WO2021189498A1 - 显示装置、显示面板及其制造方法 - Google Patents

显示装置、显示面板及其制造方法 Download PDF

Info

Publication number
WO2021189498A1
WO2021189498A1 PCT/CN2020/081884 CN2020081884W WO2021189498A1 WO 2021189498 A1 WO2021189498 A1 WO 2021189498A1 CN 2020081884 W CN2020081884 W CN 2020081884W WO 2021189498 A1 WO2021189498 A1 WO 2021189498A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
away
electrodes
transport layer
Prior art date
Application number
PCT/CN2020/081884
Other languages
English (en)
French (fr)
Inventor
王宇
黄冠达
童慧
申晓斌
袁雄
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/258,473 priority Critical patent/US20220140275A1/en
Priority to PCT/CN2020/081884 priority patent/WO2021189498A1/zh
Priority to EP20897673.8A priority patent/EP4131392A4/en
Priority to CN202080000407.8A priority patent/CN113748517B/zh
Publication of WO2021189498A1 publication Critical patent/WO2021189498A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel, a manufacturing method of the display panel, and a display device.
  • silicon-based OLED products require smaller anode pixels and narrower anode spacing to meet high resolution, and OLED devices require higher brightness and high efficiency to cope with the optical loss caused by the pixelation of the color film layer.
  • the purpose of the present disclosure is to provide a display panel, a method for manufacturing the display panel, and a display device, which can reduce crosstalk and leakage.
  • a display panel including:
  • the driving substrate includes a plurality of driving transistors
  • a plurality of first electrodes are arranged on the surface of one side of the driving substrate at intervals, and the plurality of first electrodes are electrically connected to one pole of the plurality of driving transistors in a one-to-one correspondence;
  • the hole transport layer includes a first part and a second part.
  • the first part is provided between the adjacent first electrodes and is located on the surface of the driving substrate; the second part is provided in each of the first electrodes.
  • the first electrode is on a surface far away from the drive substrate; the minimum distance between the first portion away from the upper surface of the drive substrate and the drive substrate is less than the distance from the second portion away from the upper surface of the drive substrate The minimum distance of the drive substrate;
  • the organic light-emitting layer is provided on the side of the hole transport layer away from the drive substrate;
  • the second electrode layer is arranged on the side of the organic light-emitting layer away from the hole transport layer;
  • the color film layer is arranged on the side of the second electrode layer away from the organic light-emitting layer.
  • the minimum distance between the upper surface of the second part and the drive substrate is greater than twice the minimum distance between the upper surface of the first part and the drive substrate.
  • the minimum distance between the upper surface of the first part and the driving substrate is The minimum distance between the upper surface of the second part and the drive substrate is
  • the hole transport layer is an integral structure.
  • the thickness of the hole transport layer in a direction away from the driving substrate is
  • the gap between adjacent first electrodes is less than one third of the maximum width of the orthographic projection of the first electrodes on the driving substrate.
  • the aperture ratio is greater than 50%, and the gap between adjacent first electrodes is less than 4 ⁇ m.
  • the thickness of each of the first electrodes in a direction away from the driving substrate is
  • the maximum width of the orthographic projection of each of the first electrodes on the driving substrate is less than 13 ⁇ m.
  • the display panel further includes:
  • the electron transport layer is provided on the side of the organic light emitting layer away from the hole transport layer, and the second electrode layer is provided on the side of the electron transport layer away from the organic light emitting layer.
  • the display panel further includes:
  • the electron injection layer is provided on the side of the electron transport layer away from the light-emitting layer, and the second electrode layer is provided on the side of the electron injection layer away from the electron transport layer.
  • the display panel further includes:
  • the hole blocking layer is disposed on the side of the organic light-emitting layer away from the hole transport layer, and the electron transport layer is located on the side of the hole blocking layer away from the organic light-emitting layer.
  • the display panel further includes:
  • the light extraction layer is arranged on the side of the second electrode layer away from the organic light-emitting layer, and the color filter layer is arranged on the side of the light extraction layer away from the second electrode layer.
  • the orthographic projection of the hole transport layer on the driving substrate is within the orthographic projection of the light extraction layer on the driving substrate.
  • the display panel further includes:
  • the encapsulation layer is arranged on the side of the light extraction layer away from the two electrode layers, and the color filter layer is arranged on the side of the encapsulation layer away from the light extraction layer.
  • the orthographic projection of the hole transport layer on the driving substrate is within the orthographic projection of the packaging layer on the driving substrate.
  • a manufacturing method of a display panel including:
  • the driving substrate including a plurality of driving transistors
  • a plurality of first electrodes arranged at intervals are formed on one side of the driving substrate, and the plurality of first electrodes are electrically connected to one pole of a plurality of the driving transistors in a one-to-one correspondence;
  • a hole transport layer is formed between the adjacent first electrodes, the hole transport layer includes a first part and a second part, the first part is provided between the adjacent first electrodes, And located on the surface of the drive substrate; the second portion is provided on the surface of each of the first electrodes away from the drive substrate; the first portion is away from the upper surface of the drive substrate The minimum distance is less than the minimum distance between the second part and the upper surface of the driving substrate from the driving substrate;
  • a color film layer is formed on the side of the second electrode layer away from the organic light-emitting layer.
  • a display device including the above-mentioned display panel.
  • FIG. 1 is a schematic diagram of a display panel provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a display panel provided by another embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a display panel provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a display panel provided by still another embodiment of the present disclosure.
  • Fig. 5 is a monochromatic spectrum of a display panel in the prior art
  • FIG. 6 is a monochromatic spectrum of a display panel provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a manufacturing method of a display panel provided by an embodiment of the present disclosure.
  • Electron injection layer 61. Hole blocking layer, 62. Electron transport layer, 63. Electron injection layer;
  • the first encapsulation layer 72.
  • the second encapsulation layer 72.
  • each organic layer uses an open mask during evaporation, so a hole injection layer is also present between the two anodes. Since the hole injection layer is a highly conductive organic material, and its transport performance is similar to that of metal, the hole injection layer between two anodes will conduct electricity between adjacent anodes. Therefore, when a hole injection layer is energized, the two adjacent anodes will also be turned on, which will cause the organic light-emitting layer of adjacent pixels to also be lit, so that the light color is not a true single light color, and then Causes problems such as cross-color and cross-talk, as well as leakage current.
  • a display panel is first provided. As shown in FIG. 1, the display panel includes: a driving substrate 10, a plurality of first electrodes 21, a hole transport layer 30, an organic light emitting layer 40, and a second electrode layer. 22 layers and color film layer 50.
  • the driving substrate 10 includes a plurality of driving transistors; a plurality of first electrodes 21 are arranged on the surface of one side of the driving substrate 10 at intervals, and the plurality of first electrodes 21 are electrically connected with one electrode of the plurality of driving transistors in a one-to-one correspondence, and the driving transistors
  • One of the electrodes may be, for example, a source;
  • the hole transport layer 30 includes a first portion 310 and a second portion 320, the first portion 310 is provided between adjacent first electrodes 21 and is located on the surface of the driving substrate 10;
  • the two parts 320 are provided on the surface of each first electrode 21 away from the driving substrate 10; the minimum distance between the first part 310 and the upper surface of the driving substrate 10 and the driving substrate 10 is smaller than the distance between the second part 320 and the upper surface of the driving substrate 10
  • the organic light-emitting layer 40 is provided on the side of the hole transport layer 30 away from the drive substrate 10;
