WO2021187518A1 - 耐炎化繊維束、および炭素繊維束の製造方法ならびに耐炎化炉 - Google Patents

耐炎化繊維束、および炭素繊維束の製造方法ならびに耐炎化炉 Download PDF

Info

Publication number
WO2021187518A1
WO2021187518A1 PCT/JP2021/010787 JP2021010787W WO2021187518A1 WO 2021187518 A1 WO2021187518 A1 WO 2021187518A1 JP 2021010787 W JP2021010787 W JP 2021010787W WO 2021187518 A1 WO2021187518 A1 WO 2021187518A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber bundle
acrylic fiber
hot air
flame
resistant
Prior art date
Application number
PCT/JP2021/010787
Other languages
English (en)
French (fr)
Inventor
山本拓
細谷直人
船越祥二
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202180020548.0A priority Critical patent/CN115279958B/zh
Priority to US17/910,870 priority patent/US20230119738A1/en
Priority to EP21770941.9A priority patent/EP4123065A1/en
Priority to KR1020227030744A priority patent/KR20220146497A/ko
Priority to JP2022508405A priority patent/JPWO2021187518A1/ja
Publication of WO2021187518A1 publication Critical patent/WO2021187518A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/005Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass by contact with at least one rotating roll
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • D01F9/328Apparatus therefor for manufacturing filaments from polyaddition, polycondensation, or polymerisation products
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch

Definitions

  • the present invention relates to a flame-resistant fiber bundle and a method for producing a carbon fiber bundle. More specifically, the present invention relates to a flame-resistant fiber bundle capable of efficiently producing a high-quality flame-resistant fiber bundle, a method for producing a carbon fiber bundle, and a flame-resistant furnace.
  • carbon fiber Since carbon fiber has excellent specific strength, specific elastic modulus, heat resistance, and chemical resistance, it is useful as a reinforcing material for various materials, and is used in a wide range of fields such as aerospace applications, leisure applications, and general industrial applications. Has been done.
  • an acrylic fiber bundle obtained by arranging thousands to tens of thousands of single fibers of an acrylic polymer is sent into a flameproof furnace and put into the furnace body.
  • Heat treatment flame resistance treatment
  • an oxidizing gas such as air heated to 200 to 300 ° C. supplied from an installed heated gas supply nozzle (hereinafter simply referred to as a supply nozzle).
  • the obtained flame-resistant fiber bundle is sent to a carbonization furnace, heat-treated (pre-carbonization treatment) in an inert gas atmosphere at 300 to 1,000 ° C.
  • pre-carbonization treatment pre-carbonization treatment
  • a method of heat treatment (carbonization treatment) in a carbonization furnace filled with an active gas atmosphere is known.
  • the flame-resistant fiber bundle which is an intermediate material, is widely used as a material for flame-retardant woven fabrics by taking advantage of its non-flammable property.
  • the processing time is the longest and the amount of energy consumed is the largest in the flame resistance process. Therefore, improving productivity in the flame resistance process is of utmost importance in the production of carbon fiber bundles.
  • the device for flame-resistant (hereinafter referred to as flame-resistant furnace) is rotated by a folding roller arranged outside the furnace body of the flame-resistant furnace. Therefore, it is common to have a structure in which acrylic fibers are reciprocated in the furnace body of a flame-resistant furnace many times in the horizontal direction.
  • a method of supplying hot air in a direction substantially parallel to the traveling direction of the acrylic fiber bundle is called a parallel flow method, and the hot air is orthogonal to the traveling direction of the acrylic fiber bundle. Is generally called a orthogonal flow method.
  • the supply nozzle is installed at the end of the parallel flow furnace, and the gas discharge nozzle in the furnace (hereinafter simply referred to as the discharge nozzle) is installed at the opposite end.
  • the discharge nozzle there are the ETE) hot air method and the center to end (Center To End, hereinafter, CTE) hot air method in which the supply nozzle is installed in the center of the parallel flow furnace and the discharge nozzles are installed at both ends thereof.
  • the ETE hot air method has a lower equipment cost than the CTE hot air method.
  • the flameproof furnace length the distance per horizontal path
  • Patent Document 1 the discharge surface of the discharge nozzle is provided at a distance from the heat treatment chamber, and hot air in the heat treatment chamber is sucked to form a flow in the gap between the discharge nozzles.
  • Patent Document 2 in the CTE hot air method, by supplying hot air to the space sandwiched between the supply nozzles arranged in the center of the furnace body, the temperature of the space between the supply nozzles and the temperature of the space inside the furnace body are equalized.
  • the heat treatment method to be performed is described.
  • Patent Document 3 although it is a means for improving the sealing property of the flame-resistant furnace, in order to heat the acrylic fiber bundle in the flow path gap where the acrylic fiber bundle outside the furnace body of the flame-resistant furnace enters the furnace body. Describes a method of providing a heating means having a supply surface for blowing hot air.
  • Patent Document 2 by supplying hot air between the supply nozzles, airflow turbulence occurs when the hot air crosses the acrylic fiber bundle, so that the thread sway of the acrylic fiber bundle becomes large even at a low wind speed, and as a result. , Contact between adjacent acrylic fiber bundles, mixed fibers of acrylic fiber bundles, thread breakage, etc. may occur. Further, Patent Document 2 only equalizes the temperature of the airflow between the supply nozzles and in the space inside the furnace, and does not disclose controlling the temperature of the acrylic fiber bundle in the furnace. There are hot air temperature and velocity as parameters required for temperature control of the acrylic fiber bundle in the furnace, but there is a description about the former temperature, but there is no detailed description about the hot air velocity, and it is acrylic. The temperature of the fiber bundle may not be controlled. Further, it is limited to the parallel flow type CTE hot air method, and the specific contents of the ETE hot air method, which reduces the equipment cost, are not described.
  • Patent Document 3 since the hot air supply surface is provided outside the furnace body of the flame-resistant furnace, it is possible to improve the heating and heat-removing properties of the acrylic fiber bundle traveling in the furnace body of the flame-resistant furnace. It may be inadequate. Further, since the purpose of Patent Document 3 is to improve the sealing performance of the flameproof furnace, the hot air is supplied in the outside of the furnace body, and the hot air supplied from the supply surface is blown out of the furnace body as it is. It may not be possible to form an air flow between the nozzles through which the system fiber bundle passes.
  • the method for producing a flame-resistant fiber bundle of the present invention for solving the above problems has the following constitution. That is, it is a method for producing a flame-resistant fiber bundle in which the aligned acrylic fiber bundles are heat-treated in an oxidizing atmosphere while being folded back by guide rollers installed at both ends outside the furnace body of a hot-air heating type flame-resistant furnace.
  • the upper and / or lower fiber bundle passage passages of the supply nozzle for supplying hot air into the heat treatment chamber which is arranged at one end of the acrylic fiber bundle in the traveling direction
  • hot air is supplied from the supply surface provided below, and the wind velocity Vf in the fiber bundle passing flow path in a direction substantially parallel to the traveling direction of the acrylic fiber bundle and the traveling of the acrylic fiber bundle in the heat treatment chamber.
  • the wind velocity V in a direction substantially parallel to the direction is a method for producing a flame-resistant fiber bundle that satisfies the conditions (1) and (2).
  • the conditions are a wind speed Vf in a direction substantially parallel to the traveling direction of the acrylic fiber bundle in the fiber bundle passing flow path and a wind speed V in a direction substantially parallel to the traveling direction of the acrylic fiber bundle in the heat treatment chamber. Satisfy (3) and (4). (3) 1.5 m / s ⁇ Vf ⁇ 10 m / s (4) 1.5 m / s ⁇ V ⁇ 6 m / s On the supply surface, the wind speed Vn in the direction orthogonal to the traveling direction of the acrylic fiber bundle satisfies the condition (5).
  • the temperature of the hot air supplied from the supply surface is 210 ° C or higher and 295 ° C or lower.
  • the single fiber fineness of the acrylic fiber bundle before heat treatment is 0.05 to 0.22 tex.
  • the method for producing a carbon fiber bundle of the present invention has the following constitution. That is, The flame-resistant fiber bundle obtained by the above-mentioned method for producing a flame-resistant fiber bundle is pre-carbonized at a maximum temperature of 300 to 1,000 ° C. in an inert atmosphere to obtain a pre-carbonized fiber bundle, and then the pre-carbonized fiber bundle is obtained.
  • the "direction substantially parallel to the traveling direction of the acrylic fiber bundle" of the present invention is ⁇ with reference to the horizontal line between the vertices of a pair of facing folding rollers arranged at both ends on the outside of the furnace body.
  • the direction is within the range of 0.7 °.
  • the "fiber bundle passing flow path" of the present invention is a space around the acrylic fiber bundle formed along the traveling direction of the acrylic fiber bundle, and is a supply nozzle and a supply nozzle adjacent to each other in the vertical direction. It refers to the space between the supply nozzle and the upper surface of the furnace body, or the space between the supply nozzle and the bottom surface of the furnace body.
  • the flameproofing furnace of the present invention has the following configuration. That is, A flame-resistant furnace for heat-treating acrylic fiber bundles.
  • At least one blower that circulates hot air through the supply nozzle and the discharge nozzle, and (V) At least one heating device arranged on the flow path of circulating hot air, and (Vi) In a flame-resistant furnace having a guide roller arranged at both ends outside the furnace body and allowing a plurality of fiber bundles to be folded back and traveled in a heat treatment chamber through adjacent supply nozzles and adjacent discharge nozzles.
  • the supply nozzle has an upper surface and / or a lower surface, a supply surface for supplying a first hot air to a fiber bundle passing flow path above and / or below the supply nozzle, and a heat treatment chamber side of the supply nozzle.
  • a flame-resistant furnace comprising: adjusting means for adjusting the wind speed of the first hot air and the wind speed of the second hot air supplied from the supply nozzle.
  • high-quality flame-resistant fiber bundles and carbon fibers are improved by improving the heating performance and heat removal performance of acrylic fiber bundles passing through the furnace body of the flame-resistant furnace. Bundles can be produced efficiently.
  • FIG. 1 is a schematic cross-sectional view of the flame-resistant furnace used in the embodiment of the present invention
  • FIG. 2 is a partially enlarged cross-sectional view from the periphery of the supply nozzle to the periphery of the discharge nozzle.
  • FIG. 4 is a partially enlarged cross-sectional view from the vicinity of the supply nozzle to the periphery of the discharge nozzle of the flameproof furnace used in another embodiment of the present invention.
  • FIG. 3 is a schematic view showing an air flow form from the vicinity of the supply nozzle to the vicinity of the discharge nozzle used in the embodiment of the present invention.
  • the present invention is a method for producing a flame-resistant fiber bundle in which the acrylic fiber bundle 2 is heat-treated in an oxidizing atmosphere, and is carried out in a flame-resistant furnace in which an oxidizing gas flows inside.
  • the flame-resistant furnace 1 is folded back by a guide roller 4 provided outside the furnace body 18 to form an acrylic fiber bundle 2 that repeatedly travels in a multi-stage traveling range in the furnace body 18. It has a heat treatment chamber 3 for which hot air is blown to make it flame resistant.
  • the acrylic fiber bundle 2 is fed into the furnace body 18 through a slit 17 provided on the side wall of the furnace body 18, travels substantially linearly in the heat treatment chamber 3, and then travels substantially linearly in the heat treatment chamber 3 and then through the slit 17 on the facing side wall to reach the furnace body 18. It is sent out once. After that, it is folded back by the guide rollers 4 provided on both sides outside the furnace body 18, and is sent into the furnace body 18 again. In this way, the acrylic fiber bundle 2 is repeatedly sent in and out of the heat treatment chamber 3 a plurality of times by being folded back in the traveling direction by the plurality of guide rollers 4, and the heat treatment chamber 3 is divided into multiple stages. As a whole, it moves from the top to the bottom of FIG.
  • the moving direction may be from bottom to top, and the number of times the acrylic fiber bundle 2 is folded back in the heat treatment chamber 3 is not particularly limited, and is appropriately designed depending on the scale of the flameproofing furnace 1 and the like.
  • the guide roller 4 is provided outside the furnace body 18 in FIG. 1, the guide roller 4 may be provided inside the furnace body 18.
  • the acrylic fiber bundle 2 is heated by hot air flowing from the supply nozzle 5 toward the discharge surface 7 of the discharge nozzle 14 while traveling in the heat treatment chamber 3 while being folded back, so that the flame resistance treatment proceeds. Then, it becomes a flame-resistant fiber bundle.
  • the flameproofing furnace 1 is a parallel flow type ET hot air type flameproofing furnace.
