WO2021187800A1 - 유체분석용 칩 - Google Patents

유체분석용 칩 Download PDF

Info

Publication number
WO2021187800A1
WO2021187800A1 PCT/KR2021/002976 KR2021002976W WO2021187800A1 WO 2021187800 A1 WO2021187800 A1 WO 2021187800A1 KR 2021002976 W KR2021002976 W KR 2021002976W WO 2021187800 A1 WO2021187800 A1 WO 2021187800A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
unit
plate
buffer
chip
Prior art date
Application number
PCT/KR2021/002976
Other languages
English (en)
French (fr)
Inventor
간석주
김유래
정찬일
윤석기
Original Assignee
주식회사 나노엔텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노엔텍 filed Critical 주식회사 나노엔텍
Priority to CN202180021754.3A priority Critical patent/CN115315314A/zh
Priority to JP2022552274A priority patent/JP7458098B2/ja
Priority to US17/911,600 priority patent/US20230122274A1/en
Priority to EP21772405.3A priority patent/EP4122601A4/en
Publication of WO2021187800A1 publication Critical patent/WO2021187800A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4845Radiation curing adhesives, e.g. UV light curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles

Definitions

  • the present invention relates to a chip for fluid analysis, and more particularly, it can be manufactured in a simple structure by bonding an upper plate and a lower plate using an OCA film, and can be applied by precisely controlling the internal height and shape according to various needs. It relates to a fluid analysis chip capable of improving reliability by increasing bonding strength.
  • the lab-on-a-chip technology uses microfluidics technology to perform various experimental processes in the laboratory, such as sample separation, purification, mixing, labeling, analysis, and cleaning, into a small-sized chip.
  • technology that is implemented on the In the design of the lab-on-a-chip, micro-fluidics and micro-LHS-related technologies are mainly used.
  • a chip structure that implements microfluidics and microfluidic manipulation systems, a chip in which a microchannel is formed inside the chip by using a semiconductor circuit design technology is commercially available.
  • POCT point of care testing
  • POCT refers to a point-of-care diagnostic technology that can easily diagnose diseases in an emergency room, operating room, or general home, etc. It is also an area where the need and demand are continuously increasing in preparation for an aging society and welfare society.
  • diagnostic tools for blood glucose measurement occupy the mainstream of the market, but as the practical demand for POCT increases, the demand for diagnostic tools that analyze various biomaterials such as lactic acid, cholesterol, urea, and infectious pathogens is also increasing rapidly. .
  • such analysis or diagnosis techniques detect a reaction between a fluid and an antibody protein or other various samples immobilized in the chip by various detection methods while moving various fluid samples through microchannels formed inside the chip. This is done by analyzing Therefore, controlling the movement of fluid moving inside the chip in which the microchannel is formed is the most important technical element in obtaining fast and accurate analysis results using a miniaturized chip.
  • a driving force for moving the fluid through the microchannel formed inside the chip As a driving force for moving the fluid through the microchannel formed inside the chip, a method using a small motor or a capillary phenomenon is used.
  • the fluid flowing through the channel has an irregular and non-uniform movement pattern. In particular, it is often observed when the channel becomes extremely low or narrow. This phenomenon occurs because the interaction between the upper and lower inner walls, the left and right inner walls of the channel and the fluid are different from each other, which is a great obstacle to detection and analysis of analytes present in a trace amount in a fluid sample.
  • the fluid analysis chip used for the above-mentioned POCT or lab-on-a-chip is polyethylene derivatives such as polycarbonate (PC), polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET), It is made of polymethyl methacrylate (PMMA), or a plastic type of acrylic material, and is used for one-time use.
  • PC polycarbonate
  • PS polystyrene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PMMA polymethyl methacrylate
  • acrylic material a plastic type of acrylic material
  • a chip for fluid analysis is manufactured by bonding an upper plate and a lower plate, and microchannels and various microstructures of a predetermined height are provided between the joined upper plate and the lower plate to which a sample flows and reacts.
  • Embodiments of the present invention remove a complex structure for organic solvent injection and diffusion, and attach a chip for fluid analysis with a simple structure using an OCA film.
  • the first plate a second plate joined to the first plate; an optically clear adhesive film (OCA) interposed between the first plate and the second plate to bond the first plate and the second plate; and a microchannel part formed to have a certain space between the first plate and the second plate, into which a fluid to be analyzed flows and the shape and height of at least a portion of the microchannel part are the same as the shape and height of the OCA film.
  • OCA optically clear adhesive film
  • a chip for fluid analysis may be provided, characterized in that it is determined according to the thickness.
  • At least a portion of the microchannel portion may have a wall-free structure.
  • the OCA film may include a bonding portion for contacting and bonding the first plate and the second plate, and a channel forming portion which is formed through the inside of the bonding portion and determines the shape of at least a portion of the microchannel portion.
  • the microchannel part includes a preprocessing part into which the fluid is injected and temporarily accommodated, a channel part in which the fluid accommodated in the preprocessing part moves to undergo an antigen-antibody reaction, and a washing part in which the residual fluid passing through the channel part is accommodated.
  • the pre-processing unit may include a sample injection unit into which the fluid is injected, and a first buffer unit that is higher than the sample injection unit to form a step.
  • the pre-processing unit may further include a fluid storage unit that is branched from the sample injection unit and has a lower height than the first buffer unit and is filled with the fluid first.
  • the height of the fluid storage unit may be determined by the thickness of the OCA film.
  • the shape of the fluid storage part may be determined by the shape of the channel forming part.
  • the fluid storage unit may be branched from the sample injection unit to extend a predetermined length and then be formed to extend a predetermined length in the direction of the channel unit.
  • the fluid storage unit may include a fluid storage unit through-hole formed at an end thereof.
  • the fluid storage part may include a margin part protruding in a branching direction.
  • the pre-processing unit may include a second buffer unit spaced apart from the first buffer unit by a predetermined interval to have a smaller volume than the first buffer unit, and the first buffer unit and the first buffer unit so that the analyte material in the fluid reacts with the identification material. It may further include a first conjugate portion provided between the second buffer portion.
  • the fluid analysis chip according to the present invention may further include leak prevention holes formed on both sides of the first conjugate portion and the second buffer portion.
  • the first conjugate portion may include a plurality of fillers.
  • the height of the microchannel portion may be changed by changing the number of stacked OCA films.
  • the height of the microchannel portion may be changed by stacking the OCA films having the same thickness or different thicknesses in combination.
  • Embodiments of the present invention can remove a complex structure for organic solvent injection and diffusion, and bond a chip for fluid analysis with a simple structure using an OCA film.
  • the reliability of the product can be secured by realizing a strong bonding force through bonding of a bonding surface of a larger area than before.
  • the flow rate of the fluid can be controlled and it can react with the sample buffer at a uniform rate.
  • FIG. 1 is an exploded perspective view of a chip for fluid analysis according to an embodiment of the present invention
  • Figure 2 is a plan view from the bottom of the first plate and the OCA film bonded state of the chip for fluid analysis according to an embodiment of the present invention
  • FIG. 3 is a plan view showing an OCA film of a chip for fluid analysis according to an embodiment of the present invention
  • FIG. 4 is a block diagram illustrating a step structure of a microchannel part of a chip for fluid analysis according to an embodiment of the present invention
  • FIG. 5 is a partial cross-sectional view showing an example in which the height of the microchannel part is changed by changing the thickness of the OCA film of the chip for fluid analysis according to an embodiment of the present invention
  • FIG. 6 is a plan view illustrating a modified example in which the fluid storage part of the fluid analysis chip is removed according to an embodiment of the present invention
  • FIG. 7 is a plan view illustrating a deformed state of a channel connecting a first buffer unit and a first conjugate unit of a fluid analysis chip according to an embodiment of the present invention
  • FIG. 8 is a plan view illustrating a modified example in which a margin is added to a fluid storage unit of a fluid analysis chip according to an embodiment of the present invention
  • FIG. 9 is an image of a fluid driving state according to time progression of a fluid analysis chip according to an embodiment of the present invention.
  • 11 is an image observing whether the channel leaks after the vitamin D solution is injected into the conventional organic solvent bonding fluid analysis chip.
  • FIG. 1 is an exploded perspective view of a fluid analysis chip according to an embodiment of the present invention. It is a plan view, and FIG. 3 is a plan view showing the OCA film of the chip for fluid analysis according to an embodiment of the present invention.
  • 4 is a block diagram showing the step structure of the microchannel part of the chip for fluid analysis according to an embodiment of the present invention, and FIG. 5 is through changing the thickness of the OCA film of the chip for fluid analysis according to an embodiment of the present invention. It is a partial cross-sectional view showing an example in which the height of the microchannel part is changed.
  • the fluid analysis chip 10 is largely a first plate 100; a second plate 200 bonded to the first plate 100; an OCA film (Optically clear adhesive film, 300) interposed between the first plate 100 and the second plate 200 to bond the first plate 100 and the second plate 200; and a microchannel portion 101 formed to have a predetermined space between the first plate 100 and the second plate 200, and into which a fluid to be analyzed flows and flows.
  • OCA film Optically clear adhesive film, 300
  • the shape and height of at least a portion of the microchannel part 101 may be determined according to the shape and thickness of the OCA film 300 .
  • the first plate 100 and the second plate 200 are bonded by the OCA film 300 to form the outer shape of the fluid analysis chip 10 , and a fluid is introduced therebetween to flow, and a specific part
  • the microchannel 101 is formed of a microcavity so that a desired antigen-antibody reaction can occur in the .
  • the OCA film (optically clear adhesive film, 300) is made of a transparent double-sided tape type as an optical adhesive material.
  • OCA transparent liquid type optical adhesive
  • LOCA liquid optically clear adhesive
  • optically clear means that the transmittance of the material itself becomes 90% or more, indicating a very transparent state.
  • Polymers used as optical adhesive materials include acryl-based, silicone-based, and urethane-based polymers. Acrylic polymers, which have advantages in terms of phosphorus, are most often used.
  • the OCA film 300 is applied as a bonding agent, bonding can be performed with a simple structure by removing the bonding-related structures that require precision processing, and tolerances that may occur during such precision processing can be eliminated. , it has the advantage of securing the stability and reliability of the product by increasing the bonding force through bonding over a larger area than before.
  • the OCA film 300 is, as shown in FIG. 3, the first plate 100 and the second plate 200 and the bonding portion 310 for bonding in contact, and the bonding portion 310 is formed through the inside, A channel forming unit 320 that determines the shape of at least a portion of the microchannel unit 101 may be included.
  • the bonding portion 310 of the OCA film 300 has adhesive properties on both sides of the OCA film 300 like double-sided tape, it is in contact with the first plate 100 and the second plate 200, respectively. do.
  • the channel forming part 320 may be formed through the inside of the junction part 310 so as to have the same or similar shape as the microchannel part 101 .
  • that the channel forming part 320 determines the shape of the microchannel part 101 means that the wall in the thickness direction of the channel forming part 320 forms the sidewall of the microchannel part 101 .
  • the OCA film 300 serves to bond the first plate 100 and the second plate 200, as well as a part of the microchannel formed between the first plate 100 and the second plate 200 or By performing a role of forming the entire sidewall, the shape of the microchannel portion 101 is determined.
  • the OCA film 300 may determine not only the shape of the microchannel part 101 but also the height of the channel. As shown in FIG. 5 , the channel height of the microchannel part 101 can be easily adjusted by changing only the thickness of the OCA film 300 . That is, when the thickness of the OCA film 300 is reduced as shown in FIG. 5( a ), the height of the microchannel part 101 is reduced accordingly. And, as shown in FIG. 5(b), when the thickness of the OCA film 300 is increased, the height of the microchannel part 101 is increased accordingly.
  • the height of the microchannel part 101 may be changed by changing the number of stacked OCA films 300 .
  • the height of the microchannel part 101 may be changed by stacking the OCA films 300 having the same thickness or different thicknesses in combination.
  • the height can be realized by applying the OCA film 300 having a thickness of 100 ⁇ m, and it is also possible to implement by stacking two OCA films 300 each having a thickness of 50 ⁇ m. In addition, it is possible to realize the desired design height by combining two 40 ⁇ m pieces and one 20 ⁇ m piece.
  • the complex shape of the microchannel can be simply designed and applied as desired, and in particular, the channel height related to the stable driving of the microchannel can be easily implemented as desired. There is this.
  • the microchannel unit 101 includes a pre-processing unit 110 in which the fluid is injected and temporarily accommodated, and a channel unit 120 in which the fluid accommodated in the pre-processing unit 110 moves and an antigen-antibody reaction occurs. and a washing unit 130 in which residual fluid that has passed through the channel unit 120 is accommodated.
  • the pre-processing unit 110 is provided so that the fluid injected through the specimen inlet 110b can smoothly move toward the channel unit 120, and the sample injection unit 110a provided adjacent to the specimen inlet 110b; , provided to have a step with respect to the sample injection unit 110a and may include a first buffer unit 111 in which a fluid is accommodated. As shown in FIG. 4 , the first buffer unit 111 forms a step to be higher than the sample injection unit 110a, and serves as a buffer so that the fluid does not flow toward the channel unit 120 at a high speed.
  • the pre-processing unit 110 may further include a fluid storage unit 119 that is branched from the sample injection unit 110a and has a lower height than the first buffer unit 111 and is filled with the fluid first.
  • the fluid When the fluid is injected into the fluid storage unit 119 , the fluid is first filled in the fluid storage unit 119 , which has a relatively lower height than the first buffer unit 111 , and then after the first buffer unit 111 is filled. It flows to the channel part 120 side.
  • the fluid storage unit 119 By additionally designing the fluid storage unit 119 as described above, the flow rate of the fluid can be more gently controlled and the antigen-antibody reaction in the channel unit 120 can be performed well.
  • the height of the sample injection unit 110a is 120 ⁇ m
  • the height of the fluid storage unit 119 is 300 ⁇ m
  • the height of the first buffer unit 111 is 700 ⁇ m. is filled first and then flows to the first buffer unit 111 .
  • the fluid is continuously introduced into the sample inlet, and in this process, a driving force due to hydrostatic pressure is generated, which exceeds the volume of the first buffer unit, and thus there is a problem in that it cannot be effectively buffered.
  • the fluid analysis chip 10 when the fluid is injected, the fluid is completely injected into the fluid storage unit 119 to minimize the hydrostatic pressure. Since the speed of the fluid is controlled, stable fluid operation is possible. In addition, the fluid injected into the fluid storage unit 119 reacts with a sample buffer at a uniform rate in a state where the hydrostatic pressure is minimized, thereby increasing the reactivity efficiency.
  • the height of the fluid storage unit 119 may be determined by the thickness of the OCA film 300
  • the shape of the fluid storage unit 119 may be determined by the shape of the channel forming unit 320 . That is, the sidewall forming the outer shape of the channel forming unit 320 forms the sidewall of the fluid storage unit 119 . Therefore, by changing the thickness of the OCA film 300, the height of the fluid storage unit 119 can be easily changed, and by changing the shape of the channel forming unit 320 of the portion corresponding to the fluid storage unit 119, the fluid storage unit ( 119) can be freely changed.
  • the fluid storage unit 119 may be branched from the sample injection unit 110a to extend a predetermined length and then be formed to extend a predetermined length in the direction of the channel unit 120 .
  • the fluid storage unit 119 By forming the fluid storage unit 119 as described above, space utilization can be increased and the volume of the fluid storage unit 119 can be formed to be relatively large.
  • the fluid stored in the fluid storage unit 119 flows in the direction of the channel unit 120 and then flows out again, it flows in the reverse direction through the sample injection unit 110a to the first buffer unit 111 and the channel unit 120 . As it flows toward the side, it has the advantage of being able to control the fluid driving speed more gently.
  • the fluid storage unit 119 may include a fluid storage unit through-hole 119a formed at an end thereof.
  • the fluid storage unit through-hole 119a discharges the air mixed with the fluid and serves to allow the fluid to flow to the end of the fluid storage unit 119 to be well filled.
