WO2020175642A9 - 立方晶窒化硼素多結晶体及びその製造方法 - Google Patents

立方晶窒化硼素多結晶体及びその製造方法 Download PDF

Info

Publication number
WO2020175642A9
WO2020175642A9 PCT/JP2020/008149 JP2020008149W WO2020175642A9 WO 2020175642 A9 WO2020175642 A9 WO 2020175642A9 JP 2020008149 W JP2020008149 W JP 2020008149W WO 2020175642 A9 WO2020175642 A9 WO 2020175642A9
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
cubic boron
temperature
pressure
polycrystal
Prior art date
Application number
PCT/JP2020/008149
Other languages
English (en)
French (fr)
Other versions
WO2020175642A1 (ja
Inventor
倫子 松川
久木野 暁
泰助 東
真知子 阿部
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2020/001436 external-priority patent/WO2020174921A1/ja
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to EP20762962.7A priority Critical patent/EP3932893A4/en
Priority to JP2020541821A priority patent/JP6798090B1/ja
Priority to CN202080010567.0A priority patent/CN113329985A/zh
Priority to KR1020217026969A priority patent/KR20210130151A/ko
Priority to US17/052,920 priority patent/US11208324B2/en
Publication of WO2020175642A1 publication Critical patent/WO2020175642A1/ja
Publication of WO2020175642A9 publication Critical patent/WO2020175642A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present disclosure relates to a cubic boron nitride polycrystal and a method for producing the same.
  • This application has priority based on Japanese Patent Application No. 2019-036261 filed on February 28, 2019, and PCT / JP2020 / 001436, an international application filed on January 17, 2020. Claim priority based on. All the contents of the Japanese patent application and the international application are incorporated herein by reference.
  • Cubic boron nitride (hereinafter, also referred to as "cBN”) has hardness next to diamond, and is also excellent in thermal stability and chemical stability. For this reason, cubic boron nitride sintered bodies have been used as materials for tools.
  • the cubic boron nitride sintered body one containing about 10 to 40% by volume of a binder was used.
  • the binder has been a cause of lowering the strength and thermal diffusivity of the sintered body.
  • hexagonal boron nitride is directly converted to cubic boron nitride under ultra-high pressure and high temperature without using a binder, and at the same time, it is sintered to obtain a binder-free cubic boron nitride sintered.
  • a method of gaining a body has been developed.
  • Patent Document 1 low crystalline hexagonal boron nitride is directly converted into a cubic boron nitride sintered body under ultra-high temperature and high pressure, and then sintered to obtain cubic nitride.
  • Patent Document 1 A technique for obtaining a boron sintered body is disclosed.
  • the cubic boron nitride polycrystals of the present disclosure are A cubic boron nitride polycrystal containing 98.5% by volume or more of cubic boron nitride.
  • the dislocation density of the cubic boron nitride is greater than 8 ⁇ 10 15 / m 2 .
  • the cubic boron nitride polycrystal contains a plurality of crystal grains and contains a plurality of crystal grains.
  • the median diameter d50 of the plurality of crystal grains having a circle-equivalent diameter is 0.1 ⁇ m or more and 0.5 ⁇ m or less, which is a cubic boron nitride polycrystal.
  • the method for producing a cubic boron nitride polycrystal according to the present disclosure is as follows.
  • the first step of preparing hexagonal boron nitride powder and The hexagonal boron nitride powder is passed through the temperature and pressure within the stable region of wurtzite-type boron nitride, and is heated and pressed to a temperature of 1700 ° C. or higher and 2500 ° C. or lower and a pressure of 8 GPa or higher to obtain a boron nitride polycrystal.
  • the second step to get the body and The boron nitride polycrystal obtained in the second step is held at a temperature of 1700 ° C. or higher and 2500 ° C. or lower and a pressure condition of 8 GPa or higher for 3 minutes or longer and 60 minutes or lower to obtain a cubic boron nitride polycrystal.
  • the stable region of the wurtzite-type boron nitride is a region that simultaneously satisfies the following formula 1 and the following formula 2 when the temperature is T ° C. and the pressure is PGPa.
  • Equation 1 P ⁇ -0.0037T + 11.301 Equation 2: P ⁇ -0.085T + 117
  • the second step is the production of a cubic boron nitride polycrystal, which comprises a step of maintaining the temperature and pressure in the heating and pressurizing path at the temperature and pressure within the stable region of the wurtzite-type boron nitride for 10 minutes or more. The method.
  • FIG. 1 is a pressure-temperature phase diagram of boron nitride.
  • FIG. 2 is a diagram for explaining an example of a method for producing a cubic boron nitride polycrystal of the present disclosure.
  • FIG. 3 is a diagram for explaining another example of the method for producing a cubic boron nitride polycrystal of the present disclosure.
  • FIG. 4 is a diagram for explaining another example of the method for producing a cubic boron nitride polycrystal of the present disclosure.
  • FIG. 5 is a diagram for explaining a conventional example of a method for producing a cubic boron nitride polycrystal.
  • FIG. 6 is a diagram for explaining the aspect ratio of the crystal grains.
  • an object of the present invention is to provide a cubic boron nitride polycrystal that can have a long tool life when used as a tool, especially in high-load machining of iron-based materials and difficult-to-cut materials. And. [Effect of this disclosure] According to the present disclosure, the cubic boron nitride polycrystal can have a long tool life when used as a tool, particularly even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the cubic boron nitride polycrystal of the present disclosure is a cubic boron nitride polycrystal containing 98.5% by volume or more of cubic boron nitride.
  • the dislocation density of the cubic boron nitride is greater than 8 ⁇ 10 15 / m 2 .
  • the cubic boron nitride polycrystal contains a plurality of crystal grains and contains a plurality of crystal grains.
  • the median diameter d50 of the plurality of crystal grains having a circle-equivalent diameter is 0.1 ⁇ m or more and 0.5 ⁇ m or less, which is a cubic boron nitride polycrystal.
  • the cubic boron nitride polycrystal can have a long tool life when used as a tool, especially in high-load machining of iron-based materials and difficult-to-cut materials.
  • the dislocation density is preferably 9 ⁇ 10 15 / m 2 or more. According to this, the fracture resistance of the tool is improved.