  • the second electrode layer 22
  • the first part 310 of the hole transport layer 30 is provided on the surface of the driving substrate 10 between the adjacent first electrodes 21, and the minimum distance between the upper surface of the first part 310 and the driving substrate 10 is It is smaller than the minimum distance between the upper surface of the second part 320 and the driving substrate 10, which increases the length of the first part 310 between the second parts 310 on two adjacent first electrodes 21, and reduces the distance between the adjacent second parts 310.
  • the hole transport layer 30 on the opposite side of the two adjacent first electrodes 21 has uneven thickness, which reduces the conductivity of the hole transport layer 30 at that location; in addition, it is located adjacent to The hole transport layer 30 between the first electrodes 21 has relatively low conductivity.
  • Emitting light reduces the leakage between sub-pixels, thereby improving the color purity of the spectrum, thereby improving the color gamut of the product; after the leakage and crosstalk are reduced, the efficiency of the device can be improved and the life of the device can be improved.
  • Figures 5 and 6 show the spectra of products under different OLED device structures.
  • the abscissa is the light intensity and the ordinate is the wavelength.
  • Figure 5 shows the monochromatic G spectrum of an existing general product. It can be clearly seen that there are R and B spectra at the same time when the monochromatic G is dotted, and Figure 6 is the monochromatic G of the disclosed OLED device structure. From the spectrum, it can be seen that when the single-color G is dotted, there is no R and B spectra, that is, the leakage between the sub-pixels of the OLED device structure of the present disclosure is reduced, thereby improving the color purity of the spectrum, thereby increasing the color gamut of the product.
  • the display panel provided by the present disclosure is a single unit white (single white light) OLED device. Its light-emitting layer shares a hole transport layer and does not require a charge generation layer. Therefore, the driving voltage is relatively small, usually less than 3.5V.
  • the display panel is of a top emission type, in which the first electrode 21 is an anode, and the second electrode layer 22 is a cathode.
  • the anode may be formed of Ti material layer, Ag material layer and ITO material layer that are sequentially stacked in a direction away from the driving substrate 10.
  • the anode may also be composed of other material layers, which is not limited in the present disclosure.
  • the minimum distance between the upper surface of the second portion 320 of the hole transport layer 30 and the drive substrate 10 is greater than twice the minimum distance between the upper surface of the first portion 310 and the drive substrate 10 to ensure that two adjacent first electrodes
  • the length of the first part 310 between the second parts 310 on 21 is relatively large, thereby reducing the conductivity between adjacent second parts 310 and reducing the occurrence of leakage and crosstalk.
  • the minimum distance between the upper surface of the first portion 310 of the hole transport layer 30 and the drive substrate 10 is E.g, Etc., which are not listed here; of course, the minimum distance between the upper surface of the first portion 310 and the driving substrate 10 may also be less than Or greater than
  • the minimum distance between the upper surface of the second part 320 and the drive substrate 10 is E.g, Etc., which are not listed here; of course, the minimum distance between the upper surface of the second part 320 and the driving substrate 10 may also be less than Or greater than
  • the present disclosure is not limited here.
  • the hole transport layer 30 has an integral structure.
  • the hole transport layer 30 including the first part 310 and the second part 320 may be formed by a process such as evaporation.
  • the thickness of the hole transport layer 30 in the direction away from the drive substrate 10 is E.g, Etc. I will not list them here.
  • the thickness of the hole transport layer 30 can also be less than Or greater than The present disclosure is not limited here.
  • each first electrode 21 in the direction away from the drive substrate 10 is E.g, Etc. I will not list them here.
  • the thickness of the first electrode 21 can also be less than Or greater than
  • the maximum width of the orthographic projection of each first electrode 21 on the drive substrate 10 is less than 13 ⁇ m.
  • the orthographic projection of each first electrode 21 on the drive substrate 10 is a rectangle, and the width of each first electrode 21 is 3 ⁇ m- 5 ⁇ m.
  • the width of the first electrode 21 can also be less than 3 ⁇ m or greater than 5 ⁇ m;
  • the length of each first electrode 21 is 10 ⁇ m-13 ⁇ m.
  • 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, etc. are not listed here.
  • the length of the first electrode 21 may also be less than 10 ⁇ m or greater than 13 ⁇ m.
  • the orthographic projection of each first electrode 21 on the driving substrate 10 can also be in other shapes, such as a hexagon, a square, a circle, an ellipse, or an irregular shape, which is not limited in the present disclosure.
  • the gap between adjacent first electrodes 21 is less than one third of the maximum width of the orthographic projection of the first electrodes 21 on the driving substrate 10.
  • the aperture ratio of the pixel is greater than 50%
  • the gap between adjacent first electrodes 21 is less than 4 ⁇ m.
  • the gap of the first electrode 21 is less than 4 ⁇ m, such as 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, etc., which are not listed here in the present disclosure.
  • the display panel further includes: an electron transport layer 62.
  • the electron transport layer 62 is provided on the side of the organic light emitting layer 40 away from the hole transport layer 30, and the second electrode layer 22 is provided on the side of the electron transport layer 62 away from the organic light emitting layer 40.
  • the display panel further includes: an electron injection layer 63.
  • the electron injection layer 63 is provided on the side of the electron transport layer 62 away from the light-emitting layer, and the second electrode layer 22 is provided on the side of the electron injection layer 63 away from the electron transport layer 62.
  • the display panel further includes: a hole blocking layer 61.
  • the hole blocking layer 61 is disposed on the side of the organic light-emitting layer 40 away from the hole transport layer 30, and the electron transport layer 62 is located on the side of the hole blocking layer 61 away from the organic light-emitting layer 40.
  • the organic light-emitting layer 40 includes a first light-emitting layer 410, a second light-emitting layer 420, and a third light-emitting layer 430.
  • the first light-emitting layer 410, the second light-emitting layer 420, and the third light-emitting layer 430 are R/ One of G/B, the present disclosure does not limit the specific colors of the first light-emitting layer 410, the second light-emitting layer 420, and the third light-emitting layer 430.
  • the first light-emitting layer 410 is R color
  • the second light-emitting layer 420 is G Color and the third light-emitting layer 430B color to cooperate to form a white light-emitting layer.
  • the thickness of the organic light-emitting layer 40 is E.g, Etc. I will not list them here.
  • the thickness of the organic light-emitting layer 40 can also be less than Or greater than The present disclosure is not limited here.
  • the hole blocking layer 61 can also be provided on the side of the first light-emitting layer 410 away from the hole transport layer 30, and the second light-emitting layer 420 is provided on a side of the hole blocking layer 61 away from the first light-emitting layer 410. side.
  • the display panel further includes: a light extraction layer 80.
  • the light extraction layer 80 is provided on the side of the second electrode layer 22 away from the organic light-emitting layer 40, and the color filter layer 50 is provided on the side of the light extraction layer 80 away from the second electrode layer 22.
  • the orthographic projection of the hole transport layer 30 on the driving substrate 10 is located within the orthographic projection of the light extraction layer 80 on the driving substrate 10 to avoid the failure of the OLED light-emitting function layer and improve the reliability of the display panel.
  • the display panel further includes an encapsulation layer disposed on the side of the light extraction layer 80 away from the two electrode layers, and the color filter layer 50 is disposed on the side of the encapsulation layer away from the light extraction layer 80.
  • the encapsulation layer is the first encapsulation layer 71.
  • the orthographic projection of the hole transport layer 30 on the driving substrate 10 is located within the orthographic projection of the encapsulation layer on the driving substrate 10 to avoid the failure of the OLED light-emitting function layer and improve the reliability of the display panel.
  • the display panel further includes: a second encapsulation layer 72, and the second encapsulation layer 72 is provided on the side of the color filter layer 50 away from the first encapsulation layer 71.
  • the display panel further includes: a cover glass 90, and the cover glass 90 is provided on a side of the second encapsulation layer 72 away from the color film layer 50.
