WO2021189764A1 - 一种电工云母复合绝缘薄膜及其制备方法 - Google Patents
一种电工云母复合绝缘薄膜及其制备方法 Download PDFInfo
- Publication number
- WO2021189764A1 WO2021189764A1 PCT/CN2020/110991 CN2020110991W WO2021189764A1 WO 2021189764 A1 WO2021189764 A1 WO 2021189764A1 CN 2020110991 W CN2020110991 W CN 2020110991W WO 2021189764 A1 WO2021189764 A1 WO 2021189764A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chitosan
- mica
- electrical
- electrical mica
- insulating film
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/56—Insulating bodies
- H01B17/60—Composite insulating bodies
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2305/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
- C08J2305/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2405/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
- C08J2405/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
Definitions
- This application belongs to the technical field of the preparation of motor insulating materials, and in particular relates to an electrical mica composite insulating film and a preparation method thereof.
- the electrical mica main insulation structure is the leading structure for the insulation (main insulation) of the stator coils (rods) of high-voltage motors around the world.
- electrical mica has excellent resistance to high voltage, corona, radiation, and tracking resistance. It has become an irreplaceable material in the main insulation of motors.
- it is loose large-scale electrical mica paper or synthetic electrical mica paper, its strength is very low, and reinforcement materials are needed.
- the early reinforcing materials used for electrical mica insulation were mainly natural fiber fabrics, such as tissue paper, cotton cloth, silk, etc., with the development of high-quality glass filaments, it has a higher Heat-resistant, higher-strength glass fiber cloth has gradually replaced cotton and silk as reinforcing materials for electrical mica tapes.
- glass fiber cloths that can be used as reinforcing materials for electrical mica tapes it has excellent electrical insulation properties and resistance.
- Thermal performance polyester film, polycarbonate film, polyimide film, polyester fiber non-woven fabric, etc. have also been widely used as reinforcing materials for electrical mica tapes and used in the main insulation of high-voltage motors.
- the bionic structure design is an important means to improve the performance of materials.
- the shell nacre in nature is composed of brick and organic ash composed of flake calcium carbonate layers. The improvement of performance has played a vital role.
- the shell nacre has attracted much attention because it has better mechanical properties than artificial composite materials. This application will produce composite materials with excellent strength and toughness based on the bionic shell structure. Used for electrical mica main insulation structure.
- the technical problem to be solved by the present invention is to provide an electrical mica composite insulating film and a preparation method thereof in order to solve the problems of large thickness and poor mechanical properties of the electrical mica main insulation structure in the prior art.
- An electrical mica composite insulating film comprising a sheet-like electrical mica powder modified by a coupling agent and a chitosan salt formed by the reaction of acid and chitosan, and the chitosan salt is filled in a oriented sheet-like layer Between the mica powders, a bionic nacre structure with chitosan salt as ash and electrical mica powder as bricks is formed.
- the chitosan is a complex of two chitosan with different viscosities, the viscosity of the two chitosan is 90-130MPa ⁇ s, 20-80MPa ⁇ s, and the viscosity is 90-130MPa ⁇ s,
- the mass ratio of 20-80 MPa ⁇ s chitosan is preferably 1:0.5-2, and the particle size is preferably not less than 0.1 mm.
- the coupling agent is a compound coupling agent composed of a silane coupling agent and a titanate coupling agent, and the mass ratio of the silane coupling agent and the titanate coupling agent is preferably 1:2-6
- the ratio of the amount of the compound coupling agent to the mass of the electrical mica powder is preferably 1% to 7% by weight.
- the silane coupling agent is ⁇ -aminopropyltriethoxysilane, ⁇ -(2,3-glycidoxy)propyltrimethoxysilane or ⁇ -mercaptopropyltrimethoxysilane
- the titanate coupling agent is tris (dioctyl pyrophosphoryloxy) isopropyl titanate, tetraoctyl titanium [two (tridecyl phosphite)] or tetraoctyl titanium [ Two (Dilauryl Phosphite)].
- the lamellar electrical mica powder is made by the following surface modification process: first the mica is stripped into a thin layer of mica by dry ball milling, and then the thin layer of mica and the compound coupling agent are subjected to supersonic jet milling. Mechanochemical modification; supersonic airflow makes the electrical mica powder and coupling agent undergo movement-collision-break-bonding-break-activation, and the ionic bonds or reactive points on the two surfaces undergo mechanochemical reactions or mechanochemical reactions with each other Adsorption makes the ultrafine crushing and surface modification of electrical mica almost completed at the same time.
