WO2021189410A1 - 极片、电芯及电池 - Google Patents

极片、电芯及电池 Download PDF

Info

Publication number
WO2021189410A1
WO2021189410A1 PCT/CN2020/081622 CN2020081622W WO2021189410A1 WO 2021189410 A1 WO2021189410 A1 WO 2021189410A1 CN 2020081622 W CN2020081622 W CN 2020081622W WO 2021189410 A1 WO2021189410 A1 WO 2021189410A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
pole piece
layer
current collector
conductive
Prior art date
Application number
PCT/CN2020/081622
Other languages
English (en)
French (fr)
Inventor
李保章
董惠
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2020/081622 priority Critical patent/WO2021189410A1/zh
Priority to CN202080008069.2A priority patent/CN113287214A/zh
Priority to EP20927603.9A priority patent/EP4131508A4/en
Publication of WO2021189410A1 publication Critical patent/WO2021189410A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of batteries, in particular to a pole piece, a cell having the pole piece, and a battery having the cell.
  • lithium-ion batteries With the widespread application of lithium-ion batteries in power tools, electric vehicles, portable devices, etc., the use scenarios of lithium-ion batteries have become more and more complex, and therefore the safety requirements for lithium-ion batteries have become more stringent. As we all know, lithium ion batteries need to use metal foils, such as copper foils, aluminum foils and other metal foils as current collectors. At present, in order to improve the safety of lithium-ion batteries, composite current collectors are usually used in lithium-ion batteries to replace the original metal foil.
  • the composite current collector is damaged by external force, its own resistance will increase sharply, in order to eliminate the safety problem caused by the internal short circuit of the lithium ion battery; however, because the surface resistance of the composite current collector is about the same thickness 100 times that of conventional current collectors, resulting in excessive temperature rise of power batteries during charging and discharging, which cannot meet the needs of actual application scenarios and poses huge safety hazards.
  • the embodiment of the present application provides a pole piece, which includes a current collector, the current collector includes a high molecular polymer layer and a first conductive layer, and the first conductive layer is provided on the surface of the high molecular polymer layer,
  • the first conductive layer is provided with a second conductive layer on the surface of the edge region in the width direction of the pole piece, the second conductive layer extends in the length direction of the pole piece, and the first The conductive layer is arranged between the second conductive layer and the high molecular polymer layer.
  • an insulating layer is provided on the surface of the second conductive layer, and the second conductive layer is provided between the first conductive layer and the insulating layer.
  • an active material layer is provided on the surface of the first conductive layer, and the active material layer connects the second conductive layer and the insulating layer.
  • the edge region in the width direction of the pole piece, includes a first edge region and a second edge region opposite to the first edge region, and the second conductive layer extends from the first edge region.
  • An edge area extends to the second edge area of the pole piece.
  • an active material layer is provided on the surface of the second conductive layer, and the second conductive layer is on the surface of the first edge region or the second edge region of the pole piece
  • An insulating layer is provided.
  • the active material layer is connected to the insulating layer.
  • the second conductive layer includes a conductive agent and a binder, the content of the conductive agent is 1% to 80%, and the content of the binder is 2% to 60%.
  • the sheet resistance of the second conductive layer is less than 1 ⁇ /cm 2 .
  • the adhesive force between the second conductive layer and the current collector is greater than or equal to 10 N/m.
  • the thickness of the second conductive layer is 10 ⁇ m-100 ⁇ m, and the thickness of the insulating layer is less than 20 ⁇ m.
  • An embodiment of the present application also provides a battery cell, including an electrode assembly, and the electrode assembly includes any one of the above-mentioned pole pieces.
  • the embodiment of the present application also provides a battery, which includes any of the above-mentioned battery cores and a casing for accommodating the battery cores.
  • the present application provides the second conductive layer on the edge area of the first conductive layer in the width direction of the pole piece or the entire surface of the first conductive layer, so that the second conductive layer and the current collector A parallel structure is formed to effectively reduce the resistance of the pole piece itself, thereby reducing the heating and temperature rise of the cell and battery during the charging and discharging process, and improving the reliability of the cell and battery.
  • arranging the second conductive layer on the edge area of the first conductive layer in the width direction of the pole piece or the entire surface of the first conductive layer can also allow the electrons generated in the active material layer to pass through during battery charging and discharging.
  • the first conductive layer is transferred to the second conductive layer, and then quickly transferred along the length of the pole piece, thereby reducing the lateral electron transmission resistance and improving the lateral electron transmission capacity of the pole piece, thereby effectively reducing the internal resistance of the cell and improving the safety of the battery. performance.
  • FIG. 1 is a schematic cross-sectional view of a battery according to an embodiment of the application.
  • FIG. 2 is a schematic cross-sectional view of the battery shown in FIG. 1 taken from the active material layer toward the current collector.
  • FIG. 3 is a schematic cross-sectional view of another embodiment of the battery shown in FIG. 2.
  • FIG. 4 is a schematic cross-sectional view of a battery according to another embodiment of the application.
  • FIG. 5 is a schematic cross-sectional view of the battery shown in FIG. 4 taken from the active material layer toward the current collector.
  • Fig. 6 is a schematic cross-sectional view of another embodiment of the battery shown in Fig. 5.
  • FIG. 7 is a schematic cross-sectional view of a battery according to another embodiment of this application.
  • Fig. 8 is a schematic cross-sectional view of another embodiment of the battery shown in Fig. 7.
  • FIG. 9 is a schematic cross-sectional view of a battery according to still another embodiment of this application.
  • FIG. 10 is a schematic cross-sectional view of another embodiment of the battery shown in FIG. 9.
  • FIG. 11 is a schematic diagram of the structure of a battery cell according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of the structure of a battery according to an embodiment of the application.
  • an embodiment of the present application provides a pole piece 100.
  • the pole piece 100 includes a current collector 11.
  • the current collector 11 includes a high molecular polymer layer 111 and a first conductive layer 112.
  • the first conductive layer 112 is provided on the surface of the high molecular polymer layer 111.
  • the pole piece 100 further includes a second conductive layer 12.
  • the first conductive layer 112 is provided with the second conductive layer 12 on the surface of the edge region 1001 in the width direction of the pole piece 100 (ie, the X-axis direction) (refer to FIGS. 1 and 4).
  • the second conductive layer 12 extends in the length direction of the pole piece 100 (ie, the Y-axis direction), and the first conductive layer 112 is disposed on the second conductive layer 12 and the polymer layer Between 111. In this way, the second conductive layer 12 and the current collector 11 form a parallel structure, thereby effectively reducing the resistance of the pole piece 100 itself.
