WO2020066517A1 - 立方晶窒化硼素多結晶体及びその製造方法 - Google Patents

立方晶窒化硼素多結晶体及びその製造方法 Download PDF

Info

Publication number
WO2020066517A1
WO2020066517A1 PCT/JP2019/034850 JP2019034850W WO2020066517A1 WO 2020066517 A1 WO2020066517 A1 WO 2020066517A1 JP 2019034850 W JP2019034850 W JP 2019034850W WO 2020066517 A1 WO2020066517 A1 WO 2020066517A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
cubic boron
temperature
pressure
nitride polycrystal
Prior art date
Application number
PCT/JP2019/034850
Other languages
English (en)
French (fr)
Inventor
力 平野
久木野 暁
慧 平井
Original Assignee
住友電工ハードメタル株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社, 住友電気工業株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to CN201980063098.6A priority Critical patent/CN112752737B/zh
Priority to US17/278,810 priority patent/US20220041446A1/en
Priority to JP2020509544A priority patent/JP7076531B2/ja
Priority to EP19867895.5A priority patent/EP3858803A4/en
Priority to KR1020217008922A priority patent/KR20210058855A/ko
Publication of WO2020066517A1 publication Critical patent/WO2020066517A1/ja
Priority to JP2022080203A priority patent/JP7342193B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present disclosure relates to a cubic boron nitride polycrystal and a method for producing the same.
  • This application claims the priority based on Japanese Patent Application No. 2018-182264 filed on Sep. 27, 2018. The entire contents described in the Japanese patent application are incorporated herein by reference.
  • Cubic boron nitride (hereinafter also referred to as “cBN”) has hardness next to diamond and is excellent in thermal stability and chemical stability.
  • cBN is more stable for iron-based materials than diamond. Therefore, a cubic boron nitride sintered body has been used as a processing tool for iron-based materials.
  • a cubic boron nitride sintered body containing about 10 to 40% by volume of a binder has been used.
  • the binder has caused the strength and thermal diffusivity of the sintered body to be reduced.
  • the heat load is increased, and the cutting edge tends to be chipped or cracked, and the tool life tends to be shortened.
  • cubic boron nitride containing no binder is sintered by directly converting hexagonal boron nitride to cubic boron nitride under ultra-high pressure and high temperature without using a binder. Methods for obtaining the body have been developed.
  • Patent Document 1 discloses that cubic boron nitride is obtained by directly converting low-crystallinity hexagonal boron nitride into a cubic boron nitride sintered body under ultra-high temperature and pressure and sintering. A technique for obtaining a boron sintered body is disclosed.
  • Cubic boron nitride polycrystal according to one embodiment of the present disclosure, A cubic boron nitride polycrystal containing at least 98.5% by volume of cubic boron nitride, The cubic boron nitride polycrystal is a cubic boron nitride polycrystal having a dislocation density of 8 ⁇ 10 15 / m 2 or less.
  • a method for producing a cubic boron nitride polycrystal according to an aspect of the present disclosure A method for producing the above cubic boron nitride polycrystal, Preparing a hexagonal boron nitride powder; Heating and pressurizing the hexagonal boron nitride powder to a temperature of 1900 ° C. or more and 2400 ° C. or less, and a pressure of 8 GPa or more by passing the temperature and pressure in the stable region of wurtzite boron nitride.
  • the stable region of the wurtzite boron nitride is a region that satisfies the following formulas 1 and 2 simultaneously when the temperature is T ° C.
  • a cubic boron nitride polycrystal is provided, wherein a temperature at which the wurtzite boron nitride enters a stable region is 600 ° C. or higher.
  • FIG. 1 is a pressure-temperature phase diagram of boron nitride.
  • FIG. 2 is a diagram for explaining a method (pattern A) for producing a cubic boron nitride polycrystal according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram for explaining a method (pattern B) of producing a cubic boron nitride polycrystal according to another embodiment of the present disclosure.
  • FIG. 4 is a diagram for describing a method (pattern C) of manufacturing a cubic boron nitride polycrystal according to another embodiment of the present disclosure.
  • FIG. 1 is a pressure-temperature phase diagram of boron nitride.
  • FIG. 2 is a diagram for explaining a method (pattern A) for producing a cubic boron nitride polycrystal according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram for explaining a method (pattern B) of producing a cubic boron
  • FIG. 5 is a diagram for explaining a method (pattern D) of manufacturing a cubic boron nitride polycrystal according to another embodiment of the present disclosure.
  • FIG. 6 is a view for explaining a conventional example of a method for producing a cubic boron nitride polycrystal.
  • FIG. 7 is a view for explaining a reference example of a method for producing a cubic boron nitride polycrystal.
  • FIG. 8 is a diagram for explaining the aspect ratio of a crystal grain.
  • the cubic boron nitride sintered body of Patent Literature 1 has a high hardness due to a small particle diameter of the cubic boron nitride particles constituting the sintered body, but has a tendency to have reduced toughness. Therefore, when an iron-based material is cut at a high speed using a cubic boron nitride sintered body, chipping or cracking of the cutting edge is likely to occur, and the tool life tends to be shortened.
  • an object of the present invention is to provide a cubic boron nitride polycrystal that can have a long tool life even when used as a tool even in high-speed machining of an iron-based material.
  • a cubic boron nitride polycrystal according to one embodiment of the present disclosure includes: A cubic boron nitride polycrystal containing at least 98.5% by volume of cubic boron nitride, The cubic boron nitride polycrystal is a cubic boron nitride polycrystal or a cubic boron nitride polycrystal having a dislocation density of 8 ⁇ 10 15 / m 2 or less.
  • the cubic boron nitride polycrystal When used as a tool, the cubic boron nitride polycrystal can have a long tool life even in high-speed machining of an iron-based material.
  • the dislocation density is preferably 7 ⁇ 10 15 / m 2 or less. According to this, the life of the tool using the cubic boron nitride polycrystal is further improved.
  • the cubic boron nitride polycrystal includes a plurality of crystal grains, When the cross section of the cubic boron nitride polycrystal is observed at a magnification of 10,000 times using a scanning electron microscope, the area ratio S1 of crystal grains having an equivalent circle diameter of 1 ⁇ m or more is 20 area% or less. Is preferred. According to this, the life of the tool using the cubic boron nitride polycrystal is further improved.
  • the area ratio S1 is preferably 15% by area or less. According to this, the life of the tool using the cubic boron nitride polycrystal is further improved.
  • the median diameter d50 of the circle-equivalent diameter of the plurality of crystal grains is preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less. According to this, the wear resistance of the cubic boron nitride polycrystal is improved.
  • the area ratio S2 of the plate-like particles having an aspect ratio of 4 or more is 5 area% or less. It is preferred that According to this, the life of the tool using the cubic boron nitride polycrystal is further improved.
  • a method for producing a cubic boron nitride polycrystal according to an embodiment of the present disclosure includes: The method for producing a cubic boron nitride polycrystal according to any one of the above (1) to (6), Preparing a hexagonal boron nitride powder; Heating and pressurizing the hexagonal boron nitride powder to a temperature of 1900 ° C. or more and 2400 ° C. or less, and a pressure of 8 GPa or more by passing the temperature and pressure in the stable region of wurtzite boron nitride.
  • the stable region of the wurtzite boron nitride is a region that satisfies the following formulas 1 and 2 simultaneously when the temperature is T ° C. and the pressure is PGPa, P ⁇ ⁇ 0.0037T + 11.301 Equation 1 P ⁇ ⁇ 0.085T + 117 Equation 2
  • a cubic boron nitride polycrystal is provided, wherein a temperature at which the wurtzite boron nitride enters a stable region is 600 ° C. or higher.
  • the cubic boron nitride polycrystal obtained by this method can have a long tool life even in high-speed processing of an iron-based material when used as a tool.
  • the rush temperature is 900 ° C. or higher. According to this, the life of the tool using the obtained cubic boron nitride polycrystal is further improved.
  • the inrush temperature is preferably 1200 ° C. or higher. According to this, the life of the tool using the obtained cubic boron nitride polycrystal is further improved.
  • a step of pressurizing the hexagonal boron nitride powder to a pressure of 0.5 GPa to 6 GPa while maintaining a temperature range of -50 ° C to 100 ° C is provided. Is preferred.
  • the gap between the hexagonal boron nitride powders can be compressed, and unnecessary gas present in the hexagonal boron nitride powder can be discharged out of the system. Therefore, it is possible to prevent quality deterioration due to a chemical reaction between the gas and the hexagonal boron nitride powder.
  • the cubic boron nitride polycrystal obtained by the step of heating and pressurizing is heated at a temperature of 1900 ° C. or more and 2400 ° C. or less and a pressure of 8 GPa or more for 10 minutes or more. It is preferable to include a temperature and pressure holding step of holding. According to this, the life of the tool using the obtained cubic boron nitride polycrystal is further improved.
  • the cubic boron nitride polycrystal according to the present embodiment is a cubic boron nitride polycrystal containing 98.5% by volume or more of cubic boron nitride, and the dislocation density of the cubic boron nitride polycrystal is 8%. ⁇ 10 15 / m 2 or less.
  • cubic boron nitride polycrystal according to the present embodiment is a sintered body, usually the sintered body is often intended to include a binder, and therefore, in the present embodiment, the term “polycrystalline” is used. Used.
  • the cubic boron nitride polycrystal according to the present embodiment contains 98.5% by volume or more of cubic boron nitride and does not substantially contain a binder, a sintering aid, a catalyst, and the like. For this reason, the cubic boron nitride is firmly bonded to each other, and the strength and thermal diffusivity of the cubic boron nitride polycrystal are improved. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-speed machining of an iron-based material.
  • the dislocation density of the cubic boron nitride polycrystal according to the present embodiment is 8 ⁇ 10 15 / m 2 or less.
  • the strength and toughness of the cubic boron nitride polycrystal are improved. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-speed machining of an iron-based material.
  • the cubic boron nitride polycrystal contains 98.5% by volume or more of cubic boron nitride. Thereby, the cubic boron nitride polycrystal has excellent hardness, and also has excellent thermal stability and chemical stability.
  • the cubic boron nitride polycrystal has a volume of one or both of compression-type hexagonal boron nitride and wurtzite-type boron nitride in addition to cubic boron nitride in a range where the effects of the present embodiment are exhibited. % Or less may be contained.
  • “compressed hexagonal boron nitride” has a similar crystal structure to normal hexagonal boron nitride, and has a c-axis plane spacing that is larger than that of normal hexagonal boron nitride (0.333 nm). Show small ones.
  • the cubic boron nitride polycrystal according to the present embodiment may contain unavoidable impurities as long as the effects of the present embodiment are exhibited.
  • Examples of inevitable impurities include hydrogen, oxygen, carbon, alkali metal elements (lithium (Li), sodium (Na), potassium (K), etc.) and alkaline earth metal elements (calcium (Ca), magnesium (Mg), etc.). And the like.
  • the content of the unavoidable impurities is preferably 0.1% by volume or less.
  • the content of the unavoidable impurities can be measured by secondary ion mass spectrometry (SIMS).
  • the cubic boron nitride polycrystal substantially does not contain a binder, a sintering aid, a catalyst, and the like. Thereby, the strength and thermal diffusivity of the cubic boron nitride polycrystal are improved.
  • the content of cubic boron nitride in the cubic boron nitride polycrystal is preferably from 98.5% by volume to 100% by volume, and more preferably from 99% by volume to 100% by volume.
  • the total content of the compression-type hexagonal boron nitride and the wurtzite-type boron nitride in the cubic boron nitride polycrystal is preferably from 0% by volume to 1.5% by volume, more preferably from 0% by volume to 1% by volume. More preferably, 0 vol% is most preferable. That is, it is most preferable that the cubic boron nitride polycrystal does not include any of compression-type hexagonal boron nitride and wurtzite-type boron nitride.
  • the content of the compressed hexagonal boron nitride in the cubic boron nitride polycrystal is preferably from 0% by volume to 1.5% by volume, more preferably from 0% by volume to 1% by volume, and most preferably 0% by volume. . That is, it is most preferable that the cubic boron nitride polycrystal does not include the compression type hexagonal boron nitride.
  • the content of wurtzite-type boron nitride in the cubic boron nitride polycrystal is preferably from 0% by volume to 1.5% by volume, more preferably from 0% by volume to 1% by volume, and most preferably 0% by volume. That is, it is most preferable that the cubic boron nitride polycrystal does not contain wurtzite-type boron nitride.
  • the content (volume%) of cubic boron nitride, compressed hexagonal boron nitride and wurtzite boron nitride in the cubic boron nitride polycrystal can be measured by an X-ray diffraction method.
  • the specific measuring method is as follows.
  • the cubic boron nitride polycrystal is cut with a diamond grindstone electrodeposited wire, and the cut surface is used as an observation surface.
  • Characteristic X-ray Cu-K ⁇ (wavelength 1.54 °) Tube voltage: 45kV Tube current: 40mA Filter: Multilayer mirror Optical system: Focusing method X-ray diffraction method: ⁇ -2 ⁇ method.
  • the content of the compression-type hexagonal boron nitride can be obtained by calculating the value of peak intensity A / (peak intensity A + peak intensity B + peak intensity C).
  • the content of wurtzite boron nitride can be obtained by calculating the value of peak intensity B / (peak intensity A + peak intensity B + peak intensity C).
  • the content of cubic boron nitride can be obtained by calculating the value of peak intensity C / (peak intensity A + peak intensity B + peak intensity C).
  • the above X-ray peak intensity ratio is determined by the volume ratio in the cubic boron nitride polycrystal. Can be considered.
  • the dislocation density of the cubic boron nitride polycrystal is 8 ⁇ 10 15 / m 2 or less.
  • the dislocation density is preferably 7 ⁇ 10 15 / m 2 or less, more preferably 6 ⁇ 10 15 / m 2 or less.
  • the lower limit of the dislocation density is not particularly limited, it can be 1.0 ⁇ 10 15 / m 2 or more from the viewpoint of manufacturing.
  • the dislocation density is calculated by the following procedure.
  • a test piece made of cubic boron nitride polycrystal is prepared.
  • the observation surface is 2.0 mm ⁇ 2.0 mm and the thickness is 1.0 mm.
  • the observation surface of the test piece is polished.
  • X-ray diffraction measurement conditions X-ray source: synchrotron radiation Equipment conditions: detector NaI (cut off the fluorescence with an appropriate ROI) Energy: 18 keV (wavelength: 0.6888 °) Dispersion crystal: Si (111) Incident slit: width 5 mm x height 0.5 mm Light receiving slit: Double slit (width 3mm x height 0.5mm) Mirror: Platinum-coated mirror Incident angle: 2.5 mrad Scanning method: 2 ⁇ - ⁇ scan Measurement peaks: six (111), (200), (220), (311), (400), and (331) cubic boron nitrides. However, when it is difficult to obtain a profile due to the texture and orientation, the peak of the plane index is excluded.
  • Measurement conditions The number of measurement points should be 9 or more in the half width.
  • the peak top intensity shall be 2000counts or more. Since the tail of the peak is also used in the analysis, the measurement range is about 10 times the half width.
  • the line profile obtained by the above-mentioned X-ray diffraction measurement has a shape including both the true spread caused by a physical quantity such as non-uniform strain of the sample and the spread caused by the device.
