WO2021189718A1 - Mems气体传感器及其阵列、气体检测和制备方法 - Google Patents

Mems气体传感器及其阵列、气体检测和制备方法 Download PDF

Info

Publication number
WO2021189718A1
WO2021189718A1 PCT/CN2020/101406 CN2020101406W WO2021189718A1 WO 2021189718 A1 WO2021189718 A1 WO 2021189718A1 CN 2020101406 W CN2020101406 W CN 2020101406W WO 2021189718 A1 WO2021189718 A1 WO 2021189718A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
detection
cavity
detection electrode
gas detection
Prior art date
Application number
PCT/CN2020/101406
Other languages
English (en)
French (fr)
Inventor
许磊
谢东成
陈栋梁
Original Assignee
合肥微纳传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥微纳传感技术有限公司 filed Critical 合肥微纳传感技术有限公司
Priority to US17/906,920 priority Critical patent/US20230341367A1/en
Priority to EP20927023.0A priority patent/EP4102214A4/en
Priority to KR1020227032710A priority patent/KR20220140855A/ko
Priority to JP2023500115A priority patent/JP7466052B2/ja
Publication of WO2021189718A1 publication Critical patent/WO2021189718A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/128Microapparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/04Networks or arrays of similar microstructural devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0069Thermal properties, e.g. improve thermal insulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0292Sensors not provided for in B81B2201/0207 - B81B2201/0285
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0109Bridges