  • the pole piece 100 further includes an insulating layer 13 provided on the surface of the second conductive layer 12.
  • the second conductive layer 12 is disposed between the first conductive layer 112 and the insulating layer 13.
  • an active material layer 14 is further provided on the surface of the first conductive layer 112.
  • the active material layer 14 connects the second conductive layer 12 and the insulating layer 13.
  • the active material layer 14 is only connected to the second conductive layer 12; or there is a gap between the active material layer 14 and the second conductive layer 12 or the insulating layer 13.
  • the edge region 1001 in the width direction of the pole piece 100, includes a first edge region 1002 and a second edge region 1003 opposite to the first edge region 1002.
  • the second conductive layer 12 extends from the first edge region 1002 to the second edge region 1003 of the pole piece 100.
  • the active material layer 14 is provided on the surface of the second conductive layer 12.
  • the second conductive layer 12 is provided with the insulating layer 13 on the surface of the first edge region 1002 or the second edge region 1003 of the pole piece 100.
  • the active material layer 14 is connected to the insulating layer 13.
  • the second conductive layer 12 includes a conductive agent and an adhesive.
  • the content of the conductive agent is 1% to 80%, and the content of the binder is 2% to 60%. In this way, it not only ensures the good connection performance between the second conductive layer 12 and the current collector 11, but also ensures that the second conductive layer 12 itself has good conductivity.
  • the conductive agent includes one or more of carbon black particles, carbon nanotubes, graphite flakes, carbon fibers, acetylene black, metal particles and metal nanowires.
  • the conductive agent includes metal nanowires.
  • the metal nanowires are not limited to copper nanowires, silver nanowires, and the like.
  • the binder can be polyvinylidene fluoride, polyacrylic acid, polyacrylate, polyacrylonitrile, polyurethane, acrylic resin, etc. or modified materials thereof.
  • the adhesive is acrylic resin.
  • the surface resistance of the second conductive layer 12 is less than 1 ⁇ /cm 2 . In one embodiment, the surface resistance of the second conductive layer 12 is not greater than 0.01 ⁇ /cm 2 .
  • the adhesive force between the second conductive layer 12 and the current collector 11 is greater than or equal to 10 N/m. In one embodiment, the adhesive force between the second conductive layer 12 and the current collector 11 is greater than or equal to 50 N/m.
  • the thickness T1 of the second conductive layer 12 is 10 ⁇ m to 100 ⁇ m. In one embodiment, the thickness T1 of the second conductive layer 12 is 20 ⁇ m.
  • the thickness T2 of the insulating layer is less than 20 ⁇ m.
  • the pole piece 100 may further include a pole lug 15.
  • the tab 15 is connected to the current collector 11.
  • the pole piece 100 includes three pole ears 15.
  • the number of the tabs 15 can be adaptively adjusted according to actual needs, and can be one, two, four, and so on.
  • an embodiment of the present application also provides a battery core 10.
  • the battery cell 10 includes an electrode assembly 101.
  • the electrode assembly 101 includes a positive electrode sheet and a negative electrode sheet.
  • the electrode assembly 101 is wound by the positive electrode sheet and the negative electrode sheet.
  • the positive electrode sheet and/or the negative electrode sheet include the electrode sheet 100 as described above.
  • the electrode assembly 101 further includes a diaphragm 102.
  • the separator 102 is located between the positive electrode sheet and the negative electrode sheet.
  • the electrode assembly 101 may be formed by lamination of the positive electrode sheet and the negative electrode sheet.
  • an embodiment of the present application also provides a battery 1.
  • the battery 1 includes a casing 20 and a battery cell 10 as described above.
  • the battery cell 10 is housed in the housing 20.
  • the pole piece 100 and the battery cell 10 of the present application will be described in detail through embodiments. It can be understood that the sizes, materials and/or ratios of the current collector, the active material layer, the second conductive layer and the insulating layer, the diaphragm, etc. in this application are not limited to the content described in the comparative examples and embodiments, and can be specifically based on actual conditions. Need to make a choice.
  • the pole piece 100 includes a current collector 11, a second conductive layer 12, an insulating layer 13 and an active material layer 14.
  • the edge area 1001 includes a first edge area 1002 and a second edge area 1003 opposite to the first edge area 1002 (refer to FIG. 4).
  • the current collector 11 includes a high-molecular polymer layer 111 and a first conductive layer 112 disposed on both sides of the high-molecular polymer layer 111.
  • the second conductive layer 12 is disposed on the surface of the first conductive layer 112 in the first edge region 1002, and the second conductive layer 12 is respectively located on the current collector 11 On both sides.
  • the insulating layer 13 is disposed on the surface of the second conductive layer 12.
  • the active material layer 14 is disposed on the surface of the first conductive layer 112 where the second conductive layer 12 is not disposed.
  • the second conductive layer 12, the insulating layer 13 and the active material layer 14 are only disposed on one side of the current collector 11.
  • the pole piece 100 described above can be produced by the following method.
  • the current collector 11 is provided: the current collector 11 includes a high-molecular polymer layer 111 and a first conductive layer 112 disposed on both sides of the high-molecular polymer layer 111.
  • the preparation of the pole piece 100 First, add 10 g of acrylic resin into a stirring tank, and then slowly add N-methylpyrrolidone (NMP) solvent into the stirring tank to gradually dissolve the acrylic resin into a glue solution. Then, after evacuating for 30 minutes, 70 g of carbon nanotube powder was added to the stirring tank, and stirring was continued for 50 minutes to form a uniform and stable conductive slurry. Next, an active coating is applied to the surface of the first conductive layer 112 and baked at 130° C. for 30 minutes to form the active material layer 14. Wherein, the active coating is coated on the front and back sides of the current collector 11, and the first edge region 1002 on the front and back sides of the current collector 11 is avoided when the reactive coating is applied.
  • NMP N-methylpyrrolidone
  • the conductive paste is uniformly coated on the surface of the first conductive layer 112 in the first edge region 1002, and baked at 130° C. for 30 minutes to form a second layer with a thickness T1 of 20 ⁇ m and a width W of 2 mm.
  • Conductive layer 12 (refer to FIGS. 1 and 3).
  • a ceramic coating is applied on the surface of the second conductive layer 12 to form an insulating layer 13 with a thickness T2 of 20 ⁇ m (see FIG. 3).
  • the active material layer 14 connects the second conductive layer 12 and the insulating layer 13.
  • the adhesive force between the second conductive layer 12 and the current collector 11 is 51 N/m.
  • Preparation of the battery cell 10 First, select the two pole pieces 100 described above as the positive electrode piece and the negative electrode piece, respectively. Next, the positive electrode sheet and the negative electrode sheet, plus a separator 102, are wound to form a battery core 10 (see FIG. 11).
  • the internal resistance of the cell 10 is 11.3 m ⁇ .
  • Example 2 The difference between Example 2 and Example 1 lies in the quality of the carbon nanotube powder in the conductive paste.
  • the mass of the carbon nanotube powder is 80 g.
  • the adhesive force between the second conductive layer 12 and the current collector 11 is 32 N/m.
  • the internal resistance of the battery core is 11.5 m ⁇ .
