams of Si69 are added in 3 times.
  • the rotor speed is increased to 100rpm, and when the temperature of the rubber material reaches 150°C, the rubber is discharged to obtain the NR/ESBR/white carbon black composite material (100/0).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

公开了制备弹性体复合材料的连续方法,该方法包括以下步骤:提供水性弹性体胶乳的连续流;提供水性填料淤浆的连续流;使所述水性弹性体胶乳的连续流与所述水性填料淤浆的连续流在至少一种凝结剂存在下接触和混合,以获得包含填料分散在其中的、凝结的弹性体的接触后物流;和从所述接触后物流回收弹性体复合材料,其中所述凝结剂是至少一种具有4-20,优选4-12个碳原子的、基本上线性的烷基/亚烷基的化合物。还公开了通过所述方法制备的弹性体复合材料、包含该弹性体复合材料的橡胶制品和制备所述橡胶制品的方法。

Description

弹性体复合材料的制备方法及通过所述方法制备的产品 技术领域
本公开涉及弹性体复合材料的制备方法及通过该方法制备的产品。更具体地,本公开涉及包含天然橡胶和白炭黑的弹性体复合材料的制备方法及通过该方法制备的产品。本公开的新方法能够生产高性能的弹性体复合材料,以满足社会对橡胶制品日益提高的性能需求。
背景技术
许多商业上重要的产品是由弹性体组合物形成的,其中颗粒状增强材料如炭黑和二氧化硅(也称为白炭黑)分散在各种合成橡胶、天然橡胶和橡胶共混物中。白炭黑增强的天然橡胶不仅具有好的物理性能,而且具有良好的动态性能,因此可以用于各种橡胶制品的生产中,由其是用在轮胎的生产中。
为了实现好的橡胶制品性能,颗粒状增强材料在橡胶基质中的好的分散被认为是重要的,并且人们做了很多努力来开发能够改善分散质量的方法。湿法混炼是制备高性能橡胶/填料复合材料的一种重要方法,其中通常地液体橡胶胶乳和填料淤浆在有或没有凝结剂的情况下混合,经过凝聚共沉、脱水干燥等过程制得填料分散均匀的橡胶/填料复合材料。
WO99/16600公开了制备包含弹性体和颗粒状填料的弹性体复合共混料的方法,包括在凝聚反应器的混合区中使含有弹性体胶乳的第一物流与在压力下加入的、含有颗粒状填料的第二物流合并,以使所述弹性体凝聚。据说无需包括暴露于酸或盐溶液或类似物的凝聚步骤,即可实现高效和有效的弹性体的凝聚。
WO2017/011548公开了制备用二氧化硅增强的弹性体复合材料的方法,包括使包含去稳定化的二氧化硅分散体的第一流体连续流与包含弹性体胶乳的第二流体连续流在足够能量冲击的条件下合并,以将二氧化硅分配到所述弹性体胶乳中。
WO2011/066044公开了用至少二价的金属元素掺杂二氧化硅,并将其作为填料用于湿法混合制备二氧化硅/天然橡胶母炼胶。
仍然需要有效的湿法混炼方法以制备高性能的天然橡胶/二氧化硅复合材料。
发明概述
为了满足对橡胶制品,特别是轮胎的日益提高的性能需求,同时为了克服现有技术遇到的问题,本发明人进行了勤勉的研究。结果发现,一些具有相对长直链烷基的化合物可以起天然橡胶胶乳的凝结剂的作用,并且因此可以用于湿法混炼方法以制备高性能的天然橡胶/二氧化硅复合材料,由此完成了本发明。
本公开的一个目的是提供制备弹性体复合材料的连续方法,该方法包括以下步骤:
提供水性弹性体胶乳的连续流;
提供水性填料淤浆的连续流;
使所述水性弹性体胶乳的连续流与所述水性填料淤浆的连续流在至少一种凝结剂存在下接触和混合,以获得包含填料分散在其中的、凝结的弹性体的接触后物流;和
从所述接触后物流回收弹性体复合材料,
其中所述至少一种凝结剂选自指定的具有相对长直链烷基的化合物。
本公开的另一个目的是提供通过本公开方法制备的弹性体复合材料,尤其是天然橡胶/白炭黑复合材料。
本公开的又一个目的是提供所述弹性体复合材料在制备橡胶制品,尤其是轮胎中的应用。
与传统干法混炼方法相比,本公开的湿法混炼方法能够制备填料在橡胶中更均匀、更细地分布的弹性体/填料复合材料;与近些年开发的湿法混炼方法相比,本公开的湿法混炼方法在可以使用的填料和弹性体方面显示了更大的灵活性。
优选实施方案的详细描述
在下面的详细描述部分中,描述了本公开的非限制性实例。然而,就以下描述特定于本公开的特定实例或特定用途而言,这仅旨在为了示例性目的,并且仅提供示例性实例的描述。因此,本公开不限于以下描述的具体实例,而是包括落入所附权利要求书的真实精神和范围内的所有替代、修改和等同形式。
首先,为了便于参考,阐述本申请中使用的某些术语及其在上下文中使用时的含义。此外,本公开不受以下所示术语的使用的限制,因为所有等同形式、同义词、新发展以及用于相同或相似目的的术语或技术都被认为在本权利要求书的范围内。
本文中使用的、以单数语法形式写出的术语“一个”、“一种”和“所述”的每一个也可以指和包括多个所提及的物体或对象,除非在其中另外具体定义或声明,或者除非上下文清楚地另外指明。
本文中使用的术语“包括”、“具有”、“有”和“包含”以及它们的语言学或语法学变例、派生体和/或变体是指“包括但不限于”。
在所述说明性描述、实施例和所附权利要求书中,参数、特征、目标或尺寸的数值可以被以数值范围形式声明或描述。应该充分理解,所声明的数值范围形式被提供以举例说明本文中公开的形式的实施,并且不应被理解为或解释为一成不变地限制本文中公开的形式的范围。
本文中使用的术语“白炭黑”可以与术语“二氧化硅”互换使用,并且是指颗粒状二氧化硅或者用二氧化硅涂覆的颗粒材料。所述二氧化硅可以包括任何形式的沉淀法二氧化硅、胶态二氧化硅、气相法二氧化硅和它们的任何组合。
本文中使用的术语“淤浆”是指固体颗粒在水性流体中的悬浮液/分散体。在本公开的方法的操作过程中,所述淤浆通常是足够稳定的,即不会发生沉降至阻碍工艺的进行或者明显影响所得产品质量的程度。
本文中使用的术语“水性”是指分散介质主要(即以大于50wt%的量)包含水或者甚至完全由水组成。除水以外,水性介质可以包含一种或多种可与水混溶的溶剂,例如低级醇。
本文中使用的术语“物流”是指从第一点(例如源)流到第二点(例如混合设备)的材料。所述物流可以包括任何相或材料,但是在本公开中通常是液体。
本文中使用的术语“连续流”是指来自供给源(例如储罐)的流体的稳定或恒定的流。但是,应该理解,存在短暂间歇(例如数分钟或者数秒或者更短时间的间歇)的流仍被认为是连续流(例如,当在不同供给源如储罐之间切换时)。
本文中所说的水相胶乳是有机高分子在油水两相表面活性物质的包裹中均匀地悬浮分散于水中的悬浮体系。一般称表面活性剂为乳化剂,将有机高分子从包裹的表面活性剂中“取出”的过程叫破乳。有机高分子不溶于水,当它不被乳化剂包裹时,便与水分离,相聚在一起,这个过程称作絮凝。使絮凝过程发生的物质常常被称为絮凝剂或凝结剂。
水相胶乳中,包裹在表面活性剂中的有机高分子,在机械剪切力的作用下有可能发生形变,“突破”包裹层,在水中絮凝。根据GB/T8301-2008中的规定,胶乳在规 定的条件下,从开始至见到絮凝粒所需的时间为机械稳定度(mechanical stability),用秒表示。