  • the embodiment of the present disclosure also provides a manufacturing method of a display panel. As shown in FIG. 7, the manufacturing method includes:
  • Step S100 providing a driving substrate, the driving substrate including a plurality of driving transistors;
  • Step S200 forming a plurality of first electrodes spaced apart on one side of the driving substrate, and the plurality of first electrodes are electrically connected to one electrode of the plurality of driving transistors in a one-to-one correspondence;
  • Step S300 forming a hole transport layer on one side of the drive substrate, the hole transport layer includes a first part and a second part, the first part is provided between adjacent first electrodes and located on the surface of the drive substrate; The two parts are arranged on the surface of each first electrode away from the driving substrate; the minimum distance between the upper surface of the first part away from the driving substrate and the driving substrate is smaller than the minimum distance between the upper surface of the second part away from the driving substrate and the driving substrate;
  • Step S400 forming an organic light emitting layer on the side of the hole transport layer away from the driving substrate;
  • Step S500 forming a second electrode layer on the side of the organic light emitting layer away from the hole transport layer;
  • Step S600 forming a color filter layer on the side of the second electrode layer away from the organic light-emitting layer.
  • the first part of the hole transport layer is provided on the surface of the driving substrate between adjacent first electrodes, and the minimum distance between the upper surface of the first part and the driving substrate is smaller than that of the second part.
  • the minimum distance between the surface and the driving substrate increases the length of the first part between the second parts on two adjacent first electrodes, and reduces the conductivity between the adjacent second parts; in addition, two adjacent first electrodes
  • the hole transport layer on the opposite side of the electrodes has uneven thickness, which reduces the conductivity of the hole transport layer in this part; in addition, the hole transport layer provided between adjacent first electrodes has a relatively high thickness. Low conductivity.
  • Emitting light reduces the leakage between sub-pixels, thereby improving the color purity of the spectrum, thereby improving the color gamut of the product; after the leakage and crosstalk are reduced, the efficiency of the device can be improved and the life of the device can be improved.
  • step S100 a driving substrate is provided, and the driving substrate includes a plurality of driving transistors.
  • the driving substrate 10 includes driving transistors respectively formed on a silicon-based substrate for connecting the first electrodes 21.
  • step S200 a plurality of first electrodes arranged at intervals are formed on one side of the driving substrate, and the plurality of first electrodes are electrically connected to one electrode of the plurality of driving transistors in a one-to-one correspondence.
  • a plurality of first electrodes 21 arranged at intervals can be formed on one side of the driving substrate 10 through processes such as deposition and etching, and the plurality of first electrodes 21 are electrically connected to the poles of the plurality of driving transistors in a one-to-one correspondence.
  • One pole of the driving transistor can be, for example, a source.
  • each first electrode 21 in the direction away from the drive substrate 10 is E.g, Etc. I will not list them here.
  • the thickness of the first electrode 21 can also be less than Or greater than
  • the maximum width of the orthographic projection of each first electrode 21 on the driving substrate 10 is less than 13 ⁇ m.
  • the orthographic projection of each first electrode 21 on the driving substrate 10 is a rectangle, and the width of each first electrode 21 is 3 ⁇ m-5 ⁇ m.
  • 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, etc. are not listed here.
  • the width of the first electrode 21 can also be less than 3 ⁇ m or greater than 5 ⁇ m; the length of each first electrode 21 is 10 ⁇ m-13 ⁇ m.
  • the length of the first electrode 21 may also be less than 10 ⁇ m or greater than 13 ⁇ m.
  • the orthographic projection of each first electrode 21 on the driving substrate 10 can also be in other shapes, such as a hexagon, a square, a circle, an ellipse, or an irregular shape, which is not limited in the present disclosure.
  • the gap between adjacent first electrodes 21 is less than one third of the maximum width of the orthographic projection of the first electrodes 21 on the driving substrate 10.
  • the aperture ratio of the pixel is greater than 50%
  • the gap between adjacent first electrodes 21 is less than 4 ⁇ m.
  • the gap of the first electrode 21 is less than 2 ⁇ m-4 ⁇ m, such as 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, etc., which are not listed here in the present disclosure.
  • a hole transport layer is formed on one side of the drive substrate.
  • the hole transport layer includes a first part and a second part.
  • the first part is provided between adjacent first electrodes and is located on the surface of the drive substrate.
  • the second part is provided on the surface of each first electrode away from the driving substrate; the minimum distance of the first part away from the upper surface of the driving substrate from the driving substrate is smaller than the minimum distance of the second part away from the upper surface of the driving substrate from the driving substrate.
  • the hole transport layer 30 is formed on one side of the drive substrate 10 through a process such as vapor deposition, and the hole transport layer 30 is an integral structure.
  • the minimum distance between the upper surface of the second portion 320 of the hole transport layer 30 and the drive substrate 10 is greater than twice the minimum distance between the upper surface of the first portion 310 and the drive substrate 10 to ensure that two adjacent first electrodes
  • the length of the first part 310 between the second parts 310 on 21 is relatively large, thereby reducing the conductivity between adjacent second parts 310 and reducing the occurrence of leakage and crosstalk.
  • the minimum distance between the upper surface of the first portion 310 of the hole transport layer 30 and the drive substrate 10 is E.g, Etc., which are not listed here; of course, the minimum distance between the upper surface of the first portion 310 and the driving substrate 10 may also be less than Or greater than
  • the minimum distance between the upper surface of the second part 320 and the drive substrate 10 is E.g, Etc., which are not listed here; of course, the minimum distance between the upper surface of the second part 320 and the driving substrate 10 may also be less than Or greater than
  • the present disclosure is not limited here.
  • the thickness of the hole transport layer 30 in the direction away from the drive substrate 10 is E.g, Etc. I will not list them here.
  • the thickness of the hole transport layer 30 can also be less than Or greater than The present disclosure is not limited here.
  • step S400 an organic light emitting layer is formed on the side of the hole transport layer away from the driving substrate.
  • the organic light-emitting layer 40 is formed by a process such as evaporation.
  • the organic light-emitting layer 40 includes a first light-emitting layer 410, a second light-emitting layer 420, and a third light-emitting layer 430.
  • the three light-emitting layers 430 are one of R/G/B.
  • the present disclosure does not limit the specific colors of the first light-emitting layer 410, the second light-emitting layer 420, and the third light-emitting layer 430.
  • the first light-emitting layer 410 is of R color.
  • the second light-emitting layer 420 is G color
  • the third light-emitting layer 430B color to cooperate to form a white light-emitting layer.
  • the thickness of the organic light-emitting layer 40 is E.g, Etc. I will not list them here.
  • the thickness of the organic light-emitting layer 40 can also be less than Or greater than The present disclosure is not limited here.
  • step S500 a second electrode layer is formed on the side of the organic light emitting layer away from the hole transport layer.
  • the second electrode layer 22 is formed on the side of the organic light-emitting layer 40 away from the hole transport layer 30 by a process such as deposition.
  • the display panel provided by the present disclosure is of a top emission type, in which the first electrode 21 is an anode, and the second electrode layer 22 is a cathode.
  • step S600 a color filter layer is formed on the side of the second electrode layer away from the organic light-emitting layer.
  • the color film layer 50 is formed on the side of the second electrode layer 22 away from the organic light-emitting layer 40 through processes such as deposition.
  • the order of the color film layer 50 in the extension direction of the main body is not limited. For example, it may be RGB/RBG or GBR/GRB.
  • An embodiment of the present disclosure also provides a display device, which includes the above-mentioned display panel.
  • a display device which includes the above-mentioned display panel.
  • the display device may be, for example, a head-mounted display device such as VR/AR.