  • Example 3 The difference between Example 3 and Example 1 lies in the quality of the acrylic resin in the conductive paste.
  • the mass of the acrylic resin is 3 g.
  • the adhesive force between the second conductive layer 12 and the current collector 11 is 9 N/m.
  • the internal resistance of the battery core is 14.1 m ⁇ .
  • Example 4 The difference between Example 4 and Example 1 lies in the composition of the conductive paste.
  • the substance added to the stirring tank was 70 g of copper nanowire powder.
  • the adhesive force between the second conductive layer 12 and the current collector 11 is 54 N/m.
  • the internal resistance of the battery core is 10.5m ⁇ .
  • Example 5 The difference between Example 5 and Example 1 lies in the composition of the conductive paste.
  • the acrylic resin in Example 1 was replaced with polyvinylidene fluoride.
  • the adhesive force between the second conductive layer 12 and the current collector 11 is 7 N/m.
  • the internal resistance of the battery core is 15.5 m ⁇ .
  • Embodiment 6 The difference between Embodiment 6 and Embodiment 1 lies in the thickness of the second conductive layer 12.
  • the thickness T1 of the second conductive layer 12 is 10 ⁇ m.
  • the adhesive force between the second conductive layer 12 and the current collector 11 is 43 N/m.
  • the internal resistance of the battery core is 13.8m ⁇ .
  • Embodiment 7 The difference between Embodiment 7 and Embodiment 1 lies in the width of the second conductive layer 12.
  • the width W of the second conductive layer 12 is 1 mm.
  • the adhesive force between the second conductive layer 12 and the current collector 11 is 45 N/m.
  • the internal resistance of the battery core 10 is 15.1 m ⁇ .
  • Embodiment 8 lies in the positions where the second conductive layer 12, the active material layer 14 and the insulating layer 13 are provided.
  • the second conductive layer 12 is disposed on the surface of the first conductive layer 112 in the first edge region 1002 and the second edge region 1003.
  • the active material layer 14 is disposed on the surface of the first conductive layer 112 where the second conductive layer 12 is not disposed.
  • the insulating layer 13 is disposed on the surface of the second conductive layer 12. Wherein, the second conductive layer 12 is located on both sides of the current collector 11 respectively. In other embodiments, referring to FIG. 5, the second conductive layer 12, the insulating layer 13 and the active material layer 14 are only disposed on one side of the current collector 11.
  • the adhesive force between the second conductive layer 12 and the current collector 11 is 54 N/m.
  • the internal resistance of the battery core 10 is 10.5 m ⁇ .
  • Example 9 the positions where the second conductive layer 12, the active material layer 14 and the insulating layer 13 are provided.
  • the second conductive layer 12 covers the entire surface of the first conductive layer 112.
  • the insulating layer 13 is disposed on the surface of the second conductive layer 12 in the first edge region 1002 and the second edge region 1003.
  • the active material layer 14 is provided on the surface of the second conductive layer 12 where the insulating layer 13 is not provided. Wherein, the second conductive layer 12 is located on both sides of the current collector 11 respectively. In one embodiment, referring to FIG. 9, the second conductive layer 12, the insulating layer 13 and the active material layer 14 are only disposed on one side of the current collector 11.
  • the second conductive layer 12 covers the entire surface of the first conductive layer 112.
  • the insulating layer 13 is disposed on the surface of the second conductive layer 12 in the first edge region 1002 or the second edge region 1003.
  • the active material layer 14 is provided on the surface of the second conductive layer 12 where the insulating layer 13 is not provided. Wherein, the second conductive layer 12 is located on both sides of the current collector 11 respectively.
  • the second conductive layer 12, the insulating layer 13 and the active material layer 14 are only disposed on one side of the current collector 11.
  • Example 9 the preparation of the pole piece 100: firstly, add 10 g of acrylic resin into a stirring tank, and then slowly add N-methylpyrrolidone (NMP) solvent to the stirring tank to gradually dissolve the acrylic resin into a gel liquid. Then, after evacuating for 30 minutes, 70 g of carbon nanotube powder was added to the stirring tank, and stirring was continued for 50 minutes to form a uniform and stable conductive slurry. Then, the conductive paste is uniformly coated on the surface of the first conductive layer 112 and dried at 130° C. for 30 minutes to form the second conductive layer 12. Wherein, the conductive paste is coated on the front and back sides of the current collector 11 and the entire surface of the first conductive layer 112 is coated.
  • NMP N-methylpyrrolidone
  • the active coating is uniformly coated on the surface of the second conductive layer 12 and baked at 130° C. for 30 minutes to form the active material layer 14.
  • the active paint is coated on the front and back sides of the current collector 11, and the second conductive layer 12 is not coated on the first edge area 1002 and the second edge area when the active paint is applied.
  • the second conductive layer 12 is coated with a ceramic coating on the surfaces of the first edge region 1002 and the second edge region 1003 to form an insulating layer 13 with a thickness T2 of 20 ⁇ m and a width W of 2 mm. (Refer to Figure 10).
  • the active material layer 14 is connected to the insulating layer 13.
  • Example 9 the adhesive force between the second conductive layer 12 and the current collector 11 is 54 N/m.
  • the internal resistance of the battery core is 10.1m ⁇ .
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that the pole piece 100 in Comparative Example 1 has no second conductive layer 12 and no insulating layer 13.
  • Comparative Example 1 the internal resistance of the battery cell was 18.2 m ⁇ .
  • Comparative Example 2 The difference between Comparative Example 2 and Example 1 is that there is no carbon nanotube powder in the conductive paste.
  • Comparative Example 2 the adhesive force between the second conductive layer 12 and the current collector 11 was 80 N/m.
  • the internal resistance of the battery core is 18.3 m ⁇ .
  • Comparative Example 3 The difference between Comparative Example 3 and Example 1 is that the mass of carbon nanotube powder in the conductive paste is 1 g.
  • the second conductive layer 12 is disposed on the edge area 1001 of the first conductive layer 112 in the width direction of the pole piece 100 or the entire surface of the first conductive layer 112, so that the second conductive layer
  • the conductive layer 12 and the current collector 11 form a parallel structure, thereby effectively reducing the resistance of the pole piece 100 itself, thereby reducing the heating and temperature rise of the cell 10 and the battery 1 during charging and discharging, and improving the reliability of the use of the cell 10 and the battery 1 .
  • disposing the second conductive layer 12 on the edge area 1001 of the first conductive layer 112 in the width direction of the pole piece 100 or the entire surface of the first conductive layer 112 can also make the active material layer 14 charge in the battery 1
  • the electrons generated during the discharge process are transferred to the second conductive layer 12 through the first conductive layer 112, and then quickly transferred along the length of the pole piece 100, thereby reducing the lateral electron transfer resistance and improving the lateral electron transfer ability of the pole piece 100, thereby effectively
  • the internal resistance of the battery cell 10 is reduced, and the safety performance of the battery 1 is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种极片,包括集流体,所述集流体包括高分子聚合物层和第一导电层。所述高分子聚合物层的表面上设置有所述第一导电层。所述第一导电层在所述极片的宽度方向上的边缘区域的表面上设置有第二导电层。所述第二导电层向所述极片的长度方向进行延伸,且所述第一导电层设置在所述第二导电层与所述高分子聚合物层之间。本申请还提供了一种具有所述极片的电芯及具有所述电芯的电池。