橡胶是指符合ASTM D1566定义的任何聚合物或聚合物的组合物:“能够从大的变形恢复且可以或者已经被改性到其中它在沸腾的溶剂中基本上不可溶(但可溶胀)的物质”。而且,橡胶是一种无定形材料。弹性体是可与术语橡胶互换使用的术语。弹性体组合物是指包含至少一种以上定义的弹性体的任何组合物。弹性体复合材料是指包含至少一种以上定义的弹性体和颗粒填料的任何组合物。
ASTM D1566所定义的硫化的橡胶配混物是指“交联的、由弹性体混配的弹性材料,它容易通过小的力产生大的变形,一旦除去所述变形力能够快速、有力地恢复到大致其起始尺寸和形状”。固化的弹性体组合物是指已经经历了固化过程和/或包含有效量的固化剂或固化包或者使用有效量的固化剂或固化包生产的任何弹性体组合物,且是可与术语硫化的橡胶配混物互换使用的术语。
术语“phr”是相对于每100份橡胶的份数或者“份”,且是本领域常见的度量单位,其中组合物的各组分相对于所有弹性体组分的总重量以重量度量。所有橡胶组分(不管在给定的配方内存在1,2,3或更多种不同的橡胶组分)的总phr或份数总是被定义为100phr。所有其它非橡胶组分相对于所述100份橡胶以重量计求出比值,且以phr表达。以这种方式,人们可基于相同的相对橡胶比例容易地比较不同组合物间的例如固化剂水平或填料负载量等,而不需要在调节仅一种或者更多种组分的含量之后重新计算每一组分的百分数。
本文中使用的术语“烷基”是指可以通过从化学式中去掉一个或多个氢而衍生自烷烃的烷属烃基,例如甲基(CH 3)、乙基(CH 3CH 2)、丙基(CH 3CH 2CH 2)、亚己基((CH 2) 6)等。本文中使用的术语“亚烷基”是指可以通过从化学式中去掉两个氢而衍生自烷烃的烷属亚烃基,例如1,6-亚己基。除非另外明确指明,本文中使用的术语“亚烷基”是指α,ω-亚烷基。
本文中使用的术语“长链烷基”是指具有4-20,优选4-12个碳原子的烷基。
本文中使用的术语“基本上线性的烷基/亚烷基”是指每10个链中碳原子具有不超过2个,优选不超过1.8个,更优选不超过1.6个,仍更优选不超过1.4个,仍更优选不超过1.2个,还更优选不超过1.0个,还更优选不超过0.8个,还更优选不超过0.5个具有不超过3个碳原子的短支链的烷基/亚烷基。
除非另外指明,本文中使用的百分数(%)是重量百分数(wt%)。
在第一方面,本公开提供了制备弹性体复合材料的连续方法,该方法包括以下步骤、基本上由以下步骤组成或由以下步骤组成:
提供水性弹性体胶乳的连续流;
提供水性填料淤浆的连续流;
使所述水性弹性体胶乳的连续流与所述水性填料淤浆的连续流在至少一种凝结剂存在下接触和混合,以获得包含填料分散在其中的、凝结的弹性体的接触后物流;和
从所述接触后物流回收弹性体复合材料,
其中所述凝结剂是至少一种具有相对长(例如具有4-20,优选4-12个碳原子)的、基本上线性的烷基/亚烷基的化合物。
在本公开的一些实施方案中,所述水性弹性体胶乳包含选自下组中的至少一种弹性体胶乳:天然橡胶胶乳,例如鲜天然橡胶胶乳和浓缩天然橡胶胶乳,和可通过乳液聚合方法制备的各种合成胶乳,例如ESBR胶乳和NBR胶乳。优选地,所述水性弹性体胶乳包含天然橡胶胶乳。这些胶乳原料可以从众多供应商商购获得。
在本公开中,对弹性体胶乳原料的干胶含量没有严格的限制。通常,所述弹性体胶乳可以以获得的形式直接使用。一般地,鲜天然橡胶胶乳的干胶含量在约20-40重量%的范围内,浓缩天然橡胶胶乳的干胶含量为约60.5重量%。一般地,合成胶乳的干胶含量在约20-40重量%的范围内。
在本公开的一些实施方案中,所述水性弹性体胶乳包含天然橡胶胶乳和至少一种另外的可通过乳液聚合方法制备的合成胶乳如ESBR胶乳,其中所述天然胶乳与所述合成胶乳的重量比可以在100:0到0:100的范围内,例如在100:0到20:80的范围内,或者在100:0到30:70的范围内,或者在100:0到40:60的范围内,或者在100:0到50:50的范围内,或者在80:20-20:80的范围内,或者在80:20-50:50的范围内,或者在80:20-60:40的范围内。
在本公开的一些实施方案中,所述填料包含选自下组中的至少一种:白炭黑,炭黑,石墨和粘土。优选地,所述填料包含白炭黑。所述填料的平均粒径(D50)可以在0.1-20微米的范围内,例如在1-20微米的范围内,或者在2-15微米的范围内,或者在3-12微米的范围内,或者在4-10微米的范围内。
在本公开的一些实施方案中,所述填料包含白炭黑和至少一种另外的填料如炭黑,其中白炭黑与所述另外的填料如炭黑的重量比可以在100:0到0:100的范围内,例 如在100:0到20:80的范围内,或者在90:10-10:90的范围内,或者在80:20-20:80的范围内,或者在70:30-30:70的范围内。
在本公开中,对水性填料淤浆的固含量没有特殊的限制,但是水性填料淤浆的固含量通常在约3-约30重量的范围内,例如在约5-约25重量的范围内,或者在约6-约20重量的范围内。
在本公开的一些实施方案中,所述方法包括使所述水性弹性体胶乳的连续流与所述水性填料淤浆的连续流在至少一种凝结剂存在下接触和混合,其中所述两个连续流的体积流量可以被调节以产生填料含量为8-150phr,例如10-120phr,或者20-120phr,或者20-100phr,或者30-120phr,或者30-100phr,或者35-120phr,或者35-100phr,或者40-100phr,或者40-90phr的弹性体复合材料。
在本公开的一些实施方案中,所述凝结剂由下式表示:X-L-Y,
其中,
X表示H、OH、-Si(OR) 3、-Ge(OR) 3,其中R独立地表示C1-C3烷基,
L表示具有4-20,优选4-12个碳原子的基本上线性的亚烷基,所述亚烷基链中的非末端的一个CH 2基团任选被二硫基团(-S-S-)或者四硫基团(-S-S-S-S-)替代,和
Y表示氢、卤素、-Si(OR) 3或-Ge(OR) 3,其中R独立地表示C1-C3烷基。
可用于本公开的凝结剂的实例包括但不限于C4-C12烷基三(C1-C3)烷氧基甲硅烷、C4-C12烷基三(C1-C3)烷氧基甲锗烷、C4-C20基本直链的烷烃、C4-C12基本直链的脂肪族醇、具有长链烷基的各种硅烷偶联剂。
在本公开的一些优选的实施方案中,所述凝结剂选自下组:正辛基三乙氧基硅烷(可以商品名K08E商购自南京能德新材料技术有限公司);正己基三乙氧基硅烷(可以商品名K06E商购自南京能德新材料技术有限公司);正丁基三乙氧基硅烷(可以商品名K04E商购自南京能德新材料技术有限公司),异丁基三乙氧基硅烷(可以商品名Ki04E商购自南京能德新材料技术有限公司),正癸基三乙氧基硅烷,正壬基三乙氧基硅烷,正庚基三乙氧基硅烷,正戊基三乙氧基硅烷,正辛基三甲氧基硅烷;正己基三甲氧基硅烷;正丁基三甲氧基硅烷,正癸基三甲氧基硅烷,正壬基三甲氧基硅烷,正庚基三甲氧基硅烷,正戊基三甲氧基硅烷,双[γ-(三乙氧基甲硅烷基)丙基]四硫化物(可以商品名Si69商购自南京能德新材料技术有限公司),双[3-(三乙氧基甲硅烷基)丙基]二硫化物(可以商品名Si75商购自南京能德新材料技术有限公司),正丁醇,正戊醇,正己醇,正庚醇,正辛醇,2-乙基己醇,正壬醇,正癸醇,正十一烷 醇,正十二烷醇,正十三烷醇,正十四烷醇,正戊烷,正己烷,正庚烷,正辛烷和煤油。
优选地,在本公开的方法中,不使用酸和/或盐作为凝结剂。
在本公开的一些实施方案中,所述凝结剂不包含卤代硅烷。
在本公开的一些实施方案中,所述凝结剂不包含卤素基团。
在本公开的一些实施方案中,所述凝结剂不包含甲硅烷基团。