  • the injected fluid is first filled in the fluid storage unit 119 and then flows to the channel unit 120 side after filling the first buffer unit 111 .
  • the pre-processing unit 110 includes a first conjugate unit 112 provided so that the analyte material in the fluid moved through the first buffer unit 111 reacts with the identification material, and the first buffer unit 111 . It may further include a second buffer unit 114 spaced apart from each other and provided to have a smaller volume than the first buffer unit 111 .
  • connection channel 113 connecting the first buffer unit 111 and the first conjugate unit 112 is provided, and among the pre-processing units 110 , the sample injection unit 110a and the fluid storage unit are provided.
  • the OCA film 300 forms sidewalls to guide the part 119 , the first buffer part 111 , and the connection channel 113 .
  • the sample injection unit 110a, the first buffer unit 111, the connection channel 113, the first conjugate unit 112, and the second buffer unit 114 each have the first plate 100 ) and the second plate 200 form a part of the microchannel section 101 which is a chamber generated by mutually coupling, and more specifically, the preprocessing section 110 of the microchannel section 101 is formed.
  • sample injection unit 110a is configured such that the fluid injected through the sample injection port 110b is temporarily stored and then moved to the fluid storage unit 119 and the first buffer unit 111 side, from the upper surface.
  • a plurality of injection fillers 110c protruding in a downward direction are provided.
  • the upper surface is defined with respect to the microchannel part 101 , and refers to the lower surface of the first plate 100 . This upper-surface-related definition also applies hereafter.
  • the injection part filler 110c is configured to be provided in plurality at a predetermined distance from each other so as to protrude from the upper surface of the sample injection part 110a at a position adjacent to the sample injection port 110b.
  • the injection part filler 110c increases the surface area of the portion adjacent to the sample inlet 110b, thereby increasing the mixing effect between the fluid injected through the sample inlet 110b and the sample buffer applied to the lower side of the sample inlet 110b. make it
  • the first buffer unit 111 flows into the fluid storage unit 119 through the sample injection unit 110a, and when the temporarily stored fluid flows again, it is primarily accommodated to store a certain amount of the fluid and channel it. It is configured to control the amount of fluid flowing into the unit 120 .
  • a pair of first buffer unit through-holes 111a are formed in the first buffer unit 111 to delay the flow rate of the fluid moving along the sidewall and suppress bubbles that may occur in the fluid.
  • the first buffer unit through-holes 111a may be formed as a pair so as to penetrate left and right sides of the upper surface of the first buffer unit 111 , respectively.
  • the profile of the fluid flowing out of the fluid storage unit 119 and moving toward the first buffer unit 111 through the sample injection unit 110a is a front head toward the central region of the first buffer unit 111 . It is preferable to be introduced to have That is, both ends of the fluid moving from the sample injection unit 110a to the first buffer unit 111 are moved along the sidewall formed by the OCA film 300. As such, the flow rate of both ends of the fluid moving along the wall is delayed. By doing so, it is necessary to readjust the profile of the fluid to have the front head toward the central region of the first buffer unit 111 . In this case, the first buffer unit through-hole 111a delays the flow velocity of both ends of the fluid moving along the side wall by the air flowing in from the outside, thereby achieving the above object.
  • the fluid moves by capillary force due to the structural features without providing external power. Bubbles can occur, which not only reduce the volume in which the fluid can be stored, but also impede the flow of the fluid.
  • the first buffer part through-hole 111a serves to suppress the generation of such bubbles and also to remove the bubbles generated by the air flowing in from the outside even if the bubbles are generated.
  • the first buffer part 111 further includes a plurality of first buffer part fillers 111b protruding downward from the upper surface.
  • a plurality of first buffer fillers 111b are provided at a predetermined distance from each other so as to protrude downward from the upper surface of the first buffer portion 111 .
  • the first buffer part filler 111b increases the mixing effect of the fluid and the sample buffer by increasing the surface area of the first buffer part 111 , and moves from the first buffer part 111 toward the first conjugate part 112 . It plays a role in promoting the effective flow of the fluid by giving directionality to the moving fluid flow.
  • the first conjugate part 112 is a part provided so that the analyte material in the fluid moved through the first buffer part 111 reacts with the identification material.
  • the analyte material in the fluid injected through the sample inlet 110b is applied to the upper surface of the second plate 200 at a point corresponding to the position where the sample inlet 110b is formed so as to create an environment in which a reaction can occur well. It reacts primarily with the sample buffer, passes through the first conjugate part 112 , and also reacts with the identification material applied on the upper surface of the second plate 200 .
  • a plurality of first conjugate part fillers 112a may be provided on the upper surface of the first conjugate part 112 to increase the mixing effect between the analyte material and the identification material in the fluid.
  • the first conjugate part 112 includes a pair of first conjugate part tunnel walls 112b provided to each protrude symmetrically from the upper surface of one end.
  • the first conjugate part tunnel wall 112b serves to concentrate the flow of the fluid so that the fluid can flow in only one direction.
  • the fluid flows first along the edge portion having a relatively large capillary force, so that the flow of the fluid flowing into the channel portion 120 is unstable, in this case the channel A problem in which an unstable effect on the reactivity in the unit 120 is generated may occur.
  • the first conjugate part tunnel wall 112b is provided as a columnar structure protruding downward from both ends of the upper surface of the first conjugate part 112 , and the first conjugate part tunnel wall 112b is provided.
  • the direction of the fluid flowing out from (112) is concentrated to the center.
  • the second buffer unit 114 is connected to the first conjugate unit 112 and is configured so that the fluid that has passed through the first conjugate unit 112 can be combined with the identification material once again.
  • the analyte material in the fluid flowing into the first conjugate part 112 primarily reacts with the identification material in the first conjugate part 112, some of which do not react with the identification material and do not react with the first conjugate It flows out from the gate part 112. Therefore, there is a need to mix the identification material washed away with the movement of the fluid and the analyte material that has not reacted with the identification material once again, and the second buffer unit 114 plays this role. That is, the second buffer unit 114 is provided to increase the amount of fluid capable of reacting with the identification material within a possible range, thereby helping to improve the reliability of the fluid analysis chip 10 .
  • the second buffer unit 114 includes a plurality of second buffer unit fillers 114a and a pair of second buffer unit guides 114b protruding from the upper surface.
  • the second buffer part pillars 114a are configured to protrude from the upper surface of the second buffer part 114 to be spaced apart from each other by a predetermined distance.
  • the fluid flowing from the first conjugate portion 112 to the second buffer portion 114 has a linear laminar flow shape.
  • the second buffer There is a problem in that the mixing effect of the unit 114 is deteriorated.
  • the second buffer part filler 114a interferes with the flow of this laminar flow-shaped fluid and increases the surface area of the second buffer part 114, so that the identification material and the fluid sufficiently react in the second buffer part 114. will be given When the first plate 100 and the second plate 200 are coupled to each other, the second buffer filler 114a has a height enough to be in close contact with or be adjacent to the upper surface of the second plate 200 .
  • the second buffer part guide 114b is configured to protrude downward from the central region of the upper surface of the second buffer part 114 to be symmetrical to each other. In the absence of the second buffer part guide 114b, the fluid flows in a direction in which it first touches the starting point of the channel part 120. In this case, if the flow of the fluid is not concentrated in the center of the channel part 120, the channel part In (120), there may be a problem that the fluid does not smoothly perform specific reactions such as antigen-antibody reactions.
  • the second buffer part guide 114b adjusts the flow of the fluid so that the front head part of the fluid first hits the center of the channel part 120 , and accordingly, the fluid flows smoothly in the channel part 120 . This will help you to develop a specific reaction.
  • the second buffer part guide 114b is in close contact with or adjacent to the upper surface of the second plate 200 when the first plate 100 and the second plate 200 are combined. have a height
  • a pair of leak prevention holes 115 are formed to be adjacent to both side surfaces of the first conjugate part 112 and the second buffer part 114 .
  • the leak prevention holes 115 are formed in pairs so as to penetrate the first plate 100 at positions adjacent to both sides of the first conjugate portion 112 and the second buffer portion 114 .
  • the channel unit 120 of this embodiment is provided in a wall-free form, which will be described later.
  • the fluid flowing into the channel unit 120 through the second buffer unit 114 is the wall of the channel unit 120 .
  • the leak prevention hole 115 introduces external air at the starting point of the wall-free section of the channel part 120 so that the fluid passing the starting point of the channel part 120 receives the same air pressure, thereby inducing a stable flow of the fluid. It also prevents the fluid from leaking to the outside.
  • the channel unit 120 is implemented in a wall-free form in a configuration in which the fluid accommodated in the pre-processing unit 110 moves and performs a specific reaction such as an antigen-antibody reaction.
  • the channel unit 120 of the whirlfree type is the previous application of the present applicant (Korean Patent Registration No. 10-0905954, Korean Patent Registration No. 10-0900511, Korean Patent Registration No. 10-0878229, and US Patent Application No. 12/ 667,371), a detailed description thereof will be omitted.
  • One end of the fluid analysis chip 10 adjacent to the end point of the channel unit 120 is provided with a washing unit 130 in which the fluid passing through the channel unit 120 is accommodated.
  • the washing unit 130 is a part that provides a space in which a material other than the analyte material fixed to the channel unit 120 can be accommodated. Substances other than the analyte material in the fluid flowing along the channel unit 120 due to capillary force can be seen as a kind of noise that reduces the accuracy of the analysis, and the washing unit 130 provides a space to accommodate such noise. By doing so, it is possible to increase the analytical power of the fluid analysis chip 10 .
  • the washing unit 130 includes a plurality of washing unit fillers 130a and a washing unit through-hole 131b formed at an end of the washing unit 130 .
  • the washing part filler 130a is formed over most of the washing channel 131 , and a plurality of the washing part pillars 130a are provided to protrude downward from the upper surface of the washing part 130 , that is, the lower surface of the first plate 100 .
  • the washing part filler (130a) is formed more densely toward the end of the washing part 130, this is to allow the fluid to sufficiently move to the end of the washing channel 130 through an increase in capillary force. That is, the fluid of this embodiment is moved purely by capillary force, and this capillary force becomes weaker from one end of the fluid analysis chip 10 to the other end of the fluid analysis chip 10, so the washing part filler 130a is It is provided to supplement this.
  • the washing part filler 130a reinforces the weakened capillary force by increasing the surface area that can be touched by the fluid.
  • the washing unit through-hole 131b creates a flow of pressure and air in the washing unit 130 so that the fluid can proceed to the washing unit 130 .
  • FIG. 6 is a plan view illustrating a modified example in which the fluid storage part of the chip for fluid analysis according to an embodiment of the present invention is removed
  • FIG. 7 is a first buffer part and the first buffer part of the chip for fluid analysis according to an embodiment of the present invention. It is a plan view showing a state in which the channel connecting the first conjugate part is deformed
  • FIG. 8 is a plan view showing a modified example in which a margin part is added to the fluid storage part of the fluid analysis chip according to an embodiment of the present invention.
  • 9 is an image of a fluid driving state according to time progression of a fluid analysis chip according to an embodiment of the present invention.
  • the fluid storage unit 119 may be deleted.
  • the fluid storage unit 119 is excluded because the flow rate can be sufficiently reduced only by the volume of the first buffer unit 111 .
  • the design can be easily changed by changing only the shape of the channel forming part 320 of the OCA film 300 so that there is no fluid storage part 119 without changing the structure of the first plate 100 or the second plate 200 . That is, since there is no need to change the structure of the first plate 100 or the second plate 200 , the above deformation can be performed only by changing the OCA film 300 without the need to process and apply a new injection mold.
  • connection channel 113 is reduced. Even in this case, the connection channel ( 113) was changed. In the case of a fluid with low viscosity, it is necessary to lower the flow rate sufficiently, so the above design change can be applied.
  • a margin portion 119b protruding in a branching direction is applied to the fluid storage portion 119 .
  • the volume of the fluid storage unit 119 can be increased, and the flow path of the fluid can be increased to effectively reduce the flow rate. And even in the case of adding the margin portion 119b in this way, it is applicable by changing only the shape of the OCA film 300 .
  • the fluid to be analyzed is injected through the sample inlet 110b, and the fluid is first filled in the fluid storage unit 119 about 10 seconds after injection.
  • the analyte in the fluid reacts primarily with the sample buffer applied to the upper surface of the second plate 200 at the point corresponding to the sample inlet 110b. This reaction occurs when the fluid is introduced or again in the fluid storage unit. It can be made while flowing out from (119) toward the sample injection unit (110a).
  • the analyte material contained in the fluid is applied to the identification material applied to the upper surface of the second plate 200 at a point corresponding to the region where the first conjugate portion 112 is formed and the reaction applied to the channel portion 120 . It plays a role in helping it to react smoothly with substances.
  • the fluid flowing out from the fluid storage unit 119 fills the first buffer unit 111 and flows toward the channel unit 120 .
  • the fluid reacted with the sample buffer is primarily accommodated in the first buffer part 111 , and then reacts with the identification material applied to the first conjugate part 112 , and then is secondaryly accommodated in the second buffer part 114 .
  • the generation of bubbles in the first buffer unit 111 is suppressed by the vent hole 111a formed in the first buffer unit 111 , and the second buffer unit 111 is provided to have a smaller volume than the first buffer unit 111 .
  • the residual amount of the fluid accommodated in the second buffer unit 114 is minimized and the fluid that does not react with the identification material can smoothly move toward the washing unit 130 .
  • the fluid stored in the second buffer unit 114 flows into the channel unit 120 by capillary force, and the fluid moving along the channel unit 120 is a reactant and antigen applied to a certain area of the channel unit 120 .
  • -A specific reaction such as an antibody reaction, is made, so that the fluid can be analyzed from the outside.
  • the residual fluid that has not reacted in the channel unit 120 is accommodated through the washing unit 130 .
  • FIG. 10 is an image observing whether the channel leaks after injecting tertiary distilled water into the conventional organic solvent bonding fluid analysis chip
  • FIG. 11 is after the vitamin D solution is injected into the conventional organic solvent bonding fluid analysis chip. It is an image observing whether the channel leaks
  • FIG. 12 is an image observing whether the channel leaks after the vitamin D solution is injected into the fluid analysis chip according to the present invention.
  • the solution contact angle test was performed as follows in order to check whether leakage occurred according to the actual contact angle.
  • Bovine Serum Gibco®Bovine Serum
  • Vitamin D Buffer Using our own products
  • the contact angle of DI water on the O 2 plasma-treated PMMA substrate is usually 40° to 60°, and in the case of the vitamin D analysis sample, the lysis buffer is included, so the contact angle with the PMMA substrate is relatively low.
  • the channel height was changed through the fluid analysis chip according to the present invention, and as a result, as shown in FIG. 12 , when the vitamin D solution was injected, it was confirmed that the operation was performed well without leakage.
  • a wall-free channel structure is an important structure that provides a stabilized flow. it was necessary
  • the chip for fluid analysis can realize a structure (fluid storage unit) that can easily change the design of the chip through OCA film bonding, and as a result, the cracking (leakage) phenomenon of the wall-free channel structure was also able to overcome.
  • the chip for fluid analysis according to the present invention can determine the channel height and shape only with the OCA film layer, and is a composite element that can form a channel height and wall-free channel with various steps as a combined element of the OCA film layer and the upper plate injection product. It is differentiated in that it is a chip with a structure.
  • the fluid analysis chip according to the embodiments of the present invention described so far, it can be manufactured in a simple structure by bonding the upper plate and the lower plate using an OCA film, and the internal heightening shape can be precisely controlled to meet various needs and applied. It is possible and reliability can be improved by increasing bonding force than before.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)