Definitions

  • This article relates to but not limited to the field of gas detection technology, especially a MEMS gas sensor and its array, gas detection and preparation method.
  • Odor recognition is one of the important application areas of gas sensors.
  • Metal oxide semiconductor gas sensors are widely used in odor recognition equipment due to their superior characteristics such as low power consumption, low cost, high integration, and good response to a variety of gases.
  • MOS Metal-Oxide Semiconductor
  • MEMS Micro-Electro-Mechanical System, Micro-Electro-Mechanical System
  • the former has high mechanical strength.
  • the latter has a faster thermal response speed.
  • the above types of gas sensors still have the problem of large power consumption.
  • the embodiments of the present disclosure provide a MEMS gas sensor and its array, gas detection and preparation method.
  • an embodiment of the present disclosure provides a MEMS gas sensor, which may include: a first substrate with a cavity formed on a first surface, and a gas detection component disposed at an opening of the cavity, wherein:
  • the gas detection assembly may include: a supporting suspension bridge erected on the first edge and the second edge of the cavity opening, and a gas detection part disposed on the supporting suspension bridge on a side away from the cavity, wherein:
  • the gas detection portion includes a strip-shaped heating electrode portion, an insulating layer, a strip-shaped detection electrode portion, and a gas-sensitive material portion that are sequentially stacked, and the strip-shaped detection electrode portion includes a first detection electrode portion and a second detection electrode portion, A first opening is provided between the first detection electrode portion and the second detection electrode portion, the gas-sensitive material portion is provided at the position of the first opening, and the first end of the gas-sensitive material portion is connected to the The first detection electrode part is connected, and the second end of the gas-sensitive material part is connected to the second detection electrode part.
  • the embodiments of the present disclosure also provide a gas detection method of a MEMS gas sensor, where the MEMS gas sensor is any one of the above-mentioned MEMS gas sensors; the method may include:
  • any one or more gas detection parts in the MEMS gas sensor apply heating voltage to the strip-shaped heating electrode parts in the gas detection assembly, and obtain the first detection electrode part and the second detection part in the gas detection part The voltage value between the electrodes.
  • the embodiments of the present disclosure also provide a MEMS gas sensor array, and the sensor array may include a plurality of any of the above-mentioned MEMS gas sensors.
  • the embodiments of the present disclosure also provide a method for manufacturing a MEMS gas sensor.
  • the MEMS gas sensor is the above-mentioned MEMS gas sensor; the method may include:
  • a gas detection portion is formed on the support film, wherein: the gas detection portion includes a strip-shaped heating electrode portion, an insulating layer, a strip-shaped detection electrode portion, and a gas-sensitive material portion that are sequentially stacked, and the strip-shaped detection electrode portion Comprising a first detection electrode portion and a second detection electrode portion, a first opening is provided between the first detection electrode portion and the second detection electrode portion, and the gas-sensitive material portion is provided at the position of the first opening, The first end of the gas-sensitive material portion is connected to the first detection electrode portion, and the second end of the gas-sensitive material portion is connected to the second detection electrode portion;
  • the supporting film is processed to obtain supporting suspension bridges, and one or more cavities are formed on the first surface of the first substrate, and the supporting suspension bridges are erected on the first edge and the second edge of the cavity opening. edge.
  • FIG. 1 is a cross-sectional view of the composition structure of a MEMS gas sensor in an exemplary embodiment of the present disclosure
  • FIG. 2 is a top view of the composition structure of a MEMS gas sensor in an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a cavity provided on a first substrate according to an exemplary embodiment of the present disclosure, and a plurality of gas detection components are provided at an opening of the cavity;
  • FIG. 4 is a schematic diagram of a first substrate provided with a plurality of cavities, and a plurality of gas detection components are provided at the openings of the plurality of cavities according to an exemplary embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a first substrate provided with a plurality of cavities according to an exemplary embodiment of the present disclosure, and a gas detection component is provided at the opening of each cavity;
  • 6a-6d are schematic diagrams of the arrangement of cavities in an exemplary embodiment of the present disclosure.
  • FIGS. 7a-7c are schematic diagrams of the arrangement of gas detection components or gas detection parts in any cavity in the exemplary embodiments of the present disclosure
  • FIG. 8 is a schematic diagram of a plurality of gas detection components of a first cavity and a plurality of gas detection components of a second cavity sharing pins according to an exemplary embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of the structure of a fishbone-shaped MEMS gas sensor according to an exemplary embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a fishbone structure in a fishbone-shaped MEMS gas sensor according to an exemplary embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a gas-sensitive material layer according to an exemplary embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a gas detection electrode layer according to an exemplary embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an isolation film according to an exemplary embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a heater layer of an exemplary embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of voltage input and output of a MEMS gas sensor according to an exemplary embodiment of the present disclosure
  • Fig. 16 is an equivalent schematic diagram of a heating circuit of a MEMS gas sensor according to an exemplary embodiment of the present disclosure
  • FIG. 17 is a first equivalent schematic diagram of a gas detection circuit of a MEMS gas sensor according to an exemplary embodiment of the present disclosure
  • FIG. 19 is a schematic diagram of a supporting film according to an exemplary embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of a substrate layer of an exemplary embodiment of the present disclosure.
  • FIG. 21 is a flowchart of a gas detection method of a MEMS gas sensor according to an exemplary embodiment of the present disclosure
  • FIG. 22 is a flowchart of a manufacturing method of a MEMS gas sensor according to an exemplary embodiment of the present disclosure
  • FIG. 23 is a flowchart of a method for preparing a gas detection portion, heating electrode pins, a first ground pin, a detection electrode pin, and a second ground pin on a supporting film according to an exemplary embodiment of the present disclosure
  • FIG. 24 is a flowchart of a method for preparing each layer of a MEMS gas sensor according to an exemplary embodiment of the present disclosure
  • FIG. 25 is a block diagram showing the composition of a MEMS gas sensor array according to an exemplary embodiment of the present disclosure.
  • a MEMS gas sensor A is provided, as shown in FIG. 1 and FIG. 2, which may include: a first substrate A2 with a cavity A1 formed on a first surface, and a first substrate A2 provided at the opening of the cavity The gas detection assembly A3 at the location, where:
  • the gas detection assembly A3 may include: a supporting suspension bridge A31 erected on the first edge A21 and the second edge A22 of the cavity opening, and a gas disposed on the supporting suspension bridge A31 on the side away from the cavity
  • the detection portion A32 wherein: the gas detection portion A32 includes a strip-shaped heating electrode portion A321, an insulating layer A322, a strip-shaped detection electrode portion A323, and a gas-sensitive material portion A324 that are sequentially stacked, and the strip-shaped detection electrode portion A323 includes The first detection electrode portion A323-1 and the second detection electrode portion A323-2 are provided with a first opening A325 between the first detection electrode portion A323-1 and the second detection electrode portion A323-2.
  • the material portion A324 is disposed at the position of the first opening A325, the first end of the gas sensitive material portion A324 is connected to the first detection electrode portion A323-1, and the second end of the gas sensitive material portion A324 is connected to the The second detection electrode portion A323-2 is connected.
  • the cavity A1 may include one or more, and the gas detection assembly A3 may include one or more.
  • the support suspension bridge A31 erected on each cavity A1 may include one or more ; This article does not limit the number of cavities A1 and supporting suspension bridges A31.
  • the cavity A1 is not limited to being provided on one surface of the first substrate A2.
  • the cavity A1 may be provided on multiple surfaces of the first substrate A2, and correspondingly on the cavities on different surfaces.
  • One or more gas detection components A3 are provided on the body A1.
  • the MEMS gas sensor described in the embodiments of the present disclosure is manufactured by using MEMS technology to realize a single-process sensor manufacturing package.
  • the mass manufacturing process of gas sensors can be greatly simplified, the cost can be greatly reduced, the efficiency can be improved, and the manufacturing cycle can be shortened, which can be helpful To improve the consistency and stability of the sensor.
  • the strip-shaped support suspension bridge structure is adopted, and the effective area of the sensor is made on the strip-shaped support suspension bridge, eliminating the need for the heater structure and the interdigital electrode structure of serpentine winding, spiral winding or folding line winding. Greatly reduce the power consumption of the gas sensor and improve the thermal response speed.
  • the support suspension bridge is supported by the two edges of the cavity. When the heating electrode part of the gas detection assembly is energized, especially when the gas-sensitive material needs to be heated to a higher temperature, better supportability can still be ensured.
  • the supporting suspension bridge is used as the sensing part (that is, the gas-sensitive material part) of the gas sensor, with low thermal mass and low power consumption.
  • the MEMS gas sensor A may adopt the following pin connection mode: the MEMS gas sensor A includes: Heating electrode pin A4, first ground pin A5, detection electrode pin A6 and second ground pin A7, among them:
  • the heating electrode pin A4 is connected to the first end of the strip-shaped heating electrode portion A321, and the second end of the strip-shaped heating electrode portion A321 is connected to the first ground pin A5; Loop
  • the first end of the first detection electrode portion A323-1 is connected to the first end of the gas-sensitive material portion A324, and the second end of the first detection electrode portion A323-1 is connected to the detection electrode pin A6. Connection; the first end of the second detection electrode portion A323-2 is connected to the second end of the gas-sensitive material portion A324, and the second end of the second detection electrode portion A323-2 is connected to the second ground Pin A7 is connected to form a detection loop.
  • the cavity A1 may include one or more; wherein:
  • a plurality of gas detection components A3 can be provided at different positions of the cavity opening of any cavity A1; or
  • the gas detection components A3 can be respectively provided at different positions of the cavity opening of each cavity in any of the plurality of cavities A1; or
  • a gas detection assembly A3 may be provided at the cavity opening of each cavity in any of the plurality of cavities A1; or
  • a gas detection assembly A3 can be provided at the cavity opening of any cavity A1.
  • the substrate may include a cavity provided with a gas detection component, and only one gas detection component may be provided in the cavity, or may be located at different positions of the cavity. Set up multiple gas detection components.
  • the substrate may include multiple (two or more) cavities provided with gas detection components, wherein each cavity may only be provided with one gas detection component, or Each cavity is provided with multiple gas detection components, or in the multiple cavities, only one gas detection component is provided in some of the cavities, and multiple gas detection components are provided in other parts of the cavities.
  • the substrate may include a plurality of cavities, and some of the cavities may be provided with one or more gas detection components, and other parts of the cavities may not be provided with gas detection components.
  • the gas detection component may span multiple cavities, for example, one gas detection component A3 is set up above multiple cavities 1; or, multiple gas detection components are set up above multiple cavities 1 Assembly A3: Among them, each gas detection assembly A3 will be erected above multiple cavities A1.
  • FIG. 2 shows an exemplary embodiment in which a cavity A1 is provided on the first substrate A2, and a supporting suspension bridge A31 is mounted on the cavity A1, that is, in this exemplary embodiment, a cavity A1 A gas detection assembly A3 is provided at the opening of the cavity.
  • FIG. 3 shows an exemplary embodiment in which a cavity A1 is provided on the first substrate A2, and a plurality of support suspension bridges A31 are mounted on the cavity A1, that is, in this exemplary embodiment, a cavity A1 Multiple gas detection components A3 are provided inside.
  • FIG. 4 shows an exemplary embodiment in which a plurality of cavities A1 are provided on the first substrate A2, and a plurality of support suspension bridges A31 are erected on each cavity A1, that is, in this exemplary embodiment, each A plurality of gas detection components A3 are arranged in the cavity A1.
  • three cavities are taken as an example. In other embodiments, two cavities or more than three cavities may be provided.
  • FIG. 5 shows an exemplary embodiment in which a plurality of cavities A1 are provided on the first substrate A2, and a support suspension bridge A31 is erected on each cavity A1, that is, in this exemplary embodiment, each cavity A1
  • a gas detection assembly A3 is provided in the body A1.
  • the number of cavities in Figure 5 is only an example, and the actual number can be set as needed.
  • the shape of the opening of the cavity A1 is not limited, for example, it may be a square, a rectangle, a circle, a ring, or an irregular shape.
  • the arrangement of the plurality of cavities A1 may include, but is not limited to, any one or more of the following: parallel arrangement, one-line arrangement, and arrangement according to a preset geometric figure (For example, it can be arranged in an array or in a symmetrical geometric figure or in a non-symmetrical geometric figure), as shown in Figures 6a-6d, where Figure 6a is an example of the cavities arranged side by side, and Figure 6b is the word cavities. Examples of the arrangement, Fig. 6c and Fig. 6d are examples of the arrangement of geometric figures.
  • the cavity is rectangular as an example, and the number of cavities is only an example. In other embodiments, the number and shape of the cavities can be set as required.
  • the arrangement of the multiple support suspension bridges A31 at the opening of any cavity A1 can have various changes depending on the arrangement of the cavity.
  • it can include but not limited to any one or more of the following: And arrange according to a preset pattern (the preset geometric pattern can be symmetrical or asymmetric), see Figure 3 or 4 for an example of the parallel arrangement of the strip-shaped gas detection components, and the strip-shaped gas detection components are arranged according to the preset pattern
  • Figs. 7a-7c the figures only show the schematic diagram of the gas detection assembly at the cavity
  • Figures 7a-7c only take the rectangular cavity as an example, and the number of strip-shaped gas detection components is only an example. In other embodiments, the number of cavities and the number of strip-shaped gas detection components are both It can be set as required.
  • the shape of the support suspension bridge A31 is a bar shape.
  • the multiple cavities A1 are arranged side by side when there are multiple cavities A1 is given.
  • a cavity opening includes a plurality of supporting suspension bridges A31, and the plurality of supporting suspension bridges A31 are arranged side by side.
  • the plurality of supporting suspension bridges A31 may be symmetrically distributed, which can reduce power consumption.
  • a plurality of support suspension bridges A31 at the opening of a cavity when symmetrically distributed, they can be surrounded to form a symmetrical polygon, a circle, an ellipse, or a mirror-symmetrical shape.
  • a plurality of supporting suspension bridges A31 can be erected in a regular polygon (for example, a regular triangle, a square or a regular pentagon, etc.); for another example, a plurality of supporting suspension bridges A31 can be arranged in an arc shape, and a plurality of arc-shaped supporting suspensions The bridges can be formed into a circle or an ellipse; for another example, a plurality of supporting suspension bridges can be arranged in mirror symmetry with a certain surface as the axis; for another example, a plurality of V-shaped supporting suspension bridges A31 at the opening of a cavity can be Form a fishbone shape without a main bone.
  • the supporting suspension bridges A31 at the openings of the multiple cavities may also jointly form one or more shapes (the shapes may include, but are not limited to, geometric shapes, character shapes, and/or any preset patterns, etc., For example, trademarks, trademark abbreviations, etc.), the shape can be a symmetrical shape, for example, the supporting suspension bridges A31 provided at the openings of the two cavities together form a fishbone shape (the fishbone shape is provided with a main bone).
  • the multiple support suspension bridges A31 at the openings of the multiple cavities can be distributed in mirror symmetry to form a mirror symmetric shape.
  • the openings of each cavity are juxtaposed A plurality of support suspension bridges are arranged, and the support suspension bridges at the openings of the two cavities are arranged axisymmetrically with the plane between the two cavities perpendicular to the substrate.
  • the supporting suspension bridges at the openings of the two cavities are arranged like fish bones.
  • the arrangement of the supporting suspension bridge is taken as an example for description, and the arrangement of the gas detection assembly or the gas detection portion is the same as the arrangement of the supporting suspension bridge. It can be seen from Figure 1 that there is a gas detection part on each supporting suspension bridge.
  • the heating electrode part, the insulating layer, and the detection electrode part in the gas detection part on the supporting suspension bridge are also strip-shaped.
  • the cavity A1 may include one or more, and the multiple gas detection components A3 at the cavity opening of any cavity A1 may share pins, or the cavities A1 may share pins. Multiple gas detection components A3 at the opening of the cavity can share pins. Sharing pins can save wiring space.
  • the common pins of the multiple gas detection components A3 may include one or more of the following methods:
  • the strip heating electrode portions A321 of the plurality of gas detection components A3 share the first ground pin A5;
  • the strip-shaped detection electrode portions A321 of the plurality of gas detection components A3 share the second ground pin A7;
  • the strip-shaped detection electrode portions A321 of the plurality of gas detection components A3 share the detection electrode pin A6.
