WO2021186617A1 - 複合焼結体及びそれを用いた工具 - Google Patents

複合焼結体及びそれを用いた工具 Download PDF

Info

Publication number
WO2021186617A1
WO2021186617A1 PCT/JP2020/012007 JP2020012007W WO2021186617A1 WO 2021186617 A1 WO2021186617 A1 WO 2021186617A1 JP 2020012007 W JP2020012007 W JP 2020012007W WO 2021186617 A1 WO2021186617 A1 WO 2021186617A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
sintered body
composite sintered
nitride particles
volume
Prior art date
Application number
PCT/JP2020/012007
Other languages
English (en)
French (fr)
Inventor
雄 石田
久木野 暁
倫子 松川
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to PCT/JP2020/012007 priority Critical patent/WO2021186617A1/ja
Priority to CN202080098409.5A priority patent/CN115279519A/zh
Priority to KR1020227034589A priority patent/KR20220143140A/ko
Priority to JP2020555067A priority patent/JP6818966B1/ja
Priority to US17/280,939 priority patent/US11319255B2/en
Priority to EP20926091.8A priority patent/EP4122627A4/en
Publication of WO2021186617A1 publication Critical patent/WO2021186617A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/18Making tools by operations not covered by a single other subclass; Repairing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present disclosure relates to a composite sintered body and a tool using the composite sintered body.
  • Cubic boron nitride (hereinafter, also referred to as "cBN”) has hardness next to diamond, and is also excellent in thermal stability and chemical stability. Therefore, the cubic boron nitride sintered body has been used as a material for tools.
  • the cubic boron nitride sintered body one containing about 10 to 40% by volume of a binder was used.
  • the binder has been a cause of lowering the strength and thermal diffusivity of the sintered body.
  • Japanese Unexamined Patent Publication No. 2004-250278 Japanese Unexamined Patent Publication No. 11-246271 Japanese Unexamined Patent Publication No. 2014-34487
  • the composite sintered body of the present disclosure is Cubic boron nitride particles and A composite sintered body composed of hexagonal boron nitride particles, or hexagonal boron nitride particles and wurtzite-type boron nitride particles.
  • the dislocation density of the cubic boron nitride particles is 1 ⁇ 10 15 / m 2 or more and 1 ⁇ 10 17 / m 2 or less.
  • the median diameter d50 of the equivalent circle diameter of the cubic boron nitride particles is 10 nm or more and 500 nm or less.
  • the volume-based content Vc of the cubic boron nitride particles, the volume-based content Vh of the hexagonal boron nitride particles, and the volume-based content Vw of the wurtzite-type boron nitride particles are expressed by the following formula 1. Satisfy the relationship, Equation 1: 0.015 ⁇ (Vh + Vw) / (Vc + Vh + Vw) ⁇ 0.5 It is a composite sintered body.
  • the tool of the present disclosure is a tool using the above-mentioned composite sintered body.
  • FIG. 1 is a pressure-temperature phase diagram of boron nitride.
  • FIG. 2 is a diagram for explaining an example of the method for producing the composite sintered body of the present disclosure.
  • FIG. 3 is a diagram for explaining another example of the method for producing the composite sintered body of the present disclosure.
  • FIG. 4 is a diagram for explaining another example of the method for producing the composite sintered body of the present disclosure.
  • an object of the present invention is to provide a composite sintered body capable of having a long tool life without deteriorating the surface condition of the wire rod, especially even in wire drawing when used as a tool material. And.
  • the composite sintered body of the present disclosure is Cubic boron nitride particles and A composite sintered body composed of hexagonal boron nitride particles, or hexagonal boron nitride particles and wurtzite-type boron nitride particles.
  • the dislocation density of the cubic boron nitride particles is 1 ⁇ 10 15 / m 2 or more and 1 ⁇ 10 17 / m 2 or less.
  • the median diameter d50 of the equivalent circle diameter of the cubic boron nitride particles is 10 nm or more and 500 nm or less.
  • the volume-based content Vc of the cubic boron nitride particles, the volume-based content Vh of the hexagonal boron nitride particles, and the volume-based content Vw of the wurtzite-type boron nitride particles are expressed by the following formula 1. Satisfy the relationship, Equation 1: 0.015 ⁇ (Vh + Vw) / (Vc + Vh + Vw) ⁇ 0.5 It is a composite sintered body.
  • the composite sintered body of the present disclosure can have a long tool life without deteriorating the surface condition of the wire, especially even in wire drawing.
  • the dislocation density of the cubic boron nitride particles is preferably 1 ⁇ 10 15 / m 2 or more and 3 ⁇ 10 16 / m 2 or less. According to this, seizure on the wire rod is less likely to occur, and the tool life is further improved.
  • the dislocation density of the cubic boron nitride particles is preferably 1 ⁇ 10 15 / m 2 or more and 5 ⁇ 10 15 / m 2 or less. According to this, seizure on the wire rod is less likely to occur, and the tool life is further improved.
  • the median diameter d50 of the equivalent circle diameter of the cubic boron nitride particles is preferably 10 nm or more and 300 nm or less. According to this, the surface of the wire rod is not easily scratched, deterioration of the surface condition of the wire rod is suppressed, and the tool life is further improved.
  • the median diameter d50 of the equivalent circle diameter of the cubic boron nitride particles is preferably 10 nm or more and 100 nm or less. According to this, the surface of the wire rod is not easily scratched, deterioration of the surface condition of the wire rod is suppressed, and the tool life is further improved.
  • volume-based content rate Vc of the cubic boron nitride particles, the volume-based content rate Vh of the hexagonal boron nitride particles, and the volume-based content rate Vw of the wurtzite-type boron nitride particles are It is preferable to satisfy the relationship of the following formula 2.
  • Equation 2 0.03 ⁇ (Vh + Vw) / (Vc + Vh + Vw) ⁇ 0.4 According to this, the slidability between the tool and the wire rod is improved, deterioration of the surface condition of the wire rod is suppressed, and the tool life is further improved.
  • the total content of the alkali metal element and the alkaline earth metal element of the composite sintered body is preferably 10 ppm or less on a mass basis.
  • a tool using the composite sintered body can have an excellent tool life.
  • the dislocation density is preferably calculated using the modified Williamson-Hall method and the modified Warren-Averbach method.
  • the dislocation density has a good correlation with the performance of the composite sintered body.
  • the dislocation density is preferably measured using synchrotron radiation as an X-ray source.
  • the dislocation density has a good correlation with the performance of the composite sintered body.
  • the tool of the present disclosure is a tool using the above-mentioned composite sintered body.
  • the tool of the present disclosure can have a long tool life without deteriorating the surface condition of the wire rod, particularly even in wire drawing.
  • the notation in the form of "A to B” means the upper and lower limits of the range (that is, A or more and B or less), and when there is no description of the unit in A and the unit is described only in B, A The unit of and the unit of B are the same.
  • the composite sintered body according to the embodiment of the present disclosure is a composite sintered body composed of cubic boron nitride particles and hexagonal boron nitride particles, or hexagonal boron nitride particles and wurtzite-type boron nitride particles.
  • the dislocation density of the cubic boron nitride particles is 1 ⁇ 10 15 / m 2 or more and 1 ⁇ 10 17 / m 2 or less, and the median diameter d50 of the equivalent circle diameter of the cubic boron nitride particles is 10 nm.
  • Equation 1 0.015 ⁇ (Vh + Vw) / (Vc + Vh + Vw) ⁇ 0.5 It is a composite sintered body.
  • the composite sintered body of the present disclosure When used as a tool material, it can have a long tool life without deteriorating the surface condition of the wire, especially even in wire drawing. The reason for this is not clear, but it is presumed to be as shown in (i) to (iv) below.
  • the composite sintered body of the present disclosure is composed of cubic boron nitride particles and hexagonal boron nitride particles, or hexagonal boron nitride particles and wurtzite-type boron nitride particles, and is substantially a binder and a sinter. Does not contain aids, catalysts, etc. Therefore, the strength and thermal diffusivity of the composite sintered body are improved. Therefore, a tool using the composite sintered body is less likely to cause seizure due to the generation of frictional heat even in wire drawing, and can have a long tool life.
  • the dislocation density of cubic boron nitride particles is 1 ⁇ 10 15 / m 2 or more and 1 ⁇ 10 17 / m 2 or less.
  • the cubic boron nitride particles have high hardness, excellent toughness, high crystallinity, and high thermal diffusivity. Therefore, a tool using the composite sintered body containing the cubic boron nitride particles has excellent wear resistance even in wire drawing, and seizure due to the generation of frictional heat is unlikely to occur, so that the tool life is long. Can have.
  • the median diameter d50 of the equivalent circle diameter of the cubic boron nitride particles is 10 nm or more and 500 nm or less.
  • the composite sintered body containing the cubic boron nitride particles can have excellent strength, improved toughness, and excellent crack propagation resistance. Therefore, a tool using the composite sintered body is less likely to crack even in wire drawing, and can have a long tool life.
  • the volume-based content Vc of cubic boron nitride particles the volume-based content Vh of hexagonal boron nitride particles, and the volume-based content of wurtzite-type boron nitride particles.
  • the content rate Vw satisfies the relationship of the following formula 1.
  • Equation 1 0.015 ⁇ (Vh + Vw) / (Vc + Vh + Vw) ⁇ 0.5 That is, in the composite sintered body of the present disclosure, the ratio of the total of hexagonal boron nitride particles and wurtzite-type boron nitride particles to the total of cubic boron nitride particles, hexagonal boron nitride particles and wurtzite-type boron nitride particles is It is 1.5% by volume or more and 50% by volume or less.
  • Hexagonal boron nitride and wurtzite-type boron nitride have low frictional resistance during wire drawing, and can impart slidability to the composite sintered body. Therefore, the composite sintered body containing hexagonal boron nitride particles and wurtzite-type boron nitride particles in the above proportions has excellent slidability, and even in wire drawing, seizure and disconnection due to the generation of frictional heat occur. It is unlikely to occur and can have a long tool life.
  • hexagonal boron nitride and wurtzite-type boron nitride are softer than cubic boron nitride, they can have excellent crack propagation resistance. Therefore, a tool using the composite sintered body is less likely to crack even in wire drawing, and can have a long tool life.
  • the ratio of the cubic boron nitride particles to the total of the cubic boron nitride particles, the hexagonal boron nitride particles and the wurtzite-type boron nitride particles is 50% by volume or more and 98.5 volumes by volume. % Or less.
  • the cubic boron nitride particles have high hardness, excellent toughness, high crystallinity, and high thermal diffusibility. Therefore, a tool using a composite sintered body containing the cubic boron nitride particles in the above ratio has excellent wear resistance even in wire drawing, and seizure due to the generation of frictional heat is unlikely to occur. Can have a long tool life.
  • the machining method is not limited to this.
  • the processing method include cutting tools and the like. By improving the lubricity, it is possible to reduce the adhesiveness of the work material in the cutting tool and further reduce the cutting resistance.
  • the composite sintered body of the present disclosure includes cubic boron nitride (hereinafter, also referred to as “cBN”) particles, hexagonal boron nitride (hereinafter, also referred to as “hBN”) particles, or hexagonal boron nitride particles and wurtzite. It is composed of type boron nitride (hereinafter, also referred to as “wBN”) particles. That is, the composite sintered body of the present disclosure can be in the form of (a) or (b) below.
  • cBN cubic boron nitride
  • hBN hexagonal boron nitride
  • wBN type boronitride
  • the hexagonal boron nitride contained in the composite sintered body of the present disclosure is defined to include ordinary "hexagonal boron nitride" and / or "compressed hexagonal boron nitride".
  • the compression type hexagonal boron nitride has a crystal structure similar to that of ordinary hexagonal boron nitride, and the surface spacing in the c-axis direction is smaller than that of ordinary hexagonal boron nitride (0.333 nm).
  • Compressed hexagonal boron nitride has the same lubricity as ordinary hexagonal boron nitride.
  • hexagonal boron nitride and compressed hexagonal boron nitride are regarded as the same, and the hexagonal boron nitride contained in the composite sintered body of the present disclosure is "hexagonal boron nitride”. And / or “compressed hexagonal boron nitride”.
  • the composite sintered body may contain unavoidable impurities as long as the effects of the present disclosure are exhibited.
  • Inevitable impurities include, for example, hydrogen, oxygen, carbon, alkali metal elements (lithium (Li), sodium (Na), potassium (K), etc.) and alkaline earth metal elements (calcium (Ca), magnesium (Mg), etc.).
  • Metal elements such as strontium (Sr) and barium (Ba)) can be mentioned.
  • the content of the unavoidable impurities is preferably 0.5% by volume or less.
  • the content of unavoidable impurities can be measured by secondary ion mass spectrometry (SIMS).
  • Alkali metal elements lithium (Li), sodium (Na), potassium (K)
  • alkaline earth metal elements calcium (Ca), magnesium (Mg, strontium (Sr), barium (Ba)) of composite sintered body
  • the total content of is preferably 10 ppm or less on a mass basis.
  • the total content is measured by secondary ion mass analysis (SIMS).
  • the alkali metal element and the alkaline earth metal element have a catalytic action on the phase conversion between hexagonal boron nitride and boron nitride.
  • the total content of the alkali metal element and the alkaline earth metal element of the composite sintered body is 10 ppm or less, the tool using the composite sintered body has a high temperature at the interface between the tool and the work material in a processing environment. Even when exposed to high pressure, the progress of damage to the tool due to the conversion of a part of the cubic boron nitride constituting the tool to hexagonal boron nitride can be satisfactorily suppressed.
  • the lower limit of the total content of the alkali metal element and the alkaline earth metal element in the hexagonal boron nitride polycrystal is preferably 0 ppm. That is, the total content of the alkali metal element and the alkaline earth metal element in the hexagonal boron nitride polycrystal is preferably 0 ppm or more and 10 ppm or less.
  • Conventional cubic boron nitride sintered bodies are produced, for example, using cBN abrasive grains as a starting material, as described in JP-A-2006-201216.
  • the total content (content of the catalyst component in 1 mol of cBN) of the catalyst components (alkali metal element, alkaline earth metal element) remaining in the cBN abrasive grains is 2.4 ⁇ 10 -4 to 13 .5 ⁇ 10 -4 mol. Therefore, it is obvious to those skilled in the art that the total content of the catalyst components of the conventional cubic boron nitride sintered body obtained by sintering the cBN abrasive grains is 0.01% by mass (100 ppm) or more. be.
  • the composite sintered body of the present disclosure uses hexagonal boron nitride or pyrolyzed boron nitride as a starting material, and heats the hexagonal boron nitride or the pyrolyzed boron nitride without using a catalyst. It is obtained by pressing to convert it into cubic boron nitride. Therefore, the content of the catalyst component of the composite sintered body can be 10 ppm or less on a mass basis.
  • the total content of silicon (Si) and aluminum (Al) in the composite sintered body is preferably 50 ppm or less on a mass basis.
  • the total content is measured by secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • the composite sintered body is substantially free of binders, sintering aids, catalysts, etc. As a result, the strength and thermal diffusivity of the composite sintered body are improved.
  • the lower limit of the content of cubic boron nitride particles in the composite sintered body is preferably 50% by volume or more, more preferably 60% by volume or more, still more preferably 70% by volume or more.
  • the upper limit of the content of cubic boron nitride particles in the composite sintered body is preferably 98.5% by volume or less, more preferably 97% by volume or less, still more preferably 95% by volume or less.
  • the content of cubic boron nitride particles in the composite sintered body is preferably 50% by volume or more and 98.5% by volume or less, more preferably 60% by volume or more and 97% by volume or less, and 70% by volume or more and 95% by volume or less. More preferred.
  • the lower limit of the content of hexagonal boron nitride particles in the composite sintered body is preferably 1.5% by volume or more, more preferably 3% by volume or more, still more preferably 5% by volume or more.
  • the upper limit of the content of hexagonal boron nitride particles in the composite sintered body is preferably 50% by volume or less, more preferably 40% by volume or less, still more preferably 30% by volume or less.
  • the content of hexagonal boron nitride particles in the composite sintered body is preferably 1.5% by volume or more and 50% by volume or less, more preferably 3% by volume or more and 40% by volume or less, and 5% by volume or more and 30% by volume or less. More preferred.
  • the lower limit of the content of wurtzite-type boron nitride particles in the composite sintered body is preferably 1.5% by volume or more, more preferably 3% by volume or more, still more preferably 5% by volume or more.
  • the upper limit of the content of wurtzite-type boron nitride particles in the composite sintered body is preferably 40% by volume or less, more preferably 30% by volume or less, still more preferably 20% by volume or less.
  • the content of wurtzite-type boron nitride particles in the composite sintered body is preferably 1.5% by volume or more and 40% by volume or less, more preferably 3% by volume or more and 30% by volume or less, and 5% by volume or more and 20% by volume or less. Is more preferable.
  • the volume-based content rate Vc of cubic boron nitride particles Satisfies the relationship of the following equation 1.
  • Equation 1 0.015 ⁇ (Vh + Vw) / (Vc + Vh + Vw) ⁇ 0.5
  • the total amount of hexagonal boron nitride particles and wurtzite-type boron nitride particles is relative to the total amount of cubic boron nitride particles, hexagonal boron nitride particles and wurtzite-type boron nitride particles.
  • the ratio is 1.5% by volume or more and 50% by volume or less.
  • Hexagonal boron nitride and wurtzite-type boron nitride have low frictional resistance during wire drawing, and can impart slidability to the composite sintered body. Therefore, the composite sintered body containing hexagonal boron nitride and wurtzite-type boron nitride in the above proportions has excellent slidability, and seizure and disconnection due to the generation of frictional heat occur even in wire drawing. It is difficult and can have a long tool life.
  • hexagonal boron nitride and wurtzite-type boron nitride are softer than cubic boron nitride, they can have excellent crack propagation resistance. Therefore, a tool using the composite sintered body is less likely to crack even in wire drawing, and can have a long tool life.
  • the ratio of the cubic boron nitride particles to the total of the cubic boron nitride particles, the hexagonal boron nitride particles and the wurtzite-type boron nitride particles is 50% by volume or more and 98.5 volumes by volume. % Or less.
  • the cubic boron nitride particles have high hardness, excellent toughness, high crystallinity, and high thermal diffusivity. Therefore, a tool using a composite sintered body containing the cubic boron nitride particles in the above ratio has excellent wear resistance even in wire drawing, and seizure due to the generation of frictional heat is unlikely to occur. Can have a long tool life.
  • the volume-based content Vc of cubic boron nitride particles, the volume-based content Vh of hexagonal boron nitride particles, and the volume-based content Vw of wurtzite-type boron nitride particles have the relationship of the following formula 2. It is preferable to satisfy, and it is more preferable to satisfy the relationship of the following formula 3.
  • Equation 2 0.03 ⁇ (Vh + Vw) / (Vc + Vh + Vw) ⁇ 0.4 Equation 3: 0.05 ⁇ (Vh + Vw) / (Vc + Vh + Vw) ⁇ 0.3
  • the volume-based content Vh of hexagonal boron nitride particles and the volume-based content Vw of wurtzite-type boron nitride particles preferably satisfy the relationship of the following formula 4, and further satisfy the relationship of formula 5. preferable.
  • Equation 4 0.05 ⁇ Vh / (Vh + Vw) ⁇ 1 Equation 5: 0.1 ⁇ Vh / (Vh + Vw) ⁇ 0.95 According to this, the composite sintered body has high slidability and excellent crack propagation resistance.
  • the volume-based content (volume%) of cubic boron nitride particles, hexagonal boron nitride particles, and wurtzite-type boron nitride particles in the composite sintered body can be measured by the X-ray diffraction method.
  • the specific measurement method is as follows.
  • the composite sintered body is cut with a diamond grindstone electrodeposition wire, and the cut surface is used as an observation surface.