Abstract

유체분석용 칩이 개시된다. 본 발명에 따른 유체분석용 칩에 의하면, OCA 필름을 이용하여 상판과 하판을 접합시켜 간단한 구조로 제조할 수 있고 내부 높이와 형상을 다양한 요구에 맞추어 정밀하게 제어하여 적용 가능하며 기존보다 접합력이 증가되어 신뢰성을 향상시킬 수 있다.

Description

유체분석용 칩
본 발명은 유체분석용 칩에 관한 것으로, 더욱 상세하게는 OCA 필름을 이용하여 상판과 하판을 접합시켜 간단한 구조로 제조할 수 있고 내부 높이와 형상을 다양한 요구에 맞추어 정밀하게 제어하여 적용 가능하며 기존보다 접합력이 증가되어 신뢰성을 향상시킬 수 있는 유체분석용 칩에 관한 것이다.
일반적으로, 유체시료의 분석은 화학 및 생명공학 분야 외에도 환자로부터 채취한 혈액, 체액의 분석을 통한 진단 분야 등에서 광범위하게 이용되고 있다. 근래에는 이러한 유체시료의 분석을 좀 더 간편하고 효율적으로 수행하기 위하여, 소형화된 다양한 종류의 분석 및 진단 장비들과 기술들이 개발되고 있다.
특히, 랩온어칩(lab-on-a-chip) 기술은 시료의 분리, 정제, 혼합, 표지화, 분석 및 세정 등 실험실에서 수행되는 다양한 실험 과정들을 미세유체역학 기술 등을 이용하여 작은 크기의 칩 상에서 구현하는 기술을 말한다. 랩온어칩의 설계에는, 미세유체역학(micro-fluidics), 미세유체조작시스템(micro-LHS) 관련 기술이 주로 이용된다. 또한, 미세유체역학 및 미세유체조작시스템을 구현하는 칩 구조물을 제작함에 있어, 반도체 회로설계 기술을 이용하여 미세한 채널을 칩 내부에 형성시킨 칩이 시판 중에 있다.
이러한 랩온어칩(lab-on-a-chip) 기술과 관련하여 DNA 추출부터 해석까지의 프로세스를 칩 상에서 한번에 실시할 수 있는 휴대가 가능한 개인 식별용 DNA 해석 장치까지 개발되고 있는 등 산업 각 분야에서 그 활용이 활발히 이루어지고 있다.
또한, 체외진단(In vitro diagnostics) 분야에 있어서도, 병원이나 연구실에서 행해지는 혈액, 체액 등의 복잡한 정밀 검사를 현장에서 개인이 직접 손쉽게 할 수 있는 휴대용 진단 도구, 즉 POCT(point of care testing) 분야에 대한 연구도 활발히 이루어지고 있다.
POCT는 응급실, 수술실 또는 일반 가정 등 진료 현장에서 간편하게 질병을 진단할 수 있는 현장 진단 기술을 말하며, 고령화 및 복지 사회를 대비하여 그 필요성과 수요가 계속하여 증가하는 분야이기도 하다. 현재는 혈당 측정용 진단 도구가 시장의 주류를 차지하고 있지만, POCT에 대한 실질적인 요구가 증대되면서 젖산, 콜레스테롤, 요소 및 감염성 병원균 등 다양한 생체 물질들을 분석하는 진단 도구에 대한 수요 또한 빠르게 증가하고 있는 추세이다.
이와 같은 분석 또는 진단 기술들은 일반적으로 각종 유체시료를 칩 내부에 형성된 미세 채널을 통하여 이동시키면서 유체와 칩 내부에 고정화된 항체 단백질 또는 그 외 각종 시료들과의 반응 여부를 여러 가지 탐지 방법으로 검출, 분석함으로써 이루어진다. 따라서 미세 채널이 형성된 칩 내부를 이동하는 유체의 움직임을 제어하는 것은 소형화된 칩을 이용하여 빠르고 정확한 분석 결과를 얻는 것에 있어서 가장 핵심적인 기술 요소이다.
칩 내부에 형성된 미세채널을 통하여 유체가 이동하도록 하기 위한 구동력으로서, 소형 모터를 사용하거나 모세관 현상을 이용하는 방법이 사용되고 있다. 모세관력을 주요 구동력으로 사용하는 칩의 경우, 채널을 통하여 흐르는 유체는 불규칙적이고 불균일한 이동 패턴을 갖게 된다. 특히, 채널의 극도로 낮아지거나 좁아질 경우 많이 관찰된다. 이러한 현상은 채널의 상하 내벽, 좌우 내벽과 유체와의 상호작용이 서로 상이하기 때문에 발생하며, 이것은 유체 시료에 미량 존재하는 분석 대상물질의 검출 및 분석에 커다란 장애 요인이 된다.
또한, 수십 마이크로 미만 크기의 미세한 폐쇄 채널을 제조함에 있어서, 채널의 모서리 부분을 손실 없이 일정하게 가공하는 것은 용이하지 않으며, 이는 대량 생산시 규격 및 품질 관리 등에 문제를 일으킬 수 있다. 또한, 이러한 채널 구조의 미세한 오차는 유체 흐름을 방해하여, 일관성 없는 분석 결과를 초래할 수 있다.
이와 같은 문제점을 해결하기 위하여, 2007년 7월 23일자로 출원된 대한민국특허출원 10-2007-0073659호에서는 채널의 한 쌍의 내벽에 채널보다 더 깊게 함몰된 확장부를 인접시킴으로써, 채널을 통과하는 유체가 다른 한 쌍의 내벽과만 상호작용하게 하는 기술을 제시하고 있다(당사특허 KR10-0878229 참조).
월프리 채널은 채널을 통과하는 유체의 이동 패턴이 균일하게 형성되므로 기포의 발생이 감소되고, 재연성이 확보되며, 유체 중에 존재하는 분석대상물질로부터 신호검출을 용이하게 수행할 수 있다. 또한, 미세한 크기의 채널을 기판에 구현함에 있어, 채널의 각 모서리의 손실이나 변형의 우려 없이 제작할 수 있으므로, 제품의 대량 생산 및 품질 관리가 용이하다(당사특허 KR10-0900511 참조).
한편, 전술한 POCT용 또는 랩온어칩용으로 사용되는 유체분석용 칩은 폴리카보네이트(PC), 폴리스티렌(PS), 폴리프로필렌(PP), 폴리에틸렌테레프탈레이트(PET) 등과 같은 폴리에틸렌 유도체(PE derivatives), 폴리메틸메타크릴레이트(PMMA), 또는 아크릴 계통의 플라스틱 종류의 재질로 이루어지며, 일회용으로 사용된다.
일반적으로 유체분석용 칩은 상판과 하판을 접합하여 제조되는데, 접합된 상판과 하판 사이에 시료가 유동하여 반응하는 소정 높이의 미세채널과 여러 가지 미세 구조물들이 구비된다.
그런데 이러한 기존의 유체분석용 칩은 상판과 하판의 접합면에 본딩물질인 유기용매를 주입할 수 있도록 주입홀을 만들어야 하며, 유기용매의 확산할 수 있는 추가적인 채널을 제조하여야 하므로 구조가 복잡하고 가공 시 발생하는 공차에 의해 조립완성도가 저하되는 문제점이 있다.
그리고 유기용매의 확산이 불균일한 경우 정밀한 내부 높이 구현이 어렵고, 실질 접합면의 감소로 인해 접합력이 저하되어 안정적인 제품 신뢰성을 확보하기가 어려운 문제점이 있다.
또한, 분석대상인 검체의 조성물적 특성으로 인해 플레이트와의 접촉각이 낮은 경우에는 월프리 채널에서 누수가 발생할 수 있기 때문에 다양한 채널 높이를 구현하여 각각의 특성에 맞는 유체분석용 칩을 제조하여 적용하여야 하지만, 기존의 유기용제 접합칩에서는 이와 같이 다양하게 설계변경하여 적용하는 것이 쉬운 문제가 아니다.
따라서 이러한 문제점을 해결함으로써 OCA 필름을 이용하여 상판과 하판을 접합시켜 간단한 구조로 제조할 수 있고 내부 높이와 형상을 다양한 요구에 맞추어 정밀하게 제어하여 적용 가능하며 기존보다 접합력이 증가되어 신뢰성을 향상시킬 수 있는 유체분석용 칩의 필요성이 대두되고 있다.
본 발명의 실시예들은 유기용매 주입 및 확산을 위한 복잡한 구조물을 제거하고 OCA 필름을 이용하여 간단한 구조로 유체분석용 칩을 접합시키고자 한다.
또한, 유체분석용 칩의 내부 미세채널의 높이를 다양한 요구에 맞추어 정밀하게 제어하여 적용함으로써 분석의 정확성을 높이고자 한다.
또한, 기존보다 넓은 면적의 접합면의 접합을 통해 강한 접합력을 실현함으로써 제품의 신뢰성을 확보하고자 한다.
또한, 유체 주입 시 발생하는 정수압을 유체 저장부를 통해 해소함으로써 유체의 유동 속도를 제어하고 샘플 버퍼와 균일한 속도로 반응시키고자 한다.
또한, 미세채널 상에서 모세관력과 저항의 비가 주입 초기에 매우 크기 때문에 유체의 속도가 매우 큰 상태에서 시작하여 유체의 적셔진 길이가 늘어남에 따라 가파르게 감소하는 현상을 방지하여 안정적인 유체 구동을 구현하고자 한다.
또한, 분석검체의 조성물 특성상 플레이트와의 접촉각이 낮은 경우 월프리 채널쪽에서 발생할 수 있는 누수 현상을 방지하고자 한다.
또한, 상판과 하판의 구조 변화 없이 OCA 필름의 형태와 두께를 변경하는 것만으로 채널의 높이와 형상을 바꿀 수 있게 함으로써 적은 비용으로 제품 변경이 가능하며 적용 대상에 맞춘 설계자유도를 확보하고자 한다.
본 발명의 일 측면에 의하면, 제1 플레이트; 상기 제1 플레이트와 접합하는 제2 플레이트; 상기 제1 플레이트와 제2 플레이트 사이에 개재되어 상기 제1 플레이트와 제2 플레이트를 접합시키는 OCA 필름(Optically clear adhesive film); 및 상기 제1 플레이트와 제2 플레이트 사이에 일정 공간을 갖도록 형성되며, 분석대상 유체가 투입되어 유동하는 미세채널부;를 포함하고, 상기 미세채널부의 적어도 일부의 형상과 높이는 상기 OCA 필름의 형상과 두께에 따라 결정되는 것을 특징으로 하는 유체분석용 칩이 제공될 수 있다.
상기 미세채널부는 적어도 일부가 측벽이 개방된(wall-free) 구조로 이루어질 수 있다.
상기 OCA 필름은, 상기 제1 플레이트 및 제2 플레이트와 접촉하여 결합시키는 접합부와, 상기 접합부 내측에 관통형성되며, 상기 미세채널부의 적어도 일부의 형상을 결정하는 채널형성부를 포함하여 이루어질 수 있다.
상기 미세채널부는, 상기 유체가 주입되고 일시적으로 수용되는 전처리부와, 상기 전처리부에 수용된 유체가 이동하여 항원-항체반응이 이루어지는 채널부와, 상기 채널부를 통과한 잔류 유체가 수용되는 워싱부를 포함하여 이루어질 수 있다.
상기 전처리부는, 상기 유체가 주입되는 검체주입부와, 상기 검체주입부보다 높게 이루어져 단차를 형성하는 제1 버퍼부를 포함하여 이루어질 수 있다.
상기 전처리부는, 상기 검체주입부에서 분기되며, 상기 제1 버퍼부보다 낮은 높이로 이루어져 상기 유체가 먼저 채워지는 유체 저장부를 더 포함하여 이루어질 수 있다.
상기 유체 저장부의 높이는 상기 OCA 필름의 두께에 의해 결정될 수 있다.
상기 유체 저장부의 형상은 상기 채널형성부의 형상에 의해 결정될 수 있다.
상기 유체 저장부는 상기 검체주입부에서 분기되어 일정 길이 연장된 후 상기 채널부 방향으로 일정 길이 연장형성될 수 있다.
상기 유체 저장부는 단부에 형성되는 유체 저장부 관통홀을 포함하여 이루어질 수 있다.
상기 유체 저장부는 분기되는 방향으로 돌출되는 마진부를 포함하여 이루어질 수 있다.
상기 전처리부는, 상기 제1 버퍼부보다 작은 부피를 갖도록 제1 버퍼부와 일정 간격 이격되어 구비되는 제2 버퍼부 및, 상기 유체 내의 분석대상 물질이 식별물질과 반응하도록 상기 제1 버퍼부와 상기 제2 버퍼부 사이에 마련되는 제1 컨주게이트부를 더 포함하여 이루어질 수 있다.
본 발명에 따른 유체분석용 칩은 상기 제1 컨주게이트부와 제2 버퍼부의 양측부에 형성되는 누수방지홀을 더 포함하여 이루어질 수 있다.
상기 제1 컨주게이트부는 다수의 필러를 포함하여 이루어질 수 있다.
상기 OCA 필름의 두께를 변경함으로써 상기 미세채널부의 높이를 변경할 수 있다.
상기 OCA 필름의 적층되는 수를 변경함으로써 상기 미세채널부의 높이를 변경할 수 있다.
서로 동일한 두께를 갖거나 서로 다른 두께를 갖는 상기 OCA 필름을 조합하여 적층시킴으로써 상기 미세채널부의 높이를 변경할 수 있다.
본 발명의 실시예들은 유기용매 주입 및 확산을 위한 복잡한 구조물을 제거하고 OCA 필름을 이용하여 간단한 구조로 유체분석용 칩을 접합시킬 수 있다.
또한, 유체분석용 칩의 내부 미세채널의 높이를 다양한 요구에 맞추어 정밀하게 제어하여 적용함으로써 분석의 정확성을 높일 수 있다.
