JP7076531B2 - 立方晶窒化硼素多結晶体 - Google Patents

立方晶窒化硼素多結晶体 Download PDF

Info

Publication number
JP7076531B2
JP7076531B2 JP2020509544A JP2020509544A JP7076531B2 JP 7076531 B2 JP7076531 B2 JP 7076531B2 JP 2020509544 A JP2020509544 A JP 2020509544A JP 2020509544 A JP2020509544 A JP 2020509544A JP 7076531 B2 JP7076531 B2 JP 7076531B2
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
temperature
pressure
polycrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020509544A
Other languages
English (en)
Other versions
JPWO2020066517A1 (ja
Inventor
力 平野
暁 久木野
慧 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Hardmetal Corp
Publication of JPWO2020066517A1 publication Critical patent/JPWO2020066517A1/ja
Priority to JP2022080203A priority Critical patent/JP7342193B2/ja
Application granted granted Critical
Publication of JP7076531B2 publication Critical patent/JP7076531B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Description

本開示は、立方晶窒化硼素多結晶体及びその製造方法に関する。本出願は、2018年9月27日に出願した日本特許出願である特願2018-182464号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
立方晶窒化硼素(以下、「cBN」とも記す。)はダイヤモンドに次ぐ硬度を有し、熱的安定性及び化学的安定性にも優れる。また、cBNは、鉄系材料に対しては、ダイヤモンドよりも安定なため、鉄系材料の加工工具として立方晶窒化硼素焼結体が用いられてきた。
立方晶窒化硼素焼結体としては、バインダーを10~40体積%程度含むものが用いられていた。しかし、バインダーは焼結体の強度、熱拡散性を低下させる原因となっていた。特に、立方晶窒化硼素焼結体を用いて鉄系材料を高速で切削加工する場合に、熱負荷が大きくなり、刃先の欠損や亀裂が生じやすく、工具の寿命が短くなる傾向があった。
この問題を解決するために、バインダーを用いずに、六方晶窒化硼素を超高圧高温下で立方晶窒化硼素へ直接変換させると同時に焼結させることにより、バインダーを含まない立方晶窒化硼素焼結体を得る方法が開発されている。
特開平11-246271号公報(特許文献1)には、低結晶性の六方晶窒化硼素を超高温高圧下で立方晶窒化硼素焼結体に直接変換させ、かつ焼結させて、立方晶窒化硼素焼結体を得る技術が開示されている。
特開平11-246271号公報
本開示の一態様に係る立方晶窒化硼素多結晶体は、
立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、
前記立方晶窒化硼素多結晶体は、転位密度が8×1015/m以下である、立方晶窒化硼素多結晶体である。
本開示の一態様に係る立方晶窒化硼素多結晶体の製造方法は、
上記の立方晶窒化硼素多結晶体の製造方法であって、
六方晶窒化硼素粉末を準備する工程と、
前記六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程と、を備え、
前記ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
P≧-0.0037T+11.301 式1
P≦-0.085T+117 式2
前記加熱加圧する工程において、前記ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である、立方晶窒化硼素多結晶体の製造方法である。
図1は、窒化硼素の圧力-温度相図である。 図2は、本開示の一実施の形態に係る立方晶窒化硼素多結晶体の製造方法(パターンA)を説明するための図である。 図3は、本開示の他の一実施の形態に係る立方晶窒化硼素多結晶体の製造方法(パターンB)を説明するための図である。 図4は、本開示の他の一実施の形態に係る立方晶窒化硼素多結晶体の製造方法(パターンC)を説明するための図である。 図5は、本開示の他の一実施の形態に係る立方晶窒化硼素多結晶体の製造方法(パターンD)を説明するための図である。 図6は、立方晶窒化硼素多結晶体の製造方法の従来例を説明するための図である。 図7は、立方晶窒化硼素多結晶体の製造方法の参考例を説明するための図である。 図8は、結晶粒のアスペクト比を説明するための図である。
[本開示が解決しようとする課題]
特許文献1の立方晶窒化硼素焼結体は、これを構成する立方晶窒化硼素粒子の粒径が小さいため、高い硬度を有するが、一方で、靱性が低下する傾向があった。このため、立方晶窒化硼素焼結体を用いて鉄系材料を高速で切削加工する場合に、刃先の欠損や亀裂が生じやすく、工具の寿命が短くなる傾向があった。
そこで、本目的は、工具として用いた場合に、鉄系材料の高速加工においても、長い工具寿命を有することのできる立方晶窒化硼素多結晶体を提供することを目的とする。
[本開示の効果]
上記態様によれば、立方晶窒化硼素多結晶体は、工具として用いた場合に、鉄系材料の高速加工においても、長い工具寿命を有することができる。
[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
(1)本開示の一態様に係る立方晶窒化硼素多結晶体は、
立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、
前記立方晶窒化硼素多結晶体の転位密度は8×1015/m以下である、立方晶窒化硼素多結晶体、立方晶窒化硼素多結晶体である。
この立方晶窒化硼素多結晶体は、工具として用いた場合に、鉄系材料の高速加工においても、長い工具寿命を有することができる。
(2)前記転位密度は7×1015/m以下であることが好ましい。これによると、立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
(3)前記立方晶窒化硼素多結晶体は、複数の結晶粒を含み、
前記立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、円相当径が1μm以上の結晶粒の面積比率S1は20面積%以下であることが好ましい。これによると、立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
(4)前記面積比率S1は15面積%以下であることが好ましい。これによると、立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
(5)前記複数の結晶粒の円相当径のメジアン径d50は0.1μm以上0.5μm以下であることが好ましい。これによると、立方晶窒化硼素多結晶体の耐摩耗性が向上する。
(6)前記立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、アスペクト比が4以上の板状粒子の面積比率S2は5面積%以下であることが好ましい。これによると、立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
(7)本開示の一態様に係る立方晶窒化硼素多結晶体の製造方法は、
上記(1)から(6)のいずれかに記載の立方晶窒化硼素多結晶体の製造方法であって、
六方晶窒化硼素粉末を準備する工程と、
前記六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程と、を備え、
前記ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
P≧-0.0037T+11.301 式1
P≦-0.085T+117 式2
前記加熱加圧する工程において、前記ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である、立方晶窒化硼素多結晶体の製造方法である。
この方法で得られた立方晶窒化硼素多結晶体は、工具として用いた場合に、鉄系材料の高速加工においても、長い工具寿命を有することができる。
(8)前記突入温度は900℃以上であることが好ましい。これによると、得られた立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
(9)前記突入温度は1200℃以上であることが好ましい。これによると、得られた立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
(10)前記加熱加圧する工程の前に、前記六方晶窒化硼素粉末を、-50℃以上100℃以下の温度範囲を保持しつつ、0.5GPa以上6GPa以下の圧力まで加圧する工程を備えることが好ましい。