Description

极片、电芯及电池 技术领域
本申请涉及电池领域,具体涉及一种极片、具有所述极片的电芯以及具有所述电芯的电池。
背景技术
随着锂离子电池在电动工具、电动汽车、便携设备等方面的广泛应用,锂离子电池的使用场景变得越来越复杂,因此对于锂离子电池的安全要求也变得更加苛刻。众所周知,锂离子电池中需要使用金属箔材,例如铜箔、铝箔等金属箔材作为集流体。目前,为提高锂离子电池的使用安全性,锂离子电池中通常选择使用复合集流体来替代原有的金属箔材。不过,复合集流体虽然在受到外力破坏时,其自身电阻会急剧增加,以从机理上消除了锂离子电池内部因短路所引发的安全问题;但是,由于复合集流体的面电阻约是相同厚度常规集流体的100倍,导致功率型电池在充放电过程中温升过大,无法满足实际应用场景的需求,且存在巨大的安全隐患。
发明内容
有鉴于此,有必要提供一种极片,以解决电芯内阻过大的问题。
本申请实施例提供了一种极片,包括集流体,所述集流体包括高分子聚合物层和第一导电层,所述高分子聚合物层的表面上设置有所述第一导电层,所述第一导电层在所述极片的宽度方向上的边缘区域的表面上设置有第二导电层,所述第二导电层向所述极片的长度方向进行延伸,且所述第一导电层设置在所述第二导电层与所述高分子聚合物层之间。
在一些实施例中,在所述第二导电层的表面上设置有绝缘层,所述第二导电层设置在所述第一导电层与所述绝缘层之间。
在一些实施例中,在所述第一导电层的表面上设置有活性物质 层,所述活性物质层连接所述第二导电层和所述绝缘层。
在一些实施例中,在所述极片的宽度方向上,所述边缘区域包括第一边缘区域和与所述第一边缘区域相对的第二边缘区域,所述第二导电层从所述第一边缘区域延伸至所述极片的第二边缘区域。
在一些实施例中,在所述第二导电层的表面上设置有活性物质层,所述第二导电层在所述极片的所述第一边缘区域或所述第二边缘区域的表面上设置有绝缘层。
在一些实施例中,所述活性物质层连接所述绝缘层。
在一些实施例中,所述活性物质层与所述绝缘层之间具有空隙。
在一些实施例中,所述第二导电层包括导电剂及粘结剂,所述导电剂的含量为1%~80%,所述粘结剂的含量为2%~60%。
在一些实施例中,所述第二导电层的面电阻小于1Ω/cm 2
在一些实施例中,所述第二导电层与所述集流体之间的粘接力大于或等于10N/m。
在一些实施例中,所述第二导电层的厚度为10μm~100μm,所述绝缘层的厚度小于20μm。
本申请实施例还提供了一种电芯,包括电极组件,所述电极组件包括上述任一种的极片。
本申请实施例还提供了一种电池,包括上述任一种的电芯和用于容纳所述电芯的壳体。
综上所述,本申请通过将第二导电层设置于第一导电层在所述极片的宽度方向上的边缘区域或者第一导电层的整个表面,如此以使得第二导电层和集流体形成并联结构,从而有效降低极片自身的电阻,进而降低充放电过程中电芯及电池的发热和温升,提升电芯及电池使用的可靠性。此外,将第二导电层设置于第一导电层在所述极片的宽度方向上的边缘区域或者第一导电层的整个表面,还可使得活性物质层在电池充放电过程中产生的电子通过第一导电层传输到第二导电层,然后沿着极片的长度方向快速传递,从而降低电子横向传输电阻,提升极片横向电子传输能力,进而有效降低电芯内阻,提高电池的使用安全性能。
附图说明
图1为本申请一实施方式的电池的剖面示意图。
图2为图1所示电池由活性物质层向集流体方向截取的剖面示意图。
图3为图2所示电池的另一实施方式的剖面示意图。
图4为本申请另一实施方式的电池的剖面示意图。
图5为图4所示电池由活性物质层向集流体方向截取的剖面示意图。
图6为图5所示电池的另一实施方式的剖面示意图。
图7为本申请又一实施方式的电池的剖面示意图。
图8为图7所示电池的另一实施方式的剖面示意图。
图9为本申请再一实施方式的电池的剖面示意图。
图10为图9所示电池的另一实施方式的剖面示意图。
图11为本申请一实施方式的电芯的结构示意图。
图12为本申请一实施方式的电池的结构示意图。
主要元件符号说明
极片                        100
边缘区域                    1001
第一边缘区域                1002
第二边缘区域                1003
集流体                      11
高分子聚合物层              111
第一导电层                  112
第二导电层                  12
绝缘层                      13
活性物质层                  14
极耳                        15
电池                        1
电芯                        10
电极组件                    101
隔膜                        102
壳体                        20
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
参阅图1和图2,本申请实施方式提供了一种极片100。所述极片100包括集流体11。所述集流体11包括高分子聚合物层111和第一导电层112。所述高分子聚合物层111的表面上设置有所述第一导电层112。所述极片100还包括第二导电层12。所述第一导电层112在所述极片100的宽度方向(即X轴方向)上的边缘区域1001的表面上设置有所述第二导电层12(参阅图1和图4)。所述第二导电层12向所述极片100的长度方向(即Y轴方向)进行延伸,且所述第一导电层112设置在所述第二导电层12与所述高分子聚合物层111之间。如此,以使得第二导电层12和集流体11形成并联结构,从而有效降低极片100自身的电阻。
在本实施方式中,参图2,所述极片100还包括设置在所述第二导电层12的表面上的绝缘层13。所述第二导电层12设置在所述第一导电层112与所述绝缘层13之间。