Abstract

本公开是关于一种显示面板、显示面板的制造方法和显示装置,该显示面板包括:驱动基板、多个第一电极、空穴传输层、有机发光层、第二电极层和彩膜层。驱动基板包括多个驱动晶体管,多个第一电极间隔设于驱动基板一侧的表面上,且与多个驱动晶体管的一极一一对应电连接;空穴传输层包括第一部分和第二部分,第一部分设于相邻的各第一电极之间,且位于驱动基板的表面上;第二部分设于各第一电极远离驱动基板的表面上;第一部分的上表面距离驱动基板的最小距离小于第二部分的上表面距离驱动基板的最小距离;有机发光层设于空穴传输层远离驱动基板的一侧;第二电极层设于有机发光层远离空穴传输层的一侧;彩膜层设于第二电极层远离有机发光层的一侧。

Description

显示装置、显示面板及其制造方法 技术领域
本公开涉及显示技术领域,具体而言,涉及一种显示面板、显示面板的制造方法和显示装置。
背景技术
随着VR(Virtual Reality,虚拟现实)/AR(Augmented Reality,增强现实)技术的日益进步和市场的快速增长,适用于VR/AR领域的显示面板也正在加急步伐向微型化、高PPI、快速响应和高色域的方向发展,而硅基OLED(Organic Light Emitting Display,有机发光二极管)显示面板凭借着其微型化和高PPI的优势,也正在成为VR/AR领域的新的关注焦点。
目前,硅基OLED产品需要更小的阳极像素和更窄的阳极间距以满足高分辨率,OLED器件需要更高亮度、高效率以应对在彩膜层像素化过程中引起的光学损失。
然而,现有的硅基OLED器件虽然能够满足高效率和高电压,但会在实际的应用过程中会带来而外的影响,比如大电流、串扰、漏电等问题。
发明内容
本公开的目的在于提供一种显示面板、显示面板的制造方法和显示装置,能够降低串扰和漏电。
根据本公开的一个方面,提供了一种显示面板,该显示面板包括:
驱动基板,包括多个驱动晶体管;
多个第一电极,间隔设于所述驱动基板一侧的表面上,且多个所述第一电极与多个所述驱动晶体管的一极一一对应电连接;
空穴传输层,包括第一部分和第二部分,所述第一部分设于相邻 的各所述第一电极之间,且位于所述驱动基板的表面上;所述第二部分设于各所述第一电极远离所述驱动基板的表面上;所述第一部分远离所述驱动基板的上表面距离所述驱动基板的最小距离小于所述第二部分远离所述驱动基板的上表面距离所述驱动基板的最小距离;
有机发光层,设于所述空穴传输层远离所述驱动基板的一侧;
第二电极层,设于所述有机发光层远离所述空穴传输层的一侧;
彩膜层,设于所述第二电极层远离所述有机发光层的一侧。
在本公开的一种示例性实施例中,所述第二部分的上表面距离所述驱动基板的最小距离大于所述第一部分的上表面距离所述驱动基板的最小距离的两倍。
在本公开的一种示例性实施例中,所述第一部分的上表面距离所述驱动基板的最小距离为
Figure PCTCN2020081884-appb-000001
所述第二部分的上表面距离所述驱动基板的最小距离为
Figure PCTCN2020081884-appb-000002
在本公开的一种示例性实施例中,所述空穴传输层为一体结构。
在本公开的一种示例性实施例中,所述空穴传输层在远离所述驱动基板的方向上的厚度为
Figure PCTCN2020081884-appb-000003
在本公开的一种示例性实施例中,相邻所述第一电极之间的间隙小于所述第一电极在所述驱动基板上正投影的最大宽度的三分之一。
在本公开的一种示例性实施例中,开口率大于50%,相邻所述第一电极之间的间隙为小于4μm。
在本公开的一种示例性实施例中,各所述第一电极在远离所述驱动基板的方向上的厚度为
Figure PCTCN2020081884-appb-000004
在本公开的一种示例性实施例中,各所述第一电极在所述驱动基板上的正投影的最大宽度小于13μm。
在本公开的一种示例性实施例中,所述显示面板还包括:
电子传输层,设于所述有机发光层远离所述空穴传输层的一侧,所述第二电极层设于所述电子传输层远离所述有机发光层的一侧。
在本公开的一种示例性实施例中,所述显示面板还包括:
电子注入层,设于所述电子传输层远离所述发光层的一侧,所述第二电极层设于所述电子注入层远离所述电子传输层的一侧。
在本公开的一种示例性实施例中,所述显示面板还包括:
空穴阻挡层,设于所述有机发光层远离所述空穴传输层的一侧,所述电子传输层位于所述空穴阻挡层远离所述有机发光层的一侧。
在本公开的一种示例性实施例中,所述显示面板还包括:
光取出层,设于所第二电极层远离所述有机发光层的一侧,所述彩膜层设于所述光取出层远离所述第二电极层的一侧。
在本公开的一种示例性实施例中,所述空穴传输层在所述驱动基板上的正投影位于所述光取出层在所述驱动基板上的正投影内。
在本公开的一种示例性实施例中,所述显示面板还包括:
封装层,设于所述光取出层远离所述二电极层的一侧,所述彩膜层设于所述封装层远离所述光取出层的一侧。
在本公开的一种示例性实施例中,所述空穴传输层在所述驱动基板上的正投影位于所述封装层在所述驱动基板上的正投影内。
根据本公开的另一个方面,提供了一种显示面板的制造方法,该制造方法包括:
提供一驱动基板,所述驱动基板包括多个驱动晶体管;
在所述驱动基板的一侧形成间隔设置的多个第一电极,且多个所述第一电极与多个所述驱动晶体管的一极一一对应电连接;
在相邻的各所述第一电极之间形成空穴传输层,所述空穴传输层包括第一部分和第二部分,所述第一部分设于相邻的各所述第一电极之间,且位于所述驱动基板的表面上;所述第二部分设于各所述第一电极远离所述驱动基板的表面上;所述第一部分远离所述驱动基板的上表面距离所述驱动基板的最小距离小于所述第二部分远离所述驱动基板的上表面距离所述驱动基板的最小距离;
在所述空穴传输层远离所述驱动基板的一侧形成有机发光层;
在所述有机发光层远离所述空穴传输层的一侧形成第二电极层;
在所述第二电极层远离所述有机发光层的一侧形成彩膜层。
根据本公开的又一个方面,提供了一种显示装置,该显示装置包括上述的显示面板。
附图说明
附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其它特征和优点对本领域技术人员将变得更加显而易见,在附图中:
图1为本公开的一种实施例提供的显示面板的示意图;
图2为本公开的另一种实施例提供的显示面板的示意图;
图3为本公开的又一种实施例提供的显示面板的示意图;
图4为本公开的再一种实施例提供的显示面板的示意图;
图5为现有技术中显示面板的单色光谱;
图6为本公开的一种实施例提供的显示面板的单色光谱;
图7为本公开的一种实施例提供的显示面板的制造方法的示意图。
附图标记说明:
10、驱动基板;
21、第一电极,22、第二电极层;
30、空穴传输层,310、第一部分,320、第二部分;
40、有机发光层,410、第一发光层,420、第二发光层,430、第三发光层;
50、彩膜层;
61、空穴阻挡层,62、电子传输层,63、电子注入层;
71、第一封装层,72、第二封装层;
80、光取出层;
90、盖板玻璃。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方 式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”、“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”仅作为标记使用,不是对其对象的数量限制。
申请人发现,现有的OLED器件,各有机层在蒸镀时均使用Open mask,因此在两个阳极之间也会存在空穴注入层。由于空穴注入层为高导电性的有机材料,传输性能类似与金属,因此在两个阳极之间的空穴注入层会将相邻的阳极之间导通。因此,当一个空穴注入层通电时,相邻的两个阳极也会被导通,进而导致相邻像素的有机发光层也会被点亮,从而使光色不是真正的单光色,进而导致出现串色和串扰以及漏电流等问题。
本示例实施方式中首先提供了一种显示面板,如图1所示,该显示面板包括:驱动基板10、多个第一电极21、空穴传输层30、有机发光层40、第二电极层22层和彩膜层50。驱动基板10包括多个驱动晶体管;多个第一电极21间隔设于驱动基板10一侧的表面上,且多个第一电极21与多个驱动晶体管的一极一一对应电连接,驱动晶体管的一极例如可为源极;空穴传输层30包括第一部分310和第二部分320,第一部分 310设于相邻的各第一电极21之间,且位于驱动基板10的表面上;第二部分320设于各第一电极21远离驱动基板10的表面上;第一部分310远离驱动基板10的上表面距离驱动基板10的最小距离小于第二部分320远离驱动基板10的上表面距离驱动基板10的最小距离;有机发光层40设于空穴传输层30远离驱动基板10的一侧;第二电极层22层设于有机发光层40远离空穴传输层30的一侧;彩膜层50设于第二电极层22层远离有机发光层40的一侧。