  • the acrylic fiber bundle 2 has a wide sheet-like shape in which a plurality of acrylic fiber bundles 2 are aligned in parallel in a direction perpendicular to the paper surface.
  • the oxidizing gas flowing in the heat treatment chamber 3 may be air or the like, and is heated to a desired temperature by the heater 8 before entering the heat treatment chamber 3, the air volume is controlled by the blower 9, and then the supply nozzle 5 is supplied. It is blown into the heat treatment chamber 3 from the surface 6 and / or the auxiliary supply surface 12.
  • the supply surface 6 of the supply nozzle 5 is a supply surface provided so as to face the supply nozzle 5 adjacent to the upper and lower surfaces of the supply nozzle 5, and here, the auxiliary supply surface 12 of the supply nozzle 5 is It is a supply surface provided on the side surface of the supply nozzle 5 on the side facing the discharge nozzle 14.
  • the oxidizing gas discharged from the discharge surface 7 of the discharge nozzle 14 to the outside of the heat treatment chamber 3 is released to the atmosphere after treating unnecessary substances in an exhaust gas treatment furnace (not shown), but not all oxidizing gases are necessarily released. It is not necessary to treat it, and a part of the oxidizing gas may be blown into the heat treatment chamber 3 again from the supply nozzle 5 through the circulation path without being treated.
  • the supply surface 6 of the supply nozzle 5 is simply referred to as the supply surface 6
  • the auxiliary supply surface 12 of the supply nozzle 5 is simply referred to as the auxiliary supply surface 12
  • the discharge surface 7 of the discharge nozzle 14 is simply referred to as the discharge surface 7. do.
  • the heater 8 used in the flameproof furnace 1 is not particularly limited as long as it has a desired heating function, and for example, a known heater such as an electric heater may be used.
  • the blower 9 is not particularly limited as long as it has a desired blowing function, and a known blower such as an axial fan may be used.
  • the guide roller 4 can control the traveling speed and tension of the acrylic fiber bundle 2 by changing the respective rotation speeds, which is required for the physical characteristics of the flame-resistant fiber bundle and per unit time. It can be determined according to the processing amount.
  • the traveling speed of the acrylic fiber bundle 2 is increased, or the number of acrylic fiber bundles per unit distance in the width direction of the flameproof furnace 1, that is, the thread density is increased. It was known that it should be done.
  • the supply of the acrylic fiber bundle 2 brought into the furnace body 18 is supplied with respect to the amount of hot air supplied into the furnace body 18 per unit time. Since the amount increases, the amount of heat of the hot air that can be used to heat or remove the heat of the acrylic fiber bundle 2 decreases relatively. As a result, the temperature controllability of the acrylic fiber bundle 2 is lowered, and the quality is likely to be deteriorated.
  • the method for producing a flame-resistant fiber bundle of the present invention is to efficiently produce a high-quality flame-resistant fiber bundle by repeating diligent studies on the above problems. That is, the present inventors have improved the heat transfer efficiency between the acrylic fiber bundle 2 and the hot air while suppressing the increase in equipment cost and running cost and suppressing the entanglement between the acrylic fiber bundles 2. I found it.
  • the principle of improving the heat transfer efficiency between the acrylic fiber bundle 2 traveling in the heat treatment chamber 3 and the hot air which is the most important point of the present invention, will be described in detail.
  • the airflow form in the furnace body 18 configured by the prior art will be described with reference to FIG.
  • the length of the arrow of the air flow in FIG. 5 indicates the magnitude of the wind speed.
  • the hot air supplied from the first supply surface 19 of the supply nozzle 5 installed at one end in the furnace body 18 passes through the fiber bundle passage flow path 10 between the supply nozzles 5 and flows through the fiber bundle.
  • it merges with the hot air supplied from the second supply surface 20 and flows through the heat treatment chamber 3 while gradually relaxing the speed difference between the two.
  • the velocity of the airflow in the fiber bundle direction in the fiber bundle passing flow path 10 derived from the hot air supplied from the first supply surface 19 is the velocity of the airflow derived from the hot air supplied from the second supply surface 20. It was slow compared to the speed.
  • the wind speed in the vicinity of the acrylic fiber bundle 2 immediately after passing the confluence surface 13 is maintained in the heat treatment chamber 3 even in the heat treatment chamber 3, but the wind speed of the airflow flowing from the fiber bundle passing flow path 10 is gradually maintained. It is accelerated by merging the airflow derived from the hot air supplied from the supply surface 20. Then, the merged airflow reaches the discharge nozzle 14 installed at the other end of the furnace body 18, most of the airflow is discharged from the discharge surface 7, and a part of the airflow passes between the discharge nozzles 14 to reach the discharge nozzle 14. Flow out.
  • the acrylic fiber bundle 2 when the thread density of the acrylic fiber bundle 2 is increased (or when the condition that the traveling speed of the acrylic fiber bundle 2 is high is applied) is applied.
  • the acrylic fiber bundle 2 that has come out of the furnace body 18 will enter the fiber bundle passage passage 10 again after being cooled by the outside air and will be heated again.
  • the fiber bundle 2 has a high thread density the amount of heat required for heat transfer becomes large, the acrylic fiber bundle 2 is difficult to be heated / removed, and the temperature is sufficiently raised in the heat treatment chamber 3. I can't.
  • the acrylic fiber bundle 2 whose temperature rise is insufficient enters the heat treatment chamber 3 as it is, so that the temperature of the heat treatment chamber 3 drops, and the acrylic fiber bundle 2 becomes more and more. It becomes difficult to raise the temperature.
  • the acrylic fiber bundle 2 on the supply nozzle 5 side of the heat treatment chamber 3 passes through the fiber bundle passage flow path 10. It is greatly affected by the flow velocity Vf of the passing hot air.
  • hot air is supplied from the supply surface 6 of the supply nozzle 5 provided above and / or below the acrylic fiber bundle 2 to supply the fiber bundle.
  • the wind velocity Vf in the passage flow path 10 in a direction substantially parallel to the traveling direction of the acrylic fiber bundle 2 and the wind velocity V in the heat treatment chamber 3 in a direction substantially parallel to the traveling direction of the acrylic fiber bundle 2 The conditions (1) and (2) are set to be satisfied. (1) 1.5 m / s ⁇ Vf ⁇ 15 m / s (2) 1.5 m / s ⁇ V ⁇ 10 m / s.
  • the wind velocity Vf in the fiber bundle passing flow path 10 in a direction substantially parallel to the traveling direction of the acrylic fiber bundle 2 is the furnace body on the line where the merging surface 13 and the acrylic fiber bundle 2 intersect. It is an average value of the measured values at each of the three points in the width direction including the center in the width direction of 3, and the wind speed V in the direction substantially parallel to the traveling direction of the acrylic fiber bundle 2 in the heat treatment chamber 3 is defined as Measurement at each of three points in the width direction including the center in the width direction of the furnace body 3 on the line where the central cross section of the acrylic fiber bundle 2 in the traveling direction and the acrylic fiber bundle 2 in the heat treatment chamber 3 intersect. The average value of the values.
  • the measured values at each of the three points in the width direction including the center in the width direction of the furnace body 3 are the average value of 30 points measured every second using a thermal anemometer.
  • the line on the line where the confluence surface 13 and the acrylic fiber bundle 2 intersect is a virtual surface including the confluence surface 13 and a plurality of acrylic fiber bundles 2 traveling in parallel in the machine width direction.
  • the line on which the acrylic fiber bundle 2 intersects with the central cross section of the acrylic fiber bundle 2 in the traveling direction in the heat treatment chamber 3 is the line of the acrylic fiber bundle 2 in the heat treatment chamber 3.
  • the central cross section in the traveling direction and the virtual surface including a plurality of acrylic fiber bundles 2 traveling in parallel in the machine width direction represent on an intersecting line.
  • the measurement points are included in a virtual plane including a plurality of acrylic fiber bundles 2 traveling in parallel in the machine width direction, but Vf and V are the fiber bundle passage flow path 10 and the heat treatment chamber, respectively. Since it is an index showing the wind speed in the vicinity of the acrylic fiber bundle 2 in No. 3, in FIG. 3 (the same applies in FIG. 5), the arrows indicating Vf and V are shown in the vicinity rather than overlapping the acrylic fiber bundle 2. There is.
  • the acrylic fiber bundle 2 has the acrylic fiber bundle 2 and the hot air from the supply surface 6 in contact with the fiber bundle passing flow path 10 due to the high-speed hot air colliding with the acrylic fiber bundle 2. Heat transfer with is greatly promoted. Then, this hot air changes its direction in parallel with the traveling direction of the acrylic fiber bundle 2 and flows in the vicinity of the acrylic fiber bundle 2 in the fiber bundle passing flow path 10, so that heat transfer is further promoted and the acrylic fiber. The temperature of the bundle 2 rises rapidly. Further, since the hot air flows in the vicinity of the acrylic fiber bundle 2 while maintaining the speed for the time being even in the heat treatment chamber 3, heat transfer between the acrylic fiber bundle 2 and the hot air is promoted, and the acrylic fiber bundle is promoted. The temperature of 2 can be controlled with high accuracy.
  • the temperature of the acrylic fiber bundle 2 can be controlled, so that the air volume itself of the hot air circulating in the flameproof furnace 1 can be reduced. Further, the hot air that collides with the acrylic fiber bundle 2 is locally supplied only in the vicinity of the supply nozzle 5 near the guide roller 4, that is, at a position where the suspension amount of the acrylic fiber bundle 2 is relatively small. Heat transfer can be improved without significantly increasing the shaking of the acrylic fiber bundle 2.
  • the hot air that has passed through the fiber bundle passing flow path 10 reaches the heat treatment chamber 3, it flows while spreading in the vertical direction. At this time, by supplying some hot air from the auxiliary supply surface 12, it is possible to suppress the turbulence of the air flow due to the spread of the hot air, and by extension, the fiber mixing due to the shaking of the acrylic fiber bundle 2.
  • an adjustment valve such as a damper is installed in the circulation flow path leading to each supply surface, or a different opening ratio is provided on each supply surface.
  • Adjustment means such as arrangement of a perforated plate, a rectifying member such as a honeycomb, and the like may be appropriately provided.
  • the effect of the present invention can be maximized by satisfying the conditions (3) and (4).
  • the acrylic fiber bundle 2 may not be sufficiently heated / deheated. Further, when the wind speed Vf is larger than 15 m / s, the drag force received by the acrylic fiber bundle 2 from the hot air may increase and the yarn sway may increase.
  • the wind speed V is smaller than 1.5 m / s, it may not be possible to sufficiently heat / remove the acrylic fiber bundle 2 in the heat treatment chamber 3. Further, when the wind speed V is larger than 10 m / s, the drag force received by the acrylic fiber bundle 2 from the hot air may increase and the yarn sway may increase. Further, if the wind speed V is larger than 10 m / s, the circulation amount of hot air in the flame-resistant furnace becomes excessive, and the utility cost may increase.
  • the condition (5) is satisfied with respect to the wind speed Vn in the direction orthogonal to the traveling direction of the acrylic fiber bundle 2 on the supply surface 6.
  • the heat removal and heating of the acrylic fiber bundle 2 can be significantly improved while suppressing the yarn sway due to the drag force received by the acrylic fiber bundle 2 from the hot air at a high level.
  • the wind speed Vn is less than 0.1 m / s, the heat transfer of the acrylic fiber bundle 2 may not be sufficiently obtained and the temperature may not be raised.