进一步地,参图2和图3,在所述第一导电层112的表面上还设置有活性物质层14。所述活性物质层14连接所述第二导电层12和所述绝缘层13。在一实施方式中,所述活性物质层14仅连接所述第二导电层12;或者所述活性物质层14与所述第二导电层12或所述绝缘层13之间具有间隙。
在另一实施方式中,参图4,在所述极片100的宽度方向上,所述边缘区域1001包括第一边缘区域1002和与所述第一边缘区域1002相对的第二边缘区域1003。参图7至图10,所述第二导电层12从所述第一边缘区域1002延伸至所述极片100的第二边缘区域1003。此时,所述活性物质层14设置于所述第二导电层12的表面。所述第二导电层12在所述极片100的所述第一边缘区域1002或所述第二边缘区域1003的表面上设置有所述绝缘层13。其中,所述活性物质层14连接所述绝缘层13。在另一其他实施方式中,所述活性物质层14与所述绝缘层13之间具有间隙。
所述第二导电层12包括导电剂及粘结剂。所述导电剂的含量为1%~80%,所述粘结剂的含量为2%~60%。如此,既保证了第二导电层12与集流体11之间具有良好的连接性能,又保证了所述第二导电层12本身具有良好的导电性能。其中,所述导电剂包括炭黑颗粒、碳纳米管、石墨片、碳纤维、乙炔黑、金属颗粒和金属纳米线中一种或几种。可选地,所述导电剂包括金属纳米线。所述金属纳米线不限于铜纳米线、银纳米线等。所粘结剂可以是聚偏氟乙烯、聚丙烯酸、聚丙烯酸酯、聚丙烯腈、聚氨酯、丙烯酸树脂等或其改性材料。可选地,所述粘接剂为丙烯酸树脂。
在本实施方式中,所述第二导电层12的面电阻小于1Ω/cm 2。一实施方式中,所述第二导电层12的面电阻不大于0.01Ω/cm 2
在本实施方式中,所述第二导电层12和所述集流体11之间的粘接力大于或等于10N/m。在一实施方式中,所述第二导电层12和所述集流体11之间的粘接力大于或等于50N/m。
在本实施方式中,参图2,所述第二导电层12的厚度T1为10μm~100μm。在一实施方式中,所述第二导电层12的厚度T1为 20μm。
在本实施方式中,参图2,所述绝缘层的厚度T2小于20μm。
进一步地,参图1和图2,所述极片100还可包括极耳15。所述极耳15连接所述集流体11。在本实施方式中,所述极片100包括三个极耳15。在其他实施方式中,所述极耳15的数量可依据实际需要进行适应性调整,可以是一个、两个、四个等。
参图11,本申请实施例还提供了一种电芯10。所述电芯10包括电极组件101。所述电极组件101包括正极片以及负极片。所述电极组件101由所述正极片和所述负极片经卷绕。其中,所述正极片和/或所述负极片包括如上述所述的极片100。在本实施方式中,电极组件101还包括隔膜102。所述隔膜102位于所述正极片和所述负极片之间。在其他实施方式中,所述电极组件101可由所述正极片和所述负极片经叠片形成。
参图12,本申请实施例还提供了一种电池1。所述电池1包括壳体20及如上述所述的电芯10。所述电芯10容纳于所述壳体20。
下面通过实施例对本申请的极片100及电芯10进行具体说明。可以理解,本申请中集流体、活性物质层、第二导电层及绝缘层、隔膜等的各尺寸、材质及/或比例不仅限于所述对比例及实施例中记载的内容,具体可根据实际需要进行选择。
实施例1
参图3,极片100包括集流体11、第二导电层12、绝缘层13及活性物质层14。其中,在所述极片100的宽度方向上,所述边缘区域1001包括第一边缘区域1002和与所述第一边缘区域1002相对的第二边缘区域1003(参图4)。
在实施例1中,参图3,所述集流体11包括高分子聚合物层111及设置于所述高分子聚合物层111两侧的第一导电层112。参图1和图3,所述第二导电层12设置于所述第一导电层112在所述第一边缘区域1002的表面上,且所述第二导电层12分别位于所述集流体11的两侧。所述绝缘层13设置于所述第二导电层12的表面。所述活性物质层14设置于所述第一导电层112未设置有所述第二导电层12的表面。
在其他实施方式中,参图2,所述第二导电层12、绝缘层13及活性物质层14仅设置于所述集流体11的一侧。
在实施例1中,上述极片100可通过以下方法制得。
提供集流体11:所述集流体11包括高分子聚合物层111及设置于所述高分子聚合物层111两侧的第一导电层112。
极片100的制备:首先,将10g丙烯酸树脂加入搅拌罐中,再于搅拌罐中缓慢加入N-甲基吡咯烷酮(NMP)溶剂,以将丙烯酸树脂逐渐溶解成胶液。然后,抽真空30min后,再于搅拌罐内加入70g的碳纳米管粉末,继续搅拌50分钟,以形成均匀稳定的导电浆料。接着,将活性涂料涂布到所述第一导电层112的表面,并于130℃下烘干30分钟以形成活性物质层14。其中,所述活性涂料涂布于所述集流体11的正反两面,且涂布活性涂料时避免涂布所述集流体11的正反两面的第一边缘区域1002。然后,将导电浆料均匀涂布在所述第一导电层112在所述第一边缘区域1002的表面,并于130℃下烘烤30min以形成厚度T1为20μm,宽度W为2mm的第二导电层12(参图1和图3)。最后,在所述第二导电层12的表面上涂布陶瓷涂层,以形成厚度T2为20μm的绝缘层13(参图3)。其中,所述活性物质层14连接所述第二导电层12和所述绝缘层13。
在实施例1中,所述第二导电层12和所述集流体11之间的粘接力为51N/m。
电芯10的制备:首先,选取两上述极片100分别作为正极片和负极片。接着,将所述正极片和所述负极片,加上隔膜102,通过卷绕的方式做成电芯10(参图11)。
在实施例1中,所述电芯10的内阻为11.3mΩ。
实施例2
实施例2与实施例1的区别在于,导电浆料中碳纳米管粉末的质量。在实施例2中,碳纳米管粉末的质量为80g。
在实施例2中,所述第二导电层12和所述集流体11之间的粘接力为32N/m。所述电芯的内阻为11.5mΩ。
实施例3
实施例3与实施例1的区别在于,导电浆料中丙烯酸树脂的质量。在实施例3中,丙烯酸树脂的质量为3g。
在实施例3中,所述第二导电层12和所述集流体11之间的粘接力为9N/m。所述电芯的内阻为14.1mΩ。
实施例4
实施例4与实施例1的区别在于,导电浆料的成分。在实施例4中,在抽真空后,加入搅拌罐中的物质为70g的铜纳米线粉末。