  • a component caused by the apparatus is removed from the measured line profile to obtain a true line profile.
  • the true line profile is obtained by fitting the obtained line profile and the line profile caused by the device with a pseudo Voigt function, and subtracting the line profile caused by the device.
  • the diffraction line spread caused by the device can be regarded as zero.
  • the dislocation density is calculated by analyzing the obtained true line profile using the modified Williamson-Hall method and the modified Warren-Averbach method.
  • the modified Williamson-Hall method and the modified Warren-Averbach method are known line profile analysis methods used for obtaining dislocation density.
  • lnA (L) lnA S ( L) - in ( ⁇ L 2 ⁇ b 2/2) ln (R e / L) (K 2 C) + O (K 2 C) 2 (IV) (the formula (IV), A (L) is the Fourier series, a S (L) is the Fourier series regarding crystallite size, L is shows a Fourier length.)
  • the cubic boron nitride polycrystal is composed of cubic boron nitride grains and, optionally, a plurality of grains including compression-type hexagonal boron nitride grains and wurtzite-type boron nitride grains.
  • the area ratio S1 of crystal grains having an equivalent circle diameter of 1 ⁇ m or more (hereinafter, also referred to as “area ratio S1”) Is not more than 20 area%.
  • the equivalent circle diameter means the diameter of a circle having the same area as the area of the crystal grain in the cross section.
  • the cubic boron nitride polycrystal has improved homogeneity in the structure of the sintered body, so that strength and toughness are improved, and a long tool life can be obtained even in high-speed processing of an iron-based material.
  • the homogeneity of the crystal structure of the cubic boron nitride polycrystal according to the present embodiment can be confirmed by, for example, observing the cubic boron nitride with an SEM (Scanning Electron Microscope, scanning electron microscope). it can.
  • the area ratio S1 of crystal grains having an equivalent circle diameter of 1 ⁇ m or more is preferably 0 to 20 area%, more preferably 0 to 15 area%, and still more preferably 0 to 10 area%.
  • the plurality of crystal grains contained in the cubic boron nitride polycrystal preferably have a median diameter d50 (hereinafter also referred to as “median diameter d50”) of an equivalent circle diameter of 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • median diameter d50 the median diameter of a cubic boron nitride polycrystal is improved as the grain size of the crystal grains is smaller. For this reason, the grain size of the crystal grains constituting the cubic boron nitride polycrystal has been reduced (for example, less than 100 nm in average grain size), but this has tended to reduce toughness.
  • the median diameter d50 of the equivalent circle diameter of the crystal grains is more preferably 0.15 ⁇ m or more and 0.35 ⁇ m or less, and further preferably 0.2 ⁇ m or more and 0.3 ⁇ m or less.
  • the area ratio S2 of the plate-like particles having an aspect ratio of 4 or more Is preferably 5% by area or less.
  • a decrease in toughness due to a reduction in grain size was compensated for by the presence of a plate-like structure in the cubic polycrystal.
  • the plate-like particles suddenly fall off from the cutting edge and cause chipping of the cutting edge particularly during high-efficiency machining of difficult-to-cut materials, which causes a variation and a reduction in tool life.
  • the content of plate-like particles having an aspect ratio of 4 or more is reduced. Therefore, the cubic boron nitride polycrystal is unlikely to cause a sudden loss of the cutting edge caused by the plate-like particles, and can have a long tool life even in high-speed machining of an iron-based material.
  • the area ratio S2 of the plate-like particles having an aspect ratio of 4 or more is preferably 0 area% or more and 5 area% or less, more preferably 0 area% or more and 3 area% or less, and still more preferably 0 area% or more and 2 area% or less.
  • cubic boron nitride polycrystal When the cubic boron nitride polycrystal is used as a part of a cutting tool, a portion of the cubic boron nitride polycrystal is cut out by wire electric discharge machining or a diamond grindstone electrodeposited wire, and the cut cross section is cut. Polishing and arbitrarily setting five measurement points on the polished surface.
  • Binarization processing is performed on each of the five SEM images so that the crystal grain boundaries become clear. For example, using image processing software (Win @ Roof @ ver. 7.4.5), automatic binarization is performed, and the threshold value is appropriately checked and finely adjusted by checking the image. For example, the finely adjusted threshold value is 75.
  • the aspect ratio of each crystal grain, the area of each crystal grain, and the distribution of the circle equivalent diameter of the crystal grain Is calculated.
  • the aspect ratio means a value (major axis / minor axis) of the ratio of the major axis to the minor axis on the cut surface.
  • first line segment The longest line segment that can be drawn inside the crystal grain (both ends are in contact with the crystal grain boundary) (hereinafter also referred to as “first line segment”) is specified, and the first line segment is specified. Measure the length L1.
  • the longest line segment (hereinafter, also referred to as “second line segment”) that is perpendicular to the first line segment and that can be drawn inside the crystal grain (both ends contact the crystal grain boundary). ) Is specified, and the length L2 of the second line segment is measured.
  • (C) Calculate the value (L1 / L2) of the ratio of the length L1 of the first line segment to the length L2 of the second line segment.
  • the value of (L1 / L2) is defined as the aspect ratio.
  • the area ratio S1, the area ratio S2, and the median diameter d50 are calculated using the entire measurement visual field as a denominator. Based on the area of each crystal grain and the aspect ratio of each crystal grain, the area ratio S1 of crystal grains having an equivalent circle diameter of 1 ⁇ m or more and the area ratio S2 of plate-like particles having an aspect ratio of 4 or more are calculated. The median diameter d50 is calculated from the distribution of the circle equivalent diameter of the crystal grains.
  • the cubic boron nitride polycrystal according to the present embodiment is preferably used for a cutting tool, a wear-resistant tool, a grinding tool, and the like.
  • Each of the cutting tool, the wear-resistant tool, and the grinding tool according to the present embodiment may be entirely formed of cubic boron nitride polycrystal, or only a part thereof (for example, in the case of a cutting tool, a cutting edge portion). It may be composed of a cubic boron nitride polycrystal. Further, a coating film may be formed on the surface of each tool.
  • Cutting tools include drills, end mills, replaceable cutting tips for drills, replaceable cutting tips for end mills, replaceable cutting tips for milling, replaceable cutting tips for turning, metal saws, gear cutting tools, reamers , Taps, cutting tools, and the like.
  • ⁇ Dies, scribers, scribing wheels, dressers, etc. can be mentioned as the wear-resistant tools.
  • the grinding tool include a grinding wheel.
  • FIG. 1 is a pressure-temperature phase diagram of boron nitride.
  • 2 to 5 are diagrams for explaining a method of manufacturing a cubic boron nitride polycrystal according to an embodiment of the present disclosure.
  • FIG. 6 is a view for explaining a conventional example of a method for producing a cubic boron nitride polycrystal.
  • FIG. 7 is a view for explaining a reference example of a method for producing a cubic boron nitride polycrystal.
  • the method for producing a cubic boron nitride polycrystal according to the present embodiment is the method for producing the cubic boron nitride polycrystal of the first embodiment.
  • the production method includes a step of preparing hexagonal boron nitride powder (hereinafter, also referred to as a “preparation step”), and passing the hexagonal boron nitride powder through a temperature and a pressure in a stable region of wurtzite-type boron nitride. And a step of heating and pressurizing to a temperature of 1900 ° C. or more and 2400 ° C.
  • the stable region of the wurtzite type boron nitride is a region that satisfies the following formulas 1 and 2 simultaneously when the temperature is T ° C. and the pressure is PGPa, P ⁇ ⁇ 0.0037T + 11.301 Equation 1 P ⁇ ⁇ 0.085T + 117 Equation 2
  • the temperature at which the wurtzite boron nitride enters the stable region is 600 ° C. or higher.
  • the hexagonal boron nitride powder is kept at a temperature in the range of ⁇ 50 ° C. to 100 ° C.
  • a step of pressurizing to a pressure of 6 GPa or less (hereinafter, also referred to as “pretreatment step”) can be provided.
  • the method for producing a cubic boron nitride polycrystal according to this embodiment includes, after the step of heating and pressing, a step of heating and pressing the cubic boron nitride polycrystal obtained at a temperature of 1900 ° C. or more and 2400 ° C. or less, Further, a step of holding for 10 minutes or more under a pressure condition of 8 GPa or more (hereinafter, also referred to as a “temperature and pressure holding step”) can be provided.
  • boron nitride includes hexagonal boron nitride, which is a stable phase at normal temperature and normal pressure, cubic boron nitride, which is a stable phase at high temperature and pressure, and from hexagonal boron nitride to cubic boron nitride.
  • hexagonal boron nitride which is a stable phase at normal temperature and normal pressure
  • cubic boron nitride which is a stable phase at high temperature and pressure
  • hexagonal boron nitride to cubic boron nitride.
  • each phase can be represented by a linear function.
  • the temperature and the pressure in the stable region of each phase can be expressed by using a linear function.
  • wBN stable region the temperature and pressure in the stable region of wurtzite-type boron nitride (referred to as “wBN stable region” in FIG. 1) are expressed by the following formula 1 when the temperature is T ° C. and the pressure is PGPa. It is defined as a temperature and a pressure that simultaneously satisfy the following Expression 2.
  • the temperature and pressure in the stable region of hexagonal boron nitride (referred to as “hBN stable region” in FIG. 1) are represented by the following formula (A) when the temperature is T ° C. and the pressure is PGPa. And the temperature and pressure satisfying the following formula (B) at the same time, or the temperature and pressure satisfying the following formula (C) and the following formula (D) at the same time.
  • the hexagonal boron nitride powder is heated and pressed to a temperature of 1900 ° C. to 2400 ° C. and a pressure of 7.7 GPa or more, preferably 8 GPa or more, more preferably 10 GPa or more.
  • the temperature and pressure are those at which cubic boron nitride having excellent tool performance is obtained.
  • hexagonal boron nitride is brought to a temperature (1900 ° C. or more and 2400 ° C. or less) and a pressure (7.7 GPa or more) within a stable region of cubic boron nitride that can provide cubic boron nitride having excellent tool performance.
  • a path shown in FIG. 6 (hereinafter, also referred to as a “path in FIG. 6”) has been studied as a path of temperature and pressure for this purpose.
  • the pressure is increased from the starting temperature and the starting pressure (normal temperature and normal pressure) to a pressure (for example, 10 GPa or more) in the stable region of cubic boron nitride (arrow E1 in FIG. 6).
  • a pressure for example, 10 GPa or more
  • the control of the heating and pressurizing operation is simple and conventionally employed.
  • the intrusion temperature of the wurtzite-type boron nitride into the stable region is less than 600 ° C.
  • the atomic diffusion hardly occurs, and the phase transition from hexagonal boron nitride to the wurtzite-type boron nitride does not occur.
  • Diffusion type phase transition is the main.
  • this cubic boron nitride tends to cause sudden defects during processing, and the tool life tends to be shortened.
  • the temperature (for example, 1500 ° C.) in the stable region of cubic boron nitride is determined from the starting temperature and the starting pressure (normal temperature and normal pressure) so as not to pass through the stable region of wurtzite boron nitride. ) And pressure (for example, 9 GPa) by heating and pressurizing (arrows F1, F2, and F3 in FIG. 7), and then further raising the temperature (for example, 2100 ° C.) (arrow F4 in FIG. 7).
  • hexagonal boron nitride is directly phase-transformed into cubic boron nitride.
  • hexagonal boron nitride and cubic boron nitride have greatly different crystal structures, lattice defects tend to occur during the phase transition. Therefore, this cubic boron nitride tends to have a short tool life.
  • the hexagonal boron nitride and the cubic boron nitride have greatly different crystal structures, the conversion to cubic boron nitride is less than 98.5% by volume. Therefore, the performance of the tool using the obtained cubic boron nitride polycrystal is deteriorated.
  • a hexagonal boron nitride powder is prepared as a raw material of the cubic boron nitride polycrystal.
  • the hexagonal boron nitride powder preferably has a purity (content of hexagonal boron nitride) of 98.5% or more, more preferably 99% or more, and most preferably 100%.
  • the particle size of the hexagonal boron nitride powder is not particularly limited, but may be, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the hexagonal boron nitride powder is pressurized to a pressure of 0.5 GPa or more and 6 GPa or less while maintaining a temperature range of -50 ° C. or more and 100 ° C. or less using an ultra-high pressure and high temperature generator (arrow in FIG. 2).
  • A1, arrow B1 in FIG. 3, arrow C1 in FIG. 4, and arrow D1 in FIG. 5 are examples of an ultra-high pressure and high temperature generator
  • the gap between the hexagonal boron nitride powders can be compressed, and unnecessary gas existing in the hexagonal boron nitride powder can be discharged out of the system. Therefore, it is possible to prevent quality deterioration due to a chemical reaction between the gas and the hexagonal boron nitride powder.
  • the pretreatment step By performing the pretreatment step, it is possible to increase the density of the hexagonal boron nitride powder to such a degree that the external shape hardly changes even when the pressure is further increased. In this state, the heating and pressurizing step can be performed, so that stable production can be achieved.
  • the temperature in the pretreatment step is preferably maintained in a temperature range of ⁇ 50 ° C. or more and 100 ° C. or less, more preferably in a temperature range of 0 ° C. or more and 50 ° C. or less.
  • the ultimate pressure in the pretreatment step is preferably 0.5 GPa or more and 5 GPa or less, more preferably 1 GPa or more and 3 GPa or less.
  • the pretreatment step is an optional step. Therefore, after the above-described preparation step, a heating and pressing step described later can be performed without performing the pretreatment step.
  • the hexagonal boron nitride powder is heated and pressurized to a temperature of 1900 ° C. or higher and 2400 ° C. or lower and a pressure of 8 GPa or higher through the temperature and pressure in the stable region of wurtzite-type boron nitride (FIG. 2).
  • the temperature at which the wurtzite boron nitride enters the stable region is 600 ° C. or higher.
  • the intrusion temperature of the wurtzite boron nitride into the stable region means the temperature at the time when the wurtzite boron nitride reaches the stable region for the first time in the heating and pressurizing step.
  • the temperature at which the wurtzite boron nitride enters the stable region is 600 ° C. or higher.
  • hexagonal boron nitride powder is converted into wurtzite-type boron nitride in an environment where atom diffusion easily occurs, and then converted into cubic boron nitride polycrystal. Therefore, in the obtained cubic boron nitride polycrystal, lattice defects are reduced, and the strength and toughness of the cubic boron nitride polycrystal are improved. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-speed machining of an iron-based material.
  • the temperature at which the wurtzite boron nitride enters the stable region is preferably 900 ° C. or higher, more preferably 1200 ° C. or higher. As the intrusion temperature increases, atomic diffusion tends to occur and lattice defects tend to decrease.