  • the wind speed Vn exceeds 5 m / s, the yarn sway may increase.
  • the effect of the present invention can be maximized by setting the wind speed Vn to 3.5 m / s or less.
  • the wind speed Vn in the direction orthogonal to the acrylic fiber bundle 2 on the supply surface 6 is the width direction including the center of the width direction of the furnace body 3 with respect to the direction orthogonal to the fiber bundle traveling direction on the supply surface 6. It is the average value of the measured values at each of the three points.
  • the measured values at each of the three points in the width direction including the center in the width direction of the furnace body 3 are the average values of the measured values of 30 points every second.
  • the temperatures of the hot air supplied from the supply surface 6 and the auxiliary supply surface 12 may be different, but they are preferably the same from the viewpoint of temperature controllability and equipment cost of the acrylic fiber bundle 2.
  • the installation position of the supply surface 6 of the supply nozzle 5 is not limited to both sides of the supply nozzle 5, and may be installed only on the lower surface (not shown) or only on the upper surface (not shown).
  • the acrylic fiber bundle 2 can be suppressed in the direction of gravity, so that the effect of reducing thread sway can be expected.
  • the supply surfaces 6 on both sides, when the wind speed Vf passing through the fiber bundle passing flow path 10 is constant, the supplied wind speed can be halved, so that the circumference of the acrylic fiber bundle 2 can be halved. Since the turbulence of the air flow can be reduced, the thread sway can be further reduced, which is preferable.
  • the installation position of the supply surface 6 of the supply nozzle 5 is not limited to the outer side of the furnace body (FIG. 2), may be closer to the inner side of the furnace body, may be divided into a plurality of places, and may be arranged. , It may be installed on the entire surface (Fig. 4).
  • hot air may be supplied only from the supply surface 6 without providing the auxiliary supply surface 12 of the supply nozzle 5.
  • a rectifying plate 16 is provided in the heat treatment chamber in order to avoid airflow turbulence caused by the sudden widening of the flow path from the fiber bundle passing flow path 10 in the heat treatment chamber 3. 3 may be divided only around the traveling position of the acrylic fiber bundle 2 to be minimized (FIG. 4).
  • the angle formed by the mainstream direction of the hot air supplied from the supply surface 6 and the traveling direction of the acrylic fiber bundle various effects can be exhibited. For example, by setting the value to something other than orthogonal, it is possible to suppress turbulence of hot air due to collision between the acrylic fiber bundle and the supply nozzle 5. Further, by inclining the mainstream direction of the hot air toward the heat treatment chamber 3, a part of the hot air tends to go into the heat treatment chamber 3, and leakage to the outside of the flameproof furnace 1 can be suppressed. Further, by making the mainstream direction of the hot air orthogonal to the traveling direction of the acrylic fiber bundle, the heat transfer efficiency of the acrylic fiber bundle 2 can be improved. In this way, the mainstream direction of hot air may be determined according to the performance required for the acrylic fiber bundle 2 and the flame-resistant furnace.
  • the amount of hot air sucked from the discharge surface 7 is larger than the total amount of hot air supplied from the supply surface 6 and the auxiliary supply surface 12 of the supply nozzle 5.
  • the hot air supplied from the supply surface 6 can easily flow into the heat treatment chamber 3, suppress the leakage of hot air from the heat treatment chamber 3, and improve the sealing property.
  • the processing amount per 1 m of the machine width of the flameproof furnace is 0.14 to 11 kg / min. The larger the processing amount, the more remarkable the effect of improving heat transfer.
  • the single fiber fineness of the acrylic fiber bundle 2 is preferably 0.05 to 0.22 tex, more preferably 0.05 to 0.17 tex. ..
  • the single fibers are less likely to be entangled when the adjacent acrylic fiber bundles 2 come into contact with each other, effectively preventing the mixing of the acrylic fiber bundles, and at the same time, simply in the furnace body of the flameproof furnace. Since heat can be sufficiently distributed to the inner layer of the fiber, the acrylic fiber bundle 2 is less likely to fluff, and large mixed fibers can be effectively prevented, the quality and operability of the flame-resistant fiber bundle become more superior. ..
  • the larger the fineness of the single fiber the more the effect of the present invention having high heat transfer efficiency is exhibited, and the heat can be sufficiently distributed to the inner layer of the single fiber.
  • the flame-resistant fiber bundle produced by the above method is precarbonized at a maximum temperature of 300 to 1,000 ° C. in an inert atmosphere to produce a precarbonized fiber bundle, and a maximum temperature of 1,000 to 1,000 in an inert atmosphere. It is preferable that a carbon fiber bundle is produced by carbonization treatment at 2,000 ° C.
  • the maximum temperature of the inert atmosphere in the precarbonization treatment is more preferably 550 to 800 ° C.
  • a known inert atmosphere such as nitrogen, argon, or helium can be adopted, but nitrogen is preferable from the viewpoint of economy.
  • the pre-carbonized fiber obtained by the pre-carbonization treatment is then sent to a carbonization furnace for carbonization treatment.
  • a carbonization furnace for carbonization treatment.
  • the inert atmosphere that fills the carbonization furnace a known inert atmosphere such as nitrogen, argon, or helium can be adopted, but nitrogen is preferable from the viewpoint of economy.
  • the carbon fiber bundle thus obtained may be provided with a sizing agent in order to improve handleability and affinity with the matrix resin.
  • the type of the sizing agent is not particularly limited as long as the desired properties can be obtained, and examples thereof include a sizing agent containing an epoxy resin, a polyether resin, an epoxy-modified polyurethane resin, and a polyester resin as main components.
  • a known method can be used for applying the sizing agent.
  • the carbon fiber bundle may be subjected to an electrolytic oxidation treatment or an oxidation treatment for the purpose of improving the affinity and adhesiveness with the fiber-reinforced composite material matrix resin, if necessary.
  • the acrylic fiber bundle used as the fiber bundle to be heat-treated in the method for producing a flame-resistant fiber bundle of the present invention is preferably composed of acrylic fiber containing 100 mol% of acrylonitrile or acrylic copolymer fiber containing 90 mol% or more of acrylonitrile.
  • acrylic acid, methacrylic acid, itaconic acid, and alkali metal salts, ammonium metal salts, acrylamide, methyl acrylate and the like are preferable, but the chemical properties of the acrylic fiber bundle, The physical properties, dimensions, etc. are not particularly limited.
  • the flame-resistant fiber bundle after leaving the flame-resistant step was visually observed for 10 m, and the determination was made based on the number of fluffs of 10 mm or more on the flame-resistant fiber bundle that can be confirmed per 1 m.
  • Excellent 1 or less on average (level at which fluff quality does not affect passability in the process or higher workability as a product)
  • Good More than 1 on average and less than 10 on average (level at which fluff quality has almost no effect on passability in the process or higher workability as a product)
  • Impossible 20 or more on average (level at which fluff quality adversely affects passability in the process and higher workability as a product).
  • Example 1 The heat treatment furnace of the present invention shown in FIG. 1 is used as a flameproof furnace for carbon fiber production.
  • a plurality of supply nozzles 5 serving as a hot air supply source are installed at one end of the furnace body 18 above and below the acrylic fiber bundle 2 running in the furnace body 18.
  • supply surfaces 6 are provided on both the upper and lower surfaces of the supply nozzle 5, and auxiliary supply surfaces 12 are provided in the traveling direction of the acrylic fiber bundle 2.
  • a perforated plate having an opening ratio of 30% is provided on the supply surface 6 and the auxiliary supply surface 12 so that the wind speed in the width direction becomes uniform, and hot air supplied from each supply surface is provided in the circulation flow path leading to each supply surface.
  • a damper (not shown) was provided to adjust the wind speed.
  • acrylic fiber bundle 2 running in the furnace body
  • 100 acrylic fiber bundles 2 composed of 20,000 single fibers having a single fiber fineness of 0.11 dtex are arranged and heat-treated in the flame-resistant furnace 1 to make them flame-resistant.
  • a fiber bundle was obtained.
  • the horizontal distance (roll span) L'between the guide rollers 4 at both ends outside the furnace body 18 of the flameproof furnace 1 was set to 15 m
  • the guide roller 4 was set to a groove roller
  • the pitch interval (groove pitch) Wp was set to 10 mm. ..
  • the temperature of the oxidizing gas in the heat treatment chamber 3 of the flame-resistant furnace 1 was set to 240 to 280 ° C.
  • the traveling speed of the acrylic fiber bundle 2 is adjusted in the range of 1 to 15 m / min according to the flameproof furnace length L so that the flameproofing treatment time can be sufficiently taken, and the process tension is 0.5 to 2.5 g / min. It was adjusted in the range of dtex.
  • the obtained flame-resistant fiber bundle was then fired in a pre-carbonization furnace at a maximum temperature of 700 ° C., then fired in a carbonization furnace at a maximum temperature of 1,400 ° C., and after electrolytic surface treatment, a sizing agent was applied. A carbon fiber bundle was obtained.
  • the wind speed Vn on the supply surface 6 is 8.5 m / s
  • the wind speed Vf on the fiber bundle passing flow path 10 is 11.2 m / s
  • the average wind speed V in the heat treatment chamber 3 is 7.
  • the yarn temperature uniformity was 20%.
  • the flame-resistant treatment of the acrylic fiber bundle 2 there were few mixed fibers and fiber bundle breakage due to contact between the acrylic fiber bundles, and the flame-resistant fiber bundle was obtained with good operability. Further, as a result of visually confirming the obtained flame-resistant fiber bundle, the quality was good with less fluff and the like.
  • Example 2 The wind speed Vn on the supply surface is 6.0 m / s, the wind speed Vf in the fiber bundle passing flow path 10 is 3.3 m / s, the average wind speed V in the heat treatment chamber 3 is 3.0 m / s, and other cases are carried out. The same as in Example 1. At this time, the uniform yarn temperature was 17%. Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle 2, no mixed fibers or broken fiber bundles due to contact between the acrylic fiber bundles occur, and the flame-resistant fiber bundle is produced with extremely good operability. Obtained. Further, as a result of visually confirming the obtained flame-resistant fiber bundle, the quality was good with less fluff and the like.
  • Example 3 The wind speed Vn on the supply surface was 3.3 m / s, and other than that, it was the same as in Example 2. At this time, the uniform yarn temperature was 16%. Under the above conditions, during the flame-resistant treatment of the acrylic fiber bundle 2, no mixed fibers or broken fiber bundles due to contact between the acrylic fiber bundles occur, and the flame-resistant fiber bundle is produced with extremely good operability. Obtained. Further, as a result of visually confirming the obtained flame-resistant fiber bundle, the quality was extremely good with no fluff or the like.
  • Comparative Example 1 As Comparative Example 1, the wind speed Vf in the fiber passage flow path 10 was 1.1 m / s, the average wind speed V in the heat treatment chamber 3 was 6.0 m / s, and other than that, the same as in Example 2. At this time, the uniform yarn temperature was 8%, and under the above conditions, during the flameproofing treatment of the acrylic fiber bundle 2, mixed fibers due to contact between the acrylic fiber bundles and single fiber breakage occurred frequently. Further, as a result of visually confirming the obtained flame-resistant fiber bundle, the quality was inferior due to a large amount of fluff and the like.
  • the present invention relates to a method for producing a flame-resistant fiber bundle and a method for producing a carbon fiber bundle, and can be applied to aircraft applications, industrial applications such as pressure vessels and wind turbines, sports applications such as golf shafts, etc. It is not limited to these.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Fibers (AREA)