上記工程を行うことにより、六方晶窒化硼素粉末の間隙を圧縮し、六方晶窒化硼素粉末中に存在する不要なガスを系外に排出することができる。よって、当該ガスと六方晶窒化硼素粉末との化学反応に起因する品質低下を防止することができる。
上記工程を行うことにより、更なる加圧を行っても外形の変化がほとんど生じない程度に六方晶窒化硼素粉末の密度を高くすることができる。この状態で、加熱加圧する工程を行うことができるため、安定して製造することができる。
(11)前記加熱加圧する工程の後に、前記加熱加圧する工程により得られた立方晶窒化硼素多結晶体を、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力条件下で10分以上保持する温度圧力保持工程を備えることが好ましい。これによると、得られた立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
[本開示の実施形態の詳細]
本開示の一実施形態に係る立方晶窒化硼素多結晶体及びその製造方法を、以下に図面を参照しつつ説明する。
[実施の形態1:立方晶窒化硼素多結晶体]
本開示の一実施の形態に係る立方晶窒化硼素多結晶体について説明する。
<立方晶窒化硼素多結晶体>
本実施形態に係る立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、該立方晶窒化硼素多結晶体の転位密度は8×1015/m以下である。
本実施形態に係る立方晶窒化硼素多結晶体は焼結体であるが、通常焼結体とはバインダーを含むことを意図する場合が多いため、本実施形態では「多結晶体」という用語を用いている。
本実施形態に係る立方晶窒化硼素多結晶体は、工具として用いた場合、鉄系材料の高速加工においても、長い工具寿命を有することができる。この理由は、下記の(i)及び(ii)の通りと推察される。
(i)本実施形態に係る立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含み、実質的にバインダー、焼結助剤、触媒等を含まない。このため、立方晶窒化硼素同士が強固に結合しており、立方晶窒化硼素多結晶体の強度及び熱拡散性が向上している。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料の高速加工においても、長い工具寿命を有することができる。
(ii)本実施形態に係る立方晶窒化硼素多結晶体の転位密度は8×1015/m以下である。該立方晶窒化硼素多結晶体では、多結晶体中の格子欠陥が減少しているため、立方晶窒化硼素多結晶体の強度及び靱性が向上している。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料の高速加工においても、長い工具寿命を有することができる。
<組成>
立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含む。これにより、立方晶窒化硼素多結晶体は、優れた硬度を有し、熱的安定性及び化学的安定性にも優れる。
立方晶窒化硼素多結晶体は、本実施形態の効果を示す範囲において、立方晶窒化硼素に加えて、圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素の一方又は両方を合計で1.5体積%以下含んでいても構わない。ここで、「圧縮型六方晶窒化硼素」とは、通常の六方晶窒化硼素と結晶構造が類似し、c軸方向の面間隔が通常の六方晶窒化硼素の面間隔(0.333nm)よりも小さいものを示す。
本実施形態に係る立方晶窒化硼素多結晶体は、本実施形態の効果を示す範囲において不可避不純物を含んでいても構わない。不可避不純物としては、例えば、水素、酸素、炭素、アルカリ金属元素(リチウム(Li)、ナトリウム(Na)、カリウム(K)等)及びアルカリ土類金属元素(カルシウム(Ca)、マグネシウム(Mg)等)等の金属元素を挙げることができる。立方晶窒化硼素多結晶体が不可避不純物を含む場合は、不可避不純物の含有量は0.1体積%以下であることが好ましい。不可避不純物の含有量は、二次イオン質量分析(SIMS)により測定することができる。
該立方晶窒化硼素多結晶体は、実質的にバインダー、焼結助剤、触媒等を含まない。これにより、立方晶窒化硼素多結晶体の強度及び熱拡散性が向上している。
立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率は、98.5体積%以上100体積%以下が好ましく、99体積%以上100体積%以下が更に好ましい。
立方晶窒化硼素多結晶体中の圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素の含有率の合計は、0体積%以上1.5体積%以下が好ましく、0体積%以上1体積%以下が更に好ましく、0体積%が最も好ましい。すなわち、立方晶窒化硼素多結晶体には、圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素のいずれも含まれないことが最も好ましい。
立方晶窒化硼素多結晶体中の圧縮型六方晶窒化硼素の含有率は0体積%以上1.5体積%以下が好ましく、0体積%以上1体積%以下がより好ましく、0体積%が最も好ましい。すなわち、立方晶窒化硼素多結晶体には、圧縮型六方晶窒化硼素が含まれないことが最も好ましい。
立方晶窒化硼素多結晶体中のウルツ鉱型窒化硼素の含有率は0体積%以上1.5体積%以下が好ましく、0体積%以上1体積%以下がより好ましく、0体積%が最も好ましい。すなわち、立方晶窒化硼素多結晶体には、ウルツ鉱型窒化硼素が含まれないことが最も好ましい。
立方晶窒化硼素多結晶体中の立方晶窒化硼素、圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素の含有率(体積%)は、X線回折法により測定することができる。具体的な測定方法は下記の通りである。
立方晶窒化硼素多結晶体をダイヤモンド砥石電着ワイヤーで切断し、切断面を観察面とする。
X線回折装置(Rigaku社製「MiniFlex600」(商品名))を用いて立方晶窒化硼素多結晶体の切断面のX線スペクトルを得る。このときのX線回折装置の条件は、下記の通りとする。
特性X線: Cu-Kα(波長1.54Å)
管電圧: 45kV
管電流: 40mA
フィルター: 多層ミラー
光学系: 集中法
X線回折法: θ-2θ法。
得られたX線スペクトルにおいて、下記のピーク強度A、ピーク強度B及びピーク強度Cを測定する。
ピーク強度A:回折角2θ=28.5°付近のピーク強度から、バックグランドを除いた圧縮型六方晶窒化硼素のピーク強度。
ピーク強度B:回折角2θ=40.8°付近のピーク強度から、バックグラウンドを除いたウルツ鉱型窒化硼素のピーク強度。
ピーク強度C:回折角2θ=43.5°付近のピーク強度から、バックグラウンドを除いた立方晶窒化硼素のピーク強度。
圧縮型六方晶窒化硼素の含有率は、ピーク強度A/(ピーク強度A+ピーク強度B+ピーク強度C)の値を算出することにより得られる。ウルツ鉱型窒化硼素の含有率は、ピーク強度B/(ピーク強度A+ピーク強度B+ピーク強度C)の値を算出することにより得られる。立方晶窒化硼素の含有率は、ピーク強度C/(ピーク強度A+ピーク強度B+ピーク強度C)の値を算出することにより得られる。圧縮型六方晶窒化硼素、ウルツ鉱型窒化硼素及び立方晶窒化硼素は、全て同程度の電子的な重みを有するため、上記のX線ピーク強度比を立方晶窒化硼素多結晶体中の体積比と見なすことができる。
<転位密度>
立方晶窒化硼素多結晶体の転位密度は8×1015/m以下である。該立方晶窒化硼素多結晶では、多結晶体中の格子欠陥が減少しているため、立方晶窒化硼素多結晶体の強度及び靱性が向上している。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料の高速加工においても、長い工具寿命を有することができる。転位密度は、7×1015/m以下が好ましく、6×1015/m以下が更に好ましい。転位密度の下限値は特に限定されないが、製造上の観点から、1.0×1015/m以上とすることができる。
本明細書において、転位密度とは下記の手順により算出される。
立方晶窒化硼素多結晶体からなる試験片を準備する。試験片の大きさは、観察面が2.0mm×2.0mmであり、厚みが1.0mmである。試験片の観察面を研磨する。
該試験片の観察面について、下記の条件でX線回折測定を行い、立方晶窒化硼素の主要な方位である(111)、(200)、(220)、(311)、(400)、(331)の各方位面からの回折ピークのラインプロファイルを得る。
(X線回折測定条件)
X線源:放射光
装置条件:検出器NaI(適切なROIにより蛍光をカットする。)
エネルギー:18keV(波長:0.6888Å)
分光結晶:Si(111)
入射スリット:幅5mm×高さ0.5mm
受光スリット:ダブルスリット(幅3mm×高さ0.5mm)
ミラー:白金コート鏡
入射角:2.5mrad
走査方法:2θ-θscan
測定ピーク:立方晶窒化硼素の(111)、(200)、(220)、(311)、(400)、(331)の6本。ただし、集合組織、配向によりプロファイルの取得が困難な場合は、その面指数のピークを除く。
測定条件:半値幅中に、測定点が9点以上となるようにする。ピークトップ強度は2000counts以上とする。ピークの裾も解析に使用するため、測定範囲は半値幅の10倍程度とする。
上記のX線回折測定により得られるラインプロファイルは、試料の不均一ひずみなどの物理量に起因する真の拡がりと、装置起因の拡がりの両方を含む形状となる。不均一ひずみや結晶子サイズを求めるために、測定されたラインプロファイルから、装置起因の成分を除去し、真のラインプロファイルを得る。真のラインプロファイルは、得られたラインプロファイルおよび装置起因のラインプロファイルを擬Voigt関数によりフィッティングし、装置起因のラインプロファイルを差し引くことにより得る。装置起因の回折線拡がりを除去するための標準サンプルとしては、LaBを用いた。また、平行度の高い放射光を用いる場合は、装置起因の回折線拡がりは0とみなすことができる。