  • the total content of the alkali metal element and the alkaline earth metal element of the cubic boron nitride polycrystal is preferably 10 ppm or less on a mass basis.
  • a tool using the cubic boron nitride polycrystal can have an excellent tool life even in ultra-high speed and high load machining of iron-based materials and difficult-to-cut materials.
  • the area ratio of the plate-like particles having an aspect ratio of 4 or more is 30 area% or less. It is preferable to have.
  • a tool using the cubic boron nitride polycrystal can have an excellent tool life.
  • the area ratio of the plate-like particles having an aspect ratio of 4 or more is preferably 5 area% or less.
  • a tool using the cubic boron nitride polycrystal can have an even better tool life.
  • the cubic boron nitride polycrystal preferably contains 0.01% by volume or more of compressed hexagonal boron nitride.
  • a tool using the cubic boron nitride polycrystal can have an excellent tool life.
  • the cubic boron nitride polycrystal preferably contains 0.1% by volume or more of wurtzite-type boron nitride.
  • a tool using the cubic boron nitride polycrystal can have an excellent tool life.
  • the dislocation density is preferably calculated by using the modified Williamson-Hall method and the modified Warren-Averbach method.
  • the dislocation density has a good correlation with the performance of the cubic boron nitride polycrystal.
  • the dislocation density is preferably measured using synchrotron radiation as an X-ray source.
  • the dislocation density has a good correlation with the performance of the cubic boron nitride polycrystal.
  • the method for producing a cubic boron nitride polycrystal of the present disclosure is the above-mentioned method for producing a cubic boron nitride polycrystal.
  • the first step of preparing hexagonal boron nitride powder and The hexagonal boron nitride powder is passed through the temperature and pressure within the stable region of wurtzite-type boron nitride, and is heated and pressed to a temperature of 1700 ° C. or higher and 2500 ° C. or lower and a pressure of 8 GPa or higher to obtain a boron nitride polycrystal.
  • the second step to get the body and The boron nitride polycrystal obtained in the second step is held at a temperature of 1700 ° C. or higher and 2500 ° C. or lower and a pressure condition of 8 GPa or higher for 3 minutes or longer and 60 minutes or lower to obtain a cubic boron nitride polycrystal.
  • the stable region of the wurtzite-type boron nitride is a region that simultaneously satisfies the following formula 1 and the following formula 2 when the temperature is T ° C. and the pressure is PGPa.
  • the temperature at which the wurtzite-type boron nitride enters the stable region is 500 ° C. or lower.
  • the second step includes a step of maintaining the temperature and pressure in the heating and pressurizing path at the temperature and pressure within the stable region of the wurtzite-type boron nitride for 10 minutes or more.
  • the cubic boron nitride polycrystal obtained by this manufacturing method can have a long tool life when used as a tool, especially in high-load machining of iron-based materials and difficult-to-cut materials.
  • the inrush temperature is preferably 300 ° C. or lower. According to this, the life of the tool using the obtained cubic boron nitride polycrystal is further improved.
  • the second step preferably includes a step of maintaining the temperature and pressure in the heating and pressurizing path at the temperature and pressure within the stable region of the wurtzite-type boron nitride for 15 minutes or more. According to this, the life of the tool using the obtained cubic boron nitride polycrystal is further improved.
  • Equation 1 P ⁇ -0.0037T + 11.301 Equation 2: P ⁇ -0.085T + 117 Equation 3: P ⁇ -0.0037T + 11.375
  • the life of the tool using the obtained cubic boron nitride polycrystal is further improved.
  • the cubic boron nitride polycrystal of the present disclosure is a cubic boron nitride polycrystal containing 98.5% by volume or more of cubic boron nitride, and the dislocation density of the cubic boron nitride is 8 ⁇ 10 15 / m. Larger than 2 , the cubic boron nitride polycrystal contains a plurality of crystal grains, and the median diameter d50 of the equivalent circle diameter of the plurality of crystal grains is 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • cubic boron nitride polycrystal of the present disclosure is a sintered body
  • the term "polycrystal" is used in the present disclosure because the sintered body is usually intended to contain a binder. ..
  • the cubic boron nitride polycrystal of the present disclosure can have a long tool life when used as a tool, especially in high-load machining of iron-based materials and difficult-to-cut materials. The reason for this is not clear, but it is presumed to be as shown in (i) to (iii) below.
  • the cubic boron nitride polycrystal of the present disclosure contains 98.5% by volume or more of cubic boron nitride, and substantially does not contain a binder, a sintering aid, a catalyst, or the like. Therefore, the cubic boron nitrides are strongly bonded to each other, and the strength and thermal diffusivity of the cubic boron nitride polycrystal are improved. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the dislocation density of cubic boron nitride is larger than 8 ⁇ 10 15 / m 2 .
  • the cubic boron nitride polycrystal has a relatively large number of lattice defects in the polycrystal and has a large strain, so that the strength is improved. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the cubic boron nitride polycrystal of the present disclosure has a median diameter d50 (hereinafter, also referred to as “particle size”) having a diameter equivalent to a circle of a plurality of crystal grains contained therein, which is 0.1 ⁇ m or more and 0.5 ⁇ m. It is as follows. Conventionally, it has been considered that the cutting performance of cubic boron nitride polycrystals is improved because the strength increases as the grain size of the crystal grains decreases. For this reason, the particle size of the crystal grains constituting the cubic boron nitride polycrystal was reduced (for example, the average particle size was less than 100 nm), but this tended to reduce the toughness.
  • the cubic boron nitride polycrystal of the present disclosure secures strength by increasing the dislocation density of cubic boron nitride, so that the particle size is larger than before. can do. Therefore, the cubic boron nitride polycrystal of the present disclosure has improved toughness and can have excellent crack propagation resistance. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the cubic boron nitride polycrystal of the present disclosure has a long tool life in high-load machining of iron-based materials and difficult-to-cut materials, but the work material and processing method are limited to these. Not done.
  • the work material include Ti alloys such as Ti6Al4V and cobalt-chromium alloys.
  • the processing method include turning and milling.
  • the cubic boron nitride polycrystal of the present disclosure contains 98.5% by volume or more of cubic boron nitride. As a result, the cubic boron nitride polycrystal has excellent hardness, and is also excellent in thermal stability and chemical stability.