Abstract

 高品質な耐炎化繊維束ならびに炭素繊維束を効率よく生産することを課題とする。  引き揃えたアクリル系繊維束を、熱風加熱式の耐炎化炉の炉体外の両端に設置されたガイドローラーで折り返しながら、酸化性雰囲気中で熱処理する耐炎化繊維束の製造方法であって、アクリル系繊維束の走行方向の一端に配置された、熱処理室内に熱風を供給するための供給ノズルの、上方および/または下方の繊維束通過流路において、前記アクリル系繊維束の上方および/または下方に設けた供給面から熱風を供給し、前記繊維束通過流路における、前記アクリル系繊維束の走行方向に対して略平行方向の風速Vfと、熱処理室における、アクリル系繊維束の走行方向に対して略平行方向の風速Vとが、条件(1)および(2)を満足する耐炎化繊維束の製造方法。  (1) 1.5m/s ≦ Vf ≦ 15m/s  (2) 1.5m/s ≦ V ≦ 10m/s

Description

耐炎化繊維束、および炭素繊維束の製造方法ならびに耐炎化炉
 本発明は、耐炎化繊維束、および炭素繊維束の製造方法に関するものである。更に詳しくは、高品質な耐炎化繊維束を効率良く生産することのできる耐炎化繊維束、および炭素繊維束の製造方法ならびに耐炎化炉に関する。
 炭素繊維は比強度、比弾性率、耐熱性、および耐薬品性に優れていることから、各種素材の強化材として有用であり、航空宇宙用途、レジャー用途、一般産業用途等の幅広い分野で使用されている。
 一般に、アクリル系繊維束から炭素繊維束を製造する方法としては、アクリル系重合体の単繊維を数千から数万本引き揃えたアクリル系繊維束を耐炎化炉に送入し、炉体内に設置された加熱された気体の供給ノズル(以降単に供給ノズルと記す)より供給される200~300℃に熱せられた空気等の酸化性気体の熱風に晒すことにより加熱処理(耐炎化処理)した後、得られた耐炎化繊維束を炭素化炉に送入し、300~1,000℃の不活性ガス雰囲気中で加熱処理(前炭素化処理)した後に、さらに1,000℃以上の不活性ガス雰囲気で満たされた炭素化炉で加熱処理(炭素化処理)する方法が知られている。また、中間材料である耐炎化繊維束は、その燃え難い性質を活かして、難燃性織布向けの素材としても広く用いられている。
 炭素繊維束製造工程中において処理時間が最も長く、消費されるエネルギー量が最も多くなるのは耐炎化工程である。このため、耐炎化工程での生産性向上が炭素繊維束の製造において最も重要となる。
 耐炎化工程では、長時間の熱処理を可能とするため、耐炎化を行うための装置(以下、耐炎化炉という)は、耐炎化炉の炉体の外部に配設した折り返しローラーで転回させることによって、アクリル系繊維を水平方向に多数回耐炎化炉の炉体の内部を往復させる構造を有することが一般的である。かかる耐炎化炉の炉体内において、このアクリル系繊維束の走行方向に対して略平行方向に熱風を供給する方式を平行流方式と呼び、アクリル系繊維束の走行方向に対して直交方向に熱風を供給する方式を直交流方式と一般的に呼ぶ。平行流方式には、供給ノズルを平行流炉の端部に設置し、その反対側の端部に炉体内気体の排出ノズル(以降単に排出ノズルと記す)を設置するエンドトゥエンド(End To End、以下、ETE)熱風方式と、供給ノズルを平行流炉の中心部に設置し、その両端部に排出ノズルを設置するセンタートゥエンド(Center To End、以下、CTE)熱風方式がある。なお、一般的には、ETE熱風方式の方が、CTE熱風方式よりも設備費が安価となる。
 耐炎化工程において生産性を向上する方法のうち、同時に多数のアクリル系繊維束を搬送することで耐炎化炉の炉体内のアクリル系繊維束の密度を上げることが有効である。また、アクリル系繊維束の走行速度を増加させることが有効である。しかしながら、炉体内に供給されるアクリル系繊維束の単位体積当たりの質量が増えることで、アクリル系繊維束の加熱/除熱に必要な単位体積当たりの熱量も増加するため、温度制御が難しくなり、耐炎化繊維の品質の低下等を招く。
 また、アクリル系繊維束の走行速度を上げる場合については、同じ熱処理量を得るために、耐炎化炉のサイズを大きくする必要がある。特に高さ方向のサイズを大きくする場合には、建屋階層を複数に分割したり、床面の単位面積あたりの耐荷重を上げる必要が生じるため、設備費増大につながる。そこで、設備費増大を抑えて耐炎化炉のサイズを大きくするには、水平方向1パスあたりの距離(以下、耐炎化炉長という)を大きくすることで高さ方向のサイズを小さくすることが有効である。但し、耐炎化炉長を長くすると、熱処理長がその分長くなることから、アクリル系繊維束の温度制御が難しくなる。これは特に、ETE熱風方式の場合より顕著となる。
 従って、ETE熱風方式の耐炎化工程において生産性を向上する場合、耐炎化炉の炉体内を走行するアクリル系繊維束の加熱性能や除熱性能の効率を向上する必要があるという課題があった。
 この問題を解決するために、特許文献1では、排出ノズルの排出面を熱処理室と離間して設けて、熱処理室内の熱風を吸引することで、排出ノズル間の間隙に流れを形成することにより、アクリル系繊維束を加熱や除熱がしやすくする方法が記載されている。
 また、特許文献2では、CTE熱風方式において、炉体内の中央に配置された供給ノズル間に挟まれた空間に熱風を供給することにより、供給ノズル間の空間と炉体内空間の温度を同等とする熱処理方法が記載されている。
 さらに、特許文献3では、耐炎化炉のシール性を向上する手段ではあるが、耐炎化炉の炉体外のアクリル系繊維束が炉体内に入る流路間隙において、アクリル系繊維束を加熱するために、熱風を吹き出す供給面を有する加熱手段を設ける方法が記載されている。
特許第5856081号公報 特許第5856082号公報 特許第4796467号公報
 しかしながら、本発明者らの知見によると、特許文献1での排出ノズル間の間隙にて形成される流れの制御だけでは、耐炎化炉の炉体内の気流形態を変えることはできず、アクリル系繊維束の加熱や除熱効果を十分に得ることができない場合がある。これは、耐炎化炉のアクリル系繊維束近傍での気流形態(熱風の速度、風向)がアクリル系繊維束への熱伝達に支配的であることから、上述の排気ノズルでの気流制御だけでは、排気ノズル間の効果発現に留まり、十分な効果が得られない場合があることによると考えられる。
 また、特許文献2では、供給ノズル間に熱風を供給することにより、熱風がアクリル系繊維束を横切る際に気流乱れが生じるため、低風速でもアクリル系繊維束の糸揺れが大きくなり、その結果、隣接するアクリル系繊維束間の接触、アクリル系繊維束の混繊や糸切れ等が発生する場合がある。また、特許文献2は供給ノズル間と炉体内空間の気流の温度の均一化に留まっており、炉体内のアクリル系繊維束の温度を制御することは開示されていない。それは、炉体内のアクリル系繊維束の温度制御に必要となるパラメータとして、熱風の温度と速度があるが、前者の温度に関する記載はあるが、熱風の速度に関しては詳細な記載が無く、アクリル系繊維束を温度制御ができない場合がある。また、平行流方式のCTE熱風方式に限定されており、設備費が安価となるETE熱風方式への具体的な内容は記載されていない。
 さらに、特許文献3では、熱風の供給面を耐炎化炉の炉体の外に設けていることから、耐炎化炉の炉体内を走行するアクリル系繊維束の加熱や除熱性を向上させるには不十分な場合がある。また、特許文献3の目的が耐炎化炉のシール性向上であることから、熱風の供給方向が炉体外となっており、供給面から供給される熱風はそのまま炉体外に吹き出されるため、アクリル系繊維束が通過するノズル間に気流を形成できない場合がある。
 上記課題を解決するための本発明の耐炎化繊維束の製造方法は、次の構成を有する。すなわち、引き揃えたアクリル系繊維束を、熱風加熱式の耐炎化炉の炉体外の両端に設置されたガイドローラーで折り返しながら、酸化性雰囲気中で熱処理する耐炎化繊維束の製造方法であって、アクリル系繊維束の走行方向の一端に配置された、熱処理室内に熱風を供給するための供給ノズルの、上方および/または下方の繊維束通過流路において、前記アクリル系繊維束の上方および/または下方に設けた供給面から熱風を供給し、前記繊維束通過流路における、前記アクリル系繊維束の走行方向に対して略平行方向の風速Vfと、熱処理室における、アクリル系繊維束の走行方向に対して略平行方向の風速Vとが、条件(1)および(2)を満足する耐炎化繊維束の製造方法、である。
(1) 1.5m/s ≦ Vf ≦ 15m/s
 (2) 1.5m/s ≦ V ≦ 10m/s   。
  また、上記本発明の耐炎化繊維束の製造方法においては、以下の構成を有することが望ましい。
 ・繊維束通過流路における、アクリル系繊維束の走行方向に対して略平行方向の風速Vfと、熱処理室における、アクリル系繊維束の走行方向に対して略平行方向の風速Vとが、条件(3)および(4)を満足する。
(3) 1.5m/s ≦ Vf ≦ 10m/s
(4) 1.5m/s ≦ V ≦ 6m/s
・供給面において、前記アクリル系繊維束の走行方向に対して直交する方向の風速Vnが、条件(5)を満足する。
 (5) 0.1m/s ≦ Vn ≦ 5m/s
 ・供給面から供給される熱風の温度が、210℃以上295℃以下である。
 ・熱処理前のアクリル系繊維束の単繊維繊度が、0.05~0.22texである。
 さらに、本発明の炭素繊維束の製造方法は、次の構成を有する。すなわち、
 上記の耐炎化繊維束の製造方法により得られた耐炎化繊維束を、不活性雰囲気中最高温度300~1,000℃で前炭素化処理して前炭素化繊維束を得た後、該前炭素化繊維束を不活性雰囲気中最高温度1,000~2,000℃で炭素化処理する炭素繊維束の製造方法、である。
 ここで、本発明の「アクリル系繊維束の走行方向に対して略平行方向」とは、炉体の外側の両端に配置された対向する一組の折り返しローラーの頂点間の水平線を基準として±0.7°の範囲内の方向である。
 ここで、本発明の「繊維束通過流路」とは、アクリル系繊維束の走行方向に沿って形成されるアクリル系繊維束周囲の空間であって、上下方向に隣接する供給ノズルと供給ノズルとの間の空間、または供給ノズルと炉体の上面との間の空間、もしくは供給ノズルと炉体の底面との間の空間のことを指す。
 さらに、本発明の耐炎化炉は次の構成を有する。すなわち、
アクリル系繊維束を熱処理するための耐炎化炉であって、
(i)引き揃えられた繊維束が出入できるスリットを有する炉体と、
(ii)前記熱処理室内の繊維束の走行方向の一端に、互いに上下方向に離間して配置され、炉体内に熱風を供給する複数の供給ノズルと、
(iii)前記炉体内の繊維束の走行方向のもう一端に、互いに上下方向に離間して配置され、前記供給ノズルから供給された熱風を熱処理室から排出する複数の排出ノズルと、
(iv)前記供給ノズルと前記排出ノズルを通じて熱風を循環させる少なくともの1つの送風装置と、
(v)循環熱風の流路上に配置された少なくとも1つの加熱装置と、
(vi)炉体外の両端に配置され、隣接する前記供給ノズル間、隣接する前記排出ノズル間を通って、繊維束を熱処理室内で複数回折り返して走行させるガイドローラーと、を有する耐炎化炉であって、
(vii)前記供給ノズルは上面および/または下面に、供給ノズルの、上方および/または下方にある繊維束通過流路に第1の熱風を供給するための供給面と前記供給ノズルの熱処理室内側の側面に第2の熱風を供給するための補助供給面を有しており、
(viii)前記供給ノズルから供給される第1の熱風の風速と第2の熱風の風速を調整するための調整手段を備えることを特徴とする耐炎化炉、である。
 本発明の耐炎化繊維束の製造方法によれば、耐炎化炉の炉体内を通過するアクリル系繊維束の加熱性能、除熱性能を向上することで、高品位の耐炎化繊維束および炭素繊維束を効率良く生産することができる。
本発明の実施形態に用いられる耐炎化炉の概略断面図である。 本発明の実施形態に用いられる供給ノズル周辺から排出ノズル周辺の部分拡大断面図である。 本発明の実施形態に用いられる供給ノズル周辺から排出ノズル周辺の気流形態を示した模式図である。 本発明の別の実施形態に用いられる供給ノズル周辺から排出ノズル周辺の部分拡大断面図である。 従来の供給ノズル周辺から排出ノズル周辺の気流形態を示した模式図である。
 以下、図1~図4を参照しながら、本発明の実施形態について詳細に説明する。図1は、本発明の実施形態に用いられる耐炎化炉の概略断面図であり、図2は、その中の供給ノズル周辺から排出ノズル周辺の部分拡大断面図である。また、図4は、本発明の別の実施形態に用いられる耐炎化炉の供給ノズル周辺から排出ノズル周辺の部分拡大断面図である。また、図3は、本発明の実施形態に用いられる供給ノズル周辺から排出ノズル周辺の気流形態を示した模式図である。なお、これら図面は、本発明の要点を正確に伝えるための概念図であり、図を簡略化しており、本発明に用いられる耐炎化炉は、特に制限されるものでなく、その寸法などは実施の形態に合わせて変更できる。