  • the arbitrary plurality of cavities A1 may include a first cavity A1-1 and a second cavity A1-2; the first cavity A1-1 and the first cavity A1-1
  • the two cavities A1-2 are described as an example.
  • the multiple gas detection components A3 at the cavity openings of any multiple cavities A1 share pins, which may include:
  • the n gas detection components A3 share the first ground pin A5 and the second ground pin A7.
  • m strip-shaped heating electrode portions in m gas detection components A3 and n strip-shaped heating electrode portions in n gas detection components A3 share the first ground pin A5, and m gas detection components A3
  • the m strip-shaped detection electrode portions and the n strip-shaped detection electrode portions in the n gas detection components A3 share the second ground pin A7.
  • the pin shape and routing method shown in FIG. 8 are only examples. In other embodiments, the shape and/or position of the ground pin may be different. For example, the area of the ground pin may be smaller. Accordingly, the electrode The total length of the lead between the part and the ground pin may be increased. In addition to being connected by leads, in an exemplary embodiment, the electrode part and the pin may be directly connected.
  • both m and n are positive integers, and m and n may be the same or different.
  • first ground pin A5 and the second ground pin A7 may be disposed between the first cavity A1-1 and the second cavity A1-2.
  • both the first ground pin A5 and the second ground pin A7 may be made into a ring shape, and the ring shape may surround a plurality of cavities A1 (such as the first cavity A1-1 and the second cavity A1-1). Cavity A1-2) is set. So that the gas detection components A3 in the multiple cavities are connected to the first ground pin A5 and the second ground pin A7.
  • the m gas detection components and the n gas detection components may share one detection electrode pin A6.
  • the detection electrode pin A6 may include a first detection electrode pin and a second detection electrode pin; the m gas detection components A3 may share the first detection electrode pin, and the n Two gas detection components can share the second detection electrode pin.
  • first cavity A1-1 and the second cavity A1-2 may be respectively provided with their own common detection electrode pins (such as the first detection electrode pin and the second detection electrode pin), It is also possible to share one detection electrode pin.
  • FIG. 8 a schematic diagram of an embodiment in which the first cavity A1-1 and the second cavity A1-2 share one detection electrode pin A6 is given.
  • the gas-sensitive materials used in the plurality of gas-sensitive material parts A324 may all be different; or, the gas-sensitive materials used in at least two gas-sensitive material parts A324 are the same.
  • the gas-sensitive material may include any one or more of the following: tin oxide, indium oxide, tungsten oxide, and zinc oxide.
  • a fishbone-shaped MEMS gas sensor An exemplary embodiment of a fishbone-shaped MEMS gas sensor is given below.
  • a plurality of gas detection components are provided on the surface of the first substrate, and the arrangement of the plurality of gas detection components resembles fish bones.
  • the fishbone-shaped MEMS gas sensor may include two cavities; each cavity may be provided with multiple gas detection components, that is, multiple support suspension bridges A31, for example, two, three One, four or more, the number of gas detection components can be set as required, or determined according to the size of the sensor, that is, the surface area of the first substrate; each supporting suspension bridge A31 can be provided with a gas detection portion A32.
  • the fishbone-shaped MEMS gas sensor may include: a plurality of heating electrode pins A4 corresponding to the plurality of strip-shaped heating electrode portions A321 of the plurality of gas detection portions A32; so as to be provided with two cavities
  • four gas detection components are provided at the opening of each cavity.
  • Four support suspension bridges A31 are provided on a cavity, which corresponds to four strip-shaped heating electrode sections. Therefore, on the surface of the substrate, the One side of the cavity is provided with 4 heating electrode pins A4, and the two cavities are provided with a total of 8 support suspension bridges A31, correspondingly provided with 8 strip-shaped heating electrode parts, correspondingly, a total of 8 heating electrode pins A4 are provided.
  • the number of heating electrode pins A4 is determined according to the number of heating electrode parts.
  • the fishbone-shaped MEMS gas sensor may include: two detection electrode pins A6, wherein the strip detection electrode portion A323 in the gas detection assembly at the opening of each cavity shares one detection
  • the number of electrode pins A6, that is, the number of detection electrode pins, can be determined according to the number of cavities.
  • the detection electrode pin A6 may be provided with only one detection electrode pin A6, that is, the strip detection electrode portions A323 in all the gas detection components share one detection electrode pin A6.
  • the fishbone-shaped MEMS gas sensor may include: a first ground pin A5 and a second ground pin A7; strip detection in a plurality of gas detection components at the openings of the two cavities
  • the electrode portions A323 all share the second ground pin A7
  • the strip heating electrode portions A321 in the plurality of gas detection assemblies at the openings of the two cavities all share the first ground pin A5.
  • one first ground pin A5 and one second ground pin A7 of the fishbone-shaped MEMS gas sensor may both be arranged at a position between the two cavities, and are arranged at In different layers.
  • the fishbone-shaped MEMS gas sensor A may sequentially include from top to bottom: a gas-sensitive material layer 1 (the layer where the gas-sensitive material portion A324 is located), and a gas detection electrode layer 2 ( Strip-shaped detection electrode portion A323, detection electrode pin A6 and second ground pin A7 are located), isolation film layer 3 (the layer where the insulating layer A322 between the strip-shaped heating electrode portion A321 and the strip-shaped detection electrode portion A323 is located) , Heater layer 4 (the layer where the strip heating electrode portion A321, the heating electrode pin A4 and the first ground pin A5 are located), the support film layer 5 (the layer where the support suspension bridge A31 is located) and the substrate layer 6 (the first substrate A2 is located on the floor).
  • a gas-sensitive material layer 1 the layer where the gas-sensitive material portion A324 is located
  • a gas detection electrode layer 2 Strip-shaped detection electrode portion A323, detection electrode pin A6 and second ground pin A7 are located
  • isolation film layer 3 the layer where the insulating layer
  • the fishbone structure 21 in the fishbone-shaped MEMS gas sensor may include: a main bone 211 (provided with a first ground pin A5 and a second ground pin A7 ) And the support bones 212 (consisting of gas detection components, each gas detection component including a supporting suspension bridge A31 and a gas detection part A32 arranged on the supporting suspension bridge A31) distributed on both sides of the main bone 211;
  • the number is not limited and is determined according to the number of gas detection components.
  • each of the two sides of the main bone 211 may include 4 support bones 212; the gas detection electrode pins 22 (ie, the detection electrode lead The foot A6) is connected to the gas-sensitive material portion A324 at the electrode detection site 23 (ie, the first opening A325) through the first detection electrode portion A323-1.
  • the fishbone-shaped MEMS gas sensor may be a fishbone-shaped programmable MEMS gas sensor, which has a plurality of heating electrode pins, and a programmed voltage can be input through the heating electrode pins.
  • the widths of the main bones 211 and the support bones 212 can be defined by themselves according to actual needs, and the number of the support bones 212 can also be defined by themselves according to actual needs, and there is no limitation here. As shown in FIGS. 9 and 10, it is an embodiment scheme in which 8 branch bones 212 are arranged in the fishbone structure. In the subsequent views, 8 branch bones 212 are used as an example for description.
  • 8 gas detection parts A32 are arranged on 8 strip-shaped support suspension bridges to form 8 support bones.
  • the strip-shaped support bones are used as the sensing parts of the gas sensor.
  • the thermal mass is small and the power consumption is small. Low.
  • each brace 212 that is, each gas detection component can be used as an independent gas sensor, and any one of the gas detection components is damaged, and it will not affect the use of other gas sensor components. Good sex.
  • the number of the support bones 212 can be designed as required.
  • the number in the embodiment is only an example, and can be increased or decreased accordingly.
  • Increasing the number of the support bones 212 can double the programming combination Increase, good scalability.
  • the gas sensitive materials 11 provided on the 8 gas detection components may be different, that is, one gas sensitive material is provided in each gas detection component. , Set a total of 8 types.
  • the gas sensitive materials 11 provided in at least two of the gas detection components may be the same, and the detection results can be verified by setting the same gas sensitive materials.
  • the gas-sensitive material layer 1 may include 8 mutually independent gas-sensitive material parts A324: 1-1, 1-2, 1-3, 1-4, 1- 5. 1-6, 1-7 and 1-8, the same kind or multiple different gas-sensitive materials can be used, and any one or more feasible gas-sensitive materials can be arbitrarily combined.
  • the electrode detection site 23, that is, the first opening A325 in FIG. 1 may be arranged at the middle position of each brace 212, or on the vertical centerline of the cavity section as shown in FIG.
  • the gas-sensitive material 11 may cover the position of the electrode detection site 23, for example, may cover the first opening A325 between the first detection electrode portion and the second detection electrode portion, or may It is filled in the first opening A325, as long as it has an effective electrical connection with the first detection electrode portion and the second detection electrode portion, respectively.
  • FIG. 12 shows a schematic diagram of the gas detection electrode layer 2.
  • the main bone 211 may be the first common ground 24, that is, the second ground pin A7.
  • the first common ground 24 may Cooperate with the gas detection electrode pins 22 (including the first common gas detection electrode pin 221 and the second common gas detection electrode pin 222 in the figure) to output a gas detection voltage.
  • FIG. 12 a schematic diagram of the gas detection electrode layer 2 is given. As can be seen in FIG. 12, it includes a first common ground 24 for forming the main bone 211, and 8 strip detection electrodes for forming the support bones 212 (each side of the main bone 211 is provided with 4 support bones 212). And gas detection electrode pins.
  • Each strip-shaped detection electrode portion includes a first detection electrode portion and a second detection electrode portion. There is an electrode detection site between each first detection electrode portion and the second detection electrode portion, and there are a total of 8 electrode detection locations.
  • Point 23 (including 231, 232, 233, 234 arranged on one side of the main bone 211 and 235, 236, 237, 238 arranged on the other side of the main bone 211, correspondingly arranged with 8 gas-sensitive material parts A324).
  • Each second detection electrode portion is connected to the first common ground 24, and every four first detection electrode portions are connected to a gas detection electrode pin 22.
  • the four first detection electrode portions on one side of the main bone are connected to the first common gas detection electrode pin 221, and the four first detection electrode portions on the other side of the main bone are connected to the second common gas detection electrode.
  • Pin 222 is connected.
  • the pattern of the gas detection electrode layer shown in the figure is only an example.
  • the size of the ground pin, the position of the detection pin, the angle between the detection electrode portion and the ground pin, and the distance between the detection electrode portion and the detection pin can be adjusted, and correspondingly, the positions of the corresponding components in other layers should also be adjusted.
  • the electrode detection sites 231, 232, 233, 234, 235, 236, 237, 238 can be respectively covered with the aforementioned gas-sensitive material parts A324: 1-1, 1-2, 1-3, 1-4, 1 -5, 1-6, 1-7 and 1-8, these gas-sensitive material parts A324 may use gas-sensitive materials 111, 112, 113, 114, 115, 116, 117, and 118, respectively.
  • the gas detection electrode pin 22 includes the first common gas detection electrode pin 221 and the second common gas detection electrode pin 222:
  • the material resistance formed by the gas-sensitive material 11 on the branch bone 212 on the first side of the main bone 211 constitutes a parallel resistance, and the gas detection is output through the first common gas detection electrode pin 221 Voltage; and/or,
  • the material resistance formed by the gas sensitive material 11 on the branch bone 212 on the second side of the main bone 211 constitutes a parallel resistance, and the second common gas detection electrode pin 222 outputs a gas detection voltage.
  • the electrode detection sites 231, 232, 233, 234 pass through
  • the gas sensitive materials 111, 112, 113, 1-1, 1-2, 1-3, 1-4 in the gas sensitive material part A324 114 forms 4 material resistors connected in parallel; the first common gas detection electrode pin 221 can output the voltage values of the 4 material resistors connected in parallel.
  • the electrode detection sites 235, 236, 237, 238 are electrically connected to the second common gas detection electrode pin 222 through the supporting bone, the 1-5, 1-6, 1-7,
  • the gas-sensitive materials 115, 116, 117, and 118 of 1-8 form four other material resistors connected in parallel, and the second common gas detection electrode pin 222 can output the voltage values of the other four parallel material resistors.
  • the material resistance composed of the gas sensitive material A324 on the eight branches 212 constitutes a parallel resistance, and the gas detection electrode pins 22 output gas detection voltage.
  • the gas sensor When the gas detection voltage is output, the gas sensor completes the detection.
  • the obtained gas detection voltage may be combined with other parameters, such as gas concentration, to determine the gas composition.
  • the heating temperature of the heater under a single gas-sensitive material can be changed one by one to obtain the gas detection voltage spectrum, and the gas detection voltage spectrum can be obtained by observing the waveform change. Make judgments.
  • FIG. 13 it is a schematic diagram of an isolation film layer.
  • the isolation film layer 3 may be used to isolate the gas detection electrode layer 2 and the heater layer 4; the isolation film Layer 3 may include a first insulating film 31; the first insulating film 31 may be provided with a first window 311 and a second window 312, wherein:
  • the first window 311 is used to expose the heating electrode pin and the first ground pin of the heater
  • the second window 312 is used to expose the cavity.
  • the second window can be understood as an etching window, that is, a window used to etch the cavity, and may include multiple sub-windows;
  • the first shape may have a shape formed by vertical projection of the hollow part of the fishbone structure 21 on the isolation membrane layer 3.
  • the second window 312 may be a window for wet etching.
  • the isolation film layer 3 is an insulating film for isolating the heater layer 3 and the gas detection electrode layer 2
  • the first window 311 is the electrode pin window of the heater, which is used to expose the heater Pad (pin) and ground pin
  • the second window 312 is an etching window.
  • the heater layer 4 may be provided with a fishbone-shaped heating assembly corresponding to the shape of the fishbone structure 21;
  • the fishbone-shaped heating assembly may include: Two common ground 41 (that is, the first ground pin A5), the heater 42 (that is, the strip-shaped heating electrode portion A321), and the heating electrode pin 43 (that is, the heating electrode pin A4);
  • the second common ground 41 can be arranged between the two cavities to form the main bone, and the 8 heaters 42 are located at the 8 support bones.
  • One end of the eight heaters 42 is connected to the second common ground 41, and the other end of the eight heaters 42 is respectively connected to the N heating electrode pins 43.
  • FIG. 14 shows a schematic diagram of an embodiment of a fishbone-shaped heating assembly.
  • each side of the main bone in the fishbone heating assembly can be provided with four support bones, and each support bone can be provided with a heater.
  • the first side of the main bone can be provided with heaters 421, 422. , 423, 424, the second side of the main bone may be provided with heaters 425, 426, 427, 428.
  • the eight heating electrode pins corresponding to and connected to the heaters 421, 422, 423, 424, 425, 426, 427, 428 are 431, 432, 433, 434, 435, 436, 437, 438.
  • all heaters share a common ground, which effectively reduces the number of pins (Pad).
  • a total of 11 or 12 pads can be provided for the 8 gas detection components, that is, a total of 11 or 12 electrode pins are required (including 8 heating electrode pins, 1 or 2 gas detection electrode pins). , 2 common ground electrode pins), greatly reducing the number of pins, which is conducive to lead and related circuit design.
  • eight gas detection components are integrated on one gas sensor, and one gas detection component is equivalent to one traditional gas sensor.
  • each heater can be designed to have a different width.
  • the same heating voltage is applied through the heating electrode pins, because of the different Joule heat generated, it can be matched with different widths of the support bones to obtain the same or different Heating temperature.
  • semiconductor gas-sensing materials have different sensitivity to different gases at different working temperatures.
  • the same sensor may have the best response to gas A at 300 degrees, and the best response to gas B at 400 degrees.
  • a fixed voltage is applied to the heater to allow the gas-sensitive material to reach a certain temperature. If you want to detect multiple gases at the same time, you need to set up multiple different gas sensors and require different power supply voltages.
  • different voltages can be applied to the heaters in different gas detection components through the heating electrode pins. Each gas detection component is an independent gas sensor. When measuring multiple gases , High utilization rate and low cost.
  • any one or more of the 8 heating electrode pins can be combined to obtain a variety of combinations; wherein, the heating electrode pins in each combination can be applying different voltages heating, or at least two heating electrodes heating the same voltage applied to the pin, it can be obtained 28 kinds of voltage applied manner, the respective eight kinds of heating temperature to give 2.
  • FIG. 15 it is a schematic diagram of voltage input and output of a herringbone-shaped programmable MEMS gas sensor.
  • V H 1, V H 2, V H 3, V H 4, V H 5, V H 6, V H 7 and V H 8 are the heating voltages on the heater
  • GND1 is the ground shared by the heating voltage (that is, the The second common ground 41)
  • V S 1 and V S 2 are the material sensitive voltages (that is, the voltage output by the first common gas detection electrode pin 221 and the voltage output by the second common gas detection electrode pin 222).
  • Vs1 can be composed of voltage components V S 11, V S 12, V S 13, and V S 14. Partial pressure.
  • Vs2 can be composed of voltage components V S 25, V S 26, V S 27, and V S 28.
  • the four voltage components are the result of the material resistance of the gas-sensitive materials on the four branches 212 on the second side of the main bone 211. Partial pressure.
  • GND2 is the ground shared by V S 1 and V S 2 (that is, the first common ground 24).