  • the upper limit of the inrush temperature can be, for example, 1500 ° C. or less.
  • the ultimate pressure in the heating and pressurizing step is 8 GPa or more.
  • the upper limit of the ultimate pressure is not particularly limited, but may be, for example, 15 GPa or less.
  • the pressure is preferably increased to 10 GPa or more after the wurtzite-type boron nitride enters the stable region.
  • the holding time of the wurtzite-type boron nitride at the temperature and pressure in the stable region can be, for example, 5 minutes or more and 60 minutes or less.
  • heating and pressurizing step in the paths shown in FIGS. 2 to 5, pressure is applied after heating, and further heating is performed, but the present invention is not limited to this.
  • the method of heating and pressurizing is not particularly limited as long as the intrusion temperature of the wurtzite-type boron nitride into the stable region can be set to 600 ° C. or higher. For example, heating and pressurizing may be performed simultaneously. .
  • a cubic boron nitride polycrystal can be obtained by subjecting the hexagonal boron nitride powder to a heating and pressurizing step.
  • the cubic boron nitride polycrystal obtained by the heating and pressurizing step is heated to a temperature of 1900 ° C. or more and 2400 ° C. or less (hereinafter also referred to as “sintering temperature”) and 8 GPa.
  • a step of holding for 10 minutes or more under the above pressure conditions hereinafter, also referred to as “sintering pressure” can be performed.
  • the obtained cubic boron nitride polycrystal has a high cubic boron nitride content, and can achieve a longer tool life.
  • the sintering temperature in the temperature and pressure holding step is preferably from 1900 ° C to 2400 ° C, more preferably from 2100 ° C to 2300 ° C.
  • the sintering pressure in the temperature and pressure holding step is preferably 8 GPa or more and 15 GPa or less, and more preferably 9 GPa or more and 12 GPa or less.
  • the sintering time in the temperature and pressure holding step is preferably from 10 minutes to 60 minutes, more preferably from 10 minutes to 30 minutes.
  • the intrusion temperature of the wurtzite boron nitride into the stable region is about 1200 ° C.
  • hexagonal boron nitride powder is converted into wurtzite boron nitride in an environment in which atomic diffusion is very likely to occur.
  • wurtzite boron nitride has few lattice defects and a very low dislocation density.
  • the wurtzite-type boron nitride is further heated to be converted into a cubic boron nitride polycrystal, and then maintained at a temperature of about 2200 ° C. and a pressure of about 9 GPa. These temperature and pressure conditions are such that grain growth of cubic boron nitride does not occur. Therefore, the obtained cubic boron nitride polycrystal has a very low dislocation density and has no coarse grains.
  • the intrusion temperature of the wurtzite boron nitride into the stable region is about 600 ° C. According to this, hexagonal boron nitride powder is converted into wurtzite-type boron nitride in an environment where atomic diffusion occurs. For this reason, wurtzite boron nitride has few lattice defects and low dislocation density.
  • the intrusion temperature of the wurtzite-type boron nitride into the stable region is lower than the path in FIG. 2 and non-diffusion phase transition occurs, so that coarse particles may be generated.
  • the wurtzite-type boron nitride is further heated to be converted into a cubic boron nitride polycrystal, and then maintained at a temperature of about 2200 ° C. and a pressure of about 9 GPa.
  • the obtained cubic boron nitride polycrystal has a low dislocation density, but may have coarse grains.
  • the inrush temperature of the wurtzite-type boron nitride into the stable region is about 1200 ° C.
  • hexagonal boron nitride powder is converted into wurtzite boron nitride in an environment in which atomic diffusion is very likely to occur.
  • wurtzite boron nitride has few lattice defects and a very low dislocation density.
  • the wurtzite-type boron nitride is further heated to be converted into a cubic boron nitride polycrystal, and then maintained at a temperature of about 2500 ° C. and a pressure of about 9 GPa. These temperature and pressure conditions cause grain growth of cubic boron nitride. Therefore, the obtained cubic boron nitride polycrystal has a very low dislocation density but has coarse grains.
  • the inrush temperature of the wurtzite boron nitride into the stable region is about 1200 ° C.
  • hexagonal boron nitride powder is converted into wurtzite boron nitride in an environment in which atomic diffusion is very likely to occur.
  • wurtzite boron nitride has few lattice defects and a very low dislocation density.
  • the wurtzite-type boron nitride is further heated to be converted into a cubic boron nitride polycrystal, and then maintained at a temperature of about 2200 ° C. and a pressure of about 15 GPa. These temperature and pressure conditions are such that grain growth of cubic boron nitride does not occur. Therefore, the obtained cubic boron nitride polycrystal has a very low dislocation density and suppresses the formation of coarse grains.
  • a comparison between the cubic boron nitride polycrystal obtained by the route of FIG. 2 and the cubic boron nitride polycrystal obtained by the route of FIG. 3 shows that the cubic boron nitride polycrystal obtained by the route of FIG. The lower the dislocation density, the less coarse grains. It is considered that the reason for this is that the wurtzite-type boron nitride has a higher entry temperature into the stable region and the atom diffusion is more likely to occur in the route shown in FIG.
  • a comparison between the cubic boron nitride polycrystal obtained by the route of FIG. 2 and the cubic boron nitride polycrystal obtained by the route of FIG. 4 shows that the cubic boron nitride polycrystal obtained by the route of FIG. There are fewer coarse grains. The reason for this is that the temperature and pressure holding conditions in the stable region of cubic boron nitride are such that no grain growth of cubic boron nitride occurs in the path of FIG. 2, and in the path of FIG. This is considered to be due to conditions that cause grain growth.
  • the dislocation density is the same, but the volume of the obtained sintered body is Is larger in the cubic boron nitride polycrystal obtained by the route shown in FIG. This is because the holding pressure in the cubic boron nitride stable region is smaller in the path of FIG. Therefore, from the viewpoint of productivity, the path shown in FIG. 2 is more preferable.
  • the production conditions of the cubic boron nitride polycrystal and the composition (composition, dislocation density, area ratio S1 of crystal grains having a circle equivalent diameter of 1 ⁇ m or more, and plate-like particles (Area ratio S2, median diameter) and performance.
  • Example 1 to Sample 6 (Pretreatment step) 6 g of hexagonal boron nitride powder ("Denka boron nitride" (trade name) manufactured by Denka Corporation, particle size: 5 m) was prepared. The hexagonal boron nitride powder is placed in a capsule made of molybdenum, and is described in the “first stage pressurizing pressure” column of “pretreatment step” in Table 1 at 25 ° C. (room temperature) using an ultra-high pressure and high temperature generator. The pressure was increased to the required pressure.
  • the pressure in the ultrahigh-pressure and high-temperature generating device was increased to the pressure described in the “second stage pressurizing pressure” column of the “heating and pressurizing step” in Table 1.
  • the temperature and pressure in the stable region of hexagonal boron nitride changed from the temperature and pressure in the stable region of hexagonal boron nitride to the temperature and pressure in the stable region of wurtzite boron nitride.
  • the intrusion temperature of the wurtzite boron nitride into the stable region was the temperature described in the “wBN stable region intruding temperature” column of the “heating and pressurizing step” in Table 1.
  • the temperature inside the ultrahigh-pressure high-temperature generator was heated to the temperature described in the “Temperature” column of “Temperature and pressure holding step” in Table 1.
  • the pressure in the ultrahigh-pressure and high-temperature generating apparatus maintained the pressure described in the “second stage pressurizing pressure” column of the “heating and pressurizing step” in Table 1.
  • Example 7 to Sample 9 (Pretreatment step) 6 g of hexagonal boron nitride powder ("Denka boron nitride" (trade name) manufactured by Denka Corporation, particle size: 5 m) was prepared. The hexagonal boron nitride powder is placed in a capsule made of molybdenum, and is described in the “first stage pressurizing pressure” column of “pretreatment step” in Table 1 at 25 ° C. (room temperature) using an ultra-high pressure and high temperature generator. The pressure was increased to the required pressure.
  • the temperature in the ultrahigh-pressure high-temperature generating device was heated to the temperature described in the “wBN stable region entry temperature” column of the “heating and pressurizing step” in Table 1.
  • the pressure in the ultrahigh-pressure and high-temperature generating device maintained the pressure described in the “first stage pressurizing pressure” column of the “pretreatment step” in Table 1.
  • the temperature and pressure in the stable region of hexagonal boron nitride changed from the temperature and pressure in the stable region of hexagonal boron nitride to the temperature and pressure in the stable region of wurtzite boron nitride.
  • the intrusion temperature of the wurtzite boron nitride into the stable region was the temperature described in the “wBN stable region intruding temperature” column of the “heating and pressurizing step” in Table 1.
  • the temperature in the ultrahigh-pressure high-temperature generating device was further heated to the temperature described in the column “Temperature” of “Temperature-pressure maintaining step” in Table 1. During this time, the pressure in the ultrahigh-pressure and high-temperature generating device maintained the pressure described in the “first stage pressurizing pressure” column of the “pretreatment step” in Table 1.
  • Example 10 (Pretreatment step and heating and pressing step) 6 g of hexagonal boron nitride powder ("Denka boron nitride" (trade name) manufactured by Denka Corporation, particle size: 5 m) was prepared. The hexagonal boron nitride powder is placed in a capsule made of molybdenum, and is described in the “first stage pressurizing pressure” column of “pretreatment step” in Table 1 at 25 ° C. (room temperature) using an ultra-high pressure and high temperature generator. Pressure (12 GPa).
  • the temperature and pressure in the stable region of hexagonal boron nitride changed from the temperature and pressure in the stable region of hexagonal boron nitride to the temperature and pressure in the stable region of wurtzite boron nitride.
  • the intrusion temperature of the wurtzite boron nitride into the stable region was the temperature (25 ° C.) described in the “wBN stable region intrusion temperature” column in the “Heating and pressing step” in Table 1.
  • the temperature in the ultrahigh-pressure high-temperature generating device was further heated to the temperature described in the column “Temperature” of “Temperature-pressure maintaining step” in Table 1. During this time, the pressure in the ultrahigh-pressure and high-temperature generating device maintained the pressure described in the “first stage pressurizing pressure” column of the “pretreatment step” in Table 1.
  • Example 11 (Pretreatment step) 6 g of hexagonal boron nitride powder ("Denka boron nitride" (trade name) manufactured by Denka Corporation, particle size: 5 m) was prepared. The hexagonal boron nitride powder is placed in a capsule made of molybdenum, and is described in the “first stage pressurizing pressure” column of “pretreatment step” in Table 1 at 25 ° C. (room temperature) using an ultra-high pressure and high temperature generator. The pressure was increased to the required pressure.
  • the pressure in the ultrahigh-pressure and high-temperature generating device was increased to the pressure described in the “second stage pressurizing pressure” column of the “heating and pressurizing step” in Table 1.
  • the temperature and pressure in the stable region of hexagonal boron nitride changed from the temperature and pressure in the stable region of hexagonal boron nitride to the temperature and pressure in the stable region of cubic boron nitride.
  • the temperature inside the ultrahigh-pressure high-temperature generator was heated to the temperature described in the “Temperature” column of “Temperature and pressure holding step” in Table 1.
  • the pressure in the ultrahigh-pressure and high-temperature generating apparatus maintained the pressure described in the “second stage pressurizing pressure” column of the “heating and pressurizing step” in Table 1.
  • Control example As a control example, "BN7000" (trade name) manufactured by Sumitomo Electric Hardmetal Corp. was prepared. This is a cubic boron nitride sintered body containing a usual binder.
  • the dislocation densities of the cubic boron nitride polycrystals of Samples 1 to 11 were calculated by analyzing a line profile obtained by X-ray diffraction measurement using the modified Williamson-Hall method and the modified Warren-Averbach method. Since the specific method of calculating the dislocation density is as described in Embodiment 1, the description will not be repeated.
  • the X-ray diffraction measurement was performed at the BL (BL) for Sumitomo Electric within the Saga Prefectural Kyushu Synchrotron Light Research Center. The results are shown in the column of "dislocation density" in Table 1.
  • a cutting speed of 1500 m / min is standard, and when it exceeds 2000 m / min, chipping tends to occur. Therefore, the cutting conditions at a cutting speed of 2500 m / min are high-speed machining conditions.
  • Samples 1 to 8 are manufactured by passing a hexagonal boron nitride powder through a temperature and a pressure in a stable region of wurtzite boron nitride at a temperature of 1900 ° C. to 2400 ° C. and a pressure of 8 GPa or more.
  • a step of heating and pressurizing the wurtzite-type boron nitride to a stable region is performed at a temperature of 600 ° C. or higher, which corresponds to an example.
  • the cubic boron nitride polycrystals of Samples 1 to 8 each contain 98.5% by volume or more of cubic boron nitride and have a dislocation density of 8 ⁇ 10 15 / m 2 or less, which corresponds to Examples. It was confirmed that the cubic boron nitride polycrystals of Samples 1 to 8 had a long tool life even in high-speed processing of an iron-based material.
  • the intrusion temperature of the wurtzite-type boron nitride into the stable region was 600 ° C. or more, and then the pressure was increased to 10 GPa or more in the heating and pressurizing step.
  • the cubic boron nitride polycrystals of Samples 1 to 6 are more excellent than the cubic boron nitride polycrystals of Samples 7 and 8 obtained without increasing the pressure to 10 GPa or more in the heating and pressing step. Had a long tool life.
  • the intrusion temperature of the wurtzite-type boron nitride into the stable region is 600 ° C. or higher, and the pressure is thereafter increased to 10 GPa or higher. It has been confirmed that it is more preferable to include a step of pressurizing to the maximum.
  • the manufacturing methods of Samples 9 and 10 correspond to Comparative Examples in which the wurtzite-type boron nitride has a temperature of entering the stable region of less than 600 ° C.
  • the cubic boron nitride polycrystals of Samples 9 and 10 contain cubic boron nitride in an amount of 98.5% by volume or more, but have a dislocation density of more than 8 ⁇ 10 15 / m 2 and correspond to Comparative Examples. It was confirmed that the tool life of the cubic boron nitride polycrystals of Samples 9 and 10 was shorter than that of Samples 1 to 8 in high-speed processing of an iron-based material.
  • the method for producing Sample 11 does not pass through the temperature and pressure in the stable region of wurtzite boron nitride, and thus corresponds to Comparative Example.
  • the cubic boron nitride polycrystal of Sample 11 has a cubic boron nitride content of less than 98.5% by volume and a dislocation density of more than 8 ⁇ 10 15 / m 2 , which corresponds to Comparative Example. It was confirmed that the tool life of the cubic boron nitride polycrystal of Sample 11 was shorter than that of Samples 1 to 8 in high-speed processing of an iron-based material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、立方晶窒化硼素多結晶体の転位密度は8×1015/m以下である。