在实施例4中,所述第二导电层12和所述集流体11之间的粘接力为54N/m。所述电芯的内阻为10.5mΩ。
实施例5
实施例5与实施例1的区别在于,导电浆料的成分。在实施例5中,以聚偏氟乙烯替代实施例1中的丙烯酸树脂。
在实施例5中,所述第二导电层12和所述集流体11之间的粘接力为7N/m。所述电芯的内阻为15.5mΩ。
实施例6
实施例6与实施例1的区别在于,第二导电层12的厚度。在实施例6中,所述第二导电层12的厚度T1为10μm。
在实施例6中,所述第二导电层12和所述集流体11之间的粘接力为43N/m。所述电芯的内阻为13.8mΩ。
实施例7
实施例7与实施例1的区别在于,第二导电层12的宽度。在实施例7中,所述第二导电层12的宽度W为1mm。
在实施例7中,所述第二导电层12和所述集流体11之间的粘接力为45N/m。所述电芯10的内阻为15.1mΩ。
实施例8
实施例8与实施例1的区别在于,第二导电层12、活性物质层14及绝缘层13设置的位置。
参图4和图6,所述第二导电层12设置于所述第一导电层112在所述第一边缘区域1002和所述第二边缘区域1003的表面。所述活性物质层14设置于所述第一导电层112未设置有所述第二导电层12的表面。所述绝缘层13设置于所述第二导电层12的表面。其中, 所述第二导电层12分别位于所述集流体11的两侧。在其他实施方式中,参图5,所述第二导电层12、绝缘层13及活性物质层14仅设置于所述集流体11的一侧。
在实施例8中,所述第二导电层12和所述集流体11之间的粘接力为54N/m。所述电芯10的内阻为10.5mΩ。
实施例9
实施例9与实施例1,第二导电层12、活性物质层14及绝缘层13设置的位置。
在实施例9中,参图10,所述第二导电层12覆盖于所述第一导电层112的整个表面。所述绝缘层13设置于所述第二导电层12在所述第一边缘区域1002和所述第二边缘区域1003的表面。所述活性物质层14设置于所述第二导电层12未设置有所述绝缘层13的表面。其中,所述第二导电层12分别位于所述集流体11的两侧。在一实施方式中,参图9,所述第二导电层12、绝缘层13及活性物质层14仅设置于所述集流体11的一侧。
在另一实施方式中,参图8,所述第二导电层12覆盖于所述第一导电层112的整个表面。所述绝缘层13设置于所述第二导电层12在所述第一边缘区域1002或所述第二边缘区域1003的表面。所述活性物质层14设置于所述第二导电层12未设置有所述绝缘层13的表面。其中,所述第二导电层12分别位于所述集流体11的两侧。在另一其他实施方式中,参图7,所述第二导电层12、绝缘层13及活性物质层14仅设置于所述集流体11的一侧。
在实施例9中,所述极片100的制备:首先,将10g丙烯酸树脂加入搅拌罐中,再于搅拌罐中缓慢加入N-甲基吡咯烷酮(NMP)溶剂,以将丙烯酸树脂逐渐溶解成胶液。然后,抽真空30min后,再于搅拌罐内加入70g的碳纳米管粉末,继续搅拌50分钟,以形成均匀稳定的导电浆料。接着,将导电浆料均匀涂布到所述第一导电层112的表面,并于130℃下烘干30分钟以形成第二导电层12。其中,所述导电浆料涂布于所述集流体11的正反两面,且涂布所述第一导电层112的整个表面。然后,将活性涂料均匀涂布于所述第二导电层12的表面,并于130℃下烘烤30min以形成活性物质层14。其中,所述 活性涂料涂布于所述集流体11的正反两面,且涂布活性涂料时避免涂布所述第二导电层12在所述第一边缘区域1002和所述第二边缘区域1003的表面。最后,于所述第二导电层12在所述第一边缘区域1002和所述第二边缘区域1003的表面上涂布陶瓷涂层,以形成厚度T2为20μm,宽度W为2mm的绝缘层13(参图10)。其中,所述活性物质层14连接所述绝缘层13。
在实施例9中,所述第二导电层12和所述集流体11之间的粘接力为54N/m。所述电芯的内阻为10.1mΩ。
对比例1
对比例1与实施例1的区别在于,对比例1中的极片100无第二导电层12以及无绝缘层13。
在对比例1中,所述电芯的内阻为18.2mΩ。
对比例2
对比例2与实施例1的区别在于,导电浆料中无碳纳米管粉末。
在对比例2中,所述第二导电层12和所述集流体11之间的粘接力为80N/m。所述电芯的内阻为18.3mΩ。
对比例3
对比例3与实施例1的区别在于,导电浆料中碳纳米管粉末的质量为1g。
在对比例3中,所述第二导电层12和所述集流体11之间的粘接力为74N/m。所述电芯的内阻为17.2mΩ。
其中,实施例1至9以及对比例1至3所涉及实验参数及测试结果请参表1。
表1
Figure PCTCN2020081622-appb-000001
Figure PCTCN2020081622-appb-000002
由表1可知,第二导电层12中的导电剂的含量和种类、第二导电层12的厚度、宽度、所设置的位置均影响所述电芯10的内阻。其中,比较实施例1至9与对比例1可知,所述第二导电层12的设置大大降低了电芯10的内阻。此外,所述第二导电层12中粘接剂的含量及种类、第二导电层12的厚度、宽度、所设置的位置均影响所述第二导电层12与所述集流体11的粘接力。
综上所述,本申请通过将第二导电层12设置于第一导电层112在所述极片100的宽度方向上的边缘区域1001或者第一导电层112的整个表面,如此以使得第二导电层12和集流体11形成并联结构,从 而有效降低极片100自身的电阻,进而降低充放电过程中电芯10及电池1的发热和温升,提升电芯10及电池1使用的可靠性。此外,将第二导电层12设置于第一导电层112在所述极片100的宽度方向上的边缘区域1001或者第一导电层112的整个表面,还可使得活性物质层14在电池1充放电过程中产生的电子通过第一导电层112传输到第二导电层12,然后沿着极片100的长度方向快速传递,从而降低电子横向传输电阻,提升极片100横向电子传输能力,进而有效降低电芯10的内阻,提高电池1的使用安全性能。
以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和实质。