  • FIG 16 shows the equivalent schematic diagram of the heating circuit of the fishbone programmable MEMS gas sensor.
  • R H 1, R H 2, R H 3, R H 4, R H 5, R H 6, R H 7, and R H 8 are the resistances of the heater.
  • FIG 17 shows the first equivalent schematic diagram of the gas detection circuit in the fishbone-shaped programmable MEMS gas sensor.
  • V S 1 and V S 2 are the detection voltages (that is, the material sensitive Voltage)
  • V L 1 and V L 2 are measurement voltages
  • R L 1 and R L 2 are matching resistances
  • R S 1, R S 2, R S 3, R S 4, R S 5, R S 6, R S 7 and R S 8 respectively represent the resistance of the gas sensitive materials 111, 112, 113, 114, 115, 116, 117, 118, when any one of the resistances of R S 1, R S 2, R S 3, R S 4
  • V S 1 changes
  • V L is connected to the gas detection electrode pin through a matching resistor R L.
  • the voltage across V S 1 plus R L 1 is equal to V L 1
  • V S 2 plus R L 2 is equal to V L 1
  • V S 1 and V S 2 are the output voltage of the sensor (hereinafter referred to as the output voltage). When in use, it can be measured to obtain V S 1 and V S 2 or to measure the voltage borne by the matching resistance.
  • Figure 18 shows the second equivalent schematic diagram of the gas detection circuit in the fishbone-shaped programmable MEMS gas sensor, corresponding to an example of a detection electrode pin, which is equivalent to connecting V S 1 and V S 2 together , Get a V S , and use the same matching resistance R L and the measured voltage V L , when R S 1, R S 2, R S 3, R S 4, R S 5, R S 6, R S 7, R When any one of the resistances in S 8 changes, V S changes.
  • 1000000 means only V H 1 is high level
  • 10010001 can represent that V H 1, V H 4 and V H 8 are high levels.
  • 00000000-11111111 There are 28 cases of 00000000-11111111, which means that the material sensitive resistance will have 8!
  • the purpose of detection can be achieved by detecting V S 1 and V S 2, or V S.
  • eight kinds of claim 2 heating temperature may be arbitrarily combined with one or more of eight gas-sensitive materials on the supporting bone, to achieve detection of multiple gases.
  • FIG. 19 is a schematic diagram of a supporting film layer.
  • the supporting film layer 5 may be provided with a second insulating film 51; the second insulating film 51 may be provided with an etching window.
  • a second shape 52 is provided; the second shape 52 may be the same as the first shape.
  • the supporting film layer 5 may also be an insulating film
  • the second insulating film 51 is a supporting film of the support bone 212 and used as a supporting suspension bridge
  • the second shape 52 may be an etching window for The structure shape of the fishbone programmable MEMS gas sensor is formed and the structure is released through the wet method.
  • the first substrate may be a silicon substrate
  • the silicon substrate layer 6 may be provided with two hollow grooves, such as the first hollow groove 61 and the second hollow groove 61 in FIG.
  • the hollow groove 62 they can correspond to the aforementioned first cavity and second cavity respectively.
  • the two hollow grooves may be symmetrically arranged with each other centered on the main bone of the fishbone structure 21.
  • the silicon substrate layer 6 may be a silicon substrate with a ⁇ 100> crystal orientation, and 61 and 62 may be hollow grooves formed by wet etching.
  • the fishbone-shaped MEMS gas sensor described in the foregoing embodiment is only an example.
  • the fishbone-shaped MEMS gas sensor can be modified in various ways.
  • it may be configured as a half-fishbone-shaped MEMS gas sensor, that is, it includes only the main bone and the upper half of the branch bones in FIG. 9 or only the main bone and the lower half of the branch bones in FIG. 9 .
  • it may be configured as an asymmetric fishbone-shaped MEMS gas sensor.
  • the positions of the support bones on both sides of the main bone may be asymmetric, or the number of support bones on both sides of the main bone may be different.
  • the embodiments of the present disclosure do not limit the angle between the support bone and the main bone.
  • the embodiments of the present disclosure also provide a gas detection method (or called detection method) of a MEMS gas sensor.
  • the MEMS gas sensor may be the MEMS gas sensor described in any of the above embodiments, that is, the above MEMS gas sensor. Any embodiment in the gas sensor embodiment scheme is applicable to the gas detection method embodiment, and will not be repeated here. As shown in FIG. 21, when performing gas detection, the method may include steps S11 and S12:
  • the sensor After obtaining the above voltage value, the sensor completes the detection. According to the obtained voltage value, the gas can be detected.
  • the voltages of any two strip-shaped heating electrode portions are the same or different.
  • Obtaining the voltage value between the first detection electrode portion and the second detection electrode portion can be directly collecting the voltage value between the first detection electrode portion and the second detection electrode portion, or it can be collecting the voltage across the matching resistor, combined with measurement The voltage is calculated.
  • the multiple different gases may include 2 N (N is the number of gas detection components, one gas detection component includes a support suspension bridge, and a gas detection part disposed thereon, N is positive Integer) kinds of gas.
  • the embodiments of the present disclosure also provide a method for preparing a MEMS gas sensor.
  • the MEMS gas sensor is the gas sensor described in any one of the above embodiments; the "patterning process" in this embodiment includes but It is not limited to the processes of depositing film layers, coating photoresist, mask exposure, developing, etching, and stripping photoresist. As shown in FIG. 22, the method may include steps S21 to S24:
  • the first substrate may be a silicon-based substrate, for example.
  • a single-sided or double-sided polished silicon wafer with a ⁇ 100> crystal orientation can be selected as the first substrate;
  • the forming a supporting film on the first surface of the first substrate may include:
  • it can be a silicon oxide film, or a silicon nitride film, or a composite film composed of a silicon oxide layer and a silicon nitride layer. It can be a group of silicon oxide layers and silicon nitride layers or multiple groups of silicon oxide layers and nitrogen.
  • the silicon layer. Thermal oxidation, plasma-enhanced chemical vapor deposition, or low-pressure chemical vapor deposition may be used to sequentially grow a silicon oxide layer and/or a silicon nitride layer on the first surface of the first substrate.
  • the method may further include: after forming the supporting film on the first surface of the first substrate, forming the support film on the second surface (for example, with the first surface) of the first substrate. On the opposite surface), a second silicon compound of a second predetermined thickness is deposited as a protective film.
  • the materials for forming the film on the first surface and the second surface may be the same or different.
  • the films on the first surface and the second surface may be formed simultaneously or sequentially.
  • a gas detection portion is formed on the support film, wherein: the gas detection portion includes a strip-shaped heating electrode portion, an insulating layer, a strip-shaped detection electrode portion, and a gas-sensitive material portion that are sequentially stacked, and the strip-shaped detection portion
  • the electrode portion includes a first detection electrode portion and a second detection electrode portion, a first opening is provided between the first detection electrode portion and the second detection electrode portion, and the gas-sensitive material portion is provided at the first opening position Wherein, the first end of the gas-sensitive material portion is connected with the first detection electrode portion, and the second end of the gas-sensitive material portion is connected with the second detection electrode portion.
  • a gas detection part, a heating electrode pin, a first ground pin, a detection electrode pin, and a second ground pin may be formed on the supporting film.
  • the formation of the gas detection portion, the heating electrode pin, the first ground pin, the detection electrode pin, and the second ground pin on the supporting film may include Steps S231 to S234:
  • a lead may be formed between the heating electrode part and the heating electrode pin, and/or a lead may be formed between the heating electrode part and the first ground pin. Whether to form a lead can be determined according to the distance between the heating electrode part and the lead.
  • the foregoing step S231 may include:
  • a metal body of a third predetermined thickness is deposited on one or more first regions on the support film as the strip-shaped heating electrode portion, and a third pre-deposited member is deposited on one or more second regions other than the first region.
  • a thick metal body is used as the heating electrode pin and the first ground pin.
  • a lead may be formed between the heating electrode pin and the heating electrode part, and/or a lead may be formed between the first ground pin and the heating electrode part.
  • a metal thin film is deposited on the support film, and the metal thin film is patterned through a patterning process to form a heater layer pattern, including a heater electrode pattern, a heater electrode pin pattern, and a first ground pin pattern.
  • the forming an isolation film on the upper layer of the strip-shaped heating electrode portion, the heating electrode pin, and the first ground pin on the first substrate may include:
  • a third silicon compound with a fourth preset thickness is deposited on the upper layer of the strip-shaped heating electrode portion, the heating electrode pin and the first ground pin as an isolation film.
  • an insulating film is deposited on the upper layer of the third predetermined thickness of the metal body.
  • the insulating film may be patterned through a patterning process to form an isolation film layer pattern, that is, an insulating layer pattern.
  • a strip-shaped detection electrode portion is formed on the insulating layer above the strip-shaped heating electrode, and a detection electrode pin and a second ground pin are formed in the area of the non-insulating layer on the isolation film; wherein, the strip
  • the shaped detection electrode portion includes a first detection electrode portion and a second detection electrode portion; a first opening is provided between the first detection electrode portion and the second detection electrode portion.
  • the isolation film on the heating electrode pin and the first ground pin is etched to expose the heating electrode pin and the first ground pin.
  • it may further include: forming a lead between the detection electrode pin and the detection electrode portion, and/or, forming a lead between the second ground pin and the detection electrode portion.
  • the forming the strip-shaped detection electrode part on the insulating layer above the strip-shaped heating electrode, and forming the detection electrode pin and the second ground pin in the region of the non-insulating layer on the isolation film may include:
  • a conductor with a fifth preset thickness is deposited on the first part of the insulating layer as the first strip-shaped detection electrode part, and a conductor with a fifth preset thickness is deposited on the second part of the insulating layer as the In the second strip-shaped detection electrode portion, a portion between the first portion and the second portion constitutes the first opening.
  • the first strip-shaped detection electrode portion and the second strip-shaped detection electrode portion may be deposited at the same time; wherein, the insulating layer includes the first portion, the second portion, and the third portion, and the third portion Located between the first part and the second part, corresponding to the first opening.
  • a metal thin film is deposited on the upper layer of the isolation film formed in step S232, and the metal thin film is patterned through a patterning process to form a gas detection electrode layer pattern, including a strip-shaped detection electrode pattern, a detection electrode pin pattern, and a second ground lead. Foot pattern.
  • a gas detection electrode layer pattern including a strip-shaped detection electrode pattern, a detection electrode pin pattern, and a second ground lead. Foot pattern.
  • the projection of the strip-shaped detection electrode pattern on the substrate and the projection position of the strip-shaped heating electrode portion on the substrate can overlap all or most of the area to ensure that the strip-shaped heating electrode can detect The gas-sensitive material between the electrode parts is heated.
  • a strip-shaped detection electrode portion is formed on the insulating layer above the strip-shaped heating electrode, and a detection electrode pin and a second ground pin are formed in a region of the non-insulating layer on the isolation film
  • the method may further include:
  • the isolation film on the heating electrode pin and the first ground pin is processed to expose the heating electrode pin and the first ground pin.
  • a photolithography process and/or a dry etching process may be used to etch the isolation film above the heating electrode pin and the first ground pin.
  • the gas-sensitive material part can be prepared by a gas phase method, a liquid phase method or a solid phase method. This step can also be prepared after step 24, that is, after the cavity is etched.
  • the processing the support film to obtain a support suspension bridge may include: using a dry etching process (for example, reactive ion etching) on the support film to release at least two hollow shapes , To form the supporting suspension bridge between the two hollow shapes.
  • a dry etching process for example, reactive ion etching
  • the forming one or more cavities on the first surface of the first substrate may include: using an anisotropic etching solution of a preset compound on the first substrate Release the cavity.
  • the cavity can be made to penetrate the first substrate, or the depth of the cavity can be controlled to leave a gap for heat insulation between the gas detection component and the bottom of the cavity.
  • the isolation film and the support film can be etched layer by layer at one time.
  • the support film can be first etched using a reactive ion etching process or an ion beam etching process , Define the support suspension bridge pattern used to support the gas detection component (such as the figure at the orthographic projection position of the gas detection component) and the cavity boundary, expose the silicon substrate to form an etching window, and then use tetramethylammonium hydroxide Or anisotropic wet etching solution for silicon such as potassium hydroxide, or isotropic wet etching solution, or isotropic dry etching gas to etch the silicon substrate through the etching window, hollowing out the silicon under the suspension bridge The substrate forms a cavity.
  • the shape of the sidewall of the cavity can also be different (either vertical, inclined or curved), for example, the cross-section of the anisotropic etching cavity can be an inverted trapezoid or a "V" shape , The cross-section of the isotropic corrosion chamber is nearly elliptical.
  • One or more cavities can be etched at one time by the above method.
  • the strip-shaped supporting film used to support the gas detection assembly at the opening of the cavity is reserved as a supporting suspension bridge.
  • a silicon substrate layer sequentially preparing: a silicon substrate layer, a supporting film layer, a heater layer, an isolation film layer, a gas detection electrode layer, and a gas sensitive material layer, which may include steps S31 to S39:
  • a silicon substrate is selected to make a first substrate; the first substrate may include but is not limited to a silicon substrate layer; the silicon substrate may include: single-polished or double-polished silicon wafers.
  • a single-polished or double-polished silicon wafer with a ⁇ 100> crystal orientation can be selected as the substrate.
  • the first predetermined thickness may include 1.5 micrometers to 2.5 micrometers; the first silicon compound may include silicon oxide and/or silicon nitride; the second predetermined thickness may include 200 nanometers to 500 nanometers; The second silicon compound may include silicon nitride.
  • PECVD plasma enhanced chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • Low-pressure chemical vapor deposition deposits a single-layer film or a composite film of the first silicon compound (such as silicon oxide and silicon nitride) as the supporting film, and the total thickness (that is, the aforementioned first predetermined thickness) may be 2 microns.
  • 200 nanometers to 500 nanometers can be deposited on the back side of the silicon wafer (ie, the second surface mentioned above, which is usually a non-polished surface or a polished surface) by PECVD or LPCVD.
  • the second silicon compound (such as silicon nitride) is used as a protective film for wet etching.
  • the protective film can be provided on one or more sides of the first substrate.
  • the third predetermined thickness may include 150 nanometers to 250 nanometers; and the metal body material may include platinum.
  • a photolithography process and a metal plating process can be used to deposit a metal body (such as platinum) with a third predetermined thickness (such as 200 nanometers) on the support film to form the heater layer.
  • a metal body such as platinum
  • a third predetermined thickness such as 200 nanometers
  • the photolithography process may be ultraviolet photolithography, and the coating process may be electron beam evaporation coating or magnetron sputtering coating.
  • the fourth predetermined thickness may include: 350 nm to 500 nm; the third silicon compound may include: silicon nitride.
  • PECVD may be used to deposit a third silicon compound (such as silicon nitride) with a fourth predetermined thickness (such as 350 nm to 500 nm) as the isolation film.
  • a third silicon compound such as silicon nitride
  • a fourth predetermined thickness such as 350 nm to 500 nm
  • S35 Depositing a conductor with a fifth preset thickness on the isolation film as a gas detection electrode to form a gas detection electrode layer.
  • the fifth predetermined thickness may include 150 nanometers to 250 nanometers; the metal body may include platinum or gold.
  • the gas detection electrode layer may be fabricated by the process described in step S233, that is, a conductive body with a fifth preset thickness (for example, 200 nanometers) is deposited on the isolation film as the detection electrode, and the detection electrode material may be platinum or gold.
  • the photolithography process and the dry etching process can be used for processing to expose the heater electrode area of the heater.
  • the dry etching process may be reactive ion etching (RIE) or inductively coupled plasma etching (ICP-Etch).
  • the preset processing process may include: a photolithography process and/or a dry etching process. That is, photolithography and dry etching (RIE or ICP-Etch) can be used to form the main bone and support bone structure of the herringbone-shaped programmable gas sensor.
  • RIE photolithography and dry etching
  • the predetermined compound may include: potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH) solution. That is, an anisotropic silicon etching solution such as potassium hydroxide or tetramethylammonium hydroxide solution can be used to release the structure of the main bone and the support bone, and at the same time form a hollow groove on the silicon substrate.
  • KOH potassium hydroxide
  • TMAH tetramethylammonium hydroxide
  • step S39 may be implemented before step S37 or S38.
  • a semiconductor gas-sensitive material such as tin oxide, indium oxide, tungsten oxide, or zinc oxide, can be loaded at the electrode detection site.
  • an embodiment of the present disclosure also provides a MEMS gas sensor array B.
  • the MEMS sensor array includes a plurality of MEMS gas sensors described in the foregoing embodiments.
  • the gas sensor array B may be composed of a plurality of gas sensor devices, wherein at least one gas sensor device is the gas sensor A according to the embodiment of the disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Micromachines (AREA)