Description

立方晶窒化硼素多結晶体及びその製造方法
 本開示は、立方晶窒化硼素多結晶体及びその製造方法に関する。本出願は、2018年9月27日に出願した日本特許出願である特願2018-182464号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 立方晶窒化硼素(以下、「cBN」とも記す。)はダイヤモンドに次ぐ硬度を有し、熱的安定性及び化学的安定性にも優れる。また、cBNは、鉄系材料に対しては、ダイヤモンドよりも安定なため、鉄系材料の加工工具として立方晶窒化硼素焼結体が用いられてきた。
 立方晶窒化硼素焼結体としては、バインダーを10~40体積%程度含むものが用いられていた。しかし、バインダーは焼結体の強度、熱拡散性を低下させる原因となっていた。特に、立方晶窒化硼素焼結体を用いて鉄系材料を高速で切削加工する場合に、熱負荷が大きくなり、刃先の欠損や亀裂が生じやすく、工具の寿命が短くなる傾向があった。
 この問題を解決するために、バインダーを用いずに、六方晶窒化硼素を超高圧高温下で立方晶窒化硼素へ直接変換させると同時に焼結させることにより、バインダーを含まない立方晶窒化硼素焼結体を得る方法が開発されている。
 特開平11-246271号公報(特許文献1)には、低結晶性の六方晶窒化硼素を超高温高圧下で立方晶窒化硼素焼結体に直接変換させ、かつ焼結させて、立方晶窒化硼素焼結体を得る技術が開示されている。
特開平11-246271号公報
 本開示の一態様に係る立方晶窒化硼素多結晶体は、
 立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、
 前記立方晶窒化硼素多結晶体は、転位密度が8×1015/m以下である、立方晶窒化硼素多結晶体である。
 本開示の一態様に係る立方晶窒化硼素多結晶体の製造方法は、
 上記の立方晶窒化硼素多結晶体の製造方法であって、
 六方晶窒化硼素粉末を準備する工程と、
 前記六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程と、を備え、
 前記ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
 P≧-0.0037T+11.301  式1
 P≦-0.085T+117  式2
 前記加熱加圧する工程において、前記ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である、立方晶窒化硼素多結晶体の製造方法である。
図1は、窒化硼素の圧力-温度相図である。 図2は、本開示の一実施の形態に係る立方晶窒化硼素多結晶体の製造方法(パターンA)を説明するための図である。 図3は、本開示の他の一実施の形態に係る立方晶窒化硼素多結晶体の製造方法(パターンB)を説明するための図である。 図4は、本開示の他の一実施の形態に係る立方晶窒化硼素多結晶体の製造方法(パターンC)を説明するための図である。 図5は、本開示の他の一実施の形態に係る立方晶窒化硼素多結晶体の製造方法(パターンD)を説明するための図である。 図6は、立方晶窒化硼素多結晶体の製造方法の従来例を説明するための図である。 図7は、立方晶窒化硼素多結晶体の製造方法の参考例を説明するための図である。 図8は、結晶粒のアスペクト比を説明するための図である。
[本開示が解決しようとする課題]
 特許文献1の立方晶窒化硼素焼結体は、これを構成する立方晶窒化硼素粒子の粒径が小さいため、高い硬度を有するが、一方で、靱性が低下する傾向があった。このため、立方晶窒化硼素焼結体を用いて鉄系材料を高速で切削加工する場合に、刃先の欠損や亀裂が生じやすく、工具の寿命が短くなる傾向があった。
 そこで、本目的は、工具として用いた場合に、鉄系材料の高速加工においても、長い工具寿命を有することのできる立方晶窒化硼素多結晶体を提供することを目的とする。
[本開示の効果]
 上記態様によれば、立方晶窒化硼素多結晶体は、工具として用いた場合に、鉄系材料の高速加工においても、長い工具寿命を有することができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の一態様に係る立方晶窒化硼素多結晶体は、
 立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、
 前記立方晶窒化硼素多結晶体の転位密度は8×1015/m以下である、立方晶窒化硼素多結晶体、立方晶窒化硼素多結晶体である。
 この立方晶窒化硼素多結晶体は、工具として用いた場合に、鉄系材料の高速加工においても、長い工具寿命を有することができる。
 (2)前記転位密度は7×1015/m以下であることが好ましい。これによると、立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
 (3)前記立方晶窒化硼素多結晶体は、複数の結晶粒を含み、
 前記立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、円相当径が1μm以上の結晶粒の面積比率S1は20面積%以下であることが好ましい。これによると、立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
 (4)前記面積比率S1は15面積%以下であることが好ましい。これによると、立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
 (5)前記複数の結晶粒の円相当径のメジアン径d50は0.1μm以上0.5μm以下であることが好ましい。これによると、立方晶窒化硼素多結晶体の耐摩耗性が向上する。
 (6)前記立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、アスペクト比が4以上の板状粒子の面積比率S2は5面積%以下であることが好ましい。これによると、立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
 (7)本開示の一態様に係る立方晶窒化硼素多結晶体の製造方法は、
 上記(1)から(6)のいずれかに記載の立方晶窒化硼素多結晶体の製造方法であって、
 六方晶窒化硼素粉末を準備する工程と、
 前記六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程と、を備え、
 前記ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
 P≧-0.0037T+11.301  式1
 P≦-0.085T+117  式2
 前記加熱加圧する工程において、前記ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である、立方晶窒化硼素多結晶体の製造方法である。
 この方法で得られた立方晶窒化硼素多結晶体は、工具として用いた場合に、鉄系材料の高速加工においても、長い工具寿命を有することができる。
 (8)前記突入温度は900℃以上であることが好ましい。これによると、得られた立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
 (9)前記突入温度は1200℃以上であることが好ましい。これによると、得られた立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
 (10)前記加熱加圧する工程の前に、前記六方晶窒化硼素粉末を、-50℃以上100℃以下の温度範囲を保持しつつ、0.5GPa以上6GPa以下の圧力まで加圧する工程を備えることが好ましい。
 上記工程を行うことにより、六方晶窒化硼素粉末の間隙を圧縮し、六方晶窒化硼素粉末中に存在する不要なガスを系外に排出することができる。よって、当該ガスと六方晶窒化硼素粉末との化学反応に起因する品質低下を防止することができる。
 上記工程を行うことにより、更なる加圧を行っても外形の変化がほとんど生じない程度に六方晶窒化硼素粉末の密度を高くすることができる。この状態で、加熱加圧する工程を行うことができるため、安定して製造することができる。
 (11)前記加熱加圧する工程の後に、前記加熱加圧する工程により得られた立方晶窒化硼素多結晶体を、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力条件下で10分以上保持する温度圧力保持工程を備えることが好ましい。これによると、得られた立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
 [本開示の実施形態の詳細]
 本開示の一実施形態に係る立方晶窒化硼素多結晶体及びその製造方法を、以下に図面を参照しつつ説明する。
 [実施の形態1:立方晶窒化硼素多結晶体]
 本開示の一実施の形態に係る立方晶窒化硼素多結晶体について説明する。
 <立方晶窒化硼素多結晶体>
 本実施形態に係る立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、該立方晶窒化硼素多結晶体の転位密度は8×1015/m以下である。
 本実施形態に係る立方晶窒化硼素多結晶体は焼結体であるが、通常焼結体とはバインダーを含むことを意図する場合が多いため、本実施形態では「多結晶体」という用語を用いている。
 本実施形態に係る立方晶窒化硼素多結晶体は、工具として用いた場合、鉄系材料の高速加工においても、長い工具寿命を有することができる。この理由は、下記の(i)及び(ii)の通りと推察される。
 (i)本実施形態に係る立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含み、実質的にバインダー、焼結助剤、触媒等を含まない。このため、立方晶窒化硼素同士が強固に結合しており、立方晶窒化硼素多結晶体の強度及び熱拡散性が向上している。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料の高速加工においても、長い工具寿命を有することができる。
 (ii)本実施形態に係る立方晶窒化硼素多結晶体の転位密度は8×1015/m以下である。該立方晶窒化硼素多結晶体では、多結晶体中の格子欠陥が減少しているため、立方晶窒化硼素多結晶体の強度及び靱性が向上している。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料の高速加工においても、長い工具寿命を有することができる。
 <組成>
 立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含む。これにより、立方晶窒化硼素多結晶体は、優れた硬度を有し、熱的安定性及び化学的安定性にも優れる。
 立方晶窒化硼素多結晶体は、本実施形態の効果を示す範囲において、立方晶窒化硼素に加えて、圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素の一方又は両方を合計で1.5体積%以下含んでいても構わない。ここで、「圧縮型六方晶窒化硼素」とは、通常の六方晶窒化硼素と結晶構造が類似し、c軸方向の面間隔が通常の六方晶窒化硼素の面間隔(0.333nm)よりも小さいものを示す。
 本実施形態に係る立方晶窒化硼素多結晶体は、本実施形態の効果を示す範囲において不可避不純物を含んでいても構わない。不可避不純物としては、例えば、水素、酸素、炭素、アルカリ金属元素(リチウム(Li)、ナトリウム(Na)、カリウム(K)等)及びアルカリ土類金属元素(カルシウム(Ca)、マグネシウム(Mg)等)等の金属元素を挙げることができる。立方晶窒化硼素多結晶体が不可避不純物を含む場合は、不可避不純物の含有量は0.1体積%以下であることが好ましい。不可避不純物の含有量は、二次イオン質量分析(SIMS)により測定することができる。
 該立方晶窒化硼素多結晶体は、実質的にバインダー、焼結助剤、触媒等を含まない。これにより、立方晶窒化硼素多結晶体の強度及び熱拡散性が向上している。
 立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率は、98.5体積%以上100体積%以下が好ましく、99体積%以上100体積%以下が更に好ましい。
 立方晶窒化硼素多結晶体中の圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素の含有率の合計は、0体積%以上1.5体積%以下が好ましく、0体積%以上1体積%以下が更に好ましく、0体積%が最も好ましい。すなわち、立方晶窒化硼素多結晶体には、圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素のいずれも含まれないことが最も好ましい。
 立方晶窒化硼素多結晶体中の圧縮型六方晶窒化硼素の含有率は0体積%以上1.5体積%以下が好ましく、0体積%以上1体積%以下がより好ましく、0体積%が最も好ましい。すなわち、立方晶窒化硼素多結晶体には、圧縮型六方晶窒化硼素が含まれないことが最も好ましい。
 立方晶窒化硼素多結晶体中のウルツ鉱型窒化硼素の含有率は0体積%以上1.5体積%以下が好ましく、0体積%以上1体積%以下がより好ましく、0体積%が最も好ましい。すなわち、立方晶窒化硼素多結晶体には、ウルツ鉱型窒化硼素が含まれないことが最も好ましい。
 立方晶窒化硼素多結晶体中の立方晶窒化硼素、圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素の含有率(体積%)は、X線回折法により測定することができる。具体的な測定方法は下記の通りである。
 立方晶窒化硼素多結晶体をダイヤモンド砥石電着ワイヤーで切断し、切断面を観察面とする。
 X線回折装置(Rigaku社製「MiniFlex600」(商品名))を用いて立方晶窒化硼素多結晶体の切断面のX線スペクトルを得る。このときのX線回折装置の条件は、下記の通りとする。
 特性X線: Cu-Kα(波長1.54Å)
 管電圧: 45kV
 管電流: 40mA
 フィルター: 多層ミラー
 光学系: 集中法
 X線回折法: θ-2θ法。
 得られたX線スペクトルにおいて、下記のピーク強度A、ピーク強度B及びピーク強度Cを測定する。
 ピーク強度A:回折角2θ=28.5°付近のピーク強度から、バックグランドを除いた圧縮型六方晶窒化硼素のピーク強度。
 ピーク強度B:回折角2θ=40.8°付近のピーク強度から、バックグラウンドを除いたウルツ鉱型窒化硼素のピーク強度。
 ピーク強度C:回折角2θ=43.5°付近のピーク強度から、バックグラウンドを除いた立方晶窒化硼素のピーク強度。
 圧縮型六方晶窒化硼素の含有率は、ピーク強度A/(ピーク強度A+ピーク強度B+ピーク強度C)の値を算出することにより得られる。ウルツ鉱型窒化硼素の含有率は、ピーク強度B/(ピーク強度A+ピーク強度B+ピーク強度C)の値を算出することにより得られる。立方晶窒化硼素の含有率は、ピーク強度C/(ピーク強度A+ピーク強度B+ピーク強度C)の値を算出することにより得られる。圧縮型六方晶窒化硼素、ウルツ鉱型窒化硼素及び立方晶窒化硼素は、全て同程度の電子的な重みを有するため、上記のX線ピーク強度比を立方晶窒化硼素多結晶体中の体積比と見なすことができる。
 <転位密度>
 立方晶窒化硼素多結晶体の転位密度は8×1015/m以下である。該立方晶窒化硼素多結晶では、多結晶体中の格子欠陥が減少しているため、立方晶窒化硼素多結晶体の強度及び靱性が向上している。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料の高速加工においても、長い工具寿命を有することができる。転位密度は、7×1015/m以下が好ましく、6×1015/m以下が更に好ましい。転位密度の下限値は特に限定されないが、製造上の観点から、1.0×1015/m以上とすることができる。
 本明細書において、転位密度とは下記の手順により算出される。
 立方晶窒化硼素多結晶体からなる試験片を準備する。試験片の大きさは、観察面が2.0mm×2.0mmであり、厚みが1.0mmである。試験片の観察面を研磨する。
 該試験片の観察面について、下記の条件でX線回折測定を行い、立方晶窒化硼素の主要な方位である(111)、(200)、(220)、(311)、(400)、(331)の各方位面からの回折ピークのラインプロファイルを得る。
 (X線回折測定条件)
 X線源:放射光
 装置条件:検出器NaI(適切なROIにより蛍光をカットする。)
 エネルギー:18keV(波長:0.6888Å)
 分光結晶:Si(111)
 入射スリット:幅5mm×高さ0.5mm
 受光スリット:ダブルスリット(幅3mm×高さ0.5mm)
 ミラー:白金コート鏡
 入射角:2.5mrad
 走査方法:2θ-θscan
 測定ピーク:立方晶窒化硼素の(111)、(200)、(220)、(311)、(400)、(331)の6本。ただし、集合組織、配向によりプロファイルの取得が困難な場合は、その面指数のピークを除く。
 測定条件:半値幅中に、測定点が9点以上となるようにする。ピークトップ強度は2000counts以上とする。ピークの裾も解析に使用するため、測定範囲は半値幅の10倍程度とする。
 上記のX線回折測定により得られるラインプロファイルは、試料の不均一ひずみなどの物理量に起因する真の拡がりと、装置起因の拡がりの両方を含む形状となる。不均一ひずみや結晶子サイズを求めるために、測定されたラインプロファイルから、装置起因の成分を除去し、真のラインプロファイルを得る。真のラインプロファイルは、得られたラインプロファイルおよび装置起因のラインプロファイルを擬Voigt関数によりフィッティングし、装置起因のラインプロファイルを差し引くことにより得る。装置起因の回折線拡がりを除去するための標準サンプルとしては、LaBを用いた。また、平行度の高い放射光を用いる場合は、装置起因の回折線拡がりは0とみなすことができる。
 得られた真のラインプロファイルを修正Williamson-Hall法及び修正Warren-Averbach法を用いて解析することによって転位密度を算出する。修正Williamson-Hall法及び修正Warren-Averbach法は、転位密度を求めるために用いられている公知のラインプロファイル解析法である。
 修正Williamson-Hall法の式は、下記式(I)で示される。
Figure JPOXMLDOC01-appb-M000001
(上記式(I)において、ΔKはラインプロファイルの半値幅、Dは結晶子サイズ、Mは配置パラメータ、bはバーガースベクトル、ρは転位密度、Kは散乱ベクトル、O(KC)はKCの高次項、Cはコントラストファクターの平均値を示す。)
 上記式(I)におけるCは、下記式(II)で表される。
 C=Ch00[1-q(hk+hl+kl)/(h+k+l)] (II)。