  • An X-ray spectrum of the cut surface of the composite sintered body is obtained using an X-ray diffractometer (“MiniFlex 600” (trade name) manufactured by Rigaku Corporation). The conditions of the X-ray diffractometer at this time are as follows.
  • Characteristic X-ray Cu-K ⁇ (wavelength 1.54 ⁇ ) Tube voltage: 45kV Tube current: 40mA Filter: Multi-layer mirror Optical system: Concentration method X-ray diffraction method: ⁇ -2 ⁇ method.
  • the content of hexagonal boron nitride particles can be obtained by calculating the value of peak intensity A / (peak intensity A + peak intensity B + peak intensity C).
  • the content of wurtzite-type boron nitride particles can be obtained by calculating the value of peak intensity B / (peak intensity A + peak intensity B + peak intensity C).
  • the content of cubic boron nitride particles can be obtained by calculating the value of peak intensity C / (peak intensity A + peak intensity B + peak intensity C).
  • Hexagonal boron nitride, compression-type hexagonal boron nitride, wurtzite-type boron nitride, and cubic boron nitride all have similar electronic weights, so the above X-ray peak intensity ratio is used in the composite sintered body. It can be regarded as a volume ratio.
  • the content of unavoidable impurities is very small, it affects the calculation of the content (volume%) of cubic boron nitride particles, hexagonal boron nitride particles, and wurtzite-type boron nitride particles in the composite sintered body. Do not give.
  • the dislocation density of the cubic boron nitride particles is 1 ⁇ 10 15 / m 2 or more and 1 ⁇ 10 17 / m 2 or less.
  • the cubic boron nitride particles have high hardness, excellent toughness, high crystallinity, and high thermal diffusivity. Therefore, a tool using the composite sintered body containing the cubic boron nitride particles has excellent wear resistance even in wire drawing, and seizure due to the generation of frictional heat is unlikely to occur, so that the tool life is long. Can have.
  • the upper limit of the dislocation density of the cubic boron nitride particles is preferably 3 ⁇ 10 16 / m 2 or less, and more preferably 5 ⁇ 10 15 / m 2 or less, from the viewpoint of improving toughness and thermal diffusivity.
  • the lower limit of the dislocation density of cubic boron nitride is preferably 1 ⁇ 10 15 m 2 or more from the viewpoint of maintaining high hardness and excellent wear resistance.
  • the dislocation density of the cubic boron nitride particles is preferably from 1 ⁇ 10 15 / m 2 or more 3 ⁇ 10 16 / m 2 or less, 1 ⁇ 10 15 / m 2 or more 5 ⁇ 10 15 / m 2 or less is more preferable.
  • the dislocation density is calculated by the following procedure.
  • a test piece made of a composite sintered body is prepared.
  • the size of the test piece is 2.0 mm ⁇ 2.0 mm on the observation surface and 1.0 mm in thickness. Polish the observation surface of the test piece.
  • X-ray diffraction measurement conditions X-ray source: Synchrotron radiation Device condition: Detector NaI (cuts fluorescence by appropriate ROI) Energy: 18 keV (wavelength: 0.6888 ⁇ ) Spectral crystal: Si (111) Incident slit: width 5 mm x height 0.5 mm Light receiving slit: Double slit (width 3 mm x height 0.5 mm) Mirror: Platinum coated mirror Incident angle: 2.5 mrad Scanning method: 2 ⁇ - ⁇ scan Measurement peaks: (111), (200), (220), (311), (400), (331) of cubic boron nitride. However, if it is difficult to obtain a profile due to texture and orientation, the peak of the surface index is excluded.
  • Measurement conditions Make sure that the number of measurement points is 9 or more within the half width.
  • the peak top intensity shall be 2000 counts or more. Since the tail of the peak is also used for analysis, the measurement range is about 10 times the half width.
  • the line profile obtained by the above-mentioned X-ray diffraction measurement has a shape that includes both true spread due to physical quantities such as non-uniform strain of the sample and spread due to the device.
  • the device-derived components are removed from the measured line profile to obtain a true line profile.
  • the true line profile is obtained by fitting the obtained line profile and the device-derived line profile with the pseudo Voigt function and subtracting the device-derived line profile.
  • LaB 6 is used as a standard sample for removing the diffraction line spread caused by the device. Further, when synchrotron radiation having high parallelism is used, the diffraction line spread caused by the device can be regarded as zero.
  • the dislocation density is calculated by analyzing the obtained true line profile using the modified Williamson-Hall method and the modified Warren-Averbach method.
  • the modified Williamson-Hall method and the modified Warren-Averbach method are known line profile analysis methods used to determine the dislocation density.
  • lnA (L) lnA S ( L) - in ( ⁇ L 2 ⁇ b 2/2) ln (R e / L) (K 2 C) + O (K 2 C) 2 (IV) (the formula (IV), A (L) is the Fourier series, a S (L) is the Fourier series regarding crystallite size, L is shows a Fourier length.)
  • the median diameter d50 of cubic boron nitride particles is 10 nm or more and 500 nm or less.
  • the composite sintered body containing the cubic boron nitride particles can have excellent strength, improved toughness, and excellent crack propagation resistance. Therefore, a tool using the composite sintered body is less likely to crack even in wire drawing, and can have a long tool life.
  • the upper limit of the median diameter d50 of the equivalent circle diameter of the cubic boron nitride particles is 500 nm or less, preferably 100 nm or less, from the viewpoint of ensuring excellent strength and toughness.
  • the lower limit of the median diameter d50 of the equivalent circle diameter of the cubic boron nitride particles is 10 nm or more from the viewpoint of manufacturing.
  • the median diameter d50 of the equivalent circle diameter of the cubic boronitride particles is preferably 10 nm or more and 300 nm or less, and more preferably 10 nm or more and 100 nm or less.
  • the median diameter d50 of the equivalent circle diameter of the plurality of cubic boron nitride particles contained in the composite sintered body is defined as a plurality of cubic boron nitride particles at each of five arbitrarily selected measurement points. It means a value obtained by measuring each of the median diameters d50 and calculating the average value thereof.
  • the composite sintered body part is cut out with a diamond grindstone electrodeposition wire or the like, the cut out cross section is polished, and five points are measured on the polished surface. Set the location arbitrarily.
  • the measurement point on the polished surface is observed using an SEM (“JSM-7500F” (trade name) manufactured by JEOL Ltd.) to obtain an SEM image.
  • the size of the measurement field of view is 12 ⁇ m ⁇ 15 ⁇ m, and the observation magnification is 10000 times.
  • the median diameter d50 is calculated with the entire measurement field of view as the denominator.
  • the median diameter d50 is calculated from the distribution of the equivalent circle diameters of the cubic boron nitride particles.
  • the tool of the present disclosure is a tool using the composite sintered body of the first embodiment. Specifically, it is preferably used for cutting tools, wear-resistant tools, grinding tools and the like.
  • the cutting tool, the abrasion-resistant tool, and the grinding tool using the composite sintered body of the present disclosure may be entirely composed of the composite sintered body, or a part thereof (for example, in the case of a cutting tool, the cutting edge portion). Only may be composed of a composite sintered body. Further, a coating film may be formed on the surface of each tool.
  • Cutting tools include drills, end mills, replaceable cutting tips for drills, replaceable cutting tips for end mills, replaceable cutting tips for milling, replaceable cutting tips for turning, metal saws, gear cutting tools, and reamers. , Taps, cutting tools, etc.
  • wear-resistant tools include dies, scribers, scribing wheels, and dressers.
  • the grinding tool include a grinding wheel.
  • FIG. 1 is a pressure-temperature phase diagram of boron nitride.
  • 2 to 4 are diagrams for explaining an example of the method for producing the composite sintered body of the present disclosure, respectively.
  • the pressure-temperature phase diagram of boron nitride will be described.
  • the boron nitride includes hexagonal boron nitride, which is a stable phase at normal temperature and pressure, cubic boron nitride, which is a stable phase at high temperature and high pressure, and from hexagonal boron nitride to cubic boron nitride.
  • each phase can be represented by a linear function.
  • the temperature and pressure in the stable region of each phase can be indicated by using a linear function.
  • the temperature and pressure in the stable region of wurtzite-type boron nitride are when the temperature is T (° C.) and the pressure is P (GPa).
  • T ° C.
  • P GPa
  • Equation (1) P ⁇ -0.0037T + 11.301 Equation (2): P ⁇ -0.085T + 117
  • hBN stable region the temperature and pressure in the stable region of hexagonal boron nitride (referred to as “hBN stable region” in FIG. 1) are when the temperature is T (° C.) and the pressure is P (GPa). It is defined as the temperature and pressure that simultaneously satisfy the following formulas A and B, or the temperature and pressure that simultaneously satisfy the following formulas C and D.
  • FIGS. 2 to 4 Details of each step of the method for producing the composite sintered body of the present disclosure will be described below with reference to FIGS. 2 to 4.
  • the arrows indicate the heating and pressurizing paths.
  • the routes shown in FIGS. 2 to 4 are examples, and are not limited thereto.
  • Hexagonal boron nitride powder or pyrolysis boron nitride is prepared as a raw material for the composite sintered body.
  • the hexagonal boron nitride powder preferably has a purity (content of hexagonal boron nitride) of 98.5% or more, more preferably 99% or more, and most preferably 100%.
  • the particle size of the hexagonal boron nitride powder is not particularly limited, but can be, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • Pyrolysis boron nitride has a very fine particle size due to thermal decomposition, and it is difficult for grain growth. Therefore, when thermally decomposed boron nitride is used as a raw material, the particle size of the cubic boron nitride particles in the obtained composite sintered body tends to be small.
  • the pyrolysis boron nitride either one produced by a conventionally known synthetic method or a commercially available pyrolysis boron nitride can be used.
  • hexagonal boron nitride powder or pyrolyzed boron nitride is heated and pressurized through the temperature and pressure in the stable region of wurtzite-type boron nitride to the temperature and pressure in the stable region of cubic boron nitride.
  • the heating and pressurizing path is appropriately adjusted so that the composite sintered body of the first embodiment can be obtained.
  • hexagonal boron nitride powder or thermally decomposed boron nitride was pressurized from the starting point (25 ° C., 0 GPa) while maintaining the temperature (arrow A1), followed by maintaining the pressure.
  • the composite sintered body of the present disclosure can be obtained.
  • the heating and pressurizing path enters the stable region of wurtzite-type boron nitride during the second pressurization indicated by the arrow A3.
  • hexagonal boron nitride powder or thermally decomposed boron nitride was heated from the starting point (25 ° C., 0 GPa) while maintaining the pressure (arrow B1), and subsequently the temperature was maintained.
  • the composite sintered body of the present disclosure is obtained by pressurizing as it is (arrow B2) and then heating while maintaining the pressure (arrow B3) to reach the temperature and pressure within the stable region of cubic boron nitride. be able to.
  • the heating and pressurizing path enters the stable region of wurtzite-type boron nitride during the first pressurization indicated by the arrow B2.
  • FIG. 4 shows a heating and pressurizing path indicated by arrows C1 and C3, and a heating and pressurizing path indicated by arrows C2 and C4.
  • hexagonal boron nitride powder or thermally decomposed boron nitride is pressurized from the starting point (25 ° C., 0 GPa) while maintaining the temperature (arrows C1, arrows C2), followed by maintaining the pressure.
  • the composite sintered body of the present disclosure can be obtained by heating while keeping it (arrow C3, arrow C4) to reach the temperature and pressure within the stable region of cubic boron nitride.
  • the heating and pressurizing path is within the stable region of wurtzite-type boron nitride. storm in.
  • the temperature in the stable region of the cubic boron nitride finally reached can be, for example, 1200 ° C. or higher and lower than 2500 ° C., and the pressure is It can be 6 GPa or more and 20 GPa or less.
  • the holding time at the temperature and the pressure can be 1 minute or more and 30 minutes or less. According to this, all the raw materials are not converted into cubic boron nitride, and hexagonal boron nitride particles, or hexagonal boron nitride particles and wurtzite-type boron nitride particles can remain in the composite sintered body.
  • the dislocation density of the cubic boron nitride particles in the composite sintered body can be increased by increasing the holding time of the cubic boron nitride in the stable region.
  • the dislocation density of the cubic boron nitride particles is 1 ⁇ 10 15 / m 2 or more and 1 ⁇ 10 17 / m 2 or less.
  • the median diameter d50 of the equivalent circle diameter of the cubic boron nitride particles is 10 nm or more and 500 nm or less.
  • the volume-based content Vc of the cubic boron nitride particles, the volume-based content Vh of the hexagonal boron nitride particles, and the volume-based content Vw of the wurtzite-type boron nitride particles are expressed by the following formula 1. Satisfy the relationship, Equation 1: 0.015 ⁇ (Vh + Vw) / (Vc + Vh + Vw) ⁇ 0.5 Composite sintered body.
  • Example 1 In Example 1, a composite sintered body was prepared using hexagonal boron nitride as a raw material, and the composition of the composite sintered body (composition, median diameter of crystal grains, dislocation density) and the composite sintered body were used. The relationship with the tool life when the stainless wire was drawn with a die was investigated.
  • a composite sintered body of Samples 1 to 17 was prepared according to the following procedure.
  • Example 10 Using an ultra-high pressure and high temperature generator, the above hexagonal boron nitride powder was selected from the temperatures and pressures listed in the “Temperature” and “Pressure” columns of the “Starting point” in Table 1 to “First step". The temperature and pressure were increased to those described in the "Achieved temperature” and “Achieved pressure” columns.
  • the heating and pressurizing path passed through the stable region of wurtzite-type boron nitride.
  • the entry temperature of wurtzite-type boron nitride into the stable region in each sample is shown in the “wBN stable region entry temperature” column of Table 1.
  • the heating and pressurizing path did not pass through the stable region of wurtzite-type boron nitride.
  • "None" is shown in the "wBN stable region entry temperature” column of Table 1.
  • the dislocation density of the cubic boron nitride particles in the composite sintered body obtained above is calculated by analyzing the line profile obtained by X-ray diffraction measurement using the modified Williamson-Hall method and the modified Warren-Averbach method. bottom. Since the specific method for calculating the dislocation density is as shown in the first embodiment, the description thereof will not be repeated. The results are shown in the "cBN dislocation density" column of Table 1.
  • a through hole was formed in the obtained composite sintered body by laser irradiation, and a die was prepared in which the central portion of the die was made of the composite sintered body and the periphery was coated with metal.
  • the minimum diameter ⁇ of the through hole was set to 0.1 mm.
  • wire drawing test was performed on a wire rod (wire diameter ⁇ : 110 ⁇ m, material: SUS304). No lubricant was used during wire drawing.
  • the wire drawing speed was 150 m / min, and the surface reduction rate was 17%.
  • the wire was drawn under the above conditions, and the wire drawing time until the surface roughness Ra of the wire became 0.020 ⁇ m was judged as the tool life.
  • the surface roughness Ra of the wire rod was measured based on ISO25178 using a laser microscope (“VK-X100” (trademark) manufactured by KEYENCE CORPORATION).
  • the tool life of each sample is "1" when wire drawing is performed under the same conditions as above using a die made of commercially available single crystal diamond (manufactured by Sumitomo Electric Hardmetal). It is shown as a ratio when.
  • the results are shown in the "Tool Life” column of Table 1. The larger the value, the less likely the surface condition of the wire is to deteriorate, and the longer the tool life is.
  • Samples 1 to 12 correspond to Examples.
  • Samples 13 to 17 correspond to Comparative Examples.
  • Sample 16 (Comparative Example) has a content of cubic boron nitride particles of 100% by volume, (Vh + Vw) / (Vc + Vh + Vw) of 0 (that is, less than 0.0015), and a tool life of less than 0.0015. It was short. The reason for this is that since the composite sintered body does not contain hexagonal boron nitride and wurtzite-type boron nitride, the slidability of the composite sintered body is low, the frictional heat associated with the increase in resistance is high, and wear is rapid. It is probable that it progressed and seizure became more likely to occur.
  • Example 2 In Example 2, a composite sintered body was produced using pyrolysis boron nitride as a raw material, and the composition of the composite sintered body (composition, median diameter of crystal grains, dislocation density) and the composite sintered body were used. The relationship with the tool life when the stainless wire was drawn with a die was investigated.
  • Samples 2-1 to 2-6 correspond to Examples.
  • Samples 2-7 to 2-9 correspond to Comparative Examples.
  • the median diameter d50 of the equivalent circle diameter of the cubic boron nitride particles was 550 nm (that is, more than 500 nm), and the tool life was shorter than that of the Example. It is presumed that the reason for this is that the particle size of the cubic boron nitride particles is large, so that the strength and toughness are lowered, the composite sintered body is liable to be chipped, and the surface condition of the wire rod is liable to be deteriorated.
  • the path for raising and lowering the temperature of sample 2-9 passes through the stable region of wurtzite-type boron nitride, but the temperature in the stable region of cubic boron nitride finally reached is as high as 2500 ° C. Therefore, it is considered that excessive grain growth occurred.
  • Example 3 In Example 3, a composite sintered body was prepared using hexagonal boron nitride as a raw material, and the composition of the composite sintered body (composition, total content of alkali metal and alkaline earth metal, median diameter of crystal grains, The relationship between the dislocation density) and the tool life when the stainless wire was drawn with a die using the composite sintered body was investigated.
  • a composite sintered body of Sample 3-1 and Sample 3-2 was prepared according to the following procedure.
  • Example 3-1 6 g of hexagonal boron nitride powder (median diameter d90: 5 ⁇ m) was prepared. The hexagonal boron nitride powder was placed in a molybdenum capsule and installed in an ultrahigh pressure and high temperature generator.
  • Example 3-2 6 g of cubic boron nitride powder (Median diameter d90: 5 ⁇ m) containing a total of more than 10 ppm of alkali metal and alkaline earth metal was prepared.
  • the cubic boron nitride powder was held at an temperature of 1900 ° C. for 1 hour in an argon atmosphere, and the cubic boron nitride was converted back to hexagonal boron nitride to obtain a hexagonal boron nitride powder.
  • the hexagonal boron nitride powder was placed in a molybdenum capsule and installed in an ultrahigh pressure and high temperature generator.
  • a through hole was formed in the obtained composite sintered body by laser irradiation, and a die was prepared in which the central portion of the die was made of the composite sintered body and the periphery was coated with metal.
  • the minimum diameter ⁇ of the through hole was set to 0.1 mm.
  • wire drawing test was performed on a wire rod (wire diameter ⁇ : 110 ⁇ m, material: SUS304). No lubricant was used during wire drawing.
  • the wire drawing speed was 250 m / min, and the surface reduction rate was 17%.
  • the wire was drawn under the above conditions, and the wire drawing time until the surface roughness Ra of the wire became 0.020 ⁇ m was judged as the tool life.
  • the surface roughness Ra of the wire rod was measured based on ISO25178 using a laser microscope (“VK-X100” (trademark) manufactured by KEYENCE CORPORATION).
  • the tool life of each sample is "1" when wire drawing is performed under the same conditions as above using a die made of commercially available single crystal diamond (manufactured by Sumitomo Electric Hardmetal). It is shown as a ratio when.
  • the results are shown in the "Tool Life” column of Table 3. The larger the value, the less likely the surface condition of the wire is to deteriorate, and the longer the tool life is.
  • Sample 3-1 and Sample 3-2 correspond to Examples. It was confirmed that the die of sample 3-1 had a longer tool life than that of sample 3-2. This is because the composite sintered body of Sample 3-1 contains less than 10 ppm of alkali metal elements and alkaline earth metal elements, and is alkaline even when the die is drawn under the condition that the friction part tends to be hot. It is considered that the conversion from cubic boron nitride to cubic underground boron due to metal elements and alkaline earth metal elements is unlikely to occur, and the progress of damage to the tool can be suppressed satisfactorily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

