WO2016206243A1 - 一种耐电弧硅橡胶复合材料、制备方法及其用途 - Google Patents

一种耐电弧硅橡胶复合材料、制备方法及其用途 Download PDF

Info

Publication number
WO2016206243A1
WO2016206243A1 PCT/CN2015/092064 CN2015092064W WO2016206243A1 WO 2016206243 A1 WO2016206243 A1 WO 2016206243A1 CN 2015092064 W CN2015092064 W CN 2015092064W WO 2016206243 A1 WO2016206243 A1 WO 2016206243A1
Authority
WO
WIPO (PCT)
Prior art keywords
expanded vermiculite
vinyl
nano
ball mill
vermiculite
Prior art date
Application number
PCT/CN2015/092064
Other languages
English (en)
French (fr)
Inventor
薛杨
钱西慧
王好盛
张冬海
陈运法
李欣欣
徐志磊
沈辉
韩世健
孙浩
Original Assignee
中国科学院过程工程研究所
江东金具设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所, 江东金具设备有限公司 filed Critical 中国科学院过程工程研究所
Publication of WO2016206243A1 publication Critical patent/WO2016206243A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the invention belongs to the field of materials, in particular, the invention relates to an arc-resistant silicone rubber composite material, a preparation method and the use thereof, and more particularly to a lightweight arc-resistant silicone rubber composite material, a preparation method and the use thereof.
  • high-voltage transmission insulators high-temperature vulcanized silicone rubber composite insulators have been widely used in recent years. Compared with traditional glass and ceramic insulators, high-temperature vulcanized silicone rubber composite insulators are small in size, light in weight, easy to transport and install, and excellent in hydrophobicity. It is characterized by high strength and good aging resistance.
  • the current high temperature vulcanized silicone rubber composite insulator is mainly formed by mixing and heat vulcanization of silicone rubber, filler and vulcanizing agent. Its resistance to tracking and electric corrosion is low, generally AC 1A4.5, its application voltage of transmission network The grade is below 1000kV, which cannot meet the application requirements of DC UHV transmission network above 1000kV.
  • the filler is mostly aluminum hydroxide, which is used to improve the tracking resistance and electrical erosion resistance of the composite insulator, and has become the most commonly used filler in composite insulators due to good insulation flame retardancy and low price, but a large number of
  • the addition of filler will greatly affect the mechanical properties and surface hydrophobicity of the composite insulator, and the combined water released by the aluminum hydroxide under high temperature arc ablation will make the surface of the composite insulator rougher to a certain extent, thus affecting the use of composite insulators. life.
  • the interface combination is a key issue to improve the performance of high temperature vulcanized silicone rubber composite insulator materials. This is also the focus and difficulty of current research.
  • CN 103642247A discloses a high temperature resistant insulating silicone rubber, which uses a soluble polymetallic organosiloxane and a heat resistant additive to improve the high temperature resistance of the silicone rubber, and the prepared silicone rubber can achieve a tracking resistance of 4.5 KV or more.
  • CN 104610754A discloses a micro-nano silicone rubber compound compound for composite insulators and a preparation method thereof, which combines micron and nano aluminum hydroxide to improve the interface and improve the tracking resistance performance, and can reach 1A4.5KV.
  • the silicone rubber disclosed in the prior art disclosed above has a low tracking resistance performance.
  • one of the objects of the present invention is to provide a lightweight arc-resistant silicone rubber composite material which has excellent tracking resistance and electrical erosion resistance, and has high mechanical properties and breakdown strength. Such electrical properties, flame retardant properties and processability, can be used for the preparation of composite insulators for UHV DC transmission lines.
  • a lightweight arc-resistant silicone rubber composite material which is mainly prepared from the following raw materials:
  • the addition of the component (B) modified nano-expanded vermiculite of the invention can improve the processing property of the silicone rubber, can fully exert the nano-effect of the nano-particles, enhance the interface bonding, improve the mechanical properties of the composite material, and simultaneously improve the resistance of the composite material. Thermal stability to improve tracking resistance and electrical erosion resistance.
  • the lamellar expanded vermiculite can also improve the flame retardancy of the composite.
  • the component (A) has a weight percentage of the total weight of the component (A) and the component (B) of 61 to 91%, for example, 62%, 64%, 67%, 70%, 73% 76%, 79%, 82%, 85%, 88% or 90%, preferably 77 to 89%.
  • component (A) is methyl terminated methyl vinyl silicone rubber or / and vinyl terminated Methyl vinyl silicone rubber.
  • the methyl-terminated methyl vinyl silicone rubber and the vinyl-terminated methyl vinyl silicone rubber are each independently having a vinyl content of 0.05% to 0.11%, 0.13% to 0.19%, and 0.21% to 0.28. Any one or a mixture of at least two of % or 0.30% to 0.36% of silicone rubber.
  • the component (A) is a methyl terminated methyl vinyl silicone rubber or a vinyl terminated methyl vinyl silicone rubber having a vinyl content of 0.05% to 0.11% or 0.13%. ⁇ 0.19%, further preferably 0.06% to 0.08% or 0.14% to 0.16%.
  • the component (A) is a combination of two methyl-terminated methyl vinyl silicone rubbers having a vinyl content of 0.05% to 0.09% and 0.30% to 0.36%, respectively.
  • the component (A) is a combination of two vinyl-terminated methyl vinyl silicone rubbers having a vinyl content of 0.05% to 0.09% and 0.30% to 0.36%, respectively.
  • the component (A) is a methyl-terminated methyl vinyl silicone rubber having a vinyl content of 0.05% to 0.09% and a vinyl-terminated methyl vinyl silicon having a vinyl content of 0.30% to 0.36%.
  • a combination of rubber is a methyl-terminated methyl vinyl silicone rubber having a vinyl content of 0.05% to 0.09% and a vinyl-terminated methyl vinyl silicon having a vinyl content of 0.30% to 0.36%.
  • the component (A) is a vinyl-terminated methyl vinyl silicone rubber having a vinyl content of 0.05% to 0.09% and a methyl-terminated methyl vinyl silicon having a vinyl content of 0.30% to 0.36%.
  • a combination of rubber is a vinyl-terminated methyl vinyl silicone rubber having a vinyl content of 0.05% to 0.09% and a methyl-terminated methyl vinyl silicon having a vinyl content of 0.30% to 0.36%.
  • the mixing ratio between the respective silicone rubbers is not limited. Can be any ratio.
  • the component (B) modified nano-expanded vermiculite has a weight percentage of the total weight of the component (A) and the component (B) of 9 to 39%, for example, 10%, 13%, 16%. 19%, 22%, 25%, 28%, 31%, 33%, 35% or 37%, preferably 11-23%.
  • the component (B) is mainly prepared by nano-expanded vermiculite, a silane coupling agent with a vinyl group, a curing agent, and an auxiliary agent, the nano-expanded vermiculite, a silane coupling with a vinyl group.
  • the weight ratio of the agent, curing agent and auxiliary agent is (6 to 29): (1 to 4): (0.5 to 2.5): (1.5 to 3.5), for example, 7:2:1:1.5, 8:2:1: 1.8, 10:1:2:2, 12:2:2:3, 15:3:1:3.5, 18:1.5:2:2.5, 22:2.5:1.5:2.5 or 24:3:2.5:3.
  • the vinyl-containing silane coupling agent is vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, vinyltrichlorosilane Any one or a mixture of at least two of vinyl tri-tert-butoxysilane, vinyl tri-tert-butylperoxysilane or vinyltriacetoxysilane.
  • the curing agent is 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane.
  • the adjuvant is a hydroxy silicone oil and/or a hydrogen-containing silicone oil.
  • the preparation method of the component (B) modified nano-expanded vermiculite comprises the following steps:
  • the nano-expanded vermiculite, the vinyl-containing silane coupling agent, the curing agent and the auxiliary agent are ball-milled in a ball mill to obtain a modified nano-expanded vermiculite.
  • the ball mill has a rotational speed of from 200 r/min to 600 r/min, preferably from 350 r/min to 550 r/min, and a ball milling time of from 20 min to 720 min, preferably from 60 min to 600 min.
  • the invention adopts the method of ball milling to prepare the modified nano-expanded vermiculite, which is simple and easy, and the obtained product is uniformly dispersed, and the performance improvement of the silicone rubber composite material is more excellent.
  • the method for preparing the nano-expanded vermiculite comprises the following steps:
  • silica modified expanded vermiculite is placed in a ball mill ball mill (i.e., dry mill) to obtain nano-expanded vermiculite.
  • the method for preparing the nano-expanded vermiculite comprises the following steps:
  • the invention adopts in-situ hydrolysis of ethyl orthosilicate to form nano-modified expanded vermiculite, and firstly adopts wet grinding, and then adopts dry grinding to obtain nano-expanded vermiculite, which can achieve good pulverization of expanded vermiculite and enhance its pair. Performance improvement of silicone rubber composites.
  • the molar ratio of orthosilicate to absolute ethanol is from 1:2 to 1:30, for example 1:4, 1:6, 1:9, 1:12, 1:15, 1:18, 1 : 21, 1:24 or 1:27, preferably 1:5 to 1:20.
  • the mass ratio of expanded vermiculite to tetraethyl orthosilicate is from 1:1 to 1:9, such as 1:2, 1:3, 1:4, 1:5, 1:6, 1:7 or 1: 8. Preferably, it is 1:2 to 1:6.
  • the pH of the solution is adjusted to 2 to 5 by adding an acid, preferably hydrochloric acid, further preferably hydrochloric acid having a concentration of 1 mol/L.