本公开提供的显示面板,空穴传输层30的第一部分310设于相邻的各第一电极21之间的驱动基板10的表面上,且第一部分310的上表面距离驱动基板10的最小距离小于第二部分320的上表面距离驱动基板10的最小距离,增加了相邻两个第一电极21上第二部分310之间的第一部分310的长度,降低了相邻第二部分310之间的导电性;此外,相邻两个第一电极21相向的侧面上的空穴传输层30存在厚度不均匀的情况,降低了该部位空穴传输层30的导电性;此外,设于相邻的各第一电极21之间的空穴传输层30由于自身具有较低的导电性。因此,当其中一个阳极通电时,相邻的两个阳极不会被导通;从而在点亮一个子素时,相邻的子像素不会被点亮,由此可以单独控制单个子像素单独发光,使得子像素之间的漏电减少,从而提升光谱的色纯度,进而可以提高产品的色域;漏电和串扰减少后,进而可以提升器件的效率,改善器件寿命。
图5和图6为不同OLED器件结构下产品的光谱,横坐标为光强度,纵坐标为波长。以单色G为例,图5为现有通用产品单色G光谱,从中可以明显看到,点单色G时同时有R和B光谱,而图6为本公开OLED器件结构的单色G光谱,从中可以看到点单色G时,无R和B光谱出现,即本公开的OLED器件结构的子像素之间的漏电减少,从而提升光谱的色纯度,进而可以提高产品的色域。
具体地,本公开提供的为single units white(单个式白光)OLED器件的显示面板,其发光层共用空穴传输层,不需要电荷生成层,因此驱动电压较小,通常小于3.5V。显示面板为顶发射型,其中第一电极21为阳极,第二电极层22层为阴极。其中,阳极可由朝向远离驱动基板10方向上依次层叠的Ti材料层、Ag材料层和ITO材料层形成,当然, 阳极还可由其它材料层组成,本公开对此不作限制。
示例的,空穴传输层30的第二部分320的上表面距离驱动基板10的最小距离大于第一部分310的上表面距离驱动基板10的最小距离的两倍,以保证相邻两个第一电极21上第二部分310之间的第一部分310的长度较大,从而降低相邻第二部分310之间的导电性,减少漏电和串扰的情况出现。
示例的,空穴传输层30的第一部分310的上表面距离驱动基板10的最小距离为
Figure PCTCN2020081884-appb-000005
例如,
Figure PCTCN2020081884-appb-000006
Figure PCTCN2020081884-appb-000007
等,在此不一一列举;当然,第一部分310的上表面距离驱动基板10的最小距离也可小于
Figure PCTCN2020081884-appb-000008
或大于
Figure PCTCN2020081884-appb-000009
第二部分320的上表面距离驱动基板10的最小距离为
Figure PCTCN2020081884-appb-000010
例如,
Figure PCTCN2020081884-appb-000011
Figure PCTCN2020081884-appb-000012
等,在此不一一列举;当然,第二部分320的上表面距离驱动基板10的最小距离也可小于
Figure PCTCN2020081884-appb-000013
或大于
Figure PCTCN2020081884-appb-000014
本公开在此不做限制。
如图2所示,空穴传输层30为一体结构。可通过蒸镀等工艺形成包括第一部分310和第二部分320的一体结构的空穴传输层30。
其中,空穴传输层30在远离驱动基板10的方向上的厚度为
Figure PCTCN2020081884-appb-000015
Figure PCTCN2020081884-appb-000016
例如,
Figure PCTCN2020081884-appb-000017
等,在此不一一列举。当然,空穴传输层30的厚度也可小于
Figure PCTCN2020081884-appb-000018
或大于
Figure PCTCN2020081884-appb-000019
本公开在此不做限制。
示例的,各第一电极21在远离驱动基板10的方向上的厚度为
Figure PCTCN2020081884-appb-000020
Figure PCTCN2020081884-appb-000021
例如,
Figure PCTCN2020081884-appb-000022
等,在此不一一列举。当然,第一电极21的厚度也可小于
Figure PCTCN2020081884-appb-000023
或大于
Figure PCTCN2020081884-appb-000024
示例的,各第一电极21在驱动基板10上的正投影的最大宽度小于13μm,例如,各第一电极21在驱动基板10上的正投影为长方形,各第一电极21的宽度为3μm-5μm。例如,3μm、4μm、5μm等,在此不一一列举。当然,第一电极21的宽度也可小于3μm或大于5μm;各第一电极21的长度为10μm-13μm。例如,10μm、11μm、12μm、13μm等,在此不一一列举。当然,第一电极21的长度也可小于10μm或大于13μm。 当然,各第一电极21在驱动基板10上的正投影也可为其他形状,例如六边形、正方形、圆形、椭圆形或不规则形状,本公开对此不做限制。
其中,相邻第一电极21之间的间隙小于第一电极21在驱动基板10上正投影的最大宽度的三分之一。示例的,像素的开口率大于50%,相邻第一电极21之间的间隙小于4μm。具体地,为满足开口率需求,且避免随着分辨率的增加,间隙会越来越小,相邻像素会无法避免产生横向漏电的问题,当分辨率大于2000ppi,开口率大于50%时,第一电极21的间隙小于4μm,例如1μm、2μm、3μm、4μm等,本公开在此不一一列举。
如图2所示,显示面板还包括:电子传输层62。电子传输层62设于有机发光层40远离空穴传输层30的一侧,第二电极层22层设于电子传输层62远离有机发光层40的一侧。
如图2所示,显示面板还包括:电子注入层63。电子注入层63设于电子传输层62远离发光层的一侧,第二电极层22层设于电子注入层63远离电子传输层62的一侧。
如图2所示,显示面板还包括:空穴阻挡层61。空穴阻挡层61设于有机发光层40远离空穴传输层30的一侧,电子传输层62位于空穴阻挡层61远离有机发光层40的一侧。
如图3所示,有机发光层40包括第一发光层410、第二发光层420和第三发光层430,第一发光层410、第二发光层420和第三发光层430分别为R/G/B中的一个,本公开对第一发光层410、第二发光层420和第三发光层430具体颜色不做限制,例如第一发光层410为R色、第二发光层420为G色、第三发光层430B色,以配合形成白色发光层。此外,有机发光层40的厚度为
Figure PCTCN2020081884-appb-000025
例如,
Figure PCTCN2020081884-appb-000026
Figure PCTCN2020081884-appb-000027
等,在此不一一列举。当然,有机发光层40的厚度也可小于
Figure PCTCN2020081884-appb-000028
或大于
Figure PCTCN2020081884-appb-000029
本公开在此不做限制。
如图4所示,空穴阻挡层61还可设于第一发光层410远离空穴传输层30的一侧,第二发光层420设于空穴阻挡层61远离第一发光层410的一侧。
如图2所示,显示面板还包括:光取出层80。光取出层80设于所第二电极层22层远离有机发光层40的一侧,彩膜层50设于光取出层80远离第二电极层22层的一侧。
具体地,空穴传输层30在驱动基板10上的正投影位于光取出层80在驱动基板10上的正投影内,以避免OLED发光功能层的失效,提高了显示面板的可靠性。
具体地,显示面板还包括:封装层,设于光取出层80远离二电极层的一侧,彩膜层50设于封装层远离光取出层80的一侧。如图2所示,该封装层为第一封装层71。
其中,空穴传输层30在驱动基板10上的正投影位于封装层在驱动基板10上的正投影内,以避免OLED发光功能层的失效,提高了显示面板的可靠性。
进一步地,如图4所示,显示面板还包括:第二封装层72,第二封装层72设于彩膜层50远离第一封装层71的一侧。
进一步地,如图4所示,显示面板还包括:盖板玻璃90,盖板玻璃90设于第二封装层72远离彩膜层50的一侧。