또한, 기존보다 넓은 면적의 접합면의 접합을 통해 강한 접합력을 실현함으로써 제품의 신뢰성을 확보할 수 있다.
또한, 유체 주입 시 발생하는 정수압을 유체 저장부를 통해 해소함으로써 유체의 유동 속도를 제어하고 샘플 버퍼와 균일한 속도로 반응시킬 수 있다.
또한, 미세채널 상에서 모세관력과 저항의 비가 주입 초기에 매우 크기 때문에 유체의 속도가 매우 큰 상태에서 시작하여 유체의 적셔진 길이가 늘어남에 따라 가파르게 감소하는 현상을 방지하여 안정적인 유체 구동을 구현할 수 있다.
또한, 분석검체의 조성물 특성상 플레이트와의 접촉각이 낮은 경우 월프리 채널쪽에서 발생할 수 있는 누수 현상을 방지할 수 있다.
또한, 상판과 하판의 구조 변화 없이 OCA 필름의 형태와 두께를 변경하는 것만으로 채널의 높이와 형상을 바꿀 수 있게 함으로써 적은 비용으로 제품 변경이 가능하며 적용 대상에 맞춘 설계자유도를 확보할 수 있다.
도 1은 본 발명의 일 실시예에 따른 유체분석용 칩의 분해사시도
도 2는 본 발명의 일 실시예에 따른 유체분석용 칩의 제1 플레이트와 OCA 필름이 접합된 상태를 하부에서 바라본 평면도
도 3은 본 발명의 일 실시예에 따른 유체분석용 칩의 OCA 필름을 도시한 평면도
도 4는 본 발명의 일 실시예에 따른 유체분석용 칩의 미세채널부 단차 구조를 도시한 구성도
도 5는 본 발명의 일 실시예에 따른 유체분석용 칩의 OCA 필름 두께 변경을 통해 미세채널부의 높이가 변경되는 예를 도시한 부분단면도
도 6은 본 발명의 일 실시예에 따른 유체분석용 칩의 유체 저장부가 제거된 변형 예를 도시한 평면도
도 7은 본 발명의 일 실시예에 따른 유체분석용 칩의 제1 버퍼부와 제1 컨주케이트부를 연결하는 채널이 변형 적용된 상태를 도시한 평면도
도 8은 본 발명의 일 실시예에 따른 유체분석용 칩의 유체 저장부에 마진부가 추가된 변형 예를 도시한 평면도
도 9는 본 발명의 일 실시예에 따른 유체분석용 칩의 시간 진행에 따른 유체 구동 상태를 촬영한 이미지
도 10은 종래의 유기용제 접합 유체분석용 칩에 3차 증류수를 주입한 후 채널의 누수 여부를 관찰한 이미지
도 11은 종래의 유기용제 접합 유체분석용 칩에 Vitamin D 용액을 주입한 후 채널의 누수 여부를 관찰한 이미지
도 12는 본 발명에 따른 유체분석용 칩에 Vitamin D 용액을 주입한 후 채널의 누수 여부를 관찰한 이미지
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명의 일 실시예에 따른 유체분석용 칩의 분해사시도이고, 도 2는 본 발명의 일 실시예에 따른 유체분석용 칩의 제1 플레이트와 OCA 필름이 접합된 상태를 하부에서 바라본 평면도이며, 도 3은 본 발명의 일 실시예에 따른 유체분석용 칩의 OCA 필름을 도시한 평면도이다. 도 4는 본 발명의 일 실시예에 따른 유체분석용 칩의 미세채널부 단차 구조를 도시한 구성도이고, 도 5는 본 발명의 일 실시예에 따른 유체분석용 칩의 OCA 필름 두께 변경을 통해 미세채널부의 높이가 변경되는 예를 도시한 부분단면도이다.
도 1 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 유체분석용 칩(10)은 크게 제1 플레이트(100); 상기 제1 플레이트(100)와 접합하는 제2 플레이트(200); 상기 제1 플레이트(100)와 제2 플레이트(200) 사이에 개재되어 상기 제1 플레이트(100)와 제2 플레이트(200)를 접합시키는 OCA 필름(Optically clear adhesive film, 300); 및 상기 제1 플레이트(100)와 제2 플레이트(200) 사이에 일정 공간을 갖도록 형성되며, 분석대상 유체가 투입되어 유동하는 미세채널부(101);를 포함하여 이루어질 수 있다.
그리고 상기 미세채널부(101)의 적어도 일부의 형상과 높이는 상기 OCA 필름(300)의 형상과 두께에 따라 결정될 수 있다.
상기 제1 플레이트(100)와 제2 플레이트(200)는 상기 OCA 필름(300)에 의해 접합하여 유체분석용 칩(10)의 외형을 이루게 되며, 그 사이에 유체가 투입되어 유동하고, 특정 부분에서 원하는 항원-항체 반응이 일어날 수 있도록 미세 공간으로 이루어진 미세채널부(101)가 형성된다.
상기 OCA 필름(optically clear adhesive film, 300)은 광학용 접착소재로서 투명한 양면 테이프 타입으로 이루어진다. 광학용 접착소재는 OCA 이외에도 OCR(optically clear resin) 또는 LOCA(liquid optically clear adhesive)로 불리는 투명한 액체 타입의 광학용 접착제가 있지만, 본 실시예에서는 광학용 액체 타입 접착제 대신 OCA 필름(300)을 적용한다.
여기서 optically clear 라는 용어는 소재 자체의 투과도가 90% 이상이 됨을 의미하는 것으로, 매우 투명한 상태를 가리킨다. 광학용 접착소재로 쓰이는 고분자는 아크릴(acryl)계, 실리콘(silicone)계, 우레탄(urethane)계 등이 있으나 매우 우수한 투명성을 가지면서 설계가 용이하고 UV(ultraviolet)를 통한 빠른 경화가 가능하면서 경제적인 면에서도 이점이 있는 아크릴계 고분자가 가장 많이 쓰인다.
기존에는 접합제로서 유기용제와 같은 액상 타입 접착제가 적용되었는데, 이 경우 액상의 접착제를 주입하기 위한 주입홀과 함께 주입된 접착제를 접합면에 확산시키기 위하여 미세한 확산채널을 별도로 마련해야 하기 때문에 가공이 어렵고 가공비용도 증가하며 접착면적이 작아서 접착력도 상대적으로 작은 문제점이 있었다.
그러나 본 발명에서는 접합제로서 OCA 필름(300)을 적용하기 때문에 정밀 가공이 필요한 접합과 관련된 구조물을 제거함으로써 간단한 구조로 접합을 할 수 있고, 이러한 정밀 가공 중에 의해 발생할 수 있는 공차를 제거할 수 있으며, 기존보다 넓은 면적의 접합을 통해 접합력을 증가시킴으로써 제품의 안정성과 신뢰성을 확보할 수 있는 장점이 있다.
상기 OCA 필름(300)은 도 3에 도시된 것처럼, 상기 제1 플레이트(100) 및 제2 플레이트(200)와 접촉하여 결합시키는 접합부(310)와, 상기 접합부(310) 내측에 관통형성되며, 상기 미세채널부(101)의 적어도 일부의 형상을 결정하는 채널형성부(320)를 포함하여 이루어질 수 있다.
전술한 바와 같이, 상기 OCA 필름(300)의 접합부(310)는 양면테이프처럼 상하 양면이 접착성을 띄기 때문에 각각 제1 플레이트(100) 및 제2 플레이트(200)와 접촉하여 접합시키는 역할을 수행한다.
그리고 상기 접합부(310) 내측으로는 미세채널부(101) 형상과 동일 또는 유사한 형상을 가지도록 채널형성부(320)가 관통형성될 수 있다. 여기서 상기 채널형성부(320)가 미세채널부(101)의 형상을 결정한다는 것은 채널형성부(320)의 두께 방향 벽이 미세채널부(101)의 측벽을 이룬다는 것을 의미한다.
즉, 상기 OCA 필름(300)은 제1 플레이트(100)와 제2 플레이트(200)를 접합시키는 역할뿐만 아니라, 제1 플레이트(100)와 제2 플레이트(200) 사이에 형성되는 미세채널 일부 또는 전부의 측벽을 형성하는 역할을 수행함으로써 미세채널부(101)의 형상을 결정하게 된다.
상기 OCA 필름(300)은 상기 미세채널부(101)의 형상뿐만 아니라 채널의 높이 또한 결정할 수 있다. 도 5에서 보는 것처럼, 상기 OCA 필름(300)의 두께만을 변경함으로써 상기 미세채널부(101)의 채널 높이를 용이하게 조절할 수 있는 것이다. 즉, 도 5(a)에서 보는 것처럼 OCA 필름(300)의 두께를 작게 하면 그에 따라 미세채널부(101)의 높이는 작아지게 된다. 그리고 도 5(b)에 도시된 바와 같이, OCA 필름(300)의 두께를 크게 하면 그에 따라 미세채널부(101)의 높이는 커지게 된다.
더 나아가, 상기 OCA 필름(300)의 적층되는 수를 변경함으로써 상기 미세채널부(101)의 높이를 변경할 수 있다. 이때 서로 동일한 두께를 갖거나 서로 다른 두께를 갖는 상기 OCA 필름(300)을 조합하여 적층시킴으로써 상기 미세채널부(101)의 높이를 변경할 수 있다.
예를 들어 100μm 채널 높이가 설계 목표인 경우 100μm 두께를 갖는 OCA 필름(300)를 적용하여 높이를 구현할 수 있고, 각각 50μm 두께의 OCA 필름(300) 2개를 적층하여 구현하는 것도 가능하다. 그외에도 40μm 짜리 2개와 20μm짜리 1개를 조합하여 원하는 설계 높이를 구현하는 것도 가능하다.
이와 같이, OCA 필름(300)을 접합제로서 적용함으로써 미세채널의 복잡한 형상을 간단하게 원하는 대로 손쉽게 설계 적용할 수 있고, 특히 미세채널의 안정적인 구동과 관련된 채널 높이를 원하는 대로 용이하게 구현할 수 있는 장점이 있다.
한편, 상기 미세채널부(101)는, 상기 유체가 주입되고 일시적으로 수용되는 전처리부(110)와, 상기 전처리부(110)에 수용된 유체가 이동하여 항원-항체반응이 이루어지는 채널부(120)와, 상기 채널부(120)를 통과한 잔류 유체가 수용되는 워싱부(130)를 포함하여 이루어질 수 있다.
상기 전처리부(110)는 검체주입구(110b)를 통해 주입된 유체가 채널부(120) 측으로 원활하게 이동할 수 있도록 마련되는 것으로, 검체주입구(110b)에 인접하게 마련되는 검체주입부(110a)와, 검체주입부(110a)에 대하여 단차를 갖도록 마련되어 유체가 수용되는 제1 버퍼부(111)를 포함하여 이루어질 수 있다. 도 4에서 보는 것처럼 상기 제1 버퍼부(111)는 상기 검체주입부(110a)보다 높게 이루어지도록 단차를 형성하며, 유체가 채널부(120) 쪽으로 빠른 속도로 흘러가지 않도록 버퍼 역할을 수행한다.
여기서 상기 전처리부(110)는, 상기 검체주입부(110a)에서 분기되며, 상기 제1 버퍼부(111)보다 낮은 높이로 이루어져 상기 유체가 먼저 채워지는 유체 저장부(119)를 더 포함하여 이루어질 수 있다.
상기 유체 저장부(119)는 유체가 주입되었을 때, 제1 버퍼부(111)보다 상대적으로 높이가 낮은 유체 저장부(119)쪽에 유체가 먼저 채워지고 이후 제1 버퍼부(111)를 채운 후 채널부(120)측으로 흘러가도록 해준다. 이와 같이 유체 저장부(119)를 추가적으로 설계함으로써 유체의 유속을 보다 완만하게 조절할 수 있고 채널부(120)에서의 항원-항체 반응이 잘 이루어지도록 할 수 있다.
예를 들어 본 실시예에서 상기 검체주입부(110a)의 높이는 120μm, 유체 저장부(119) 높이는 300μm, 제1 버퍼부(111) 높이는 700μm로 이루어져 유체가 주입되면 유체 저장부(119)쪽으로 유체가 먼저 채워지고 그 후에 제1 버퍼부(111)로 흘러가게 되는 것이다.
기존 칩의 경우 검체주입구로 유체가 지속적으로 유입되는 방식이며, 이 과정에서 정수압으로 인한 구동력이 발생하여 제1 버퍼부의 용적을 초과함으로써 효과적으로 버퍼링하지 못하는 문제가 있었다.
그러나 본 발명에 따른 유체분석용 칩(10)은 유체의 주입 시 유체 저장부(119)로 유체가 완전히 주입되어 정수압을 최소화할 수 있기 때문에 정수압이 충분히 제거된 상태에서 모세관력(capillary force)만으로 유체의 속도가 제어되므로 안정적인 유체 구동이 가능하다. 그리고 유체 저장부(119)로 주입된 유체는 정수압이 최소화된 상태에서 샘플 버퍼(sample buffer)와 균일한 속도로 반응하게 됨으로써 반응성 효율이 증가하는 장점이 있다.