Claims (12)

  1. 一种极片,包括集流体,所述集流体包括高分子聚合物层和第一导电层,所述高分子聚合物层的表面上设置有所述第一导电层,其特征在于,所述第一导电层在所述极片的宽度方向上的边缘区域的表面上设置有第二导电层,所述第二导电层向所述极片的长度方向进行延伸,且所述第一导电层设置在所述第二导电层与所述高分子聚合物层之间。
  2. 如权利要求1所述的极片,其特征在于,在所述第二导电层的表面上设置有绝缘层,所述第二导电层设置在所述第一导电层与所述绝缘层之间。
  3. 如权利要求2所述的极片,其特征在于,在所述第一导电层的表面上设置有活性物质层,所述活性物质层连接所述第二导电层和所述绝缘层。
  4. 如权利要求1所述的极片,其特征在于,在所述极片的宽度方向上,所述边缘区域包括第一边缘区域和与所述第一边缘区域相对的第二边缘区域,所述第二导电层从所述第一边缘区域延伸至所述极片的第二边缘区域。
  5. 如权利要求4所述的极片,其特征在于,在所述第二导电层的表面上设置有活性物质层,所述第二导电层在所述极片的所述第一边缘区域或所述第二边缘区域的表面上设置有绝缘层。
  6. 如权利要求5所述的极片,其特征在于,所述活性物质层连接所述绝缘层。
  7. 如权利要求1-6中任一项所述的极片,其特征在于,所述第二导电层包括导电剂及粘结剂,所述导电剂的含量为1%~80%,所述粘结剂的含量为2%~60%。
  8. 如权利要求7所述的极片,其特征在于,所述第二导电层的面电阻小于1Ω/cm 2
  9. 如权利要求7所述的极片,其特征在于,所述第二导电层与所述集流体之间的粘接力大于或等于10N/m。
  10. 如权利要求7所述的极片,其特征在于,所述第二导电层的 厚度为10μm~100μm,所述绝缘层的厚度小于20μm。
  11. 一种电芯,包括电极组件,其特征在于,所述电极组件包括如权利要求1-10中任一项所述的极片。
  12. 一种电池,包括电芯和用于容纳所述电芯的壳体,其特征在于,所述电芯包括如权利要求11所述的电芯。
PCT/CN2020/081622 2020-03-27 2020-03-27 极片、电芯及电池 WO2021189410A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/081622 WO2021189410A1 (zh) 2020-03-27 2020-03-27 极片、电芯及电池
CN202080008069.2A CN113287214A (zh) 2020-03-27 2020-03-27 极片、电芯及电池
EP20927603.9A EP4131508A4 (en) 2020-03-27 2020-03-27 POLE PIECE, CELL AND BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081622 WO2021189410A1 (zh) 2020-03-27 2020-03-27 极片、电芯及电池