Abstract

一种MEMS气体传感器(A)及其阵列(B)、气体检测和制备方法,气体传感器(A)包括在第一表面开设有腔体(A1)的第一衬底(A2),设置于腔体(A1)开口处的气体检测组件(A3),气体检测组件(A3)包括:架设在腔体(A1)开口上的支撑悬桥(A31),以及设置于支撑悬桥(A31)上的气体检测部(A32),气体检测部(A32)包括依次叠设的条形加热电极部(A321)、绝缘层(A322)、条形检测电极部(A323)以及气敏材料部(A324),条形检测电极部(A323)包括第一检测电极部(A323-1)和第二检测电极部(A323-2),第一检测电极部(A323-1)与第二检测电极部(A323-2)之间设有第一开口(A325),气敏材料部(A324)设置于第一开口(A325)位置处,气敏材料部(A324)第一端与第一检测电极部(A323-1)连接,气敏材料部(A324)第二端与第二检测电极部(A323-2)连接。

Description

MEMS气体传感器及其阵列、气体检测和制备方法
本申请要求于2020年3月26日提交中国专利局、申请号为202010222341.9、发明名称为“一种MEMS气体传感器及其阵列、气体检测和制备方法”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本文涉及但不限于气体检测技术领域,尤指一种MEMS气体传感器及其阵列、气体检测和制备方法。
背景技术
气味识别是气体传感器的重要应用领域之一。金属氧化物半导体式气体传感器以其低功耗、低成本、高集成度、对多种气体都有良好的响应等优越特性,被广泛应用于气味识别设备中。MOS(Metal-Oxide Semiconductor,金属氧化物半导体)类MEMS(Micro-Electro-Mechanical System,微机电系统)气体传感器主要以基于封闭膜式和悬浮膜式的研究居多,前者具有较高的机械强度,后者具有较快的热响应速度。但是以上类型的气体传感器仍具有功耗较大的问题。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种MEMS气体传感器及其阵列、气体检测和制备方法。
一方面,本公开实施例提供了一种MEMS气体传感器,可以包括:在第一表面开设有腔体的第一衬底,设置于腔体开口处的气体检测组件,其中:
所述气体检测组件可以包括:架设在所述腔体开口第一边缘与第二边缘 的支撑悬桥,以及设置于所述支撑悬桥上远离所述腔体一侧的气体检测部,其中:所述气体检测部包括依次叠设的条形加热电极部、绝缘层、条形检测电极部以及气敏材料部,所述条形检测电极部包括第一检测电极部和第二检测电极部,所述第一检测电极部与第二检测电极部之间设置有第一开口,所述气敏材料部设置于所述第一开口位置处,所述气敏材料部的第一端与所述第一检测电极部连接,所述气敏材料部的第二端与所述第二检测电极部连接。
另一方面,本公开实施例还提供了一种MEMS气体传感器的气体检测方法,所述MEMS气体传感器为上述任意一种MEMS气体传感器;所述方法可以包括:
选择所述MEMS气体传感器中的任意一个或多个气体检测部,对所述气体检测组件中的条形加热电极部施加加热电压,获取所述气体检测部中第一检测电极部与第二检测电极部之间的电压值。
又一方面,本公开实施例还提供了一种MEMS气体传感器阵列,所述传感器阵列可以包括多个上述任意一种MEMS气体传感器。
再一方面,本公开实施例还提供了一种MEMS气体传感器的制备方法,所述MEMS气体传感器为上述一种MEMS气体传感器;所述方法可以包括:
准备第一衬底;
在所述第一衬底的第一表面上形成支撑膜;
在所述支撑膜上形成气体检测部,其中:所述气体检测部包括依次叠设的条形加热电极部、绝缘层、条形检测电极部以及气敏材料部,所述条形检测电极部包括第一检测电极部和第二检测电极部,所述第一检测电极部与第二检测电极部之间设置有第一开口,所述气敏材料部设置于所述第一开口位置处,所述气敏材料部的第一端与所述第一检测电极部连接,所述气敏材料部的第二端与所述第二检测电极部连接;
对所述支撑膜进行加工获取支撑悬桥,并在所述第一衬底的第一表面形成一个或多个腔体,所述支撑悬桥架设在所述腔体开口第一边缘与第二边缘。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本公开一种示例性实施例中一种MEMS气体传感器组成结构剖面图;
图2为本公开一种示例性实施例中一种MEMS气体传感器组成结构俯视图;
图3为本公开示例性实施例的第一衬底上设置有一个腔体,一个腔体开口处设置多个气体检测组件的示意图;
图4为本公开示例性实施例的第一衬底上设置有多个腔体,多个腔体开口处设置多个气体检测组件的示意图;
图5为本公开示例性实施例的第一衬底上设置有多个腔体,每个腔体开口处设置一个气体检测组件的示意图;
图6a-6d为本公开示例性实施例腔体的排布示意图;
图7a-7c为本公开示例性实施例任意一腔体中气体检测组件或气体检测部的排布示意图;
图8为本公开示例性实施例的第一腔体的多个气体检测组件和第二腔体的多个气体检测组件共用引脚的示意图;
图9为本公开示例性实施例的一种鱼骨形MEMS气体传感器组成结构示意图;
图10为本公开示例性实施例的鱼骨形MEMS气体传感器中鱼骨结构示意图;
图11为本公开示例性实施例的气敏材料层示意图;
图12为本公开示例性实施例的气体检测电极层示意图;
图13为本公开示例性实施例的隔离膜层示意图;
图14为本公开示例性实施例的加热器层示意图;
图15为本公开示例性实施例的MEMS气体传感器的电压输入输出示意图;
图16为本公开示例性实施例的MEMS气体传感器的加热电路等效示意 图;
图17为本公开示例性实施例的MEMS气体传感器的气体检测电路的第一种等效示意图;
图18为本公开示例性实施例的MEMS气体传感器的气体检测电路的第二种等效示意图;
图19为本公开示例性实施例的支撑膜层示意图;
图20为本公开示例性实施例的衬底层示意图;
图21为本公开示例性实施例的MEMS气体传感器的气体检测方法流程图;
图22为本公开示例性实施例一种MEMS气体传感器的制备方法流程图;
图23为本公开示例性实施例的在支撑膜上制备气体检测部、加热电极引脚,第一接地引脚,检测电极引脚和第二接地引脚的方法流程图;
图24为本公开示例性实施例的制备MEMS气体传感器每一层的方法流程图;
图25为本公开示例性实施例的MEMS气体传感器阵列组成框图。
详述
本文描述了多个实施例,但是该描述是示例性的,而不是限制性的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。
在一示例性实施例中,提供了一种MEMS气体传感器A,如图1、图2所示,可以包括:在第一表面开设有腔体A1的第一衬底A2,设置于腔体开口处的气体检测组件A3,其中:
所述气体检测组件A3可以包括:架设在所述腔体开口第一边缘A21与第二边缘A22的支撑悬桥A31,以及设置于所述支撑悬桥A31上远离所述腔体一侧的气体检测部A32,其中:所述气体检测部A32包括依次叠设的条形 加热电极部A321、绝缘层A322、条形检测电极部A323以及气敏材料部A324,所述条形检测电极部A323包括第一检测电极部A323-1和第二检测电极部A323-2,所述第一检测电极部A323-1与第二检测电极部A323-2之间设置有第一开口A325,所述气敏材料部A324设置于所述第一开口A325位置处,所述气敏材料部A324的第一端与所述第一检测电极部A323-1连接,所述气敏材料部A324的第二端与所述第二检测电极部A323-2连接。
在一示例性实施例中,腔体A1可以包括一个或多个,气体检测组件A3可以为一个或多个,相应地,每个腔体A1上架设的支撑悬桥A31可以包括一个或多个;本文对于腔体A1、支撑悬桥A31的数量不做限制。
在一示例性实施例中,腔体A1不限于设置于第一衬底A2的一个表面上,可以在第一衬底A2的多个表面上设置腔体A1,并相应地在不同表面的腔体A1上设置一个或多个气体检测组件A3。
本公开实施例所述MEMS气体传感器,采用MEMS工艺制造,实现单一工艺传感器制造封装,气体传感器批量化制造过程可以大大简化,成本可以大大缩减,效率可以得到提升,制造周期可以缩短,可有助于提高传感器的一致性和稳定性。采用条形支撑悬桥结构,将传感器的有效区域制作在条形支撑悬桥上,省去了蛇形绕线、螺旋形绕线或折线形绕线的加热器结构以及叉指电极结构,可以大大降低气体传感器功耗,提高热响应速度。通过空腔两边缘来支撑上述支撑悬桥,当气体检测组件中加热电极部通电后,特别是需要将气敏材料加热到较高温度时,仍然可以保证较好的支撑性。
通过该实施例方案,将支撑悬桥作为气体传感器的传感部位(即气敏材料部),热质量小、功耗低。
在一示例性实施例中,结合图1和图2所示,所述MEMS气体传感器A可以采用以下引脚连接方式:所述MEMS气体传感器A包括:设置于所述第一衬底A2上的加热电极引脚A4,第一接地引脚A5,检测电极引脚A6和第二接地引脚A7,其中:
所述加热电极引脚A4与所述条形加热电极部A321的第一端连接,所述条形加热电极部A321的第二端与所述第一接地引脚A5连接;以用于形成加热回路;
所述第一检测电极部A323-1的第一端与所述气敏材料部A324的第一端连接,所述第一检测电极部A323-1的第二端与所述检测电极引脚A6连接;所述第二检测电极部A323-2的第一端与所述气敏材料部A324的第二端连接,所述第二检测电极部A323-2的第二端与所述第二接地引脚A7连接,以用于形成检测回路。
在一示例性实施例中,所述腔体A1可以包括一个或多个;其中:
任意一个腔体A1的腔体开口的不同位置处可以分别设置多个气体检测组件A3;或者
任意多个腔体A1中每个腔体的腔体开口的不同位置处可以分别设置气体检测组件A3;或者
任意多个腔体A1中每个腔体的腔体开口处可以设置一个气体检测组件A3;或者
任意一个腔体A1的腔体开口处可以设置一个气体检测组件A3。
例如,在一个示例性实施例中,该衬底上可以包括一个设置了气体检测组件的腔体,在该一个腔体中可以只设置一个气体检测组件,或者可以在该腔体的不同位置处设置多个气体检测组件。在另一示例性实施例中,该衬底上可以包括多个(两个或两个以上)设置了气体检测组件的腔体,其中,每个腔体中可以只设置一个气体检测组件,或者每个腔体中设置多个气体检测组件,或者在所述多个腔体中,其中部分腔体中只设置一个气体检测组件,其他部分腔体中设置多个气体检测组件。
再例如,在另一示例性实施例中,该衬底可以包括多个腔体,其中部分腔体中可以设置一个或多个气体检测组件,其他部分腔体中可以不设置气体检测组件。
在另一示例性实施例中,不排除气体检测组件可以跨越多个腔体的情况,例如多个腔体1上方架设一个气体检测组件A3;或者,多个腔体1上方架设多个气体检测组件A3;其中,每个气体检测组件A3均会架设于多个腔体A1上方。
图2中示出了第一衬底A2上设置有一个腔体A1,一个腔体A1上架设 有一个支撑悬桥A31的示例性实施例,即在本示例性实施例中,一个腔体A1的腔体开口处设置有一个气体检测组件A3。
图3示出了第一衬底A2上设置有一个腔体A1,一个腔体A1上架设有多个支撑悬桥A31的示例性实施例,即在本示例性实施例中,一个腔体A1内设置多个气体检测组件A3。
图4示出了第一衬底A2上设置有多个腔体A1,每个腔体A1上架设有多个支撑悬桥A31的示例性实施例,即在本示例性实施例中,每个腔体A1内设置多个气体检测组件A3。图4中以三个腔体为示例,在其他实施例中,可以设置两个腔体,或三个以上腔体。
图5示出了第一衬底A2上设置有多个腔体A1,每个腔体A1上架设有一个支撑悬桥A31的示例性实施例,即在本示例性实施例中,每个腔体A1内设置一个气体检测组件A3。图5中腔体数量仅为示例,实际数量可根据需要设置。
在本公开示例性实施例中,腔体A1的开口形状不限,例如可以是正方形、矩形、圆形、环形或不规则形状等。
在本公开示例性实施例中,多个腔体A1之间的排布方式可以包括但不限于以下任意一种或多种:并列排布、一字排布以及按照预设的几何图形排布(例如可以阵列排布或者排布成对称几何图形或者排布成非对称几何图形),如图6a-6d所示,其中图6a为腔体并列排布的示例,图6b为腔体一字排布的示例,图6c和图6d为几何图形排布的示例。图6a-6d中仅以腔体为长方形为例进行示例,腔体的个数也仅为示例,在其他实施例中,腔体的个数和形状均可以根据需要进行设置。任意一个腔体A1开口处的多个支撑悬桥A31的排布方式依据腔体的排布形式的不同可以有多种变化,例如可以包括但不限于以下任意一种或多种方式:并列排布以及按照预设的图形排布(所述预设的几何图形可以对称或不对称),条形气体检测组件并列排布的示例参见图3或者图4,条形气体检测组件按照预设图形排布的示例参见图7a-7c(图中仅示出气体检测组件在空腔处的示意),其中。图7a-7c中仅以腔体为长方形为例进行示例,条形气体检测组件的个数也仅为示例,在其他实施例中,腔体的个数以及条形气体检测组件的个数均可以根据需要进行设置。
在图2、图3、图4、图5所示示例中支撑悬桥A31的形状为条形。在图4和图5所示示例中,给出了存在多个腔体A1时,多个腔体并列排布的实施例。在图3和图4所示示例中,给出了一个腔体开口处包含多个支撑悬桥A31时,且多个支撑悬桥A31并列排布的实施例。
在一个示例性实施例中,一个腔体开口处包含多个支撑悬桥A31时,多个支撑悬桥A31可以对称分布,可以减小功耗。
在一个示例性实施例中,当一个腔体开口处的多个支撑悬桥A31对称分布时,可以环绕组成对称多边形、圆形、椭圆形或镜面对称形等。例如,多个支撑悬桥A31可以架设成正多边形(例如,正三角形、正方形或正五边形等);再例如,可以将多个支撑悬桥A31设置为弧形,多个弧形的支撑悬桥可以组成圆形或椭圆形;再例如,多个支撑悬桥可以以某个面为轴呈镜面对称形排布;再例如,在一个腔体开口处的多个V字形支撑悬桥A31可以组成没有主骨的鱼骨形。
在一个示例性实施例中,多个腔体开口处的支撑悬桥A31还可以共同构成一个或多个形状(该形状可以包括但不限于几何形状、字符形状和/或任意预设图案等,例如,商标、商标缩写等),该形状可以为对称形状,例如,两个腔体开口处设置的支撑悬桥A31共同构成鱼骨形(该鱼骨形设有主骨)。
例如,当有多个腔体时,多个腔体开口处的多个支撑悬桥A31可以呈镜面对称分布,组成镜面对称形,例如设置有两个腔体时,每个腔体开口处并列排布多个支撑悬桥,两个腔体开口处的支撑悬桥以两腔体之间垂直于衬底的面为轴对称排布。两腔体开口处的支撑悬桥排列形似鱼骨。
上述示例性实施例中,为描述方便,以支撑悬桥的排布为例进行说明,气体检测组件或气体检测部的排布与支撑悬桥的排布相同。由图1可知,每个支撑悬桥上有一个气体检测部。当支撑悬桥为条形时,支撑悬桥上的气体检测部中的加热电极部、绝缘层、检测电极部也为条形。
在一个示例性实施例中,所述腔体A1可以包括一个或多个,任意一个腔体A1的腔体开口处的多个气体检测组件A3可以共用引脚,或者任意多个腔体A1的腔体开口处的多个气体检测组件A3可以共用引脚。共用引脚可以节约走线空间。所述多个气体检测组件A3共用引脚可以包括以下方式中的 一种或多种:
所述多个气体检测组件A3的条形加热电极部A321共用所述第一接地引脚A5;
所述多个气体检测组件A3的条形检测电极部A321共用所述第二接地引脚A7;
所述多个气体检测组件A3的条形检测电极部A321共用所述检测电极引脚A6。
在一个示例性实施例中,如图8所示,所述任意多个腔体A1可以包括第一腔体A1-1和第二腔体A1-2;以第一腔体A1-1和第二腔体A1-2为例进行说明,所述任意多个腔体A1的腔体开口处的多个气体检测组件A3共用引脚,可以包括:
所述任意多个腔体中的第一腔体A1-1的腔体开口处的m个气体检测组件A3与所述任意多个腔体中的第二腔体A1-2的腔体开口处的n个气体检测组件A3共用第一接地引脚A5和第二接地引脚A7。例如m个气体检测组件A3中的m个条形加热电极部与n个气体检测组件A3中的n个条形加热电极部共用所述第一接地引脚A5,m个气体检测组件A3中的m个条形检测电极部与n个气体检测组件A3中的n个条形检测电极部共用所述第二接地引脚A7。图8中所示引脚形状和走线方式仅为示例,在其他实施例中,接地引脚的形状和/或位置可以有所不同,例如接地引脚的面积可以更小,相应地,电极部与接地引脚之间的引线总长度则可能有所增加。除了可以通过引线连接,在示例性实施例中,电极部与与引脚可以直接连接。
在一个示例性实施例中,m和n均为正整数,m和n可以相同,也可以不同。
在一个示例性实施例中,所述第一接地引脚A5和第二接地引脚A7可以设置于所述第一腔体A1-1与第二腔体A1-2之间。
在一个示例性实施例中,所述第一接地引脚A5和第二接地引脚A7均可以制作成环形,该环形可以围绕多个腔体A1(如第一腔体A1-1和第二腔体A1-2)进行设置。以便于多个腔体中的气体检测组件A3与第一接地引脚A5 和第二接地引脚A7连接。
在一个示例性实施例中,所述m个气体检测组件和n个气体检测组件可以共用一个检测电极引脚A6。在另一示例性实施例中,检测电极引脚A6可以包括第一检测电极引脚和第二检测电极引脚;所述m个气体检测组件A3可以共用第一检测电极引脚,所述n个气体检测组件可以共用第二检测电极引脚。
在一个示例性实施例中,第一腔体A1-1和第二腔体A1-2可以分别设置自身的共用检测电极引脚(如第一检测电极引脚和第二检测电极引脚),也可以共用一个检测电极引脚。
在一个示例性实施例中,如图8所示,给出了第一腔体A1-1和第二腔体A1-2共用一个检测电极引脚A6的实施例示意图。
在一个示例性实施例中,多个气敏材料部A324采用的气敏材料可以均不相同;或者,至少两个气敏材料部A324采用的气敏材料相同。
在一个示例性实施例中,所述气敏材料可以包括以下任意一种或多种:氧化锡、氧化铟、氧化钨和氧化锌。
下面给出一种鱼骨形MEMS气体传感器的示例性实施例。在该示例性实施例中,在第一衬底表面设置有多个气体检测组件,该多个气体检测组件的排布形似鱼骨。
在一示例性实施例中,鱼骨形MEMS气体传感器可以包括两个腔体;每个腔体上可以设置多个气体检测组件,即设置有多个支撑悬桥A31,例如,2个、3个、4个或者更多,气体检测组件的数量可根据需要设定,或者根据传感器大小即第一衬底表面面积来确定;每个支撑悬桥A31可以设置一个气体检测部A32。
在一示例性实施例中,鱼骨形MEMS气体传感器可以包括:与多个气体检测部A32中的多个条形加热电极部A321对应的多个加热电极引脚A4;以设置有两个腔体,且每个腔体开口处设置有4个气体检测组件为例,一个腔体上设置有4个支撑悬桥A31,则对应有4个条形加热电极部,因此在衬底表面,该腔体的一侧设置4个加热电极引脚A4,两个腔体共设置8个支撑悬 桥A31,对应设置8个条形加热电极部,相应地,共设置8个加热电极引脚A4。加热电极引脚A4的数量根据加热电极部的数量来确定。
以设置有两个腔体为例,鱼骨形MEMS气体传感器可以包括:两个检测电极引脚A6,其中,每个腔体开口处的气体检测组件中的条形检测电极部A323共用一个检测电极引脚A6,即检测电极引脚的数量可以根据腔体的数量来确定。在另一示例性实施例中,该检测电极引脚A6可以只设置一个,即所有气体检测组件中的条形检测电极部A323共同共用一个检测电极引脚A6。
在一示例性实施例中,鱼骨形MEMS气体传感器可以包括:一个第一接地引脚A5和一个第二接地引脚A7;两个腔体开口处的多个气体检测组件中的条形检测电极部A323均共用第二接地引脚A7,两个腔体开口处的多个气体检测组件中的条形加热电极部A321均共用第一接地引脚A5。
在一示例性实施例中,为了节约空间,鱼骨形MEMS气体传感器的一个第一接地引脚A5和一个第二接地引脚A7可以均设置于两个腔体之间的位置,且设置于不同层中。
在一示例性实施例中,如图9所示,鱼骨形MEMS气体传感器A可以从上到下依次包括:气敏材料层1(气敏材料部A324所在层)、气体检测电极层2(条形检测电极部A323、检测电极引脚A6和第二接地引脚A7所在层)、隔离膜层3(条形加热电极部A321和条形检测电极部A323之间的绝缘层A322所在层)、加热器层4(条形加热电极部A321、加热电极引脚A4和第一接地引脚A5所在层)、支撑膜层5(支撑悬桥A31所在层)和衬底层6(第一衬底A2所在层)。
在一示例性实施例中,如图10所示,鱼骨形MEMS气体传感器中的鱼骨结构21可以包括:主骨211(设置有一个第一接地引脚A5和一个第二接地引脚A7)和分布于所述主骨211两侧的支骨212(由气体检测组件构成,每个气体检测组件包括支撑悬桥A31和设置于支撑悬桥A31上的气体检测部A32);支骨的数量不限,根据气体检测组件的数量确定,在示例性实施例中,所述主骨211的两侧中每一侧可以包括4个支骨212;气体检测电极引脚22(即检测电极引脚A6)通过第一检测电极部A323-1与电极检测位点 23(即第一开口A325)处的气敏材料部A324相连。
在一示例性实施例中,该鱼骨形MEMS气体传感器可以为一种鱼骨形可编程MEMS气体传感器,其具有多个加热电极引脚,可通过加热电极引脚输入编程后的电压。主骨211和支骨212的宽度可以根据实际需求自行定义,支骨212的数量也可以根据实际需求自行定义,在此不做限制。如图9、图10所示,为鱼骨结构中设置8条支骨212的实施例方案,在后续视图中均以8条支骨212为例进行说明。
在气体传感器的空间和体积一定的情况下,支骨212的数量越多,则支骨212的宽度相应越小。
在一示例性实施例中,8个气体检测部A32设置于8个条形支撑悬桥上,构成8个支骨,条形的支骨作为气体传感器的传感部位,热质量小,功耗低。
在一示例性实施例中,每条支骨212即每个气体检测组件都可以当作一个独立的气体传感器使用,其中任意一个气体检测组件损坏,均不影响其它气体传感组件的使用,兼容性好。
在一示例性实施例中,支骨212即气体检测组件的数量可以按需要进行设计,实施例中的数量仅为示例,可以相应增加或减少,增加支骨212的数量可以使得编程组合成倍增加,扩展性好。
在一示例性实施例中,以气体传感器包括8个气体检测组件为例,8个气体检测组件上设置的气敏材料11可以均不相同,即每个气体检测组件中设置一种气敏材料,共设置8种。在另一示例性实施例中,8个气体检测组件中,其中至少两个气体检测组件中设置的气敏材料11可以相同,通过设置相同的气敏材料可以对检测结果进行验证。
在一示例性实施例中,如图11所示,气敏材料层1可以包括8个相互独立的气敏材料部A324:1-1、1-2、1-3、1-4、1-5、1-6、1-7和1-8,可以采用同种或多种不同的气敏材料,可以由可行的任意一种或多种气敏材料任意组合。
在一示例性实施例中,电极检测位点23即图1中第一开口A325可以设置于每个支骨212的中间位置,或者说设置于如图1所示腔体截面的垂直中 线上。
在一示例性实施例中,气敏材料11可以覆盖于所述电极检测位点23位置,例如可以覆盖于第一检测电极部与第二检测电极部之间的第一开口A325上,或者可以填充在该第一开口A325内部,只要保证分别与第一检测电极部和第二检测电极部具有有效电连接即可。
在一示例性实施例中,图12所示为气体检测电极层2的示意图,图中主骨211处可以为第一公共地24,即第二接地引脚A7,该第一公共地24可以与气体检测电极引脚22(包括图中第一公共气体检测电极引脚221和第二公共气体检测电极引脚222)配合输出气体检测电压。
在一示例性实施例中,如图12所示,给出了气体检测电极层2的示意图。图12中可见,包括一个用于构成主骨211的第一公共地24、8个用于构成支骨212(主骨211的每一侧分别设置有4个支骨212)的条形检测电极部以及气体检测电极引脚。每个条形检测电极部包括第一检测电极部和第二检测电极部,每个第一检测电极部和第二检测电极部之间有一个电极检测位点,共设置有8个电极检测位点23(包括设置于主骨211一侧的231、232、233、234以及设置于主骨211另一侧的235、236、237、238,相应设置8个气敏材料部A324)。每个第二检测电极部均与第一公共地24连接,每4个第一检测电极部与一个气体检测电极引脚22连接。如图所示,主骨一侧的4个第一检测电极部与第一公共气体检测电极引脚221连接,主骨另一侧的4个第一检测电极部与第二公共气体检测电极引脚222连接。图中所示气体检测电极层的图案仅为示例,在其他实施例中,接地引脚大小、检测引脚位置、检测电极部与接地引脚之间的角度、检测电极部与检测引脚的走线位置等均可以进行调整,相应地,其他层中相应部件的位置也应有所调整。
电极检测位点231、232、233、234、235、236、237、238上可以分别对应覆盖有前述的气敏材料部A324:1-1、1-2、1-3、1-4、1-5、1-6、1-7和1-8,这些气敏材料部A324可以分别采用气敏材料111、112、113、114、115、116、117、118。
在一示例性实施例中,当气体检测电极引脚22包括第一公共气体检测电极引脚221和第二公共气体检测电极引脚222时:
如图10、图12所示,所述主骨211第一侧的支骨212上的气敏材料11形成的材料电阻构成并联电阻,通过所述第一公共气体检测电极引脚221输出气体检测电压;和/或,
所述主骨211第二侧的支骨212上的气敏材料11形成的材料电阻构成并联电阻,通过所述第二公共气体检测电极引脚222输出气体检测电压。
在一示例性实施例中,在电极检测位点231、232、233、234、235、236、237、238上设置气敏材料部A324后,在电极检测位点231、232、233、234通过所在支骨与第一公共气体检测电极引脚221进行电连接时,气敏材料部A324中的1-1、1-2、1-3、1-4的气敏材料111、112、113、114形成4个并联在一起的材料电阻;第一公共气体检测电极引脚221可以输出该4个并联的材料电阻的电压值。在电极检测位点235、236、237、238通过所在支骨与第二公共气体检测电极引脚222进行电连接时,气敏材料部A324中的1-5、1-6、1-7、1-8的气敏材料115、116、117、118形成另外4个并联在一起的材料电阻,第二公共气体检测电极引脚222可以输出该另外4个并联材料电阻的电压值。
在一示例性实施例中,当所述气体检测电极引脚22为一个时,所述8个支骨212上的气敏材料A324构成的材料电阻构成并联电阻,通过所述气体检测电极引脚22输出气体检测电压。
当输出气体检测电压后,气体传感器完成检测。在一示例性实施例中,得到的气体检测电压可以结合其他参数,例如气体浓度等进行气体成分的判断。在另一示例性实施例中,可以在得到初始气体检测电压后,通过逐个改变单个气敏材料下方的加热器的加热温度,得到气体检测电压频谱,通过观察波形变化对气体传感器所检测的气体进行判断。
在一示例性实施例中,如图13所示,为隔离膜层的示意图,所述隔离膜层3可以用于隔离所述气体检测电极层2和所述加热器层4;所述隔离膜层3可以包括第一绝缘膜31;所述第一绝缘膜31上可以设置有第一窗口311和第二窗口312,其中:
所述第一窗口311,用于裸露出加热器的加热电极引脚和第一接地引脚;
所述第二窗口312,用于裸露出腔体,该第二窗口可以理解为是刻蚀窗 口,即用于刻蚀腔体的窗口,可以包括多个子窗口;可以设置为第一形状,所述第一形状可以具有所述鱼骨结构21的镂空部分在所述隔离膜层3上垂直投影所形成的形状。
在一示例性实施例中,所述第二窗口312可以为用于湿法刻蚀的窗口。
在一示例性实施例中,隔离膜层3为绝缘膜,用于隔离加热器层3和气体检测电极层2,第一窗口311为加热器的电极引脚窗口,用于裸露出加热器的Pad(引脚)和接地引脚,第二窗口312为刻蚀窗口。
在一示例性实施例中,如图14所示,所述加热器层4可以设置有与所述鱼骨结构21形状对应的鱼骨形加热组件;所述鱼骨形加热组件可以包括:第二公共地41(即第一接地引脚A5)、加热器42(即条形加热电极部A321)和加热电极引脚43(即加热电极引脚A4);
其中,第二公共地41可以设置于两个腔体之间,用于构成主骨,8个加热器42位于8个支骨处。
8个加热器42的一端与所述第二公共地41相连,8个加热器42的另一端分别与N个加热电极引脚43相连。
在一示例性实施例中,图14给出了鱼骨形加热组件实施例示意图。其中,所述鱼骨形加热组件中的主骨的每一侧可以设置四个支骨,每个支骨设置有一个加热器,例如,主骨的第一侧可以设置有加热器421、422、423、424,主骨的第二侧可以设置有加热器425、426、427、428。
在一示例性实施例中,与加热器421、422、423、424、425、426、427、428对应设置并连接的8个加热电极引脚为431、432、433、434、435、436、437、438。
在一示例性实施例中,所有加热器共用一个地,有效地减少了引脚(Pad)的数量。
本示例性实施例方案中8个气体检测组件一共可设置11个或12个Pad,即共需11或12个电极引脚(包括8个加热电极引脚、1或2个气体检测电极引脚、2个公共地电极引脚),极大地减少了引脚的数量,有利于引线和相关的电路设计。本示例性实施例将8个气体检测组件集成在一个气体传感 器上,其中1个气体检测组件相当于1个传统的气体传感器。
在一示例性实施例中,每个加热器可设计成不同的宽度,在通过加热电极引脚施加相同加热电压的时候,由于产生焦耳热不同,可以配合不同宽度的支骨获得相同或不同的加热温度。
通常半导体气敏材料在不同的工作温度下对不同气体的灵敏度不同,同一个传感器可能在300度对气体A的响应最好,而在400度时对气体B的响应最好,而目前在应用中,气体传感器会给其加热器施加一个固定的电压让气敏材料达到一定的温度,如果想要实现同时检测多种气体,则需要设置多个不同的气体传感器,并且需要不同的供电电压。而采用本公开实施例所述气体传感器,可以通过加热电极引脚对不同气体检测组件中的加热器施加不同的电压,每个气体检测组件为一个独立的气体传感器,在进行多种气体测量时,利用率高、成本低。
在一示例性实施例中,可通过对输入的加热电压进行编程,可获得2 N种不同的敏感电压,有助于应用于多种气体识别,拓展气体传感器的应用范围,并提高气体传感器的利用率。
在一示例性实施例中,所述8个加热电极引脚中的任意一个或多个加热电极引脚可以进行组合,获取多种组合方式;其中,每种组合方式中的加热电极引脚可以分别施加不同的加热电压,或者至少两个加热电极引脚施加相同的加热电压,可以获得2 8种电压施加方式,相应获得2 8种加热温度。
在一示例性实施例中,如图15所示,为鱼骨形可编程MEMS气体传感器的电压输入输出示意图。其中V H1、V H2、V H3、V H4、V H5、V H6、V H7和V H8为加热器上的加热电压,GND1为加热电压共用的地(即第二公共地41),V S1和V S2为材料敏感电压(即第一公共气体检测电极引脚221输出的电压和第二公共气体检测电极引脚222输出的电压)。Vs1可以由电压分量V S11、V S12、V S13、V S14组成,该四个电压分量为主骨211第一侧的四个支骨212上的气敏材料构成的材料电阻的分压。Vs2可以由电压分量V S25、V S26、V S27、V S28组成,该四个电压分量为主骨211第二侧的四个支骨212上的气敏材料构成的材料电阻的分压。GND2为V S1、V S2共用的地(即第一公共地24)。
图16所示为鱼骨形可编程MEMS气体传感器加热电路等效示意图。R H1、 R H2、R H3、R H4、R H5、R H6、R H7、R H8为加热器的电阻,在V HN(N=1,2,3,4……,8)通电时,R HN(N=1,2,3,4……,8)上会产生焦耳热而将气敏材料加热到一定的工作温度。如V H1通电时,R H1上会产生焦耳热而使气敏材料111的电阻发生改变,而其它的材料电阻不变;又如V H1和V H6同时供电时,R H1和R H6上会产生焦耳热而分别使材料111和116的电阻发生改变。