 上記式(II)において、らせん転位と刃状転位におけるそれぞれのコントラストファクターCh00およびコントラストファクターに関する係数qは、計算コードANIZCを用い、すべり系が<110>{111}、弾性スティフネスC11が8.44GPa、C12が1.9GPa、C44が4.83GPaとして求める。コントラストファクターCh00は、らせん転位は0.203であり、刃状転位は0.212である。コントラストファクターに関する係数qは、らせん転位は1.65であり、刃状転位は0.58である。なお、らせん転位比率は0.5、刃状転位比率は0.5に固定する。
 また、転位と不均一ひずみの間にはコントラストファクターCを用いて下記式(III)の関係が成り立つ。
 <ε(L)>=(ρCb/4π)ln(R/L) (III)
(上記式(III)において、Rは転位の有効半径を示す。)
 上記式(III)の関係と、Warren-Averbachの式より、下記式(IV)の様に表すことができ、修正Warren-Averbach法として、転位密度ρ及び結晶子サイズを求めることができる。
 lnA(L)=lnA(L)-(πLρb/2)ln(R/L)(KC)+O(KC) (IV)(上記式(IV)において、A(L)はフーリエ級数、A(L)は結晶子サイズに関するフーリエ級数、Lはフーリエ長さを示す。)
 修正Williamson-Hall法及び修正Warren-Averbach法の詳細は、“T. Ungar and A. Borbely, “The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis” Appl. Phys. Lett., vol. 69, no. 21, p. 3173, 1996.”及び“T. Ungar, S. Ott, P. Sanders, A. Borbely, J. Weertman, “Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis” Acta Mater., vol. 46, no. 10, pp. 3693 - 3699, 1998.”に記載されている。
 <結晶粒>
 (円相当径が1μm以上の結晶粒の面積比率S1)
 立方晶窒化硼素多結晶体は、立方晶窒化硼素の結晶粒、並びに、任意で圧縮型六方晶窒化硼素の結晶粒及びウルツ鉱型窒化硼素の結晶粒を含む複数の結晶粒から構成される。立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、円相当径が1μm以上の結晶粒の面積比率S1(以下、「面積比率S1」とも記す。)は20面積%以下である。ここで円相当径とは、該断面において、結晶粒の面積と同一の面積を有する円の直径を意味する。
 該立方晶窒化硼素多結晶体では、円相当径が1μm以上の粗大粒の含有率が低減されている。よって、該立方晶窒化硼素多結晶体は、焼結体組織の均質性が向上するため、強度及び靱性が向上し、鉄系材料の高速加工においても、長い工具寿命を有することができる。
 本実施形態に係る立方晶窒化硼素多結晶体の結晶体組織が均質であることは、例えば、立方晶窒化硼素をSEM(Scanning Electron Microscope、走査型電子顕微鏡)で観察することにより確認することができる。
 円相当径が1μm以上の結晶粒の面積比率S1は、0面積%以上20面積%以下が好ましく、0面積%以上15面積%以下がより好ましく、0面積%以上10面積%以下が更に好ましい。
 (メジアン径d50)
 立方晶窒化硼素多結晶体に含まれる複数の結晶粒は、円相当径のメジアン径d50(以下、「メジアン径d50」とも記す。)が0.1μm以上0.5μm以下であることが好ましい。従来、立方晶窒化硼素多結晶体は、結晶粒の粒径が小さいほど切削性能が向上すると考えられていた。このため、立方晶窒化硼素多結晶体を構成する結晶粒の粒径を小さくしていた(例えば、平均粒径100nm未満)が、これにより靱性が低下する傾向があった。一方、本実施形態に係る立方晶窒化硼素多結晶体においては、結晶粒の粒径が、従来に比べて大きいため、立方晶窒化硼素多結晶体の靱性が向上し、耐摩耗性が向上する。結晶粒の円相当径のメジアン径d50は、0.15μm以上0.35μm以下がより好ましく、0.2μm以上0.3μm以下が更に好ましい。
 (アスペクト比が4以上の板状粒子の面積比率S2)
 立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、アスペクト比が4以上の板状粒子の面積比率S2(以下、「面積比率S2」とも記す。)が5面積%以下であることが好ましい。従来の立方晶窒化硼素多結晶体では、粒径を小さくすることに伴う靱性の低下を、立方晶多結晶体中に板状組織を存在させることにより補っていた。しかし、この板状粒子は、特に難削材の高能率加工中に、突発的に刃先から脱落して刃先の欠損を生じさせるため、工具寿命のばらつき及び低下の要因となっていた。
 本実施形態に係る該立方晶窒化硼素多結晶体においては、アスペクト比が4以上の板状粒子の含有率が低減されている。よって、該立方晶窒化硼素多結晶体は、板状粒子に起因する突発的な刃先の欠損が生じにくく、鉄系材料の高速加工においても、長い工具寿命を有することができる。
 アスペクト比が4以上の板状粒子の面積比率S2は、0面積%以上5面積%以下が好ましく、0面積%以上3面積%以下がより好ましく、0面積%以上2面積%以下が更に好ましい。
 (面積比率S1、面積比率S2、及び、結晶粒の円相当径のメジアン径d50の測定方法)
 本明細書において、立方晶窒化硼素多結晶体における円相当径が1μm以上の結晶粒の面積比率S1、アスペクト比が4以上の板状粒子の面積比率S2、及び、立方晶窒化硼素多結晶体に含まれる複数の結晶粒の円相当径のメジアン径d50とは、任意に選択された5箇所の各測定箇所において、面積比率S1、面積比率S2及び結晶粒のメジアン径d50をそれぞれ測定し、これらの平均値を算出することにより得られた値を意味する。
 なお、出願人が測定した限りでは、同一の試料において面積比率S1、面積比率S2及びメジアン径d50を測定する限り、立方晶窒化硼素多結晶体における測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 立方晶窒化硼素多結晶体が切削工具の一部として用いられている場合は、立方晶窒化硼素多結晶体の部分を、ワイヤー放電加工やダイヤモンド砥石電着ワイヤー等で切り出して、切り出した断面を研磨し、当該研磨面において5箇所の測定箇所を任意に設定する。
 各測定箇所における面積比率S1、面積比率S2及び結晶粒の円相当径のメジアン径d50の測定方法について下記に具体的に説明する。
 測定箇所が露出するように立方晶窒化硼素多結晶体をワイヤー放電加工やダイヤモンド砥石電着ワイヤー等で切断し、切断面を研磨する。当該研磨面上の測定箇所をSEM(日本電子株式会社社製「JSM-7500F」(商品名))を用いて観察し、SEM画像を得る。測定視野のサイズは12μm×15μmとし、観察倍率は10000倍とする。
 5つのSEM画像のそれぞれについて、結晶粒界が鮮明になるように、二値化処理を行う。例えば、画像処理ソフト(Win Roof ver.7.4.5)を用い、自動二値化を実施し、閾値を適宜画像を確認して微調整する。例えば、微調整した閾値は75である。
 測定視野内に観察される結晶粒の粒界を分離した状態で、上記の画像処理ソフトを用いて、各結晶粒のアスペクト比及び各結晶粒の面積、及び、結晶粒の円相当径の分布を算出する。ここでアスペクト比は、切断面における結晶粒の長径と短径との比の値(長径/短径)を意味する。結晶粒の形状が図8に示されるような不定形状の場合は、アスペクト比は、画像処理ソフトを用いて、下記(a)~(c)の手順に従い算出される。
 (a)結晶粒の内部で引くことができる(両端が結晶粒界に接する)最も長い線分(以下、「第1の線分」とも記す。)を特定し、該第1の線分の長さL1を測定する。
 (b)上記の第1の線分に直交し、かつ、結晶粒の内部で引くことができる(両端が結晶粒界に接する)最も長い線分(以下、「第2の線分」とも記す。)を特定し、該第2の線分の長さL2を測定する。
 (c)第1の線分の長さL1と第2の線分の長さL2との比の値(L1/L2)を算出する。該(L1/L2)の値をアスペクト比とする。
 面積比率S1、面積比率S2及びメジアン径d50は、測定視野の全体を分母として算出する。各結晶粒の面積及び各結晶粒のアスペクト比に基づき、円相当径が1μm以上の結晶粒の面積比率S1及びアスペクト比が4以上の板状粒子の面積比率S2を算出する。結晶粒の円相当径の分布から、メジアン径d50を算出する。
 <用途>
 本実施形態に係る立方晶窒化硼素多結晶体は、切削工具、耐摩工具、研削工具などに用いることが好適である。
 本実施形態に係る切削工具、耐摩工具および研削工具はそれぞれ、その全体が立方晶窒化硼素多結晶体で構成されていても良いし、その一部(たとえば切削工具の場合、刃先部分)のみが立方晶窒化硼素多結晶体で構成されていても良い。さらに、各工具の表面にコーティング膜が形成されていても良い。
 切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、切削バイトなどを挙げることができる。
 耐摩工具としては、ダイス、スクライバー、スクライビングホイール、ドレッサーなどを挙げることができる。研削工具としては、研削砥石などを挙げることができる。
 [実施の形態2:立方晶窒化硼素多結晶体の製造方法]
 本開示の一実施の形態に係る立方晶窒化硼素多結晶体の製造方法を、図1~図7を用いて説明する。図1は、窒化硼素の圧力-温度相図である。図2~図5は、本開示の一実施の形態に係る立方晶窒化硼素多結晶体の製造方法を説明するための図である。図6は、立方晶窒化硼素多結晶体の製造方法の従来例を説明するための図である。図7は、立方晶窒化硼素多結晶体の製造方法の参考例を説明するための図である。
 本実施形態に係る立方晶窒化硼素多結晶体の製造方法は、実施の形態1の立方晶窒化硼素多結晶体の製造方法である。該製造方法は、六方晶窒化硼素粉末を準備する工程(以下、「準備工程」とも記す。)と、該六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程(以下、「加熱加圧工程」とも記す。)と、を備える。ここで、ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
 P≧-0.0037T+11.301  式1
 P≦-0.085T+117  式2
上記加熱加圧する工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である。
 本実施形態に係る立方晶窒化硼素多結晶体の製造方法は、加熱加圧する工程の前に、六方晶窒化硼素粉末を、-50℃以上100℃以下の温度範囲を保持しつつ、0.5GPa以上6GPa以下の圧力まで加圧する工程(以下、「前処理工程」とも記す。)を備えることができる。
 本実施形態に係る立方晶窒化硼素多結晶体の製造方法は、加熱加圧する工程の後に、加熱加圧する工程により得られた立方晶窒化硼素多結晶体を、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力条件下で10分以上保持する工程(以下、「温度圧力保持工程」とも記す。)を備えることができる。
 本実施形態に係る立方晶窒化硼素多結晶体の製造方法の詳細な説明を行う前に、その理解を助けるため、立方晶窒化硼素多結晶体の製造方法の従来例及び参考例について説明する。
 図1に示されるように、窒化硼素には、常温常圧の安定相である六方晶窒化硼素、高温高圧の安定相である立方晶窒化硼素、及び、六方晶窒化硼素から立方晶窒化硼素への転移の間の準安定相であるウルツ鉱型窒化硼素の3つの相が存在する。
 各相の境界は一次関数で表すことができる。本明細書において、各相の安定領域内の温度及び圧力は、一次関数を用いて示すことができるものとする。
 本明細書において、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力(図1において、「wBN安定領域」と記す。)は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす温度及び圧力として定義する。
 P≧-0.0037T+11.301  式1
 P≦-0.085T+117  式2
 本明細書において、六方晶窒化硼素の安定領域内の温度及び圧力(図1において、「hBN安定領域」と記す。)は、温度をT℃、圧力をPGPaとした時に、下記式(A)及び下記式(B)を同時に満たす温度及び圧力、又は下記式(C)及び下記式(D)を同時に満たす温度及び圧力として定義する。
 P≦-0.0037T+11.301  (A)
 P≦-0.085T+117  (B)
 P≦0.0027T+0.3333  (C)
 P≧-0.085T+117  (D)
 本明細書において、立方晶窒化硼素の安定領域内の温度及び圧力(図1において、「cBN安定領域」と記す。)は、温度をT℃、圧力をPGPaとした時に、下記式(D)及び下記式(E)を同時に満たす温度及び圧力として定義する。
 P≧-0.085T+117  (D)
 P≧0.0027T+0.3333  (E)
 本実施形態に係る製造方法では、六方晶窒化硼素粉末を、温度1900℃以上2400℃以下及び圧力7.7GPa以上、好ましくは8GPa以上、より好ましくは10GPa以上まで加熱加圧する。この温度及び圧力は、優れた工具性能を有する立方晶窒化硼素が得られる温度及び圧力である。
 従来、六方晶窒化硼素を、優れた工具性能を有する立方晶窒化硼素が得られる立方晶窒化硼素の安定領域内の温度(1900℃以上2400℃以下)及び圧力(7.7GPa以上)まで到達させるための温度及び圧力の経路として、図6に示される経路(以下、「図6の経路」とも記す。)が検討されていた。
 図6の経路では、開始温度及び開始圧力(常温常圧)から、圧力を立方晶窒化硼素の安定領域内の圧力(例えば、10GPa以上)まで上げ(図6の矢印E1)、その後に、温度を立方晶窒化硼素の安定領域内の温度(例えば、1900℃以上)まで上げる(図6の矢印E2)。図6の経路は、加熱と加圧がそれぞれ1回ずつ行われるため、加熱加圧操作の制御が単純であり、従来採用されていた。
 しかし、図6の経路は、ウルツ鉱型窒化硼素の安定領域への突入温度が600℃未満であり、原子拡散が起こりにくく、六方晶窒化硼素からウルツ鉱型窒化硼素への相転移は、無拡散型相転移が主となる。このため、得られた立方晶窒化硼素多結晶体では、格子欠陥や粗大粒が存在しやすい。よって、この立方晶窒化硼素は、加工時に突発的な欠損が生じやすく、工具寿命が短くなる傾向がある。
 一方、原子拡散を起こりやすくするために、相転移の温度を上げることも考えらえる。例えば、図7の経路では、開始温度及び開始圧力(常温常圧)から、ウルツ鉱型窒化硼素の安定領域を通過しないように、立方晶型窒化硼素の安定領域内の温度(例えば、1500℃)及び圧力(例えば、9GPa)まで加熱加圧し(図7の矢印F1、F2、F3)、その後に、更に、温度を上げる(例えば、2100℃)(図7の矢印F4)。
 図7の経路では、六方晶窒化硼素は立方晶窒化硼素へ直接相転移されるが、六方晶窒化硼素と立方晶窒化硼素とは結晶構造が大きく異なるため、相転移時に格子欠陥が生じやすい。よって、この立方晶窒化硼素は工具寿命が短くなる傾向がある。更に、六方晶窒化硼素と立方晶窒化硼素とは結晶構造が大きく異なるため、立方晶窒化硼素への変換率が98.5体積%未満となる。よって、得られた立方晶窒化硼素多結晶体を用いた工具は、性能が低下する。
 上記の通り、従来検討されてきた温度及び圧力の経路では、格子欠陥の発生を抑制することが困難であり、優れた工具寿命を有する立方晶窒化硼素多結晶体を製造することができない。本出願人らはこの状況を鑑み、圧力及び温度の経路を鋭意検討した結果、六方晶窒化硼素を、上記の加熱加圧工程に規定される温度及び圧力条件で処理することにより、焼結体中の格子欠陥の発生が抑制され、鉄系材料の高速加工においても、長い工具寿命を有することができる立方晶窒化硼素多結晶体を得ることができることを見いだした。本実施形態に係る製造方法の各工程の詳細について、図2~図5を用いて下記に説明する。
 <準備工程>
 立方晶窒化硼素多結晶体の原料として、六方晶窒化硼素粉末を準備する。六方晶窒化硼素粉末は、純度(六方晶窒化硼素の含有率)が98.5%以上が好ましく、99%以上がより好ましく、100%が最も好ましい。六方晶窒化硼素粉末の粒径は特に限定されないが、例えば、0.1μm以上10μm以下とすることができる。
 <前処理工程>
 次に、六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、-50℃以上100℃以下の温度範囲を保持しつつ、0.5GPa以上6GPa以下の圧力まで加圧する(図2の矢印A1、図3の矢印B1、図4の矢印C1、図5の矢印D1)。
 前処理工程を行うことにより、六方晶窒化硼素粉末間の間隙を圧縮し、六方晶窒化硼素粉末中に存在する不要なガスを系外に排出することができる。よって、当該ガスと六方晶窒化硼素粉末との化学反応に起因する品質低下を防止することができる。
 前処理工程を行うことにより、更なる加圧を行っても外形の変化がほとんど生じない程度に六方晶窒化硼素粉末の密度を高くすることができる。この状態で、加熱加圧工程を行うことができるため、安定して製造することができる。
 前処理工程における温度は、-50℃以上100℃以下の温度範囲に保持することが好ましく、0℃以上50℃以下の温度範囲に保持することがより好ましい。前処理工程における到達圧力は、0.5GPa以上5GPa以下が好ましく、1GPa以上3GPa以下が更に好ましい。
 本実施形態に係る立方晶窒化硼素多結晶体の製造方法において、前処理工程は任意で行われる工程である。従って、上記の準備工程の後に、前処理工程を行わずに、後述する加熱加圧工程を行うことができる。
 <加熱加圧工程>
 次に、六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する(図2では矢印A2、A3及びA4、図3では矢印B2、B3及びB4、図4では矢印C2、C3及びC4の途中まで、図5では矢印D2、D3及びD4)。加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である。
 本明細書中、ウルツ鉱型窒化硼素の安定領域への突入温度とは、加熱加圧工程において、初めてウルツ鉱型窒化硼素の安定領域内へ到達した時点での温度を意味する。該突入温度は、図2では、矢印A3とP=-0.0037T+11.301の線との交点における温度(約1200℃)であり、図3では、矢印B3とP=-0.0037T+11.301の線との交点における温度(約600℃)であり、図4では、矢印C3とP=-0.0037T+11.301の線との交点における温度(約1200℃)であり、図5では、矢印D3とP=-0.0037T+11.301の線との交点における温度(約1200℃)である。