立方晶窒化硼素粒子と、六方晶窒化硼素粒子、又は、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子と、からなる複合焼結体であって、該立方晶窒化硼素粒子の転位密度は、1×1015/m以上1×1017/m以下であり、該立方晶窒化硼素粒子の円相当径のメジアン径d50は、10nm以上500nm以下であり、該立方晶窒化硼素粒子の体積基準の含有率Vcと、該六方晶窒化硼素粒子の体積基準の含有率Vhと、該ウルツ鉱型窒化硼素粒子の体積基準の含有率Vwとは、下記式1の関係を満たす、 式1:0.015≦(Vh+Vw)/(Vc+Vh+Vw)≦0.5 複合焼結体である。

Description

複合焼結体及びそれを用いた工具
 本開示は、複合焼結体及びそれを用いた工具に関する。
 立方晶窒化硼素(以下、「cBN」とも記す。)はダイヤモンドに次ぐ硬度を有し、熱的安定性及び化学的安定性にも優れる。このため、立方晶窒化硼素焼結体は工具の材料として用いられてきた。
 立方晶窒化硼素焼結体としては、バインダーを10~40体積%程度含むものが用いられていた。しかし、バインダーは焼結体の強度、熱拡散性を低下させる原因となっていた。
 この問題を解決するために、バインダーを用いずに、六方晶窒化硼素を超高圧高温下で立方晶窒化硼素へ直接変換させると同時に焼結させることにより、バインダーを含まない立方晶窒化硼素焼結体を得る方法が開発されている(特開2004-250278号公報(特許文献1)、特開平11-246271号公報(特許文献2)、特開2014-34487号公報(特許文献3))。
特開2004-250278号公報 特開平11-246271号公報 特開2014-34487号公報
 本開示の複合焼結体は、
 立方晶窒化硼素粒子と、
 六方晶窒化硼素粒子、又は、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子と、からなる複合焼結体であって、
 前記立方晶窒化硼素粒子の転位密度は、1×1015/m以上1×1017/m以下であり、
 前記立方晶窒化硼素粒子の円相当径のメジアン径d50は、10nm以上500nm以下であり、
 前記立方晶窒化硼素粒子の体積基準の含有率Vcと、前記六方晶窒化硼素粒子の体積基準の含有率Vhと、前記ウルツ鉱型窒化硼素粒子の体積基準の含有率Vwとは、下記式1の関係を満たす、
 式1:0.015≦(Vh+Vw)/(Vc+Vh+Vw)≦0.5
 複合焼結体である。
 本開示の工具は、上記の複合焼結体を用いた工具である。
図1は、窒化硼素の圧力-温度相図である。 図2は、本開示の複合焼結体の製造方法の一例を説明するための図である。 図3は、本開示の複合焼結体の製造方法の他の一例を説明するための図である。 図4は、本開示の複合焼結体の製造方法の他の一例を説明するための図である。
 [本開示が解決しようとする課題]
 立方晶窒化硼素焼結体を用いてダイスを作製した場合、伸線加工時の摩擦により線材に焼き付きが生じやすい。このため、伸線加工中に断線が生じたり、得られた線材の表面に傷が発生する場合がある。
 そこで、本目的は、工具材料として用いた場合に、特に伸線加工おいても、線材の表面状態を悪化させることなく、長い工具寿命を有することのできる複合焼結体を提供することを目的とする。
 [本開示の効果]
 本開示によれば、工具材料として用いた場合に、特に伸線加工おいても、線材の表面状態を悪化させることなく、長い工具寿命を有することのできる複合焼結体を提供することができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の複合焼結体は、
 立方晶窒化硼素粒子と、
 六方晶窒化硼素粒子、又は、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子と、からなる複合焼結体であって、
 前記立方晶窒化硼素粒子の転位密度は、1×1015/m以上1×1017/m以下であり、
 前記立方晶窒化硼素粒子の円相当径のメジアン径d50は、10nm以上500nm以下であり、
 前記立方晶窒化硼素粒子の体積基準の含有率Vcと、前記六方晶窒化硼素粒子の体積基準の含有率Vhと、前記ウルツ鉱型窒化硼素粒子の体積基準の含有率Vwとは、下記式1の関係を満たす、
 式1:0.015≦(Vh+Vw)/(Vc+Vh+Vw)≦0.5
 複合焼結体である。
 本開示の複合焼結体は、工具材料として用いた場合に、特に伸線加工おいても、線材の表面状態を悪化させることなく、長い工具寿命を有することができる。
 (2)前記立方晶窒化硼素粒子の転位密度は、1×1015/m以上3×1016/m以下であることが好ましい。これによると、線材への焼き付きが生じにくく、工具寿命が更に向上する。
 (3)前記立方晶窒化硼素粒子の転位密度は、1×1015/m以上5×1015/m以下であることが好ましい。これによると、線材への焼き付きが生じにくく、工具寿命が更に向上する。
 (4)前記立方晶窒化硼素粒子の円相当径のメジアン径d50は、10nm以上300nm以下であることが好ましい。これによると、線材の表面へ傷が付きにくく、線材の表面状態の悪化が抑制され、工具寿命が更に向上する。
 (5)前記立方晶窒化硼素粒子の円相当径のメジアン径d50は、10nm以上100nm以下であることが好ましい。これによると、線材の表面へ傷が付きにくく、線材の表面状態の悪化が抑制され、工具寿命が更に向上する。
 (6)前記立方晶窒化硼素粒子の体積基準の含有率Vcと、前記六方晶窒化硼素粒子の体積基準の含有率Vhと、前記ウルツ鉱型窒化硼素粒子の体積基準の含有率Vwとは、下記式2の関係を満たすことが好ましい。
 式2:0.03≦(Vh+Vw)/(Vc+Vh+Vw)≦0.4
 これによると、工具と線材との摺動性が向上し、線材の表面状態の悪化が抑制され、工具寿命が更に向上する。
 (7)前記複合焼結体のアルカリ金属元素及びアルカリ土類金属元素の合計含有量は、質量基準で10ppm以下であることが好ましい。該複合焼結体を用いた工具は、優れた工具寿命を有することができる。
 (8)前記転位密度は、修正Williamson-Hall法及び修正Warren-Averbach法を用いて算出されることが好ましい。該転位密度は複合焼結体の性能との相関が良好である。
 (9)前記転位密度は、放射光をX線源として測定されることが好ましい。該転位密度は複合焼結体の性能との相関が良好である。
 (10)本開示の工具は上記の複合焼結体を用いた工具である。本開示の工具は、特に伸線加工おいても、線材の表面状態を悪化させることなく、長い工具寿命を有することができる。
 [本開示の実施形態の詳細]
 本開示の一実施形態に係る複合焼結体及びそれを用いた工具の具体例を説明する。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 [実施形態1:複合焼結体]
 本開示の一実施形態に係る複合焼結体は、立方晶窒化硼素粒子と、六方晶窒化硼素粒子、又は、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子と、からなる複合焼結体であって、該立方晶窒化硼素粒子の転位密度は、1×1015/m以上1×1017/m以下であり、該立方晶窒化硼素粒子の円相当径のメジアン径d50は、10nm以上500nm以下であり、該立方晶窒化硼素粒子の体積基準の含有率Vcと、該六方晶窒化硼素粒子の体積基準の含有率Vhと、該ウルツ鉱型窒化硼素粒子の体積基準の含有率Vwとは、下記式1の関係を満たす、
 式1:0.015≦(Vh+Vw)/(Vc+Vh+Vw)≦0.5
 複合焼結体である。
 本開示の複合焼結体は、工具材料として用いた場合、特に伸線加工おいても、線材の表面状態を悪化させることなく、長い工具寿命を有することができる。この理由は明らかではないが、下記の(i)~(iv)の通りと推察される。
 (i)本開示の複合焼結体は、立方晶窒化硼素粒子と、六方晶窒化硼素粒子、又は、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子と、からなり、実質的にバインダー、焼結助剤、触媒等を含まない。このため、複合焼結体の強度及び熱拡散性が向上している。従って、該複合焼結体を用いた工具は、伸線加工においても、摩擦熱の発生に伴う焼き付きが生じ難く、長い工具寿命を有することができる。
 (ii)本開示の複合焼結体において、立方晶窒化硼素粒子の転位密度は1×1015/m以上1×1017/m以下である。該立方晶窒化硼素粒子は、高い硬度を有するとともに、靱性に優れ、更に、結晶性が高く、熱拡散性が大きい。従って、該立方晶窒化硼素粒子を含む複合焼結体を用いた工具は、伸線加工においても、優れた耐摩耗性を有するとともに、摩擦熱の発生に伴う焼き付きが生じ難く、長い工具寿命を有することができる。
 (iii)本開示の複合焼結体において、立方晶窒化硼素粒子の円相当径のメジアン径d50は、10nm以上500nm以下である。該立方晶窒化硼素粒子を含む複合焼結体は、優れた強度を有するとともに、靱性が向上し、優れた耐亀裂伝搬性を有することができる。従って、該複合焼結体を用いた工具は、伸線加工においても亀裂が生じ難く、長い工具寿命を有することができる。
 (iv)本開示の複合焼結体において、立方晶窒化硼素粒子の体積基準の含有率Vcと、六方晶窒化硼素粒子の体積基準の含有率Vhと、ウルツ鉱型窒化硼素粒子の体積基準の含有率Vwとは、下記式1の関係を満たす。
 式1:0.015≦(Vh+Vw)/(Vc+Vh+Vw)≦0.5
 すなわち、本開示の複合焼結体において、立方晶窒化硼素粒子、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子の合計に対する、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子の合計の割合は1.5体積%以上50体積%以下である。六方晶窒化硼素とウルツ鉱型窒化硼素は、伸線時の摩擦抵抗が小さく、複合焼結体に摺動性を付与することができる。従って、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子を上記の割合で含む複合焼結体は優れた摺動性を有し、伸線加工においても、摩擦熱の発生に伴う焼き付きや断線が生じ難く、長い工具寿命を有することができる。
 更に、六方晶窒化硼素及びウルツ鉱型窒化硼素は、立方晶窒化硼素に比べて軟らかいため、優れた耐亀裂伝搬性を有することができる。従って、該複合焼結体を用いた工具は、伸線加工においても亀裂が生じ難く、長い工具寿命を有することができる。
 更に、本開示の複合焼結体において、立方晶窒化硼素粒子、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子の合計に対する、立方晶窒化硼素粒子の割合は、50体積%以上98.5体積%以下である。上記(ii)に記載の通り、立方晶窒化硼素粒子は高い硬度を有するとともに、靱性に優れ、更に、結晶性が高く、熱拡散性が大きい。従って、該立方晶窒化硼素粒子を上記の割合で含む複合焼結体を用いた工具は、伸線加工においても、優れた耐摩耗性を有するとともに、摩擦熱の発生に伴う焼き付きが生じ難く、長い工具寿命を有することができる。
 なお、上記では本開示の複合焼結体は、伸線加工において長い工具寿命を有することを説明したが、加工方法はこれに限定されない。加工方法としては、切削工具等が挙げられる。潤滑性向上により、切削工具では被削材の凝着性を低減させ、さらに切削抵抗を低くすることができる。
 <組成>
 本開示の複合焼結体は、立方晶窒化硼素(以下、「cBN」とも記す)粒子と、六方晶窒化硼素(以下、「hBN」とも記す)粒子、又は、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素(以下、「wBN」とも記す)粒子と、からなる。すなわち、本開示の複合焼結体は、下記の(a)又は(b)の形態とすることができる。
 (a)立方晶窒化硼素粒子と、六方晶窒化硼素粒子と、からなる。
 (b)立方晶窒化硼素粒子と、六方晶窒化硼素粒子と、ウルツ鉱型窒化硼素粒子と、からなる。
 なお、本明細書において、本開示の複合焼結体に含まれる六方晶窒化硼素は、通常の「六方晶窒化硼素」及び/又は「圧縮型六方晶窒化硼素」を含むと定義される。圧縮型六方晶窒化硼素とは、通常の六方晶窒化硼素と結晶構造が類似し、c軸方向の面間隔が通常の六方晶窒化硼素の面間隔(0.333nm)よりも小さいものを示す。圧縮型六方晶窒化硼素は、通常の六方晶窒化硼素と同じく潤滑性を有する。よって、本明細書では、通常の六方晶窒化硼素と、圧縮型六方晶窒化硼素とを同一と見做し、本開示の複合焼結体に含まれる六方晶窒化硼素は、「六方晶窒化硼素」及び/又は「圧縮型六方晶窒化硼素」を含むと定義される。
 複合焼結体は、本開示の効果を示す範囲において不可避不純物を含んでいても構わない。不可避不純物としては、例えば、水素、酸素、炭素、アルカリ金属元素(リチウム(Li)、ナトリウム(Na)、カリウム(K)等)及びアルカリ土類金属元素(カルシウム(Ca)、マグネシウム(Mg)、ストロンチウム(Sr)、バリウム(Ba))等の金属元素を挙げることができる。複合焼結体が不可避不純物を含む場合は、不可避不純物の含有量は0.5体積%以下であることが好ましい。不可避不純物の含有量は、二次イオン質量分析(SIMS)により測定することができる。
 複合焼結体のアルカリ金属元素(リチウム(Li)、ナトリウム(Na)、カリウム(K))及びアルカリ土類金属元素(カルシウム(Ca)、マグネシウム(Mg、ストロンチウム(Sr)、バリウム(Ba))の合計含有量は、質量基準で10ppm以下であることが好ましい。該合計含有量は、二次イオン質量分析(SIMS)により測定される。
 上記の不可避不純物の中で、アルカリ金属元素及びアルカリ土類金属元素は、六方晶窒化硼素と立方晶窒化硼素との間の相変換に対する触媒作用を有する。複合焼結体のアルカリ金属元素及びアルカリ土類金属元素の合計含有量が10ppm以下であると、該複合焼結体を用いた工具は、加工環境下で工具と被削材との界面が高温高圧にさらされた場合であっても、工具を構成する立方晶窒化硼素の一部が六方晶窒化硼素に変換することによる工具の損傷の進展を良好に抑制することができる。六方晶窒化硼素多結晶体中のアルカリ金属元素及びアルカリ土類金属元素の合計含有量の下限は0ppmであることが好ましい。すなわち、六方晶窒化硼素多結晶体中のアルカリ金属元素及びアルカリ土類金属元素の合計含有量は、0ppm以上10ppm以下が好ましい。