Publications (1)

Publication Number Publication Date
WO2021189410A1 true WO2021189410A1 (zh) 2021-09-30

Family

ID=77275575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081622 WO2021189410A1 (zh) 2020-03-27 2020-03-27 极片、电芯及电池

Country Status (3)

Country Link
EP (1) EP4131508A4 (zh)
CN (1) CN113287214A (zh)
WO (1) WO2021189410A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566768A (zh) * 2022-02-10 2022-05-31 东莞新能安科技有限公司 一种极片、电化学装置以及电子设备
CN117239058A (zh) * 2023-11-13 2023-12-15 珠海冠宇电池股份有限公司 极片、电芯以及电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894937A (zh) * 2010-07-02 2010-11-24 东莞新能源科技有限公司 锂离子电池及其正极片
KR20180020784A (ko) * 2016-08-19 2018-02-28 주식회사 엘지화학 리튬 이차전지용 전극 및 이의 제조방법
CN109873165A (zh) * 2017-12-05 2019-06-11 宁德时代新能源科技股份有限公司 一种集流体,其极片和电池
CN109873164A (zh) * 2017-12-05 2019-06-11 宁德时代新能源科技股份有限公司 一种集流体,其极片和电化学装置
CN109873163A (zh) * 2017-12-05 2019-06-11 宁德时代新能源科技股份有限公司 一种集流体,其极片和电池及应用
CN209045678U (zh) * 2018-11-05 2019-06-28 宁德新能源科技有限公司 正极极片、电化学装置及包含其的电子装置
CN110943225A (zh) * 2019-04-28 2020-03-31 宁德时代新能源科技股份有限公司 正极集流体、正极极片及电化学装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5837884B2 (ja) * 2010-10-27 2015-12-24 協立化学産業株式会社 導電性アンダーコート剤組成物
JP5614396B2 (ja) * 2011-10-26 2014-10-29 トヨタ自動車株式会社 非水電解液二次電池
CN110061182B (zh) * 2019-05-21 2020-12-01 宁德新能源科技有限公司 电池极片及电芯
CN111180738B (zh) * 2019-06-28 2021-07-30 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894937A (zh) * 2010-07-02 2010-11-24 东莞新能源科技有限公司 锂离子电池及其正极片
KR20180020784A (ko) * 2016-08-19 2018-02-28 주식회사 엘지화학 리튬 이차전지용 전극 및 이의 제조방법
CN109873165A (zh) * 2017-12-05 2019-06-11 宁德时代新能源科技股份有限公司 一种集流体,其极片和电池
CN109873164A (zh) * 2017-12-05 2019-06-11 宁德时代新能源科技股份有限公司 一种集流体,其极片和电化学装置
CN109873163A (zh) * 2017-12-05 2019-06-11 宁德时代新能源科技股份有限公司 一种集流体,其极片和电池及应用
JP6724083B2 (ja) * 2017-12-05 2020-07-15 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 集電体、その極シート及び電池
CN209045678U (zh) * 2018-11-05 2019-06-28 宁德新能源科技有限公司 正极极片、电化学装置及包含其的电子装置
CN110943225A (zh) * 2019-04-28 2020-03-31 宁德时代新能源科技股份有限公司 正极集流体、正极极片及电化学装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131508A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566768A (zh) * 2022-02-10 2022-05-31 东莞新能安科技有限公司 一种极片、电化学装置以及电子设备
CN117239058A (zh) * 2023-11-13 2023-12-15 珠海冠宇电池股份有限公司 极片、电芯以及电池
CN117239058B (zh) * 2023-11-13 2024-03-01 珠海冠宇电池股份有限公司 极片、电芯以及电池

Also Published As

Publication number Publication date
EP4131508A4 (en) 2024-08-28
CN113287214A (zh) 2021-08-20
EP4131508A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
JP3223824B2 (ja) リチウムイオン二次電池
JP4352475B2 (ja) 固体電解質二次電池
WO2022242255A1 (zh) 电极极片、制备方法、复合集流体、电池及电子设备
US9269959B2 (en) Lithium ion battery electrode
CN112713266B (zh) 负极浆料及其应用
WO2021195999A1 (zh) 电芯、电池及电子装置
JPWO2016068156A1 (ja) 電極用集電体、電極用集電体の製造方法、電極、リチウムイオン二次電池、レドックスフロー電池、電気二重層キャパシタ
WO2021189410A1 (zh) 极片、电芯及电池
WO2018164094A1 (ja) 蓄電デバイス用集電体、その製造方法、およびその製造に用いる塗工液
WO2021258900A1 (zh) 正极片及电池
CN108878893B (zh) 一种快充锂离子电池负极用改性集流体及其制备方法
CN112688022A (zh) 一种快速充放锂离子电池及其制备方法
CN115295767A (zh) 一种正极片和锂离子电池
KR101622093B1 (ko) 리튬-황 전지의 양극 활물질용 그라핀-황 복합체 및 이의 제조 방법
JP7127209B2 (ja) フレキシブル電極、それを含む二次電池及びフレキシブル二次電池
CN115700935A (zh) 正极集流体固态电解质涂层、正极极片及制备方法和应用
JP6529700B1 (ja) 蓄電デバイス用集電体、その製造方法、およびその製造に用いる塗工液
CN113054191A (zh) 用于全固态电池的粘合剂溶液及包括该溶液的电极浆料
JP7484683B2 (ja) 全固体電池
US20210167371A1 (en) Method for preparing a lithium secondary battery and a lithium secondary battery prepared thereby
CN113013406A (zh) 一种高功率软包电池及其制备方法
JP5788730B2 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品
JP2020198275A (ja) 全固体電池用集電体および全固体電池
US6547838B1 (en) Sulfuric positive electrode for use in lithium secondary battery and method for manufacturing the same
WO2024062881A1 (ja) 蓄電装置用の電極、及び活物質層用の合材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020927603

Country of ref document: EP

Effective date: 20221026