在本公开的方法的一些实施方案中,所述凝结剂的加入量为0.1-15phr,例如为0.2-12phr,或者0.5-10phr,或者0.6-8phr,或者0.8-6phr,相对于弹性体复合材料中的所有弹性体计。
在本公开的方法中,所述凝结剂可以以任何合适的方式引入混合体系中。例如,所述凝结剂可以被单独加入混合体系中,也可以被与所述填料浆液一起加入混合体系中。或者,可以在所述填料浆液的制备过程中加入所述凝结剂以形成包含填料和凝结剂二者的水性淤浆,然后该水性淤浆的物流与所述水性弹性体胶乳物流接触和混合。
按照本公开,对使所述水性弹性体胶乳的连续流与所述水性填料淤浆的连续流在至少一种凝结剂存在下接触和混合的操作条件和所使用的设备没有特殊的限制,只要能够保证所述两个连续流间的连续地和充分地接触和混合。例如,用于所述接触和混合的设备可以是喷射器、高速搅拌器、低速搅拌器或者螺杆混合机。所述接触和混合操作的温度可以在5-100℃的范围内。方便地,所述接触和混合操作在室温(23±2℃)进行。所述接触和混合操作的压力可以在0-30MPa的范围内。方便地,所述接触和混合操作在环境压力下进行。
在本公开的一些实施方案中,为了获得包含填料分散在其中的、凝结的弹性体的接触后物流,所述水性弹性体胶乳的连续流与所述水性填料淤浆的连续流在至少一种凝结剂存在下接触和混合的持续时间可以为0.01-600秒,例如0.05-300秒,或者0.1-120秒,或者0.1-60秒,或者0.1-30秒。
在本公开的方法中,从所述接触后物流回收弹性体复合材料的步骤可以按照本质上已知的方法进行。例如,所述凝结后的复合材料可以使用螺杆脱水机脱水。然后,脱水后的复合材料可以使用双螺杆挤出机干燥。然后,干燥后的复合材料可以使用造粒机造粒。
在第二方面,本公开提供了通过上述本公开方法制备的弹性体复合材料。
由本公开方法制备的弹性体复合材料具有优异的填料分散以及填料与橡胶的相互 作用,并且显示了超越传统胶的性能。例如,由本公开方法制备的弹性体复合材料具有好的加工性能和优越的动态力学性能,包括高的弹性、低的摩擦生热和好的耐曲饶龟裂性。
所述弹性体复合材料可以用于各种橡胶制品如高性能轮胎、密封件和阻尼件的制备。
在第三方面,本公开提供了制备橡胶制品的方法,该方法包括:
1)通过上述本公开的方法制备弹性体复合材料;
2)将所述弹性体复合材料与添加剂和任选的加工助剂复配成混配的弹性体组合物;
3)将所述弹性体组合物成型为成型制品;和
4)硫化所述成型制品,以形成橡胶制品。
在第四方面,本公开提供了通过本公开的方法制得的橡胶制品。这样的橡胶制品是例如轮胎、密封件或者阻尼件。
不希望受任何特定理论的束缚,据信本发明方法中使用的凝结剂是天然橡胶胶乳的高效破乳剂。因此,通过本发明的方法可以实现天然橡胶胶乳的快速破乳,从而能够实现弹性体复合材料的连续生产。而且,本公开的方法可以避免使用常规的破乳剂如酸或者盐,从而可以节省与废水处理相关的生产成本。另外,本公开中使用的一些凝结剂如硅烷偶联剂Si69可以保留在所得到的弹性体复合材料中(其可能还起偶联剂或加工助剂的作用)。因此,采用本公开方法既能够实现弹性体复合材料的连续生产,又能够避免使用常规破乳剂如酸或者盐时所述破乳剂的残留可能影响弹性体复合材料性能的问题。
具体实施方式
下面实施例将对本发明做进一步的说明,但并不因此而限制本发明。
制备实施例1-8:含凝结剂的白炭黑淤浆的制备
将350克白炭黑(Newsil175,确成硅化学股份有限公司)与指定量的凝结剂(见表1,得自南京能德新材料技术有限公司)在室温(23±2℃)下混合均匀。将所述混合物加热至140℃并保持指定的时间(见表1)。将所述混合物冷却至室温后,向其中加入2182克水,然后将所得到的混合物在研磨机内研磨,直到白炭黑的中值粒径D50=5-7微米,由此得到包含凝结剂的白炭黑浆液(浆液1-8)。
制备实施例9-12:含凝结剂的白炭黑淤浆的制备
将350克白炭黑(Newsil175,确成硅化学股份有限公司)与指定量的凝结剂(见表1)在室温(23±2℃)下混合均匀,然后将所述混合物在室温保持指定的时间(见表1)。然后,向其中加入2182克水,并且将所得到的混合物在研磨机内研磨,直到白炭黑的中值粒径D50=5-7微米,由此得到包含凝结剂的白炭黑浆液(浆液9-12)。
表1凝结剂种类和用量
Figure PCTCN2021083161-appb-000001
制备实施例13
将30克白炭黑(Newsil175,确成硅化学股份有限公司)和200克水在研磨机内慢速混合,由此得到未改性未研磨白炭黑浆液(浆液13)。
制备实施例14
将30克白炭黑(Newsil175,确成硅化学股份有限公司)和200克水在研磨机内研 磨,直到白炭黑的中值粒径D50=6.1微米,由此得到未改性研磨白炭黑浆液(浆液14)。
制备实施例15
将403克炭黑(N134,江西黑猫炭黑股份有限公司)和2700克水在研磨机内研磨,直到炭黑的中值粒径D50=9.1微米,由此得到炭黑浆液(浆液15)。
实施例1-25
这些实施例证实了本公开的凝结剂在使天然橡胶胶乳破乳中的效果。
使用胶乳机械稳定测试仪(L15240,KLAXON)测试在制备实施例1-12中制备的浆液对胶乳机械稳定度的影响。机稳时间长,代表破乳效率低;机稳时间短,代表破乳效率高。
在杯筒中加入天然橡胶胶乳(其中如使用浓缩胶乳,干胶含量60.5%,如使用鲜胶乳,干胶含量31.5%)50克和白炭黑浆液10克。开启搅拌转子,在转子转数为14000转/分下,观察胶乳中出现结团即胶乳絮凝开始的时间。结果列在下表2中。
使用炭黑浆液进行同样的试验,结果列在表2中。
表2天然橡胶胶乳机械稳定度测试结果
实施例号 体系组成 机稳时间,秒
1 浓缩胶乳+浆液1 43
2 浓缩胶乳+浆液2 52
3 浓缩胶乳+浆液3 47
4 浓缩胶乳+浆液4 733
5 浓缩胶乳+浆液5 31
6 浓缩胶乳+浆液6 35
7 浓缩胶乳+浆液7 36
8 浓缩胶乳+浆液8 58
9 浓缩胶乳+浆液9 45
10 浓缩胶乳+浆液10 37
11 浓缩胶乳+浆液11 39
12 浓缩胶乳+浆液12 40
13 鲜胶乳+浆液1 7
14 鲜胶乳+浆液6 6
15 鲜胶乳+浆液10 7
16 鲜胶乳+浆液11 8
17 鲜胶乳+浆液12 9
18 浓缩胶乳 1052
19 浓缩胶乳+浆液13 1830
20 浓缩胶乳+浆液14 2113
21 浓缩胶乳+浆液15 61
22 鲜胶乳 242
23 鲜胶乳+浆液13 320
25 鲜胶乳+浆液15 165
实施例26-41
这些实施例证实了本公开的凝结剂在使天然橡胶/合成胶乳的复合胶乳破乳中的效果。
使用胶乳机械稳定测试仪(L15240,KLAXON)测试在制备实施例6中制备的浆液6(发明)或者在制备实施例14中制备的浆液14(对比)使天然胶乳和合成胶乳混合物絮凝的效果。在杯筒中加入适量合成胶乳(ESBR,中国石油化工股份有限公司齐鲁分公司,结合苯乙烯含量23%,干胶含量21.5%,使用量比例见表3)和白炭黑浆液10克,开启搅拌转子,在转子转数为1000转/分下,将天然橡胶胶乳(如果使用浓缩胶乳,干胶含量60.5%,如果使用鲜胶乳,干胶含量31.5%。天然橡胶与合成橡胶的比例见表3)缓慢加入杯筒中,总胶乳量共50克。观察杯筒中两种胶乳的絮凝的情况,结果见下表3。
表3复合胶乳絮凝测试结果
Figure PCTCN2021083161-appb-000002
Figure PCTCN2021083161-appb-000003
实施例42
本实施例的实验证实了本公开的凝结剂在使天然橡胶胶乳破乳中的效果。
使用胶乳机械稳定测试仪(L15240,KLAXON)测试含烷基化合物对胶乳机械稳定性的影响。
在杯筒中加入天然橡胶胶乳(鲜胶乳,干胶含量31.5%)50克。在开启搅拌转子(14000转/分)的同时,加入1毫升含烷基的化合物,观察胶乳中出现结团即胶乳絮凝开始的时间。结果列在下表4中。
表4.天然橡胶胶乳机械稳定性测试结果
实验号 体系组成 机稳时间,秒
1 纯鲜胶乳 166
2 鲜胶乳+正戊烷 95
3 鲜胶乳+正己烷 18
4 鲜胶乳+环己烷 80
5 鲜胶乳+正庚烷 15
6 鲜胶乳+煤油 15
7 鲜胶乳+汽油 51
8 鲜胶乳+甲醇 136
9 鲜胶乳+乙醇 90
10 鲜胶乳+正丙醇 75
11 鲜胶乳+异丙醇 90
12 鲜胶乳+正丁醇 12
13 鲜胶乳+K04E 78
14 鲜胶乳+K06E 19
15 鲜胶乳+K08E 14
16 鲜胶乳+Si69 91
17 鲜胶乳+Si75 92
工作实施例
这些工作实施例例示了弹性体/白炭黑复合材料或者弹性体/白炭黑/炭黑复合材料的制备。在以下工作实施例中,脱水和干燥的通用程序如下:将絮凝后的复合材料通过挤压机,绝大部分清水被挤出;然后将含有少量水的复合材料加入螺杆机,在大于150RPM转速下复合材料温度升高至140℃以上,剩余水分蒸发,完成复合材料干燥。工作实施例1
将862.1克浓缩天然胶乳(干胶含量60.5%)和1922克浆液8混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为50phr的天然橡胶/白炭黑复合材料。
工作实施例2
将862.1克浓缩天然胶乳(干胶含量60.5%)和2460克浆液4混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为64phr的天然橡胶/白炭黑复合材料。
工作实施例3
将862.1克浓缩天然胶乳(干胶含量60.5%)和1998克浆液8混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为52phr的天然橡胶/白炭黑复合材料。
工作实施例4
将862.1克浓缩天然胶乳(干胶含量60.5%)和2190克浆液8混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为57phr的天然橡胶/白炭黑复合材料。
工作实施例5
将862.1克浓缩天然胶乳(干胶含量60.5%)和2421克浆液8混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为63phr的天然橡胶/白炭黑复合材料。
工作实施例6
将862.1克浓缩天然胶乳(干胶含量60.5%)和2575克浆液8混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为67phr的天然橡胶/白炭黑复合材料。
工作实施例7
将1656克鲜天然胶乳(干胶含量31.5%)和2268克浆液8混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为59phr的天然橡胶/白炭黑复合材料。
工作实施例8
将1656克鲜天然胶乳(干胶含量31.5%)和2575克浆液8混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为67phr的天然橡胶/白炭黑复合材料。
工作实施例9
将1656克鲜天然胶乳(干胶含量31.5%)和2998克浆液8混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为78phr的天然橡胶/白炭黑复合材料。
工作实施例10
将862.1克浓缩天然胶乳(干胶含量60.5%)与1153克浆液8和642克浆液15混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为30phr、炭黑填充量为16phr的天然橡胶/白炭黑/炭黑复合材料。
工作实施例11
将862.1克浓缩天然胶乳(干胶含量60.5%)与1576克浆液8和482克浆液15混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为41phr、炭黑填充量为12phr的天然橡胶/白炭黑/炭黑复合材料。
工作实施例12
将862.1克浓缩天然胶乳(干胶含量60.5%)与961克浆液8和723克浆液15混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为25phr、炭黑填充量为18phr的天然橡胶/白炭黑/炭黑复合材料。
工作实施例13
将1656克鲜天然胶乳(干胶含量31.5%)与1153克浆液8和843克浆液15混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为30phr、炭黑填充量为21phr的天然橡胶/白炭黑/炭黑复合材料。
工作实施例14
将1656克鲜天然胶乳(干胶含量31.5%)与1384克浆液8和562克浆液15混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为36phr、炭黑填充量为14phr的天然橡胶/白炭黑/炭黑复合材料。
工作实施例15
将1656克鲜天然胶乳(干胶含量31.5%)与1615克浆液8和401克浆液15混合,絮凝瞬间发生。经脱水和干燥后制得白炭黑填充量为42phr、炭黑填充量为10phr的天然橡胶/白炭黑/炭黑复合材料。
对比工作实施例1
使用RM-200C型号密炼机。密炼机预热至50℃,将100克SCR-WF(全乳胶天然橡胶,海南天然橡胶产业集团)加入密炼机中,转子转速为40rpm。当胶料的温度达到100℃时,加入50克白炭黑(NEWSIL175)和5克Si69。将转子转速提升至120rpm,当胶料的温度达到150℃时,排胶。
对比工作实施例2
使用RM-200C型号密炼机。密炼机预热至50℃,将100克SCR-WF加入密炼机中,转子转速为40rpm。当胶料的温度达到100℃时,加入50克炭黑(N134)。将转子转速提升至120rpm,当胶料的温度达到150℃时,排胶。
对比工作实施例3
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将432克SCR-WF加入密炼机中,转子转速为80rpm。当胶料的温度达到100℃时,加入238克白炭黑(NEWSIL175)和24克Si69。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶。
对比工作实施例4
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将416克SCR-WF加入密炼机中,转子转速为80rpm。当胶料的温度达到100℃时,加入271克白炭黑(NEWSIL175)和27克Si69。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶。
对比工作实施例5
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将402克SCR-WF加入密炼机中,转子转速为80rpm。当胶料的温度达到100℃时,加入301克白炭黑(NEWSIL175)和30克Si69。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶。