여기서 상기 유체 저장부(119)의 높이는 상기 OCA 필름(300)의 두께에 의해 결정되고, 상기 유체 저장부(119)의 형상은 상기 채널형성부(320)의 형상에 의해 결정될 수 있다. 즉, 상기 채널형성부(320)의 외형을 이루는 측벽이 상기 유체 저장부(119)의 측벽을 이루게 되는 것이다. 따라서 OCA 필름(300)의 두께를 변경함으로써 유체 저장부(119)의 높이를 손쉽게 변형 가능하고, 유체 저장부(119)에 대응되는 부분의 채널형성부(320) 형상을 변경함으로써 유체 저장부(119)의 형상을 자유롭게 변경 가능하다.
본 실시예에서 상기 유체 저장부(119)는 상기 검체주입부(110a)에서 분기되어 일정 길이 연장된 후 상기 채널부(120) 방향으로 일정 길이 연장형성될 수 있다. 이와 같이 유체 저장부(119)를 형성함으로써 공간활용도를 높일 수 있고 유체 저장부(119)의 용적을 상대적으로 크게 형성할 수 있다. 또한, 유체 저장부(119)에 저장되는 유체가 채널부(120) 방향으로 흘러갔다가 다시 빠져나갈 때는 역방향으로 흘러 검체주입부(110a)를 통해 제1 버퍼부(111)와 채널부(120)쪽으로 흘러가게 되므로 보다 완만하게 유체 구동 속도를 조절할 수 있는 장점이 있다.
여기서 상기 유체 저장부(119)는 단부에 형성되는 유체 저장부 관통홀(119a)을 포함하여 이루어질 수 있다. 상기 유체 저장부 관통홀(119a)은 유체에 섞인 공기를 배출하고 유체가 유체 저장부(119) 끝단까지 흘러가 잘 채워질 수 있도록 하는 역할을 수행한다.
전술한 바와 같이, 주입된 유체는 상기 유체 저장부(119)에 먼저 채워지고 이후에 제1 버퍼부(111)를 채운 후 채널부(120)측으로 흘러가게 된다.
여기서 상기 전처리부(110)는 제1 버퍼부(111)를 거치며 이동된 유체내의 분석대상 물질이 식별물질과 반응하도록 마련되는 제1 컨주게이트부(112)와, 제1 버퍼부(111)로부터 일정간격 이격되며 제1 버퍼부(111)보다 적은 체적을 갖도록 마련되는 제2 버퍼부(114)를 더 포함하여 이루어질 수 있다.
그리고 본 실시예에서 상기 제1 버퍼부(111)와 제1 컨주케이트부(112)를 연결하는 연결채널(113)이 구비되며, 상기 전처리부(110) 중에서 검체주입부(110a), 유체 저장부(119), 제1 버퍼부(111) 및 연결채널(113)까지 OCA 필름(300)이 측벽을 형성하여 가이드한다.
전술한 바와 같이, 상기 검체주입부(110a), 제1 버퍼부(111), 연결채널(113), 제1 컨주게이트부(112) 및 제2 버퍼부(114)는 각각 제1 플레이트(100)와 제2 플레이트(200)가 상호 결합되어 생성되는 챔버인 미세채널부(101)의 일부를 이루며, 보다 구체적으로 미세채널부(101) 중에서 전처리부(110)를 형성한다.
그리고 검체주입부(110a)는 검체주입구(110b)를 통해 주입된 유체가 임시적으로 저장된 후 유체 저장부(119) 및 제1 버퍼부(111) 측으로 이동될 수 있도록 마련되는 구성으로, 상부면으로부터 하측 방향으로 돌출 형성되는 다수의 주입부 필러(110c)를 구비한다. 여기서 상부면이라 함은 미세채널부(101)를 기준으로 정의되는 것이며, 제1 플레이트(100)의 하부면을 의미한다. 이러한 상부면 관련 정의는 이하에서도 동일하게 적용된다.
상기 주입부 필러(110c)는 검체주입구(110b)에 인접한 위치에서 검체주입부(110a)의 상부면으로부터 돌출되도록 상호 일정간격 이격되어 다수 개로 마련되는 구성이다. 주입부 필러(110c)는 검체주입구(110b) 측에 인접한 부분의 표면적을 증가시킴으로써 검체주입구(110b)를 통해 주입되는 유체와 검체주입구(110b)의 하측에 도포된 샘플 버퍼와의 믹싱 효과를 증가시킨다.
상기 제1 버퍼부(111)는 전술한 바와 같이, 검체주입부(110a)를 통해 유체 저장부(119)로 흘러가 임시 저장된 유체가 다시 흘러나왔을 때, 일차적으로 수용됨으로써 유체의 일정량을 저장하여 채널부(120)로 유입되는 유체의 양을 조절하는 구성이다.
상기 제1 버퍼부(111)에는 측벽을 따라 이동하는 유체의 유속을 지연시키며 유체에 발생할 수 있는 버블(bubble)을 억제하는 한 쌍의 제1 버퍼부 관통홀(111a)이 형성된다. 도 2에서 보는 것처럼, 제1 버퍼부 관통홀(111a)은 제1 버퍼부(111)의 상부면 좌우측을 각각 관통하도록 한 쌍으로 형성될 수 있다.
상기 유체 저장부(119)에서 흘러나와 검체주입부(110a)를 통해 제1 버퍼부(111) 측으로 이동하는 유체의 프로파일은 제1 버퍼부(111)의 중앙 영역을 향해 프론트 헤드(front head)를 갖도록 유입되는 것이 바람직하다. 즉, 검체주입부(110a)로부터 제1 버퍼부(111) 측으로 이동하는 유체의 양단부는 OCA 필름(300)이 형성하는 측벽을 타고 이동하게 되는데, 이렇듯 벽면을 타고 이동하는 유체 양단부의 유속을 지연시킴으로써 유체의 프로파일이 제1 버퍼부(111)의 중앙 영역을 향해 프론트 헤드를 갖도록 재조정할 필요성이 생긴다. 이때, 제1 버퍼부 관통홀(111a)은 외부로부터 유입되는 공기에 의해 측벽을 타고 이동하는 유체 양단부의 유속을 지연시킴으로써 전술한 목적을 달성할 수 있도록 한다.
더 나아가 본 발명에 따른 유체분석용 칩(10)은 외부 동력의 제공 없이 구조적 특징에 의한 모세관력으로 유체가 이동하게 되는데, 이렇듯 외부 동력 없이 일정한 공간을 유체가 채우게 되면 폐쇄된 구조물의 모서리 부분에 기포가 발생할 수 있으며, 기포는 유체가 저장될 수 있는 체적을 감소시킬 뿐만 아니라 유체의 흐름을 방해하게 된다. 제1 버퍼부 관통홀(111a)은 이러한 기포의 발생을 억제함과 동시에 기포가 발생하더라도 외부로부터 유입되는 공기에 의해 발생된 기포를 제거하는 역할을 겸한다.
도 2에 도시된 바와 같이, 상기 제1 버퍼부(111)는 상부면으로부터 하측 방향으로 돌출되는 다수의 제1 버퍼부 필러(111b)를 더 포함한다. 제1 버퍼부 필러(111b)는 제1 버퍼부(111)의 상부면으로부터 하측 방향으로 돌출되도록 상호 일정간격 이격되어 다수 개가 마련되는 구성이다. 제1 버퍼부 필러(111b)는 제1 버퍼부(111)의 표면적을 증가시킴으로써 유체와 샘플 버퍼와의 믹싱 효과를 증가시키며, 제1 버퍼부(111)로부터 제1 컨주게이트부(112) 측으로 이동하는 유체 유동에 방향성을 부여함으로써 유체의 효과적인 유동을 도모하는 역할을 담당한다.
상기 제1 컨주게이트부(112)는 제1 버퍼부(111)를 거치며 이동된 유체 내의 분석대상 물질이 식별물질과 반응하도록 마련되는 부분이다. 검체주입구(110b)를 통해 주입된 유체 내의 분석대상 물질은, 반응이 잘 일어날 수 있는 환경이 조성되도록 검체주입구(110b)가 형성된 위치에 대응되는 지점의 제2 플레이트(200)의 상면에 도포되는 샘플 버퍼와 일차적으로 반응하며, 제1 컨주게이트부(112)를 거치며 역시 제2 플레이트(200)의 상면에 도포된 식별물질과 반응한다.
상기 제1 컨주게이트부(112) 상부면에는 다수의 제1 컨주게이트부 필러(112a)가 구비되어 유체 내의 분석대상 물질과 식별물질과의 믹싱 효과를 증대시킬 수 있다.
한편, 제1 컨주게이트부(112)는 일단부 상부면으로부터 상호 대칭되게 각각 돌출되도록 마련되는 한 쌍의 제1 컨주게이트부 터널벽(112b)을 구비한다. 상기 제1 컨주게이트부 터널벽(112b)은 유체가 일 방향으로만 흐를 수 있도록 유체의 흐름을 집중시키는 역할을 한다.
즉, 상기 제1 컨주게이트부 터널벽(112b)이 없는 경우 유체는 모세관력이 상대적으로 큰 모서리 부분을 따라 먼저 흐르게 되므로 채널부(120)로 유입되는 유체의 유동이 불안정해지며, 이 경우 채널부(120)에서의 반응성에 불안정한 영향을 미치게 되는 문제가 발생할 수 있다.
이러한 문제를 방지하기 위해 상기 제1 컨주게이트부 터널벽(112b)은 제1 컨주게이트부(112) 상부면의 양단부에서 하측 방향으로 돌출되는 기둥형태의 구조물로 마련되며, 상기 제1 컨주게이트부(112)로부터 유출되는 유체의 방향성을 중앙으로 집중시키게 된다.
상기 제2 버퍼부(114)는 제1 컨주게이트부(112)에 연결되며 제1 컨주게이트부(112)를 거친 유체가 식별물질과 다시 한번 결합될 수 있도록 마련되는 구성이다. 상기 제1 컨주게이트부(112) 측으로 유입된 유체 내의 분석대상 물질은 일차적으로 제1 컨주게이트부(112) 내에서 식별물질과 반응하게 되는데 이중 일부는 식별물질과 반응하지 않은 상태로 제1 컨주게이트부(112)로부터 유출된다. 따라서, 유체의 이동에 따라 씻겨진 식별물질과, 식별물질과 반응하지 않은 분석대상 물질을 다시 한번 혼합시킬 필요성이 존재하며 바로 이 역할을 제2 버퍼부(114)가 담당하게 된다. 즉, 상기 제2 버퍼부(114)는 식별물질과 반응할 수 있는 유체의 양을 가능한 범위 내에서 증가시키도록 마련되어 유체분석용 칩(10)의 신뢰도를 향상시키는데 도움을 준다.
한편, 상기 제2 버퍼부(114)는 상부면으로부터 돌출되는 다수의 제2 버퍼부 필러(114a) 및 한 쌍의 제2 버퍼부 가이드(114b)를 포함한다.
상기 제2 버퍼부 필러(114a)는 상호 일정간격 이격되도록 제2 버퍼부(114)의 상부면으로부터 돌출되는 구성이다. 제2 버퍼부 필러(114a)가 없는 경우 제1 컨주게이트부(112)로부터 제2 버퍼부(114) 측으로 유입되는 유체는 직선적인 층류(laminar flow)의 형상을 가지게 되는데, 이 경우 제2 버퍼부(114)의 믹싱 효과가 떨어지게 되는 문제점이 생긴다. 제2 버퍼부 필러(114a)는 이러한 층류 형상의 유체의 흐름을 방해하며 제2 버퍼부(114)의 표면적을 증가시킴으로써 식별물질과 유체가 제2 버퍼부(114)에서 충분히 반응할 수 있는 시간을 부여하게 된다. 제2 버퍼부 필러(114a)는 제1 플레이트(100)와 제2 플레이트(200)가 결합되는 경우 제2 플레이트(200)의 상면에 밀착되거나 인접될 정도의 높이를 가진다.
상기 제2 버퍼부 가이드(114b)는 제2 버퍼부(114)의 상부면 중앙영역으로부터 상호 대칭되도록 하측 방향으로 각각 돌출되도록 마련되는 구성이다. 제2 버퍼부 가이드(114b)가 없을 경우 유체는 채널부(120)의 시작점에 먼저 닿는 방향으로 방향성을 가지며 흐르게 되는데, 이 경우 유체의 흐름이 채널부(120)의 중앙에 집중되지 못하면 채널부(120) 내에서 유체가 원활하게 항원-항체반응과 같은 특이반응을 원활하게 하지 못하게 되는 문제가 생길 수 있다. 제2 버퍼부 가이드(114b)는 유체의 프론트 헤드(Front head) 부분이 채널부(120)의 중앙에 먼저 닿을 수 있도록 유체의 흐름을 조절하며, 이에 따라 채널부(120) 내에서 유체가 원활하게 특이반응을 할 수 있도록 도움을 주게 된다. 제2 버퍼부 필러(114a)와 마찬가지로 제2 버퍼부 가이드(114b)는 제1 플레이트(100) 및 제2 플레이트(200)의 결합시 제2 플레이트(200)의 상면에 밀착되거나 인접될 정도의 높이를 가진다.
한편, 상기 제1 컨주게이트부(112)와 제2 버퍼부(114)의 양측면에 인접하도록 한 쌍의 누수방지홀(115)이 관통형성된다. 상기 누수방지홀(115)은 제1 컨주케이트부(112)와 제2 버퍼부(114)의 양측면에 인접한 위치에서 제1 플레이트(100)를 관통하도록 한 쌍으로 형성된다.