  • an acid preferably hydrochloric acid, further preferably hydrochloric acid having a concentration of 1 mol/L.
  • step (1) is stirred for 30 minutes to 480 minutes, preferably 60 minutes to 300 minutes.
  • step (1) is washed with deionized water and absolute ethanol to a pH of 7.
  • the step (1) ball mill rotation speed is 200-700r/min, preferably 350r/min-600r/min, and the ball milling time is 100min-500min, for example 150min, 200min, 250min, 300min, 350min, 400min or 450min, preferably 150min ⁇ 400min.
  • the drying temperature of step (1) is 40 to 90 °C.
  • the step (2) ball mill rotation speed is 200-700r/min, preferably 350r/min-600r/min, and the ball milling time is 20min-720min, for example 50min, 100min, 150min, 200min, 250min, 300min, 350min, 400min, 450min. , 500min, 550min, 600min or 650min, excellent Choose 60min ⁇ 600min.
  • the nano-expanded vermiculite has a thickness of 30 nm to 100 nm and a length of 0.3 ⁇ m to 500 ⁇ m, preferably 0.5 ⁇ m to 200 ⁇ m.
  • the method for preparing the expanded vermiculite comprises the following steps:
  • the pretreatment comprises crushing the vermiculite and sieving, and then placing the vermiculite powder in a heating furnace at 9800-950 ° C for heating for 0.5 to 2 min, grinding and sieving, and having a particle size of 250 to 600 Head.
  • the primary particle diameter of the vermiculite is 20 ⁇ m to 5 mm, preferably 25 ⁇ m to 800 ⁇ m, and more preferably 29 ⁇ m to 650 ⁇ m.
  • a second object of the present invention is to provide a method for preparing a lightweight arc-resistant silicone rubber composite material as described above, the method comprising the steps of:
  • the component (B) modified nano-expanded vermiculite is kneaded with the component (A) at least one silicone rubber, and the obtained rubber compound is vulcanized into a sheet to obtain a lightweight arc-resistant silicone rubber composite material.
  • the kneading is carried out by an internal mixer, a kneader or an open mill.
  • the vulcanization temperature is from 160 ° C to 170 ° C.
  • the component (B) is mainly prepared by nano-expanded vermiculite, a silane coupling agent with a vinyl group, a curing agent, and an auxiliary agent, the nano-expanded vermiculite, a silane coupling with a vinyl group.
  • the weight ratio of the agent, curing agent and auxiliary agent is (6 to 29): (1 to 4): (0.5 to 2.5): (1.5 to 3.5), for example, 7:2:1:1.5, 8:2:1: 1.8, 10:1:2:2, 12:2:2:3, 15:3:1:3.5, 18:1.5:2:2.5, 22:2.5:1.5:2.5 or 24:3:2.5:3.
  • the vinyl-containing silane coupling agent is vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, vinyltrichlorosilane Any one or a mixture of at least two of vinyl tri-tert-butoxysilane, vinyl tri-tert-butylperoxysilane or vinyltriacetoxysilane.
  • the curing agent is 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane.
  • the adjuvant is a hydroxy silicone oil and/or a hydrogen-containing silicone oil.
  • the preparation method of the component (B) modified nano-expanded vermiculite comprises the following steps:
  • the nano-expanded vermiculite, the vinyl-containing silane coupling agent, the curing agent and the auxiliary agent are ball-milled in a ball mill to obtain a modified nano-expanded vermiculite.
  • the ball mill has a rotational speed of from 200 r/min to 600 r/min, preferably from 350 r/min to 550 r/min, and a ball milling time of from 20 min to 720 min, preferably from 60 min to 600 min.
  • the method for preparing the nano-expanded vermiculite comprises the following steps:
  • the method for preparing the nano-expanded vermiculite comprises the following steps:
  • the molar ratio of orthosilicate to absolute ethanol is from 1:2 to 1:30, for example 1:4, 1:6, 1:9, 1:12, 1:15, 1:18, 1 : 21, 1:24 or 1:27, preferably 1:5 to 1:20.
  • the mass ratio of expanded vermiculite to tetraethyl orthosilicate is from 1:1 to 1:9, such as 1:2, 1:3, 1:4, 1:5, 1:6, 1:7 or 1: 8. Preferably, it is 1:2 to 1:6.
  • the pH of the solution is adjusted to 2 to 5 by adding an acid, preferably hydrochloric acid, further preferably hydrochloric acid having a concentration of 1 mol/L.
  • an acid preferably hydrochloric acid, further preferably hydrochloric acid having a concentration of 1 mol/L.
  • step (1) is stirred for 30 minutes to 480 minutes, preferably 60 minutes to 300 minutes.
  • step (1) is washed with deionized water and absolute ethanol to a pH of 7.
  • the step (1) ball mill rotation speed is 200-700r/min, preferably 350r/min-600r/min, and the ball milling time is 100min-500min, for example 150min, 200min, 250min, 300min, 350min, 400min or 450min, preferably 150min ⁇ 400min.
  • the drying temperature of step (1) is 40 to 90 °C.
  • the step (2) ball mill rotation speed is 200-700r/min, preferably 350r/min-600r/min, and the ball milling time is 20min-720min, for example 50min, 100min, 150min, 200min, 250min, 300min, 350min, 400min, 450min. 500 min, 550 min, 600 min or 650 min, preferably 60 min to 600 min.
  • the nano-expanded vermiculite has a thickness of 30 nm to 100 nm and a length of 0.3 ⁇ m to 500 ⁇ m, preferably 0.5 ⁇ m to 200 ⁇ m.
  • the method for preparing the expanded vermiculite comprises the following steps:
  • the pretreatment comprises crushing the vermiculite and sieving, and then placing the vermiculite powder in a heating furnace at 800-950 ° C for heating for 0.5 to 2 min, grinding and sieving, and having a particle size of 250 to 600 Head.
  • the primary particle diameter of the vermiculite is 20 ⁇ m to 5 mm, preferably 25 ⁇ m to 800 ⁇ m, and more preferably 29 ⁇ m to 650 ⁇ m.
  • the pretreatment comprises crushing the vermiculite and sieving, and then placing the vermiculite powder in a heating furnace at 800-950 ° C for heating for 0.5 to 2 min, grinding and sieving, particle size For 250 to 600 mesh, an expanded vermiculite is obtained;
  • the ball mill rotates at 200-700 r/min, preferably 350 r/min to 600 r/min.
  • the ball milling time is from 100 min to 500 min, preferably from 150 min to 400 min, and then dried in an oven at 40 ° C to 90 ° C to obtain a silica modified expanded vermiculite;
  • the silica modified expanded vermiculite obtained in (II) is again placed in a ball mill ball mill.
  • the ball mill rotates at 200-700 r/min, preferably 350 r/min to 600 r/min, and the ball milling time is 20 min to 720 min, preferably 60 min. ⁇ 600min, obtaining nano-expanded vermiculite;
  • a third object of the present invention is to provide a light arc-resistant silicone rubber composite material as described above, which is used for the preparation of a composite insulator of a high-voltage direct current transmission line, which can significantly improve the tracking resistance and electrical erosion of the insulator. Performance, high electrical properties, breakdown strength and other electrical properties and flame retardant properties and processability.
  • the present invention has the following beneficial effects:
  • the invention prepares an arc-resistant silicone rubber composite material by using a specific modified nano-expanded vermiculite and at least one silicone rubber, which has excellent resistance to electric tracking and electric corrosion resistance compared with the prior art. It has high mechanical properties, breakdown strength and other electrical properties, flame retardant properties and processability, and can be used for the preparation of composite insulators for HVDC transmission lines.
  • the present invention prepares the modified nano-expanded vermiculite by adopting a specific method, and the above performance is more significantly improved.
  • the lightweight arc-resistant silicone rubber composite material of the invention has a resistance to leakage tracking up to 6.0KV, tensile strength>6MPa, elongation at break>350%, tear strength>14kN/m, alternating current breakdown strength ⁇ 25kV /mm, excellent overall performance, can be used for the preparation of insulators for UHV DC transmission lines.
  • the conventional aluminum hydroxide filler is generally added to 40% to 60%, and about 10% of white carbon black is added, and the present invention requires only a small amount of modified nano-expanded vermiculite to achieve excellent leakage resistance. Trace, electrical erosion performance, mechanical properties, puncture strength, flame retardant properties and processability, achieve a lightweight effect.
  • the lightweight arc-resistant silicone rubber composite material of the invention has the resistance to tracking and electric corrosion loss tested according to GB6553-2003, the AC breakdown strength test is determined according to GB/T 1695-2005, and the mechanical performance test is in accordance with GB/T528-2009. And GB/T 529-2008 determination.
  • the 20 ⁇ m vermiculite was crushed and sieved, and then the vermiculite powder was placed in a heating furnace at 900 ° C for heating and expansion treatment for 1 minute, and the sieve was sieved to have a particle size of 600 mesh to obtain expanded vermiculite.
  • the ball mill was ball milled, the ball mill speed was 200 r/min, and the ball milling time was 720 min to obtain nano-expanded vermiculite.
  • the vulcanized film was tested for tracking resistance to 6.0 kV, tensile strength 6.2 MPa, elongation at break 579%, tear strength 14.1 kN/m, and AC breakdown strength 25 kV/mm.
  • the 5 mm vermiculite was crushed and sieved, and then the vermiculite powder was placed in a heating furnace at 900 ° C for heating and expansion treatment for 1 minute, and the sieve was sieved to have a particle size of 250 mesh, and the expanded vermiculite was obtained.