得られた真のラインプロファイルを修正Williamson-Hall法及び修正Warren-Averbach法を用いて解析することによって転位密度を算出する。修正Williamson-Hall法及び修正Warren-Averbach法は、転位密度を求めるために用いられている公知のラインプロファイル解析法である。
修正Williamson-Hall法の式は、下記式(I)で示される。
Figure 0007076531000001
(上記式(I)において、ΔKはラインプロファイルの半値幅、Dは結晶子サイズ、Mは配置パラメータ、bはバーガースベクトル、ρは転位密度、Kは散乱ベクトル、O(KC)はKCの高次項、Cはコントラストファクターの平均値を示す。)
上記式(I)におけるCは、下記式(II)で表される。
C=Ch00[1-q(hk+hl+kl)/(h+k+l)] (II)。
上記式(II)において、らせん転位と刃状転位におけるそれぞれのコントラストファクターCh00およびコントラストファクターに関する係数qは、計算コードANIZCを用い、すべり系が<110>{111}、弾性スティフネスC11が8.44GPa、C12が1.9GPa、C44が4.83GPaとして求める。コントラストファクターCh00は、らせん転位は0.203であり、刃状転位は0.212である。コントラストファクターに関する係数qは、らせん転位は1.65であり、刃状転位は0.58である。なお、らせん転位比率は0.5、刃状転位比率は0.5に固定する。
また、転位と不均一ひずみの間にはコントラストファクターCを用いて下記式(III)の関係が成り立つ。
<ε(L)>=(ρCb/4π)ln(R/L) (III)
(上記式(III)において、Rは転位の有効半径を示す。)
上記式(III)の関係と、Warren-Averbachの式より、下記式(IV)の様に表すことができ、修正Warren-Averbach法として、転位密度ρ及び結晶子サイズを求めることができる。
lnA(L)=lnA(L)-(πLρb/2)ln(R/L)(KC)+O(KC) (IV)(上記式(IV)において、A(L)はフーリエ級数、A(L)は結晶子サイズに関するフーリエ級数、Lはフーリエ長さを示す。)
修正Williamson-Hall法及び修正Warren-Averbach法の詳細は、“T. Ungar and A. Borbely, “The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis” Appl. Phys. Lett., vol. 69, no. 21, p. 3173, 1996.”及び“T. Ungar, S. Ott, P. Sanders, A. Borbely, J. Weertman, “Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis” Acta Mater., vol. 46, no. 10, pp. 3693 - 3699, 1998.”に記載されている。
<結晶粒>
(円相当径が1μm以上の結晶粒の面積比率S1)
立方晶窒化硼素多結晶体は、立方晶窒化硼素の結晶粒、並びに、任意で圧縮型六方晶窒化硼素の結晶粒及びウルツ鉱型窒化硼素の結晶粒を含む複数の結晶粒から構成される。立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、円相当径が1μm以上の結晶粒の面積比率S1(以下、「面積比率S1」とも記す。)は20面積%以下である。ここで円相当径とは、該断面において、結晶粒の面積と同一の面積を有する円の直径を意味する。
該立方晶窒化硼素多結晶体では、円相当径が1μm以上の粗大粒の含有率が低減されている。よって、該立方晶窒化硼素多結晶体は、焼結体組織の均質性が向上するため、強度及び靱性が向上し、鉄系材料の高速加工においても、長い工具寿命を有することができる。
本実施形態に係る立方晶窒化硼素多結晶体の結晶体組織が均質であることは、例えば、立方晶窒化硼素をSEM(Scanning Electron Microscope、走査型電子顕微鏡)で観察することにより確認することができる。
円相当径が1μm以上の結晶粒の面積比率S1は、0面積%以上20面積%以下が好ましく、0面積%以上15面積%以下がより好ましく、0面積%以上10面積%以下が更に好ましい。
(メジアン径d50)
立方晶窒化硼素多結晶体に含まれる複数の結晶粒は、円相当径のメジアン径d50(以下、「メジアン径d50」とも記す。)が0.1μm以上0.5μm以下であることが好ましい。従来、立方晶窒化硼素多結晶体は、結晶粒の粒径が小さいほど切削性能が向上すると考えられていた。このため、立方晶窒化硼素多結晶体を構成する結晶粒の粒径を小さくしていた(例えば、平均粒径100nm未満)が、これにより靱性が低下する傾向があった。一方、本実施形態に係る立方晶窒化硼素多結晶体においては、結晶粒の粒径が、従来に比べて大きいため、立方晶窒化硼素多結晶体の靱性が向上し、耐摩耗性が向上する。結晶粒の円相当径のメジアン径d50は、0.15μm以上0.35μm以下がより好ましく、0.2μm以上0.3μm以下が更に好ましい。
(アスペクト比が4以上の板状粒子の面積比率S2)
立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、アスペクト比が4以上の板状粒子の面積比率S2(以下、「面積比率S2」とも記す。)が5面積%以下であることが好ましい。従来の立方晶窒化硼素多結晶体では、粒径を小さくすることに伴う靱性の低下を、立方晶多結晶体中に板状組織を存在させることにより補っていた。しかし、この板状粒子は、特に難削材の高能率加工中に、突発的に刃先から脱落して刃先の欠損を生じさせるため、工具寿命のばらつき及び低下の要因となっていた。
本実施形態に係る該立方晶窒化硼素多結晶体においては、アスペクト比が4以上の板状粒子の含有率が低減されている。よって、該立方晶窒化硼素多結晶体は、板状粒子に起因する突発的な刃先の欠損が生じにくく、鉄系材料の高速加工においても、長い工具寿命を有することができる。
アスペクト比が4以上の板状粒子の面積比率S2は、0面積%以上5面積%以下が好ましく、0面積%以上3面積%以下がより好ましく、0面積%以上2面積%以下が更に好ましい。
(面積比率S1、面積比率S2、及び、結晶粒の円相当径のメジアン径d50の測定方法)
本明細書において、立方晶窒化硼素多結晶体における円相当径が1μm以上の結晶粒の面積比率S1、アスペクト比が4以上の板状粒子の面積比率S2、及び、立方晶窒化硼素多結晶体に含まれる複数の結晶粒の円相当径のメジアン径d50とは、任意に選択された5箇所の各測定箇所において、面積比率S1、面積比率S2及び結晶粒のメジアン径d50をそれぞれ測定し、これらの平均値を算出することにより得られた値を意味する。
なお、出願人が測定した限りでは、同一の試料において面積比率S1、面積比率S2及びメジアン径d50を測定する限り、立方晶窒化硼素多結晶体における測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認された。
立方晶窒化硼素多結晶体が切削工具の一部として用いられている場合は、立方晶窒化硼素多結晶体の部分を、ワイヤー放電加工やダイヤモンド砥石電着ワイヤー等で切り出して、切り出した断面を研磨し、当該研磨面において5箇所の測定箇所を任意に設定する。
各測定箇所における面積比率S1、面積比率S2及び結晶粒の円相当径のメジアン径d50の測定方法について下記に具体的に説明する。
測定箇所が露出するように立方晶窒化硼素多結晶体をワイヤー放電加工やダイヤモンド砥石電着ワイヤー等で切断し、切断面を研磨する。当該研磨面上の測定箇所をSEM(日本電子株式会社社製「JSM-7500F」(商品名))を用いて観察し、SEM画像を得る。測定視野のサイズは12μm×15μmとし、観察倍率は10000倍とする。
5つのSEM画像のそれぞれについて、結晶粒界が鮮明になるように、二値化処理を行う。例えば、画像処理ソフト(Win Roof ver.7.4.5)を用い、自動二値化を実施し、閾値を適宜画像を確認して微調整する。例えば、微調整した閾値は75である。
測定視野内に観察される結晶粒の粒界を分離した状態で、上記の画像処理ソフトを用いて、各結晶粒のアスペクト比及び各結晶粒の面積、及び、結晶粒の円相当径の分布を算出する。ここでアスペクト比は、切断面における結晶粒の長径と短径との比の値(長径/短径)を意味する。結晶粒の形状が図8に示されるような不定形状の場合は、アスペクト比は、画像処理ソフトを用いて、下記(a)~(c)の手順に従い算出される。
(a)結晶粒の内部で引くことができる(両端が結晶粒界に接する)最も長い線分(以下、「第1の線分」とも記す。)を特定し、該第1の線分の長さL1を測定する。
(b)上記の第1の線分に直交し、かつ、結晶粒の内部で引くことができる(両端が結晶粒界に接する)最も長い線分(以下、「第2の線分」とも記す。)を特定し、該第2の線分の長さL2を測定する。
(c)第1の線分の長さL1と第2の線分の長さL2との比の値(L1/L2)を算出する。該(L1/L2)の値をアスペクト比とする。
面積比率S1、面積比率S2及びメジアン径d50は、測定視野の全体を分母として算出する。各結晶粒の面積及び各結晶粒のアスペクト比に基づき、円相当径が1μm以上の結晶粒の面積比率S1及びアスペクト比が4以上の板状粒子の面積比率S2を算出する。結晶粒の円相当径の分布から、メジアン径d50を算出する。
<用途>