 従来の立方晶窒化硼素焼結体は、例えば、特開2006-201216号公報に記載されているように、cBN砥粒を出発原料として作製されている。ここで、該cBN砥粒に残留している触媒成分(アルカリ金属元素、アルカリ土類金属元素)の合計含有量(cBN1モル中の触媒成分の含有量)は2.4×10-4~13.5×10-4モルである。従って、該cBN砥粒を焼結して得られた従来の立方晶窒化硼素焼結体の触媒成分の合計含有量は、0.01質量%(100ppm)以上であることは当業者に自明である。
 一方、本開示の複合焼結体は、後述するように、六方晶窒化硼素や熱分解窒化硼素を出発原料とし、触媒を用いることなく、該六方晶窒化硼素や該熱分解窒化硼素を加熱加圧して立方晶窒化硼素に変換させて得られる。従って、該複合焼結体の触媒成分の含有量は、質量基準で10ppm以下とすることができる。
 複合焼結体のケイ素(Si)及びアルミニウム(Al)の合計含有量は、質量基準で50ppm以下であることが好ましい。該合計含有量は、二次イオン質量分析(SIMS)により測定する。これによると、該複合焼結体を用いた工具は、加工環境下で工具と被削材との界面が高温高圧にさらされた場合であっても、工具を構成する立方晶窒化硼素の一部がSiやAlと反応することによる工具の損傷の進展を良好に抑制することができる。
 複合焼結体は、実質的にバインダー、焼結助剤、触媒等を含まない。これにより、複合焼結体の強度及び熱拡散性が向上している。
 複合焼結体中の立方晶窒化硼素粒子の含有率の下限は、50体積%以上が好ましく、60体積%以上がより好ましく、70体積%以上が更に好ましい。複合焼結体中の立方晶窒化硼素粒子の含有率の上限は、98.5体積%以下が好ましく、97体積%以下がより好ましく、95体積%以下が更に好ましい。複合焼結体中の立方晶窒化硼素粒子の含有率は、50体積%以上98.5体積%以下が好ましく、60体積%以上97体積%以下がより好ましく、70体積%以上95体積%以下が更に好ましい。
 複合焼結体中の六方晶窒化硼素粒子の含有率の下限は、1.5体積%以上が好ましく、3体積%以上がより好ましく、5体積%以上が更に好ましい。複合焼結体中の六方晶窒化硼素粒子の含有率の上限は、50体積%以下が好ましく、40体積%以下がより好ましく、30体積%以下が更に好ましい。複合焼結体中の六方晶窒化硼素粒子の含有率は、1.5体積%以上50体積%以下が好ましく、3体積%以上40体積%以下がより好ましく、5体積%以上30体積%以下が更に好ましい。
 複合焼結体中のウルツ鉱型窒化硼素粒子の含有率の下限は、1.5体積%以上が好ましく、3体積%以上がより好ましく、5体積%以上が更に好ましい。複合焼結体中のウルツ鉱型窒化硼素粒子の含有率の上限は、40体積%以下が好ましく、30体積%以下がより好ましく、20体積%以下が更に好ましい。複合焼結体中のウルツ鉱型窒化硼素粒子の含有率は、1.5体積%以上40体積%以下が好ましく、3体積%以上30体積%以下がより好ましく、5体積%以上20体積%以下が更に好ましい。
 本開示の複合焼結体において、立方晶窒化硼素粒子の体積基準の含有率Vcと、六方晶窒化硼素粒子の体積基準の含有率Vhと、ウルツ鉱型窒化硼素粒子の体積基準の含有率Vwとは、下記式1の関係を満たす。
 式1:0.015≦(Vh+Vw)/(Vc+Vh+Vw)≦0.5
 上記式1の関係を満たす複合焼結体では、立方晶窒化硼素粒子、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子の合計に対する、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子の合計の割合は1.5体積%以上50体積%以下である。六方晶窒化硼素とウルツ鉱型窒化硼素は、伸線時の摩擦抵抗が小さく、複合焼結体に摺動性を付与することができる。従って、六方晶窒化硼素及びウルツ鉱型窒化硼素を上記の割合で含む複合焼結体は、優れた摺動性を有し、伸線加工においても、摩擦熱の発生に伴う焼き付きや断線が生じ難く、長い工具寿命を有することができる。
 更に、六方晶窒化硼素及びウルツ鉱型窒化硼素は、立方晶窒化硼素に比べて軟らかいため、優れた耐亀裂伝搬性を有することができる。従って、該複合焼結体を用いた工具は、伸線加工においても亀裂が生じ難く、長い工具寿命を有することができる。
 更に、本開示の複合焼結体において、立方晶窒化硼素粒子、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子の合計に対する、立方晶窒化硼素粒子の割合は、50体積%以上98.5体積%以下である。立方晶窒化硼素粒子は高い硬度を有するとともに、靱性に優れ、更に、結晶性が高く、熱拡散性が大きい。従って、該立方晶窒化硼素粒子を上記の割合で含む複合焼結体を用いた工具は、伸線加工においても、優れた耐摩耗性を有するとともに、摩擦熱の発生に伴う焼き付きが生じ難く、長い工具寿命を有することができる。
 立方晶窒化硼素粒子の体積基準の含有率Vcと、六方晶窒化硼素粒子の体積基準の含有率Vhと、ウルツ鉱型窒化硼素粒子の体積基準の含有率Vwとは、下記式2の関係を満たすことが好ましく、下記式3の関係を満たすことが更に好ましい。
 式2:0.03≦(Vh+Vw)/(Vc+Vh+Vw)≦0.4
 式3:0.05≦(Vh+Vw)/(Vc+Vh+Vw)≦0.3
 六方晶窒化硼素粒子の体積基準の含有率Vhと、ウルツ鉱型窒化硼素粒子の体積基準の含有率Vwとは、下記式4の関係を満たすことが好ましく、式5の関係を満たすことが更に好ましい。
 式4:0.05≦Vh/(Vh+Vw)≦1
 式5:0.1≦Vh/(Vh+Vw)≦0.95
 これによると、複合焼結体は、高い摺動性を有し、かつ優れた耐亀裂伝搬性を有する。
 複合焼結体中の立方晶窒化硼素粒子、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子の体積基準の含有率(体積%)は、X線回折法により測定することができる。具体的な測定方法は下記の通りである。
 複合焼結体をダイヤモンド砥石電着ワイヤーで切断し、切断面を観察面とする。
 X線回折装置(Rigaku社製「MiniFlex600」(商品名))を用いて複合焼結体の切断面のX線スペクトルを得る。このときのX線回折装置の条件は、下記の通りとする。
 特性X線: Cu-Kα(波長1.54Å)
 管電圧: 45kV
 管電流: 40mA
 フィルター: 多層ミラー
 光学系: 集中法
 X線回折法: θ-2θ法。
 得られたX線スペクトルにおいて、下記のピーク強度A、ピーク強度B及びピーク強度Cを測定する。
 ピーク強度A:回折角2θ=26°および28.5°付近のピーク強度から、バックグランドを除いた六方晶窒化硼素のピーク強度。26°付近のピークおよび28.5°付近のピークの2本が存在する場合は、両者のピーク強度の合算値を六方晶窒化硼素のピーク強度とする。
 ピーク強度B:回折角2θ=40.8°付近のピーク強度から、バックグラウンドを除いたウルツ鉱型窒化硼素のピーク強度。
 ピーク強度C:回折角2θ=43.5°付近のピーク強度から、バックグラウンドを除いた立方晶窒化硼素のピーク強度。
 六方晶窒化硼素粒子の含有率は、ピーク強度A/(ピーク強度A+ピーク強度B+ピーク強度C)の値を算出することにより得られる。ウルツ鉱型窒化硼素粒子の含有率は、ピーク強度B/(ピーク強度A+ピーク強度B+ピーク強度C)の値を算出することにより得られる。立方晶窒化硼素粒子の含有率は、ピーク強度C/(ピーク強度A+ピーク強度B+ピーク強度C)の値を算出することにより得られる。六方晶窒化硼素、圧縮型六方晶窒化硼素、ウルツ鉱型窒化硼素及び立方晶窒化硼素は、全て同程度の電子的な重みを有するため、上記のX線ピーク強度比を複合焼結体中の体積比と見なすことができる。また、不可避不純物の含有量は微量であるため、複合焼結体中の立方晶窒化硼素粒子、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子の含有率(体積%)の算出には影響を与えない。
 <立方晶窒化硼素粒子の転位密度>
 本開示の複合焼結体において、立方晶窒化硼素粒子の転位密度は1×1015/m以上1×1017/m以下である。該立方晶窒化硼素粒子は、高い硬度を有するとともに、靱性に優れ、更に、結晶性が高く、熱拡散性が大きい。従って、該立方晶窒化硼素粒子を含む複合焼結体を用いた工具は、伸線加工においても、優れた耐摩耗性を有するとともに、摩擦熱の発生に伴う焼き付きが生じ難く、長い工具寿命を有することができる。
 立方晶窒化硼素粒子の転位密度の上限は、靱性及び熱拡散性の向上の観点から、3×1016/m以下が好ましく、5×1015/m以下がより好ましい。立方晶窒化硼素の転位密度の下限は、高硬度及び優れた耐摩耗性を維持する観点から、1×1015以上が好ましい。立方晶窒化硼素粒子の転位密度は1×1015/m以上3×1016/m以下が好ましく、1×1015/m以上5×1015/m以下が更に好ましい。
 本明細書において、転位密度とは下記の手順により算出される。
 複合焼結体からなる試験片を準備する。試験片の大きさは、観察面が2.0mm×2.0mmであり、厚みが1.0mmである。試験片の観察面を研磨する。
 該試験片の観察面について、下記の条件でX線回折測定を行い、立方晶窒化硼素の主要な方位である(111)、(200)、(220)、(311)、(400)、(331)の各方位面からの回折ピークのラインプロファイルを得る。
 (X線回折測定条件)
 X線源:放射光
 装置条件:検出器NaI(適切なROIにより蛍光をカットする。)
 エネルギー:18keV(波長:0.6888Å)
 分光結晶:Si(111)
 入射スリット:幅5mm×高さ0.5mm
 受光スリット:ダブルスリット(幅3mm×高さ0.5mm)
 ミラー:白金コート鏡
 入射角:2.5mrad
 走査方法:2θ-θscan
 測定ピーク:立方晶窒化硼素の(111)、(200)、(220)、(311)、(400)、(331)の6本。ただし、集合組織、配向によりプロファイルの取得が困難な場合は、その面指数のピークを除く。
 測定条件:半値幅中に、測定点が9点以上となるようにする。ピークトップ強度は2000counts以上とする。ピークの裾も解析に使用するため、測定範囲は半値幅の10倍程度とする。
 上記のX線回折測定により得られるラインプロファイルは、試料の不均一ひずみなどの物理量に起因する真の拡がりと、装置起因の拡がりの両方を含む形状となる。不均一ひずみや結晶子サイズを求めるために、測定されたラインプロファイルから、装置起因の成分を除去し、真のラインプロファイルを得る。真のラインプロファイルは、得られたラインプロファイルおよび装置起因のラインプロファイルを擬Voigt関数によりフィッティングし、装置起因のラインプロファイルを差し引くことにより得る。装置起因の回折線拡がりを除去するための標準サンプルとしては、LaBを用いる。また、平行度の高い放射光を用いる場合は、装置起因の回折線拡がりは0とみなすことができる。
 得られた真のラインプロファイルを修正Williamson-Hall法及び修正Warren-Averbach法を用いて解析することによって転位密度を算出する。修正Williamson-Hall法及び修正Warren-Averbach法は、転位密度を求めるために用いられている公知のラインプロファイル解析法である。
 修正Williamson-Hall法の式は、下記式(I)で示される。
Figure JPOXMLDOC01-appb-M000001
(上記式(I)において、ΔKはラインプロファイルの半値幅、Dは結晶子サイズ、Mは配置パラメータ、bはバーガースベクトル、ρは転位密度、Kは散乱ベクトル、O(KC)はKCの高次項、Cはコントラストファクターの平均値を示す。)
 上記式(I)におけるCは、下記式(II)で表される。
 C=Ch00[1-q(hk+hl+kl)/(h+k+l)] (II)
 上記式(II)において、らせん転位と刃状転位におけるそれぞれのコントラストファクターCh00およびコントラストファクターに関する係数qは、計算コードANIZCを用い、すべり系が<110>{111}、弾性スティフネスC11が8.44GPa、C12が1.9GPa、C44が4.83GPaとして求める。コントラストファクターCh00は、らせん転位は0.203であり、刃状転位は0.212である。コントラストファクターに関する係数qは、らせん転位は1.65であり、刃状転位は0.58である。なお、らせん転位比率は0.5、刃状転位比率は0.5に固定する。
 また、転位と不均一ひずみの間にはコントラストファクターCを用いて下記式(III)の関係が成り立つ。
 <ε(L)>=(ρCb/4π)ln(R/L) (III)
(上記式(III)において、Rは転位の有効半径を示す。)
 上記式(III)の関係と、Warren-Averbachの式より、下記式(IV)の様に表すことができ、修正Warren-Averbach法として、転位密度ρ及び結晶子サイズを求めることができる。
 lnA(L)=lnA(L)-(πLρb/2)ln(R/L)(KC)+O(KC) (IV)(上記式(IV)において、A(L)はフーリエ級数、A(L)は結晶子サイズに関するフーリエ級数、Lはフーリエ長さを示す。)
 修正Williamson-Hall法及び修正Warren-Averbach法の詳細は、“T. Ungar and A. Borbely, “The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis” Appl. Phys. Lett., vol. 69, no. 21, p. 3173, 1996.”及び“T. Ungar, S. Ott, P. Sanders, A. Borbely, J. Weertman, “Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis” Acta Mater., vol. 46, no. 10, pp. 3693 - 3699, 1998.”に記載されている。
 <立方晶窒化硼素粒子のメジアン径d50>
 本開示の複合焼結体において、立方晶窒化硼素粒子の円相当径のメジアン径d50(以下、「粒径」とも記す)は、10nm以上500nm以下である。該立方晶窒化硼素粒子を含む複合焼結体は、優れた強度を有するとともに、靱性が向上し、優れた耐亀裂伝搬性を有することができる。従って、該複合焼結体を用いた工具は、伸線加工においても亀裂が生じ難く、長い工具寿命を有することができる。