对比工作实施例6
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将447克SCR-WF加入密炼机中,转子转速为80rpm。当胶料的温度达到100℃时,加入112克白炭黑(NEWSIL175)和11克Si69,再加入89克炭黑(N134)。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶。
对比工作实施例7
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将444克SCR-WF加入密炼机中,转子转速为80rpm。当胶料的温度达到100℃时,加入133克白炭黑(NEWSIL175)和13克Si69,再加入75克炭黑(N134)。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶。
对比工作实施例8
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将434克SCR-WF加入密炼机中,转子转速为80rpm。当胶料的温度达到100℃时,加入165克白炭黑(NEWSIL175)和16克Si69,再加入65克炭黑(N134)。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶。
对比工作实施例9
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将432克SCR-WF加入密炼机中,转子转速为80rpm。当胶料的温度达到100℃时,加入225克炭黑(N134)。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶。
将工作实施例的复合体和对比工作实施例的混炼胶在密炼机中按如下配方和程序进行二段和终段混炼。
二段胶配方(以成分/phr表示):
●工作实施例:Si69(加入量为复合体中白炭黑量的10%);防老剂4020/1.5;氧化锌/4;硬脂酸/1;促进剂D/1.5。
●对比实施例,白炭黑混炼胶:防老剂4020/1.5;氧化锌/4;硬脂酸/1;促进剂D/1.5。
●对比实施例,炭黑混炼胶:防老剂4020/1.5;氧化锌/4;硬脂酸/2。
终段胶配方(以成分/phr表示):
促进剂NS/1.2;硫磺/1.8。
二段胶混炼程序:
●密炼机型号:RM-200C
填充系数:0.62
1.工作实施例二段混炼
密炼机的温度升到100℃,将复合材料和Si69加入密炼机中,转子转速由20rpm,缓慢提升至120rpm,当胶料温度达到100℃时,加入小料,继续混炼至胶温达到150℃-155℃时,排料,在开炼机上压制成片。
2.对比实施例二段混炼:
密炼机的温度升到100℃,加入一段干混胶,当胶料温度达到100℃时,加入小料。将转子转速提升至120rpm,当胶料的温度达到150℃时,排料,在开炼机上压制成片。
●密炼机型号:XSM-1/10-120橡塑试验密炼机
填充系数:0.65
1.工作实施例二段混炼
密炼机预热至50℃,将复合材料和Si69加入密炼机中,转子转速为80rpm。当胶料的温度达到100℃时,加入小料。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶,在开炼机上压制成片。
2.对比实施例二段混炼:
密炼机预热至50℃,加入一段干混胶,转子转速为80rpm。当胶料温度达到100℃时,加入小料。将转子转速提升至120rpm,当胶料的温度达到150℃时,排料,在开炼机上压制成片。
终段胶混炼程序:
●密炼机型号:RM-200C
填充系数:0.60
密炼机的温度升到75℃,将二段胶加入密炼机中,同时加入促进剂和硫磺。转子转速提升至40rpm,当胶料温度达到95℃时,排料。在开炼机上进行打卷、打三角包各3遍。
●密炼机型号:XSM-1/10-120橡塑试验密炼机
填充系数:0.60
密炼机的温度升到50℃,将二段胶加入密炼机中,同时加入促进剂和硫磺。转子转速提升至40rpm,当胶料温度达到95℃时,排料。在开炼机上进行打卷、打三角包各3遍。硫化条件:150℃,15分钟(薄制品)和25分钟(厚制品)
测试标准列于下表5。
表5.性能测试标准
Figure PCTCN2021083161-appb-000004
Figure PCTCN2021083161-appb-000005
性能对比见表6。
表6.复合体与传统混炼胶性能对比
Figure PCTCN2021083161-appb-000006
由表6性能数据可见,本公开的弹性复合体具更好的填料与橡胶的相互作用,表现为:加工性能好、动态力学性能优越,即高弹性、低生热、耐曲饶龟裂。
工作实施例16
此工作实施例例示了分别通过干法和湿法制备天然橡胶/白炭黑/石墨复合材料并且比较了所得到的复合材料的性能。
白炭黑/石墨湿法复合体的制备:
1.石墨浆液制备:
将1000克石墨(粒径D97≤3μm、纯度C≥97%,湖南冷水江开发区)和9000克水在研磨机内研磨,直到石墨的中值粒径D50=7.52微米,由此得到石墨浆液。
2.白炭黑浆液制备:
将1500克白炭黑(Newsil175,确成硅化学股份有限公司)和8500克水在研磨机内研磨,直到白炭黑的中值粒径D50<15微米,由此得到白炭黑浆液。
3.白炭黑/石墨复合材料制备:
将1157.02克浓缩胶乳(干胶含量60.5%)与2100克上述(10%)石墨浆液和1400克上述(15%)白炭黑浆液混合,同时加入絮凝剂K08E(南京能德新材料技术有限公司)6.3克,絮凝瞬间发生。经如前述湿法胶的脱水和干燥后,制得白炭黑填充量为30phr、石墨填充量为30phr的天然橡胶/白炭黑/石墨复合材料(30/30)。
将1157.02克浓缩胶乳(干胶含量60.5%)与1400克上述(10%)石墨浆液和1866.67克上述(15%)白炭黑浆液混合,同时加入絮凝剂K08E(南京能德新材料技术有限公司公司)8.4克,絮凝瞬间发生。经如前述湿法胶的脱水和干燥后,制得白炭黑填充量为40phr、石墨填充量为20phr的天然橡胶/白炭黑/石墨复合材料(40/20)。
将1157.02克浓缩胶乳(干胶含量60.5%)与700克上述(10%)石墨浆液和2333.33克上述(15%)白炭黑浆液混合,同时加入絮凝剂K08E(南京能德新材料技术有限公司公司)10.5克,絮凝瞬间发生。经如前述湿法胶的脱水和干燥后,制得白炭黑填充量为50phr、石墨填充量为10phr的天然橡胶/白炭黑/石墨复合材料(50/10)。
将1157.02克浓缩胶乳(干胶含量60.5%)与0克石墨浆液和2800克上述(15%)白炭黑浆液混合,同时加入絮凝剂K08E(南京能德新材料技术有限公司公司)12.6克,絮凝瞬间发生。经如前述湿法胶的脱水和干燥后,制得白炭黑填充量为60phr、石墨填充量为0phr的天然橡胶/白炭黑/石墨复合材料(60/0)。
白炭黑/石墨干法复合体的制备:
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将504.07克SCR-WF加入密炼机中,转子转速为40rpm。当转子扭矩平缓时,分3次加入151.22克白炭黑(NEWSIL175)、15.12克Si69和151.22克石墨(D97≤3μm、纯度C≥97%,湖南冷水江开发区)。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶,得到天然橡胶/白炭黑/石墨复合材料(30/30)。