本実施形態に係る立方晶窒化硼素多結晶体は、切削工具、耐摩工具、研削工具などに用いることが好適である。
本実施形態に係る切削工具、耐摩工具および研削工具はそれぞれ、その全体が立方晶窒化硼素多結晶体で構成されていても良いし、その一部(たとえば切削工具の場合、刃先部分)のみが立方晶窒化硼素多結晶体で構成されていても良い。さらに、各工具の表面にコーティング膜が形成されていても良い。
切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、切削バイトなどを挙げることができる。
耐摩工具としては、ダイス、スクライバー、スクライビングホイール、ドレッサーなどを挙げることができる。研削工具としては、研削砥石などを挙げることができる。
[実施の形態2:立方晶窒化硼素多結晶体の製造方法]
本開示の一実施の形態に係る立方晶窒化硼素多結晶体の製造方法を、図1~図7を用いて説明する。図1は、窒化硼素の圧力-温度相図である。図2~図5は、本開示の一実施の形態に係る立方晶窒化硼素多結晶体の製造方法を説明するための図である。図6は、立方晶窒化硼素多結晶体の製造方法の従来例を説明するための図である。図7は、立方晶窒化硼素多結晶体の製造方法の参考例を説明するための図である。
本実施形態に係る立方晶窒化硼素多結晶体の製造方法は、実施の形態1の立方晶窒化硼素多結晶体の製造方法である。該製造方法は、六方晶窒化硼素粉末を準備する工程(以下、「準備工程」とも記す。)と、該六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程(以下、「加熱加圧工程」とも記す。)と、を備える。ここで、ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
P≧-0.0037T+11.301 式1
P≦-0.085T+117 式2
上記加熱加圧する工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である。
本実施形態に係る立方晶窒化硼素多結晶体の製造方法は、加熱加圧する工程の前に、六方晶窒化硼素粉末を、-50℃以上100℃以下の温度範囲を保持しつつ、0.5GPa以上6GPa以下の圧力まで加圧する工程(以下、「前処理工程」とも記す。)を備えることができる。
本実施形態に係る立方晶窒化硼素多結晶体の製造方法は、加熱加圧する工程の後に、加熱加圧する工程により得られた立方晶窒化硼素多結晶体を、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力条件下で10分以上保持する工程(以下、「温度圧力保持工程」とも記す。)を備えることができる。
本実施形態に係る立方晶窒化硼素多結晶体の製造方法の詳細な説明を行う前に、その理解を助けるため、立方晶窒化硼素多結晶体の製造方法の従来例及び参考例について説明する。
図1に示されるように、窒化硼素には、常温常圧の安定相である六方晶窒化硼素、高温高圧の安定相である立方晶窒化硼素、及び、六方晶窒化硼素から立方晶窒化硼素への転移の間の準安定相であるウルツ鉱型窒化硼素の3つの相が存在する。
各相の境界は一次関数で表すことができる。本明細書において、各相の安定領域内の温度及び圧力は、一次関数を用いて示すことができるものとする。
本明細書において、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力(図1において、「wBN安定領域」と記す。)は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす温度及び圧力として定義する。
P≧-0.0037T+11.301 式1
P≦-0.085T+117 式2
本明細書において、六方晶窒化硼素の安定領域内の温度及び圧力(図1において、「hBN安定領域」と記す。)は、温度をT℃、圧力をPGPaとした時に、下記式(A)及び下記式(B)を同時に満たす温度及び圧力、又は下記式(C)及び下記式(D)を同時に満たす温度及び圧力として定義する。
P≦-0.0037T+11.301 (A)
P≦-0.085T+117 (B)
P≦0.0027T+0.3333 (C)
P≧-0.085T+117 (D)
本明細書において、立方晶窒化硼素の安定領域内の温度及び圧力(図1において、「cBN安定領域」と記す。)は、温度をT℃、圧力をPGPaとした時に、下記式(D)及び下記式(E)を同時に満たす温度及び圧力として定義する。
P≧-0.085T+117 (D)
P≧0.0027T+0.3333 (E)
本実施形態に係る製造方法では、六方晶窒化硼素粉末を、温度1900℃以上2400℃以下及び圧力7.7GPa以上、好ましくは8GPa以上、より好ましくは10GPa以上まで加熱加圧する。この温度及び圧力は、優れた工具性能を有する立方晶窒化硼素が得られる温度及び圧力である。
従来、六方晶窒化硼素を、優れた工具性能を有する立方晶窒化硼素が得られる立方晶窒化硼素の安定領域内の温度(1900℃以上2400℃以下)及び圧力(7.7GPa以上)まで到達させるための温度及び圧力の経路として、図6に示される経路(以下、「図6の経路」とも記す。)が検討されていた。
図6の経路では、開始温度及び開始圧力(常温常圧)から、圧力を立方晶窒化硼素の安定領域内の圧力(例えば、10GPa以上)まで上げ(図6の矢印E1)、その後に、温度を立方晶窒化硼素の安定領域内の温度(例えば、1900℃以上)まで上げる(図6の矢印E2)。図6の経路は、加熱と加圧がそれぞれ1回ずつ行われるため、加熱加圧操作の制御が単純であり、従来採用されていた。
しかし、図6の経路は、ウルツ鉱型窒化硼素の安定領域への突入温度が600℃未満であり、原子拡散が起こりにくく、六方晶窒化硼素からウルツ鉱型窒化硼素への相転移は、無拡散型相転移が主となる。このため、得られた立方晶窒化硼素多結晶体では、格子欠陥や粗大粒が存在しやすい。よって、この立方晶窒化硼素は、加工時に突発的な欠損が生じやすく、工具寿命が短くなる傾向がある。
一方、原子拡散を起こりやすくするために、相転移の温度を上げることも考えらえる。例えば、図7の経路では、開始温度及び開始圧力(常温常圧)から、ウルツ鉱型窒化硼素の安定領域を通過しないように、立方晶型窒化硼素の安定領域内の温度(例えば、1500℃)及び圧力(例えば、9GPa)まで加熱加圧し(図7の矢印F1、F2、F3)、その後に、更に、温度を上げる(例えば、2100℃)(図7の矢印F4)。
図7の経路では、六方晶窒化硼素は立方晶窒化硼素へ直接相転移されるが、六方晶窒化硼素と立方晶窒化硼素とは結晶構造が大きく異なるため、相転移時に格子欠陥が生じやすい。よって、この立方晶窒化硼素は工具寿命が短くなる傾向がある。更に、六方晶窒化硼素と立方晶窒化硼素とは結晶構造が大きく異なるため、立方晶窒化硼素への変換率が98.5体積%未満となる。よって、得られた立方晶窒化硼素多結晶体を用いた工具は、性能が低下する。
上記の通り、従来検討されてきた温度及び圧力の経路では、格子欠陥の発生を抑制することが困難であり、優れた工具寿命を有する立方晶窒化硼素多結晶体を製造することができない。本出願人らはこの状況を鑑み、圧力及び温度の経路を鋭意検討した結果、六方晶窒化硼素を、上記の加熱加圧工程に規定される温度及び圧力条件で処理することにより、焼結体中の格子欠陥の発生が抑制され、鉄系材料の高速加工においても、長い工具寿命を有することができる立方晶窒化硼素多結晶体を得ることができることを見いだした。本実施形態に係る製造方法の各工程の詳細について、図2~図5を用いて下記に説明する。
<準備工程>
立方晶窒化硼素多結晶体の原料として、六方晶窒化硼素粉末を準備する。六方晶窒化硼素粉末は、純度(六方晶窒化硼素の含有率)が98.5%以上が好ましく、99%以上がより好ましく、100%が最も好ましい。六方晶窒化硼素粉末の粒径は特に限定されないが、例えば、0.1μm以上10μm以下とすることができる。
<前処理工程>
次に、六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、-50℃以上100℃以下の温度範囲を保持しつつ、0.5GPa以上6GPa以下の圧力まで加圧する(図2の矢印A1、図3の矢印B1、図4の矢印C1、図5の矢印D1)。
前処理工程を行うことにより、六方晶窒化硼素粉末間の間隙を圧縮し、六方晶窒化硼素粉末中に存在する不要なガスを系外に排出することができる。よって、当該ガスと六方晶窒化硼素粉末との化学反応に起因する品質低下を防止することができる。
前処理工程を行うことにより、更なる加圧を行っても外形の変化がほとんど生じない程度に六方晶窒化硼素粉末の密度を高くすることができる。この状態で、加熱加圧工程を行うことができるため、安定して製造することができる。
前処理工程における温度は、-50℃以上100℃以下の温度範囲に保持することが好ましく、0℃以上50℃以下の温度範囲に保持することがより好ましい。前処理工程における到達圧力は、0.5GPa以上5GPa以下が好ましく、1GPa以上3GPa以下が更に好ましい。
本実施形態に係る立方晶窒化硼素多結晶体の製造方法において、前処理工程は任意で行われる工程である。従って、上記の準備工程の後に、前処理工程を行わずに、後述する加熱加圧工程を行うことができる。
<加熱加圧工程>
次に、六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する(図2では矢印A2、A3及びA4、図3では矢印B2、B3及びB4、図4では矢印C2、C3及びC4の途中まで、図5では矢印D2、D3及びD4)。加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である。