 上記の前処理工程を行った場合は、前処理工程後の六方晶窒化硼素粉末を、前処理工程の最後に到達した到達温度、及び、到達圧力から、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する。この場合も、加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である。
 加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である。これによると、六方晶窒化硼素粉末は原子拡散が起こりやすい環境で、ウルツ鉱型窒化硼素に変換され、その後、立方晶窒化硼素多結晶体に変換される。このため、得られた立方晶窒化硼素多結晶体では、格子欠陥が減少し、立方晶窒化硼素多結晶体の強度及び靱性が向上している。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料の高速加工においても、長い工具寿命を有することができる。
 ウルツ鉱型窒化硼素の安定領域への突入温度は900℃以上が好ましく、1200℃以上が更に好ましい。突入温度が高いほど原子拡散が起こりやすく、格子欠陥が減少する傾向がある。突入温度の上限値は、例えば1500℃以下とすることができる。
 加熱加圧工程における到達圧力は8GPa以上である。該到達圧力の上限値は特に限定されないが、例えば、15GPa以下とすることができる。加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域内への突入後に、圧力を10GPa以上まで加圧することが好ましい。
 加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力での保持時間は、例えば5分以上60分以下とすることができる。
 加熱加圧工程において、図2~図5の経路では、加熱を行った後に加圧を行い、更に加熱を行っているが、これに限定されない。加熱加圧の方法は、ウルツ鉱型窒化硼素の安定領域への突入温度を600℃以上とすることができる方法であれば、特に限定されず、例えば、加熱と加圧を同時に行ってもよい。
 上記の通り、六方晶窒化硼素粉末に加熱加圧工程を行うことにより、立方晶窒化硼素多結晶体を得ることができる。
 <温度圧力保持工程>
 上記の加熱加圧工程の後に、加熱加圧工程により得られた立方晶窒化硼素多結晶体を、1900℃以上2400℃以下の温度(以下、「焼結温度」とも記す。)、及び、8GPa以上の圧力(以下、「焼結圧力」とも記す。)条件下で10分以上保持する工程を行うことができる。これにより、得られた立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が大きくなり、更に長い工具寿命を達成することができる。
 温度圧力保持工程における焼結温度は1900℃以上2400℃以下が好ましく、2100℃以上2300℃以下がより好ましい。温度圧力保持工程における焼結圧力は8GPa以上15GPa以下が好ましく、9GPa以上12GPa以下がより好ましい。温度圧力保持工程における焼結時間は10分以上60分以下が好ましく、10分以上30分以下がより好ましい。
 <図2~図5の経路により得られる立方晶窒化硼素多結晶体の特性>
 図2の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が約1200℃である。これによると、六方晶窒化硼素粉末は原子拡散が非常に起こりやすい環境で、ウルツ鉱型窒化硼素に変換される。このため、ウルツ鉱型窒化硼素は格子欠陥が少なく、転位密度が非常に低くなる。その後、ウルツ鉱型窒化硼素は、更に加熱されて立方晶窒化硼素多結晶体に変換され、その後、温度約2200℃、圧力約9GPaで保持される。この温度及び圧力条件は、立方晶窒化硼素の粒成長を生じさせないものである。よって、得られた立方晶窒化硼素多結晶体は、転位密度が非常に低く、粗大粒も存在しない。
 図3の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が約600℃である。これによると、六方晶窒化硼素粉末は原子拡散の生じる環境で、ウルツ鉱型窒化硼素に変換される。このため、ウルツ鉱型窒化硼素は格子欠陥が少なく、転位密度が低くなる。一方、ウルツ鉱型窒化硼素の安定領域への突入温度が図2の経路よりも低温側であり、無拡散相転移も生じるため、粗大粒が発生する場合がある。その後、ウルツ鉱型窒化硼素は、更に加熱されて立方晶窒化硼素多結晶体に変換され、その後、温度約2200℃、圧力約9GPaで保持される。得られた立方晶窒化硼素多結晶体は、転位密度が低いが、粗大粒が存在する場合がある。
 図4の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が約1200℃である。これによると、六方晶窒化硼素粉末は原子拡散が非常に起こりやすい環境で、ウルツ鉱型窒化硼素に変換される。このため、ウルツ鉱型窒化硼素は格子欠陥が少なく、転位密度が非常に低くなる。その後、ウルツ鉱型窒化硼素は、更に加熱されて立方晶窒化硼素多結晶体に変換され、その後、温度約2500℃、圧力約9GPaで保持される。この温度及び圧力条件は、立方晶窒化硼素の粒成長を生じさせるものである。よって、得られた立方晶窒化硼素多結晶体は、転位密度が非常に低いが、粗大粒が存在する。
 図5の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が約1200℃である。これによると、六方晶窒化硼素粉末は原子拡散が非常に起こりやすい環境で、ウルツ鉱型窒化硼素に変換される。このため、ウルツ鉱型窒化硼素は格子欠陥が少なく、転位密度が非常に低くなる。その後、ウルツ鉱型窒化硼素は、更に加熱されて立方晶窒化硼素多結晶体に変換され、その後、温度約2200℃、圧力約15GPaで保持される。この温度及び圧力条件は、立方晶窒化硼素の粒成長を生じさせないものである。よって、得られた立方晶窒化硼素多結晶体は、転位密度が非常に低く、粗大粒の生成が抑制される。
 図2の経路で得られる立方晶窒化硼素多結晶体と、図3の経路で得られる立方晶窒化硼素多結晶体とを比較すると、図2の経路で得られる立方晶窒化硼素多結晶体の方が、転位密度が低く、粗大粒も少ない。この理由は、図2の経路の方がウルツ鉱型窒化硼素の安定領域への突入温度が高く、原子拡散が起こりやすいためと考えられる。
 図2の経路で得られる立方晶窒化硼素多結晶体と、図4の経路で得られる立方晶窒化硼素多結晶体とを比較すると、図2の経路で得られる立方晶窒化硼素多結晶体の方が、粗大粒が少ない。この理由は、立方晶窒化硼素の安定領域での温度圧力保持条件が、図2の経路では、立方晶窒化硼素の粒成長を生じさせない条件であり、図4の経路では、立方晶窒化硼素の粒成長を生じさせる条件のためであると考えられる。
 図2の経路で得られる立方晶窒化硼素多結晶体と、図5の経路で得られる立方晶窒化硼素多結晶体とを比較すると、転位密度は同等であるが、得られる焼結体の体積は、図2の経路で得られる立方晶窒化硼素多結晶体の方が大きい。これは、立方晶窒化硼素安定領域での保持圧力が、図2の経路の方が小さいためである。よって、生産性の観点からは、図2の経路の方が好ましい。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 本実施例では、立方晶窒化硼素多結晶体の製造条件と、得られる立方晶窒化硼素多結晶体の構成(組成、転位密度、円相当径1μm以上の結晶粒の面積比率S1、板状粒子の面積比率S2、メジアン径)及び、性能との関係を調べた。
 <立方晶窒化硼素多結晶体の作製>
 立方晶窒化硼素多結晶体を、下記の手順に従って作製した。
 [試料1~試料6]
 (前処理工程)
 六方晶窒化硼素粉末(デンカ社製の「デンカボロンナイトライド」(商品名)、粒径5μm)を6g準備した。該六方晶窒化硼素粉末をモリブデン製のカプセルに入れ、超高圧高温発生装置を用いて、25℃(室温)で、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力まで加圧した。
 (加熱加圧工程)
 続いて、超高圧高温発生装置内の温度を、表1の「加熱加圧工程」の「wBN安定領域突入温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力を保持した。
 続いて、超高圧高温発生装置内の圧力を、表1の「加熱加圧工程」の「第2段階加圧圧力」欄に記載される圧力まで加圧した。この間に、超高圧高温発生装置内は、六方晶窒化硼素の安定領域内の温度及び圧力から、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力へ変化した。該加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は、表1の「加熱加圧工程」の「wBN安定領域突入温度」欄に記載される温度であった。
 続いて、超高圧高温発生装置内の温度を、表1の「温度圧力保持工程」の「温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「加熱加圧工程」の「第2段階加圧圧力」欄に記載される圧力を保持した。
 (温度圧力保持工程)
 表1の「温度圧力保持工程」の「温度」及び「圧力」欄に記載される温度及び圧力にて10分間保持して、立方晶窒化硼素多結晶体を得た。
 [試料7~試料9]
 (前処理工程)
 六方晶窒化硼素粉末(デンカ社製の「デンカボロンナイトライド」(商品名)、粒径5μm)を6g準備した。該六方晶窒化硼素粉末をモリブデン製のカプセルに入れ、超高圧高温発生装置を用いて、25℃(室温)で、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力まで加圧した。
 (加熱加圧工程)
 続いて、超高圧高温発生装置内の温度を、表1の「加熱加圧工程」の「wBN安定領域突入温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力を保持した。この間に、超高圧高温発生装置内は、六方晶窒化硼素の安定領域内の温度及び圧力から、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力へ変化した。該加熱加圧工程において、ウルツ鉱型窒化硼素の安定領域への突入温度は、表1の「加熱加圧工程」の「wBN安定領域突入温度」欄に記載される温度であった。
 その後、更に、超高圧高温発生装置内の温度を、表1の「温度圧力保持工程」の「温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力を保持した。
 (温度圧力保持工程)
 表1の「温度圧力保持工程」の「温度」及び「圧力」欄に記載される温度及び圧力にて10分間保持して、立方晶窒化硼素多結晶体を得た。
 [試料10]
 (前処理工程及び加熱加圧工程)
 六方晶窒化硼素粉末(デンカ社製の「デンカボロンナイトライド」(商品名)、粒径5μm)を6g準備した。該六方晶窒化硼素粉末をモリブデン製のカプセルに入れ、超高圧高温発生装置を用いて、25℃(室温)で、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力(12GPa)まで加圧した。
 この間に、超高圧高温発生装置内は、六方晶窒化硼素の安定領域内の温度及び圧力から、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力へ変化した。試料10では、ウルツ鉱型窒化硼素の安定領域への突入温度は、表1の「加熱加圧工程」の「wBN安定領域突入温度」欄に記載される温度(25℃)であった。
 その後、更に、超高圧高温発生装置内の温度を、表1の「温度圧力保持工程」の「温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力を保持した。
 (温度圧力保持工程)
 表1の「温度圧力保持工程」の「温度」及び「圧力」欄に記載される温度及び圧力にて10分間保持して、立方晶窒化硼素多結晶体を得た。
 [試料11]
 (前処理工程)
 六方晶窒化硼素粉末(デンカ社製の「デンカボロンナイトライド」(商品名)、粒径5μm)を6g準備した。該六方晶窒化硼素粉末をモリブデン製のカプセルに入れ、超高圧高温発生装置を用いて、25℃(室温)で、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力まで加圧した。
 (加熱加圧工程)
 続いて、超高圧高温発生装置内の温度を、1500℃まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「前処理工程」の「第1段階加圧圧力」欄に記載される圧力を保持した。
 続いて、超高圧高温発生装置内の圧力を、表1の「加熱加圧工程」の「第2段階加圧圧力」欄に記載される圧力まで加圧した。この間に、超高圧高温発生装置内は、六方晶窒化硼素の安定領域内の温度及び圧力から、立方晶窒化硼素の安定領域内の温度及び圧力へ変化した。
 続いて、超高圧高温発生装置内の温度を、表1の「温度圧力保持工程」の「温度」欄に記載される温度まで加熱した。この間、超高圧高温発生装置内の圧力は、表1の「加熱加圧工程」の「第2段階加圧圧力」欄に記載される圧力を保持した。
 (温度圧力保持工程)
 表1の「温度圧力保持工程」の「温度」及び「圧力」欄に記載される温度及び圧力にて10分間保持して、立方晶窒化硼素多結晶体を得た。
 [対照例]
 対照例として、住友電工ハードメタル(株)製の「BN7000」(商品名)を準備した。これは、通常の結合材を含む立方晶窒化硼素焼結体である。
 <評価>
 (組成の測定)
 試料1~試料11の立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率を、X線回折法により測定した。X線回折法の具体的な方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。
 試料1~試料11について、cBN、wBN及び圧縮型hBN以外の成分は同定されなかった。試料1~試料10において、立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率は、98.5体積%以上であった。試料11において、立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率は98.5体積%未満であった。
 (転位密度の測定)
 試料1~試料11の立方晶窒化硼素多結晶体の転位密度を、X線回折測定により得られるラインプロファイルを修正Williamson-Hall法及び修正Warren-Averbach法を用いて解析することにより算出した。転位密度の具体的な算出方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。なお、X線回折測定は、佐賀県立九州シンクロトロン光研究センター内の住友電工専用BL(BL)にて行った。結果を表1の「転位密度」の欄に示す。
 (結晶粒の測定)
 試料1~試料11の立方晶窒化硼素多結晶体に含まれる結晶粒について、円相当径のメジアン径d50、円相当径1μm以上の結晶粒の面積比率及び板状粒子の面積比率S2を測定した。具体的な方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。表1の「メジアン径d50」、「円相当径が1μm以上の結晶粒の面積比率S1」、「板状粒子の面積比率S2」の欄に示す。
 (切削試験)
 試料1~試料11の立方晶窒化硼素多結晶体を、レーザにより切断して仕上げ加工し、インサート型番SNEW1203ADTR(住友電工ハードメタル(株)製)の切削工具を作製した。得られた切削工具を用いて、以下の切削条件でねずみ鋳鉄FC300ブロック材(80mm×300mm×150mm)の正面フライス加工を行い、工具寿命を評価した。
 (切削条件)
 使用カッタ:FMU4100R(住友電工ハードメタル(株)製)
 インサート型番:SNEW1203ADTR(住友電工ハードメタル(株)製)
 切削速度:2500m/min
 切込み量:0.3mm
 送り量:0.2mm/刃
 Dry加工
 上記の切削条件で切削し、0.2mm以上の欠損が生じるまでの加工時間を測定した。加工時間が長いほど、耐欠損性に優れ、工具寿命が長いことを示している。なお、従来の立方晶窒化硼素焼結体を用いた工具では、切削速度は1500m/minが標準的であり、2000m/minを超えると欠損が生じやすい。よって、切削速度2500m/minの切削条件は、高速加工条件である。
Figure JPOXMLDOC01-appb-T000002
 <考察>
 試料1~試料8の製造方法は、六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程を備え、ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上であり、実施例に該当する。試料1~試料8の立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含み、転位密度が8×1015/m以下であり、実施例に該当する。試料1~試料8の立方晶窒化硼素多結晶体は、鉄系材料の高速加工においても、長い工具寿命を有することが確認された。
 中でも、試料1~試料6の製造方法ではウルツ鉱型窒化硼素の安定領域への突入温度が600℃以上であり、その後、加熱加圧工程において圧力を10GPa以上まで加圧した。試料1~試料6の立方晶窒化硼素多結晶体は、加熱加圧工程において圧力を10GPa以上まで加圧しないで得られた試料7及び試料8の立方晶窒化硼素多結晶体に比べて、より長い工具寿命を有していた。この結果から、本開示の一実施形態に係る立方晶窒化硼素多結晶体の製造方法において、ウルツ鉱型窒化硼素の安定領域への突入温度が600℃以上であり、かつ、その後圧力を10GPa以上まで加圧する工程を含むことがより好ましいことが確認された。
 試料9及び試料10の製造方法は、ウルツ鉱型窒化硼素の安定領域への突入温度が600℃未満であり、比較例に該当する。試料9及び試料10の立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含むが、転位密度が8×1015/m超であり、比較例に該当する。試料9及び試料10の立方晶窒化硼素多結晶体は、鉄系材料の高速加工において、試料1~試料8に比べて、工具寿命が短いことが確認された。
 試料11の製造方法は、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過せず、比較例に該当する。試料11の立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が98.5体積%未満であり、転位密度が8×1015/m超であり、比較例に該当する。試料11の立方晶窒化硼素多結晶体は、鉄系材料の高速加工において、試料1~試料8に比べて、工具寿命が短いことが確認された。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (11)