 本発明は、アクリル系繊維束2を酸化性雰囲気中で熱処理する耐炎化繊維束の製造方法であって、酸化性気体が内部を流れる耐炎化炉において実施される。図1に示すように、耐炎化炉1は、炉体18の外に設けられたガイドローラー4で折り返すことにより、炉体18の中の多段の走行域を繰り返し走行するアクリル系繊維束2に、熱風を吹きつけて耐炎化処理する熱処理室3を有する。アクリル系繊維束2は、炉体18の側壁に設けたスリット17から炉体18内に送入され、熱処理室3内を略直線的に走行した後、対面の側壁のスリット17から炉体18外に一旦送出される。その後、炉体18外の両側に設けられたガイドローラー4によって折り返され、再び炉体18内に送入される。このように、アクリル系繊維束2は複数のガイドローラー4によって走行方向を複数回折り返されることで、熱処理室3内への送入・送出を複数回繰り返して、熱処理室3内を多段で、全体として図1の上から下に向けて移動する。なお、移動方向は下から上でもよく、熱処理室3内でのアクリル系繊維束2の折り返し回数は特に限定されず、耐炎化炉1の規模等によって適宜設計される。なお図1においては、ガイドローラー4は炉体18の外に設けられているが、ガイドローラー4を、炉体18の内部に設けてもよい。
 アクリル系繊維束2は、折り返されながら熱処理室3内を走行している間に、供給ノズル5から排出ノズル14の排出面7に向かって流れる熱風によって加熱されることで、耐炎化処理が進行し、耐炎化繊維束となる。この耐炎化炉1は、前述の通り平行流方式のETE熱風方式の耐炎化炉となる。なお、アクリル系繊維束2は、紙面に対して垂直な方向に複数本並行するように引き揃えられた幅広のシート状の形態を有している。
 熱処理室3内を流れる酸化性気体は空気等でよく、熱処理室3内に入る前に加熱器8によって所望の温度に加熱され、送風機9によって風量が制御された上で、供給ノズル5の供給面6および/または補助供給面12から熱処理室3内に吹き込まれる。ここで、供給ノズル5の供給面6は、供給ノズル5の上下の面に隣接する供給ノズル5と対向して設けられた供給面であり、ここで、供給ノズル5の補助供給面12は、供給ノズル5の排出ノズル14に対向する側の側面に設けられた供給面である。そして、排出ノズル14の排出面7から熱処理室3外に排出された酸化性気体は排ガス処理炉(図示せず)で不要物質を処理した後に大気放出されるが、必ずしも全ての酸化性気体が処理される必要はなく、一部の酸化性気体が未処理のまま循環経路を通って再び供給ノズル5から熱処理室3内に吹き込まれてもよい。なお、以降、供給ノズル5の供給面6を単に供給面6と、供給ノズル5の補助供給面12を単に補助供給面12と、排出ノズル14の排出面7を単に排出面7と、それぞれ略記する。
 耐炎化炉1に用いられる加熱器8としては、所望の加熱機能を有していれば特に限定されず、例えば電気ヒーター等の既知の加熱器を用いればよい。送風器9に関しても、所望の送風機能を有していれば特に限定されず、例えば軸流ファン等の既知の送風器を用いればよい。
 また、ガイドローラー4は、それぞれの回転速度を変更することで、アクリル系繊維束2の走行速度、張力を制御することができ、これは必要とする耐炎化繊維束の物性や単位時間あたりの処理量に応じて決定することができる。
 さらに、ガイドローラー4の表層に所定の間隔、数の溝を彫り込む、あるいは所定の間隔、数のコームガイド(図示せず)をガイドローラー4直近に配置することで、複数本並行して走行するアクリル系繊維束2の間隔や束数を制御することができる。
 従来、生産性を向上するためには、アクリル系繊維束2の走行速度を大きくする、または、耐炎化炉1の幅方向の単位距離あたりのアクリル系繊維束数、すなわち糸条密度を大きくすればよいことが知られていた。しかしながら、生産性を向上するためのこのような条件を適用すると、単位時間あたりに、炉体18内への熱風の供給量に対して、炉体18内に持ち込まれるアクリル系繊維束2の供給量が増加するため、アクリル系繊維束2を加熱や除熱するのに用いることのできる、熱風の熱量は、相対的に減少する。その結果、アクリル系繊維束2の温度制御性が低下して、品質の悪化が起きやすくなる。そこで、別の加熱や除熱手段を設ける、または、熱風の供給量を増加させることで、アクリル系繊維束2の加熱や除熱に用いる熱量を増加させることが考えられるが、設備費の増加、用役費の増加などの大幅なコスト増につながるという問題があった。
 かかる問題に対し、アクリル系繊維束2と熱風との熱伝達効率を向上することが有効であり、その手段としては、熱風の風速を大きくする、または、アクリル系繊維束2の走行方向と熱風の風向とのなす角とを直交させる方法に近づけることが挙げられる。また、アクリル系繊維束2を構成する繊維をばらけさせて、表面積を増やすことで熱伝達効率を向上させることも手段として挙げられる。しかしながら、繊維をばらけさせると、隣接して走行するアクリル系繊維束2同士が絡まりやすくなる。また、上述の通り、熱風の風速を大きくすると、用役費が増加し、ランニングコストの増大を引き起こし、また、熱風の風向をアクリル系繊維束2に対して直交方向に変えると、アクリル系繊維束2の揺れが増大し、隣接して走行するアクリル系繊維束2同士が絡まりやすくなる。また、設備費が安価なETE熱方式の耐炎化炉を大型化するために耐炎化炉長を長くする場合には、1パスの後半において、アクリル系繊維束2の過剰な発熱が生じ、アクリル系繊維束2の温度を制御することが不可能となるなど、生産性を向上するには様々なデメリットとが伴っていた。
 本発明の耐炎化繊維束の製造方法は、上記課題に関して鋭意検討を重ね、高品質の耐炎化繊維束を効率良く生産するものである。すなわち、本発明者らは、設備費、ランニングコストの増大を抑え、かつ、アクリル系繊維束2同士の絡まりを抑制しつつ、アクリル系繊維束2と熱風との熱伝達効率を向上させることを見出した。以降に、本発明の最も重要なポイントである、熱処理室3を走行するアクリル系繊維束2と熱風との熱伝達効率を向上できる原理について、詳細に説明する。
 まず、従来技術と本発明の違いを明確にするために図5を用いて、従来技術にて構成される炉体18内での気流形態について説明する。なお、図5の気流の矢印の長さは、風速の大きさを表している。
 図5では、炉体18内の一端に設置された供給ノズル5の第1供給面19から供給された熱風は、供給ノズル5の間の繊維束通過流路10を通過し、繊維束通過流路10と熱処理室3とが接する合流面13に到達すると、第2供給面20から供給された熱風と合流し、徐々に両者の速度差を緩和しながら、熱処理室3内を流れる。従来の技術においては、第1供給面19から供給された熱風に由来する繊維束通過流路10における繊維束方向の気流の速度は、第2供給面20から供給された熱風に由来する気流の速度に比較して低速であった。このため、合流面13を過ぎた直後のアクリル系繊維束2の近傍の風速は、繊維束通過流路10から流れ込む気流の風速を熱処理室3の中においても維持されるが、徐々に第2供給面20から供給される熱風に由来する気流が合流することで加速される。そして、合流した気流は、炉体18内のもう一端に設置された排出ノズル14に到達し、その殆どが排出面7から排出され、一部が排出ノズル14の間を通って、炉体18外に流れ出る。
 ここで、生産性を向上させるために、アクリル系繊維束2の糸条密度を大きいものとした場合(またはアクリル系繊維束2の走行速度を速い条件を適用した場合)のアクリル系繊維束2の温度について説明すると、炉体18外に出たアクリル系繊維束2は、一旦、外気にて冷却された後に再度繊維束通過流路10に入り、再度加熱されることとなるが、アクリル系繊維束2の糸条密度を大きいものとした場合、熱伝達に必要な熱量が大きくなり、アクリル系繊維束2は、加熱/除熱されにくくなり、熱処理室3内で十分に昇温することができない。特に、繊維束通過流路10の風速Vfが小さいと、昇温不足のアクリル系繊維束2がそのまま熱処理室3に入るため、熱処理室3の温度が低下し、益々、アクリル系繊維束2の温度を昇温することが難しくなる。上述の通り、アクリル系繊維束2の近傍での気流の流速が、熱伝達に最も影響が大きいため、熱処理室3の供給ノズル5側のアクリル系繊維束2は、繊維束通過流路10を通過する熱風の流速Vfの影響を大きく受けることになる。
 これに対し、本発明の実施形態の気流形態では、図3に示すように、アクリル系繊維束2の上方および/または下方に設けた供給ノズル5の供給面6から熱風を供給し、繊維束通過流路10における、アクリル系繊維束2の走行方向に対して略平行方向の風速Vfと、熱処理室3における、アクリル系繊維束2の走行方向に対して略平行方向の風速Vとが、条件(1)および(2)を満足するように設定する。
(1) 1.5m/s ≦ Vf ≦ 15m/s
 (2) 1.5m/s ≦ V ≦ 10m/s   。
 ここで、繊維束通過流路10における、アクリル系繊維束2の走行方向に対して略平行方向の風速Vfとは、合流面13とアクリル系繊維束2とが交差するライン上において、炉体3の幅方向の中央を含む幅方向の3点の各点における測定値の平均値であり、熱処理室3における、アクリル系繊維束2の走行方向に対して略平行方向の風速Vとは、熱処理室3におけるアクリル系繊維束2の走行方向の中央の断面とアクリル系繊維束2とが交差するライン上において、炉体3の幅方向の中央を含む幅方向の3点の各点における測定値の平均値である。ここで炉体3の幅方向の中央を含む幅方向の3点の各点における測定値は、熱式風速計を用いたそれぞれ1秒毎の測定値30点の平均値とする。なお、上記において合流面13とアクリル系繊維束2とが交差するライン上とは、合流面13と、機幅方向に並行して走行する複数のアクリル系繊維束2が含まれる仮想の面とが、交差するライン上を表し、熱処理室3におけるアクリル系繊維束2の走行方向の中央の断面と、アクリル系繊維束2とが交差するラインとは、熱処理室3におけるアクリル系繊維束2の走行方向の中央の断面と、機幅方向に並行して走行する複数のアクリル系繊維束2が含まれる仮想の面とが、交差するライン上を表す。従って、測定点は機幅方向に並行して走行する複数のアクリル系繊維束2が含まれる仮想の面内に含まれるものであるが、VfおよびVはそれぞれ繊維束通過流路10および熱処理室3におけるアクリル系繊維束2近傍の風速を表す指標であることから、図3において(図5においても同様)、VfおよびVを示す矢印はアクリル系繊維束2に重ねるのではなく近傍に示している。
 これらの条件を満たす場合、アクリル系繊維束2は、繊維束通過流路10に接する供給面6から、速度の大きい熱風がアクリル系繊維束2に衝突することで、アクリル系繊維束2と熱風との熱伝達が大きく促進される。そして、この熱風は、アクリル系繊維束2の走行方向と平行に向きを変えて、繊維束通過流路10のアクリル系繊維束2の近傍を流れることで、更に熱伝達が促進されアクリル系繊維束2は、急激に昇温する。さらに、その熱風は、熱処理室3においても、速度を当面維持しつつ、アクリル系繊維束2の近傍を流れることから、アクリル系繊維束2と熱風との熱伝達が促進され、アクリル系繊維束2の温度を高精度に制御することができる。そのため、熱処理室3を通過する風速Vを小さくした場合においても、アクリル系繊維束2の温度を制御できることから、耐炎化炉1を循環させる熱風の風量自体を低減することが可能となる。また、アクリル系繊維束2に衝突する熱風を、ガイドローラー4に近い供給ノズル5の付近でのみ、つまりはアクリル系繊維束2の懸垂量が比較的小さい位置で局所的に供給することで、アクリル系繊維束2の揺れを大幅に増大させることなく、熱伝達を向上することができる。
 また、繊維束通過流路10を通過した熱風は、熱処理室3に到達すると、上下方向に拡がりながら流れる。この時、補助供給面12からも熱風をいくらか供給することで、熱風が拡がることによる気流の乱れを抑えることができ、ひいては、アクリル系繊維束2の揺れによる混繊を抑制することができる。
 ここで、供給面6および補助供給面12から供給される熱風の風速を調整する方法としては、各供給面に通じる循環流路にダンパー等の調整弁の設置や、各供給面に異なる開口率の多孔板やハニカム等の整流部材等の配置といった調整手段を適宜備えればよい。
 このように、本発明の耐炎化方法においては、従来技術では全く考慮されていなかった、繊維束通過流路10内において、速度の大きい熱風をアクリル系繊維束2と直交方向に供給して、かつ、繊維束通過流路10における、アクリル系繊維束2の走行方向に対して略平行方向の風速Vfと、熱処理室における、アクリル系繊維束2の走行方向に対して略平行方向の風速Vとが、上記条件(1)および(2)を満足することが極めて重要となる。更に好ましくは、繊維束通過流路10における、アクリル系繊維束2の走行方向に対して略平行方向の風速Vfと、熱処理室3における、アクリル系繊維束2の走行方向に対して略平行方向の風速Vとが、条件(3)および(4)を満足することで本発明の効果を極大化できる。
(3) 1.5m/s ≦ Vf ≦ 10m/s
(4) 1.5m/s ≦ V ≦ 6m/s   。
 条件(1)、(2)を満たさない場合として、風速Vfが1.5m/sより小さいと、アクリル系繊維束2を十分に加熱/除熱することができない場合がある。また、風速Vfが15m/sより大きいとアクリル系繊維束2が熱風から受ける抗力が増大して糸揺れが増大する場合がある。
 また、風速Vが、1.5m/sより小さいと、熱処理室3内においてアクリル系繊維束2を十分に加熱/除熱することができない場合がある。また、風速Vが10m/sより大きいと、アクリル系繊維束2が熱風から受ける抗力が増大して糸揺れが増大する場合がある。さらに、風速Vが10m/sより大きいと、耐炎化炉の熱風の循環量が過大となり、用役費が増大する場合がある。