本明細書中、ウルツ鉱型窒化硼素の安定領域への突入温度とは、加熱加圧工程において、初めてウルツ鉱型窒化硼素の安定領域内へ到達した時点での温度を意味する。該突入温度は、図2では、矢印A3とP=-0.0037T+11.301の線との交点における温度(約1200℃)であり、図3では、矢印B3とP=-0.0037T+11.301の線との交点における温度(約600℃)であり、図4では、矢印C3とP=-0.0037T+11.301の線との交点における温度(約1200℃)であり、図5では、矢印D3とP=-0.0037T+11.301の線との交点における温度(約1200℃)である。
上記の前処理工程を行った場合は、前処理工程後の六方晶窒化硼素粉末を、前処理工程の最後に到達した到達温度、及び、到達圧力から、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する。この場合も、加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である。
加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である。これによると、六方晶窒化硼素粉末は原子拡散が起こりやすい環境で、ウルツ鉱型窒化硼素に変換され、その後、立方晶窒化硼素多結晶体に変換される。このため、得られた立方晶窒化硼素多結晶体では、格子欠陥が減少し、立方晶窒化硼素多結晶体の強度及び靱性が向上している。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料の高速加工においても、長い工具寿命を有することができる。
ウルツ鉱型窒化硼素の安定領域への突入温度は900℃以上が好ましく、1200℃以上が更に好ましい。突入温度が高いほど原子拡散が起こりやすく、格子欠陥が減少する傾向がある。突入温度の上限値は、例えば1500℃以下とすることができる。
加熱加圧工程における到達圧力は8GPa以上である。該到達圧力の上限値は特に限定されないが、例えば、15GPa以下とすることができる。加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域内への突入後に、圧力を10GPa以上まで加圧することが好ましい。
加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力での保持時間は、例えば5分以上60分以下とすることができる。
加熱加圧工程において、図2~図5の経路では、加熱を行った後に加圧を行い、更に加熱を行っているが、これに限定されない。加熱加圧の方法は、ウルツ鉱型窒化硼素の安定領域への突入温度を600℃以上とすることができる方法であれば、特に限定されず、例えば、加熱と加圧を同時に行ってもよい。
上記の通り、六方晶窒化硼素粉末に加熱加圧工程を行うことにより、立方晶窒化硼素多結晶体を得ることができる。
<温度圧力保持工程>
上記の加熱加圧工程の後に、加熱加圧工程により得られた立方晶窒化硼素多結晶体を、1900℃以上2400℃以下の温度(以下、「焼結温度」とも記す。)、及び、8GPa以上の圧力(以下、「焼結圧力」とも記す。)条件下で10分以上保持する工程を行うことができる。これにより、得られた立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が大きくなり、更に長い工具寿命を達成することができる。
温度圧力保持工程における焼結温度は1900℃以上2400℃以下が好ましく、2100℃以上2300℃以下がより好ましい。温度圧力保持工程における焼結圧力は8GPa以上15GPa以下が好ましく、9GPa以上12GPa以下がより好ましい。温度圧力保持工程における焼結時間は10分以上60分以下が好ましく、10分以上30分以下がより好ましい。
<図2~図5の経路により得られる立方晶窒化硼素多結晶体の特性>
図2の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が約1200℃である。これによると、六方晶窒化硼素粉末は原子拡散が非常に起こりやすい環境で、ウルツ鉱型窒化硼素に変換される。このため、ウルツ鉱型窒化硼素は格子欠陥が少なく、転位密度が非常に低くなる。その後、ウルツ鉱型窒化硼素は、更に加熱されて立方晶窒化硼素多結晶体に変換され、その後、温度約2200℃、圧力約9GPaで保持される。この温度及び圧力条件は、立方晶窒化硼素の粒成長を生じさせないものである。よって、得られた立方晶窒化硼素多結晶体は、転位密度が非常に低く、粗大粒も存在しない。
図3の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が約600℃である。これによると、六方晶窒化硼素粉末は原子拡散の生じる環境で、ウルツ鉱型窒化硼素に変換される。このため、ウルツ鉱型窒化硼素は格子欠陥が少なく、転位密度が低くなる。一方、ウルツ鉱型窒化硼素の安定領域への突入温度が図2の経路よりも低温側であり、無拡散相転移も生じるため、粗大粒が発生する場合がある。その後、ウルツ鉱型窒化硼素は、更に加熱されて立方晶窒化硼素多結晶体に変換され、その後、温度約2200℃、圧力約9GPaで保持される。得られた立方晶窒化硼素多結晶体は、転位密度が低いが、粗大粒が存在する場合がある。
図4の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が約1200℃である。これによると、六方晶窒化硼素粉末は原子拡散が非常に起こりやすい環境で、ウルツ鉱型窒化硼素に変換される。このため、ウルツ鉱型窒化硼素は格子欠陥が少なく、転位密度が非常に低くなる。その後、ウルツ鉱型窒化硼素は、更に加熱されて立方晶窒化硼素多結晶体に変換され、その後、温度約2500℃、圧力約9GPaで保持される。この温度及び圧力条件は、立方晶窒化硼素の粒成長を生じさせるものである。よって、得られた立方晶窒化硼素多結晶体は、転位密度が非常に低いが、粗大粒が存在する。
図5の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が約1200℃である。これによると、六方晶窒化硼素粉末は原子拡散が非常に起こりやすい環境で、ウルツ鉱型窒化硼素に変換される。このため、ウルツ鉱型窒化硼素は格子欠陥が少なく、転位密度が非常に低くなる。その後、ウルツ鉱型窒化硼素は、更に加熱されて立方晶窒化硼素多結晶体に変換され、その後、温度約2200℃、圧力約15GPaで保持される。この温度及び圧力条件は、立方晶窒化硼素の粒成長を生じさせないものである。よって、得られた立方晶窒化硼素多結晶体は、転位密度が非常に低く、粗大粒の生成が抑制される。
図2の経路で得られる立方晶窒化硼素多結晶体と、図3の経路で得られる立方晶窒化硼素多結晶体とを比較すると、図2の経路で得られる立方晶窒化硼素多結晶体の方が、転位密度が低く、粗大粒も少ない。この理由は、図2の経路の方がウルツ鉱型窒化硼素の安定領域への突入温度が高く、原子拡散が起こりやすいためと考えられる。
図2の経路で得られる立方晶窒化硼素多結晶体と、図4の経路で得られる立方晶窒化硼素多結晶体とを比較すると、図2の経路で得られる立方晶窒化硼素多結晶体の方が、粗大粒が少ない。この理由は、立方晶窒化硼素の安定領域での温度圧力保持条件が、図2の経路では、立方晶窒化硼素の粒成長を生じさせない条件であり、図4の経路では、立方晶窒化硼素の粒成長を生じさせる条件のためであると考えられる。
図2の経路で得られる立方晶窒化硼素多結晶体と、図5の経路で得られる立方晶窒化硼素多結晶体とを比較すると、転位密度は同等であるが、得られる焼結体の体積は、図2の経路で得られる立方晶窒化硼素多結晶体の方が大きい。これは、立方晶窒化硼素安定領域での保持圧力が、図2の経路の方が小さいためである。よって、生産性の観点からは、図2の経路の方が好ましい。
本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
本実施例では、立方晶窒化硼素多結晶体の製造条件と、得られる立方晶窒化硼素多結晶体の構成(組成、転位密度、円相当径1μm以上の結晶粒の面積比率S1、板状粒子の面積比率S2、メジアン径)及び、性能との関係を調べた。
<立方晶窒化硼素多結晶体の作製>
立方晶窒化硼素多結晶体を、下記の手順に従って作製した。
[試料1~試料6]
(前処理工程)
六方晶窒化硼素粉末(デンカ社製の「デンカボロンナイトライド」(商品名)、粒径5μm)を6g準備した。該六方晶窒化硼素粉末をモリブデン製のカプセルに入れ、超高圧高温発生装置を用いて、25℃(室温)で、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力まで加圧した。
(加熱加圧工程)
続いて、超高圧高温発生装置内の温度を、表1の「加熱加圧工程」の「wBN安定領域突入温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力を保持した。
続いて、超高圧高温発生装置内の圧力を、表1の「加熱加圧工程」の「第2段階加圧圧力」欄に記載される圧力まで加圧した。この間に、超高圧高温発生装置内は、六方晶窒化硼素の安定領域内の温度及び圧力から、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力へ変化した。該加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は、表1の「加熱加圧工程」の「wBN安定領域突入温度」欄に記載される温度であった。
続いて、超高圧高温発生装置内の温度を、表1の「温度圧力保持工程」の「温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「加熱加圧工程」の「第2段階加圧圧力」欄に記載される圧力を保持した。
(温度圧力保持工程)
表1の「温度圧力保持工程」の「温度」及び「圧力」欄に記載される温度及び圧力にて10分間保持して、立方晶窒化硼素多結晶体を得た。