  • the cubic boron nitride polycrystal contains 1.5% by volume in total of one or both of compression hexagonal boron nitride and wurtzite boron nitride in addition to cubic boron nitride.
  • compression hexagonal boron nitride has a crystal structure similar to that of ordinary hexagonal boron nitride, and the plane spacing in the c-axis direction is larger than that of normal hexagonal boron nitride (0.333 nm). Indicates a small one.
  • the cubic boron nitride polycrystal may contain unavoidable impurities as long as the effects of the present disclosure are exhibited.
  • Inevitable impurities include, for example, hydrogen, oxygen, carbon, alkali metal elements (in the present specification, alkali metal elements include lithium (Li), sodium (Na), potassium (K)) and alkaline earth metals. Elements (in this specification, alkaline earth metal elements include calcium (Ca), magnesium (Mg), strontium (Sr), barium (Ba)), silicon (Si), aluminum (Al) and the like. be able to.
  • the content of the unavoidable impurities is preferably 0.1% by mass or less.
  • the content of unavoidable impurities can be measured by secondary ion mass spectrometry (SIMS).
  • Alkaline metal elements lithium (Li), sodium (Na), potassium (K)
  • alkaline earth metal elements calcium (Ca), magnesium (Mg), strontium (Sr), barium) of cubic boron nitride polycrystals
  • the total content of (Ba)) is preferably 10 ppm or less.
  • the alkali metal element and the alkaline earth metal element have a catalytic action on the phase conversion between hexagonal boron nitride and boron nitride.
  • the tool using the cubic boron nitride polycrystal has a cutting edge and a work piece in a cutting environment. Even when the interface with the material is exposed to high temperature and high pressure, it is possible to satisfactorily suppress the progress of damage to the tool due to the conversion of part of the cubic boron nitride that constitutes the tool to hexagonal boron nitride. it can.
  • the lower limit of the total content of the alkali metal element and the alkaline earth metal element in the hexagonal boron nitride polycrystal is preferably 0 ppm. That is, the total content of the alkali metal element and the alkaline earth metal element in the hexagonal boron nitride polycrystal is preferably 0 ppm or more and 10 ppm or less.
  • Conventional cubic boron nitride sintered bodies are produced using cBN abrasive grains as a starting material, for example, as described in JP-A-2006-201216.
  • the total content (content of the catalyst component in 1 mol of cBN) of the catalyst components (alkali metal element, alkaline earth metal element) remaining in the cBN abrasive grains is 2.4 ⁇ 10 -4 to 13 .5 ⁇ 10 -4 mol. Therefore, it is obvious to those skilled in the art that the total content of the catalyst components of the conventional cubic boron nitride polycrystal obtained by sintering the cBN abrasive grains is 0.01% by mass (100 ppm) or more. is there.
  • the cubic boron nitride polycrystal of the present disclosure uses hexagonal boron nitride as a starting material and heats and pressurizes the hexagonal boron nitride without using a catalyst to convert it into cubic boron nitride, as will be described later. You can get it. Therefore, the content of the catalyst component of the cubic boron nitride polycrystal can be 10 ppm or less on a mass basis.
  • the total content of silicon (Si) and aluminum (Al) in the cubic boron nitride polycrystal is preferably 50 ppm or less on a mass basis. According to this, the tool using the cubic boron nitride polycrystal body constitutes the tool even when the interface between the cutting edge and the work material is exposed to high temperature and high pressure in a cutting environment. It is possible to satisfactorily suppress the progress of damage to the tool due to the reaction of a part of boron with Si and Al.
  • the cubic boron nitride polycrystal does not substantially contain a binder, a sintering aid, a catalyst, or the like. As a result, the strength and thermal diffusivity of the cubic boron nitride polycrystal are improved.
  • the content of cubic boron nitride in the cubic boron nitride polycrystal is preferably 98.5% by volume or more and 100% by volume or less, and more preferably 99% by volume or more and 100% by volume or less.
  • the upper limit of the content of cubic boron nitride can be 100% by volume or less, 99.99% by volume or less, 99.9% by volume or less, and 99.89% by volume or less.
  • the total content of compressed hexagonal boron nitride and wurtzite boron nitride in the cubic boron nitride polycrystal is preferably 0% by volume or more and 1.5% by volume or less, and 0% by volume or more and 1% by volume or less. Preferably, 0% by volume is preferable. That is, it is preferable that the cubic boron nitride polycrystal does not contain either compressed hexagonal boron nitride or wurtzite boron nitride.
  • the content of compressed hexagonal boron nitride in the cubic boron nitride polycrystal is preferably 0% by volume or more and 1.5% by volume or less, preferably 0% by volume or more and 1% by volume or less, and preferably 0% by volume. That is, it is preferable that the cubic boron nitride polycrystal does not contain compressed hexagonal boron nitride.
  • the content of wurtzite-type boron nitride in the cubic boron nitride polycrystal is preferably 0% by volume or more and 1.5% by volume or less, preferably 0% by volume or more and 1% by volume or less, and preferably 0% by volume. That is, it is preferable that the cubic boron nitride polycrystal does not contain wurtzite-type boron nitride.
  • Hexagonal boron nitride, compression hexagonal nitride, and wurtzite boron nitride have low frictional resistance, which can reduce the adhesion of the work material during cutting and reduce the cutting resistance. Further, hexagonal boron nitride, compressed hexagonal boron nitride and wurtzite boron nitride are softer than cubic boron nitride and have excellent crack propagation resistance.
  • the cubic boron nitride polycrystal contains hexagonal boron nitride, compressed hexagonal boron nitride, and wurtzite boron nitride.
  • the cubic boron nitride polycrystal preferably contains 0.01% by volume or more of compressed hexagonal boron nitride.
  • the cubic boron nitride polycrystal preferably contains compression type hexagonal boron nitride in an amount of 0.01% by volume or more and 1.5% by volume or less, and preferably 0.01% by volume or more and 1% by volume or less.
  • the cubic boron nitride polycrystal preferably contains 99.99% by volume or less of cubic boron nitride.
  • the cubic boron nitride polycrystal preferably contains 0.1% by volume or more of wurtzite-type boron nitride.
  • the cubic boron nitride polycrystal preferably contains wurtzite-type boron nitride in an amount of 0.1% by volume or more and 1.5% by volume or less, and preferably 0.1% by volume or more and 1% by volume or less.