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将505.12克SCR-WF加入密炼机中,转子转速为40rpm。当转子扭矩平缓时,分3次加入202.05克白炭黑(NEWSIL175)、20.20克Si69和101.02克石墨(D97≤3μm、纯度C≥97%,湖南冷水江开发区)。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶,得到天然橡胶/白炭黑/石墨复合材料(40/20)。
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将506.11克SCR-WF加入密炼机中,转子转速为40rpm。当转子扭矩平缓时,分3次加入253.05克白炭黑(NEWSIL175)、25.30克Si69和50.61克石墨(D97≤3μm、纯度C≥97%,湖南冷水江开发区)。将转子转 速提升至100rpm,当胶料的温度达到150℃时,排胶,得到天然橡胶/白炭黑/石墨复合材料(50/10)。
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将507.13克SCR-WF加入密炼机中,转子转速为40rpm。当转子扭矩平缓时,分3次加入304.26克白炭黑(NEWSIL175)和30.43克Si69。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶,得到天然橡胶/白炭黑/石墨复合材料(60/0)。
二段和终段混炼的配方与程序与前面干混例子相同。
Figure PCTCN2021083161-appb-000007
Figure PCTCN2021083161-appb-000008
Figure PCTCN2021083161-appb-000009
工作实施例17
此工作实施例例示了分别通过干法和湿法制备天然橡胶/ESBR/白炭黑材料并且比较了所得到的复合材料的性能。
NR/ESBR白炭黑湿法复合体的制备
将578.51克浓缩天然胶乳(干胶含量60.5%)与1536.44克ESBR(干胶含量22.78%)胶乳(中国石化股份有限公司)和2800克上述(15%)白炭黑浆液混合,同时加入絮凝剂12.6克K08E(南京能德新材料技术有限公司公司),絮凝瞬间发生。经前述脱水和干燥后,制得包含60phr白炭黑、50phr天然橡胶和50phr ESBR的复合材料(50/50)。
将694.21克浓缩天然胶乳(干胶含量60.5%)与1229.15克ESBR(干胶含量22.78%)胶乳(中国石化股份有限公司)和2800克上述(15%)白炭黑浆液混合,同时加入絮凝剂12.6克K08E(南京能德新材料技术有限公司公司),絮凝瞬间发生。经上述脱水和干燥后制得包含60phr白炭黑、60phr天然橡胶和40phrESBR的复合材料(60/40)。
将809.92克浓缩天然胶乳(干胶含量60.5%)与921.15克ESBR(干胶含量22.78%)胶乳(中国石化股份有限公司)和2800克上述(15%)白炭黑浆液混合,同时加入絮凝剂12.6克K08E(南京能德新材料技术有限公司公司),絮凝瞬间发生。经前述脱水和干燥后,制得包含60phr白炭黑、70phr天然橡胶和30phr ESBR的复合材料(70/30)。
将925.62克浓缩天然胶乳(干胶含量60.5%)与614.57克ESBR(干胶含量22.78%)胶乳(中国石化股份有限公司)和2800克上述(15%)白炭黑浆液混合,同时加入絮凝剂12.6克K08E(南京能德新材料技术有限公司公司),絮凝瞬间发生。经上述脱水和干燥后制得包含60phr白炭黑、80phr天然橡胶和20phr ESBR的复合材料(80/20)。
将1157.02克浓缩天然胶乳(干胶含量60.5%)与0克ESBR(干胶含量22.78%)胶乳(中国石化股份有限公司)和2800克上述(15%)白炭黑浆液混合,同时加入絮凝剂12.6克K08E(南京能德新材料技术有限公司公司),絮凝瞬间发生。经前述脱水和干燥后,制得包含60phr白炭黑、100phr天然橡胶和0phr ESBR的复合材料(100/0)。
NR/ESBR白炭黑干法胶一段制备:
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将253.56克SCR-WF和253.56克ESBR1502(中国石化股份有限公司齐鲁分公司)加入密炼机中,转子转速为40rpm。当转子扭矩平缓时,分3次加入304.26克白炭黑(NEWSIL175)和30.43克Si69。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶,得到NR/ESBR/白炭黑复合材料(50/50)。
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将304.28克SCR-WF和202.85克ESBR1502(中国石化股份有限公司齐鲁分公司)加入密炼机中,转子转速为40rpm。当转子扭矩平缓时,分3次加入304.26克白炭黑(NEWSIL175)和30.43克Si69。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶,得到NR/ESBR/白炭黑复合材料(60/40)。
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将354.99克SCR-WF和152.14克ESBR1502(中国石化股份有限公司齐鲁分公司)加入密炼机中,转子转速为40rpm。当转子扭矩平缓时,分3次加入304.26克白炭黑(NEWSIL175)和30.43克Si69。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶,得到NR/ESBR/白炭黑复合材料(70/30)。
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将405.70克SCR-WF和101.43克ESBR1502(中国石化股份有限公司齐鲁分公司)加入密炼机中,转子转速为40rpm。当转子扭矩平缓时,分3次加入304.26克白炭黑(NEWSIL175)和30.43克Si69。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶,得到NR/ESBR/白炭黑复合材料(80/20)。
使用XSM-1/10-120橡塑试验密炼机。密炼机预热至50℃,将507.13克SCR-WF加入密炼机中,转子转速为40rpm。当转子扭矩平缓时,分3次加入304.26克白炭黑(NEWSIL175)和30.43克Si69。将转子转速提升至100rpm,当胶料的温度达到150℃时,排胶,得到NR/ESBR/白炭黑复合材料(100/0)。
二段和终段混炼的配方与程序与前面干混例子相同。
Figure PCTCN2021083161-appb-000010
Figure PCTCN2021083161-appb-000011