본 실시예의 채널부(120)는 후술할 월프리(Wall-free) 형태로 마련되는바 제2 버퍼부(114)를 거쳐 채널부(120)로 유입되는 유체는 이러한 채널부(120)의 월프리 구간의 시작점에서 외부로 누수될 수 있는 문제점이 존재한다. 상기 누수방지홀(115)은 채널부(120)의 월프리 구간의 시작점에서 외부의 공기를 유입시킴으로써 채널부(120)의 시작점을 지나는 유체가 동일한 공기압을 받도록 하여 유체의 안정적인 흐름을 유도할 뿐만 아니라 유체가 외부로 누수되는 것을 방지한다.
한편, 상기 채널부(120)는 전처리부(110)에 수용된 유체가 이동하며 항원-항체반응과 같은 특이반응을 하는 구성으로 월프리(Wall-free) 형태로 구현된다. 이러한 월프리 형태의 채널부(120)는 본 출원인의 이전 출원(대한민국특허등록 제10-0905954호, 대한민국특허등록 제10-0900511호, 대한민국특허등록 제10-0878229호 및 미국 특허출원 제12/667,371호)에 자세히 기재되어 있으므로 상세한 설명은 생략한다.
상기 채널부(120)의 종료점에 인접한 유체분석용 칩(10)의 일단부에는 채널부(120)를 통과한 유체가 수용되는 워싱부(130)가 마련된다.
상기 워싱부(130)는 채널부(120)에 고정된 분석대상물질 이외의 물질이 수용될 수 있는 공간을 제공하는 부분이다. 모세관력에 의하여 채널부(120)를 따라 흐르는 유체 중 분석대상물질 이외의 물질은 분석의 정확도를 떨어뜨리는 일종의 노이즈로 볼 수 있는데, 워싱부(130)는 이러한 노이즈를 수용할 수 있는 공간을 제공함으로써 유체분석용 칩(10)의 분석력을 높일 수 있도록 하게 된다.
여기서 상기 워싱부(130)는 다수의 워싱부 필러(130a)와, 워싱부(130)의 끝단에 형성된 워싱부 관통홀(131b)을 포함한다.
상기 워싱부 필러(130a)는 워싱채널(131)의 대부분에 걸쳐 형성되는 것으로, 워싱부(130)의 상부면 즉, 제1 플레이트(100)의 하면으로부터 하측방향으로 돌출되도록 다수 개가 구비된다. 또한 워싱부 필러(130a)는 워싱부(130)의 끝단으로 갈수록 더욱 조밀하게 형성되는데 이는 모세관력의 증가를 통해 유체가 충분히 워싱채널(130)의 끝단으로 이동할 수 있도록 하기 위함이다. 즉, 본 실시예의 유체는 순수하게 모세관력에 의해서만 움직이게 되는데 이러한 모세관력은 유체분석용 칩(10)의 일단으로부터 유체분석용 칩(10)의 타단으로 갈수록 약해지게 되므로 워싱부 필러(130a)는 이를 보완하기 위해 구비된다. 워싱부 필러(130a)는 유체가 닿을 수 있는 표면적을 넓혀줌으로써 약해진 모세관력을 보강하게 된다.
상기 워싱부 관통홀(131b)은 유체가 워싱부(130)로 진행할 수 있도록 워싱부(130) 내 압력 및 공기의 흐름을 만든다.
도 6은 본 발명의 일 실시예에 따른 유체분석용 칩의 유체 저장부가 제거된 변형 예를 도시한 평면도이고, 도 7은 본 발명의 일 실시예에 따른 유체분석용 칩의 제1 버퍼부와 제1 컨주케이트부를 연결하는 채널이 변형 적용된 상태를 도시한 평면도이며, 도 8은 본 발명의 일 실시예에 따른 유체분석용 칩의 유체 저장부에 마진부가 추가된 변형 예를 도시한 평면도이다. 도 9는 본 발명의 일 실시예에 따른 유체분석용 칩의 시간 진행에 따른 유체 구동 상태를 촬영한 이미지이다.
도 1 내지 도 9를 참조하여 본 발명의 변형예와 사용예를 살펴보면 다음과 같다.
먼저 도 6에서 보는 것처럼, 유체 저장부(119)가 삭제될 수 있다. 예를 들어 상대적으로 점성이 높은 유체의 경우 제1 버퍼부(111)의 용적만으로 충분히 유동 속도를 낮출 수 있으므로 유체 저장부(119)를 제외시킨 것이다.
이때, 제1 플레이트(100)나 제2 플레이트(200)의 구조 변경 없이 OCA 필름(300)의 채널형성부(320) 형상만을 유체 저장부(119)가 없도록 변형시킴으로써 용이하게 설계 변경할 수 있다. 즉, 제1 플레이트(100)나 제2 플레이트(200)의 구조를 변경할 필요가 없으므로 사출금형을 새롭게 가공하여 적용할 필요없이 OCA 필름(300)의 변경만으로 위와 같은 변형 실시가 가능한 것이다.
도 7은 연결채널(113)의 폭을 줄인 변형예이다. 이 경우에도 제1 플레이트(100)나 제2 플레이트(200)의 구조 변경없이 OCA 필름(300)의 변경만으로 제1 버퍼부(111)와 제1 컨주게이트부(112)를 연결하는 연결채널(113)의 폭을 변경하였다. 점성이 작은 유체의 경우 유속을 충분히 낮출 필요가 있으므로 위와 같은 설계 변경을 적용할 수 있다.
도 8은 유체 저장부(119)에 분기되는 방향으로 돌출되는 마진부(119b)를 적용한 실시예이다. 이와 같이 마진부(119b)를 구비함으로써 유체 저장부(119)의 용적을 증가시키고, 유체의 유동경로를 키워 유속을 효과적으로 감소시킬 수 있다. 그리고 이와 같이 마진부(119b)를 추가하는 경우에도 OCA 필름(300) 형상만을 변경함으로써 적용 가능하다.
도 9를 참조하여 본 발명의 일 실시예에 따른 유체분석용 칩(10)의 사용예를 설명한다.
먼저 분석대상이 되는 유체는 검체주입구(110b)를 통하여 주입되며, 주입 후 10초 정도에 유체가 유체 저장부(119)에 먼저 채워지게 된다. 이때, 유체 내의 분석대상 물질은 검체주입구(110b)에 대응되는 지점의 제2 플레이트(200)의 상면에 도포된 샘플 버퍼와 일차적으로 반응하게 되는데 이러한 반응은 유체가 투입되었을 때 또는 다시 유체 저장부(119)로부터 검체주입부(110a)측으로 흘러나오면서 이루어질 수 있다. 샘플 버퍼는 유체에 함유된 분석대상 물질이 제1 컨주게이트부(112)가 형성된 영역에 대응되는 지점의 제2 플레이트(200)의 상면에 도포된 식별물질 및 채널부(120)에 도포된 반응물질과 원활하게 반응할 수 있도록 돕는 역할을 수행한다.
주입 후 1분 정도가 지났을 때, 유체 저장부(119)에서 흘러나온 유체는 제1 버퍼부(111)를 채우고 채널부(120)측으로 흘러가고 있는 것을 확인할 수 있다. 샘플 버퍼와 반응한 유체는 제1 버퍼부(111)에 일차적으로 수용된 후 제1 컨주게이트부(112)에 도포된 식별물질과 반응한 뒤 제2 버퍼부(114)에 이차적으로 수용된다. 이때 제1 버퍼부(111)에 형성된 벤트홀(111a)에 의하여 제1 버퍼부(111) 내에서 기포가 발생하는 것이 억제되며, 제1 버퍼부(111)보다 적은 체적을 갖도록 마련되는 제2 버퍼부(114)의 특성에 따라 제2 버퍼부(114)에 수용된 유체의 잔류 양을 최소화되고 식별물질과 반응하지 않은 유체가 워싱부(130) 측으로 원활하게 이동할 수 있게 된다.
제2 버퍼부(114)에 저장된 유체는 모세관력에 의하여 채널부(120) 측으로 유입되며, 채널부(120)를 따라 이동하는 유체는 채널부(120)의 일정영역에 도포된 반응물질과 항원-항체반응과 같은 특이반응을 하게 되어 이에 따라 외부에서 유체를 분석할 수 있게 된다. 마지막으로, 채널부(120)에서 반응하지 않은 잔류유체는 워싱부(130)를 통해 수용된다.
주입 후 3분 후에는 유체 저장부(119)에 수용된 유체가 상당량 빠져 나온 것을 확인할 수 있으며, 이후 유체 저장부(119)에서 대부분 흘러나와 채널부(120)에서 반응이 이루어지고 잔류 유체가 워싱부(130)에 수용된 것을 볼 수 있다.
도 10은 종래의 유기용제 접합 유체분석용 칩에 3차 증류수를 주입한 후 채널의 누수 여부를 관찰한 이미지이고, 도 11은 종래의 유기용제 접합 유체분석용 칩에 Vitamin D 용액을 주입한 후 채널의 누수 여부를 관찰한 이미지이며, 도 12는 본 발명에 따른 유체분석용 칩에 Vitamin D 용액을 주입한 후 채널의 누수 여부를 관찰한 이미지이다.
전술한 바와 같이 분석검체의 조성물 특성으로 인해 플레이트와의 접촉각이 낮은 경우에는 wall-free 채널에서 누수가 발생하는 문제점이 있다.
실제로 접촉각에 따른 누수 현상 발생 여부를 확인하기 위하여 용액 접촉각 테스트를 다음과 같이 실시하였다.
- 사용 장비: SEO Phonenix 300
- 사용 용액 정보 (3종류)
3차 증류수
소 혈청: Gibco®Bovine Serum
Vitamin D Buffer: 자사 생산 제품 사용
- 테스트 환경: 상온 25℃클린룸 환경
- 테스트 방법
테스트하고자 하는 용액을 실린지에 넣고 기기 구동
이와 같은 접촉각 테스트를 거쳐 위 세 가지 용액들의 접촉각을 아래 표와 같이 구할 수 있었다.
용액 종류 용액 접촉각 (PMMA 기판)
3차 증류수 48.1°
소 혈청 46.9°
Vit.D Buffer 11.5°
O2 plasma 처리된 PMMA 기판에서 DI Water의 접촉각은 보통 40°~ 60°이고, Vitamin D 분석검체의 경우, lysis buffer가 포함되어 있어 PMMA 기판과 상대적으로 낮은 접촉각을 보인다.
먼저 종래의 유기용제 접합 유체분석용 칩에 3차 증류수를 주입한 후 채널의 누수 여부를 관찰하였다. 도 10에서 보는 바와 같이 3차 증류수의 경우 접촉각이 크기 때문에 누수가 발생하지 않는 것을 확인할 수 있다. 도시되지는 않았지만 접촉각이 큰 소 혈청의 경우에도 동일하게 누수가 발생하지 않았다.
그러나 종래의 유기용제 접합 유체분석용 칩에 Vitamin D 용액을 주입한 경우에는 도 11에서 보는 것처럼 누수가 발생하였다. Vitamin D 용액의 경우 접촉각이 작기 때문에 유체 속도를 아주 낮춘 경우에도 누수 가능성이 큰 것을 확인할 수 있다.
따라서 본 발명에 따른 유체분석용 칩을 통해 채널 높이 변경을 수행하였고 그 결과 도 12에서 보는 바와 같이 Vitamin D 용액을 주입한 경우에 누수가 발생하지 않고 구동이 잘 이루어진 것을 확인할 수 있다.
이와 같이 종래의 유기용제 접합 유체분석용 칩의 경우 월프리(wall-free) 채널구조가 안정화된 유동을 제공하는 중요한 구조이기 때문에 이 구조를 유지하면서 다양한 단차를 가지는 칩을 구현하기 위해 많은 노력이 필요했다.
분석검체의 조성물 특성으로 인해 플레이트와의 접촉각이 낮은 경우에는 월프리(wall-free) 채널에서 누수가 발생하는 문제점이 있었고, 이를 해결하기 위해 칩의 설계변경은 유기용제 접합 칩에서 쉬운 문제가 아니었다.
그러나 본 발명의 일 실시예에 따른 유체분석용 칩은 OCA 필름 접합을 통해 칩의 설계변경이 용이한 구조(유체저장부) 실현이 가능하고, 그 결과 wall-free 채널구조의 터짐(누수) 현상도 극복할 수 있었다.
따라서 본 발명에 따른 유체분석용 칩은 OCA 필름층만으로 채널 높이 및 형상을 결정할 수 있고, 또 OCA 필름층과 상판 사출물의 결합적인 요소로 다양한 단차를 가지는 채널높이 및 wall-free 채널 형성이 가능한 복합적 구조를 가진 칩이라는 점에서 차별성을 가진다.
지금까지 설명한 본 발명의 실시예들에 의한 유체분석용 칩에 따르면, OCA 필름을 이용하여 상판과 하판을 접합시켜 간단한 구조로 제조할 수 있고 내부 높이화 형상을 다양한 요구에 맞추어 정밀하게 제어하여 적용 가능하며 기존보다 접합력이 증가되어 신뢰성을 향상시킬 수 있다.
상기에서는 본 발명의 일 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (17)