[試料7~試料9]
(前処理工程)
六方晶窒化硼素粉末(デンカ社製の「デンカボロンナイトライド」(商品名)、粒径5μm)を6g準備した。該六方晶窒化硼素粉末をモリブデン製のカプセルに入れ、超高圧高温発生装置を用いて、25℃(室温)で、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力まで加圧した。
(加熱加圧工程)
続いて、超高圧高温発生装置内の温度を、表1の「加熱加圧工程」の「wBN安定領域突入温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力を保持した。この間に、超高圧高温発生装置内は、六方晶窒化硼素の安定領域内の温度及び圧力から、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力へ変化した。該加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は、表1の「加熱加圧工程」の「wBN安定領域突入温度」欄に記載される温度であった。
その後、更に、超高圧高温発生装置内の温度を、表1の「温度圧力保持工程」の「温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力を保持した。
(温度圧力保持工程)
表1の「温度圧力保持工程」の「温度」及び「圧力」欄に記載される温度及び圧力にて10分間保持して、立方晶窒化硼素多結晶体を得た。
[試料10]
(前処理工程及び加熱加圧工程)
六方晶窒化硼素粉末(デンカ社製の「デンカボロンナイトライド」(商品名)、粒径5μm)を6g準備した。該六方晶窒化硼素粉末をモリブデン製のカプセルに入れ、超高圧高温発生装置を用いて、25℃(室温)で、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力(12GPa)まで加圧した。
この間に、超高圧高温発生装置内は、六方晶窒化硼素の安定領域内の温度及び圧力から、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力へ変化した。試料10では、ウルツ鉱型窒化硼素の安定領域への突入温度は、表1の「加熱加圧工程」の「wBN安定領域突入温度」欄に記載される温度(25℃)であった。
その後、更に、超高圧高温発生装置内の温度を、表1の「温度圧力保持工程」の「温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力を保持した。
(温度圧力保持工程)
表1の「温度圧力保持工程」の「温度」及び「圧力」欄に記載される温度及び圧力にて10分間保持して、立方晶窒化硼素多結晶体を得た。
[試料11]
(前処理工程)
六方晶窒化硼素粉末(デンカ社製の「デンカボロンナイトライド」(商品名)、粒径5μm)を6g準備した。該六方晶窒化硼素粉末をモリブデン製のカプセルに入れ、超高圧高温発生装置を用いて、25℃(室温)で、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力まで加圧した。
(加熱加圧工程)
続いて、超高圧高温発生装置内の温度を、1500℃まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力を保持した。
続いて、超高圧高温発生装置内の圧力を、表1の「加熱加圧工程」の「第2段階加圧圧力」欄に記載される圧力まで加圧した。この間に、超高圧高温発生装置内は、六方晶窒化硼素の安定領域内の温度及び圧力から、立方晶窒化硼素の安定領域内の温度及び圧力へ変化した。
続いて、超高圧高温発生装置内の温度を、表1の「温度圧力保持工程」の「温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「加熱加圧工程」の「第2段階加圧圧力」欄に記載される圧力を保持した。
(温度圧力保持工程)
表1の「温度圧力保持工程」の「温度」及び「圧力」欄に記載される温度及び圧力にて10分間保持して、立方晶窒化硼素多結晶体を得た。
[対照例]
対照例として、住友電工ハードメタル(株)製の「BN7000」(商品名)を準備した。これは、通常の結合材を含む立方晶窒化硼素焼結体である。
<評価>
(組成の測定)
試料1~試料11の立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率を、X線回折法により測定した。X線回折法の具体的な方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。
試料1~試料11について、cBN、wBN及び圧縮型hBN以外の成分は同定されなかった。試料1~試料10において、立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率は、98.5体積%以上であった。試料11において、立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率は98.5体積%未満であった。
(転位密度の測定)
試料1~試料11の立方晶窒化硼素多結晶体の転位密度を、X線回折測定により得られるラインプロファイルを修正Williamson-Hall法及び修正Warren-Averbach法を用いて解析することにより算出した。転位密度の具体的な算出方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。なお、X線回折測定は、佐賀県立九州シンクロトロン光研究センター内の住友電工専用BL(BL)にて行った。結果を表1の「転位密度」の欄に示す。
(結晶粒の測定)
試料1~試料11の立方晶窒化硼素多結晶体に含まれる結晶粒について、円相当径のメジアン径d50、円相当径1μm以上の結晶粒の面積比率及び板状粒子の面積比率S2を測定した。具体的な方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。表1の「メジアン径d50」、「円相当径が1μm以上の結晶粒の面積比率S1」、「板状粒子の面積比率S2」の欄に示す。
(切削試験)
試料1~試料11の立方晶窒化硼素多結晶体を、レーザにより切断して仕上げ加工し、インサート型番SNEW1203ADTR(住友電工ハードメタル(株)製)の切削工具を作製した。得られた切削工具を用いて、以下の切削条件でねずみ鋳鉄FC300ブロック材(80mm×300mm×150mm)の正面フライス加工を行い、工具寿命を評価した。
(切削条件)
使用カッタ:FMU4100R(住友電工ハードメタル(株)製)
インサート型番:SNEW1203ADTR(住友電工ハードメタル(株)製)
切削速度:2500m/min
切込み量:0.3mm
送り量:0.2mm/刃
Dry加工
上記の切削条件で切削し、0.2mm以上の欠損が生じるまでの加工時間を測定した。加工時間が長いほど、耐欠損性に優れ、工具寿命が長いことを示している。なお、従来の立方晶窒化硼素焼結体を用いた工具では、切削速度は1500m/minが標準的であり、2000m/minを超えると欠損が生じやすい。よって、切削速度2500m/minの切削条件は、高速加工条件である。
Figure 0007076531000002
<考察>
試料1~試料8の製造方法は、六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程を備え、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上であり、実施例に該当する。試料1~試料8の立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含み、転位密度が8×1015/m以下であり、実施例に該当する。試料1~試料8の立方晶窒化硼素多結晶体は、鉄系材料の高速加工においても、長い工具寿命を有することが確認された。
中でも、試料1~試料6の製造方法ではウルツ鉱型窒化硼素の安定領域への突入温度が600℃以上であり、その後、加熱加圧工程において圧力を10GPa以上まで加圧した。試料1~試料6の立方晶窒化硼素多結晶体は、加熱加圧工程において圧力を10GPa以上まで加圧しないで得られた試料7及び試料8の立方晶窒化硼素多結晶体に比べて、より長い工具寿命を有していた。この結果から、本開示の一実施形態に係る立方晶窒化硼素多結晶体の製造方法において、ウルツ鉱型窒化硼素の安定領域への突入温度が600℃以上であり、かつ、その後圧力を10GPa以上まで加圧する工程を含むことがより好ましいことが確認された。
試料9及び試料10の製造方法は、ウルツ鉱型窒化硼素の安定領域への突入温度が600℃未満であり、比較例に該当する。試料9及び試料10の立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含むが、転位密度が8×1015/m超であり、比較例に該当する。試料9及び試料10の立方晶窒化硼素多結晶体は、鉄系材料の高速加工において、試料1~試料8に比べて、工具寿命が短いことが確認された。
試料11の製造方法は、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過せず、比較例に該当する。試料11の立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が98.5体積%未満であり、転位密度が8×1015/m超であり、比較例に該当する。試料11の立方晶窒化硼素多結晶体は、鉄系材料の高速加工において、試料1~試料8に比べて、工具寿命が短いことが確認された。
以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (4)