- the feed rate for the mechanical and chemical modification of the supersonic jet mill is 1.5 kg/h
- the feed pressure is 4 to 4.5 MPa
- the working pressure is 7 to 7.5 MPa.
- the mass ratio of the amount of the lamellar electrical mica powder to the chitosan is 0.3:1.5.
- a preparation method of electrical mica composite insulating film includes the following steps:
- the acidic chitosan aqueous solution is an aqueous solution formed by the reaction of chitosan and a strong acid, and the pH of the acidic chitosan aqueous solution is preferably 2-6.
- the drying method is gradient heating, and the gradient heating method is: 20-30°C for 0.5-2h, 50-60°C for 0.5-2h, and 80-90°C for 0.5-2h.
- This application provides an electrical mica composite insulating film with a biomimetic nacre structure with chitosan salt as ash and electrical mica powder as bricks.
- electrical mica powder and acidic chitosan aqueous solution are blended and dried to form a film It is prepared, wherein: the drying method is preferably gradient heating, which is beneficial to the directional arrangement of the electrical mica powder to form bricks, and enables the chitosan salt to be fully filled between the oriented lamellar mica powder, achieving the best toughness
- the chitosan salt is preferably two chitosan salts with different physical properties formed by the reaction of an acid and two chitosan with different viscosities, so that the chitosan salt is fully filled in the oriented lamellar mica
- the lamellar electrical mica powder is an electrical mica powder that is mechanically and chemically modified by supersonic jet milling using a compound
- the electrical mica composite film of the present application has unparalleled wraparound strength and toughness, increases the electrical mica content per unit area of the existing electrical mica tape, and reduces the thickness of the electrical mica tape, thereby increasing the voltage resistance level and effectively Reduce the difficulty and cost of the manufacturing process.
- the body was added to the acidic chitosan aqueous solution and magnetically dispersed for 2 hours to obtain a chitosan-electrical mica composite solution.
- the electrical mica powder-chitosan composite solution was placed in a vacuum drying oven to remove bubbles, and finally the electrical mica powder-chitosan The composite solution was evenly coated on the substrate by a wiper method, and then placed in an oven at 50° C. to dry for 4 hours to obtain an electrical mica composite insulating film.
- lamellar electrical mica powder prepare 300g of electrical mica powder, tetraoctoxytitanium [bis(tridecyl phosphite)] 2g, ⁇ -(2,3-epoxypropoxy) propylene 1g of base trimethoxysilane; the preparation method of the lamellar electrical mica powder is the same as in Example 1;
- the acidic chitosan aqueous solution into a vacuum drying oven to remove bubbles, and then the sheet-like electrical mica powder
- the body was added to the acidic chitosan aqueous solution and magnetically dispersed for 2 hours to obtain a chitosan-electrical mica composite solution.
- the electrical mica powder-chitosan composite solution was placed in a vacuum drying oven to remove bubbles, and finally the electrical mica powder-chitosan
- the composite solution was evenly coated on the substrate by a wiper method, and then placed in an oven at 50° C. to dry for 4 hours to obtain an electrical mica composite insulating film.
- the body was added to the acidic chitosan aqueous solution and magnetically dispersed for 2 hours to obtain a chitosan-electrical mica composite solution.
- the electrical mica powder-chitosan composite solution was placed in a vacuum drying oven to remove bubbles, and finally the electrical mica powder-chitosan The composite solution was evenly coated on the substrate by a wiper method, and then placed in an oven at 50° C. to dry for 4 hours to obtain an electrical mica composite insulating film.
- This embodiment provides a method for preparing an electrical mica composite insulating film.
- the drying method is a gradient heating method.
- the gradient heating method is: 25°C for 1 hour, 55°C for 1 hour, and 85°C for 1 hour.
- This embodiment provides a method for preparing an electrical mica composite insulating film, which is different from Example 1 only in that the chitosan is only 8 g of 110 MPa ⁇ s chitosan.
- This embodiment provides a method for preparing an electrical mica composite insulating film, which is different from Embodiment 1 only in that the chitosan is only 8 g of 50 MPa ⁇ s chitosan.
- the electrical mica composite insulating films prepared in Examples 1-6 are in accordance with the standard GB/T 1040.3-2006, the test method is the tensile test of the film and the diaphragm, the test speed is 100mm/min, and the sample thickness is 0.12mm , The width is 25mm, the length is 20cm, the measured tensile strength is 166N/10mm, 156N/10mm, 163N/10mm, 205N/10mm, 136N/10mm, 128N/10mm.
- Example 1 The fracture toughness of -6 electrical mica composite insulating film is 28MPa.m 1/2 , 27MPa.m 1/2 , 29MPa.m 1/2 , 35MPa.m 1/2 , 23MPa.m 1/2 , 22MPa.m in order 1/2 , it can be seen that the electrical mica composite insulating film prepared in this application fully meets the requirements of high-voltage motors for the wrapability, strength, and toughness of electrical mica tape. It can be seen from the comparison between Example 1 and Examples 4-6 that the gradient heating is adopted.
- the chitosan salt formed by drying and reacting with two different viscosities of chitosan and acid can further improve the strength and toughness of the composite insulating film.
- this effect example uses 600 °C high temperature calcined film for 1-2 hours, and it is measured that the electrical mica content in the electrical mica film prepared in this application is basically 160-300 g/m 2 , which is comparable to the single-sided reinforced electrical mica tape with less glue on the market. In contrast, the content of electrical mica per unit area is higher, and the thickness is thinner.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Insulating Bodies (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
本申请涉及一种电工云母复合绝缘薄膜及其制备方法,电工云母复合绝缘薄膜包括经偶联剂改性的片层状电工云母粉体及由酸与壳聚糖反应形成的壳聚糖盐,壳聚糖盐填充在定向片层状云母粉体之间,形成以壳聚糖盐为灰、电工云母粉体为砖的仿生珍珠层结构;电工云母复合绝缘薄膜的制备方法,包括以下步骤:将电工云母粉加入到酸性壳聚糖水溶液中混合均匀,制得电工云母粉-壳聚糖复合溶液;将电工云母粉-壳聚糖复合溶液除去气泡后,干燥成膜,得到以壳聚糖盐为灰、片层状电工云母粉体为砖的仿生珍珠层结构的电工云母复合绝缘薄膜。本申请的电工云母复合薄膜具有高强度和韧性,减薄了电工云母带厚度,提高了耐压等级。
Description
本申请要求了申请日为2020年03月26日,申请号为202010223979.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请属于电机绝缘材料制备技术领域,尤其是涉及一种电工云母复合绝缘薄膜及其制备方法。
电工云母主绝缘结构是全球范围内高压电机定子线圈(棒)对地绝缘(主绝缘)的主导结构,其中电工云母以其优异的耐高电压、耐电晕、耐辐射、耐漏电起痕性和耐热性等优良性能,成为电机主绝缘中不可替代的材料,但不管是疏松型大鳞片电工云母纸,还是人工合成电工云母纸,其本身强度都很低,均需要加以补强材料来满足高压电机定子对电工云母带的包绕强度要求,早期用于电工云母绝缘的补强材料主要为天然纤维织物,比如薄纸、棉布、丝绸等,随着高质量玻璃丝的发展,具有更高耐热性、更高强度的玻璃纤维布逐步取代了棉布和丝绸用作电工云母带的补强材料,除了玻璃纤维布可用作电工云母带补强材料之外,具有优异电气绝缘性能和耐热性能的聚酯薄膜、聚碳酸酯薄膜、聚酰亚胺薄膜、聚酯纤维无纺布等也已被广泛用作电工云母带的补强材料,应用于高压电机的主绝缘。
随着高压电机的功率不断提高,要求电工云母主绝缘结构减薄绝缘,补强材料是限制电工云母主绝缘结构绝缘厚度和电工云母含量的重要环节,双面补强电工云母带已无法满足电机体积对绝缘厚度的要求,单面补强电工云母带以其绝缘厚度小,电工云母含量高而得到大 量应用,如果补强材料的厚度能够进一步减薄或者完全摒弃补强材料,其意义是非常巨大的。
仿生结构设计是改善材料性能的重要手段,自然界中的贝壳珍珠层是由片状碳酸钙层构成的砖质和有机质构成的灰质组成,其独有的“砖-灰”结构对贝壳珍珠层机械性能的提高起到了至关重要的作用,贝壳珍珠层因具有比人工复合材料更为优异的机械性能而备受关注,本申请将基于仿生贝壳结构而制出具有优异强度和韧性的复合材料以用于电工云母主绝缘结构。
发明内容
本发明要解决的技术问题是:为解决现有技术中电工云母主绝缘结构厚度大、机械性能差的不足,从而提供一种电工云母复合绝缘薄膜及其制备方法。
本发明解决其技术问题所采用的技术方案是:
一种电工云母复合绝缘薄膜,包括经偶联剂改性的片层状电工云母粉体及由酸与壳聚糖反应形成的壳聚糖盐,所述壳聚糖盐填充在定向片层状云母粉体之间,形成以壳聚糖盐为灰、电工云母粉体为砖的仿生珍珠层结构。
优选地,所述壳聚糖为两种不同粘度的壳聚糖的复合物,两种壳聚糖的粘度分别为90-130MPa·s、20-80MPa·s,粘度为90-130MPa·s、20-80MPa·s壳聚糖的质量比优选为1∶0.5-2,粒度优选为不小于0.1mm。
优选地,所述偶联剂为经硅烷偶联剂和钛酸酯偶联剂的复配偶联剂,所述硅烷偶联剂和钛酸酯偶联剂的质量比优选为1∶2-6,所述复配偶联剂用量占电工云母粉质量的比例优选为1wt%-7wt%。
优选地,所述硅烷偶联剂为γ-氨丙基三乙氧基硅烷、γ-(2,3-环氧 丙氧)丙基三甲氧基硅烷或γ-巯丙基三甲氧基硅烷,所述钛酸酯偶联剂为三(二辛基焦磷酰氧基)钛酸异丙酯、四辛氧基钛[二(十三烷基亚磷酸酯)]或四辛氧基钛[二(二月桂基亚磷酸酯)]。
优选地,所述片层状电工云母粉体由以下表面改性工艺制成:先将云母经干式球磨剥离为薄层云母,再将薄层云母和复配偶联剂经超音速气流磨进行机械力化学改性;超音速气流使电工云母粉、偶联剂经运动-碰撞-断裂-断键-活化,同时二者表面的离子键或反应活性点彼此发生机械力化学反应或机械力化学吸附,使电工云母的超细粉碎和表面改性几乎同一时间完成。
优选地,所述经超音速气流磨进行机械力化学改性的进料速度为1.5kg/h,进料压力为4~4.5MPa,工作压力为7~7.5MPa。
优选地,所述片层状电工云母粉体的用量与壳聚糖的质量比为0.3∶1.5。
一种电工云母复合绝缘薄膜的制备方法,包括以下步骤:
将电工云母粉加入到酸性壳聚糖水溶液中混合均匀,制得电工云母粉-壳聚糖复合溶液;
将电工云母粉-壳聚糖复合溶液除去气泡后,干燥成膜,得到以壳聚糖盐为灰、片层状电工云母粉体为砖的仿生珍珠层结构的电工云母复合绝缘薄膜。
优选地,所述酸性壳聚糖水溶液为壳聚糖与强酸反应形成的水溶液,所述酸性壳聚糖水溶液的pH优选为2-6。
优选地,所述干燥方法为梯度升温,梯度升温方法为:20-30℃保持0.5-2h,50-60℃保持0.5-2h,80-90℃保持0.5-2h。
本发明的有益效果是:
本申请提供了一种以壳聚糖盐为灰、电工云母粉体为砖的仿生珍 珠层结构的电工云母复合绝缘薄膜,具体是将电工云母粉与酸性壳聚糖水溶液共混、干燥成膜制得,其中:干燥方法优选为梯度升温,有利于电工云母粉定向排列呈砖块堆砌,并使得壳聚糖盐充分填充在定向片层状云母粉体之间,达到了强韧的最佳配合;此外,壳聚糖盐优选为由酸与两种不同粘度的壳聚糖反应形成的具有不同物理特性的两种壳聚糖盐,进一步使得壳聚糖盐充分填充在定向片层状云母粉体之间,提高了复合绝缘薄膜的强度和韧性;再有,片层状电工云母粉体为利用复配偶联剂经超音速气流磨机械力化学改性的电工云母粉,有利于其定向排列呈砖块堆砌,有效仿制了珍珠层结构,进一步提高了复合绝缘薄膜的强度和韧性。
本申请的电工云母复合薄膜具有无可比拟的可包绕性强度和韧性,提高了现有电工云母带单位面积的电工云母含量,减薄了电工云母带厚度,从而提高了耐压等级,有效降低了制造工艺难度和成本。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例1
本实施例提供一种电工云母复合绝缘薄膜的制备方法:
1)片层状电工云母粉体的制备:准备电工云母粉100g,三(二辛基焦磷酰氧基)钛酸异丙酯4g,γ-氨丙基三乙氧基硅烷偶联剂1g;将电工云母粉及两种偶联剂分别放入粉碎机中粉碎,之后采用干式球磨法,在球磨机四个球磨罐中,放入等量的粉碎的电工云母粉,选择配球比为大∶中∶小=10%∶30%∶60%,料、球、研磨空间各占1/3, 转速选择为240r/min,正转30min,反转30min,中间冷却5min,如此循环3次,干燥得到薄层云母片云,最后,再将球磨后的薄层云母片及混配的两种偶联剂加入超音速气流粉碎机中进行机械力化学改性,控制进料速度为1.5kg/h,进料压力为4~4.5MPa,工作压力为7~7.5MPa;
2)电工云母复合薄膜的制备:准备片层状电工云母粉体6g,110MPa·s壳聚糖4g,50MPa·s壳聚糖4g,盐酸水溶液,两种壳聚糖的粒度均不小于0.1mm;将复配壳聚糖溶于盐酸水溶液中,搅拌2h,得到pH为4的酸性壳聚糖水溶液,将酸性壳聚糖水溶液放入真空干燥箱中除去气泡,再将片层状电工云母粉体加入酸性壳聚糖水溶液中磁力分散2h,得到壳聚糖-电工云母复合溶液,将电工云母粉-壳聚糖复合溶液放入真空干燥箱中除去气泡,最后将电工云母粉-壳聚糖复合溶液利用刮膜法均匀涂在基板上,放入50℃烘箱中干燥4h,得到电工云母复合绝缘薄膜。
实施例2
本实施例提供一种电工云母复合绝缘薄膜的制备方法:
1)片层状电工云母粉体的制备:准备电工云母粉300g,四辛氧基钛[二(十三烷基亚磷酸酯)]2g,γ-(2,3-环氧丙氧)丙基三甲氧基硅烷1g;所述片层状电工云母粉体的制备方法同实施例1;
2)电工云母复合薄膜的制备:准备片层状电工云母粉体14g,130MPa·s壳聚糖4g,80MPa·s壳聚糖2g,盐酸水溶液,两种壳聚糖的粒度均不小于0.1mm;将复配壳聚糖溶于盐酸水溶液中,搅拌2h,得到pH为2的酸性壳聚糖水溶液,将酸性壳聚糖水溶液放入真空干燥箱中除去气泡,再将片层状电工云母粉体加入酸性壳聚糖水溶液中磁力分散2h,得到壳聚糖-电工云母复合溶液,将电工云母粉- 壳聚糖复合溶液放入真空干燥箱中除去气泡,最后将电工云母粉-壳聚糖复合溶液利用刮膜法均匀涂在基板上,放入50℃烘箱中干燥4h,得到电工云母复合绝缘薄膜。
实施例3
本实施例提供一种电工云母复合绝缘薄膜的制备方法:
1)片层状电工云母粉体的制备:准备电工云母粉100g,四辛氧基钛[二(二月桂基亚磷酸酯)]6g,γ-巯丙基三甲氧基硅烷1g;所述片层状电工云母粉体的制备方法同实施例1;
2)电工云母复合薄膜的制备:准备片层状电工云母粉体14g,90MPa·s壳聚糖4g,20MPa·s壳聚糖8g,盐酸水溶液,两种壳聚糖的粒度均不小于0.1mm;将复配壳聚糖溶于盐酸水溶液中,搅拌2h,得到pH为6的酸性壳聚糖水溶液,将酸性壳聚糖水溶液放入真空干燥箱中除去气泡,再将片层状电工云母粉体加入酸性壳聚糖水溶液中磁力分散2h,得到壳聚糖-电工云母复合溶液,将电工云母粉-壳聚糖复合溶液放入真空干燥箱中除去气泡,最后将电工云母粉-壳聚糖复合溶液利用刮膜法均匀涂在基板上,放入50℃烘箱中干燥4h,得到电工云母复合绝缘薄膜。
实施例4
本实施例提供一种电工云母复合绝缘薄膜的制备方法,其与实施例1的区别仅在于干燥方法为梯度升温,梯度升温方法为:25℃保持1h,55℃保持1h,85℃保持1h。
实施例5
本实施例提供一种电工云母复合绝缘薄膜的制备方法,其与实施例1的区别仅在于壳聚糖仅为110MPa·s壳聚糖8g。
实施例6
本实施例提供一种电工云母复合绝缘薄膜的制备方法,其与实施例1的区别仅在于壳聚糖仅为50MPa·s壳聚糖8g。
效果例
本效果例将实施例1-6制备出的电工云母复合绝缘薄膜按标准GB/T 1040.3-2006,测试方法为薄膜和膜片拉伸性试验,测试速度100mm/min,试样厚度为0.12mm,宽度为25mm,长度为20cm,测得其拉伸强度依次为166N/10mm、156N/10mm、163N/10mm、205N/10mm、136N/10mm、128N/10mm,此外采用SENB法测得实施例1-6的电工云母复合绝缘薄膜断裂韧性依次为28MPa.m
1/2、27MPa.m
1/2、29MPa.m
1/2、35MPa.m
1/2、23MPa.m
1/2、22MPa.m
1/2,可见,本申请制备的电工云母复合绝缘薄膜完全满足高压电机对电工云母带的可包绕性强度和韧性要求,通过实施例1与实施例4-6的对比可知,采用梯度升温干燥与两种不同粘度的壳聚糖与酸反应形成的壳聚糖盐能进一步提高复合绝缘薄膜的强度和韧性。
此外,本效果例使用600℃高温煅烧薄膜1-2h,测得本申请制备的电工云母薄膜中电工云母含量基本在160-300g/m
2,与市场上少胶单面补强电工云母带相比,单位面积内电工云母含量更高,同时厚度更薄。
以上述依据本申请的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。
Claims (10)
- 一种电工云母复合绝缘薄膜,其特征在于,包括经偶联剂改性的片层状电工云母粉体及由酸与壳聚糖反应形成的壳聚糖盐,所述壳聚糖盐填充在定向片层状云母粉体之间,形成以壳聚糖盐为灰、电工云母粉体为砖的仿生珍珠层结构。
- 根据权利要求1所述的电工云母复合绝缘薄膜,其特征在于,所述壳聚糖为两种不同粘度的壳聚糖的复合物,两种壳聚糖的粘度分别为90-130MPa.s、20-80MPa.s,粘度为90-130MPa.s、20-80MPa.s壳聚糖的质量比优选为1∶0.5-2,粒度优选为不小于0.1mm。
- 根据权利要求1或2所述的电工云母复合绝缘薄膜,其特征在于,所述偶联剂为经硅烷偶联剂和钛酸酯偶联剂的复配偶联剂,所述硅烷偶联剂和钛酸酯偶联剂的质量比优选为1∶2-6,所述复配偶联剂用量占电工云母粉质量的比例优选为1wt%-7wt%。
- 根据权利要求3所述的电工云母复合绝缘薄膜,其特征在于,所述硅烷偶联剂为γ-氨丙基三乙氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷或γ-巯丙基三甲氧基硅烷,所述钛酸酯偶联剂为三(二辛基焦磷酰氧基)钛酸异丙酯、四辛氧基钛[二(十三烷基亚磷酸酯)]或四辛氧基钛[二(二月桂基亚磷酸酯)]。
- 根据权利要求1-4任一项所述的电工云母复合绝缘薄膜,其特征在于,所述片层状电工云母粉体由以下表面改性工艺制成:先将云母经干式球磨剥离为薄层云母,再将薄层云母和偶联剂经超音速气流磨进行机械力化学改性。
- 根据权利要求5所述的电工云母复合绝缘薄膜,其特征在于, 所述经超音速气流磨进行机械力化学改性的进料速度为1.5kg/h,进料压力为4~4.5MPa,工作压力为7~7.5MPa。
- 根据权利要求1-6任一项所述的电工云母复合绝缘薄膜,其特征在于,所述片层状电工云母粉体的用量与壳聚糖的质量比为0.3∶1.5。
- 一种权利要求1-7任一项所述的电工云母复合绝缘薄膜的制备方法,其特征在于,包括以下步骤:将电工云母粉加入到酸性壳聚糖水溶液中混合均匀,制得电工云母粉-壳聚糖复合溶液;将电工云母粉-壳聚糖复合溶液除去气泡后,干燥成膜,得到以壳聚糖盐为灰、片层状电工云母粉体为砖的仿生珍珠层结构的电工云母复合绝缘薄膜。
- 根据权利要求8所述的电工云母复合绝缘薄膜的制备方法,其特征在于,所述酸性壳聚糖水溶液为壳聚糖与强酸反应形成的水溶液,所述酸性壳聚糖水溶液的pH优选为2-6。
- 根据权利要求8或9所述的电工云母复合绝缘薄膜的制备方法,其特征在于,所述干燥方法为梯度升温,梯度升温方法为:20-30℃保持0.5-2h,50-60℃保持0.5-2h,80-90℃保持0.5-2h。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010223979.4A CN111269450B (zh) | 2020-03-26 | 2020-03-26 | 一种电工云母复合绝缘薄膜及其制备方法 |
CN202010223979.4 | 2020-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021189764A1 true WO2021189764A1 (zh) | 2021-09-30 |
Family
ID=70996066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/110991 WO2021189764A1 (zh) | 2020-03-26 | 2020-08-25 | 一种电工云母复合绝缘薄膜及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111269450B (zh) |
WO (1) | WO2021189764A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114188092A (zh) * | 2021-12-02 | 2022-03-15 | 浙江荣泰电工器材股份有限公司 | 一种异形云母绝缘制品的加工工艺 |
CN114619749A (zh) * | 2022-03-18 | 2022-06-14 | 湖南荣泰新材料科技有限公司 | 一种复合型抗磁云母纸 |
CN114743733A (zh) * | 2022-03-25 | 2022-07-12 | 四川鸿鑫国泰电缆有限责任公司 | 一种无机矿物绝缘电缆及其制备方法 |
CN115028894A (zh) * | 2022-06-21 | 2022-09-09 | 清华大学深圳国际研究生院 | 用于制备二维云母复合膜的复合浆料的制备方法、二维云母复合膜及其制备方法 |
CN115403823A (zh) * | 2022-10-09 | 2022-11-29 | 西北大学 | 一种具有仿生结构、高抗压、高隔热性能的植物纤维素气凝胶的制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111269450B (zh) * | 2020-03-26 | 2022-06-14 | 苏州巨峰电气绝缘系统股份有限公司 | 一种电工云母复合绝缘薄膜及其制备方法 |
CN118163440B (zh) * | 2024-04-11 | 2024-09-06 | 上海绿悦环保科技材料有限公司 | 一种新型复合型绝缘塑料编织布及其制备工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101683606A (zh) * | 2008-09-26 | 2010-03-31 | 中国科学院兰州化学物理研究所 | 一种黏土复合干燥剂及其制备方法 |
CN105079887A (zh) * | 2015-06-18 | 2015-11-25 | 中国科学技术大学 | 一种块状仿生材料及其制备方法和应用 |
CN105774182A (zh) * | 2016-03-24 | 2016-07-20 | 中国科学技术大学 | 一种仿贝壳珍珠层层状结构的复合材料及其制备方法、应用 |
KR20180000132A (ko) * | 2016-06-22 | 2018-01-02 | 한국원자력연구원 | 양이온성 유기 층간삽입제를 이용한 점토광물 내 세슘의 제거방법 |
CN111269450A (zh) * | 2020-03-26 | 2020-06-12 | 苏州巨峰电气绝缘系统股份有限公司 | 一种电工云母复合绝缘薄膜及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002100238A (ja) * | 2000-09-26 | 2002-04-05 | Asahi Glass Co Ltd | シート状成形体および積層体 |
CN101962493A (zh) * | 2010-08-26 | 2011-02-02 | 成都理工大学 | 一种用硼酸酯与甲基丙烯酰氧基硅烷复合改性微晶白云母粉的方法 |
CN101955693A (zh) * | 2010-08-26 | 2011-01-26 | 成都理工大学 | 一种用硼酸酯与环氧基硅烷复合改性微晶白云母粉的方法 |
-
2020
- 2020-03-26 CN CN202010223979.4A patent/CN111269450B/zh active Active
- 2020-08-25 WO PCT/CN2020/110991 patent/WO2021189764A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101683606A (zh) * | 2008-09-26 | 2010-03-31 | 中国科学院兰州化学物理研究所 | 一种黏土复合干燥剂及其制备方法 |
CN105079887A (zh) * | 2015-06-18 | 2015-11-25 | 中国科学技术大学 | 一种块状仿生材料及其制备方法和应用 |
CN105774182A (zh) * | 2016-03-24 | 2016-07-20 | 中国科学技术大学 | 一种仿贝壳珍珠层层状结构的复合材料及其制备方法、应用 |
KR20180000132A (ko) * | 2016-06-22 | 2018-01-02 | 한국원자력연구원 | 양이온성 유기 층간삽입제를 이용한 점토광물 내 세슘의 제거방법 |
CN111269450A (zh) * | 2020-03-26 | 2020-06-12 | 苏州巨峰电气绝缘系统股份有限公司 | 一种电工云母复合绝缘薄膜及其制备方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114188092A (zh) * | 2021-12-02 | 2022-03-15 | 浙江荣泰电工器材股份有限公司 | 一种异形云母绝缘制品的加工工艺 |
CN114619749A (zh) * | 2022-03-18 | 2022-06-14 | 湖南荣泰新材料科技有限公司 | 一种复合型抗磁云母纸 |
CN114619749B (zh) * | 2022-03-18 | 2023-10-13 | 湖南荣泰新材料科技有限公司 | 一种复合型抗磁云母纸 |
CN114743733A (zh) * | 2022-03-25 | 2022-07-12 | 四川鸿鑫国泰电缆有限责任公司 | 一种无机矿物绝缘电缆及其制备方法 |
CN115028894A (zh) * | 2022-06-21 | 2022-09-09 | 清华大学深圳国际研究生院 | 用于制备二维云母复合膜的复合浆料的制备方法、二维云母复合膜及其制备方法 |
CN115028894B (zh) * | 2022-06-21 | 2023-11-14 | 清华大学深圳国际研究生院 | 用于制备二维云母复合膜的复合浆料的制备方法、二维云母复合膜及其制备方法 |
CN115403823A (zh) * | 2022-10-09 | 2022-11-29 | 西北大学 | 一种具有仿生结构、高抗压、高隔热性能的植物纤维素气凝胶的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111269450A (zh) | 2020-06-12 |
CN111269450B (zh) | 2022-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021189764A1 (zh) | 一种电工云母复合绝缘薄膜及其制备方法 | |
Mao et al. | Achieving excellent electromagnetic wave absorption property by constructing VO2 coated biomass carbon heterostructures | |
CN104269505B (zh) | 一种复合锂离子电池隔膜及其制备方法 | |
WO2020114089A1 (zh) | 低频吸波材料及其制备方法 | |
CN104810509B (zh) | 四氧化三铁/石墨烯三维复合结构及其制备方法和应用 | |
WO2019052572A1 (zh) | 一种微胶囊型硅碳复合负极材料及其制备方法和应用 | |
CN108529984A (zh) | 一种表面改性碳纤维增强高阻抗高抗拉强度水泥基3d打印基材及其制备方法 | |
WO2020244506A1 (zh) | 一种氧化石墨烯-teos/硅烷复合纳米材料的制备方法和应用 | |
CN108546396B (zh) | 纳米无机氧化物/硅酸/纤维素多层结构复合增强的生物降解材料及其制备方法 | |
CN109742298A (zh) | 多孔陶瓷隔膜浆料及其制备方法、电池隔膜及电池 | |
CN104984693A (zh) | 一种纳米磁胶囊的制备方法 | |
WO2016206243A1 (zh) | 一种耐电弧硅橡胶复合材料、制备方法及其用途 | |
CN107383602A (zh) | 一种物流运输包装用聚丙烯复合材料及其制备方法 | |
CN109279811A (zh) | 一种建筑保温隔热复合材料的制备方法 | |
CN108539181A (zh) | 一种锂离子负极复合材料及其制备方法 | |
CN108832100A (zh) | 一种碳包覆铁酸锌/石墨烯复合负极材料的制备方法 | |
CN108437573A (zh) | 一种用于汽车的高耐磨性复合塑料贴膜及制备方法 | |
Wang et al. | Strong, tough, and thermally conductive nacre-inspired boron nitride nanosheet/epoxy layered nanocomposites | |
Zhang et al. | Preparation of PVA/cellulose composite hydrogel electrolytes based on zinc chloride-dissolved cellulose for flexible solid-state capacitors | |
CN117246001A (zh) | 一种用于锂离子电池的防火隔热垫及制备方法 | |
CN110698115B (zh) | 一种磷钨酸插层类水滑石轻质泡沫隔热材料及其制备方法 | |
CN105131828A (zh) | 一种核电机组用绝缘浸渍漆及其制备方法 | |
CN102964073B (zh) | 一种空心玻璃微珠包覆稀土氧化铈的制备方法 | |
CN110279277A (zh) | 一种石墨烯基保温地毯 | |
CN112940457B (zh) | 一种阻燃型环氧基电磁屏蔽材料及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20927435 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20927435 Country of ref document: EP Kind code of ref document: A1 |