  • the cubic boron nitride polycrystal preferably contains 99.9% by volume or less of cubic boron nitride.
  • the content (volume%) of cubic boron nitride, compression hexagonal boron nitride and wurtzite boron nitride in the cubic boron nitride polycrystal can be measured by X-ray diffraction.
  • the specific measurement method is as follows.
  • An X-ray spectrum of a cut surface of a cubic boron nitride polycrystal is obtained using an X-ray diffractometer (“MiniFlex 600” (trade name) manufactured by Rigaku).
  • the conditions of the X-ray diffractometer at this time are as follows.
  • Characteristic X-ray Cu-K ⁇ (wavelength 1.54 ⁇ ) Tube voltage: 45kV Tube current: 40mA Filter: Multi-layer mirror Optical system: Concentration method X-ray diffraction method: ⁇ -2 ⁇ method.
  • the content of compressed hexagonal boron nitride can be obtained by calculating the value of peak intensity A / (peak intensity A + peak intensity B + peak intensity C).
  • the content of wurtzite-type boron nitride can be obtained by calculating the value of peak intensity B / (peak intensity A + peak intensity B + peak intensity C).
  • the content of cubic boron nitride can be obtained by calculating the value of peak intensity C / (peak intensity A + peak intensity B + peak intensity C).
  • the above X-ray peak intensity ratio is the volume ratio in the cubic boron nitride polycrystal. Can be regarded as.
  • the dislocation density of cubic boron nitride is greater than 8 ⁇ 10 15 / m 2 .
  • the cubic boron nitride polycrystal has a relatively large number of lattice defects in the polycrystal and has a large strain, so that the strength is improved. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the dislocation density is preferably 9 ⁇ 10 15 / m 2 or more, and more preferably 1.0 ⁇ 10 16 / m 2 or more.
  • the upper limit of the dislocation density is not particularly limited, but from the viewpoint of manufacturing, it can be 1.4 ⁇ 10 16 / m 2 . That is, the dislocation density is preferably 8 ⁇ 10 15 / m greater than 2 1.4 ⁇ 10 16 / m 2 or less, more preferably 9 ⁇ 10 15 / m 2 or more 1.4 ⁇ 10 16 / m 2 or less, 1 More preferably, it is 0.0 ⁇ 10 16 / m 2 or more and 1.4 ⁇ 10 16 / m 2 or less.
  • the dislocation density is calculated by the following procedure.
  • a test piece composed of a cubic boron nitride polycrystal is prepared.
  • the size of the test piece is 2.0 mm ⁇ 2.0 mm on the observation surface and 1.0 mm in thickness. Polish the observation surface of the test piece.
  • X-ray diffraction measurement conditions X-ray source: Synchrotron radiation Device condition: Detector NaI (cut fluorescence by appropriate ROI) Energy: 18 keV (wavelength: 0.6888 ⁇ ) Spectral crystal: Si (111) Incident slit: width 5 mm x height 0.5 mm Light receiving slit: Double slit (width 3 mm x height 0.5 mm) Mirror: Platinum coated mirror Incident angle: 2.5 mrad Scanning method: 2 ⁇ - ⁇ scan Measurement peaks: (111), (200), (220), (311), (400), (331) of cubic boron nitride. However, if it is difficult to obtain a profile due to texture and orientation, the peak of the surface index is excluded.
  • Measurement conditions Make sure that the number of measurement points is 9 or more within the half width.
  • the peak top intensity shall be 2000 counts or more. Since the tail of the peak is also used for analysis, the measurement range is about 10 times the half width.
  • the line profile obtained by the above-mentioned X-ray diffraction measurement has a shape that includes both the true spread due to physical quantities such as non-uniform strain of the sample and the spread due to the device.
  • the device-derived components are removed from the measured line profile to obtain a true line profile.
  • the true line profile is obtained by fitting the obtained line profile and the device-derived line profile by the pseudo Voigt function and subtracting the device-derived line profile.
  • LaB 6 was used as a standard sample for removing the diffraction line spread caused by the device. Further, when synchrotron radiation having high parallelism is used, the diffraction line spread due to the device can be regarded as zero.
  • the dislocation density is calculated by analyzing the obtained true line profile using the modified Williamson-Hall method and the modified Warren-Averbach method.
  • the modified Williamson-Hall method and the modified Warren-Averbach method are known line profile analysis methods used to determine the dislocation density.
  • lnA (L) lnA S ( L) - in ( ⁇ L 2 ⁇ b 2/2) ln (R e / L) (K 2 C) + O (K 2 C) 2 (IV) (the formula (IV), A (L) is the Fourier series, a S (L) is the Fourier series regarding crystallite size, L is shows a Fourier length.)
  • the median diameter d50 (hereinafter, also referred to as “median diameter d50”) of the equivalent circle diameter of the plurality of crystal grains contained in the cubic boron nitride polycrystal of the present disclosure is 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the particle size of the crystal grains constituting the cubic boron nitride polycrystal was reduced (for example, the average particle size was less than 100 nm), but this tended to reduce the toughness.
  • the cubic boron nitride polycrystal of the present disclosure secures strength by increasing the dislocation density of cubic boron nitride, so that the particle size is larger than before. can do. Therefore, the cubic boron nitride polycrystal of the present disclosure has improved toughness and can have excellent crack propagation resistance. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the area ratio of plate-like particles having an aspect ratio of 4 or more is preferably 30 area% or less. ..
  • the decrease in toughness accompanying the reduction in particle size is compensated for by the presence of a plate-like structure in the cubic polycrystal.
  • these plate-shaped particles suddenly fall off from the cutting edge during high-efficiency machining of a difficult-to-cut material, causing the cutting edge to be chipped, which causes variation and shortening of the tool life.
  • the content of plate-like particles having an aspect ratio of 4 or more is reduced. Therefore, the cubic boron nitride polycrystal is less likely to cause sudden chipping of the cutting edge due to plate-like particles, and has a long tool life even in high-load machining of iron-based materials and difficult-to-cut materials. it can.
  • the area ratio of the plate-like particles having an aspect ratio of 4 or more is preferably 30 area% or less.
  • the area ratio of the plate-like particles having an aspect ratio of 4 or more is preferably 0 area% or more and 30 area% or less, and more preferably 0 area% or more and 5 area% or less.