  1. 立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、
    前記立方晶窒化硼素多結晶体の転位密度は7×1015/m以下であり、
    前記立方晶窒化硼素多結晶体は、複数の結晶粒を含み、
    前記複数の結晶粒の円相当径のメジアン径d50は0.1μm以上0.5μm以下であり、
    前記立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、アスペクト比が4以上の板状粒子の面積比率S2は5面積%以下である、立方晶窒化硼素多結晶体。
  2. 前記立方晶窒化硼素多結晶体は、複数の結晶粒を含み、
    前記立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、円相当径が1μm以上の結晶粒の面積比率S1は20面積%以下である、請求項1に記載の立方晶窒化硼素多結晶体。
  3. 前記面積比率S1は15面積%以下である、請求項2に記載の立方晶窒化硼素多結晶体。
  4. 前記立方晶窒化硼素多結晶体の転位密度は6.64×1015/m以下である、請求項1から請求項3のいずれか1項に記載の立方晶窒化硼素多結晶体。
JP2020509544A 2018-09-27 2019-09-04 立方晶窒化硼素多結晶体 Active JP7076531B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022080203A JP7342193B2 (ja) 2018-09-27 2022-05-16 立方晶窒化硼素多結晶体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018182464 2018-09-27
JP2018182464 2018-09-27
PCT/JP2019/034850 WO2020066517A1 (ja) 2018-09-27 2019-09-04 立方晶窒化硼素多結晶体及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022080203A Division JP7342193B2 (ja) 2018-09-27 2022-05-16 立方晶窒化硼素多結晶体