  • the vulcanized film was tested to have a tracking resistance of 6.0 kV, a tensile strength of 6.7 MPa, an elongation at break of 361%, a tear strength of 14.6 kN/m, and an AC breakdown strength of 25 kV/mm.
  • the 25 ⁇ m vermiculite is crushed and sieved, and then the vermiculite powder is placed in a heating furnace at 900 ° C for heating and expansion treatment. After 1 min, the sieve was ground and the particle size was 500 mesh to obtain expanded vermiculite.
  • 40g of expanded vermiculite is uniformly mixed with 80g of orthosilicate and 354g of absolute ethanol, then 1mol/L hydrochloric acid aqueous solution is added dropwise to pH 3, stirred in a water bath at 50°C for 300min, cooled, centrifuged and deionized water and Wash with absolute ethanol until the pH is 7, put into the ball mill for wet grinding, the ball mill speed is preferably 350r/min, the ball milling time is 400min, put it into the oven to dry at 70 °C, and then use the ball mill ball mill, the ball mill speed is 600r / min, The ball milling time was 60 min, and nano-expanded vermiculite was obtained.
  • the vulcanized film was tested to have a tracking resistance of 6.0 kV, a tensile strength of 6.5 MPa, an elongation at break of 460%, a tear strength of 15.2 kN/m, and an AC breakdown strength of 28 kV/mm.
  • the 800 ⁇ m vermiculite was pulverized and sieved, and then the vermiculite powder was placed in a heating furnace at 900 ° C for heating and expansion treatment for 1 minute, and the sieve was sieved to have a particle size of 300 mesh to obtain expanded vermiculite.
  • 11 g of the modified nano-expanded vermiculite was kneaded with 35 g of a silicone rubber having a vinyl content of 0.05% and 54 g of a vinyl content of 0.36%, and then the kneaded rubber compound was vulcanized to a sheet, and the vulcanization temperature was 160 °C.
  • the vulcanized film was tested to have a tracking resistance of 6.0 kV, a tensile strength of 6.2 MPa, an elongation at break of 485%, a tear strength of 14.8 kN/m, and an AC breakdown strength of 26 kV/mm.
  • the 29 ⁇ m vermiculite was crushed and sieved, and then the vermiculite powder was placed in a heating furnace at 900 ° C for heating and expansion treatment for 1 minute, and the sieve was sieved to have a particle diameter of 400 mesh to obtain expanded vermiculite.
  • 17g of modified nano-expanded vermiculite is mixed with 80g of silicone rubber with a vinyl content of 0.07% and 20g of silicone rubber with a vinyl content of 0.30%, and then the refined rubber compound is vulcanized and the vulcanization temperature is 160. °C.
  • the vulcanized film was tested to have a tracking resistance of 6.0 kV, a tensile strength of 7.1 MPa, an elongation at break of 437%, a tear strength of 15.7 kN/m, and an AC breakdown strength of 27 kV/mm.
  • the 650 ⁇ m vermiculite was pulverized and sieved, and then the vermiculite powder was placed in a heating furnace at 900 ° C for heating and expansion treatment for 1 minute, and the sieve was sieved to have a particle size of 300 mesh to obtain expanded vermiculite.
  • 25g of modified nano-expanded vermiculite is mixed with 50g of silicone rubber with a vinyl content of 0.07% and 50g of silicone rubber with a vinyl content of 0.34%, and then the refined rubber compound is vulcanized and the vulcanization temperature is 160. °C.
  • the vulcanized film was tested to have a tracking resistance of 6.0 kV, a tensile strength of 6.9 MPa, an elongation at break of 395%, a tear strength of 14.5 kN/m, and an AC breakdown strength of 28 kV/mm.
  • the 150 ⁇ m vermiculite was crushed and sieved, and then the vermiculite powder was placed in a heating furnace at 900 ° C for 1 minute by heating and expansion treatment, and sieved to have a particle size of 550 mesh to obtain expanded vermiculite.
  • nano-expanded vermiculite Take 14g of nano-expanded vermiculite with vinyl triacetoxysilane 3g, 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane 0.5g and hydrogenated silicone oil 2.5g ball mill, ball mill
  • the modified nano-expanded vermiculite was obtained at a rotational speed of 550 r/min and a ball milling time of 430 min.
  • 20 g of the modified nano-expanded vermiculite was kneaded with 100 g of a silicone rubber having a vinyl content of 0.23%, and then the kneaded rubber compound was vulcanized to a sheet, and the vulcanization temperature was 160 °C.
  • the vulcanized film was tested to have a tracking resistance of 6.0 kV, a tensile strength of 7.5 MPa, an elongation at break of 473%, a tear strength of 15.1 kN/m, and an AC breakdown strength of 27 kV/mm.
  • Example 2 The rest was the same as in Example 1, except that 20 g of the modified nano-expanded vermiculite was kneaded with 80 g of a silicone rubber having a vinyl content of 0.08%, and then the kneaded rubber compound was vulcanized to a sheet, and the vulcanization temperature was 160 °C.
  • the vulcanized film was tested to have a tracking resistance of 6.0 kV, tensile strength of 7.7 MPa, elongation at break of 476%, tear strength of 15.3 kN/m, and AC breakdown strength of 28 kV/mm.
  • Example 8 By comparison between Example 8 and Example 1, it can be found that the present invention further optimizes the performance of the obtained product by further optimizing the content of the modified nano-expanded vermiculite.
  • Example 2 The rest was the same as in Example 1, except that 5 g of the modified nano-expanded vermiculite was mixed with 95 g of a silicone rubber having a vinyl content of 0.08%, and then the kneaded rubber compound was vulcanized to a sheet, and the vulcanization temperature was 160 °C.
  • the vulcanized film was tested to have a tracking resistance of less than 6.0 kV, a tensile strength of 4.2 MPa, an elongation at break of 608%, a tear strength of 11.5 kN/m, and an AC breakdown strength of 18 kV/mm.
  • Example 2 The rest was the same as in Example 1, except that 55 g of the modified nano-expanded vermiculite was blended with 45 g of a silicone rubber having a vinyl content of 0.08%, and then the kneaded rubber compound was vulcanized to a sheet, and the vulcanization temperature was 160 °C.
  • the vulcanized film was tested for tracking resistance to AC 6.0kV, tensile strength 4.7MPa, and fracture.
  • the elongation is 320%
  • the tear strength is 12.0 kN/m
  • the AC breakdown strength is 24 kV/mm.
  • Example 2 The rest is the same as in Example 1, except that after drying in an oven at 60 ° C, ball milling is not performed, and the obtained nano-expanded vermiculite and vinyl trimethoxysilane 1 g, 2,5-dimethyl-2 are directly obtained.
  • 0.5 g of 5-bis(tert-butylperoxy)hexane and 1.5 g of a hydrogen-containing silicone oil were ball milled, the ball mill was rotated at 600 r/min, and the ball milling time was 20 min to obtain a modified nano-expanded vermiculite.
  • the vulcanized film was tested to have a tracking resistance of 6.0 kV, a tensile strength of 5.7 MPa, an elongation at break of 531%, a tear strength of 13.6 kN/m, and an AC breakdown strength of 25 kV/mm.
  • Example 1 It can be found from the comparison between Example 1 and Example 11 that the expanded vermiculite is obtained by two-step ball milling, and the technical effect is remarkably superior to that of the expanded vermiculite obtained by only one-step ball milling.