  • the median diameter d50 of the circle-equivalent diameter of the plurality of crystal grains contained in the cubic boron nitride polycrystal is the median diameter of the plurality of crystal grains at each of the five arbitrarily selected measurement points. It means a value obtained by measuring each d50 and calculating an average value thereof.
  • the area ratio of the plate-like particles having an aspect ratio of 4 or more in the cubic boron nitride polycrystal is the plate-like particles having an aspect ratio of 4 or more at each of the five measurement points arbitrarily selected. It means the value obtained by measuring each of the area ratios of and calculating the average value of these.
  • the portion of the cubic boron nitride polycrystal is cut out with a diamond grindstone electrodeposition wire or the like, and the cut out cross section is polished to perform the polishing.
  • Five measurement points are arbitrarily set on the surface.
  • the method of measuring the area ratio of the plate-shaped particles having a median diameter d50 of a plurality of crystal grains equivalent to a circle and an aspect ratio of 4 or more at each measurement point will be specifically described below.
  • the measurement point on the polished surface is observed using an SEM (“JSM-7500F” (trade name) manufactured by JEOL Ltd.) to obtain an SEM image.
  • the size of the measurement field of view is 12 ⁇ m ⁇ 15 ⁇ m, and the observation magnification is 10000 times.
  • the aspect ratio of each crystal grain and each Calculate the equivalent circle diameter of the crystal grains means the value (major axis / minor axis) of the ratio of the major axis to the minor axis of the crystal grain on the cut surface.
  • the shape of the crystal grain is an indefinite shape as shown in FIG. 6, the aspect ratio is calculated according to the following procedures (a) to (c) using image processing software.
  • first line segment The longest line segment (hereinafter, also referred to as “first line segment”) that can be drawn inside the crystal grain (both ends are in contact with the crystal grain boundary) is specified, and the first line segment is specified. Measure the length L1.
  • (C) Calculate the value (L1 / L2) of the ratio of the length L1 of the first line segment to the length L2 of the second line segment.
  • the value of (L1 / L2) is used as the aspect ratio.
  • the median diameter d50 is calculated from the distribution of the equivalent circle diameter of all crystal grains in the measurement field of view.
  • the area ratio of plate-shaped particles having an aspect ratio of 4 or more is calculated using the entire area of the measurement field of view as the denominator.
  • the cubic boron nitride polycrystal of the present disclosure is preferably used for cutting tools, abrasion resistant tools, grinding tools and the like.
  • the cutting tool, wear-resistant tool, and grinding tool using the cubic boron nitride polycrystal of the present disclosure may be entirely composed of the cubic boron nitride polycrystal, or a part thereof (for example, a cutting tool). In the case of, only the cutting edge portion) may be composed of a cubic boron nitride polycrystal. Further, a coating film may be formed on the surface of each tool.
  • Cutting tools include drills, end mills, replaceable cutting tips for drills, replaceable cutting tips for end mills, replaceable cutting tips for milling, replaceable cutting tips for turning, metal saws, gear cutting tools, and reamers. , Taps, cutting tools, etc.
  • wear-resistant tools include dies, scribers, scribing wheels, and dressers.
  • the grinding tool include a grinding wheel.
  • FIG. 1 is a pressure-temperature phase diagram of boron nitride.
  • 2 to 4 are diagrams for explaining a method for producing a cubic boron nitride polycrystal of the present disclosure.
  • FIG. 5 is a diagram for explaining a conventional example of a method for producing a cubic boron nitride polycrystal.
  • the method for producing a cubic boron nitride polycrystal of the present disclosure is the method for producing a cubic boron nitride polycrystal of the first embodiment.
  • a first step of preparing hexagonal boron nitride powder hereinafter, also referred to as “first step”
  • the second step of obtaining a boron nitride polycrystal by passing through the temperature and pressure in the stable region of the boron nitride and heating and pressurizing to a temperature of 1700 ° C.
  • the boron nitride polycrystal obtained in the second step is held at a temperature of 1700 ° C. or higher and 2500 ° C. or lower and a pressure condition of 8 GPa or higher for 3 minutes or longer and 60 minutes or lower. It includes a third step (hereinafter, also referred to as “third step”) for obtaining a cubic boron nitride polycrystal.
  • the stable region of wurtzite-type boron nitride is a region that simultaneously satisfies the following equations 1 and 2 when the temperature is T (° C.) and the pressure is P (GPa).
  • Equation 1 P ⁇ -0.0037T + 11.301 Equation 2: P ⁇ -0.085T + 117
  • the temperature at which the wurtzite-type boron nitride enters the stable region is 500 ° C. or less
  • the temperature and pressure in the heating and pressurizing path are set to the wurtzite-type boron nitride.
  • the boron nitride includes hexagonal boron nitride, which is a stable phase at normal temperature and pressure, cubic boron nitride, which is a stable phase at high temperature and high pressure, and from hexagonal boron nitride to cubic boron nitride.
  • hexagonal boron nitride which is a stable phase at normal temperature and pressure
  • cubic boron nitride which is a stable phase at high temperature and high pressure
  • hexagonal boron nitride to cubic boron nitride There are three phases of wurtzite-type boron nitride, which are semi-stable phases between the rearrangements of.
  • each phase can be represented by a linear function.
  • the temperature and pressure in the stable region of each phase can be indicated by using a linear function.
  • the temperature and pressure in the stable region of wurtzite-type boron nitride are when the temperature is T (° C.) and the pressure is P (GPa). , Defined as the temperature and pressure that simultaneously satisfy the following formula 1 and the following formula 2.
  • Equation 1 P ⁇ -0.0037T + 11.301 Equation 2: P ⁇ -0.085T + 117
  • the temperature and pressure in the stable region of hexagonal boron nitride are when the temperature is T (° C.) and the pressure is P (GPa). It is defined as the temperature and pressure that simultaneously satisfy the following formulas A and B, or the temperature and pressure that simultaneously satisfy the following formulas C and D.
  • the temperature and pressure in the stable region of cubic boron nitride are when the temperature is T (° C.) and the pressure is P (GPa). It is defined as a temperature and pressure that simultaneously satisfy the following formula D and the following formula E.
  • path shown in FIG. 5 as a heating and pressurizing path for bringing hexagonal boron nitride to the temperature and pressure within the stable region of cubic boron nitride (hereinafter, also referred to as “path of FIG. 5”).