  1.  立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、
     前記立方晶窒化硼素多結晶体の転位密度は8×1015/m以下である、立方晶窒化硼素多結晶体。
  2.  前記転位密度は7×1015/m以下である、請求項1に記載の立方晶窒化硼素多結晶体。
  3.  前記立方晶窒化硼素多結晶体は、複数の結晶粒を含み、
     前記立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、円相当径が1μm以上の結晶粒の面積比率S1は20面積%以下である、請求項1又は請求項2に記載の立方晶窒化硼素多結晶体。
  4.  前記面積比率S1は15面積%以下である、請求項3に記載の立方晶窒化硼素多結晶体。
  5.  前記複数の結晶粒の円相当径のメジアン径d50は0.1μm以上0.5μm以下である、請求項3又は請求項4に記載の立方晶窒化硼素多結晶体。
  6.  前記立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、アスペクト比が4以上の板状粒子の面積比率S2は5面積%以下である、請求項1から請求項5のいずれか1項に記載の立方晶窒化硼素多結晶体。
  7.  請求項1から請求項6のいずれか1項に記載の立方晶窒化硼素多結晶体の製造方法であって、
     六方晶窒化硼素粉末を準備する工程と、
     前記六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力まで加熱加圧する工程と、を備え、
     前記ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
     P≧-0.0037T+11.301  式1
     P≦-0.085T+117  式2
     前記加熱加圧する工程において、前記ウルツ鉱型窒化硼素の安定領域への突入温度は600℃以上である、立方晶窒化硼素多結晶体の製造方法。
  8.  前記突入温度は900℃以上である、請求項7に記載の立方晶窒化硼素多結晶体の製造方法。
  9.  前記突入温度は1200℃以上である、請求項8に記載の立方晶窒化硼素多結晶体の製造方法。
  10.  前記加熱加圧する工程の前に、前記六方晶窒化硼素粉末を、-50℃以上100℃以下の温度範囲を保持しつつ、0.5GPa以上6GPa以下の圧力まで加圧する工程を備える、請求項7から請求項9のいずれか1項に記載の立方晶窒化硼素多結晶体の製造方法。
  11.  前記加熱加圧する工程の後に、前記加熱加圧する工程により得られた立方晶窒化硼素多結晶体を、1900℃以上2400℃以下の温度、及び、8GPa以上の圧力条件下で10分以上保持する工程を備える、請求項7から請求項10のいずれか1項に記載の立方晶窒化硼素多結晶体の製造方法。
PCT/JP2019/034850 2018-09-27 2019-09-04 立方晶窒化硼素多結晶体及びその製造方法 WO2020066517A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980063098.6A CN112752737B (zh) 2018-09-27 2019-09-04 多晶立方氮化硼及其制造方法
US17/278,810 US20220041446A1 (en) 2018-09-27 2019-09-04 Polycrystalline cubic boron nitride and method for manufacturing the same
JP2020509544A JP7076531B2 (ja) 2018-09-27 2019-09-04 立方晶窒化硼素多結晶体
EP19867895.5A EP3858803A4 (en) 2018-09-27 2019-09-04 POLYCRYSTALLINE BODY OF CUBIC BORON NITRIDE AND METHOD FOR PRODUCTION
KR1020217008922A KR20210058855A (ko) 2018-09-27 2019-09-04 입방정 질화붕소 다결정체 및 그 제조 방법
JP2022080203A JP7342193B2 (ja) 2018-09-27 2022-05-16 立方晶窒化硼素多結晶体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-182464 2018-09-27
JP2018182464 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020066517A1 true WO2020066517A1 (ja) 2020-04-02