 さらには、この供給面6におけるアクリル系繊維束2の走行方向と直交する方向の風速Vnについて、より好ましくは条件(5)を満たすことが好ましい。これにより、アクリル系繊維束2が熱風から受ける抗力による糸揺れを高いレベルで抑制しつつ、アクリル系繊維束2の除熱・加熱を大幅に向上することができる。ここで、風速Vnが0.1m/sより小さい場合には、アクリル系繊維束2の熱伝達が十分に得られず、温度を上昇させることができない場合がある。風速Vnが5m/sを超えると、糸揺れが増大する場合がある。更に、好ましくは、風速Vnを3.5m/s以下とすることで、本発明の効果を極大化できる。
 (5) 0.1m/s ≦ Vn ≦ 5m/s   。
ここで、供給面6における、前記アクリル系繊維束2と直交する方向の風速Vnとは、供給面6において、繊維束走行方向と直交方向に関して、炉体3の幅方向中央を含む幅方向の3点の各点における測定値の平均値である。なお、上記において炉体3の幅方向の中央を含む幅方向の3点の各点における測定値は、それぞれ1秒毎の測定値30点の平均値とする。
 また、供給面6から供給される熱風の温度について、210℃以上295℃以下とすることで、熱伝達性能の向上効果がより顕著となる。この場合、供給面6と補助供給面12とから供給する熱風の温度が異なっていてもよいが、アクリル系繊維束2の温度制御性や設備費の観点からは、同一であることが好ましい。
 次に、本発明の別の実施形態について、図4を用いて説明する。供給ノズル5の供給面6の設置位置は、供給ノズル5の両面に限定されず、下面のみ(図示無し)であってもよく、上面のみ(図示無し)に設置されていてもよい。供給面6を上面のみに配置することで、アクリル系繊維束2を重力方向の抑えることができるため、糸揺れの低減効果が期待できる。また、供給面6を両面に配置することで、繊維束通過流路10を通過する風速Vfを一定とした場合には、供給する風速を半減することができるため、アクリル系繊維束2の周囲の気流の乱れを少なくできるため、糸揺れがより低減できることから好ましい。
 また、供給ノズル5の供給面6の設置位置は、炉体外側寄り(図2)に限定されず、炉体内側寄りであってもよく、複数個所に分かれて配置していてもよく、また、全面に設置(図4)されていてもよい。
 さらに、供給ノズル5の補助供給面12を設けず、供給面6からのみ熱風を供給してもよい。この場合には、補助供給面12が無いことから、繊維束通過流路10から熱処理室3にて流路が急激に拡幅することによる気流乱れを避けるために、整流板16を設けて熱処理室3をアクリル系繊維束2の走行位置周辺のみに分割し、極小化(図4)してもよい。
 また、供給面6から供給される熱風の主流方向とアクリル系繊維束の走行方向とのなす角を変更することで、様々な効果を発現することが可能となる。例えば、直交以外とすることで、アクリル系繊維束と供給ノズル5との衝突による熱風の乱れを抑制できる。また、熱風の主流方向を熱処理室3向きに傾斜させることで、熱風の一部が熱処理室3内に向かいやすくなり、耐炎化炉1外への漏れ出しを抑制することができる。また、熱風の主流方向をアクリル系繊維束の走行方向と直交させることにより、アクリル系繊維束2の熱伝達効率を向上させることができる。このように、アクリル系繊維束2、耐炎化炉に求められる性能に応じて、熱風の主流方向を決定すればよい。
 さらに、排出面7から吸引される熱風の風量が、供給ノズル5の供給面6と補助供給面12とから供給される熱風の風量の総和よりも、多くすることが好ましい。これにより、供給面6から供給された熱風が、熱処理室3に流れ込みやすくなり、熱処理室3からの熱風漏れを抑制し、シール性を向上させることが可能となる。
 また、アクリル系繊維束2について、耐炎化炉の機幅1m当たりの処理量を、0.14~11kg/分とすることが好ましい。この処理量を多くすればするほど、熱伝達の向上効果が、より顕著になる。
 さらに、本発明の耐炎化繊維束の製造方法において、アクリル系繊維束2の単繊維繊度が、0.05~0.22texであることが好ましく、より好ましくは0.05~0.17texである。この好ましい範囲とすることで、隣接するアクリル系繊維束2が接触した際に単繊維が絡みにくく、アクリル系繊維束間の混繊を有効に防止する一方、耐炎化炉の炉体内にて単繊維内層にまで熱を十分に行き渡らせることができ、アクリル系繊維束2の毛羽立ちにくく、大きな混繊を有効に防止することができるので、耐炎化繊維束の品位や操業性はより優位になる。このように、単繊維繊度が大きくなるほど、熱伝達効率の高い本発明の効果が発現し、単繊維内層にまで熱を十分に行き渡らせることが可能となる。
 上述の方法で製造した耐炎化繊維束は、不活性雰囲気中最高温度300~1,000℃で前炭素化処理して前炭素化繊維束を製造し、不活性雰囲気中最高温度1,000~2,000℃で炭素化処理して炭素繊維束が製造されることが好ましい。
 前炭素化処理における不活性雰囲気の最高温度は550~800℃がより好ましい。前炭素化炉内を満たす不活性雰囲気としては、窒素、アルゴン、ヘリウム等の既知の不活性雰囲気を採用できるが、経済性の面から窒素が好ましい。
 前炭素化処理によって得られた前炭素化繊維は、次いで炭素化炉に送入されて炭素化処理される。炭素繊維の機械的特性を向上させるためには、不活性雰囲気中最高温度1,200~2,000℃で炭素化処理するのがより好ましい。
 炭素化炉内を満たす不活性雰囲気については、窒素、アルゴン、ヘリウム等の既知の不活性雰囲気を採用できるが、経済性の面から窒素が好ましい。
 このようにして得られた炭素繊維束は、取り扱い性や、マトリックス樹脂との親和性を向上させるため、サイジング剤を付与してもよい。サイジング剤の種類としては、所望の特性を得ることができれば特に限定されないが、例えば、エポキシ樹脂、ポリエーテル樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂を主成分としたサイジング剤が挙げられる。サイジング剤の付与は既知の方法を用いることができる。
 さらに炭素繊維束には、必要に応じて、繊維強化複合材料マトリックス樹脂との親和性および接着性の向上を目的とした電解酸化処理や酸化処理を行ってもよい。
 本発明の耐炎化繊維束の製造方法において被熱処理繊維束として使用するアクリル系繊維束は、アクリロニトリル100モル%のアクリル繊維、又はアクリロニトリルを90モル%以上含有するアクリル共重合繊維からなるのが好適である。アクリル共重合繊維における共重合成分としては、アクリル酸、メタクリル酸、イタコン酸、およびこれらのアルカリ金属塩、アンモニウム金属塩、アクリルアミド、アクリル酸メチル等が好ましいが、アクリル系繊維束の化学的性状、物理的性状、寸法等は特に制限されるものではない。
 以下に、実施例によって図面を参照しながら本発明をさらに具体的に説明するが、本発明はこれらによって限定されない。なお、各実施例、比較例での風速および糸揺れ測定量は下記に記載の方法で行った。
 (1)アクリル系繊維束の単繊維繊度の測定方法
 耐炎化炉に送入前のアクリル系繊維束を採取し、JIS L 1013 (2010-06-21改訂版)に準拠して行った。
 (2)風速の測定方法
 熱式風速計として日本カノマックス(株)製アネモマスター高温用風速計Model6162を用いて、1秒毎の瞬時風速の測定値30点の平均値を用いた。炉体18の側面の測定孔(図示せず)から測定プローブを挿入し、合流面13とアクリル系繊維束2とが交差するライン上において、幅方向中央を含む幅方向に3点の測定値の平均値をVf、熱処理室3のアクリル系繊維束2の走行方向中央断面と、アクリル系繊維束2とが交差するライン上において、幅方向中央を含む幅方向に3点の測定値の平均値をV、供給面6において、アクリル系繊維束2の走行方向と直交方向に関して、幅方向中央を含む幅方向に3点の測定値の平均値をVnとして測定した。
 (3)アクリル系繊維束の温度の測定方法
 走行するアクリル系繊維束2にK熱電対を括り付け、熱処理室3内におけるアクリル系繊維束2の温度を1秒毎に測定して、糸温均一率I(%)を算出した。
I(n)=(熱電対の温度がT℃以上になってからT-5℃以下となる時間/熱処理室の通過時間)×100(%)
 ここで、Tは供給ノズル5から供給される熱風の温度Tであり、IはI(n)を5回測定を実施した値に関する算術平均値である。
 (4)操業性、品質
 判定基準はそれぞれ次のとおりとした。
 (操業性)
 10日間の連続操業時における1日あたりの、混繊や繊維束切れ等のトラブルの頻度により判定した。
優:平均ゼロ回(極めて良好なレベル)
良:平均1~9回程度(十分に連続運転を継続できるレベル)
可:平均10~19回程度(かろうじて連続運転を継続できるレベル)
不可:平均20回以上(連続運転を継続できないレベル)。
 (品質)
 耐炎化工程を出た後の耐炎化繊維束を10m目視で観察し、1mあたりに確認できる耐炎化繊維束上の10mm以上の毛羽の数により判定した。
優:平均1個以下(毛羽品位が工程での通過性や製品としての高次加工性に全く影響しないレベル)
良:平均1個を超えて平均10個未満(毛羽品位が工程での通過性や製品としての高次加工性にほとんど影響しないレベル)
可:平均10個以上平均20個未満(毛羽品位が工程での通過性や製品としての高次加工性にしばしば影響を与えるレベル)
不可:平均20個以上(毛羽品位が工程での通過性や製品としての高次加工性に悪影響を与えるレベル)。
 [実施例1]
 図1の本発明の熱処理炉を、炭素繊維製造用の耐炎化炉として使用する。炉体18内の一端に熱風の供給源となる供給ノズル5が炉体18内を走行するアクリル系繊維束2を挟んで上下に複数設置されている。図2のように、供給ノズル5の上下の両面に供給面6を、アクリル系繊維束2の走行方向に、補助供給面12を設けた。また、供給面6および補助供給面12には幅方向の風速が均一になるよう、開口率30%の多孔板を設け、各供給面に通じる循環流路には各供給面から供給される熱風の風速を調整するためのダンパー(図示せず)を設けた。
 炉体内を走行するアクリル系繊維束2については単繊維繊度0.11dtexである単繊維20,000本からなるアクリル系繊維束2を100本引き揃え、耐炎化炉1で熱処理することにより耐炎化繊維束を得た。また、耐炎化炉1の炉体18外の両端のガイドローラー4間の水平距離(ロールスパン)L’は15mとし、ガイドローラー4は溝ローラーとし、ピッチ間隔(溝ピッチ)Wpは10mmとした。この時の耐炎化炉1の熱処理室3内の酸化性気体の温度は240~280℃とした。アクリル系繊維束2の走行速度は、耐炎化処理時間が十分に取れるよう、耐炎化炉長Lに合わせて1~15m/分の範囲で調整し、工程張力は0.5~2.5g/dtexの範囲で調整した。
 得られた耐炎化繊維束を、その後、前炭素化炉において最高温度700℃で焼成した後、炭素化炉において最高温度1,400℃で焼成し、電解表面処理後サイジング剤を塗布して、炭素繊維束を得た。
 結果は表1に記載の通り、供給面6での風速Vnが8.5m/s、繊維束通過流路10での風速Vfが11.2m/s、熱処理室3内の平均風速Vが7.0m/sのとき、糸温均一率は20%であった。上記の条件において、アクリル系繊維束2の耐炎化処理中には、アクリル系繊維束間の接触による混繊や繊維束切れ等は少なく、良好な操業性で耐炎化繊維束を取得した。また、得られた耐炎化繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。
 [実施例2]
 供給面での風速Vnが6.0m/s、繊維束通過流路10での風速Vfが3.3m/s、熱処理室3内の平均風速Vが3.0m/sとし、それ以外は実施例1と同様にした。このとき、糸温均一率は17%であった。上記の条件において、アクリル系繊維束2の耐炎化処理中には、アクリル系繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で耐炎化繊維束を取得した。また、得られた耐炎化繊維束を目視確認した結果、毛羽等が少ない良好な品質であった。
 [実施例3]
 供給面での風速Vnが3.3m/sとし、それ以外は実施例2と同様にした。このとき、糸温均一率は16%であった。上記の条件において、アクリル系繊維束2の耐炎化処理中には、アクリル系繊維束間の接触による混繊や繊維束切れ等は一切発生せず、極めて良好な操業性で耐炎化繊維束を取得した。また、得られた耐炎化繊維束を目視確認した結果、毛羽等が無い極めて良好な品質であった。
 [比較例1]
 比較例1として、繊維通過流路10での風速Vfを1.1m/s、熱処理室3内の平均風速Vが6.0m/sとし、それ以外は実施例2と同様にした。このとき、糸温均一率は8%となり、上記の条件において、アクリル系繊維束2の耐炎化処理中に、アクリル系繊維束間の接触による混繊や、単繊維切れが多発した。また、得られた耐炎化繊維束を目視確認した結果、毛羽等が多く劣悪な品質であった。
Figure JPOXMLDOC01-appb-T000001
 本発明は、耐炎化繊維束の製造方法ならびに炭素繊維束の製造方法に関するもので、航空機用途、圧力容器・風車等の産業用途、ゴルフシャフト等のスポーツ用途等に応用できるが、その応用範囲がこれらに限られるものではない。
1 耐炎化炉
2 アクリル系繊維束
3 熱処理室
4 ガイドローラー
5 供給ノズル
6 供給面
7 排出面
8 加熱器
9 送風器
10 繊維束通過流路
12 補助供給面
13 合流面
14 排出ノズル
16 整流板
17 スリット
18 炉体
19 第1供給面
20 第2供給面

Claims (7)

  1.  引き揃えたアクリル系繊維束を、熱風加熱式の耐炎化炉の炉体外の両端に設置されたガイドローラーで折り返しながら、酸化性雰囲気中で熱処理する耐炎化繊維束の製造方法であって、アクリル系繊維束の走行方向の一端に配置された、熱処理室内に熱風を供給するための供給ノズルの、上方および/または下方の繊維束通過流路において、前記アクリル系繊維束の上方および/または下方に設けた供給面から熱風を供給し、前記繊維束通過流路における、前記アクリル系繊維束の走行方向に対して略平行方向の風速Vfと、熱処理室における、アクリル系繊維束の走行方向に対して略平行方向の風速Vとが、条件(1)および(2)を満足する耐炎化繊維束の製造方法。
    (1) 1.5m/s ≦ Vf ≦ 15m/s
     (2) 1.5m/s ≦ V ≦ 10m/s
  2.  繊維束通過流路における、アクリル系繊維束の走行方向に対して略平行方向の風速Vfと、熱処理室における、アクリル系繊維束の走行方向に対して略平行方向の風速Vとが、条件(3)および(4)を満足する請求項1に記載の耐炎化繊維束の製造方法。
     (3) 1.5m/s ≦ Vf ≦ 10m/s
     (4) 1.5m/s ≦ V ≦ 6m/s
  3.  前記供給面において、前記アクリル系繊維束の走行方向に対して直交する方向の風速Vnが、条件(5)を満足する請求項1または2に記載の耐炎化繊維束の製造方法。
     (5) 0.1m/s ≦ Vn ≦ 5m/s
  4.  前記供給面から供給される熱風の温度が、210℃以上295℃以下である請求項1~3のいずれかに記載の耐炎化繊維束の製造方法。
  5.  熱処理前のアクリル系繊維束の単繊維繊度が、0.05~0.22texである請求項1~4のいずれかに記載の耐炎化繊維束の製造方法。
  6.  請求項1から5のいずれかに記載の耐炎化繊維束の製造方法により得られた耐炎化繊維束を、不活性雰囲気中最高温度300~1,000℃で前炭素化処理して前炭素化繊維束を得た後、該前炭素化繊維束を不活性雰囲気中最高温度1,000~2,000℃で炭素化処理する炭素繊維束の製造方法。
  7.  アクリル系繊維束を熱処理するための耐炎化炉であって、
    (i)引き揃えられた繊維束が出入できるスリットを有する炉体と、
    (ii)前記熱処理室内の繊維束の走行方向の一端に、互いに上下方向に離間して配置され、炉体内に熱風を供給する複数の供給ノズルと、
    (iii)前記炉体内の繊維束の走行方向のもう一端に、互いに上下方向に離間して配置され、前記供給ノズルから供給された熱風を熱処理室から排出する複数の排出ノズルと、
    (iv)前記供給ノズルと前記排出ノズルを通じて熱風を循環させる少なくともの1つの送風装置と、
    (v)循環熱風の流路上に配置された少なくとも1つの加熱装置と、
    (vi)炉体外の両端に配置され、隣接する前記供給ノズル間、隣接する前記排出ノズル間を通って、繊維束を熱処理室内で複数回折り返して走行させるガイドローラーと、を有する耐炎化炉であって、
    (vii)前記供給ノズルは上面および/または下面に、供給ノズルの、上方および/または下方にある繊維束通過流路に第1の熱風を供給するための供給面と前記供給ノズルの熱処理室内側の側面に第2の熱風を供給するための補助供給面を有しており、
    (viii)前記供給ノズルから供給される第1の熱風の風速と第2の熱風の風速を調整するための調整手段を備えることを特徴とする耐炎化炉。
PCT/JP2021/010787 2020-03-18 2021-03-17 耐炎化繊維束、および炭素繊維束の製造方法ならびに耐炎化炉 WO2021187518A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180020548.0A CN115279958B (zh) 2020-03-18 2021-03-17 耐燃化纤维束及碳纤维束的制造方法以及耐燃化炉
US17/910,870 US20230119738A1 (en) 2020-03-18 2021-03-17 Oxidized fiber bundles, carbon fiber bundle production method, and oxidation furnace
EP21770941.9A EP4123065A1 (en) 2020-03-18 2021-03-17 Flame resistant fiber bundles, carbon fiber bundle production method, and flame resistant furnace
KR1020227030744A KR20220146497A (ko) 2020-03-18 2021-03-17 내염화 섬유다발, 및 탄소 섬유다발의 제조 방법 그리고 내염화로
JP2022508405A JPWO2021187518A1 (ja) 2020-03-18 2021-03-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020047320 2020-03-18
JP2020-047320 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021187518A1 true WO2021187518A1 (ja) 2021-09-23

Family

ID=77771593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010787 WO2021187518A1 (ja) 2020-03-18 2021-03-17 耐炎化繊維束、および炭素繊維束の製造方法ならびに耐炎化炉

Country Status (6)

Country Link
US (1) US20230119738A1 (ja)
EP (1) EP4123065A1 (ja)
JP (1) JPWO2021187518A1 (ja)
KR (1) KR20220146497A (ja)
CN (1) CN115279958B (ja)
WO (1) WO2021187518A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889326B1 (en) * 2018-11-26 2023-06-07 Toray Industries, Inc. Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088464A (ja) * 1998-09-08 2000-03-31 Toray Ind Inc 熱処理炉およびそれを用いた炭素繊維の製造方法
JP2000160435A (ja) * 1998-11-26 2000-06-13 Mitsubishi Rayon Co Ltd アクリル系繊維束の連続熱処理方法
JP2005248339A (ja) * 2004-03-02 2005-09-15 Mitsubishi Rayon Co Ltd 炭素化炉
JP2007247130A (ja) * 2006-02-17 2007-09-27 Toray Ind Inc 熱処理炉および炭素繊維の製造方法
JP2011127264A (ja) * 2009-12-21 2011-06-30 Mitsubishi Rayon Co Ltd 耐炎化繊維の製造方法
JP4796467B2 (ja) 2006-09-26 2011-10-19 三菱レイヨン株式会社 横型耐炎化炉および耐炎化処理方法
JP5856081B2 (ja) 2010-02-09 2016-02-09 アイゼンマン ソシエタス オイロペア 酸化炉
JP5856082B2 (ja) 2010-02-09 2016-02-09 アイゼンマン ソシエタス オイロペア 酸化炉
JP2017218720A (ja) * 2015-02-25 2017-12-14 三菱ケミカル株式会社 酸化繊維束の製造方法、および炭素繊維束の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148013A (en) 1975-12-19 1979-04-03 The Indikon Company, Inc. Rotating shaft alignment monitor
JPS5856081B2 (ja) 1976-05-14 1983-12-13 日本電気株式会社 接触測定プロ−ブ
DE60228261D1 (de) * 2001-03-26 2008-09-25 Toho Tenax Co Ltd Wärmebehandlungsanlage und Betriebsverfahren dafür
JP5022073B2 (ja) * 2007-03-20 2012-09-12 三菱レイヨン株式会社 耐炎化炉及び炭素繊維の製造方法
WO2014157394A1 (ja) * 2013-03-27 2014-10-02 三菱レイヨン株式会社 炭素繊維の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088464A (ja) * 1998-09-08 2000-03-31 Toray Ind Inc 熱処理炉およびそれを用いた炭素繊維の製造方法
JP2000160435A (ja) * 1998-11-26 2000-06-13 Mitsubishi Rayon Co Ltd アクリル系繊維束の連続熱処理方法
JP2005248339A (ja) * 2004-03-02 2005-09-15 Mitsubishi Rayon Co Ltd 炭素化炉
JP2007247130A (ja) * 2006-02-17 2007-09-27 Toray Ind Inc 熱処理炉および炭素繊維の製造方法
JP4796467B2 (ja) 2006-09-26 2011-10-19 三菱レイヨン株式会社 横型耐炎化炉および耐炎化処理方法
JP2011127264A (ja) * 2009-12-21 2011-06-30 Mitsubishi Rayon Co Ltd 耐炎化繊維の製造方法
JP5856081B2 (ja) 2010-02-09 2016-02-09 アイゼンマン ソシエタス オイロペア 酸化炉
JP5856082B2 (ja) 2010-02-09 2016-02-09 アイゼンマン ソシエタス オイロペア 酸化炉
JP2017218720A (ja) * 2015-02-25 2017-12-14 三菱ケミカル株式会社 酸化繊維束の製造方法、および炭素繊維束の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889326B1 (en) * 2018-11-26 2023-06-07 Toray Industries, Inc. Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle

Also Published As

Publication number Publication date
KR20220146497A (ko) 2022-11-01
EP4123065A1 (en) 2023-01-25
US20230119738A1 (en) 2023-04-20
CN115279958B (zh) 2024-04-16
CN115279958A (zh) 2022-11-01
JPWO2021187518A1 (ja) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2013015343A1 (ja) 耐炎化熱処理炉
JP6028840B2 (ja) 炭素繊維の製造方法
JP2007247130A (ja) 熱処理炉および炭素繊維の製造方法
WO2021187518A1 (ja) 耐炎化繊維束、および炭素繊維束の製造方法ならびに耐炎化炉
JP6680417B1 (ja) 耐炎化繊維束の製造方法および炭素繊維束の製造方法
JP5556994B2 (ja) 耐炎化繊維の製造方法
JP6729819B1 (ja) 耐炎化繊維束および炭素繊維束の製造方法ならびに耐炎化炉
WO2020110632A1 (ja) 耐炎化繊維束の製造方法および炭素繊維束の製造方法
JP7272347B2 (ja) 耐炎化熱処理炉、耐炎化繊維束および炭素繊維束の製造方法
JP7354840B2 (ja) 耐炎化繊維束の製造方法および炭素繊維束の製造方法
JP2000160435A (ja) アクリル系繊維束の連続熱処理方法
WO2021193520A1 (ja) 予備炭素繊維束の製造方法、炭素繊維束の製造方法および予備炭素化炉
JP4572460B2 (ja) 熱処理炉およびそれを用いた炭素繊維の製造方法
WO2017082309A1 (ja) 炭素繊維の製造方法及び耐炎化繊維の製造方法
JP2009074183A (ja) 熱処理炉とそれを用いた炭素繊維の製造方法
JP2002105766A (ja) 耐炎化方法
JP4408324B2 (ja) 炭素繊維前駆体繊維束の製造方法及び炭素繊維束の製造方法
JP2004052128A (ja) 横型熱処理炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227030744

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2022508405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021770941

Country of ref document: EP

Effective date: 20221018