  • path of FIG. 5 a heating and pressurizing path for bringing hexagonal boron nitride to the temperature and pressure within the stable region of cubic boron nitride
  • the temperature and pressure (normal temperature and pressure) of the starting point S the temperature (hereinafter, also referred to as “target temperature”) and pressure (hereinafter, “target pressure”) within the stable region of cubic boron nitride.
  • target temperature the temperature
  • target pressure the pressure
  • the pressure is first raised to the target pressure (about 8 GPa in FIG. 5) (arrow E1 in FIG. 5), and then the temperature is raised to the target temperature (about 1900 ° C. in FIG. 5). Raise (arrow E2 in FIG. 5).
  • the control of the heating and pressurizing operation is simple and has been conventionally adopted.
  • the content of cubic boron nitride in the cubic boron nitride polycrystal means that the cubic boron nitride polycrystal contains hexagonal boron nitride and / or wurtzite type boron nitride together with cubic boron nitride.
  • it means the content of cubic boron nitride when the total content of cubic boron nitride, hexagonal boron nitride and wurtzite type boron nitride is used as the denominator.
  • the inrush temperature of the wurtzite-type boron nitride into the stable region is related to the dislocation density of the cubic boron nitride. Therefore, it was speculated that it affects the strength of the obtained cubic boron nitride polycrystal.
  • the present inventors consider the above situation and the influence of the particle size of a plurality of crystal grains contained in the cubic boron nitride polycrystal on the toughness, and the pressure in the manufacturing process of the cubic boron nitride polycrystal. And the temperature path was investigated diligently. As a result, the present inventors have found heating and pressurizing conditions capable of obtaining a cubic boron nitride polycrystal capable of having a long tool life even in the processing of iron-based materials and difficult-to-cut materials.
  • cBN powder is used as a starting material, and the cBN powder is pressurized and then heated for sintering. It is inferred that the high-hardness cBN powders come into contact with each other by pressurization and dislocations are introduced into the cBN particles.
  • a low-hardness hBN powder is used as a starting material, and the hBN powder is heat-pressurized to be converted into a cubic boron nitride polycrystal.
  • the dislocation density of the cubic boron nitride polycrystal was unpredictable. As a result of diligent studies, the present inventors have newly found the relationship between the heating and pressurizing conditions, the dislocation density of the cubic boron nitride polycrystal, and the tool performance.
  • FIGS. 2 to 4 the arrows indicate the heating and pressurizing paths. If a circle is drawn at the tip of the arrow, it means that the arrow is held at that temperature and pressure for a certain period of time. Further, the routes shown in FIGS. 2 to 4 are examples, and the route is not limited thereto.
  • Hexagonal boron nitride powder is prepared as a raw material for the cubic boron nitride polycrystal.
  • the hexagonal boron nitride powder preferably has a purity (content of hexagonal boron nitride) of 98.5% or more, more preferably 99% or more, and most preferably 100%.
  • the particle size of the hexagonal boron nitride powder is not particularly limited, but can be, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the hexagonal boron nitride powder passes through the temperature and pressure within the stable region of the wurtzite-type boron nitride, and has a temperature of 1700 ° C. or higher and 2500 ° C. or lower (hereinafter, also referred to as “reached temperature”) and.
  • a boron nitride polycrystal is obtained by heating and pressurizing to a pressure of 8 GPa or more (hereinafter, also referred to as “reaching pressure”) (arrows A1, A2 and A3 in FIG. 2, arrows B1, B2, B3 and B4 in FIG. 3). In FIG. 4, arrows C1, C2, C3 and C4).
  • the temperature at which the wurtzite-type boron nitride enters the stable region is 500 ° C. or lower.
  • the second step includes a step of maintaining the temperature and pressure in the heating and pressurizing path at the temperature and pressure in the stable region of the wurtzite-type boron nitride for 10 minutes or more (a1 in FIG. 2 and b1 in FIG. 3). , C1 and c2) in FIG.
  • the sintered body obtained in the second step has a lower content of cubic boron nitride than the cubic boron nitride polycrystal obtained after the third step. Therefore, in order to distinguish between the sintered body obtained by the second step and the cubic boron nitride polycrystal obtained after the third step, the sintered body obtained by the second step is used in the present specification. It is referred to as a boron nitride sintered body.
  • the temperature at which the wurtzite-type boron nitride enters the stable region means the temperature at the time when the wurtzite-type boron nitride reaches the stable region for the first time in the heating and pressurizing path of the second step. ..
  • the entry temperature of wurtzite-type boron nitride into the stable region is 500 ° C. or less.
  • hexagonal boron nitride powder is converted to wurtzite-type boron nitride in an environment where atomic diffusion is unlikely to occur, and then converted to cubic boron nitride. Therefore, the finally obtained cubic boron nitride polycrystal has a relatively large number of lattice defects in the polycrystal, and the dislocation density of the cubic boron nitride is large and the strain is large, so that the strength is improved. doing. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the temperature at which the wurtzite-type boron nitride enters the stable region is preferably 300 ° C. or lower, more preferably 100 ° C. or lower.
  • the lower limit of the inrush temperature can be, for example, 10 ° C.
  • the entry temperature of the wurtzite-type boron nitride into the stable region is preferably 10 ° C. or higher and 500 ° C. or lower, more preferably 10 ° C. or higher and 300 ° C. or lower, and further preferably 10 ° C. or higher and 100 ° C. or lower.
  • the second step includes a step of maintaining the temperature and pressure in the heating and pressurizing path at the temperature and pressure within the stable region of the wurtzite-type boron nitride for 10 minutes or more.
  • hexagonal boron nitride powder or powder containing hBN powder and a part thereof undergoing phase conversion is held for 10 minutes or more under temperature and pressure conditions within the stable region of wurtzite-type boron nitride. It will be.
  • the holding time of wurtzite-type boron nitride at temperature and pressure in the stable region is preferably 15 minutes or more, more preferably 30 minutes or more.
  • the upper limit of the holding time is preferably 60 minutes from the viewpoint of manufacturing.
  • the holding time is preferably 10 minutes or more and 60 minutes or less, more preferably 15 minutes or more and 60 minutes or less, and further preferably 30 minutes or more and 60 minutes or less.