图17所示为鱼骨形可编程MEMS气体传感器中气体检测电路的第一种等效示意图,对应有两个检测电极引脚的示例,V S1和V S2为检测电压(即材料敏感电压),V L1和V L2为测量电压,R L1和R L2为匹配电阻,R S1、R S2、R S3、R S4、R S5、R S6、R S7、R S8分别代表气敏材料111、112、113、114、115、116、117、118的电阻,当R S1、R S2、R S3、R S4中的任意一个电阻发生变化时,V S1改变,当R S5、R S6、R S7、R S8中的任意一个电阻发生变化时,V S2改变。测量电压V L通过匹配电阻R L与气体检测电极引脚连接,如图17所示,V S1加R L1两端电压等于V L1,V S2加R L2两端电压等于V L1,V S1和V S2即为传感器的输出电压(以下简称输出电压),使用时可以测量获得V S1和V S2或者测量匹配电阻承受的电压。
图18所示为鱼骨形可编程MEMS气体传感器中气体检测电路的第二种等效示意图,对应有一个检测电极引脚的示例,此时相当于将V S1和V S2接到一起,获得一个V S,并使用同一个匹配电阻R L和测量电压V L,当R S1、R S2、R S3、R S4、R S5、R S6、R S7、R S8中的任意一个电阻发生变化时,V S发生改变。
在一示例性实施例中,假定对R HN(N=1,2,3,4……,8)通电,用V HN(N=1,2,3,4……,8)为高电平1(1为某固定正电压或某几个不同固定正电压的组合)表示,不通电用低电平0表示,则可对加热器输入电压进行编程,如1000000可以代表只有V H1为高电平,10010001可以代表V H1、V H4和V H8为高电平,有00000000-11111111一共2 8种情况,意味着材料敏感电阻会有8!种不同的组合,同时会有2 8种不同的V S输出。通过检测V S1和V S2,或V S可达到检测的目的。
在一示例性实施例中,所述2 8种加热温度可以与8个支骨上的一种或多 种气敏材料可以进行任意组合,实现对多种气体的检测。
在一示例性实施例中,图19所示为支撑膜层示意图,所述支撑膜层5可以设置有第二绝缘膜51;所述第二绝缘膜51上可以开设有刻蚀窗口。设置有第二形状52;所述第二形状52可以与第一形状相同。
在一示例性实施例中,支撑膜层5同样可以为绝缘膜,第二绝缘膜51为支骨212的支撑膜,用于作为支撑悬桥,第二形状52可以为刻蚀窗口,用于形成鱼骨形可编程MEMS气体传感器的结构形状并通过湿法的方式释放出结构。
在一示例性实施例中,如图20所示,第一衬底可以为硅衬底,所述硅衬底层6可以设置有两个镂空槽,如图20中第一镂空槽61和第二镂空槽62所示,可以分别对应前述的第一腔体和第二腔体。
所述两个镂空槽可以以所述鱼骨结构21的主骨为中心相互对称设置。
在一示例性实施例中,硅衬底层6可以为<100>晶向的硅衬底,61和62可以为湿法刻蚀形成的镂空槽。
上述实施例所述鱼骨形MEMS气体传感器仅为一种示例,在其他示例性实施例中,可以对上述鱼骨形MEMS气体传感器做多种变形。在一示例性实施例中,可以设置为半鱼骨形MEMS气体传感器,即只包括图9中的主骨和上半部支骨,或者只包括图9中的主骨和下半部支骨。在另一示例性实施例中,可以设置为非对称鱼骨形MEMS气体传感器,例如主骨两侧的支骨位置可以不对称,或者主骨两侧支骨的数量不相同。本公开实施例并不限制支骨与主骨之间的角度。
另一方面,本公开实施例还提供了一种MEMS气体传感器的气体检测方法(或称检测方法),所述MEMS气体传感器可以为上述任意一实施例所述的MEMS气体传感器,即上述的MEMS气体传感器实施例方案中的任何实施例均适用于该气体检测方法实施例中,在此不再一一赘述。如图21所示,在进行气体检测时,所述方法可以包括步骤S11和S12:
S11、选择所述MEMS气体传感器中的任意一个或多个气体检测组件(即气体检测部),对所述气体检测组件中的条形加热电极部施加加热电压;
S12、获取所述气体检测部中第一检测电极部与第二检测电极部之间的电压值。
获取上述电压值后,传感器完成检测。根据获取得到的电压值,可以实现对气体的检测。
其中,对多个条形加热电极部施加加热电压时,任意两个条形加热电极部的电压相同或不同。
获取第一检测电极部与第二检测电极部之间的电压值可以是直接采集第一检测电极部与第二检测电极部之间的电压值,或者可以是采集匹配电阻两端的电压,结合测量电压计算获得。
在一示例性实施例中,所述多种不同气体可以包括2 N(N为气体检测组件的数量,一个气体检测组件包括一个支撑悬桥,以及其上设置的一个气体检测部,N为正整数)种气体。
又一方面,本公开实施例还提供了一种MEMS气体传感器的制备方法,所述MEMS气体传感器为上述任意一实施例所述的气体传感器;本实施例中所说的“构图工艺”包括但不限于沉积膜层、涂覆光刻胶、掩模曝光、显影、刻蚀以及剥离光刻胶等处理。如图22所示,所述方法可以包括步骤S21至S24:
S21、准备第一衬底。
在一示例性实施例中,所述第一衬底例如可以是硅基衬底。
例如,可选择<100>晶向的单面或双面抛光硅片作为第一衬底;
S22、在所述第一衬底的第一表面上形成支撑膜。
在一示例性实施例中,所述在所述第一衬底的第一表面上形成支撑膜可以包括:
在所述第一衬底的第一面沉积第一预设厚度的第一硅化合物的单层膜或复合膜作为所述支撑膜。
例如可以是氧化硅膜,或氮化硅膜,或由氧化硅层和氮化硅层组成的复合膜,可以是一组氧化硅层和氮化硅层也可以是多组氧化硅层和氮化硅层。可采用热氧化、等离子增强化学气相沉积或低压化学气相沉积等方法依次在 第一衬底的第一表面生长氧化硅层和/或氮化硅层。
在一示例性实施例中,所述方法还可以包括:在所述第一衬底的第一面形成所述支撑膜后,在所述第一衬底的第二面(例如与第一表面相对的表面)沉积第二预设厚度的第二硅化合物作为保护膜。在一示例性实施例中,在所述第一面与第二面上形成膜的材料可以相同,也可以不同。另外,第一面与第二面上的膜可以同时形成,也可以依次形成。
S23、在所述支撑膜上形成气体检测部,其中:所述气体检测部包括依次叠设的条形加热电极部、绝缘层、条形检测电极部以及气敏材料部,所述条形检测电极部包括第一检测电极部和第二检测电极部,所述第一检测电极部与第二检测电极部之间设置有第一开口,所述气敏材料部设置于所述第一开口位置处,所述气敏材料部的第一端与所述第一检测电极部连接,所述气敏材料部的第二端与所述第二检测电极部连接。
在一示例性实施例中,可以在所述支撑膜上形成气体检测部、加热电极引脚,第一接地引脚,检测电极引脚和第二接地引脚。
在一示例性实施例中,如图23所示,所述在所述支撑膜上形成气体检测部、加热电极引脚,第一接地引脚,检测电极引脚和第二接地引脚可以包括步骤S231至S234:
S231、在所述支撑膜上形成气体检测部中的条形加热电极部、加热电极引脚和第一接地引脚。
可选地,在一示例性实施例中,还可以在加热电极部与加热电极引脚之间形成引线,和/或,在加热电极部与第一接地引脚之间形成引线。是否形成引线可根据加热电极部与引脚之间的距离决定。
在一示例性实施例中,上述步骤S231可以包括:
在支撑膜上的一个或多个第一区域沉积第三预设厚度的金属体作为所述条形加热电极部,并在所述第一区域以外的一个或多个第二区域沉积第三预设厚度的金属体作为加热电极引脚和第一接地引脚。
可选地,在一示例性实施例中,还可以在加热电极引脚与加热电极部之间形成引线,和/或,在第一接地引脚与加热电极部之间形成引线。
例如在支撑膜上沉积金属薄膜,通过构图工艺对金属薄膜进行构图,形成加热器层图案,包括加热电极部图案、加热电极引脚图案、第一接地引脚图案。
S232、在所述第一衬底上所述条形加热电极部、所述加热电极引脚和第一接地引脚的上层形成隔离膜;所述条形加热电极部上的隔离膜构成条形加热电极部和条形检测电极部之间的绝缘层(条形绝缘层)。
所述在所述第一衬底上所述条形加热电极部、所述加热电极引脚和第一接地引脚的上一层形成隔离膜可以包括:
在所述第一衬底上所述条形加热电极部、所述加热电极引脚和第一接地引脚的上一层沉积第四预设厚度的第三硅化合物作为隔离膜。例如,在步骤S231中所述第三预设厚度的金属体的上层沉积绝缘薄膜。在一示例性实施例中,可以通过构图工艺对绝缘薄膜进行构图,形成隔离膜层图案,即绝缘层图案。
S233、在所述条形加热电极上方的绝缘层上形成条形检测电极部,并在所述隔离膜上非绝缘层的区域形成检测电极引脚和第二接地引脚;其中,所述条形检测电极部包括第一检测电极部和第二检测电极部;所述第一检测电极部与所述第二检测电极部之间设置有第一开口。
在制备时,对所述加热电极引脚和第一接地引脚上层的隔离膜进行刻蚀,以露出所述加热电极引脚和所述第一接地引脚。
在一示例性实施例中,还可以包括:在检测电极引脚与检测电极部之间形成引线,和/或,在第二接地引脚与检测电极部之间形成引线。
所述在所述条形加热电极上方的绝缘层上形成条形检测电极部,并在所述隔离膜上非绝缘层的区域形成检测电极引脚和第二接地引脚可以包括:
在所述绝缘层的第一部分上沉积第五预设厚度的导电体作为所述第一条形检测电极部,在所述绝缘层的第二部分上沉积第五预设厚度的导电体作为所述第二条形检测电极部,所述第一部分与第二部分之间的部分构成所述第一开口。可选地,可以同时沉积第一条形检测电极部和第二条形检测电极部;其中,所述绝缘层包括所述第一部分、所述第二部分和第三部分,所述第三 部分位于所述第一部分和所述第二部分之间,对应所述第一开口。
例如,在步骤S232中形成的隔离膜的上层沉积金属薄膜,通过构图工艺对金属薄膜进行构图,形成气体检测电极层图案,包括条形检测电极部图案、检测电极引脚图案和第二接地引脚图案。其中,所述条形检测电极部图案在衬底上的投影与所述条形加热电极部在衬底上的投影位置可以全部重合或者大部分区域重合,以保证条形加热电极部能够对检测电极部之间的气敏材料进行加热。
在一示例性实施例中,在所述条形加热电极上方的绝缘层上形成条形检测电极部,并在所述隔离膜上非绝缘层的区域形成检测电极引脚和第二接地引脚之后,所述方法还可以包括:
对所述加热电极引脚和第一接地引脚上层的隔离膜进行加工,以露出所述加热电极引脚和所述第一接地引脚。在一示例性实施例中,可以采用光刻工艺和/或干法刻蚀工艺对所述加热电极引脚和第一接地引脚上方的隔离膜进行刻蚀。
S234、在所述第一开口之间形成气敏材料部。
所述气敏材料部可采用气相法,液相法或固相法来制备。本步骤也可在步骤24之后,即刻蚀腔体之后再进行制备。
S24、对所述支撑膜进行加工获取支撑悬桥,并在所述第一衬底的第一表面形成一个或多个腔体,所述支撑悬桥架设在所述腔体开口第一边缘与第二边缘。
在一示例性实施例中,所述对所述支撑膜进行加工获取支撑悬桥可以包括:在所述支撑膜上采用干法刻蚀工艺(例如反应离子刻蚀)释放出至少两个镂空形状,以在两个镂空形状之间形成所述支撑悬桥。
在一示例性实施例中,所述在所述第一衬底的第一表面形成一个或多个腔体可以包括:在所述第一衬底上采用预设化合物的各向异性刻蚀液释放出所述腔体。
例如,刻蚀时,可使所述腔体贯穿第一衬底,或者控制所述腔体的深度使所述气体检测组件与所述腔体底部之间留有用于隔热的空隙。
在一示例性实施例中,刻蚀时,可以一次性逐层刻蚀隔离膜和支撑膜,在刻蚀支撑膜时,可以先利用反应离子刻蚀工艺或离子束刻蚀工艺刻蚀支撑膜,定义出用于支撑气体检测组件的支撑悬桥图案(例如气体检测组件的正投影位置处的图形)以及腔体边界,露出硅衬底形成刻蚀窗口,然后可以采用四甲基氢氧化铵或氢氧化钾等硅的各向异性湿法腐蚀液,或采用各向同性湿法腐蚀液,或各向同性干法腐蚀气体通过刻蚀窗口腐蚀硅衬底,掏空支撑悬桥下面的硅衬底形成腔体。根据刻蚀所采用的材料和方法的不同,腔体的侧壁的形状也可以不同(或者垂直或者倾斜或者弯曲),例如各向异性腐蚀腔体的截面可以是倒梯形或是“V”字形,各向同性腐蚀腔体的截面呈近椭圆形。通过上述方法可以一次性刻蚀出一个或多个腔体。腔体开口处的用于支撑所述气体检测组件的条形支撑膜被保留,作为支撑悬桥。
下面通过一示例性实施例对制备上述鱼骨形MEMS气体传感器的方法进行说明。在该示例性实施例中,如图24所示,依次制备:硅衬底层、支撑膜层、加热器层、隔离膜层、气体检测电极层和气敏材料层,可以包括步骤S31至S39:
S31、选取硅衬底制作第一衬底;该第一衬底可以包括但不限于硅衬底层;所述硅衬底可以包括:单抛或双抛硅片。
在本示例性实施例中,可以选取<100>晶向的单抛或双抛硅圆片作为衬底。
S32、在所述第一衬底的第一面沉积第一预设厚度的第一硅化合物的单层膜或复合膜作为支撑膜,形成支撑膜层;在所述第一衬底的第二面沉积第二预设厚度的第二硅化合物作为保护膜。
所述第一预设厚度可以包括:1.5微米至2.5微米;所述第一硅化合物可以包括:氧化硅和/或氮化硅;所述第二预设厚度可以包括:200纳米至500纳米;所述第二硅化合物可以包括:氮化硅。
可以在硅片的正面(即上述的第一面,通常为抛光面,也可以为非抛光面)采用PECVD(plasma enhanced chemical vapor deposition,等离子增强化学气相沉积)或LPCVD(low pressure chemical vapor deposition,低压化学气相沉积)沉积第一硅化合物(如氧化硅和氮化硅)的单层膜或复合膜作为支 撑膜,总厚度(即上述的第一预设厚度)可以为2微米。
在一示例性实施例中,可以在硅片的背面(即上述的第二面,通常为非抛光面,也可以为抛光面)采用PECVD或LPCVD沉积200纳米至500纳米(第二预设厚度)的第二硅化合物(如氮化硅)作为湿法刻蚀的保护膜。该保护膜可以设置于第一衬底的一面或多面。
S33、在支撑膜上沉积第三预设厚度的金属体作为加热器,形成加热器层。
所述第三预设厚度可以包括:150纳米至250纳米;所述金属体材料可以包括:铂。
可以采用光刻工艺和金属镀膜工艺在支撑膜上面沉积第三预设厚度(如200纳米)的金属体(如铂)作为形成加热器层。
所述光刻工艺可以是紫外光刻,镀膜工艺可以是电子束蒸发镀膜或者磁控溅射镀膜。
S34、在所述加热器层上沉积第四预设厚度的第三硅化合物作为隔离膜,形成隔离膜层。
所述第四预设厚度可以包括:350纳米至500纳米;所述第三硅化合物可以包括:氮化硅。
可以采用PECVD沉积第四预设厚度(如350纳米至500纳米)的第三硅化合物(如氮化硅)作为隔离膜。
S35、在隔离膜上沉积第五预设厚度的导电体作为气体检测电极,形成气体检测电极层。
所述第五预设厚度可以包括:150纳米至250纳米;所述金属体可以包括:铂或金。
可以采用如步骤S233所述工艺制作气体检测电极层,即在隔离膜上沉积第五预设厚度(如200纳米)的导电体作为检测电极,检测电极材料可以是铂或金。
S36、在所述隔离膜上进行加工,以露出加热器的加热电极区域。
可以采用光刻工艺和干法刻蚀工艺进行加工以露出加热器的加热电极区域。其中,干法刻蚀工艺可以是反应离子刻蚀(RIE)或者感应耦合等离子体刻蚀(ICP-Etch)。
S37、采用预设加工工艺在所述隔离膜上加工出所述鱼骨结构的主骨和支骨,形成刻蚀窗口。
所述预设加工工艺可以包括:光刻工艺和/或干法刻蚀工艺。即可以采用光刻工艺和干法刻蚀工艺(RIE或ICP-Etch)形成鱼骨形可编程气体传感器的主骨和支骨结构。
S38、采用预设化合物的各向异性刻蚀液通过刻蚀窗口在硅衬底上形成镂空槽。
所述预设化合物可以包括:氢氧化钾(KOH)或四甲基氢氧化铵(TMAH)溶液。即可以采用氢氧化钾或四甲基氢氧化铵溶液等硅的各向异性刻蚀液释放出主骨和支骨结构,同时在硅衬底上形成镂空槽。
S39、在所述电极检测位点上加载气敏材料。
在一示例性实施例中,步骤S39可以在步骤S37或S38之前实施。
在电极检测位点处可以加载半导体气敏材料,如氧化锡、氧化铟、氧化钨或氧化锌等。
再一方面,本公开实施例还提供了一种MEMS气体传感器阵列B,如图25所示,所述MEMS传感器阵列包括多个上述实施例中所述的MEMS气体传感器。
在一示例性实施例中,该气体传感器阵列B可以由多个气体传感器设备构成,其中,至少一个气体传感器设备为本公开实施例所述的气体传感器A。
以上所述仅为本公开的实施例而已,并不用于限制本公开的保护范围,本领域的普通技术人员应当理解,可以对本公开实施例的技术方案进行修改或者等同替换,而不脱离本公开实施例技术方案的精神和范围,均应涵盖在本申请的权利要求范围当中。