下述为本公开方法实施例,可以用于制造本公开装置实施例。对于本公开方法实施例中未披露的细节,请参照本公开装置实施例。
本公开的实施例还提供了一种显示面板的制造方法,如图7所示,该制造方法包括:
步骤S100、提供一驱动基板,驱动基板包括多个驱动晶体管;
步骤S200、在驱动基板的一侧形成间隔设置的多个第一电极,且多个第一电极与多个驱动晶体管的一极一一对应电连接;
步骤S300、在驱动基板的一侧形成空穴传输层,空穴传输层包括第一部分和第二部分,第一部分设于相邻的各第一电极之间,且位于驱动基板的表面上;第二部分设于各第一电极远离驱动基板的表面上;第一部分远离驱动基板的上表面距离驱动基板的最小距离小于第二部分远离驱动基板的上表面距离驱动基板的最小距离;
步骤S400、在空穴传输层远离驱动基板的一侧形成有机发光层;
步骤S500、在有机发光层远离空穴传输层的一侧形成第二电极层;
步骤S600、在第二电极层远离有机发光层的一侧形成彩膜层。
本公开提供的显示面板,空穴传输层的第一部分设于相邻的各第一电极之间的驱动基板的表面上,且第一部分的上表面距离驱动基板的最小距离小于第二部分的上表面距离驱动基板的最小距离,增加了相邻两个第一电极上第二部分之间的第一部分的长度,降低了相邻第二部分之间的导电性;此外,相邻两个第一电极相向的侧面上的空穴传输层存在厚度不均匀的情况,降低了该部位空穴传输层的导电性;此外,设于相邻的各第一电极之间的空穴传输层自身具有较低的导电性。因此,当其中一个阳极通电时,相邻的两个阳极不会被导通;从而在点亮一个子素时,相邻的子像素不会被点亮,由此可以单独控制单个子像素单独发光,使得子像素之间的漏电减少,从而提升光谱的色纯度,进而可以提高产品的色域;漏电和串扰减少后,进而可以提升器件的效率,改善器件寿命。
下面,将对本示例实施方式中的显示面板的制造方法的各步骤进行进一步的说明。
在步骤S100中,提供一驱动基板,驱动基板包括多个驱动晶体管。
具体地,驱动基板10包括在硅基衬底形成分别用于第一电极21连接的驱动晶体管。
在步骤S200中,在驱动基板的一侧形成间隔设置的多个第一电极,且多个第一电极与多个驱动晶体管的一极一一对应电连接。
具体地,可通过沉积、刻蚀等工艺在驱动基板10的一侧形成间隔设置的多个第一电极21,且多个第一电极21与多个驱动晶体管的一极一一对应电连接,驱动晶体管的一极例如可为源极。
其中,各第一电极21在远离驱动基板10的方向上的厚度为
Figure PCTCN2020081884-appb-000030
Figure PCTCN2020081884-appb-000031
例如,
Figure PCTCN2020081884-appb-000032
等,在此不一一列举。当然,第一电极21的厚度也可小于
Figure PCTCN2020081884-appb-000033
或大于
Figure PCTCN2020081884-appb-000034
各第一电 极21在驱动基板10上的正投影的最大宽度小于13μm,例如,各第一电极21在驱动基板10上的正投影为长方形,各第一电极21的宽度为3μm-5μm。例如,3μm、4μm、5μm等,在此不一一列举。当然,第一电极21的宽度也可小于3μm或大于5μm;各第一电极21的长度为10μm-13μm。例如,10μm、11μm、12μm、13μm等,在此不一一列举。当然,第一电极21的长度也可小于10μm或大于13μm。当然,各第一电极21在驱动基板10上的正投影也可为其他形状,例如六边形、正方形、圆形、椭圆形或不规则形状,本公开对此不做限制。
其中,相邻第一电极21之间的间隙小于第一电极21在驱动基板10上正投影的最大宽度的三分之一。示例的,像素的开口率大于50%,相邻第一电极21之间的间隙小于4μm。具体地,为满足开口率需求,且避免随着分辨率的增加,间隙会越来越小,相邻像素会无法避免产生横向漏电的问题,当分辨率大于2000PPI,开口率大于50%时,第一电极21的间隙小于2μm-4μm,例如1μm、2μm、3μm、4μm等,本公开在此不一一列举。
在步骤S300中,在驱动基板的一侧形成空穴传输层,空穴传输层包括第一部分和第二部分,第一部分设于相邻的各第一电极之间,且位于驱动基板的表面上;第二部分设于各第一电极远离驱动基板的表面上;第一部分远离驱动基板的上表面距离驱动基板的最小距离小于第二部分远离驱动基板的上表面距离驱动基板的最小距离。
具体地,通过蒸镀等工艺在驱动基板10的一侧形成空穴传输层30,空穴传输层30为一体结构。示例的,空穴传输层30的第二部分320的上表面距离驱动基板10的最小距离大于第一部分310的上表面距离驱动基板10的最小距离的两倍,以保证相邻两个第一电极21上第二部分310之间的第一部分310的长度较大,从而降低相邻第二部分310之间的导电性,减少漏电和串扰的情况出现。
示例的,空穴传输层30的第一部分310的上表面距离驱动基板10的最小距离为
Figure PCTCN2020081884-appb-000035
例如,
Figure PCTCN2020081884-appb-000036
Figure PCTCN2020081884-appb-000037
等,在此不一一列举;当然,第一部分310的上表面距离驱动基板 10的最小距离也可小于
Figure PCTCN2020081884-appb-000038
或大于
Figure PCTCN2020081884-appb-000039
第二部分320的上表面距离驱动基板10的最小距离为
Figure PCTCN2020081884-appb-000040
例如,
Figure PCTCN2020081884-appb-000041
Figure PCTCN2020081884-appb-000042
等,在此不一一列举;当然,第二部分320的上表面距离驱动基板10的最小距离也可小于
Figure PCTCN2020081884-appb-000043
或大于
Figure PCTCN2020081884-appb-000044
本公开在此不做限制。
示例的,空穴传输层30在远离驱动基板10的方向上的厚度为
Figure PCTCN2020081884-appb-000045
Figure PCTCN2020081884-appb-000046
例如,
Figure PCTCN2020081884-appb-000047
等,在此不一一列举。当然,空穴传输层30的厚度也可小于
Figure PCTCN2020081884-appb-000048
或大于
Figure PCTCN2020081884-appb-000049
本公开在此不做限制。
在步骤S400中,在空穴传输层远离驱动基板的一侧形成有机发光层。
具体地,通过蒸镀等工艺形成有机发光层40,有机发光层40包括第一发光层410、第二发光层420和第三发光层430,第一发光层410、第二发光层420和第三发光层430分别为R/G/B中的一个,本公开对第一发光层410、第二发光层420和第三发光层430具体颜色不做限制,例如第一发光层410为R色、第二发光层420为G色、第三发光层430B色,以配合形成白色发光层。
此外,有机发光层40的厚度为
Figure PCTCN2020081884-appb-000050
例如,
Figure PCTCN2020081884-appb-000051
Figure PCTCN2020081884-appb-000052
等,在此不一一列举。当然,有机发光层40的厚度也可小于
Figure PCTCN2020081884-appb-000053
或大于
Figure PCTCN2020081884-appb-000054
本公开在此不做限制。
在步骤S500中,在有机发光层远离空穴传输层的一侧形成第二电极层。
具体地,通过沉积等工艺在有机发光层40远离空穴传输层30的一侧形成第二电极层22层。本公开提供的显示面板为顶发射型,其中第一电极21为阳极,第二电极层22层为阴极。
在步骤S600中,在第二电极层远离有机发光层的一侧形成彩膜层。
具体地,通过沉积等工艺在第二电极层22层远离有机发光层40的一侧形成彩膜层50。其中,彩膜层50在主体延伸方向的膜层顺序不做限制,例如,既可以为RGB/RBG也可以为GBR/GRB等。
本公开的实施例还提供了一种显示装置,该显示装置包括上述的显示面板。显示装置的有益效果可参考上述显示面板的有益效果,在此处不再赘述。显示装置例如可为VR/AR等头戴显示设备。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (18)