 立方晶窒化硼素粒子の円相当径のメジアン径d50の上限は、優れた強度及び靱性を確保する観点から500nm以下であり、100nm以下が好ましい。立方晶窒化硼素粒子の円相当径のメジアン径d50の下限は、製造上の観点から、10nm以上である。立方晶窒化硼素粒子の円相当径のメジアン径d50は、10nm以上300nm以下が好ましく、10nm以上100nm以下が更に好ましい。
 (メジアン径d50の測定方法)
 本明細書において、複合焼結体に含まれる複数の立方晶窒化硼素粒子の円相当径のメジアン径d50とは、任意に選択された5箇所の各測定箇所において、複数の立方晶窒化硼素粒子のメジアン径d50をそれぞれ測定し、これらの平均値を算出することにより得られた値を意味する。
 なお、出願人が測定した限りでは、同一の試料においてメジアン径d50を測定する限り、複合焼結体における測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 複合焼結体が工具の一部として用いられている場合は、複合焼結体の部分を、ダイヤモンド砥石電着ワイヤー等で切り出して、切り出した断面を研磨し、当該研磨面において5箇所の測定箇所を任意に設定する。
 各測定箇所における複数の立方晶窒化硼素粒子の円相当径のメジアン径d50の測定方法について下記に具体的に説明する。
 測定箇所が露出するように複合焼結体をダイヤモンド砥石電着ワイヤー等で切断し、切断面を研磨する。当該研磨面上の測定箇所をSEM(日本電子株式会社社製「JSM-7500F」(商品名))を用いて観察し、SEM画像を得る。測定視野のサイズは12μm×15μmとし、観察倍率は10000倍とする。
 5つのSEM画像のそれぞれについて、測定視野内に観察される結晶粒の粒界を分離した状態で、画像処理ソフト(Win Roof ver.7.4.5)を用いて、立方晶窒化硼素粒子の円相当径の分布を算出する。
 メジアン径d50は、測定視野の全体を分母として算出する。立方晶窒化硼素粒子の円相当径の分布から、メジアン径d50を算出する。
 [実施形態2:工具]
 本開示の工具は、実施形態1の複合焼結体を用いた工具である。具体的には、切削工具、耐摩工具、研削工具などに用いることが好適である。
 本開示の複合焼結体を用いた切削工具、耐摩工具および研削工具はそれぞれ、その全体が複合焼結体で構成されていても良いし、その一部(たとえば切削工具の場合、刃先部分)のみが複合焼結体で構成されていても良い。さらに、各工具の表面にコーティング膜が形成されていても良い。
 切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、切削バイトなどを挙げることができる。
 耐摩工具としては、ダイス、スクライバー、スクライビングホイール、ドレッサーなどを挙げることができる。研削工具としては、研削砥石などを挙げることができる。
 [実施形態3:複合焼結体の製造方法]
 本開示の複合焼結体の製造方法の具体例を図1~図4を用いて説明する。図1は、窒化硼素の圧力-温度相図である。図2~図4は、それぞれ本開示の複合焼結体の製造方法の一例を説明するための図である。
 まず、複合焼結体の製造方法の理解を助けるために、窒化硼素の圧力-温度相図について説明する。図1に示されるように、窒化硼素には、常温常圧の安定相である六方晶窒化硼素、高温高圧の安定相である立方晶窒化硼素、及び、六方晶窒化硼素から立方晶窒化硼素への転位の間の準安定相であるウルツ鉱型窒化硼素の3つの相が存在する。
 各相の境界は一次関数で表すことができる。本明細書において、各相の安定領域内の温度及び圧力は、一次関数を用いて示すことができるものとする。
 本明細書において、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力(図1において、「wBN安定領域」と記す。)は、温度をT(℃)、圧力をP(GPa)とした時に、下記式(1)及び下記式(2)を同時に満たす温度及び圧力として定義する。
 式(1):P≧-0.0037T+11.301
 式(2):P≦-0.085T+117
 本明細書において、六方晶窒化硼素の安定領域内の温度及び圧力(図1において、「hBN安定領域」と記す。)は、温度をT(℃)、圧力をP(GPa)とした時に、下記式A及び下記式Bを同時に満たす温度及び圧力、又は下記式C及び下記式Dを同時に満たす温度及び圧力として定義する。
 式A:P≦-0.0037T+11.301
 式B:P≦-0.085T+117
 式C:P≦0.0027T+0.3333
 式D:P≧-0.085T+117
 本明細書において、立方晶窒化硼素の安定領域内の温度及び圧力(図1において、「cBN安定領域」と記す。)は、温度をT(℃)、圧力をP(GPa)とした時に、下記式D及び下記式Eを同時に満たす温度及び圧力として定義する。
 式D:P≧-0.085T+117
 式E:P≧0.0027T+0.3333
 本開示の複合焼結体の製造方法においては、原料として六方晶窒化硼素又は熱分解窒化硼素を用いる。六方晶窒化硼素又は熱分解窒化硼素に対して、立方晶窒化硼素の安定領域内の温度及び圧力まで加熱加圧処理を行うことにより、原料の少なくとも一部を立方晶窒化硼素に変換することができる。本発明者らは、加熱加圧処理における温度及び圧力の経路、並びに、一定温度及び一定圧力での保持時間を鋭意検討することにより、本開示の複合焼結体を得ることができる加熱加圧条件を新たに見出した。
 本開示の複合焼結体の製造方法の各工程の詳細について、図2~図4を用いて下記に説明する。なお、図2~図4において、矢印は加熱加圧経路を示す。図2~図4に示される経路は一例であり、これらに限定されるものではない。
 <準備工程>
 複合焼結体の原料として、六方晶窒化硼素粉末又は熱分解窒化硼素を準備する。六方晶窒化硼素粉末は、純度(六方晶窒化硼素の含有率)が98.5%以上が好ましく、99%以上がより好ましく、100%が最も好ましい。六方晶窒化硼素粉末の粒径は特に限定されないが、例えば、0.1μm以上10μm以下とすることができる。
 熱分解窒化硼素は、その粒径が熱分解により非常に細かくなっており、粒成長しにくい。よって、原料として熱分解窒化硼素を用いると、得られる複合焼結体中の立方晶窒化硼素粒子の粒径が小さくなる傾向がある。熱分解窒化硼素は従来公知の合成法により製造したもの、及び、市販の熱分解窒化硼素のいずれも用いることができる。
 <加熱加圧工程>
 次に、六方晶窒化硼素粉末又は熱分解窒化硼素を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、立方晶窒化硼素の安定領域内の温度及び圧力まで加熱加圧する。
 加熱加圧経路は、実施形態1の複合焼結体を得られるように適宜調整する。例えば、図2に示されるように、六方晶窒化硼素粉末又は熱分解窒化硼素を、開始点(25℃、0GPa)から、温度を維持したまま加圧し(矢印A1)、続いて圧力を維持したまま加熱し(矢印A2)、続いて温度を維持したまま加圧し(矢印A3)、続いて圧力を維持したまま加熱して(矢印A4)、立方晶窒化硼素の安定領域内の温度及び圧力まで到達させることにより、本開示の複合焼結体を得ることができる。図2の加熱加圧経路では、矢印A3で示される2回目の加圧の際に、加熱加圧経路がウルツ鉱型窒化硼素の安定領域内に突入する。
 また、図3に示されるように、六方晶窒化硼素粉末又は熱分解窒化硼素を、開始点(25℃、0GPa)から、圧力を維持したまま加熱し(矢印B1)、続いて温度を維持したまま加圧し(矢印B2)、続いて圧力を維持したまま加熱して(矢印B3)、立方晶窒化硼素の安定領域内の温度及び圧力まで到達させることにより、本開示の複合焼結体を得ることができる。図3の加熱加圧経路では、矢印B2で示される1回目の加圧の際に、加熱加圧経路がウルツ鉱型窒化硼素の安定領域内に突入する。
 図4には、矢印C1及び矢印C3で示される加熱加圧経路と、矢印C2及び矢印C4で示される加熱加圧経路が示されている。図4に示されるように、六方晶窒化硼素粉末又は熱分解窒化硼素を、開始点(25℃、0GPa)から、温度を維持したまま加圧し(矢印C1、矢印C2)、続いて圧力を維持したまま加熱して(矢印C3、矢印C4)、立方晶窒化硼素の安定領域内の温度及び圧力まで到達させることにより、本開示の複合焼結体を得ることができる。図4の加熱加圧経路では、矢印C3で示される1回目の加熱、又は、矢印C2で示される1回目の加圧の際に、加熱加圧経路がウルツ鉱型窒化硼素の安定領域内に突入する。
 図2~図4に示されるいずれの加熱加圧経路においても、最終的に到達する立方晶窒化硼素の安定領域内の温度は、例えば、1200℃以上2500℃未満とすることができ、圧力は6GPa以上20GPa以下とすることができる。該温度及び該圧力での保持時間は1分以上30分以下とすることができる。これによると、原料が全て立方晶窒化硼素へ変換せず、複合焼結体中に六方晶窒化硼素粒子、又は、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子が残存することができる。
 複合焼結体中の立方晶窒化硼素粒子の転位密度は、立方晶窒化硼素の安定領域内での保持時間を増加させることにより、増加させることができる。また、図2~図4に示される、ウルツ鉱型の安定領域内であって、六方晶窒化硼素の安定領域とウルツ鉱型窒化硼素の安定領域との境界(P=-0.0037T+11.301)と、P=-0.0037T+11.5で示される点線との間の温度及び圧力において、3分以上保持することにより、増加させることができる。
 <付記>
 以上の説明は、以下に付記する実施形態を含む。
 (付記1)
 立方晶窒化硼素粒子と、
 六方晶窒化硼素粒子、又は、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子と、からなる複合焼結体であって、
 前記立方晶窒化硼素粒子の転位密度は、1×1015/m以上1×1017/m以下であり、
 前記立方晶窒化硼素粒子の円相当径のメジアン径d50は、10nm以上500nm以下であり、
 前記立方晶窒化硼素粒子の体積基準の含有率Vcと、前記六方晶窒化硼素粒子の体積基準の含有率Vhと、前記ウルツ鉱型窒化硼素粒子の体積基準の含有率Vwとは、下記式1の関係を満たす、
 式1:0.015≦(Vh+Vw)/(Vc+Vh+Vw)≦0.5
 複合焼結体。
 (付記2)
 前記六方晶窒化硼素粒子の体積基準の含有率Vhと、前記ウルツ鉱型窒化硼素粒子の体積基準の含有率Vwとは、下記式4の関係を満たす、
 式4:0.05≦Vh/(Vh+Vw)≦1
 付記1に記載の複合焼結体。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 [実施例1]
 実施例1では、原料として六方晶窒化硼素を用いて複合焼結体を作製し、複合焼結体の構成(組成、結晶粒のメジアン径、転位密度)と、該複合焼結体を用いたダイスでステンレス線の伸線加工を行った場合の工具寿命との関係を調べた。
 <複合焼結体の作製>
 試料1~試料17の複合焼結体を、下記の手順に従って作製した。
 (準備工程)
 六方晶窒化硼素粉末(デンカ社製の「デンカボロンナイトライド」(商品名)、粒径5μm)を6g準備した。上記の六方晶窒化硼素粉末を、モリブデン製のカプセルに入れ、超高圧高温発生装置に設置した。
 (加熱加圧工程)
 [試料1~試料6、試料8、試料9]
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表1の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、「第一段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温又は昇圧した。
 続いて、表1の「第二段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温又は昇圧し、「保持時間」の欄に記載される長さで保持した。「保持時間」に「0」と記載されている場合は、直ちに後述の「第三段階」へ移行した。
 続いて、表1の「第三段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇圧し、「保持時間」の欄に記載される長さで保持した。「保持時間」に「0」と記載されている場合は、直ちに後述の「第四段階」へ移行した。
 続いて、表1の「第四段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温し、「保持時間」の欄に記載される長さで保持して複合焼結体を得た。
 [試料7、試料11~試料17]
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表1の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、「第一段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温又は昇圧し、「保持時間」の欄に記載される長さで保持した。「保持時間」に「0」と記載されている場合は、直ちに後述の「第三段階」へ移行した。
 続いて、表1の「第二段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温又は昇圧し、「保持時間」の欄に記載される長さで保持した。「保持時間」に「0」と記載されている場合は、直ちに後述の「第三段階」へ移行した。
 続いて、表1の「第三段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温又は昇圧し、「保持時間」の欄に記載される長さで保持して複合焼結体を得た。
 [試料10]
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表1の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、「第一段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇圧した。
 続いて、表1の「第二段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温し、「保持時間」の欄に記載される長さで保持して複合焼結体を得た。