  1. 제1 플레이트;
    상기 제1 플레이트와 접합하는 제2 플레이트;
    상기 제1 플레이트와 제2 플레이트 사이에 개재되어 상기 제1 플레이트와 제2 플레이트를 접합시키는 OCA 필름(Optically clear adhesive film); 및
    상기 제1 플레이트와 제2 플레이트 사이에 일정 공간을 갖도록 형성되며, 분석대상 유체가 투입되어 유동하는 미세채널부;를 포함하고,
    상기 미세채널부의 적어도 일부의 형상과 높이는 상기 OCA 필름의 형상과 두께에 따라 결정되는 것을 특징으로 하는 유체분석용 칩.
  2. 제1항에 있어서,
    상기 미세채널부는 적어도 일부가 측벽이 개방된(wall-free) 구조로 이루어지는 것을 특징으로 하는 유체분석용 칩.
  3. 제1항에 있어서,
    상기 OCA 필름은,
    상기 제1 플레이트 및 제2 플레이트와 접촉하여 결합시키는 접합부와,
    상기 접합부 내측에 관통형성되며, 상기 미세채널부의 적어도 일부의 형상을 결정하는 채널형성부를 포함하는 것을 특징으로 하는 유체분석용 칩.
  4. 제3항에 있어서,
    상기 미세채널부는,
    상기 유체가 주입되고 일시적으로 수용되는 전처리부와,
    상기 전처리부에 수용된 유체가 이동하여 항원-항체반응이 이루어지는 채널부와,
    상기 채널부를 통과한 잔류 유체가 수용되는 워싱부를 포함하는 것을 특징으로 하는 유체분석용 칩.
  5. 제4항에 있어서,
    상기 전처리부는,
    상기 유체가 주입되는 검체주입부와,
    상기 검체주입부보다 높게 이루어져 단차를 형성하는 제1 버퍼부를 포함하는 것을 특징으로 하는 유체분석용 칩.
  6. 제5항에 있어서,
    상기 전처리부는,
    상기 검체주입부에서 분기되며, 상기 제1 버퍼부보다 낮은 높이로 이루어져 상기 유체가 먼저 채워지는 유체 저장부를 더 포함하는 것을 특징으로 하는 유체분석용 칩.
  7. 제6항에 있어서,
    상기 유체 저장부의 높이는 상기 OCA 필름의 두께에 의해 결정되는 것을 특징으로 하는 유체분석용 칩.
  8. 제6항에 있어서,
    상기 유체 저장부의 형상은 상기 채널형성부의 형상에 의해 결정되는 것을 특징으로 하는 유체분석용 칩.
  9. 제6항에 있어서,
    상기 유체 저장부는 상기 검체주입부에서 분기되어 일정 길이 연장된 후 상기 채널부 방향으로 일정 길이 연장형성되는 것을 특징으로 하는 유체분석용 칩.
  10. 제9항에 있어서,
    상기 유체 저장부는 단부에 형성되는 유체 저장부 관통홀을 포함하는 것을 특징으로 하는 유체분석용 칩.
  11. 제9항에 있어서,
    상기 유체 저장부는 분기되는 방향으로 돌출되는 마진부를 포함하는 것을 특징으로 하는 유체분석용 칩.
  12. 제6항에 있어서,
    상기 전처리부는,
    상기 제1 버퍼부보다 작은 부피를 갖도록 제1 버퍼부와 일정 간격 이격되어 구비되는 제2 버퍼부 및,
    상기 유체 내의 분석대상 물질이 식별물질과 반응하도록 상기 제1 버퍼부와 상기 제2 버퍼부 사이에 마련되는 제1 컨주게이트부를 더 포함하는 것을 특징으로 하는 유체분석용 칩.
  13. 제12항에 있어서,
    상기 제1 컨주게이트부와 제2 버퍼부의 양측부에 형성되는 누수방지홀을 더 포함하는 것을 특징으로 하는 유체분석용 칩.
  14. 제12항에 있어서,
    상기 제1 컨주게이트부는 다수의 필러를 포함하는 것을 특징으로 하는 유체분석용 칩.
  15. 제1항에 있어서,
    상기 OCA 필름의 두께를 변경함으로써 상기 미세채널부의 높이를 변경하는 것을 특징으로 하는 유체분석용 칩.
  16. 제1항에 있어서,
    상기 OCA 필름의 적층되는 수를 변경함으로써 상기 미세채널부의 높이를 변경하는 것을 특징으로 하는 유체분석용 칩.
  17. 제16항에 있어서,
    서로 동일한 두께를 갖거나 서로 다른 두께를 갖는 상기 OCA 필름을 조합하여 적층시킴으로써 상기 미세채널부의 높이를 변경하는 것을 특징으로 하는 유체분석용 칩.
PCT/KR2021/002976 2020-03-17 2021-03-10 유체분석용 칩 WO2021187800A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180021754.3A CN115315314A (zh) 2020-03-17 2021-03-10 用于流体分析的芯片
JP2022552274A JP7458098B2 (ja) 2020-03-17 2021-03-10 流体分析用チップ
US17/911,600 US20230122274A1 (en) 2020-03-17 2021-03-10 Fluid analysis chip
EP21772405.3A EP4122601A4 (en) 2020-03-17 2021-03-10 FLUID ANALYSIS CHIP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0032732 2020-03-17
KR1020200032732A KR102474790B1 (ko) 2020-03-17 2020-03-17 유체분석용 칩