  • the vulcanized film was tested to have a tracking resistance of less than 6.0 kV, a tensile strength of 3.9 MPa, an elongation at break of 551.0, a tear strength of 8.5 kN/m, and an AC breakdown strength of 16 kV/mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种耐电弧硅橡胶复合材料、制备方法及其用途。所述复合材料主要由如下原料制备得到:(A)至少一种硅橡胶;(B)改性纳米膨胀蛭石;所述组分(B)改性纳米膨胀蛭石占组分(A)和组分(B)的重量总和的重量百分比为9%~39%。所述制备方法为先将改性纳米胀蛭石在球磨机中加入硅烷偶联剂进行改性处理,然后与硅橡胶混炼。本发明复合材料具有优异的耐漏电起痕性能和机械性能,同时具有高的击穿强度等电气性能、阻燃性能及可加工性能,可用于高压直流输电线路复合绝缘子的制备。

Description

一种耐电弧硅橡胶复合材料、制备方法及其用途 技术领域
本发明属于材料领域,具体地,本发明涉及一种耐电弧硅橡胶复合材料、制备方法及其用途,更具体涉及一种轻质耐电弧硅橡胶复合材料、制备方法及其用途。
背景技术
在高压输电绝缘子中,高温硫化硅橡胶复合绝缘子在近年来得到了广泛的应用,相比传统的玻璃和陶瓷绝缘子,高温硫化硅橡胶复合绝缘子具有体积小、重量轻、便于运输和安装,疏水性优异、高强度和良好的耐老化性等特点,因而发展迅速。
目前的高温硫化硅橡胶复合绝缘子主要由硅橡胶,填料及硫化剂混合热硫化成型而成,其耐漏电起痕和电蚀损偏低,一般为交流1A4.5级,其应用输电网络的电压等级为1000kV以下,无法满足1000kV以上的直流特高压输电网络的应用要求。而且,填料多为氢氧化铝,其用于提高复合绝缘子的耐漏电起痕和电蚀损性能,由于具备良好的绝缘阻燃性能和低廉的价格而成为复合绝缘子中最常用的填料,但大量的填料加入会大大影响复合绝缘子的机械性能和表面疏水性,并且高温电弧烧蚀下氢氧化铝释放出的结合水在一定程度上会使复合绝缘子表面变得更加粗糙,从而影响复合绝缘子的使用寿命。因此,在提高复合绝缘子耐漏电起痕和电蚀损性能的基础上,同时保证复合绝缘子的机械性能和加工性能非常重要,因此提高填料在硅橡胶基体中的分散性,增强填料与硅橡胶基体的界面结合作用,是提高高温硫化硅橡胶复合绝缘子材料性能的关键问题,这也是目前研究的重点和难点。
CN 103642247A公开了一种耐高温绝缘硅橡胶,采用可溶性聚金属有机硅氧烷和耐热添加剂改善硅橡胶的耐高温性能,制备的硅橡胶耐漏电起痕性可达到4.5KV以上。CN 104610754A公开了一种复合绝缘子用的微纳硅橡胶复合胶料及其制备方法,将微米和纳米氢氧化铝进行复配来改善界面,提高耐漏电起痕性能,可达到1A4.5KV。但上述已有技术公开的硅橡胶的耐漏电起痕性能仍较低。
发明内容
针对已有技术的问题,本发明的目的之一在于提供一种轻质耐电弧硅橡胶复合材料,其具有优异的耐漏电起痕和电蚀损性能,同时具有高的机械性能、击穿强度等电气性能和阻燃性能及可加工性能,可用于特高压直流输电线路复合绝缘子的制备。
为了实现上述目的,本发明采用了如下技术方案:
一种轻质耐电弧硅橡胶复合材料,其主要由如下原料制备得到:
(A)至少一种硅橡胶;
(B)改性纳米膨胀蛭石。
本发明组分(B)改性纳米膨胀蛭石的加入可以改善硅橡胶的加工性能,可以充分发挥纳米颗粒的纳米效应,增强界面结合,提高复合材料的机械性能,并同时提高复合材料的耐热稳定性,从而提高耐漏电起痕和电蚀损性能。此外,片层状的膨胀蛭石还可以提高复合材料的阻燃性能。
优选地,所述组分(A)的重量占组分(A)和组分(B)的重量总和的百分比为61~91%,例如62%、64%、67%、70%、73%、76%、79%、82%、85%、88%或90%,优选77~89%。
优选地,所述组分(A)为甲基封端的甲基乙烯基硅橡胶或/和乙烯基封端 的甲基乙烯基硅橡胶。
优选地,所述甲基封端的甲基乙烯基硅橡胶和乙烯基封端的甲基乙烯基硅橡胶均独立地为乙烯基含量为0.05%~0.11%、0.13%~0.19%、0.21%~0.28%或0.30%~0.36%的硅橡胶中的任意一种或者至少两种的混合物。
优选地,所述组分(A)为甲基封端的甲基乙烯基硅橡胶或乙烯基封端的甲基乙烯基硅橡胶,所述硅橡胶的乙烯基含量为0.05%~0.11%或0.13%~0.19%,进一步优选0.06%~0.08%或0.14%~0.16%。
优选地,所述组分(A)为乙烯基含量分别为0.05%~0.09%和0.30%~0.36%的两种甲基封端的甲基乙烯基硅橡胶的组合。
优选地,所述组分(A)为乙烯基含量分别为0.05%~0.09%和0.30%~0.36%的两种乙烯基封端的甲基乙烯基硅橡胶的组合。
优选地,所述组分(A)为乙烯基含量为0.05%~0.09%的甲基封端的甲基乙烯基硅橡胶和乙烯基含量为0.30%~0.36%乙烯基封端的甲基乙烯基硅橡胶的组合。
优选地,所述组分(A)为乙烯基含量为0.05%~0.09%的乙烯基封端的甲基乙烯基硅橡胶和乙烯基含量为0.30%~0.36%甲基封端的甲基乙烯基硅橡胶的组合。
当所述组分(A)为两种硅橡胶时,即为甲基封端的甲基乙烯基硅橡胶和乙烯基封端的甲基乙烯基硅橡胶时,各硅橡胶之间的混合比例不作限定,可以为任意比例。
优选地,所述组分(B)改性纳米膨胀蛭石的重量占组分(A)和组分(B)的重量总和的百分比为9~39%,例如10%、13%、16%、19%、22%、25%、28%、31%、33%、35%或37%,优选11~23%。
优选地,所述组分(B)主要由纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂以及助剂制备得到,所述纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂以及助剂的重量比为(6~29)∶(1~4)∶(0.5~2.5)∶(1.5~3.5),例如7∶2∶1∶1.5、8∶2∶1∶1.8、10∶1∶2∶2、12∶2∶2∶3、15∶3∶1∶3.5、18∶1.5∶2∶2.5、22∶2.5∶1.5∶2.5或24∶3∶2.5∶3。
优选地,所述带有乙烯基的硅烷偶联剂为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、乙烯基三氯硅烷、乙烯基三叔丁氧基硅烷、乙烯基三叔丁基过氧硅烷或乙烯基三乙酰氧基硅烷中的任意一种或者至少两种的混合物。
优选地,所述固化剂为2,5-二甲基-2,5-双(叔丁基过氧基)己烷。
优选地,所述助剂为羟基硅油和/含氢硅油。
优选地,所述组分(B)改性纳米膨胀蛭石的制备方法包括以下步骤:
将纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂和助剂在球磨机中进行球磨,得到改性纳米膨胀蛭石。
优选地,球磨机转速为200r/min~600r/min,优选350r/min~550r/min,球磨时间为20min~720min,优选60min~600min。
本发明采用球磨的方法制备改性纳米膨胀蛭石,简单易行,得到的产品分散均匀,对硅橡胶复合材料的性能提升更加优异。
优选地,所述纳米膨胀蛭石的制备方法包括以下步骤:
(1)将膨胀蛭石、正硅酸乙酯和低碳醇均匀混合,在酸性条件下,正硅酸乙酯发生水解反应,将得到的产物球磨,得到二氧化硅改性膨胀蛭石;
(2)将二氧化硅改性膨胀蛭石放入球磨机球磨(即干磨),得到纳米膨胀蛭石。
优选地,所述纳米膨胀蛭石的制备方法包括以下步骤:
(1)将膨胀蛭石、正硅酸乙酯和无水乙醇均匀混合,然后调节溶液pH为2~5(例如2.3、2.6、2.9、3.2、3.5、3.8、4.1、4.4或4.7),40℃~70℃下水浴搅拌,冷却,过滤,洗涤至pH为中性,放入球磨机中湿磨,然后烘干,得到二氧化硅改性膨胀蛭石;
(2)将二氧化硅改性膨胀蛭石再放入球磨机球磨,得到纳米膨胀蛭石。
本发明通过采用正硅酸乙酯原位水解生成纳米改性膨胀蛭石,并首先采用湿磨,再采用干磨得到纳米膨胀蛭石,可以实现对膨胀蛭石良好的粉碎,提升了其对硅橡胶复合材料的性能改进效果。
优选地,正硅酸乙酯和无水乙醇的摩尔比为1∶2~1∶30,例如1∶4、1∶6、1∶9、1∶12、1∶15、1∶18、1∶21、1∶24或1∶27,优选1∶5~1∶20。
优选地,膨胀蛭石和正硅酸乙酯的质量比为1∶1~1∶9,例如1∶2、1∶3、1∶4、1∶5、1∶6、1∶7或1∶8,优选1∶2~1∶6。
优选地,通过加酸调节溶液pH至2~5,所述酸优选为盐酸,进一步优选为浓度为1mol/L的盐酸。
优选地,步骤(1)搅拌30min~480min,优选60min~300min。
优选地,步骤(1)用去离子水和无水乙醇洗至pH为7。
优选地,步骤(1)球磨机转速为200~700r/min,优选350r/min~600r/min,球磨时间为100min~500min,例如150min、200min、250min、300min、350min、400min或450min,优选150min~400min。
优选地,步骤(1)烘干温度为40~90℃。
优选地,步骤(2)球磨机转速为200~700r/min,优选350r/min~600r/min,球磨时间为20min~720min,例如50min、100min、150min、200min、250min、300min、350min、400min、450min、500min、550min、600min或650min,优 选60min~600min。
优选地,所述纳米膨胀蛭石的厚度为30nm~100nm,长度0.3μm~500μm,优选0.5μm~200μm。