  1. 一种显示面板,其中,包括:
    驱动基板,包括多个驱动晶体管;
    多个第一电极,间隔设于所述驱动基板一侧的表面上,且多个所述第一电极与多个所述驱动晶体管的一极一一对应电连接;
    空穴传输层,包括第一部分和第二部分,所述第一部分设于相邻的各所述第一电极之间,且位于所述驱动基板的表面上;所述第二部分设于各所述第一电极远离所述驱动基板的表面上;所述第一部分远离所述驱动基板的上表面距离所述驱动基板的最小距离小于所述第二部分远离所述驱动基板的上表面距离所述驱动基板的最小距离;
    有机发光层,设于所述空穴传输层远离所述驱动基板的一侧;
    第二电极层,设于所述有机发光层远离所述空穴传输层的一侧;
    彩膜层,设于所述第二电极层远离所述有机发光层的一侧。
  2. 根据权利要求1所述的显示面板,其中,所述第二部分的上表面距离所述驱动基板的最小距离大于所述第一部分的上表面距离所述驱动基板的最小距离的两倍。
  3. 根据权利要求1所述的显示面板,其中,所述第一部分的上表面距离所述驱动基板的最小距离为
    Figure PCTCN2020081884-appb-100001
    所述第二部分的上表面距离所述驱动基板的最小距离为
    Figure PCTCN2020081884-appb-100002
  4. 根据权利要求1所述的显示面板,其中,所述空穴传输层为一体结构。
  5. 根据权利要求1所述的显示面板,其中,所述空穴传输层在远离所述驱动基板的方向上的厚度为
    Figure PCTCN2020081884-appb-100003
  6. 根据权利要求1所述的显示面板,其中,相邻所述第一电极之间的间隙小于所述第一电极在所述驱动基板上正投影的最大宽度的三分之一。
  7. 根据权利要求6所述的显示面板,其中,开口率大于50%,相邻 所述第一电极之间的间隙小于4μm。
  8. 根据权利要求1所述的显示面板,其中,各所述第一电极在远离所述驱动基板的方向上的厚度为
    Figure PCTCN2020081884-appb-100004
  9. 根据权利要求1所述的显示面板,其中,各所述第一电极在所述驱动基板上的正投影的最大宽度小于13μm。
  10. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    电子传输层,设于所述有机发光层远离所述空穴传输层的一侧,所述第二电极层设于所述电子传输层远离所述有机发光层的一侧。
  11. 根据权利要求10所述的显示面板,其中,所述显示面板还包括:
    电子注入层,设于所述电子传输层远离所述发光层的一侧,所述第二电极层设于所述电子注入层远离所述电子传输层的一侧。
  12. 根据权利要求10所述的显示面板,其中,所述显示面板还包括:
    空穴阻挡层,设于所述有机发光层远离所述空穴传输层的一侧,所述电子传输层位于所述空穴阻挡层远离所述有机发光层的一侧。
  13. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    光取出层,设于所第二电极层远离所述有机发光层的一侧,所述彩膜层设于所述光取出层远离所述第二电极层的一侧。
  14. 根据权利要求13所述的显示面板,其中,所述空穴传输层在所述驱动基板上的正投影位于所述光取出层在所述驱动基板上的正投影内。
  15. 根据权利要求13所述的显示面板,其中,所述显示面板还包括:
    封装层,设于所述光取出层远离所述二电极层的一侧,所述彩膜层设于所述封装层远离所述光取出层的一侧。
  16. 根据权利要求15所述的显示面板,其中,所述空穴传输层在所述驱动基板上的正投影位于所述封装层在所述驱动基板上的正投影内。
  17. 一种显示面板的制造方法,其中,包括:
    提供一驱动基板,所述驱动基板包括多个驱动晶体管;
    在所述驱动基板的一侧形成间隔设置的多个第一电极,且多个所述第一电极与多个所述驱动晶体管的一极一一对应电连接;
    在所述驱动基板的一侧形成空穴传输层,所述空穴传输层包括第一部分和第二部分,所述第一部分设于相邻的各所述第一电极之间,且位于所述驱动基板的表面上;所述第二部分设于各所述第一电极远离所述驱动基板的表面上;所述第一部分远离所述驱动基板的上表面距离所述驱动基板的最小距离小于所述第二部分远离所述驱动基板的上表面距离所述驱动基板的最小距离;
    在所述空穴传输层远离所述驱动基板的一侧形成有机发光层;
    在所述有机发光层远离所述空穴传输层的一侧形成第二电极层;
    在所述第二电极层远离所述有机发光层的一侧形成彩膜层。
  18. 一种显示装置,其中,包括权利要求1-16任一项所述的显示面板。
PCT/CN2020/081884 2020-03-27 2020-03-27 显示装置、显示面板及其制造方法 WO2021189498A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/258,473 US20220140275A1 (en) 2020-03-27 2020-03-27 Display device, display panel and fabricating method thereof
PCT/CN2020/081884 WO2021189498A1 (zh) 2020-03-27 2020-03-27 显示装置、显示面板及其制造方法
EP20897673.8A EP4131392A4 (en) 2020-03-27 2020-03-27 DISPLAY DEVICE, DISPLAY SCREEN AND METHOD OF MANUFACTURING THEREOF
CN202080000407.8A CN113748517B (zh) 2020-03-27 2020-03-27 显示装置、显示面板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081884 WO2021189498A1 (zh) 2020-03-27 2020-03-27 显示装置、显示面板及其制造方法