Publications (1)

Publication Number Publication Date
WO2021187800A1 true WO2021187800A1 (ko) 2021-09-23

Family

ID=77771565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002976 WO2021187800A1 (ko) 2020-03-17 2021-03-10 유체분석용 칩

Country Status (6)

Country Link
US (1) US20230122274A1 (ko)
EP (1) EP4122601A4 (ko)
JP (1) JP7458098B2 (ko)
KR (1) KR102474790B1 (ko)
CN (1) CN115315314A (ko)
WO (1) WO2021187800A1 (ko)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US371A (en) 1837-08-31 waeneb
US6271040B1 (en) * 1992-05-21 2001-08-07 Biosite Diagnostics Incorporated Diagnostic devices method and apparatus for the controlled movement of reagents without membranes
JP2003114229A (ja) * 2001-10-03 2003-04-18 Mitsubishi Chemicals Corp マイクロチャネルチップ,マイクロチャネルチップを使用した測定装置及び測定方法
KR20070073659A (ko) 2007-03-28 2007-07-10 주식회사 에너지마스타 산소/수소 혼합가스 발생장치의 전극판 진동구조
JP2008194568A (ja) * 2007-02-08 2008-08-28 Tokyo Institute Of Technology マイクロ反応装置、その製造方法、集積化マイクロ反応モジュール、および有機ヒ素汚染水の浄化方法
KR100878229B1 (ko) 2007-11-22 2009-01-12 주식회사 디지탈바이오테크놀러지 유체분석용 칩
KR100900511B1 (ko) 2007-07-23 2009-06-03 주식회사 디지탈바이오테크놀러지 유체분석용 칩
KR100905954B1 (ko) 2007-07-23 2009-07-06 주식회사 디지탈바이오테크놀러지 유체내의 분석대상물질의 검출을 위한 모듈 및 이를 갖는칩
KR100961874B1 (ko) * 2010-04-05 2010-06-09 주식회사 나노엔텍 외부동력 없이 유체가 이동하는 유체분석용 칩
KR20170010480A (ko) * 2015-07-20 2017-02-01 티엔에스(주) 적층형 미세유체 유동 구조체 및 적층형 유동블록 구조체

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7854700A (en) * 1999-10-04 2001-05-10 Nanostream, Inc. Modular microfluidic devices comprising sandwiched stencils
GB2436616A (en) * 2006-03-29 2007-10-03 Inverness Medical Switzerland Assay device and method
JP4725545B2 (ja) * 2007-03-29 2011-07-13 富士フイルム株式会社 マイクロ化学チップ
KR100885074B1 (ko) * 2007-07-26 2009-02-25 주식회사 아이센스 미세유로형 센서 복합 구조물
JP2010054451A (ja) * 2008-08-29 2010-03-11 Yamanaka Semiconductor Kk 微小分析装置及びその製造方法、並びにその製造装置
WO2011091007A2 (en) * 2010-01-20 2011-07-28 Nexcelom Bioscience Llc Cell counting and sample chamber and methods of fabrication
JP5996861B2 (ja) * 2010-12-30 2016-09-21 チェイル インダストリーズ インコーポレイテッド ダイシングダイボンディングフィルム用粘着剤組成物
JP6037184B2 (ja) * 2012-09-28 2016-12-07 国立研究開発法人産業技術総合研究所 多孔質媒体を利用したアッセイ装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US371A (en) 1837-08-31 waeneb
US6271040B1 (en) * 1992-05-21 2001-08-07 Biosite Diagnostics Incorporated Diagnostic devices method and apparatus for the controlled movement of reagents without membranes
JP2003114229A (ja) * 2001-10-03 2003-04-18 Mitsubishi Chemicals Corp マイクロチャネルチップ,マイクロチャネルチップを使用した測定装置及び測定方法
JP2008194568A (ja) * 2007-02-08 2008-08-28 Tokyo Institute Of Technology マイクロ反応装置、その製造方法、集積化マイクロ反応モジュール、および有機ヒ素汚染水の浄化方法
KR20070073659A (ko) 2007-03-28 2007-07-10 주식회사 에너지마스타 산소/수소 혼합가스 발생장치의 전극판 진동구조
KR100900511B1 (ko) 2007-07-23 2009-06-03 주식회사 디지탈바이오테크놀러지 유체분석용 칩
KR100905954B1 (ko) 2007-07-23 2009-07-06 주식회사 디지탈바이오테크놀러지 유체내의 분석대상물질의 검출을 위한 모듈 및 이를 갖는칩
KR100878229B1 (ko) 2007-11-22 2009-01-12 주식회사 디지탈바이오테크놀러지 유체분석용 칩
KR100961874B1 (ko) * 2010-04-05 2010-06-09 주식회사 나노엔텍 외부동력 없이 유체가 이동하는 유체분석용 칩
KR20170010480A (ko) * 2015-07-20 2017-02-01 티엔에스(주) 적층형 미세유체 유동 구조체 및 적층형 유동블록 구조체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4122601A4

Also Published As

Publication number Publication date
JP7458098B2 (ja) 2024-03-29
JP2023515839A (ja) 2023-04-14
CN115315314A (zh) 2022-11-08
KR102474790B1 (ko) 2022-12-07
US20230122274A1 (en) 2023-04-20
KR20210116829A (ko) 2021-09-28
EP4122601A1 (en) 2023-01-25
EP4122601A4 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
US20230256451A1 (en) Unitary Biochip Providing Sample-in to Results-Out Processing and Methods of Manufacture
WO2011112023A2 (ko) 혈구 분리 칩
JP2019047799A (ja) 試料導入から結果出力までのプロセス化を提供する単一構造バイオチップおよび製造方法
US9067206B2 (en) Chip for analyzing fluids being moved without an outside power source
WO2010038897A1 (ja) 分析用具およびその製造方法
CN106470937A (zh) 微流控芯片及其制备方法以及利用其的分析装置
JP2009128229A (ja) マイクロチップ
WO2021187800A1 (ko) 유체분석용 칩
WO2022154332A1 (ko) 애널라이트 검사 장치 및 이를 이용한 애널라이트 검사 방법
JP2007240461A (ja) プラスチック製マイクロチップ、及びその接合方法、及びそれを利用したバイオチップ又はマイクロ分析チップ。
US20090291025A1 (en) Microchip And Method Of Using The Same
KR20210089162A (ko) 높은 반복 가능성을 제공하는 미세유체 샘플 준비 장치
WO2015186913A1 (ko) 플라스틱 마이크로칩
WO2016153234A1 (ko) 미세유동 장치 및 이를 포함하는 시료 분석장치
CN101952731A (zh) 微芯片及其制造方法
AU2016200080B2 (en) Unitary biochip providing sample-in to results-out processing and methods of manufacture
WO2017095047A1 (ko) 유체분석 카트리지 및 이를 포함하는 유체분석장치
WO2019112111A1 (ko) 미세 주입기를 가진 미세유체분석칩 및 그 제조 방법 및 그 사용 방법
JP2009109272A (ja) 光学測定用キュベットを有するマイクロチップおよびその使用方法
WO2021215783A1 (ko) 유체의 채널 유입이 용이한 바이오 센서
KR20130104281A (ko) 바이오 센서
JP2009085818A (ja) 液体試薬内蔵型マイクロチップ
KR20140046666A (ko) 랩 온어칩 및 이를 제작하는 방법
Loh Integrated microfluidics, heaters, and electronic sensors for Lab-on-a-Chip applications
JP2006006287A (ja) マイクロチップの製造方法及び当該製造方法によって製造されたマイクロチップ。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552274

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021772405

Country of ref document: EP

Effective date: 20221017