Claims (15)

  1. 一种微机电系统MEMS气体传感器,包括:在第一表面开设有腔体的第一衬底,设置于腔体开口处的气体检测组件,其中:
    所述气体检测组件包括:架设在所述腔体开口第一边缘与第二边缘的支撑悬桥,以及设置于所述支撑悬桥上远离所述腔体一侧的气体检测部,其中:所述气体检测部包括依次叠设的条形加热电极部、绝缘层、条形检测电极部以及气敏材料部,所述条形检测电极部包括第一检测电极部和第二检测电极部,所述第一检测电极部与第二检测电极部之间设置有第一开口,所述气敏材料部设置于所述第一开口位置处,所述气敏材料部的第一端与所述第一检测电极部连接,所述气敏材料部的第二端与所述第二检测电极部连接。
  2. 根据权利要求1所述的MEMS气体传感器,还包括:设置于所述第一衬底上的加热电极引脚,第一接地引脚,检测电极引脚和第二接地引脚,其中:
    所述加热电极引脚与所述条形加热电极部的第一端连接,所述条形加热电极部的第二端与所述第一接地引脚连接;
    所述第一检测电极部的第一端与所述气敏材料部的第一端连接,所述第一检测电极部的第二端与所述检测电极引脚连接;
    所述第二检测电极部的第一端与所述气敏材料部的第二端连接,所述第二检测电极部的第二端与所述第二接地引脚连接。
  3. 根据权利要求2所述的MEMS气体传感器,其中,所述腔体包括一个或多个;其中:
    任意一个腔体的腔体开口的不同位置处分别设置气体检测组件;或者,
    任意多个腔体中每个腔体的腔体开口的不同位置处分别设置气体检测组件;或者,
    任意多个腔体中每个腔体的腔体开口处设置一个气体检测组件;或者,
    任意一个腔体的腔体开口处设置一个气体检测组件。
  4. 根据权利要求2或3所述的MEMS气体传感器,其中,所述腔体包 括一个或多个,任意一个腔体的腔体开口处的多个气体检测组件共用引脚,或者任意多个腔体的腔体开口处的多个气体检测组件共用引脚,所述多个气体检测组件共用引脚包括以下方式中的一种或多种:
    所述多个气体检测组件的条形加热电极部共用所述第一接地引脚;
    所述多个气体检测组件的条形检测电极部共用所述第二接地引脚;
    所述多个气体检测组件的条形检测电极部共用所述检测电极引脚。
  5. 根据权利要求4所述的MEMS气体传感器,其中,所述任意多个腔体的腔体开口处的多个气体检测组件共用引脚,包括:
    所述任意多个腔体中的第一腔体的腔体开口处的m个气体检测组件与所述任意多个腔体中的第二腔体的腔体开口处的n个气体检测组件共用第一接地引脚和第二接地引脚,m和n均为正整数。
  6. 根据权利要求5所述的MEMS气体传感器,其中,
    所述m个气体检测组件共用第一检测电极引脚,所述n个气体检测组件共用第二检测电极引脚;或者,
    所述m个气体检测组件和n个气体检测组件共用一个检测电极引脚。
  7. 根据权利要求3所述的MEMS气体传感器,其中,所述MEMS气体传感器包括多个气体检测组件时,
    多个气敏材料部采用的气敏材料均不相同;或者,
    至少两个气敏材料部采用的气敏材料相同。
  8. 根据权利要求1或2所述的MEMS气体传感器,其中,
    所述第一表面开设有第一腔体和第二腔体,每个腔体开口处分别设置有多个气体检测组件,在所述第一腔体和第二腔体之间分层设置有第一接地引脚和第二接地引脚,所述多个气体检测组件中的多个加热电极部与所述第一接地引脚连接,所述多个气体检测组件中的多个第二检测电极部与所述第二接地引脚连接。
  9. 根据权利要求3所述的MEMS气体传感器,其中,所述腔体包括多个时,所述多个腔体采用以下任意一种或多种方式排布:并列排布、一字排 布以及按照预设的几何图形排布。
  10. 根据权利要求3或9所述的MEMS气体传感器,其中,任意一个腔体内包括多个气体检测组件时,所述多个气体检测组件采用以下任意一种或多种方式排布:并列排布、按照预设的几何图形排布。
  11. 根据权利要求10所述的MEMS气体传感器,其中,所述腔体包括多个,每个腔体开口包括多个气体检测组件时,多个腔体的多个气体检测组件呈镜面对称分布。
  12. 一种微机电系统MEMS气体传感器的气体检测方法,其中,所述MEMS气体传感器为权利要求1-11任意一项所述的MEMS气体传感器;所述方法包括:
    选择所述MEMS气体传感器中的任意一个或多个气体检测部,对所述气体检测部中的条形加热电极部施加加热电压,获取所述气体检测部中第一检测电极部与第二检测电极部之间的电压值。
  13. 根据权利要求12所述的气体检测方法,其中,
    对多个条形加热电极部施加加热电压时,任意两个条形加热电极部的电压相同或不同。
  14. 一种微机电系统MEMS气体传感器阵列,其中,所述传感器阵列包括多个如权利要求1-11任意一项所述的MEMS气体传感器。
  15. 一种微机电系统MEMS气体传感器的制备方法,其中,所述MEMS气体传感器为权利要求1-11中任意一项所述的MEMS气体传感器;所述方法包括:
    准备第一衬底;
    在所述第一衬底的第一表面上形成支撑膜;
    在所述支撑膜上形成气体检测部,其中:所述气体检测部包括依次叠设的条形加热电极部、绝缘层、条形检测电极部以及气敏材料部,所述条形检测电极部包括第一检测电极部和第二检测电极部,所述第一检测电极部与第二检测电极部之间设置有第一开口,所述气敏材料部设置于所述第一开口位置处,所述气敏材料部的第一端与所述第一检测电极部连接,所述气敏材料 部的第二端与所述第二检测电极部连接;
    对所述支撑膜进行加工获取支撑悬桥,并在所述第一衬底的第一表面形成一个或多个腔体,所述支撑悬桥架设在所述腔体开口第一边缘与第二边缘。
PCT/CN2020/101406 2020-03-26 2020-07-10 Mems气体传感器及其阵列、气体检测和制备方法 WO2021189718A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/906,920 US20230341367A1 (en) 2020-03-26 2020-07-10 Mems gas sensor and array thereof, and gas detection and preparation method
EP20927023.0A EP4102214A4 (en) 2020-03-26 2020-07-10 MEMS GAS SENSOR AND ASSOCIATED NETWORK AND GAS DETECTION AND PREPARATION METHOD
KR1020227032710A KR20220140855A (ko) 2020-03-26 2020-07-10 Mems 가스 센서 및 이의 어레이, 가스 감지 및 제조 방법
JP2023500115A JP7466052B2 (ja) 2020-03-26 2020-07-10 Memsガスセンサー及びそのアレイ、ガス検知及び製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010222341.9A CN111289582B (zh) 2020-03-26 2020-03-26 一种mems气体传感器及其阵列、气体检测和制备方法
CN202010222341.9 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021189718A1 true WO2021189718A1 (zh) 2021-09-30

Family

ID=71021891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101406 WO2021189718A1 (zh) 2020-03-26 2020-07-10 Mems气体传感器及其阵列、气体检测和制备方法

Country Status (6)

Country Link
US (1) US20230341367A1 (zh)
EP (1) EP4102214A4 (zh)
JP (1) JP7466052B2 (zh)
KR (1) KR20220140855A (zh)
CN (1) CN111289582B (zh)
WO (1) WO2021189718A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289582B (zh) * 2020-03-26 2022-03-11 微纳感知(合肥)技术有限公司 一种mems气体传感器及其阵列、气体检测和制备方法
CN113092541A (zh) * 2021-04-08 2021-07-09 香港科技大学深圳研究院 具有微型加热器的垂直型三维纳米气体传感器及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406841A (en) * 1992-03-17 1995-04-18 Ricoh Seiki Company, Ltd. Flow sensor
CN101290302A (zh) * 2007-09-13 2008-10-22 复旦大学 基于单根金属氧化物纳米线场效应管的微腔气敏传感器
CN102359980A (zh) * 2011-07-08 2012-02-22 中国科学院上海微系统与信息技术研究所 一种具有两支撑悬梁四层结构的电阻式气体传感器及方法
CN102359981A (zh) * 2011-07-08 2012-02-22 中国科学院上海微系统与信息技术研究所 一种具有两支撑悬梁六层结构的电阻式气体传感器及方法
CN104122320A (zh) * 2014-07-11 2014-10-29 京东方科技集团股份有限公司 一种气体检测传感器件、显示面板及显示装置
CN104297303A (zh) * 2014-11-05 2015-01-21 中国科学院重庆绿色智能技术研究院 丙酮气敏传感器及其制备方法
CN106629575A (zh) * 2016-10-14 2017-05-10 中国科学院上海微系统与信息技术研究所 旁热式微传感器及其制造方法
CN110108757A (zh) * 2019-05-31 2019-08-09 合肥微纳传感技术有限公司 一种气体传感器、传感器制备方法及传感器阵列
CN111289582A (zh) * 2020-03-26 2020-06-16 合肥微纳传感技术有限公司 一种mems气体传感器及其阵列、气体检测和制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134551A (ja) * 1988-11-15 1990-05-23 Ricoh Co Ltd ガス選択性を有するガス検出装置
JPH0320658A (ja) * 1989-03-30 1991-01-29 Ricoh Co Ltd 多ガス識別ガス検出装置
JPH08278273A (ja) * 1995-02-07 1996-10-22 Ricoh Co Ltd ガス検知装置
EP0816844A3 (en) * 1996-06-28 1998-01-28 Osaka Gas Co., Ltd. Carbon monoxide sensor
US9606078B2 (en) * 2007-11-11 2017-03-28 University Of North Florida Board Of Trustees Nanocrystalline indum tin oxide sensors and arrays
KR100942439B1 (ko) 2007-12-28 2010-02-17 전자부품연구원 마이크로 가스센서 및 제조방법
US20120036919A1 (en) * 2009-04-15 2012-02-16 Kamins Theodore I Nanowire sensor having a nanowire and electrically conductive film
JP2011033592A (ja) * 2009-08-06 2011-02-17 Hitachi Metals Ltd ガス計測基板ユニット及びガス計測システム並びにガス計測基板ユニットの製造方法
KR101135400B1 (ko) * 2010-03-19 2012-04-17 전자부품연구원 마이크로 가스센서 어레이
KR101135404B1 (ko) * 2010-03-29 2012-04-17 전자부품연구원 가스센서 어레이용 마이크로 플랫폼
JP2014153135A (ja) 2013-02-07 2014-08-25 Panasonic Corp ガスセンサ及び匂い判別装置
CN103558265A (zh) * 2013-10-29 2014-02-05 陕西高新实业有限公司 气敏元件自动测试系统
KR20150116209A (ko) * 2014-04-07 2015-10-15 주식회사 이노칩테크놀로지 센서 소자
JP2016102758A (ja) * 2014-11-28 2016-06-02 国立大学法人大阪大学 金属酸化物半導体センサ、および、その製造方法
US9459224B1 (en) * 2015-06-30 2016-10-04 Taiwan Semiconductor Manufacturing Co., Ltd. Gas sensor, integrated circuit device using the same, and manufacturing method thereof
JP6654406B2 (ja) 2015-11-09 2020-02-26 フィガロ技研株式会社 ガス検出装置とガス検出方法
EP3382380B1 (en) * 2017-03-31 2020-04-29 Sensirion AG Sensor and sensing method for measuring a target gas concentration in ambient air
KR102414116B1 (ko) * 2017-07-27 2022-06-29 한국전자기술연구원 단열구조를 갖는 가스센서와 가스센서 어레이 및 그 제조방법
CN107941859A (zh) * 2017-11-10 2018-04-20 中国人民解放军陆军防化学院 气体传感器及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406841A (en) * 1992-03-17 1995-04-18 Ricoh Seiki Company, Ltd. Flow sensor
CN101290302A (zh) * 2007-09-13 2008-10-22 复旦大学 基于单根金属氧化物纳米线场效应管的微腔气敏传感器
CN102359980A (zh) * 2011-07-08 2012-02-22 中国科学院上海微系统与信息技术研究所 一种具有两支撑悬梁四层结构的电阻式气体传感器及方法
CN102359981A (zh) * 2011-07-08 2012-02-22 中国科学院上海微系统与信息技术研究所 一种具有两支撑悬梁六层结构的电阻式气体传感器及方法
CN104122320A (zh) * 2014-07-11 2014-10-29 京东方科技集团股份有限公司 一种气体检测传感器件、显示面板及显示装置
CN104297303A (zh) * 2014-11-05 2015-01-21 中国科学院重庆绿色智能技术研究院 丙酮气敏传感器及其制备方法
CN106629575A (zh) * 2016-10-14 2017-05-10 中国科学院上海微系统与信息技术研究所 旁热式微传感器及其制造方法
CN110108757A (zh) * 2019-05-31 2019-08-09 合肥微纳传感技术有限公司 一种气体传感器、传感器制备方法及传感器阵列
CN111289582A (zh) * 2020-03-26 2020-06-16 合肥微纳传感技术有限公司 一种mems气体传感器及其阵列、气体检测和制备方法

Also Published As

Publication number Publication date
EP4102214A4 (en) 2023-07-12
KR20220140855A (ko) 2022-10-18
JP7466052B2 (ja) 2024-04-11
JP2023517401A (ja) 2023-04-25
US20230341367A1 (en) 2023-10-26
CN111289582A (zh) 2020-06-16
CN111289582B (zh) 2022-03-11
EP4102214A1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
US7861575B2 (en) Micro gas sensor and manufacturing method thereof
US10942048B2 (en) Sensor chip used for multi-physical quantity measurement and preparation method thereof
WO2021189718A1 (zh) Mems气体传感器及其阵列、气体检测和制备方法
KR100942439B1 (ko) 마이크로 가스센서 및 제조방법
JP3704685B2 (ja) 静電容量センサ
CN112694062B (zh) 一种基于tsv的晶圆级mems气体传感器阵列、制备方法及应用
CN106629574B (zh) 一种mems红外光源及其制作方法
KR20100070220A (ko) 습도 센서 및 이의 제조 방법
US10914700B2 (en) Single cantilever gas sensor, sensor array, and manufacturing method thereof
US10801981B2 (en) Gas sensor, sensor array, and manufacturing method thereof
CN107192744A (zh) 气敏电阻的制造方法及使用该方法制造的气体传感器
US20230204554A1 (en) Mems gas sensor, array thereof and preparation method therefor
US20200284633A1 (en) Fluid sensor
CN207964073U (zh) 一种微热式声音传感器
JP2000009641A (ja) 赤外線ガス分析計用流量検出素子とその製造方法
KR101992022B1 (ko) 반도체식 가스센서
JPS61191953A (ja) ガス検出装置
KR20190014981A (ko) 마이크로 가스센서 어레이 및 그 제조방법
CN111380918B (zh) 一种多检测电极的悬臂梁气体传感器
CN208313880U (zh) 一种翘曲的单悬梁式气体传感器及传感器阵列
JP2002328110A (ja) 静電容量センサ
KR100773025B1 (ko) 반도체식 가스센서, 그 구동방법 및 제조방법
CN117214248A (zh) 一种低功耗硅基mems气体传感器芯片及其制备方法
CN117003194A (zh) 一种微热板阵列、芯片及微热板阵列结构的形成方法
JP2001153704A (ja) フローセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020927023

Country of ref document: EP

Effective date: 20220905

ENP Entry into the national phase

Ref document number: 2023500115

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227032710

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE