WO2021189734A1 - 钢管管端直度的测量方法和装置 - Google Patents
钢管管端直度的测量方法和装置 Download PDFInfo
- Publication number
- WO2021189734A1 WO2021189734A1 PCT/CN2020/103722 CN2020103722W WO2021189734A1 WO 2021189734 A1 WO2021189734 A1 WO 2021189734A1 CN 2020103722 W CN2020103722 W CN 2020103722W WO 2021189734 A1 WO2021189734 A1 WO 2021189734A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel pipe
- straightness
- calculation unit
- measuring
- laser
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
- G01B11/27—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/10—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring diameters
Definitions
- the invention relates to a steel pipe quality detection device and method, in particular to a non-contact type steel pipe end straightness measurement method and device.
- Steel pipe is one of the important products of iron and steel enterprises, and it is widely used in various industrial fields such as chemical industry, metallurgy, machinery and so on.
- straightness is an important indicator to measure the quality of steel pipes. Production, processing, self-weight, collisions and temperature changes during transmission will cause plastic deformation of the steel pipe, resulting in unsatisfactory straightness requirements of the steel pipe, and thus unable to meet the requirements for the ever-increasing precision of steel pipe products.
- the pipe end is a common part of steel pipe processing and connection, and it is also the part with the largest straightness error.
- API American Petroleum Institute
- the detection device can only locate the approximate bending part of the steel pipe, and cannot accurately detect the straightness data of the steel pipe.
- the distance between the steel pipe and the detection rod is 0.1-0.2mm, which cannot detect small bends less than 0.1mm, and the detection accuracy is low. .
- the existing steel pipe straightness measurement method is to take the outermost part of the pipe end as the position of maximum deviation, and simply treat the pipe end as a one-way bend, and take the distance 1.8 from the pipe end during measurement.
- the line connecting the two positions at meters and 1.5 meters is used as the reference line, and the position deviation between the reference line and the position at 0 meters at the end of the pipe is used as the straightness error.
- the middle area of the steel pipe is 1.5 meters away from the end of the pipe as completely straight, and there will be a certain degree of curvature in this area in actual production, which causes the measurement results to deviate from the real situation.
- the second is to take the outermost part of the pipe end as the position of maximum deviation.
- there may be non-unidirectional bending at the end of the steel pipe such as C-shaped, S-shaped bending, etc. Therefore, the 0-meter point of the pipe end is not the maximum bending position. Therefore, the straightness measurement of the steel pipe end in the prior art The method cannot reflect the true straightness of the steel pipe, nor can it meet the needs of modern steel pipe production.
- One of the objectives of the present invention is to provide a method for measuring the straightness of the steel pipe end, which calculates the straightness of the steel pipe based on the light band curve formed by the band laser projected on the steel pipe, so as to accurately measure the true straightness of the steel pipe end.
- the second object of the present invention is to provide a device for measuring the straightness of the steel pipe end, which can rotate the steel pipe at a certain angular velocity and collect the light band curve projected by the laser on the steel pipe, which can effectively improve the measurement accuracy of the straightness of the steel pipe end.
- the present invention is realized as follows:
- a method for measuring the straightness of steel pipe ends which is characterized in that it comprises the following steps:
- Step 1 The steel pipe is transported to the supporting and rotating device, and the straightness calculation unit detects whether the steel pipe reaches the measuring station, if it is, then step 2 is executed, if not, the detection is continued;
- Step 2 The straightness calculation unit obtains the parameters of the steel pipe through the steel pipe parameter acquisition unit, and calculates the rotation speed of the steel pipe;
- Step 3 The straightness calculation unit controls the support and rotation device to drive the steel pipe to rotate through the rotation controller; the angle sensor collects the current angle value of the steel pipe and sends it to the straightness calculation unit;
- Step 4 The laser projects the laser light on the steel pipe and forms a light band curve that is exactly the same as the surface contour of the steel pipe.
- the industrial camera collects the contour image of the light band curve and sends it to the straightness calculation unit;
- Step 5 The straightness calculation unit sets the detection area and the reference area on the light strip curve, and calculates the single straightness value of the steel pipe end based on several measurement points in the detection area and the reference line in the reference area;
- Step 6 Repeat step 3 to step 5;
- Step 7 The straightness calculation unit judges whether the 360° full-circle measurement of the steel pipe is completed, if yes, go to step 8; if not, go back to step 3;
- Step 8 The straightness calculation unit takes the maximum value of all single straightness values as the straightness value of the steel pipe end
- Step 9 The straightness calculation unit judges whether the measurement is finished, if it is, it ends the measurement, if not, it returns to step 1.
- the step 5 includes the following sub-steps:
- Step 5.1 In the light belt curve, take the length range of L1 from the end of the steel pipe as the detection area, and take the length range of the distance from the detection area L2 as the reference area;
- Step 5.2 Take several measurement points in the detection area
- Step 5.3 Take the line between the two end points of the reference area as the reference line;
- Step 5.4 Calculate the distances from several calculated measurement points to the reference line as the single straightness offset of the measurement point;
- Step 5.5 Take the maximum value of the single straightness deviation on the light strip curve as the single straightness value of the steel pipe end.
- the several measuring points are arranged at equal intervals.
- the angular velocity of the steel pipe rotating by the supporting rotating device is the same every time.
- the parameters of the steel pipe include the steel pipe specifications and testing standards collected by the process signal interface unit and the steel pipe outer diameter collected by the pipe diameter measuring device.
- a device for measuring the straightness of a steel pipe end including a supporting rotating device, a steel pipe, a laser, an industrial camera, an angle sensor, a rotation controller, a steel pipe parameter collection unit, and a straightness calculating unit;
- the steel pipe is placed horizontally on the supporting rotating device to support
- the rotating device drives the steel pipe to rotate;
- the laser is installed directly above the steel pipe and projects the laser to the steel pipe, and
- the laser is a linear strip laser extending along the axial direction of the steel pipe and forms a light band curve on the surface of the steel pipe;
- the industrial camera is set on the steel pipe One side and collect the contour image of the light belt curve;
- the input end of the angle sensor is connected with the output end of the supporting rotating device,
- the output end of the rotation controller is connected with the input end of the supporting rotating device, the output end of the industrial camera, the output of the angle sensor
- the input end of the rotation controller and the output end of the steel pipe parameter acquisition unit are respectively connected to the straightness calculation unit.
- the height of the industrial camera is equivalent to the height of the steel pipe, so that the industrial camera can collect the light belt curve formed by the belt-shaped laser projected on the steel pipe and completely coincides with the surface contour of the steel pipe.
- the measuring device also includes an in-position detector, the in-position detector is installed on the measuring station, and the output end of the in-position detector is connected to the straightness calculation unit.
- the steel pipe parameter acquisition unit is a process signal interface unit, and the process signal interface unit is connected to the production control system and the in-position detector.
- the steel pipe parameter acquisition unit is a pipe diameter measuring device, the pipe diameter measuring device is arranged on the measuring station, and the output end of the pipe diameter measuring device is connected to the straightness calculating unit.
- the present invention has the following beneficial effects:
- the measurement method of the present invention collects data based on the light band curve formed by laser irradiation on the surface of the steel pipe, calculates the maximum deviation error in the axial direction of the steel pipe, and combines the 360° full-circle precise measurement to accurately measure the end of the steel pipe. True straightness to meet the needs of steel pipe production testing.
- the measuring device of the present invention irradiates the steel pipe with a high linear in-line laser belt from a laser to make it present a light belt curve profile along the axial direction of the steel pipe. Based on the laser light belt as the profile reference, the profile data is obtained by image measurement and calculated The maximum deviation error in the axial direction of the steel pipe, so that the control calculator can be used to accurately measure the true straightness of the steel pipe end, realizing non-contact full-circle online measurement.
- the present invention uses the light band curve extraction curve parameters formed by laser irradiation on the surface of the steel pipe to calculate the straightness of the steel pipe end.
- the 360° full-circle rotation can be set to achieve more accurate measurement, which effectively improves the steel pipe.
- the measurement efficiency and accuracy of pipe end straightness are conducive to monitoring the quality of steel pipe products.
- Figure 1 is a front view of a device for measuring the straightness of the steel pipe end of the present invention
- FIG. 2 is a schematic diagram of the arrangement of the laser and the industrial camera in the device for measuring the straightness of the steel pipe end of the present invention
- Figure 3 is a flow chart of the method for measuring the straightness of the steel pipe end of the present invention.
- Fig. 4 is a schematic diagram of the method for measuring the straightness of the steel pipe end of the present invention.
- 1 support rotating device, 2 steel pipe, 3 laser, 4 industrial camera, 5 angle sensor, 6 rotation controller, 7 process signal interface unit, 8 control calculator, 9 in-position detector, 10 pipe diameter measuring device.
- a measuring device for the straightness of a steel pipe end includes a supporting rotating device 1, a steel pipe 2, a laser 3, an industrial camera 4, an angle sensor 5, a rotation controller 6, and a steel pipe parameter acquisition unit And straightness calculation unit 8; steel pipe 2 is placed horizontally on supporting rotating device 1, supporting rotating device 1 drives steel pipe 2 to rotate; laser 3 is installed directly above steel pipe 2 and projecting laser to steel pipe 2, and the laser is along the steel pipe 2.
- An axially extending linear strip laser forms a light band curve on the surface of the steel pipe; the industrial camera 4 is set on one side of the steel pipe 2 and collects the contour image of the light band curve; the input end of the angle sensor 5 and the supporting rotating device 1
- the output terminal is connected, the output terminal of the rotation controller 6 is connected with the input terminal of the supporting rotating device 1, the output terminal of the industrial camera 4, the output terminal of the angle sensor 5, the input terminal of the rotation controller 6 and the output terminal of the steel pipe parameter acquisition unit Connected to the straightness calculation unit 8 respectively.
- the straightness calculation unit 8 may adopt a computer device with functions such as image and data acquisition processing, image contour extraction, data recognition processing, calculation, and the like.
- the measuring device also includes an in-position detector 9 installed on the measuring station, and the output end of the in-position detector 9 is connected to the straightness calculation unit 8 for detecting whether the steel pipe 2 reaches the measuring station.
- the in-position detector 9 is triggered or sensed to the steel pipe 2 and outputs a signal to the straightness calculation unit 8 to start the entire system.
- the steel pipe parameter acquisition unit is the process signal interface unit 7.
- the process signal interface unit 7 is connected to the production control system and the in-position detector 9.
- the straightness calculation unit 8 can directly read the data from the production control system through the process signal interface unit 7.
- the process signal interface unit 7 can be used to receive the steel pipe in-position signal of the in-position detector 9 and send it to the straightness calculation unit 8 for measuring the outer diameter of the steel pipe 2 and the measurement standard and other specifications.
- the steel pipe parameter collection unit is a pipe diameter measuring device 10, the pipe diameter measuring device 10 is set on the measuring station, and the output end of the pipe diameter measuring device 10 is connected to the straightness calculation unit 8, which can be measured by the pipe diameter measuring device 10.
- the outer diameter of the steel pipe 2 and the measurement data are sent to the straightness calculation unit 8. Because there may be errors in the processing of the steel pipe 2, in order to avoid the deviation between the design outer diameter of the steel pipe 2 collected by the process signal interface unit 7 and the actual outer diameter, the actual outer diameter of the steel pipe 2 can be measured in real time by the pipe diameter measuring device 10, which further improves the measurement Accuracy.
- the height of the industrial camera 4 is equivalent to the height of the steel pipe 2, so that the industrial camera 4 can capture the light band curve formed by the band laser projected on the steel pipe 2 and completely coincides with the surface contour of the steel pipe 2.
- the shooting direction of the camera 4 and the laser projection direction form a fixed angle, preferably 90°, which can more clearly and accurately capture the contour image of the light band curve, so that the measurement points on the light band curve can be collected more clearly and accurately.
- the pixels of the industrial camera 4 can be adjusted according to the accuracy requirements of the measurement points.
- Step 1 The steel pipe 2 is transported to the supporting and rotating device 1, and the straightness calculation unit 8 detects whether the steel pipe 2 reaches the measuring station through the in-position detector 9, if yes, then execute step 2, if not, continue the detection.
- Step 2 The straightness calculation unit 8 obtains the parameters of the steel pipe 2 through the steel pipe parameter collection unit, and calculates the rotation speed of the steel pipe 2 according to the parameters of the steel pipe 2; the parameters of the steel pipe 2 include the steel pipe specifications and testing standards collected by the process signal collection unit 7 And other data and data such as the outer diameter of the steel pipe collected by the pipe diameter measuring device 10.
- Step 3 The straightness calculation unit 8 controls the support and rotation device 1 to drive the steel pipe to rotate through the rotation controller 6, and the angle sensor 5 collects the current angle value of the steel pipe 2 and sends it to the straightness calculation unit 8.
- the angular velocity at which the supporting and rotating device 1 drives the steel pipe 2 to rotate each time is the same.
- the rotation angle of the steel pipe 2 is the interval angle of the whole circumference measurement, which can be determined according to the specific measurement requirements and standards. The smaller the angle value, the more straightness data measured throughout the circumference, and the closer the calculation result is to the actual pipe end straightness value. .
- Step 4 The laser 3 projects an in-line band laser along the axial direction of the steel pipe 2 to the surface of the steel pipe 2 and forms a light band curve that is exactly the same as the surface contour of the steel pipe 2.
- the industrial camera 4 collects the contour image of the light band curve and sends it to Straightness calculation unit 8.
- Step 5 The straightness calculation unit 8 sets a detection zone and a reference zone on the light belt curve, and calculates a single straightness value of the pipe end of the steel pipe 2 based on a number of measurement points in the detection zone and a reference line in the reference zone.
- step 5.1 In the light strip curve, take the length range of L1 from the end of the steel pipe 2 as the detection zone, and take the length range of the distance from the detection zone L2 as the reference zone.
- Step 5.2 The surface profile curve of the steel pipe can be understood as a data sequence composed of infinite points. In order to facilitate the calculation and increase the calculation speed, several measurement points a1, a2, a3,..., an are taken in the detection area.
- the several measuring points a1, a2, a3,..., an are arranged on the contour line, and the projection distances of the several measuring points on the reference line are equal.
- the arrangement distance of the measuring points can be adjusted and determined according to the requirements of measuring accuracy and calculation speed.
- Step 5.3 Take the connection line between the two end points B1 and B2 of the reference area as the reference line.
- Step 5.4 Calculate the distances from several calculated measuring points a1, a2, a3,...an to the reference line as the single straightness offset b of the measuring point, and several measuring points a1, a2, a3,...,
- the single straightness offset b corresponding to an is b1, b2, b3,..., bn.
- Step 5.5 Take the maximum value of the single straightness offset b1, b2, b3,..., bn on the light strip curve as the single straightness value of the end of the steel pipe 2.
- Step 6 Repeat step 3 to step 5.
- Step 7 The straightness calculation unit 8 judges whether the 360° full-circle measurement of the steel pipe 2 is completed, if yes, execute step 8; if not, then return to step 3;
- the straightness error calculation unit 8 can control the steel pipe 2 to rotate at any angle, which can be less than 360° or greater than 360°.
- Step 8 The straightness calculation unit 8 takes the maximum value of all single straightness values as the straightness value of the pipe end of the steel pipe 2;
- Step 9 The straightness calculation unit 8 judges whether the measurement is over, if it is, it ends the measurement, if not, it returns to step 1.
- the "measurement end” here refers to the end of the measurement program, usually manually set to make the system end the measurement, or Say to stop the measurement system.
- the steel pipe 2 to be tested is placed horizontally on a measuring station, and the in-position detector 9 detects that the steel pipe 2 arrives at the station, and the system starts.
- the straightness calculation unit 8 collects data such as the steel pipe specifications and testing standards at the current station to be tested through the process signal interface unit 7, and obtains the dimensional data such as the outer diameter of the steel pipe through the pipe diameter measuring device 10, and according to the outer diameter of the steel pipe 2
- the rotation angular velocity corresponding to the detection standard is calculated, thereby controlling the rotation controller 6 to drive the steel pipe 2 to rotate at a constant angular velocity w.
- the angle ⁇ between the two measuring points is equal, and the angle sensor 5 can be used at the same time.
- the rotation angle of the steel pipe 2 is measured in real time, and the rotation angle data is transmitted to the straightness calculation unit 8.
- the included angle is determined by the rotation angular velocity w of the steel pipe 2. Therefore, different rotation linear velocities need to be calculated according to the outer diameter of the steel pipe 2 of different specifications to ensure the same angular velocity.
- a laser 3 is placed directly above the axis of the steel pipe 2.
- the high linear in-line high-brightness laser strip irradiated by the laser 3 is projected onto the surface of the steel pipe 2 to form a light band curve that completely overlaps the upper edge of the steel pipe 2.
- the light band curve is For the surface contour of the steel pipe 2 at this position, lasers 3 with different wavelengths (different colors) can be selected according to different detection conditions.
- the profile image of this light belt curve is collected by the high-resolution industrial camera 4 set on the horizontal side of the steel pipe 2 and sent to the straightness calculation unit 8.
- the resolution of the industrial camera 4 can be adjusted according to the requirements of measurement accuracy, and the straightness calculation
- the unit 8 obtains contour curve data on the light strip curve.
- the straightness of the middle area of the steel pipe is relatively easy to achieve and guarantee, and the end is prone to bend.
- the connecting line between the two ends B1 and B2 of the reference area is used as the reference line.
- the distance between the measurement point and the reference line is the straightness offset of steel pipe 2 at 0°. Calculate each measurement The distance between the point and the reference line is the straightness offset. 16 offset distance values can be obtained. Among the 16 offset distance values, the maximum offset distance value of a5 is 1.5mm. Select the maximum offset distance value 1.5mm is taken as the single straightness value of the 2 ends of the steel pipe at the 0° position.
- the rotation controller 6 drives the steel pipe 2 to rotate at a constant angular velocity w to re-acquire the light strip curve of the test point.
- the straightness calculation unit 8 obtains the profile curve data on the light strip curve, and calculates the steel pipe at this position through the contour calculation model. 2 Single straightness value of tube end. Repeat the above steps to calculate multiple single straightness values of steel pipe 2 at different angle positions until steel pipe 2 completes 360° full-circle rotation measurement, and take the maximum value of all single straightness values as the straightness value of the pipe end of steel pipe 2 , Complete the test.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种钢管(2)管端直度的测量方法和装置,该装置包括激光器(3)、工业相机(4)、角度传感器(5)、旋转控制器(6)和直度计算单元(8);激光器(3)装在钢管(2)正上方并向钢管(2)表面投射带状激光,形成光带曲线,测量的同时通过旋转控制器(6)控制钢管(2)全周转动。该方法包括通过工业相机(4)采集光带曲线的轮廓图像并发送至直度计算单元(8),角度传感器(5)采集钢管(2)当前角度并发送至直度计算单元(8),直度计算单元(8)计算单次直度值,所有单次直度值的最大值为管端的直度值;通过激光照射于钢管(2)表面形成的光带曲线提取曲线参数用于计算钢管(2)管端的直度,并通过设置360°全周转动实现更精确的测量,提高管端直度的测量效率和精度,有利于钢管(2)质量监控。
Description
本发明涉及一种钢管质量检测装置和方法,尤其涉及一种非接触式的钢管管端直度的测量方法和装置。
钢管是钢铁企业的重要产品之一,在化工、冶金、机械等各个工业领域中都有着广泛的应用。对于钢管产品来说,直度是衡量钢管质量的重要指标。生产、加工、自重以及传送过程中的碰撞、温度变化等原因都会造成钢管塑性变形,导致钢管直度要求无法满足,从而无法满足对于钢管产品精密度不断提高的要求。通常管端是钢管加工、连接的常用部位,也是直度误差最大的部分,根据美国石油学会(API)对套管和油管标准,要求在每端1.5m(5.0ft)长度范围内的偏离距离应不超过3.18mm(1/8in)。
在实际生产中,钢管直度大多采用人工测量的方法,利用人工目测直观判断弯曲程度,同时结合离线抽检的方式进行人工拉线法、三坐标测量法等接触式测量。人工测量存在很多问题:比如随意性和误差大、测量时间长等。因此,一些钢铁企业开始采用机械式的钢管直度检测装置,如中国实用新型专利ZL201920847975.6公开了一种钢管直度检测装置,通过启动驱动电机,这样带动钢管进行旋转,当钢管某个位置弯曲时,就会敲到在相对应的检测杆上,使得检测杆侧壁上的颜料抹在钢管上,从而得出准确的位置,和得知钢管是否存在弯曲的现象。但该检测装置只能定位钢管的大致弯曲部位,无法精确检测钢管的直度数据,同时,钢管与检测杆的间距为0.1-0.2mm,无法检测小于0.1mm的微小的弯曲,检测精度较低。
由于受到测量手段及工具的限制,现有的钢管直度测量方法是将管端端部最外处作为最大偏差的位置,简单地将管端作为单向弯曲处理,测量时取距离管端1.8米和1.5米处的两个位置的连线作为基准线,并将基准线与管端0米处的位置偏差作为直度误差。该测量放方法存在两个问题:一是将距离管端1.5米即钢管中 间区域作为完全平直的,而生产实际中该区域也会存在一定弯曲度,从而导致测量结果与真实情况有所偏差;二是将管端最外处作为最大偏差的位置。在实际测量中钢管端部可能存在非单向弯曲的情况,如C型、S型弯曲等,因此管端0米处并不是最大弯曲位置,因此,现有技术的钢管端部直度的测量方法不能体现钢管真实直度,也无法满足现代钢管生产的需要。
发明内容
本发明的目的之一在于提供一种钢管管端直度的测量方法,基于带状激光投射于钢管上形成的光带曲线计算钢管的直度,从而准确的测量出钢管管端的真实直度。
本发明的目的之二在于提供一种钢管管端直度的测量装置,能以一定角速度转动钢管并采集激光投射于钢管上的光带曲线,能有效提高钢管管端直度的测量精度。
本发明是这样实现的:
一种钢管管端直度的测量方法,其特征是:包括以下步骤:
步骤1:钢管输送到支撑旋转装置上,直度计算单元检测钢管是否到达测量工位,若是,则执行步骤2,若否,则继续检测;
步骤2:直度计算单元通过钢管参数采集单元获得钢管的参数,并计算钢管的旋转速度;
步骤3:直度计算单元通过旋转控制器控制支撑旋转装置带动钢管旋转;角度传感器采集钢管的当前角度值并发送至直度计算单元;
步骤4:激光器向钢管投射激光并形成与钢管表面轮廓完全相同的光带曲线,工业相机采集光带曲线的轮廓图像并发送至直度计算单元;
步骤5:直度计算单元在光带曲线上设置检测区和基准区,并基于检测区内的若干个测量点和基准区内的基准线计算钢管管端的单次直度值;
步骤6:重复步骤3至步骤5;
步骤7:直度计算单元判断是否完成钢管的360°全周测量,若是,则执行步骤8,若否,则返回步骤3;
步骤8:直度计算单元取所有单次直度值中的最大值作为钢管管端的直度值;
步骤9:直度计算单元判断是否测量结束,若是,则结束测量,若否,则返回 步骤1。
所述的步骤5包括如下分步骤:
步骤5.1:在光带曲线中,取距离钢管管端L1长度范围作为检测区,取距离检测区L2长度范围作为基准区;
步骤5.2:在检测区中取若干个测量点;
步骤5.3:取基准区的两个端点之间的连线作为基准线;
步骤5.4:分别计算若干个计算测量点到基准线的距离作为该测量点的单次直度偏移量;
步骤5.5:取该光带曲线上单次直度偏移量中的最大值作为钢管管端的单次直度值。
所述的若干个测量点等间距布置。
在所述的步骤5中,支撑旋转装置每一次带动钢管旋转的角速度均相同。
所述的钢管的参数包括由工艺信号接口单元采集的钢管规格和检测标准以及由管径测量装置采集的钢管外径。
一种钢管管端直度的测量装置,包括支撑旋转装置、钢管、激光器、工业相机、角度传感器、旋转控制器、钢管参数采集单元和直度计算单元;钢管水平置于支撑旋转装置上,支撑旋转装置带动钢管转动;激光器安装在钢管的正上方并向钢管投射激光,且激光为沿钢管的轴向延伸的一字型带状激光并在钢管表面形成光带曲线;工业相机设置在钢管的一侧并采集光带曲线的轮廓图像;角度传感器的输入端与支撑旋转装置的输出端连接,旋转控制器的输出端与支撑旋转装置的输入端连接,工业相机的输出端、角度传感器的输出端、旋转控制器的输入端和钢管参数采集单元的输出端分别连接至直度计算单元。
所述的工业相机的高度与钢管的高度相当,使工业相机能采集带状激光投射在钢管上形成的与钢管表面轮廓完全重合的光带曲线。
所述的测量装置还包括到位检测器,到位检测器安装在测量工位上,且到位检测器的输出端连接至直度计算单元。
所述的钢管参数采集单元为工艺信号接口单元,工艺信号接口单元连接至生产控制系统和到位检测器。
所述的钢管参数采集单元为管径测量装置,管径测量装置设置在测量工位上,管径测量装置的输出端连接至直度计算单元。
本发明与现有技术相比,具有如下有益效果:
1、本发明的测量方法基于激光照射于钢管表面形成的光带曲线进行数据的采集,计算钢管轴线方向的最大偏移误差,并结合360°全周精确测量,从而准确测量出钢管端部的真实直度,以满足钢管生产检测需要。
2、本发明的测量装置通过激光器发射高线性一字型激光带照射钢管使其呈现沿钢管轴向的光带曲线轮廓,基于激光光带做为轮廓基准,采用图像测量获取轮廓数据,并计算钢管轴线方向的最大偏移误差,从而利用控制计算器准确测量出钢管管端的真实直度,实现了非接触式全周在线测量。
综上所述,本发明通过激光照射于钢管表面形成的光带曲线提取曲线参数用于计算钢管管端的直度,根据钢管外径设置360°全周转动实现更精确的测量,有效提高了钢管管端直度的测量效率和精度,有利于钢管产品质量的监控。
图1是本发明钢管管端直度的测量装置的主视图;
图2是本发明钢管管端直度的测量装置中的激光器与工业相机的布设示意图;
图3是本发明钢管管端直度的测量方法的流程图;
图4是本发明钢管管端直度的测量方法的原理图。
图中:1支撑旋转装置,2钢管,3激光器,4工业相机,5角度传感器,6旋转控制器,7工艺信号接口单元,8控制计算器,9到位检测器,10管径测量装置。
下面结合附图和具体实施例对本发明作进一步说明。
请参见附图1和附图2,一种钢管管端直度的测量装置,包括支撑旋转装置1、钢管2、激光器3、工业相机4、角度传感器5、旋转控制器6、钢管参数采集单元和直度计算单元8;钢管2水平置于支撑旋转装置1上,支撑旋转装置1带动钢管2转动;激光器3安装在钢管2的正上方并向钢管2投射激光,且激光为沿钢管2的轴向延伸的一字型带状激光并在钢管表面形成光带曲线;工业相机4设置在钢管2的一侧并采集光带曲线的轮廓图像;角度传感器5的输入端与支撑旋转装置1的输出端连接,旋转控制器6的输出端与支撑旋转装置1的输入端连接,工业相 机4的输出端、角度传感器5的输出端、旋转控制器6的输入端和钢管参数采集单元的输出端分别连接至直度计算单元8。直度计算单元8可采用具有图像和数据采集处理、图像轮廓提取、数据识别处理、计算等功能的计算机设备。
所述的测量装置还包括到位检测器9,到位检测器9安装在测量工位上,且到位检测器9的输出端连接至直度计算单元8,用于检测钢管2是否到达测量工位。当钢管2传输到测量工位上时,到位检测器9被触发或感应到钢管2,并输出信号至直度计算单元8,使整个系统启动。
所述的钢管参数采集单元为工艺信号接口单元7,工艺信号接口单元7连接至生产控制系统和到位检测器9,直度计算单元8可通过工艺信号接口单元7直接从生产控制系统读取被测钢管2的外径、测量标准等规格参数,工艺信号接口单元7可用于接收到位检测器9的钢管到位信号并发送到直度计算单元8。
所述的钢管参数采集单元为管径测量装置10,管径测量装置10设置在测量工位上,管径测量装置10的输出端连接至直度计算单元8,可通过管径测量装置10测量钢管2的外径并将测量数据发送至直度计算单元8。由于钢管2加工可能存在误差,为了避免工艺信号接口单元7采集到的钢管2的设计外径与实际外径存在偏差,可通过管径测量装置10实时测量钢管2的实际外径,进一步提高测量精度。
请参见附图2,所述的工业相机4的高度与钢管2的高度相当,使工业相机4能采集带状激光投射在钢管2上形成的与钢管2表面轮廓完全重合的光带曲线,工业相机4的拍摄方向与激光投射方向成一定固定角度,优选为90°,能更清晰、准确的拍摄光带曲线的轮廓图像,从而使光带曲线上的测量点采集更清晰、准确。工业相机4的像素可根据测量点的精度要求调整。
请参见附图3,一种钢管管端直度的测量方法,包括以下步骤:
步骤1:钢管2输送到支撑旋转装置1上,直度计算单元8通过到位检测器9检测钢管2是否到达测量工位,若是,则执行步骤2,若否,则继续检测。
步骤2:直度计算单元8通过钢管参数采集单元获得钢管2的参数,并根据钢管2的参数计算钢管2的旋转速度;钢管2的参数包括由工艺信号采集单元7采集的钢管规格和检测标准等数据以及由管径测量装置10采集的钢管外径等数据。
步骤3:直度计算单元8通过旋转控制器6控制支撑旋转装置1带动钢管旋转,角度传感器5采集钢管2的当前角度值并发送至直度计算单元8。
优选的,所述的支撑旋转装置1每一次带动钢管2旋转的角速度均相同。钢管2的旋转的角度即全周测量的间隔角度,可根据具体测量要求和标准来确定,角度值越小,全周测量的直度数据越多,计算结果也越接近实际管端直度值。
步骤4:激光器3沿钢管2的轴向向钢管2的表面投射一字型带状激光并形成与钢管2表面轮廓完全相同的光带曲线,工业相机4采集光带曲线的轮廓图像并发送至直度计算单元8。
步骤5:直度计算单元8在光带曲线上设置检测区和基准区,并基于检测区内的若干个测量点和基准区内的基准线计算钢管2管端的单次直度值。
请参见附图4,步骤5.1:在光带曲线中,取距离钢管2管端L1长度范围作为检测区,取距离检测区L2长度范围作为基准区。
步骤5.2:钢管表面轮廓曲线可以理解为由无穷多的点组成的数据序列,为了方便计算以及提高计算速度,在检测区中取若干个测量点a1、a2、a3、…、an。
优选的,所述的若干个测量点a1、a2、a3、…、an布置在轮廓线上,且若干个测量点在基准线上的投影的间距相等。测量点的布置间距可根据测量精度、计算速度等要求调整和确定。
步骤5.3:取基准区的两个端点B1和B2之间的连线作为基准线。
步骤5.4:分别计算若干个计算测量点a1、a2、a3、…、an到基准线的距离作为该测量点的单次直度偏移量b,若干个测量点a1、a2、a3、…、an对应的单次直度偏移量b分别为b1、b2、b3、…、bn。
步骤5.5:取该光带曲线上单次直度偏移量b1、b2、b3、…、bn中的最大值作为钢管2管端的单次直度值。
步骤6:重复步骤3至步骤5。
步骤7:直度计算单元8判断是否完成钢管2的360°全周测量,若是,则执行步骤8,若否,则返回步骤3;
优选的,根据测量精度和采集数据量的实际要求,直线度误差计算单元8可控制钢管2转动任意角度,可小于360°或大于360°。
步骤8:直度计算单元8取所有单次直度值中的最大值作为钢管2管端的直度值;
步骤9:直度计算单元8判断是否测量结束,若是,则结束测量,若否,则返回步骤1,这里的“测量结束”是指结束测量程序,通常是人工设定使系统结束测 量,或者说停止测量系统运行。
实施例1:
待检测的钢管2水平放置于一个测量工位上,到位检测器9检测到钢管2到达工位,系统启动。直度计算单元8通过工艺信号接口单元7采集当前待测工位上的钢管规格和检测标准等数据,并通过管径测量装置10测量获得钢管外径等尺寸数据,并根据钢管2的外径和检测标准计算出对应的旋转角速度,从而控制旋转控制器6驱动钢管2以恒定的角速度w旋转。由于不同规格的钢管2外径不同,为了保证测量精确性和一致性,需要保证在圆周方向上的测量点分布均匀,即两个测量点之间的夹角θ相等,同时可配合角度传感器5实时测量钢管2的旋转角度,并将转动角度数据传送到直度计算单元8。在测量频率一定的情况下,该夹角由钢管2的旋转角速度w决定,因此需根据不同规格钢管2的外径来计算不同的旋转线速度,从而确保角速度相同。
在钢管2轴线正上方放置一激光器3,激光器3照射出的高线性一字型高亮激光带投射到钢管2表面,形成一条和钢管2上边缘完全重合的光带曲线,该光带曲线即为钢管2在该位置的表面轮廓线,可根据不同的检测条件选择具有不同波长(不同颜色)的激光器3。通过设置在钢管2水平侧的高分辨率的工业相机4采集到这条光带曲线的轮廓图像发送至直度计算单元8,工业相机4的分辨率可根据测量精度的要求调整,直度计算单元8获得光带曲线上的轮廓曲线数据。
由于钢管生产工艺和加工过程的影响,钢管中间区域的直度相对容易实现和保证,而端部容易发生弯曲,钢管端部直度是指距离端部一定范围内的弯曲度,如套管和油管,按照标准要求在每端1.5米长度范围内直度应满足一定条件。因此,取距离钢管2管端L1=1.5m长度范围作为检测区,检测区内以间距l=100mm均匀分布16个测量点a1、a2、a3、…、a16,取距离检测区L2=0.3m的管段作为基准区,基准区的两端B1和B2之间的连线作为基准线,测量点到基准线之间的距离为钢管2在0°处的直度偏移量,计算每个测量点到基准线之间的距离即直度偏移量,可以得到16个偏移距离值,在16个偏移距离值中a5的偏移距离值最大为1.5mm,选取该最大偏移距离值1.5mm作为0°位置处钢管2管端的单次直度值。
旋转控制器6驱动钢管2以恒定的角速度w旋转,重新获取该测试点位的光带曲线,直度计算单元8获得光带曲线上的轮廓曲线数据,并通过轮廓计算模型计算出该位置钢管2管端的单次直度值。重复上述步骤,计算钢管2在不同角度 位置处的多个单次直度值,直到钢管2完成360°全周转动测量,取所有单次直度值的最大值作为钢管2管端的直度值,完成检测。
以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,因此,凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种钢管管端直度的测量方法,其特征是:包括以下步骤:步骤1:钢管(2)输送到支撑旋转装置(1)上,直度计算单元(8)检测钢管(2)是否到达测量工位,若是,则执行步骤2,若否,则继续检测;步骤2:直度计算单元(8)通过钢管参数采集单元获得钢管(2)的参数,并计算钢管(2)的旋转速度;步骤3:直度计算单元(8)通过旋转控制器(6)控制支撑旋转装置(1)带动钢管(2)旋转;角度传感器(5)采集钢管(2)的当前角度值并发送至直度计算单元(8);步骤4:激光器(3)向钢管(2)投射激光并形成与钢管(2)表面轮廓完全相同的光带曲线,工业相机(4)采集光带曲线的轮廓图像并发送至直度计算单元(8);步骤5:直度计算单元(8)在光带曲线上设置检测区和基准区,并基于检测区内的若干个测量点和基准区内的基准线计算钢管(2)管端的单次直度值;步骤6:重复步骤3至步骤5;步骤7:直度计算单元(8)判断是否完成钢管(2)的360°全周测量,若是,则执行步骤8,若否,则返回步骤3;步骤8:直度计算单元(8)取所有单次直度值中的最大值作为钢管(2)管端的直度值;步骤9:直度计算单元(8)判断是否测量结束,若是,则结束测量,若否,则返回步骤1。
- 根据权利要求1所述的钢管管端直度的测量方法,其特征是:所述的步骤5包括如下分步骤:步骤5.1:在光带曲线中,取距离钢管(2)管端L1长度范围作为检测区,取距离检测区L2长度范围作为基准区;步骤5.2:在检测区中取若干个测量点;步骤5.3:取基准区的两个端点之间的连线作为基准线;步骤5.4:分别计算若干个计算测量点到基准线的距离作为该测量点的单次直度偏移量;步骤5.5:取该光带曲线上单次直度偏移量中的最大值作为钢管(2)管端的单次直度值。
- 根据权利要求1或2所述的钢管管端直度的测量方法,其特征是:所述的若干个测量点在所述基准线上的投影的间距相等。
- 根据权利要求1所述的钢管管端直度的测量方法,其特征是:在所述的步骤3中,支撑旋转装置(1)每一次带动钢管(2)旋转的角速度均相同。
- 根据权利要求1所述的钢管管端直度的测量方法,其特征是:所述的钢管(2)的参数包括由工艺信号接口单元(7)采集的钢管规格和检测标准以及由管径测量装置(10)采集的钢管外径。
- 一种用于权利要求1所述的钢管管端直度的测量方法的测量装置,其特征是:包括支撑旋转装置(1)、钢管(2)、激光器(3)、工业相机(4)、角度传感器(5)、旋转控制器(6)、钢管参数采集单元和直度计算单元(8);钢管(2)水平置于支撑旋转装置(1)上,支撑旋转装置(1)带动钢管(2)转动;激光器(3)安装在钢管(2)的正上方并向钢管(2)投射激光,且激光为沿钢管(2)的轴向延伸的一字型带状激光并在钢管(2)表面形成光带曲线;工业相机(4)设置在钢管(2)的一侧并采集光带曲线的轮廓图像;角度传感器(5)的输入端与支撑旋转装置(1)的输出端连接,旋转控制器(6)的输出端与支撑旋转装置(1)的输入端连接,工业相机(4)的输出端、角度传感器(5)的输出端、旋转控制器(6)的输入端和钢管参数采集单元的输出端分别连接至直度计算单元(8)。
- 根据权利要求6所述的钢管管端直度的测量装置,其特征是:所述的工业相机(4)的高度与钢管(2)的高度相当,使工业相机(4)能采集带状激光投射在钢管(2)上形成的与钢管(2)表面轮廓完全重合的光带曲线。
- 根据权利要求6所述的钢管管端直度的测量装置,其特征是:所述的测量装置还包括到位检测器(9),到位检测器(9)安装在测量工位上,且到位检测器(9)的输出端连接至直度计算单元(8)。
- 根据权利要求6所述的钢管管端直度的测量装置,其特征是:所述的钢管参数采集单元为工艺信号接口单元(7),工艺信号接口单元(7)连接至生产控制系统和到位检测器(9)。
- 根据权利要求6所述的钢管管端直度的测量装置,其特征是:所述的钢 管参数采集单元为管径测量装置(10),管径测量装置(10)设置在测量工位上,管径测量装置(10)的输出端连接至直度计算单元(8)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010225772.0A CN113446966B (zh) | 2020-03-26 | 2020-03-26 | 钢管管端直度的测量方法和装置 |
CN202010225772.0 | 2020-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021189734A1 true WO2021189734A1 (zh) | 2021-09-30 |
Family
ID=77807392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/103722 WO2021189734A1 (zh) | 2020-03-26 | 2020-07-23 | 钢管管端直度的测量方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113446966B (zh) |
WO (1) | WO2021189734A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116147539A (zh) * | 2023-03-31 | 2023-05-23 | 山东曦伴机电技术服务有限公司 | 一种新型气瓶直线度的测量方法及装置 |
CN116295133A (zh) * | 2023-05-17 | 2023-06-23 | 四川都得利管业有限公司 | 一种用于塑料管生产的监测预警方法及系统 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115235385B (zh) * | 2022-08-03 | 2024-01-05 | 江苏精益智控科技有限公司 | 一种钢管平直度通长检测的设备和方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101634549A (zh) * | 2009-08-21 | 2010-01-27 | 上海交通大学 | 油井钻杆直度检测装置及其检测方法 |
CN102183222A (zh) * | 2011-03-01 | 2011-09-14 | 杭州浙大精益机电技术工程有限公司 | 螺旋输送系统同轴度和平面度动态定量测量方法及装置 |
CN202255308U (zh) * | 2011-10-11 | 2012-05-30 | 宝山钢铁股份有限公司 | 一种钢管端部直度测量装置 |
US20140168414A1 (en) * | 2012-12-19 | 2014-06-19 | Tenaris Connections Limited | Straightness Measurements of Linear Stock Material |
CN204202576U (zh) * | 2014-11-19 | 2015-03-11 | 天水锻压机床(集团)有限公司 | 基于校直机的钢管直线度在线自动检测装置 |
CN106767557A (zh) * | 2016-12-29 | 2017-05-31 | 冶金自动化研究设计院 | 长材矫直工序中直线度在线检测装置及方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3861992B2 (ja) * | 2001-11-13 | 2006-12-27 | 住友電気工業株式会社 | 光ファイバ母材の曲がり測定方法および測定装置ならびに光ファイバ母材の製造方法 |
CN101571379B (zh) * | 2009-06-11 | 2010-12-08 | 天津大学 | 一种无缝圆形钢管直径及直线度参数测量的方法 |
CN102278958A (zh) * | 2011-06-24 | 2011-12-14 | 上海瑞伯德智能系统科技有限公司 | 铝板平面度视觉检测系统 |
JP5792053B2 (ja) * | 2011-12-27 | 2015-10-07 | Jfeスチール株式会社 | 鋼管の管端直角度測定方法 |
CN103344190B (zh) * | 2013-06-26 | 2016-04-27 | 深圳科瑞技术股份有限公司 | 一种基于线扫描的弹性臂姿态测量方法及系统 |
CN103471531B (zh) * | 2013-09-27 | 2016-01-20 | 吉林大学 | 轴类零件直线度在线非接触测量方法 |
CN103868470B (zh) * | 2014-03-10 | 2016-08-31 | 中国地质大学(武汉) | 一种钻杆弯曲度检测装置及方法 |
CN106767499A (zh) * | 2016-11-25 | 2017-05-31 | 江苏奥维信亨通光学科技有限公司 | 一种光纤预制棒弯曲度测量方法 |
CN107388962A (zh) * | 2017-07-06 | 2017-11-24 | 南京林业大学 | 一种木质板材翘曲的在线检测装置和检测方法 |
CN107830813B (zh) * | 2017-09-15 | 2019-10-29 | 浙江理工大学 | 激光线标记的长轴类零件图像拼接及弯曲变形检测方法 |
JP6743851B2 (ja) * | 2017-10-30 | 2020-08-19 | Jfeスチール株式会社 | 鋼管の管端直角度測定方法及び鋼管の製造方法 |
CN108278960A (zh) * | 2018-03-23 | 2018-07-13 | 中国石油天然气集团公司管材研究所 | 一种钢管端部直度测量仪及该测量仪的测量方法 |
CN110579199A (zh) * | 2018-06-11 | 2019-12-17 | 北大方正集团有限公司 | 棒材直线度测量方法及装置 |
-
2020
- 2020-03-26 CN CN202010225772.0A patent/CN113446966B/zh active Active
- 2020-07-23 WO PCT/CN2020/103722 patent/WO2021189734A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101634549A (zh) * | 2009-08-21 | 2010-01-27 | 上海交通大学 | 油井钻杆直度检测装置及其检测方法 |