Claims (13)

  1. 制备弹性体复合材料的连续方法,该方法包括以下步骤:
    提供水性弹性体胶乳的连续流;
    提供水性填料淤浆的连续流;
    使所述水性弹性体胶乳的连续流与所述水性填料淤浆的连续流在至少一种凝结剂存在下接触和混合,以获得包含填料分散在其中的、凝结的弹性体的接触后物流;和
    从所述接触后物流回收弹性体复合材料,
    其中所述凝结剂是至少一种具有4-20,优选4-12个碳原子的、基本上线性的烷基/亚烷基的化合物。
  2. 权利要求1所述的方法,其具有以下特征中至少之一:
    -所述凝结剂由下式表示:
    X-L-Y,
    其中,
    X表示H、OH、-Si(OR) 3、-Ge(OR) 3,其中R独立地表示C1-C3烷基,
    L表示具有4-20,优选4-12个碳原子的基本上线性的亚烷基,所述亚烷基链中的非末端的一个CH 2基团任选被二硫基团(-S-S-)或者四硫基团(-S-S-S-S-)替代,和
    Y表示氢、卤素、-Si(OR) 3或-Ge(OR) 3,其中R独立地表示C1-C3烷基;
    -所述水性弹性体胶乳包含选自下组中的至少一种弹性体胶乳:天然橡胶胶乳,ESBR胶乳和NBR胶乳;
    -所述填料包含选自下组中的至少一种:白炭黑,炭黑,石墨,和粘土;
    -所述填料的平均粒径(D50)在0.1-20微米的范围内,例如在1-20微米的范围内,或者在2-15微米的范围内,或者在3-12微米的范围内,或者在4-10微米的范围内;
    -所述水性弹性体胶乳的连续流与所述水性填料淤浆的连续流的体积流量被调节以产生填料含量为8-150phr,例如10-120phr,或者20-120phr,或者20-100phr,或者30-120phr,或者30-100phr,或者35-120phr,或者35-100phr,或者40-100phr,或者40-90phr的弹性体复合材料;
    -其中所述凝结剂的加入量为0.1-15phr,例如为0.2-12phr,或者0.5-10phr,或者0.6-8phr,或者0.8-6phr,相对于弹性体复合材料中的所有弹性体计。
  3. 权利要求1所述的方法,其中所述水性弹性体胶乳包含天然橡胶胶乳和至少一种另外的可通过乳液聚合方法制备的合成胶乳,其中所述天然胶乳与所述合成胶乳的重量比可以在100:0到0:100的范围内,例如在100:0到20:80的范围内,或者在80:20-20:80的范围内,或者在80:20-50:50的范围内,或者在80:20-60:40的范围内。
  4. 权利要求1所述的方法,其中所述填料包含白炭黑和至少一种另外的填料,其中白炭黑与所述另外的填料的重量比可以在100:0到0:100的范围内,例如在100:0到20:80的范围内,或者在90:10-10:90的范围内,或者在80:20-20:80的范围内,或者在70:30-30:70的范围内。
  5. 权利要求1所述的方法,其中所述凝结剂选自下组:正辛基三乙氧基硅烷;正己基三乙氧基硅烷;正丁基三乙氧基硅烷,异丁基三乙氧基硅烷,正癸基三乙氧基硅烷,正壬基三乙氧基硅烷,正庚基三乙氧基硅烷,正戊基三乙氧基硅烷,正辛基三甲氧基硅烷;正己基三甲氧基硅烷;正丁基三甲氧基硅烷,正癸基三甲氧基硅烷,正壬基三甲氧基硅烷,正庚基三甲氧基硅烷,正戊基三甲氧基硅烷,双[γ-(三乙氧基甲硅烷基)丙基]四硫化物,双[3-(三乙氧基甲硅烷基)丙基]二硫化物,正丁醇,正戊醇,正己醇,正庚醇,正辛醇,2-乙基己醇,正壬醇,正癸醇,正戊烷,正己烷,和正庚烷。
  6. 权利要求1所述的方法,其中所述凝结剂被单独加入混合体系中;或者所述凝结剂被与所述填料浆液一起加入混合体系中;或者在所述填料浆液的制备过程中加入所述凝结剂以形成包含填料和凝结剂二者的水性淤浆,然后该水性淤浆的物流与所述水性弹性体胶乳物流接触和混合。
  7. 权利要求1所述的方法,其中所述水性弹性体胶乳的连续流与所述水性填料淤浆的连续流在至少一种凝结剂存在下的接触和混合在喷射器、高速搅拌器、低速搅拌器或者螺杆混合机中进行。
  8. 权利要求1所述的方法,其中所述水性弹性体胶乳的连续流与所述水性填料淤浆的连续流在至少一种凝结剂存在下接触和混合的持续时间为0.01-600秒,例如0.05-300秒,或者0.1-120秒,或者0.1-60秒,或者0.1-30秒。
  9. 权利要求1所述的方法,其中从所述接触后物流回收弹性体复合材料的步骤如下进行:所述凝结后的复合材料使用螺杆脱水机脱水;然后脱水后的复合材料使用双螺杆挤出机干燥;然后,干燥后的复合材料使用造粒机造粒。
  10. 通过权利要求1-9中任一项的方法制备的弹性体复合材料。
  11. 一种橡胶制品,其特征在于该橡胶制品包含权利要求10的弹性体复合材料。
  12. 权利要求12所述的橡胶制品,其是轮胎、密封件或者阻尼件。
  13. 一种制备权利要求11或12橡胶制品的方法,该方法包括:
    1)通过权利要求1-9中任一项所述的方法制备弹性体复合材料;
    2)将所述弹性体复合材料与添加剂和任选的加工助剂复配成混配的弹性体组合物;
    3)将所述弹性体组合物成型为成型制品;和
    4)硫化所述成型制品,以形成橡胶制品。
PCT/CN2021/083161 2020-03-27 2021-03-26 弹性体复合材料的制备方法及通过所述方法制备的产品 WO2021190619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010228657.9 2020-03-27
CN202010228657.9A CN113442320A (zh) 2020-03-27 2020-03-27 弹性体复合材料的制备方法及通过所述方法制备的产品