 試料1~試料12は、加熱加圧経路が、ウルツ鉱型窒化硼素の安定領域内を通過した。各試料におけるウルツ鉱型窒化硼素の安定領域内への突入温度を、表1の「wBN安定領域突入温度」欄に示す。試料13~試料17は、加熱加圧経路が、ウルツ鉱型窒化硼素の安定領域内を通過しなかった。この場合、表1の「wBN安定領域突入温度」欄には「無」と示した。
 <評価>
 (組成の測定)
 上記で得られた複合焼結体において、立方晶窒化硼素粒子、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子のそれぞれの含有率(体積%)を、X線回折法により測定した。X線回折法の具体的な方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。結果を表1の「cBN体積%」、「hBN体積%」、「wBN体積%」欄に示す。また、これらの結果に基づき、(Vh+Vw)/(Vc+Vh+Vw)の値も算出した。結果を表1の「Vh+Vw/Vc+Vh+Vw」欄に示す。
 なお、全ての試料において、cBN、hBN及びwBN以外の成分は同定されなかった。
 (転位密度の測定)
 上記で得られた複合焼結体中の立方晶窒化硼素粒子の転位密度を、X線回折測定により得られるラインプロファイルを修正Williamson-Hall法及び修正Warren-Averbach法を用いて解析することにより算出した。転位密度の具体的な算出方法は、実施形態1に示される通りであるため、その説明は繰り返さない。結果を表1の「cBN転位密度」欄に示す。
 (メジアン径d50の測定)
 上記で得られた複合焼結体に含まれる立方晶窒化硼素粒子について、円相当径のメジアン径d50を測定した。具体的な方法は、実施形態1に示される通りであるため、その説明は繰り返さない。結果を表1の「メジアン径d50」欄に示す。
 (伸線試験)
 得られた複合焼結体に対して、レーザ照射により貫通孔を形成し、ダイスの中央部分が複合焼結体からなり、周囲が金属で被覆されているダイスを作製した。貫通孔は径の最小値φを0.1mmとした。
 上記のダイスを用いて、線材(線径φ:110μm、素材:SUS304)の伸線加工試験を行った。伸線時には潤滑剤を用いなかった。伸線速度は150m/分であり、減面率は17%であった。
 上記の条件で伸線し、線材の表面粗さRaが0.020μmとなった時点までの伸線時間を工具寿命と判断した。線材の表面粗さRaは、レーザ顕微鏡(キーエンス社製「VK-X100」(商標))を用い、ISO25178に基づき測定した。各試料の工具寿命を、市販の単結晶ダイヤモンド(住友電工ハードメタル製)を用いて作製されたダイスを用いて、上記と同一の条件で伸線加工を行った時の工具寿命を「1」とした場合の比として示す。結果を表1の「工具寿命」欄に示す。数値が大きいほど、線材の表面状態の悪化が起こりにくく、工具寿命が長いことを示す。
Figure JPOXMLDOC01-appb-T000002
 <考察>
 試料1~試料12は実施例に該当する。試料13~試料17は比較例に該当する。
 実施例(試料1~試料12)のダイスは、比較例(試料13~試料17)に比べて、線材の表面状態の悪化が起こりにくく、工具寿命が長いことが確認された。
 試料13~試料15(比較例)は、立方晶窒化硼素粒子の転位密度が1×1015未満であり、工具寿命が実施例よりも短かった。この理由は、立方晶窒化硼素粒子の硬度の低下に伴い、複合焼結体の耐摩耗性が低下し、線材の表面状態が悪化しやすくなったためと推察される。
 試料16(比較例)は、立方晶窒化硼素粒子の含有率が100体積%であり、(Vh+Vw)/(Vc+Vh+Vw)が0(すなわち、0.0015未満)であり、工具寿命が実施例よりも短かった。この理由は、複合焼結体が六方晶窒化硼素及びウルツ鉱型窒化硼素を含まないため、複合焼結体の摺動性が低く、抵抗の増加に伴う摩擦熱が高くなり、摩耗が急速に進み、焼き付きが生じやすくなったためと考えられる。
 試料17(比較例)は、立方晶窒化硼素粒子の含有率が100体積%であり、(Vh+Vw)/(Vc+Vh+Vw)が0(すなわち、0.0015未満)であり、かつ、立方晶窒化硼素粒子の円相当径のメジアン径d50が720nm(すなわち、500nm超)であり、工具寿命が実施例よりも短かった。この理由は、複合焼結体が六方晶窒化硼素及びウルツ鉱型窒化硼素を含まないため、複合焼結体の摺動性が低く、抵抗の増加に伴う摩擦熱が高くなり、摩耗が急速に進み、焼き付きが生じやすくなったため、及び、立方晶窒化硼素粒子の粒径が大きいため、強度及び靱性が低下し、複合焼結体の欠損が生じやすく、線材の表面状態が悪化しやすくなったためと推察される。
 [実施例2]
 実施例2では、原料として熱分解窒化硼素を用いて複合焼結体を作製し、複合焼結体の構成(組成、結晶粒のメジアン径、転位密度)と、該複合焼結体を用いたダイスでステンレス線の伸線加工を行った場合の工具寿命との関係を調べた。
 <複合焼結体の作製>
 試料2-1~試料2-9の複合焼結体を、下記の手順に従って作製した。
 (準備工程)
 熱分解窒化硼素を6g準備した。熱分解窒化硼素を、モリブデン製のカプセルに入れ、超高圧高温発生装置に設置した。
 (加熱加圧工程)
 [試料2-3、試料2-6]
 上記の熱分解窒化硼素を、超高圧高温発生装置を用いて、表1の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、「第一段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇圧した。いずれの試料も保持時間は0分であり、直ちに後述の「第二段階」へ移行した。
 続いて、表1の「第二段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温した。
 続いて、表1の「第三段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇圧し、「保持時間」の欄に記載される長さで保持した。「保持時間」に「0」と記載されている場合は、直ちに後述の「第四段階」へ移行した。
 続いて、表1の「第四段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温し、「保持時間」の欄に記載される長さで保持して複合焼結体を得た。
 [試料2-2、試料2-7、試料2-8]
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表1の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、「第一段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇圧した。
 続いて、表1の「第二段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温し、「保持時間」の欄に記載される長さで保持した。「保持時間」に「0」と記載されている場合は、直ちに後述の「第三段階」へ移行した。
 続いて、表1の「第三段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温及び/又は昇圧し、「保持時間」の欄に記載される長さで保持して複合焼結体を得た。
 [試料2-1、試料2-4、試料2-5、試料2-9]
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表1の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、「第一段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇圧し、「保持時間」の欄に記載される長さで保持した。「保持時間」に「0」と記載されている場合は、直ちに後述の「第二段階」へ移行した。
 続いて、表1の「第二段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温し、「保持時間」の欄に記載される長さで保持して複合焼結体を得た。
 試料2-1~試料2-6、試料2-9は、昇圧昇温の経路が、ウルツ鉱型窒化硼素の安定領域内を通過した。各試料におけるウルツ鉱型窒化硼素の安定領域内への突入温度を、表1の「cBN安定領域突入温度」欄に示す。試料2-7及び試料2-8は、昇圧昇温の経路が、ウルツ鉱型窒化硼素の安定領域内を通過しなかった。
 <評価>
 (組成の測定、転位密度の測定、メジアン径d50の測定)
 得られた複合焼結体について、実施例1と同様の方法で、組成の測定、立方晶窒化硼素粒子の転位密度の測定、メジアン径d50の測定を行った。結果を表2の「cBN体積%」、「hBN体積%」、「wBN体積%」、「Vh+Vw/Vc+Vh+Vw」、「cBN転位密度」、「メジアン径d50」欄に示す。
 (伸線試験)
 得られた複合焼結体に対して、レーザ照射により貫通孔を形成してダイスを作製した。貫通孔は径の最小値φを0.1mmとした。該ダイスを用いて、実施例1と同様の条件で伸線試験を行った。結果を表2の「工具寿命」欄に示す。
Figure JPOXMLDOC01-appb-T000003
 <考察>
 試料2-1~試料2-6は実施例に該当する。試料2-7~試料2-9は比較例に該当する。
 実施例(試料2-1~試料2-6)のダイスは、比較例(試料2-7~試料2-9)に比べて、工具寿命が長いことが確認された。
 試料2-7及び試料2-8(比較例)は、立方晶窒化硼素粒子の転位密度が1×1015未満であり、工具寿命が実施例よりも短かった。この理由は、立方晶窒化硼素粒子の硬度の低下に伴い、複合焼結体の耐摩耗性が低下し、線材の表面状態が悪化しやすくなったためと推察される。
 試料2-9(比較例)は、立方晶窒化硼素粒子の円相当径のメジアン径d50が550nm(すなわち、500nm超)であり、工具寿命が実施例よりも短かった。この理由は、立方晶窒化硼素粒子の粒径が大きいため、強度及び靱性が低下し、複合焼結体の欠損が生じやすく、線材の表面状態が悪化しやすくなったためと推察される。なお、試料2-9の昇温昇圧の経路は、ウルツ鉱型窒化硼素の安定領域内を通過しているが、最終的に到達する立方晶窒化硼素の安定領域内の温度が2500℃と高温のため、過剰な粒成長が生じたと考えられる。
 [実施例3]
 実施例3では、原料として六方晶窒化硼素を用いて複合焼結体を作製し、該複合焼結体の構成(組成、アルカリ金属及びアルカリ土類金属の合計含有量、結晶粒のメジアン径、転位密度)と、該複合焼結体を用いたダイスでステンレス線の伸線加工を行った場合の工具寿命との関係を調べた。
 <複合焼結体の作製>
 試料3-1及び試料3-2の複合焼結体を、下記の手順に従って作製した。
 (第1工程)
 [試料3-1]
 六方晶窒化硼素粉末(メジアン径d90:5μm)を6g準備した。該六方晶窒化硼素粉末を、モリブデン製のカプセルに入れ、超高圧高温発生装置に設置した。
 [試料3-2]
 アルカリ金属及びアルカリ土類金属を合計で10ppmより多く含む立方晶窒化硼素粉末(メジアン径d90:5μm)を6g準備した。該立方晶窒化硼素粉末をアルゴン雰囲気下、1900℃の温度で1時間保持し、立方晶窒化硼素を六方晶窒化硼素へ逆変換させて、六方晶窒化硼素粉末を得た。該六方晶窒化硼素粉末を、モリブデン製のカプセルに入れ、超高圧高温発生装置に設置した。
 (加熱加圧工程)
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表3の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、温度を維持したまま「第一段階」の「到達圧力」欄に記載される圧力まで昇圧した。
 続いて、圧力を維持したまま、表3の「第二段階」の「到達温度」欄に記載される温度まで昇温した。
 続いて、温度を維持したまま、表3の「第三段階」の「到達圧力」欄に記載される圧力まで昇圧した。
 続いて、圧力を維持したまま、表3の「第四段階」の「到達温度」欄に記載される温度まで昇温し、「保持時間」の欄に記載される長さで保持し複合焼結体を得た。
 <評価>
 (組成、転位密度、及び、結晶粒のメジアン径d50の測定)
 得られた複合焼結体について、実施例1と同様の方法で、組成の測定、立方晶窒化硼素粒子の転位密度の測定、メジアン径d50の測定を行った。結果を表3の「cBN体積%」、「hBN体積%」、「wBN体積%」、「Vh+Vw/Vc+Vh+Vw」、「cBN転位密度」、「メジアン径d50」欄に示す。
 (アルカリ金属元素及びアルカリ土類金属元素の合計含有量の測定)
 得られた複合焼結体中のアルカリ金属元素及びアルカリ土類金属元素の合計含有量を、SIMSにより測定した。アルカリ金属元素及びアルカリ土類金属元素の合計含有量を表3の「アルカリ金属/アルカリ土類金属含有量」欄に示す。
 (伸線試験)
 得られた複合焼結体に対して、レーザ照射により貫通孔を形成し、ダイスの中央部分が複合焼結体からなり、周囲が金属で被覆されているダイスを作製した。貫通孔は径の最小値φを0.1mmとした。
 上記のダイスを用いて、線材(線径φ:110μm、素材:SUS304)の伸線加工試験を行った。伸線時には潤滑剤を用いなかった。伸線速度は250m/分であり、減面率は17%であった。
 上記の条件で伸線し、線材の表面粗さRaが0.020μmとなった時点までの伸線時間を工具寿命と判断した。線材の表面粗さRaは、レーザ顕微鏡(キーエンス社製「VK-X100」(商標))を用い、ISO25178に基づき測定した。各試料の工具寿命を、市販の単結晶ダイヤモンド(住友電工ハードメタル製)を用いて作製されたダイスを用いて、上記と同一の条件で伸線加工を行った時の工具寿命を「1」とした場合の比として示す。結果を表3の「工具寿命」欄に示す。数値が大きいほど、線材の表面状態の悪化が起こりにくく、工具寿命が長いことを示す。
Figure JPOXMLDOC01-appb-T000004
 <考察>
 試料3-1および試料3-2は実施例に該当する。試料3-1のダイスは、試料3-2に比べて、工具寿命が長いことが確認された。これは、試料3-1の複合焼結体は、アルカリ金属元素及びアルカリ土類金属元素の含有量が10ppm以下であり、摩擦部が高温になりやすい条件下でのダイス伸線においても、アルカリ金属元素及びアルカリ土類金属元素による、立方晶窒化硼素から立方晶地下硼素へ変換が生じにくく、工具の損傷の進展を良好に抑制できるためと考えられる。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (10)

  1.  立方晶窒化硼素粒子と、
     六方晶窒化硼素粒子、又は、六方晶窒化硼素粒子及びウルツ鉱型窒化硼素粒子と、からなる複合焼結体であって、
     前記立方晶窒化硼素粒子の転位密度は、1×1015/m以上1×1017/m以下であり、
     前記立方晶窒化硼素粒子の円相当径のメジアン径d50は、10nm以上500nm以下であり、
     前記立方晶窒化硼素粒子の体積基準の含有率Vcと、前記六方晶窒化硼素粒子の体積Vhと、前記ウルツ鉱型窒化硼素粒子の体積Vwとは、下記式1の関係を満たす、
     式1:0.015≦(Vh+Vw)/(Vc+Vh+Vw)≦0.5
     複合焼結体。
  2.  前記立方晶窒化硼素粒子の転位密度は、1×1015/m以上3×1016/m以下である、請求項1に記載の複合焼結体。
  3.  前記立方晶窒化硼素粒子の転位密度は、1×1015/m以上5×1015/m以下である、請求項1又は請求項2に記載の複合焼結体。
  4.  前記立方晶窒化硼素粒子の円相当径のメジアン径d50は、10nm以上300nm以下である、請求項1から請求項3のいずれか1項に記載の複合焼結体。
  5.  前記立方晶窒化硼素粒子の円相当径のメジアン径d50は、10nm以上100nm以下である、請求項1から請求項4のいずれか1項に記載の複合焼結体。
  6.  前記立方晶窒化硼素粒子の体積基準の含有率Vcと、前記六方晶窒化硼素粒子の体積Vhと、前記ウルツ鉱型窒化硼素粒子の体積Vwとは、下記式2の関係を満たす、
     式2:0.03≦(Vh+Vw)/(Vc+Vh+Vw)≦0.4
     請求項1から請求項5のいずれか1項に記載の複合焼結体。
  7.  前記複合焼結体のアルカリ金属元素及びアルカリ土類金属元素の合計含有量は、質量基準で10ppm以下である、請求項1から請求項6のいずれか1項に記載の複合焼結体。
  8.  前記転位密度は、修正Williamson-Hall法及び修正Warren-Averbach法を用いて算出される、請求項1から請求項7のいずれか1項に記載の複合焼結体。
  9.  前記転位密度は、放射光をX線源として測定される、請求項1から請求項8のいずれか1項に記載の複合焼結体。
  10.  請求項1から請求項9のいずれか1項に記載の複合焼結体を用いた工具。
PCT/JP2020/012007 2020-03-18 2020-03-18 複合焼結体及びそれを用いた工具 WO2021186617A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2020/012007 WO2021186617A1 (ja) 2020-03-18 2020-03-18 複合焼結体及びそれを用いた工具
CN202080098409.5A CN115279519A (zh) 2020-03-18 2020-03-18 复合烧结体和使用该复合烧结体的工具
KR1020227034589A KR20220143140A (ko) 2020-03-18 2020-03-18 복합 소결체 및 그것을 이용한 공구
JP2020555067A JP6818966B1 (ja) 2020-03-18 2020-03-18 複合焼結体及びそれを用いた工具
US17/280,939 US11319255B2 (en) 2020-03-18 2020-03-18 Composite sintered material and tool using same
EP20926091.8A EP4122627A4 (en) 2020-03-18 2020-03-18 COMPOSITE INTERPRESS AND TOOL WITH IT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012007 WO2021186617A1 (ja) 2020-03-18 2020-03-18 複合焼結体及びそれを用いた工具

Publications (1)

Publication Number Publication Date
WO2021186617A1 true WO2021186617A1 (ja) 2021-09-23

Family

ID=74200178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012007 WO2021186617A1 (ja) 2020-03-18 2020-03-18 複合焼結体及びそれを用いた工具

Country Status (6)

Country Link
US (1) US11319255B2 (ja)
EP (1) EP4122627A4 (ja)
JP (1) JP6818966B1 (ja)
KR (1) KR20220143140A (ja)
CN (1) CN115279519A (ja)
WO (1) WO2021186617A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352298B2 (en) * 2019-12-16 2022-06-07 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material
JP7387047B1 (ja) * 2023-06-22 2023-11-27 株式会社日進製作所 立方晶窒化硼素多結晶体及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768153A (ja) * 1993-07-09 1995-03-14 Showa Denko Kk 立方晶窒化ホウ素の製造方法
JPH11246271A (ja) 1998-02-28 1999-09-14 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素焼結体およびその製造方法
JP2003192443A (ja) * 2001-12-21 2003-07-09 Sumitomo Electric Ind Ltd 立方晶窒化硼素焼結体およびその製造方法
JP2004250278A (ja) 2003-02-19 2004-09-09 National Institute For Materials Science 高純度超微粒子透光性立方晶窒化ホウ素焼結体とその製造方法
JP2006201216A (ja) 2005-01-18 2006-08-03 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、電子機器
JP2014034487A (ja) 2012-08-08 2014-02-24 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素複合多結晶体およびその製造方法、切削工具、線引きダイス、ならびに研削工具
WO2019244894A1 (ja) * 2018-06-18 2019-12-26 住友電工ハードメタル株式会社 立方晶窒化硼素多結晶体及びその製造方法
WO2020050229A1 (ja) * 2018-09-04 2020-03-12 国立大学法人東北大学 鉄基合金および鉄基合金の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618509A (en) 1993-07-09 1997-04-08 Showa Denko K.K. Method for producing cubic boron nitride
CN103569976B (zh) * 2012-08-03 2016-09-14 燕山大学 超高硬度纳米孪晶氮化硼块体材料及其合成方法
WO2020174922A1 (ja) * 2019-02-28 2020-09-03 住友電工ハードメタル株式会社 立方晶窒化硼素多結晶体及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768153A (ja) * 1993-07-09 1995-03-14 Showa Denko Kk 立方晶窒化ホウ素の製造方法
JPH11246271A (ja) 1998-02-28 1999-09-14 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素焼結体およびその製造方法
JP2003192443A (ja) * 2001-12-21 2003-07-09 Sumitomo Electric Ind Ltd 立方晶窒化硼素焼結体およびその製造方法
JP2004250278A (ja) 2003-02-19 2004-09-09 National Institute For Materials Science 高純度超微粒子透光性立方晶窒化ホウ素焼結体とその製造方法
JP2006201216A (ja) 2005-01-18 2006-08-03 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、電子機器
JP2014034487A (ja) 2012-08-08 2014-02-24 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素複合多結晶体およびその製造方法、切削工具、線引きダイス、ならびに研削工具
WO2019244894A1 (ja) * 2018-06-18 2019-12-26 住友電工ハードメタル株式会社 立方晶窒化硼素多結晶体及びその製造方法
WO2020050229A1 (ja) * 2018-09-04 2020-03-12 国立大学法人東北大学 鉄基合金および鉄基合金の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP4122627A4
T. UNGARA. BORBELY: "The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis", APPL. PHYS. LETT., vol. 69, no. 21, 1996, pages 3173, XP012016627, DOI: 10.1063/1.117951
T. UNGARS. OTTP. SANDERSA. BORBELYJ. WEERTMAN: "Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis", ACTA MATER., vol. 46, no. 10, 1998, pages 3693 - 3699, XP027395830

Also Published As

Publication number Publication date
JP6818966B1 (ja) 2021-01-27
US20210309579A1 (en) 2021-10-07
CN115279519A (zh) 2022-11-01
EP4122627A1 (en) 2023-01-25
EP4122627A4 (en) 2023-05-03
KR20220143140A (ko) 2022-10-24
JPWO2021186617A1 (ja) 2021-09-23
US11319255B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
JP6798091B1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
WO2021186617A1 (ja) 複合焼結体及びそれを用いた工具
JP6798089B1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
WO2020175647A9 (ja) 立方晶窒化硼素多結晶体及びその製造方法
WO2020175642A9 (ja) 立方晶窒化硼素多結晶体及びその製造方法
JP6798090B1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
CN116472132A (zh) 金刚石烧结体以及具备金刚石烧结体的工具
KR102685440B1 (ko) 입방정 질화붕소 다결정체 및 그 제조 방법
JP7076531B2 (ja) 立方晶窒化硼素多結晶体
KR102685437B1 (ko) 입방정 질화붕소 다결정체 및 그 제조 방법
JP7180053B1 (ja) ダイヤモンド多結晶体、及びダイヤモンド多結晶体を備える工具
JP7180054B1 (ja) ダイヤモンド多結晶体、及びダイヤモンド多結晶体を備える工具
CN116348624A (zh) 金刚石烧结体以及具备金刚石烧结体的工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020555067

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227034589

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020926091

Country of ref document: EP

Effective date: 20221018