优选地,所述膨胀蛭石的制备方法包括以下步骤:
对蛭石矿进行预处理:所述预处理包括将蛭石粉碎过筛,然后将蛭石粉放入9800~950℃加热炉中加热膨胀处理0.5~2min,研磨过筛,粒径为250~600目。
优选地,所述蛭石矿原生粒径为20μm~5mm,优选25μm~800μm,进一步优选29μm~650μm。
本发明的目的之二在于提供一种如上所述的轻质耐电弧硅橡胶复合材料的制备方法,所述方法包括以下步骤:
将组分(B)改性纳米膨胀蛭石与组分(A)至少一种硅橡胶混炼,将得到的混炼胶硫化出片,得到轻质耐电弧硅橡胶复合材料。
优选地,通过密炼机、捏合机或开炼机进行混炼。
优选地,硫化温度为160℃~170℃。
优选地,所述组分(B)主要由纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂以及助剂制备得到,所述纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂以及助剂的重量比为(6~29)∶(1~4)∶(0.5~2.5)∶(1.5~3.5),例如7∶2∶1∶1.5、8∶2∶1∶1.8、10∶1∶2∶2、12∶2∶2∶3、15∶3∶1∶3.5、18∶1.5∶2∶2.5、22∶2.5∶1.5∶2.5或24∶3∶2.5∶3。
优选地,所述带有乙烯基的硅烷偶联剂为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、乙烯基三氯硅烷、乙烯基三叔丁氧基硅烷、乙烯基三叔丁基过氧硅烷或乙烯基三乙酰氧基硅烷中的任意一种或者至少两种的混合物。
优选地,所述固化剂为2,5-二甲基-2,5-双(叔丁基过氧基)己烷。
优选地,所述助剂为羟基硅油和/含氢硅油。
优选地,所述组分(B)改性纳米膨胀蛭石的制备方法包括以下步骤:
将纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂和助剂在球磨机中进行球磨,得到改性纳米膨胀蛭石。
优选地,球磨机转速为200r/min~600r/min,优选350r/min~550r/min,球磨时间为20min~720min,优选60min~600min。
优选地,所述纳米膨胀蛭石的制备方法包括以下步骤:
(1)将膨胀蛭石、正硅酸乙酯和低碳醇均匀混合,在酸性条件下,正硅酸乙酯发生水解反应,将得到的产物球磨,得到二氧化硅改性膨胀蛭石;
(2)将二氧化硅改性膨胀蛭石放入球磨机球磨,得到纳米膨胀蛭石。
优选地,所述纳米膨胀蛭石的制备方法包括以下步骤:
(1)将膨胀蛭石、正硅酸乙酯和无水乙醇均匀混合,然后调节溶液pH为2~5(例如2.3、2.6、2.9、3.2、3.5、3.8、4.1、4.4或4.7),40℃~70℃下水浴搅拌,冷却,过滤,洗涤至pH为中性,放入球磨机中湿磨,然后烘干,得到二氧化硅改性膨胀蛭石;
(2)将二氧化硅改性膨胀蛭石再放入球磨机球磨,得到纳米膨胀蛭石。
优选地,正硅酸乙酯和无水乙醇的摩尔比为1∶2~1∶30,例如1∶4、1∶6、1∶9、1∶12、1∶15、1∶18、1∶21、1∶24或1∶27,优选1∶5~1∶20。
优选地,膨胀蛭石和正硅酸乙酯的质量比为1∶1~1∶9,例如1∶2、1∶3、1∶4、1∶5、1∶6、1∶7或1∶8,优选1∶2~1∶6。
优选地,通过加酸调节溶液pH至2~5,所述酸优选为盐酸,进一步优选为浓度为1mol/L的盐酸。
优选地,步骤(1)搅拌30min~480min,优选60min~300min。
优选地,步骤(1)用去离子水和无水乙醇洗至pH为7。
优选地,步骤(1)球磨机转速为200~700r/min,优选350r/min~600r/min,球磨时间为100min~500min,例如150min、200min、250min、300min、350min、400min或450min,优选150min~400min。
优选地,步骤(1)烘干温度为40~90℃。
优选地,步骤(2)球磨机转速为200~700r/min,优选350r/min~600r/min,球磨时间为20min~720min,例如50min、100min、150min、200min、250min、300min、350min、400min、450min、500min、550min、600min或650min,优选60min~600min。
优选地,所述纳米膨胀蛭石的厚度为30nm~100nm,长度0.3μm~500μm,优选0.5μm~200μm。
优选地,所述膨胀蛭石的制备方法包括以下步骤:
对蛭石矿进行预处理:所述预处理包括将蛭石粉碎过筛,然后将蛭石粉放入800~950℃加热炉中加热膨胀处理0.5~2min,研磨过筛,粒径为250~600目。
优选地,所述蛭石矿原生粒径为20μm~5mm,优选25μm~800μm,进一步优选29μm~650μm。
一种如上所述的轻质耐电弧硅橡胶复合材料的制备方法,所述方法包括以下步骤:
(I)首先对蛭石矿进行预处理:所述预处理包括将蛭石粉碎过筛,然后将蛭石粉放入800~950℃加热炉中加热膨胀处理0.5~2min,研磨过筛,粒径为250~600目,得到膨胀蛭石;
(II)将(I)得到的膨胀蛭石、正硅酸乙酯与无水乙醇均匀混合,其中,正硅酸乙酯和无水乙醇的摩尔比为1∶2~1∶30,优选1∶5~1∶20,膨胀蛭石和正硅酸 乙酯的质量比为1∶1~1∶9,优选1∶2~1∶6,然后滴加1mol/L的盐酸水溶液至pH为2~5,40℃~70℃下水浴搅拌30min~480min,优选60min~300min,冷却,离心过滤后用去离子水和无水乙醇洗至pH为7,放入球磨机中湿磨,球磨机转速为200~700r/min,优选350r/min~600r/min,球磨时间为100min~500min,优选150min~400min,然后放入烘箱中40℃~90℃烘干,得到二氧化硅改性膨胀蛭石;
(III)将(II)得到的二氧化硅改性膨胀蛭石再次放入球磨机球磨,球磨机转速为200~700r/min,优选350r/min~600r/min,球磨时间为20min~720min,优选60min~600min,得到纳米膨胀蛭石;
(IV)将(III)得到的纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂和助剂进行球磨,球磨机转速为200r/min~600r/min,优选350r/min~550r/min,球磨时间为20min~720min,优选60min~600min,得到改性纳米膨胀蛭石;
(V)将(IV)得到的改性纳米膨胀蛭石与硅橡胶通过密炼机、捏合机或开炼机进行混炼,将得到的混炼胶硫化出片,硫化温度为160℃~170℃,得到耐电弧硅橡胶复合材料。
本发明的目的之三在于提供一种如上所述的轻质耐电弧硅橡胶复合材料的用途,其用于高压直流输电线路复合绝缘子的制备,可显著提高绝缘子的耐漏电起痕和电蚀损性能,同时具有高的机械性能、击穿强度等电气性能和阻燃性能及可加工性能。
与已有技术相比,本发明具有如下有益效果:
本发明通过采用将特定的改性纳米膨胀蛭石与至少一种硅橡胶,制备耐电弧硅橡胶复合材料,与现有技术相比,其具有优异的耐漏电起痕和电蚀损性能,同时具有高的机械性能、击穿强度等电气性能和阻燃性能及可加工性能,可用于高压直流输电线路复合绝缘子的制备。
此外,本发明通过采用特定的方法制备得到了改性纳米膨胀蛭石,更加显著地提高了上述性能。
本发明轻质耐电弧硅橡胶复合材料,经测试耐漏电起痕达到交流6.0KV,拉伸强度>6MPa,断裂伸长率>350%,撕裂强度>14kN/m,交流击穿强度≥25kV/mm,综合性能优异,可用于特高压直流输电线路绝缘子的制备。
此外,传统的氢氧化铝填料一般加到40%~60%,还要加10%左右的白炭黑,而本发明仅需少量的改性纳米膨胀蛭石,即可实现优异的耐漏电起痕、电蚀损性能、机械性能、击穿强度、阻燃性能及可加工性能,达到了轻质的效果。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。
本发明轻质耐电弧硅橡胶复合材料,其耐漏电起痕和电蚀损测试按GB6553-2003测定,交流击穿强度测试按照GB/T 1695-2005测定,机械性能测试按照GB/T528-2009和GB/T 529-2008测定。
实施例1:
将20μm蛭石粉碎过筛,然后将蛭石粉放入900℃加热炉中加热膨胀处理1min,研磨过筛,粒径为600目,得到膨胀蛭石。
将膨胀蛭石取50g与正硅酸乙酯50g、无水乙醇332g均匀混合,然后滴加1mol/L的盐酸水溶液至pH=2,40℃水浴搅拌480min,冷却,离心过滤后用去离子水和无水乙醇洗至pH为7,放入球磨机中湿磨,球磨机转速为700r/min,球磨时间为100min,放入烘箱中60℃烘干。
再用球磨机球磨,球磨机转速为200r/min,球磨时间为720min,得到纳米膨胀蛭石。
取6g纳米膨胀蛭石、乙烯基三甲氧基硅烷1g、2,5-二甲基-2,5-双(叔丁 基过氧基)己烷0.5g和含氢硅油1.5g球磨,球磨机转速为600r/min,球磨时间为20min,得到改性纳米膨胀蛭石。
得到的改性纳米膨胀蛭石9g与91g乙烯基含量为0.08%的硅橡胶进行混炼,然后将炼好的混炼胶硫化出片,硫化温度为160℃。
硫化后的胶片经测试耐漏电起痕达到交流6.0kV,拉伸强度6.2MPa,断裂伸长率579%,撕裂强度14.1kN/m,交流击穿强度25kV/mm。
实施例2:
将5mm蛭石粉碎过筛,然后将蛭石粉放入900℃加热炉中加热膨胀处理1min,研磨过筛,粒径为250目,得打膨胀蛭石。