CN102183222A (zh) * | 2011-03-01 | 2011-09-14 | 杭州浙大精益机电技术工程有限公司 | 螺旋输送系统同轴度和平面度动态定量测量方法及装置 |
CN202255308U (zh) * | 2011-10-11 | 2012-05-30 | 宝山钢铁股份有限公司 | 一种钢管端部直度测量装置 |
US20140168414A1 (en) * | 2012-12-19 | 2014-06-19 | Tenaris Connections Limited | Straightness Measurements of Linear Stock Material |
CN204202576U (zh) * | 2014-11-19 | 2015-03-11 | 天水锻压机床(集团)有限公司 | 基于校直机的钢管直线度在线自动检测装置 |
CN106767557A (zh) * | 2016-12-29 | 2017-05-31 | 冶金自动化研究设计院 | 长材矫直工序中直线度在线检测装置及方法 |
Non-Patent Citations (2)
Title |
---|
LI XIAOTAO , DU XIAOQING , LI XIAOGA , TIAN JIAN: "Design of Machine Vision System for Steel Pipe’s Straightness Measurement", OPTICAL TECHNIQUE, vol. 37, no. 3, 15 May 2011 (2011-05-15), pages 317 - 321, XP055853367, ISSN: 1002-1582, DOI: 10.13741/j.cnki.11-1879/o4.2011.03.010 * |
XUE TING , YANG XUE-YOU , WU BIN , YE SHENG-HUA: "Optimum Design and Calibration of Visual Sensors Measuring Linearity of Steel Pipe", JOURNAL OF TIANJIN UNIVERSITY, vol. 36, no. 3, 25 May 2003 (2003-05-25), pages 285 - 288, XP055853373, ISSN: 0493-2137 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116147539A (zh) * | 2023-03-31 | 2023-05-23 | 山东曦伴机电技术服务有限公司 | 一种新型气瓶直线度的测量方法及装置 |
CN116147539B (zh) * | 2023-03-31 | 2023-10-17 | 山东曦伴机电技术服务有限公司 | 一种新型气瓶直线度的测量方法及装置 |
CN116295133A (zh) * | 2023-05-17 | 2023-06-23 | 四川都得利管业有限公司 | 一种用于塑料管生产的监测预警方法及系统 |
CN116295133B (zh) * | 2023-05-17 | 2023-08-15 | 四川都得利管业有限公司 | 一种用于塑料管生产的监测预警方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113446966A (zh) | 2021-09-28 |
CN113446966B (zh) | 2022-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021189734A1 (zh) | 钢管管端直度的测量方法和装置 | |
CN102650516B (zh) | 大口径钢管管端外径和椭圆度在线测量方法及装置 | |
CN109341553B (zh) | 一种管材管壁厚度测量装置及测量方法 | |
KR101562505B1 (ko) | 가변 곡률반경에서의 연장형 가공물의 연속 절곡용 롤러 벤딩 머신의 검사 및 제어방법, 및 그 제어 머신 | |
CN111433557B (zh) | 管道尺寸测量系统 | |
CN113446965B (zh) | 钢管管端直线度误差的测量方法 | |
ITBS20150085A1 (it) | Metodo e dispositivo di misura dell'errore di rettilineita' di barre e tubi | |
CN203083535U (zh) | 一种金属板材弯曲度自动检测控制装置 | |
CN108344370B (zh) | 基于双视觉传感器的螺旋焊管管线外径测量装置和方法 | |
CN108655208B (zh) | 矫直机矫直状态测控方法和矫直机矫直状态测控系统 | |
CN113028994A (zh) | 一种管件椭圆度及厚度的同步检测装置及方法 | |
CN110116138A (zh) | 一种轧制过程中热态钢板长度及侧弯测量方法 | |
CN105241392A (zh) | 一种复杂柱状工件的全表面三维测量设备及其测量方法 | |
CN103837091A (zh) | 一种玻璃翘曲度测试装置及方法 | |
CN115451777A (zh) | 钢管管端壁厚的测量方法 | |
CN104215171A (zh) | 内螺纹非接触激光线测量方法 | |
CN105783743A (zh) | 基于红外反射法的金属薄板印涂湿膜厚度在线检测系统 | |
CN110906874A (zh) | 基于钢管螺旋行进的端头壁厚测量方法与系统 | |
KR101328696B1 (ko) | 형상측정장치 및 형상측정방법 | |
TWI693374B (zh) | 非接觸式物體輪廓量測系統 | |
CN105301018A (zh) | 一种小径管环向焊缝射线检测定位装置及其操作方法 | |
CN111238381B (zh) | 自动测量钢管的外螺纹参数装置及测量方法 | |
CN211120958U (zh) | 一种双壁透照射线检验定位射线源的测量装置 | |
CN211121076U (zh) | 基于钢管螺旋行进的端头壁厚测量系统 | |
JPS58160805A (ja) | 大口径鋼管の寸法、形状測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20927061 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20927061 Country of ref document: EP Kind code of ref document: A1 |