  • the second step when the temperature and pressure in the heating and pressurizing path are T (° C.) and P (GPa), the following formula 1, the following formula 2 and the following formula 3 are simultaneously satisfied. It is preferable to include a step of holding the temperature and pressure for 10 minutes or more (hereinafter, also referred to as “second A step”).
  • Equation 1 P ⁇ -0.0037T + 11.301 Equation 2: P ⁇ -0.085T + 117 Equation 3: P ⁇ -0.0037T + 11.375
  • the region that simultaneously satisfies the above formulas 1, 2 and 3 is a region near the boundary between the stable region of hexagonal boron nitride and the stable region of wurtzite-type boron nitride within the stable region of wurtzite-type boron nitride. is there.
  • the hexagonal boron nitride powder or the powder containing the hBN powder and a part thereof undergoing phase conversion is held for 10 minutes or more under the temperature and pressure conditions that simultaneously satisfy the above formulas 1, 2 and 3. Will be done. By holding in this region for 10 minutes or more, lattice defects are more likely to occur.
  • the finally obtained cubic boron nitride polycrystal has many lattice defects in the polycrystal and has a large strain, so that the strength is further improved. Therefore, a tool using the cubic boron nitride polycrystal can have a longer tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the holding time at temperature and pressure in the region satisfying the above formulas 1, 2 and 3 at the same time is more preferably 15 minutes or more, further preferably 20 minutes or more.
  • the upper limit of the holding time is preferably 60 minutes from the viewpoint of manufacturing.
  • the holding time is preferably 10 minutes or more and 60 minutes or less, more preferably 15 minutes or more and 60 minutes or less, and further preferably 20 minutes or more and 60 minutes or less.
  • the second step includes a step of holding the temperature and pressure in the region satisfying the above formulas 1, 2 and 3 for 10 minutes or more
  • the second step is the temperature and pressure in the heating and pressurizing path, and then the temperature and pressure.
  • a step of holding the temperature and pressure in the region satisfying the following formula 2 and the following formula 4 for 1 minute or more (hereinafter, also referred to as “second B step”) can be included.
  • Equation 2 P ⁇ -0.085T + 117 Equation 4: P> -0.0037T + 11.375
  • the conversion rate from hexagonal boron nitride to wurtzite-type boron nitride is further improved, and as a result, the conversion rate to cubic boron nitride is also improved. Therefore, in the finally obtained cubic boron nitride polycrystal, the content of cubic boron nitride increases, and defects are unlikely to occur during processing. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the holding time at temperature and pressure in the region satisfying the above formulas 2 and 4 is more preferably 10 minutes or more, further preferably 15 minutes or more.
  • the upper limit of the holding time is preferably 60 minutes from the viewpoint of manufacturing.
  • the holding time is preferably 1 minute or more and 60 minutes or less, more preferably 10 minutes or more and 60 minutes or less, and further preferably 15 minutes or more and 60 minutes or less.
  • the second step only the above-mentioned second A step may be performed, or the above-mentioned second B step may be performed after the above-mentioned second A step. Further, the second step may be a step of holding for 10 minutes or more in a region satisfying the above formulas 2 and 4.
  • the ultimate pressure in the second step is 8 GPa or more, preferably 10 GPa or more, and more preferably 13 GPa or more.
  • the upper limit of the ultimate pressure is not particularly limited, but can be, for example, 15 GPa.
  • the ultimate pressure in the second step is preferably 8 GPa or more and 15 GPa or less, more preferably 10 GPa or more and 15 GPa or less, and further preferably 13 GPa or more and 15 GPa or less.
  • the heating and pressurizing path is not limited to this.
  • the temperature at which wurtzite-type boron nitride enters the stable region is set to 500 ° C or less, the temperature and pressure within the stable region of wurtzite-type boron nitride can be maintained for 10 minutes or more, and the ultimate temperature is 1700 ° C. Any path may be used as long as it can have a temperature of 2500 ° C. or lower and an ultimate pressure of 8 GPa or higher. For example, heating and pressurization may be performed at the same time.
  • a boron nitride polycrystal can be obtained by performing the second step on the hexagonal boron nitride powder.
  • the boron nitride polycrystal obtained by the second step has a temperature of 1700 ° C. or higher and 2500 ° C. or lower (hereinafter, also referred to as “final sintering temperature”) and a pressure of 8 GPa or higher. (Hereinafter, also referred to as "final sintering pressure”.)
  • final sintering temperature 1700 ° C. or higher and 2500 ° C. or lower
  • final sintering pressure a pressure of 8 GPa or higher.
  • the step of holding for 3 minutes or more and 60 minutes or less under the conditions is performed.
  • the obtained cubic boron nitride polycrystal has a large content of cubic boron nitride, and a longer tool life can be achieved.
  • the final sintering temperature is preferably 1900 ° C or higher and 2400 ° C or lower.
  • the final sintering pressure is preferably 8 GPa or more and 15 GPa or less, and more preferably 10 GPa or more and 15 GPa or less.
  • the holding time in the third step is preferably 10 minutes or more and 20 minutes or less.
  • the temperature is raised to 1700 ° C. or higher and 2500 ° C. or lower (about 2000 ° C. in FIG. 2) (arrow A3), and the temperature (about 2000 ° C.) and the pressure (about 2000 ° C.) are raised.
  • the second step is indicated by arrows A1, A2 and A3, and a1, and the third step is indicated by a2.
  • the entry temperature of wurtzite-type boron nitride into the stable region is 500 ° C or less (about 250 ° C).
  • hexagonal boron nitride powder is converted to wurtzite-type boron nitride in an environment where atomic diffusion is unlikely to occur, and then converted to cubic boron nitride. Therefore, the obtained cubic boron nitride polycrystal has a relatively large number of lattice defects in the polycrystal, and the dislocation density of the cubic boron nitride is large and the strain is large, so that the strength is improved. There is. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the temperature and pressure in the stable region of wurtzite-type boron nitride are maintained for 10 minutes or more.