Publications (1)

Publication Number Publication Date
WO2021190619A1 true WO2021190619A1 (zh) 2021-09-30

Family

ID=77807757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083161 WO2021190619A1 (zh) 2020-03-27 2021-03-26 弹性体复合材料的制备方法及通过所述方法制备的产品

Country Status (3)

Country Link
CN (1) CN113442320A (zh)
TW (1) TW202146552A (zh)
WO (1) WO2021190619A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037244A1 (en) * 2010-09-15 2012-03-22 Cabot Corporation Elastomer composite with silica-containing filler and methods to produce same
CN102585309A (zh) * 2012-01-04 2012-07-18 北京化工大学 一种制备高分散白炭黑/橡胶纳米复合材料的方法
CN103600434A (zh) * 2013-08-05 2014-02-26 怡维怡橡胶研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
CN109923166A (zh) * 2016-08-31 2019-06-21 戴纳索尔伊莱斯托米罗斯公司 用于制备橡胶和二氧化硅的母料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037244A1 (en) * 2010-09-15 2012-03-22 Cabot Corporation Elastomer composite with silica-containing filler and methods to produce same
CN102585309A (zh) * 2012-01-04 2012-07-18 北京化工大学 一种制备高分散白炭黑/橡胶纳米复合材料的方法
CN103600434A (zh) * 2013-08-05 2014-02-26 怡维怡橡胶研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
CN109923166A (zh) * 2016-08-31 2019-06-21 戴纳索尔伊莱斯托米罗斯公司 用于制备橡胶和二氧化硅的母料的方法

Also Published As

Publication number Publication date
TW202146552A (zh) 2021-12-16
CN113442320A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
KR101539152B1 (ko) 엘라스토머 조성물용 실란-작용화된 탄화수소 중합체 개질제
JP6496778B2 (ja) シリカマスターバッチを製造する方法
Phumnok et al. Preparation of natural rubber composites with high silica contents using a wet mixing process
WO2017077714A1 (ja) ゴム組成物およびタイヤ
CN105899593B (zh) 在混合和加工含有极性填料的橡胶组合物上的改善
KR20020086248A (ko) 고무 조성물 및 이를 포함하는 타이어
CN101475714A (zh) 一种充油充蒙脱土乳液共沉橡胶的制备方法
Utara et al. Effect of surface modification of silicon carbide nanoparticles on the properties of nanocomposites based on epoxidized natural rubber/natural rubber blends
US20170121511A1 (en) A process to prepare high-quality natural rubber silica masterbatch by liquid phase mixing
KR20110057219A (ko) 금속 옥사이드 분산액
WO2017080513A1 (zh) 湿法混炼母炼胶并用填料或母胶的橡胶组合物及制备方法
WO2014038650A1 (ja) シリカ・スチレンブタジエンゴム複合体及びその製造方法、並びに、ゴム組成物及び空気入りタイヤ
CN105086026B (zh) 一种耐切割及耐磨性能优异的工程胎胎面胶料
CN110746647B (zh) 一种硫化剂乳液及其制备方法和应用
JP6645839B2 (ja) ゴム組成物の製造方法、ゴム組成物及びタイヤ
TW593446B (en) Rubber pellets comprising silicatic and oxidic fillers
JP4490086B2 (ja) 水性ゴムエマルションまたはラテックスをベースとする充填材含有ゴム顆粒の製造方法および該方法により得られるゴム顆粒の使用
WO2016014037A1 (en) A process to prepare high-quality natural rubber-silica masterbatch by liquid phase mixing
WO2018186458A1 (ja) ゴム組成物、ゴム組成物の製造方法及びタイヤ
WO2021190619A1 (zh) 弹性体复合材料的制备方法及通过所述方法制备的产品
CN111019198B (zh) 一种天然橡胶/纳米二氧化硅复合材料及其制备方法
JP5860660B2 (ja) シリカ・天然ゴム複合体及びその製造方法、ゴム組成物及び空気入りタイヤ
JP6120949B2 (ja) 乳化重合共役ジエン系重合体とシリカ懸濁液とからなるゴム組成物およびその製造方法
Kim et al. Effects of Zinc‐Free Processing Aids on Silica‐Reinforced Tread Compounds for Green Tires
JP4963865B2 (ja) ゴム組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776480

Country of ref document: EP

Kind code of ref document: A1