Family

ID=69952070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034850 WO2020066517A1 (ja) 2018-09-27 2019-09-04 立方晶窒化硼素多結晶体及びその製造方法

Country Status (6)

Country Link
US (1) US20220041446A1 (ja)
EP (1) EP3858803A4 (ja)
JP (2) JP7076531B2 (ja)
KR (1) KR20210058855A (ja)
CN (1) CN112752737B (ja)
WO (1) WO2020066517A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243975A (ja) * 1991-01-28 1992-09-01 Denki Kagaku Kogyo Kk 立方晶窒化ほう素焼結体の製造方法
JPH11246271A (ja) 1998-02-28 1999-09-14 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素焼結体およびその製造方法
WO2004103615A1 (ja) * 2003-05-26 2004-12-02 Japan Science And Technology Agency 焼結体切削工具の表面強靱化方法及び高寿命焼結体切削工具
JP2014080323A (ja) * 2012-10-16 2014-05-08 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素複合多結晶体およびその製造方法ならびにその立方晶窒化ホウ素複合多結晶を備える切削工具、耐摩工具および研削工具
JP2018182464A (ja) 2017-04-07 2018-11-15 シャープ株式会社 画像処理装置及びプログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN150013B (ja) * 1977-07-01 1982-06-26 Gen Electric
US4289503A (en) * 1979-06-11 1981-09-15 General Electric Company Polycrystalline cubic boron nitride abrasive and process for preparing same in the absence of catalyst
JPS61223183A (ja) * 1985-03-04 1986-10-03 Res Dev Corp Of Japan 菱面体晶系窒化ホウ素の製造方法
JPH04246271A (ja) * 1991-01-31 1992-09-02 Mazda Motor Corp エンジンの吸気装置
EP0699642A3 (en) * 1994-08-29 1996-09-18 Smith International Whisker or fiber reinforced polycrystalline cubic boron nitride or diamond
ZA975386B (en) * 1996-07-03 1998-01-05 Gen Electric Ceramic bonded CBN compact.
CN1060457C (zh) * 1997-02-03 2001-01-10 汪宁 一种含六方氮化硼的复合陶瓷的制备方法
JP4106590B2 (ja) * 2001-12-21 2008-06-25 住友電気工業株式会社 立方晶窒化硼素焼結体およびその製造方法
US8999023B2 (en) * 2006-06-12 2015-04-07 Sumitomo Electric Hardmetal Corp. Composite sintered body
KR101101214B1 (ko) * 2006-08-07 2012-01-04 가부시끼가이샤 도꾸야마 질화알루미늄 소결체 및 그 제조 방법
FR2933690B1 (fr) * 2008-07-11 2010-09-10 Centre Nat Rech Scient Nanonitrure de bore cubique
JP2011098875A (ja) * 2009-11-09 2011-05-19 Sumitomo Electric Ind Ltd 立方晶窒化硼素焼結体
CA2792533C (en) * 2010-03-12 2017-08-15 Sumitomo Electric Hardmetal Corp. Tool made of cubic boron nitride sintered body
JP5433510B2 (ja) 2010-06-23 2014-03-05 株式会社東芝 電源電圧監視回路
EP2942341B1 (en) * 2011-08-30 2020-11-18 Sumitomo Electric Industries, Ltd. Cubic boron nitride complex polycrystalline substance, method for manufacturing same, cutting tool, wire-drawing die, and grinding tool
JP6002100B2 (ja) * 2013-08-27 2016-10-05 日本電信電話株式会社 ダイヤモンド成長用基板及びその作製方法、並びにこの基板を用いた大面積単結晶ダイヤモンド薄膜及び自立膜の作製方法
JP6447197B2 (ja) * 2015-02-04 2019-01-09 住友電気工業株式会社 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法
JP6117406B1 (ja) 2016-06-01 2017-04-19 山佐株式会社 遊技機用基板ケース及び遊技機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243975A (ja) * 1991-01-28 1992-09-01 Denki Kagaku Kogyo Kk 立方晶窒化ほう素焼結体の製造方法
JPH11246271A (ja) 1998-02-28 1999-09-14 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素焼結体およびその製造方法
WO2004103615A1 (ja) * 2003-05-26 2004-12-02 Japan Science And Technology Agency 焼結体切削工具の表面強靱化方法及び高寿命焼結体切削工具
JP2014080323A (ja) * 2012-10-16 2014-05-08 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素複合多結晶体およびその製造方法ならびにその立方晶窒化ホウ素複合多結晶を備える切削工具、耐摩工具および研削工具
JP2018182464A (ja) 2017-04-07 2018-11-15 シャープ株式会社 画像処理装置及びプログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
N. V. NOVIKOV, V.P. BONDARENKO, YU. A. KOCHERZHINSKY, A. V. BELINKINA, V. K. GERASIMENKO, E. V. STOLYAROV, B. M. TOVSTOGAN: "Issledovaniye plasticheskoy deformatsii kubicheskogo nitrida bora [Research of plastic deformation of cubic nitride boron]", SVERKHTVERDYE MATERIALY, no. 2, 14 May 1985 (1985-05-14), pages 17 - 20, XP009526717, ISSN: 0203-3119 *
T. UNGARA. BORBELY: "The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis", APPL. PHYS. LETT., vol. 69, no. 21, 1996, pages 3173, XP012016627, DOI: 10.1063/1.117951
T. UNGARS. OTTP. SANDERSA. BORBELYJ. WEERTMAN: "Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis", ACTA MATER., vol. 46, no. 10, 1998, pages 3693 - 3699, XP027395830

Also Published As

Publication number Publication date
CN112752737A (zh) 2021-05-04
JP7076531B2 (ja) 2022-05-27
CN112752737B (zh) 2023-01-10
JPWO2020066517A1 (ja) 2021-01-07
KR20210058855A (ko) 2021-05-24
JP7342193B2 (ja) 2023-09-11
EP3858803A1 (en) 2021-08-04
US20220041446A1 (en) 2022-02-10
EP3858803A4 (en) 2022-05-11
JP2022122882A (ja) 2022-08-23

Similar Documents

Publication Publication Date Title
JP6798091B1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
JP6798089B1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
WO2020175647A9 (ja) 立方晶窒化硼素多結晶体及びその製造方法
JP6818966B1 (ja) 複合焼結体及びそれを用いた工具
US11208324B2 (en) Polycrystalline cubic boron nitride and method for manufacturing the same
WO2020066517A1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
TW202225126A (zh) 鑽石燒結體、及具備鑽石燒結體之工具
KR102685440B1 (ko) 입방정 질화붕소 다결정체 및 그 제조 방법
JP7180054B1 (ja) ダイヤモンド多結晶体、及びダイヤモンド多結晶体を備える工具
JP7180053B1 (ja) ダイヤモンド多結晶体、及びダイヤモンド多結晶体を備える工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020509544

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217008922

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019867895

Country of ref document: EP

Effective date: 20210428