Publications (2)

Publication Number Publication Date
JPWO2020066517A1 JPWO2020066517A1 (ja) 2021-01-07
JP7076531B2 true JP7076531B2 (ja) 2022-05-27

Family

ID=69952070

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020509544A Active JP7076531B2 (ja) 2018-09-27 2019-09-04 立方晶窒化硼素多結晶体
JP2022080203A Active JP7342193B2 (ja) 2018-09-27 2022-05-16 立方晶窒化硼素多結晶体

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022080203A Active JP7342193B2 (ja) 2018-09-27 2022-05-16 立方晶窒化硼素多結晶体

Country Status (6)

Country Link
US (1) US20220041446A1 (ja)
EP (1) EP3858803A4 (ja)
JP (2) JP7076531B2 (ja)
KR (1) KR20210058855A (ja)
CN (1) CN112752737B (ja)
WO (1) WO2020066517A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080323A (ja) 2012-10-16 2014-05-08 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素複合多結晶体およびその製造方法ならびにその立方晶窒化ホウ素複合多結晶を備える切削工具、耐摩工具および研削工具

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN150013B (ja) * 1977-07-01 1982-06-26 Gen Electric
US4289503A (en) * 1979-06-11 1981-09-15 General Electric Company Polycrystalline cubic boron nitride abrasive and process for preparing same in the absence of catalyst
JPS61223183A (ja) * 1985-03-04 1986-10-03 Res Dev Corp Of Japan 菱面体晶系窒化ホウ素の製造方法
JP2774386B2 (ja) * 1991-01-28 1998-07-09 電気化学工業株式会社 立方晶窒化ほう素焼結体の製造方法
JPH04246271A (ja) * 1991-01-31 1992-09-02 Mazda Motor Corp エンジンの吸気装置
EP0699642A3 (en) * 1994-08-29 1996-09-18 Smith International Whisker or fiber reinforced polycrystalline cubic boron nitride or diamond
ZA975386B (en) * 1996-07-03 1998-01-05 Gen Electric Ceramic bonded CBN compact.
CN1060457C (zh) * 1997-02-03 2001-01-10 汪宁 一种含六方氮化硼的复合陶瓷的制备方法
JP4106574B2 (ja) * 1998-02-28 2008-06-25 住友電気工業株式会社 立方晶窒化ホウ素焼結体およびその製造方法
JP4106590B2 (ja) 2001-12-21 2008-06-25 住友電気工業株式会社 立方晶窒化硼素焼結体およびその製造方法
EP1637258B1 (en) * 2003-05-26 2009-02-18 Sintokogio, Ltd. Method for toughening surface of sintered material cutting tool
KR101252332B1 (ko) 2006-06-12 2013-04-08 스미또모 덴꼬오 하드메탈 가부시끼가이샤 복합 소결체
US20090311162A1 (en) * 2006-08-07 2009-12-17 Tatsuo Esaki Aluminum nitride sintered body and manufacturing method thereof
FR2933690B1 (fr) * 2008-07-11 2010-09-10 Centre Nat Rech Scient Nanonitrure de bore cubique
JP2011098875A (ja) * 2009-11-09 2011-05-19 Sumitomo Electric Ind Ltd 立方晶窒化硼素焼結体
US9346716B2 (en) * 2010-03-12 2016-05-24 Sumitomo Electric Hardmetal Corp. Tool made of cubic boron nitride sintered body
JP5433510B2 (ja) 2010-06-23 2014-03-05 株式会社東芝 電源電圧監視回路
JP5900502B2 (ja) * 2011-08-30 2016-04-06 住友電気工業株式会社 立方晶窒化ホウ素複合多結晶体およびその製造方法、切削工具、線引ダイス、ならびに研削工具
JP6002100B2 (ja) * 2013-08-27 2016-10-05 日本電信電話株式会社 ダイヤモンド成長用基板及びその作製方法、並びにこの基板を用いた大面積単結晶ダイヤモンド薄膜及び自立膜の作製方法
JP6447197B2 (ja) * 2015-02-04 2019-01-09 住友電気工業株式会社 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法
JP6117406B1 (ja) 2016-06-01 2017-04-19 山佐株式会社 遊技機用基板ケース及び遊技機
JP6882043B2 (ja) 2017-04-07 2021-06-02 シャープ株式会社 画像処理装置、プログラム及び画像処理方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080323A (ja) 2012-10-16 2014-05-08 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素複合多結晶体およびその製造方法ならびにその立方晶窒化ホウ素複合多結晶を備える切削工具、耐摩工具および研削工具

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
НОВИКОВ Н В, БОНДАРЕНКО В П, КОЧЕРЖИНСКИЙ Ю А, БЕЛЯНКИНА,Исследование пластической деформации кубического нит,Sverkhtverdye Materialy,1985年05月14日,No.2,P.17-20,全5頁
浜野健也編,ファインセラミックスハンドブック,1984年02月10日,P.266

Also Published As

Publication number Publication date
JP2022122882A (ja) 2022-08-23
CN112752737B (zh) 2023-01-10
US20220041446A1 (en) 2022-02-10
JPWO2020066517A1 (ja) 2021-01-07
KR20210058855A (ko) 2021-05-24
CN112752737A (zh) 2021-05-04
EP3858803A4 (en) 2022-05-11
JP7342193B2 (ja) 2023-09-11
EP3858803A1 (en) 2021-08-04
WO2020066517A1 (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
JP6798091B1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
JP6818966B1 (ja) 複合焼結体及びそれを用いた工具
JP6798089B1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
WO2020175647A9 (ja) 立方晶窒化硼素多結晶体及びその製造方法
WO2020175642A9 (ja) 立方晶窒化硼素多結晶体及びその製造方法
JP7076531B2 (ja) 立方晶窒化硼素多結晶体
JP6798090B1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
TW202225126A (zh) 鑽石燒結體、及具備鑽石燒結體之工具
KR102685437B1 (ko) 입방정 질화붕소 다결정체 및 그 제조 방법
US20240199430A1 (en) Diamond polycrystalline body, and tool comprising diamond polycrystalline body
EP4353678A1 (en) Diamond polycrystal body, and tool provided with diamond polycrystal body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200825

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200825

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220517

R150 Certificate of patent or registration of utility model

Ref document number: 7076531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150