Publications (1)

Publication Number Publication Date
WO2021189498A1 true WO2021189498A1 (zh) 2021-09-30

Family

ID=77890810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081884 WO2021189498A1 (zh) 2020-03-27 2020-03-27 显示装置、显示面板及其制造方法

Country Status (4)

Country Link
US (1) US20220140275A1 (zh)
EP (1) EP4131392A4 (zh)
CN (1) CN113748517B (zh)
WO (1) WO2021189498A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180351127A1 (en) * 2012-07-27 2018-12-06 Samsung Display Co., Ltd. Organic light emitting diode display and manufacturing method thereof
CN109256472A (zh) * 2018-08-09 2019-01-22 吉林大学 一种不带间隔层的双层双母体结构的白光有机电致发光器件
CN110164921A (zh) * 2019-03-07 2019-08-23 上海视涯信息科技有限公司 一种有机发光显示装置及其形成方法
CN110164906A (zh) * 2018-03-15 2019-08-23 上海视涯信息科技有限公司 一种微型有机发光显示装置及其形成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000639B (zh) * 2012-12-12 2016-01-27 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置
JP2016072250A (ja) * 2014-09-30 2016-05-09 株式会社半導体エネルギー研究所 発光装置、電子機器、及び照明装置
JP6823735B2 (ja) * 2017-05-17 2021-02-03 アップル インコーポレイテッドApple Inc. 横方向の漏れを低減した有機発光ダイオードディスプレイ
CN107863371B (zh) * 2017-10-19 2021-01-08 上海天马微电子有限公司 一种显示面板及显示装置
JP7075292B2 (ja) * 2018-06-21 2022-05-25 キヤノン株式会社 有機デバイス、表示装置、撮像装置、照明装置、移動体用灯具、および、移動体
KR20210025748A (ko) * 2019-08-27 2021-03-10 삼성디스플레이 주식회사 표시 장치
CN110854282B (zh) * 2019-11-28 2024-04-09 京东方科技集团股份有限公司 有机发光二极管、有机发光显示基板及制备方法和显示装置
KR20210157947A (ko) * 2020-06-22 2021-12-30 삼성디스플레이 주식회사 디스플레이 장치
CN111785744A (zh) * 2020-08-27 2020-10-16 京东方科技集团股份有限公司 一种oled显示面板及其制备方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180351127A1 (en) * 2012-07-27 2018-12-06 Samsung Display Co., Ltd. Organic light emitting diode display and manufacturing method thereof
CN110164906A (zh) * 2018-03-15 2019-08-23 上海视涯信息科技有限公司 一种微型有机发光显示装置及其形成方法
CN109256472A (zh) * 2018-08-09 2019-01-22 吉林大学 一种不带间隔层的双层双母体结构的白光有机电致发光器件
CN110164921A (zh) * 2019-03-07 2019-08-23 上海视涯信息科技有限公司 一种有机发光显示装置及其形成方法

Also Published As

Publication number Publication date
EP4131392A1 (en) 2023-02-08
CN113748517B (zh) 2023-08-25
US20220140275A1 (en) 2022-05-05
CN113748517A (zh) 2021-12-03
EP4131392A4 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
TWI627743B (zh) 有機發光顯示裝置
CN109860241B (zh) 高分辨率Micro-OLED显示模组及其制备方法
US8575603B2 (en) Pixel structure of an electroluminescent display panel
US10170526B1 (en) Organic light emitting diode display panel and method for manufacturing same
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
JP2017199675A (ja) 有機発光表示装置及びその製造方法
TW201926673A (zh) 電致發光顯示裝置
WO2018018895A1 (zh) Oled阵列基板及其制作方法、oled显示面板
WO2016095335A1 (zh) Oled显示装置及其制造方法
KR20110021090A (ko) 유기전계 발광소자 제조 용 쉐도우 마스크
WO2018120362A1 (zh) Oled基板及其制作方法
WO2021233070A1 (zh) 显示基板及其制作方法、显示面板及显示装置
US10325961B2 (en) Electroluminescent display, manufacture method thereof, and display device
US11864428B2 (en) Display substrate and display device
TW201603261A (zh) 有機發光元件及像素陣列
US20220223669A1 (en) Display device
KR20170026962A (ko) 유기발광 표시장치
WO2021114421A1 (zh) 显示面板及其制作方法
US20230165094A1 (en) Display device, display panel and manufacturing method thereof, driving circuit and driving method
CN109119438B (zh) 显示基板及其制造方法、显示装置
KR102047413B1 (ko) 유기전계발광표시장치 및 그 제조방법
WO2021189498A1 (zh) 显示装置、显示面板及其制造方法
US20220393131A1 (en) Organic light-emitting display panel and preparation method therefor, and display apparatus
CN111584584B (zh) 显示面板及显示装置
KR20040080729A (ko) 유기 전계 발광 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020897673

Country of ref document: EP

Effective date: 20221027