膨胀蛭石取30g与正硅酸乙酯270g、无水乙醇119g均匀混合,然后滴加1mol/L的盐酸水溶液至pH为5,70℃水浴搅拌30min,冷却,离心过滤后用去离子水和无水乙醇洗至pH为7,放入球磨机中湿磨,球磨机转速为200r/min,球磨时间为500min,放入烘箱中40℃烘干,再用球磨机球磨,球磨机转速为700r/min,球磨时间为20min,得到纳米膨胀蛭石。
取29g纳米膨胀蛭石与乙烯基三乙氧基硅烷4g、2,5-二甲基-2,5-双(叔丁基过氧基)己烷2.5g和羟基硅油3.5g球磨,球磨机转速为200r/min,球磨时间为720min,得到改性纳米膨胀蛭石。
将改性纳米膨胀蛭石39g与61g乙烯基含量为0.15%的硅橡胶进行混炼,然后将炼好的混炼胶硫化出片,硫化温度为160℃。
硫化后的胶片经测试耐漏电起痕达到交流6.0kV,拉伸强度6.7MPa,断裂伸长率361%,撕裂强度14.6kN/m,交流击穿强度25kV/mm。
实施例3:
将25μm蛭石粉碎过筛,然后将蛭石粉放入900℃加热炉中加热膨胀处理 1min,研磨过筛,粒径为500目,得到膨胀蛭石。
膨胀蛭石取40g与正硅酸乙酯80g、无水乙醇354g均匀混合,然后滴加1mol/L的盐酸水溶液至pH为3,50℃水浴搅拌300min,冷却,离心过滤后用去离子水和无水乙醇洗至pH为7,放入球磨机中湿磨,球磨机转速为优选350r/min,球磨时间为400min,放入烘箱中70℃烘干,再用球磨机球磨,球磨机转速为600r/min,球磨时间为60min,得到纳米膨胀蛭石。
取16g纳米膨胀蛭石与乙烯基三(β-甲氧基乙氧基)硅烷3g、2,5-二甲基-2,5-双(叔丁基过氧基)己烷2g、羟基硅油1.5g和含氢硅油0.5g球磨,球磨机转速为350r/min,球磨时间为600min,得到改性纳米膨胀蛭石。
将改性纳米膨胀蛭石23g与45g乙烯基含量为0.08%的硅橡胶和32g乙烯基含量为0.25%的硅橡胶进行混炼,然后将炼好的混炼胶硫化出片,硫化温度为160℃。
硫化后的胶片经测试耐漏电起痕达到交流6.0kV,拉伸强度6.5MPa,断裂伸长率460%,撕裂强度15.2kN/m,交流击穿强度28kV/mm。
实施例4:
将800μm蛭石粉碎过筛,然后将蛭石粉放入900℃加热炉中加热膨胀处理1min,研磨过筛,粒径为300目,得到膨胀蛭石。
膨胀蛭石取20g与正硅酸乙酯120g、无水乙醇133g均匀混合,然后滴加1mol/L的盐酸水溶液至pH为4,60℃水浴搅拌60min,冷却,离心过滤后用去离子水和无水乙醇洗至pH为7,放入球磨机中湿磨,球磨机转速为600r/min,球磨时间为150min,放入烘箱中50℃烘干,再用球磨机球磨,球磨机转速为350r/min,球磨时间为600min,得到纳米膨胀蛭石。
取8g纳米膨胀蛭石与乙烯基三氯硅烷1.5g、2,5-二甲基-2,5-双(叔丁基 过氧基)己烷0.5g、含氢硅油0.5g和羟基硅油0.5g球磨,球磨机转速为550r/min,球磨时间为70min,得到改性纳米膨胀蛭石。
将改性纳米膨胀蛭石11g与35g乙烯基含量为0.05%的硅橡胶和54g乙烯基含量为0.36%进行混炼,然后将炼好的混炼胶硫化出片,硫化温度为160℃。
硫化后的胶片经测试耐漏电起痕达到交流6.0kV,拉伸强度6.2MPa,断裂伸长率485%,撕裂强度14.8kN/m,交流击穿强度26kV/mm。
实施例5:
将29μm蛭石粉碎过筛,然后将蛭石粉放入900℃加热炉中加热膨胀处理1min,研磨过筛,粒径为400目,得到膨胀蛭石。
膨胀蛭石取25g与正硅酸乙酯100g、无水乙醇177g均匀混合,然后滴加1mol/L的盐酸水溶液至pH为3,45℃水浴搅拌100min,冷却,离心过滤后用去离子水和无水乙醇洗至pH为7,放入球磨机中湿磨,球磨机转速为450r/min,球磨时间为300min,放入烘箱中55℃烘干,再用球磨机球磨,球磨机转速为400r/min,球磨时间为500min,得到纳米膨胀蛭石。
取13g纳米膨胀蛭石与乙烯基三叔丁氧基硅烷2g、2,5-二甲基-2,5-双(叔丁基过氧基)己烷0.5g和羟基硅油1.5g球磨,球磨机转速为450r/min,球磨时间为360min,得到改性纳米膨胀蛭石。
将改性纳米膨胀蛭石17g与80g乙烯基含量为0.07%的硅橡胶和20g乙烯基含量为0.30%的硅橡胶进行混炼,然后将炼好的混炼胶硫化出片,硫化温度为160℃。
硫化后的胶片经测试耐漏电起痕达到交流6.0kV,拉伸强度7.1MPa,断裂伸长率437%,撕裂强度15.7kN/m,交流击穿强度27kV/mm。
实施例6:
将650μm蛭石粉碎过筛,然后将蛭石粉放入900℃加热炉中加热膨胀处理1min,研磨过筛,粒径为300目,得到膨胀蛭石。
膨胀蛭石取5g与正硅酸乙酯25g、无水乙醇66g均匀混合,然后滴加1mol/L的盐酸水溶液至pH为4,65℃水浴搅拌210min,冷却,离心过滤后用去离子水和无水乙醇洗至pH为7,放入球磨机中湿磨,球磨机转速为550r/min,球磨时间为200min,放入烘箱中40℃烘干,再用球磨机球磨,球磨机转速为480r/min,球磨时间为340min,得到纳米膨胀蛭石。
取19g纳米膨胀蛭石与乙烯基三叔丁基过氧硅烷烷2.5g、2,5-二甲基-2,5-双(叔丁基过氧基)己烷2g和羟基硅油1.5g球磨,球磨机转速为250r/min,球磨时间为330min,得到改性纳米膨胀蛭石。
将改性纳米膨胀蛭石25g与50g乙烯基含量为0.07%的硅橡胶和50g乙烯基含量为0.34%的硅橡胶进行混炼,然后将炼好的混炼胶硫化出片,硫化温度为160℃。
硫化后的胶片经测试耐漏电起痕达到交流6.0kV,拉伸强度6.9MPa,断裂伸长率395%,撕裂强度14.5kN/m,交流击穿强度28kV/mm。
实施例7:
将150μm蛭石粉碎过筛,然后将蛭石粉放入900℃加热炉中加热膨胀处理1min,研磨过筛,粒径为550目,得到膨胀蛭石。
膨胀蛭石取15g与正硅酸乙酯105g、无水乙醇395g均匀混合,然后滴加1mol/L的盐酸水溶液至pH为3,60℃水浴搅拌380min,冷却,离心过滤后用去离子水和无水乙醇洗至pH为7,放入球磨机中湿磨,球磨机转速为400r/min,球磨时间为350min,放入烘箱中80℃烘干,再用球磨机球磨,球磨机转速为500r/min,球磨时间为570min,得到纳米膨胀蛭石。
取14g纳米膨胀蛭石与乙烯基三乙酰氧基硅烷3g、2,5-二甲基-2,5-双(叔丁基过氧基)己烷0.5g和含氢硅油2.5g球磨,球磨机转速为550r/min,球磨时间为430min,得到改性纳米膨胀蛭石。
将改性纳米膨胀蛭石20g与100g乙烯基含量为0.23%的硅橡胶进行混炼,然后将炼好的混炼胶硫化出片,硫化温度为160℃。
硫化后的胶片经测试耐漏电起痕达到交流6.0kV,拉伸强度7.5MPa,断裂伸长率473%,撕裂强度15.1kN/m,交流击穿强度27kV/mm。
实施例8
其余与实施例1相同,除调整将20g改性纳米膨胀蛭石与80g乙烯基含量为0.08%的硅橡胶进行混炼,然后将炼好的混炼胶硫化出片,硫化温度为160℃。
硫化后的胶片经测试耐漏电起痕达到交流6.0kV,拉伸强度7.7MPa,断裂伸长率476%,撕裂强度15.3kN/m,交流击穿强度28kV/mm。
通过实施例8和实施例1的比较,可以发现,本发明通过对改性纳米膨胀蛭石的含量进一步优化,使得到的产品的性能得到了进一步的提升。
实施例9
其余与实施例1相同,除调整将5g改性纳米膨胀蛭石与95g乙烯基含量为0.08%的硅橡胶进行混炼,然后将炼好的混炼胶硫化出片,硫化温度为160℃。
硫化后的胶片经测试耐漏电起痕未达到交流6.0kV,拉伸强度4.2MPa,断裂伸长率608%,撕裂强度11.5kN/m,交流击穿强度18kV/mm。
实施例10
其余与实施例1相同,除调整将55g改性纳米膨胀蛭石与45g乙烯基含量为0.08%的硅橡胶进行混炼,然后将炼好的混炼胶硫化出片,硫化温度为160℃。
硫化后的胶片经测试耐漏电起痕达到交流6.0kV,拉伸强度4.7MPa,断裂 伸长率320%,撕裂强度12.0kN/m,交流击穿强度24kV/mm。
实施例11
其余与实施例1相同,除放入烘箱中60℃干燥后,不再进行球磨,而直接将得到的纳米膨胀蛭石与乙烯基三甲氧基硅烷1g、2,5-二甲基-2,5-双(叔丁基过氧基)己烷0.5g和含氢硅油1.5g球磨,球磨机转速为600r/min,球磨时间为20min,得到改性纳米膨胀蛭石外。
硫化后的胶片经测试耐漏电起痕达到交流6.0kV,拉伸强度5.7MPa,断裂伸长率531%,撕裂强度13.6kN/m,交流击穿强度25kV/mm。
通过实施例1和实施例11的对比可以发现,采用两步球磨得到膨胀蛭石,其技术效果显著优于仅采用一步球磨得到膨胀蛭石。
对比例1
取微米氢氧化铝(3μm)4g、纳米氢氧化铝(80nm)2g、乙烯基三甲氧基硅烷1g、2,5-二甲基-2,5-双(叔丁基过氧基)己烷0.5g和含氢硅油1.5g球磨,球磨机转速为600r/min,球磨时间为20min,得到的改性填料与91g乙烯基含量为0.08%的硅橡胶进行混炼,然后将炼好的混炼胶硫化出片,硫化温度为160℃。
硫化后的胶片经测试耐漏电起痕未达到交流6.0kV,拉伸强度3.9MPa,断裂伸长率551%,撕裂强度8.5kN/m,交流击穿强度16kV/mm。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种耐电弧硅橡胶复合材料,其主要由如下原料制备得到:
    (A)至少一种硅橡胶;
    (B)改性纳米膨胀蛭石。
  2. 如权利要求1所述的复合材料,其特征在于,所述组分(A)的重量占组分(A)和组分(B)的重量总和的百分比为61~91%,优选77~89%;
    优选地,所述组分(A)至少一种硅橡胶为甲基封端的甲基乙烯基硅橡胶或/和乙烯基封端的甲基乙烯基硅橡胶;
    优选地,所述甲基封端的甲基乙烯基硅橡胶和乙烯基封端的甲基乙烯基硅橡胶均独立地为乙烯基含量为0.05%~0.11%、0.13%~0.19%、0.21%~0.28%或0.30%~0.36%的硅橡胶中的任意一种或者至少两种的混合物;
    优选地,所述组分(A)为甲基封端的甲基乙烯基硅橡胶或乙烯基封端的甲基乙烯基硅橡胶,所述硅橡胶的乙烯基含量为0.05%~0.11%或0.13%~0.19%,进一步优选0.06%~0.08%或0.14%~0.16%;
    优选地,所述组分(A)为乙烯基含量分别为0.05%~0.09%和0.30%~0.36%的两种甲基封端的甲基乙烯基硅橡胶的组合;
    优选地,所述组分(A)为乙烯基含量分别为0.05%~0.09%和0.30%~0.36%的两种乙烯基封端的甲基乙烯基硅橡胶的组合;
    优选地,所述组分(A)为乙烯基含量为0.05%~0.09%的甲基封端的甲基乙烯基硅橡胶和乙烯基含量为0.30%~0.36%乙烯基封端的甲基乙烯基硅橡胶的组合;
    优选地,所述组分(A)为乙烯基含量为0.05%~0.09%的乙烯基封端的甲基乙烯基硅橡胶和乙烯基含量为0.30%~0.36%甲基封端的甲基乙烯基硅橡胶的组合。
  3. 如权利要求1或2所述的复合材料,其特征在于,所述组分(B)改性纳米膨胀蛭石的重量占组分(A)和组分(B)的重量总和的百分比为9~39%,优选11~23%;
    优选地,所述组分(B)主要由纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂以及助剂制备得到,所述纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂以及助剂的重量比为(6~29)∶(1~4)∶(0.5~2.5)∶(1.5~3.5);
    优选地,所述带有乙烯基的硅烷偶联剂为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、乙烯基三氯硅烷、乙烯基三叔丁氧基硅烷、乙烯基三叔丁基过氧硅烷或乙烯基三乙酰氧基硅烷中的任意一种或者至少两种的混合物;
    优选地,所述固化剂为2,5-二甲基-2,5-双(叔丁基过氧基)己烷;
    优选地,所述助剂为羟基硅油和/含氢硅油。
  4. 如权利要求1-3之一所述的复合材料,其特征在于,所述组分(B)改性纳米膨胀蛭石的制备方法包括以下步骤:
    将纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂和助剂在球磨机中进行球磨,得到改性纳米膨胀蛭石;
    优选地,球磨机转速为200r/min~600r/min,优选350r/min~550r/min,球磨时间为20min~720min,优选60min~600min;
    优选地,所述纳米膨胀蛭石的制备方法包括以下步骤:
    (1)将膨胀蛭石、正硅酸乙酯和低碳醇均匀混合,在酸性条件下,正硅酸乙酯发生水解反应,将得到的产物球磨,得到二氧化硅改性膨胀蛭石;
    (2)将二氧化硅改性膨胀蛭石放入球磨机球磨,得到纳米膨胀蛭石;
    优选地,所述纳米膨胀蛭石的制备方法包括以下步骤:
    (1)将膨胀蛭石、正硅酸乙酯和无水乙醇均匀混合,然后调节溶液pH为2~5,40℃~70℃下水浴搅拌,冷却,过滤,洗涤至pH为中性,放入球磨机中湿磨,然后烘干,得到二氧化硅改性膨胀蛭石;
    (2)将二氧化硅改性膨胀蛭石再放入球磨机球磨,得到纳米膨胀蛭石;
    优选地,正硅酸乙酯和无水乙醇的摩尔比为1∶2~1∶30,优选1∶5~1∶20;
    优选地,膨胀蛭石和正硅酸乙酯的质量比为1∶1~1∶9,优选1∶2~1∶6;
    优选地,通过加酸调节溶液pH至2~5,所述酸优选为盐酸,进一步优选为浓度为1mol/L的盐酸;
    优选地,步骤(1)搅拌30min~480min,优选60min~300min;
    优选地,步骤(1)用去离子水和无水乙醇洗至pH为7;
    优选地,步骤(1)球磨机转速为200~700r/min,优选350r/min~600r/min,球磨时间为100min~500min,优选150min~400min;
    优选地,步骤(1)烘干温度为40~90℃;
    优选地,步骤(2)球磨机转速为200~700r/min,优选350r/min~600r/min,球磨时间为20min~720min,优选60min~600min;
    优选地,所述纳米膨胀蛭石的厚度为30nm~100nm,长度0.3μm~500μm,优选0.5μm~200μm;
    优选地,所述膨胀蛭石的制备方法包括以下步骤:
    对蛭石矿进行预处理:所述预处理包括将蛭石粉碎过筛,然后将蛭石粉放入800~950℃加热炉中加热膨胀处理0.5~2min,研磨过筛,粒径为250~600目;
    优选地,所述蛭石矿原生粒径为20μm~5mm,优选25μm~800μm,进一步优选29μm~650μm。
  5. 一种如权利要求1~4之一所述的耐电弧硅橡胶复合材料的制备方法,所 述方法包括以下步骤:
    将组分(B)改性纳米膨胀蛭石与组分(A)至少一种硅橡胶混炼,将得到的混炼胶硫化出片,得到轻质耐电弧硅橡胶复合材料。
  6. 如权利要求5所述的方法,其特征在于,通过密炼机、捏合机或开炼机进行混炼;
    优选地,硫化温度为160℃~170℃。
  7. 如权利要求5或6所述的方法,其特征在于,所述组分(B)主要由纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂以及助剂制备得到,所述纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂以及助剂的重量比为(6~29)∶(1~4)∶(0.5~2.5)∶(1.5~3.5);
    优选地,所述带有乙烯基的硅烷偶联剂为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基乙氧基)硅烷、乙烯基三氯硅烷、乙烯基三叔丁氧基硅烷、乙烯基三叔丁基过氧硅烷或乙烯基三乙酰氧基硅烷中的任意一种或者至少两种的混合物;
    优选地,所述固化剂为2,5-二甲基-2,5-双(叔丁基过氧基)己烷;
    优选地,所述助剂为羟基硅油和/含氢硅油。
  8. 如权利要求5-7之一所述的方法,其特征在于,所述组分(B)改性纳米膨胀蛭石的制备方法包括以下步骤:
    将纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂和助剂在球磨机中进行球磨,得到改性纳米膨胀蛭石;
    优选地,球磨机转速为200r/min~600r/min,优选350r/min~550r/min,球磨时间为20min~720min,优选60min~600min;
    优选地,所述纳米膨胀蛭石的制备方法包括以下步骤:
    (1)将膨胀蛭石、正硅酸乙酯和低碳醇均匀混合,在酸性条件下,正硅酸乙酯发生水解反应,将得到的产物球磨,得到二氧化硅改性膨胀蛭石;
    (2)将二氧化硅改性膨胀蛭石放入球磨机球磨,得到纳米膨胀蛭石;
    优选地,所述纳米膨胀蛭石的制备方法包括以下步骤:
    (1)将膨胀蛭石、正硅酸乙酯和无水乙醇均匀混合,然后调节溶液pH为2~5,40℃~70℃下水浴搅拌,冷却,过滤,洗涤至pH为中性,放入球磨机中湿磨,然后烘干,得到二氧化硅改性膨胀蛭石;
    (2)将二氧化硅改性膨胀蛭石再放入球磨机球磨,得到纳米膨胀蛭石;
    优选地,正硅酸乙酯和无水乙醇的摩尔比为1∶2~1∶30,优选1∶5~1∶20;
    优选地,膨胀蛭石和正硅酸乙酯的质量比为1∶1~1∶9,优选1∶2~1∶6;
    优选地,通过加酸调节溶液pH至2~5,所述酸优选为盐酸,进一步优选为浓度为1mol/L的盐酸;
    优选地,步骤(1)搅拌30min~480min,优选60min~300min;
    优选地,步骤(1)用去离子水和无水乙醇洗至pH为7;
    优选地,步骤(1)球磨机转速为200~700r/min,优选350r/min~600r/min,球磨时间为100min~500min,优选150min~400min;
    优选地,步骤(1)烘干温度为40~90℃;
    优选地,步骤(2)球磨机转速为200~700r/min,优选350r/min~600r/min,球磨时间为20min~720min,优选60min~600min;
    优选地,所述纳米膨胀蛭石的厚度为30nm~100nm,长度0.3μm~500μm,优选0.5μm~200μm;
    优选地,所述膨胀蛭石的制备方法包括以下步骤:
    对蛭石矿进行预处理:所述预处理包括将蛭石粉碎过筛,然后将蛭石粉放 入800~950℃加热炉中加热膨胀处理0.5~2min,研磨过筛,粒径为250~600目;
    优选地,所述蛭石矿原生粒径为20μm~5mm,优选25μm~800μm,进一步优选29μm~650μm。
  9. 如权利要求5-8之一所述的方法,其特征在于,所述方法包括以下步骤:
    (I)首先对蛭石矿进行预处理:所述预处理包括将蛭石粉碎过筛,然后将蛭石粉放入800~950℃加热炉中加热膨胀处理0.5~2min,研磨过筛,粒径为250~600目,得到膨胀蛭石;
    (II)将(I)得到的膨胀蛭石、正硅酸乙酯与无水乙醇均匀混合,其中,正硅酸乙酯和无水乙醇的摩尔比为1∶2~1∶30,优选1∶5~1∶20,膨胀蛭石和正硅酸乙酯的质量比为1∶1~1∶9,优选1∶2~1∶6,然后滴加1mol/L的盐酸水溶液至pH为2~5,40℃~70℃下水浴搅拌30min~480min,优选60min~300min,冷却,离心过滤后用去离子水和无水乙醇洗至pH为7,放入球磨机中湿磨,球磨机转速为200~700r/min,优选350r/min~600r/min,球磨时间为100min~500min,优选150min~400min,然后放入烘箱中40℃~90℃烘干,得到二氧化硅改性膨胀蛭石;
    (III)将(II)得到的二氧化硅改性膨胀蛭石再次放入球磨机球磨,球磨机转速为200~700r/min,优选350r/min~600r/min,球磨时间为20min~720min,优选60min~600min,得到纳米膨胀蛭石;
    (IV)将(III)得到的纳米膨胀蛭石、带有乙烯基的硅烷偶联剂、固化剂和助剂进行球磨,球磨机转速为200r/min~600r/min,优选350r/min~550r/min,球磨时间为20min~720min,优选60min~600min,得到改性纳米膨胀蛭石;
    (V)将(IV)得到的改性纳米膨胀蛭石与硅橡胶通过密炼机、捏合机或开炼机进行混炼,将得到的混炼胶硫化出片,硫化温度为160℃~170℃,得到耐电弧硅橡胶复合材料。
  10. 一种如权利要求1-4之一所述的耐电弧硅橡胶复合材料的用途,其用于高压直流输电线路复合绝缘子的制备。
PCT/CN2015/092064 2015-06-24 2015-10-16 一种耐电弧硅橡胶复合材料、制备方法及其用途 WO2016206243A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510354097.0 2015-06-24
CN201510354097 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016206243A1 true WO2016206243A1 (zh) 2016-12-29

Family

ID=57584414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092064 WO2016206243A1 (zh) 2015-06-24 2015-10-16 一种耐电弧硅橡胶复合材料、制备方法及其用途

Country Status (1)

Country Link
WO (1) WO2016206243A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940443A (zh) * 2021-01-14 2021-06-11 国网浙江省电力有限公司绍兴供电公司 一种电力用密封堵料及制备方法及应用
CN114133672A (zh) * 2021-12-17 2022-03-04 杭州人通管业有限公司 一种高强度高耐压的mpp电缆保护管
CN114685998A (zh) * 2020-12-30 2022-07-01 襄阳国网合成绝缘子有限责任公司 一种耐老化复合绝缘子用硅橡胶材料及制备方法
CN115160645A (zh) * 2022-07-13 2022-10-11 塔里木大学 一种蛭石复配阻燃材料的制备方法
CN115820204A (zh) * 2022-12-01 2023-03-21 广东电网有限责任公司 一种粘接剂及其制备方法和应用
CN116041959A (zh) * 2022-12-13 2023-05-02 无锡海特新材料研究院有限公司 一种高介电常数硅橡胶及其制备方法
CN116612914A (zh) * 2023-05-18 2023-08-18 宁波中益赛威新材料有限公司 一种功能性铝浆及其制备方法和应用
CN117624992A (zh) * 2024-01-25 2024-03-01 山东信泰节能科技股份有限公司 一种反射隔热真石漆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308101A (zh) * 2001-02-28 2001-08-15 南京师范大学 剥离型硅橡胶/粘土纳米复合材料及其制备方法
CN101747631A (zh) * 2008-12-01 2010-06-23 中国科学院过程工程研究所 一种阻燃的室温硫化硅橡胶组合物
CN103087526A (zh) * 2012-02-28 2013-05-08 深圳市沃尔核材股份有限公司 一种阻燃发泡保温板及其生产方法
CN105062080A (zh) * 2015-07-21 2015-11-18 中国科学院过程工程研究所 一种耐电弧硅橡胶复合材料、制备方法及其用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308101A (zh) * 2001-02-28 2001-08-15 南京师范大学 剥离型硅橡胶/粘土纳米复合材料及其制备方法
CN101747631A (zh) * 2008-12-01 2010-06-23 中国科学院过程工程研究所 一种阻燃的室温硫化硅橡胶组合物
CN103087526A (zh) * 2012-02-28 2013-05-08 深圳市沃尔核材股份有限公司 一种阻燃发泡保温板及其生产方法
CN105062080A (zh) * 2015-07-21 2015-11-18 中国科学院过程工程研究所 一种耐电弧硅橡胶复合材料、制备方法及其用途

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685998A (zh) * 2020-12-30 2022-07-01 襄阳国网合成绝缘子有限责任公司 一种耐老化复合绝缘子用硅橡胶材料及制备方法
CN112940443A (zh) * 2021-01-14 2021-06-11 国网浙江省电力有限公司绍兴供电公司 一种电力用密封堵料及制备方法及应用
CN112940443B (zh) * 2021-01-14 2024-04-02 国网浙江省电力有限公司绍兴供电公司 一种电力用密封堵料及制备方法及应用
CN114133672A (zh) * 2021-12-17 2022-03-04 杭州人通管业有限公司 一种高强度高耐压的mpp电缆保护管
CN115160645A (zh) * 2022-07-13 2022-10-11 塔里木大学 一种蛭石复配阻燃材料的制备方法
CN115160645B (zh) * 2022-07-13 2023-10-03 塔里木大学 一种蛭石复配阻燃材料的制备方法
CN115820204A (zh) * 2022-12-01 2023-03-21 广东电网有限责任公司 一种粘接剂及其制备方法和应用
CN116041959A (zh) * 2022-12-13 2023-05-02 无锡海特新材料研究院有限公司 一种高介电常数硅橡胶及其制备方法
CN116612914A (zh) * 2023-05-18 2023-08-18 宁波中益赛威新材料有限公司 一种功能性铝浆及其制备方法和应用
CN117624992A (zh) * 2024-01-25 2024-03-01 山东信泰节能科技股份有限公司 一种反射隔热真石漆
CN117624992B (zh) * 2024-01-25 2024-04-12 山东信泰节能科技股份有限公司 一种反射隔热真石漆

Similar Documents

Publication Publication Date Title
WO2016206243A1 (zh) 一种耐电弧硅橡胶复合材料、制备方法及其用途
CN105062080B (zh) 一种耐电弧硅橡胶复合材料、制备方法及其用途
CN108962426B (zh) 一种硅橡胶绝缘复合材料、其制备方法和用途
CN102260411B (zh) 一种硅橡胶电缆接头
CN102618040B (zh) 采用辐射交联法制备可瓷化硅橡胶耐火材料
CN103236294B (zh) 可瓷化硅橡胶复合带
CN103613934A (zh) 耐火硅橡胶自粘带及其制备方法
CN104845378A (zh) 一种复合绝缘子用耐高压电蚀的硅橡胶组合物及其制备方法
CN107815121A (zh) 一种硅橡胶复合模压料的制备方法
CN106782824A (zh) 一种绝缘电线
CN108034256A (zh) 一种高导热低比重锂电池防爆硅胶垫片及其制备方法
CN102585506B (zh) 一种具有优良耐电弧性能的硅橡胶及其制备方法
CN112358729A (zh) 适于电子束辐照改性的硅橡胶配方及产品和制备方法
CN103224710A (zh) 一种耐高低温防火环保型橡胶电缆料及其制备方法
CN110128834A (zh) 一种特高压用复合绝缘子及其制备方法
CN114196207A (zh) 一种复合绝缘子用苯基硅橡胶混炼胶及其制备方法和应用
CN110563991B (zh) 一种硅橡胶抗电磁干扰绝缘布及其制备方法
CN102977420A (zh) 矿用橡套电缆用导体屏蔽料及其制备方法
CN114032045B (zh) 一种防火保温材料及其制备方法和应用
CN111040622B (zh) 一种超耐压阻燃导热有机硅绝缘涂料
CN103587170A (zh) 一种电绝缘复合材料及其制备方法
CN113527892A (zh) 一种可陶瓷化硅橡胶及其制备方法与应用
CN103540043A (zh) 一种耐低温高弹性氯化聚乙烯电源线护套料及其制备方法
CN110483859A (zh) 一种阻燃橡胶电缆料
CN111334047A (zh) 一种耐直流漏电起痕电绝缘硅橡胶及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896135

Country of ref document: EP

Kind code of ref document: A1