  • the retention time of wurtzite-type boron nitride in the stable region is long, the conversion rate from hexagonal boron nitride to wurtzite-type boron nitride is improved, and as a result, the conversion rate to cubic boron nitride is also improved. improves. Therefore, in the obtained cubic boron nitride polycrystal, the content of cubic boron nitride increases, and defects are unlikely to occur during processing. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the boron nitride polycrystal obtained in the second step is held for 3 minutes or more and 60 minutes or less under a temperature of 1700 ° C. or higher and 2500 ° C. or lower and a pressure condition of 8 GPa or higher.
  • the obtained cubic boron nitride polycrystal has a large content of cubic boron nitride and can have a longer tool life.
  • Equation 1 P ⁇ -0.0037T + 11.301 Equation 2: P ⁇ -0.085T + 117 Equation 3: P ⁇ -0.0037T + 11.375
  • the pressure is increased within the stable region of wurtzite-type boron nitride (about 13 GPa in FIG. 3) (arrow B3).
  • the temperature was raised to 1700 ° C. or higher and 2500 ° C. or lower (about 2000 ° C. in FIG. 3) (arrow B4), and the temperature (about 2000 ° C.) and the pressure (about 2000 ° C.) At about 13 GPa), hold for 3 minutes or more and 60 minutes or less (b2 in FIG. 3).
  • the second step is indicated by arrows B1, B2, B3 and B4, and b1, and the third step is indicated by b2.
  • the entry temperature of wurtzite-type boron nitride into the stable region is 500 ° C or less (about 250 ° C).
  • hexagonal boron nitride powder is converted to wurtzite-type boron nitride in an environment where atomic diffusion is unlikely to occur, and then converted to cubic boron nitride. Therefore, the obtained cubic boron nitride polycrystal has a relatively large number of lattice defects in the polycrystal, and the dislocation density of the cubic boron nitride is large and the strain is large, so that the strength is improved. There is. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the route of FIG. 3 includes a step of holding for 10 minutes or more at a temperature and pressure in a region that simultaneously satisfies the above formula 1, the above formula 2, and the above formula 3. That is, the path of FIG. 3 has a temperature and pressure closer to the stable region of hexagonal boron nitride within the stable region of wurtzite-type boron nitride (that is, stability of wurtzite-type boron nitride) as compared with the route of FIG. It is held for 10 minutes or more at the temperature and pressure near the boundary between the region and the stable region of hexagonal boron nitride. For this reason, lattice defects are more likely to occur than in the path of FIG.
  • the cubic boron nitride polycrystal obtained in the path of FIG. 3 becomes the cubic boron nitride polycrystal obtained in the path of FIG.
  • the polycrystal has more lattice defects and the strain is large, so that the strength is considered to be further improved. Therefore, the tool using the cubic boron nitride polycrystal obtained by the route of FIG. 3 can have a longer tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the boron nitride polycrystal obtained in the second step is held for 3 minutes or more and 60 minutes or less under a temperature of 1700 ° C. or higher and 2500 ° C. or lower and a pressure condition of 8 GPa or higher.
  • the obtained cubic boron nitride polycrystal has a large content of cubic boron nitride and can have a longer tool life.
  • Equation 1 P ⁇ -0.0037T + 11.301 Equation 2: P ⁇ -0.085T + 117 Equation 3: P ⁇ -0.0037T + 11.375
  • the pressure is increased within the stable region of the wurtzite-type boron nitride (about 13 GPa in FIG. 4) (arrow C3), and the temperature (about 250 ° C.) and the pressure (about 250 ° C.) are increased. Hold at about 13 GPa) (temperature and pressure shown in c2 of FIG. 4) for at least 1 minute. That is, in the path of FIG. 4, after the step of holding the formula 1, the formula 2 and the formula 3 at the same temperature and pressure for 10 minutes or more, the temperature and the temperature in the region satisfying the formula 2 and the formula 4 below are further satisfied. Includes a step of holding at pressure for 1 minute or longer.
  • Equation 2 P ⁇ -0.085T + 117 Equation 4: P> -0.0037T + 11.375
  • the temperature was raised to 1700 ° C. or higher and 2500 ° C. or lower (about 2000 ° C. in FIG. 4) (arrow C4), and the temperature (about 2000 ° C.) and the pressure. At (about 13 GPa), hold for 3 minutes or more and 60 minutes or less (c3 in FIG. 4).
  • the second step is indicated by arrows C1, C2, C3 and C4, and c1 and c2, and the third step is indicated by c3.
  • the entry temperature of wurtzite-type boron nitride into the stable region is 500 ° C. or less (about 250 ° C.).
  • hexagonal boron nitride powder is converted to wurtzite-type boron nitride in an environment where atomic diffusion is unlikely to occur, and then converted to cubic boron nitride. Therefore, the obtained cubic boron nitride polycrystal has a relatively large number of lattice defects in the polycrystal, and the dislocation density of the cubic boron nitride is large and the strain is large, so that the strength is improved. There is. Therefore, a tool using the cubic boron nitride polycrystal can have a long tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the route of FIG. 4 includes a step of holding for 10 minutes or more at a temperature and pressure in a region that simultaneously satisfies the above formula 1, the above formula 2 and the above formula 3. That is, the path of FIG. 4 has a temperature and pressure closer to the stable region of hexagonal boron nitride within the stable region of wurtzite-type boron nitride (that is, stability of wurtzite-type boron nitride) as compared with the route of FIG. It is held for 10 minutes or more at the temperature and pressure near the boundary between the region and the stable region of hexagonal boron nitride. Therefore, lattice defects are more likely to occur in the route of FIG. 4 than in the route of FIG.
  • the cubic boron nitride polycrystal obtained in the route of FIG. 4 is a cubic crystal obtained in the route of FIG.
  • the polycrystal has many lattice defects and the strain is large, so that the strength is considered to be further improved. Therefore, the tool using the cubic boron nitride polycrystal obtained by the route of FIG. 4 can have a longer tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the pressure is further increased in the stable region of wurtzite-type boron nitride. (Approximately 13 GPa in FIG. 4) (arrow C3), the temperature (approximately 250 ° C.) and the pressure (approximately 13 GPa) are held for 1 minute or longer (c2 in FIG. 4). That is, in the path of FIG. 4, after the step of holding the formula 1, the formula 2 and the formula 3 at the same temperature and pressure for 10 minutes or more, the temperature and the temperature in the region satisfying the formula 2 and the formula 4 below are further satisfied. Includes a step of holding at pressure for 1 minute or longer.
  • Equation 2 P ⁇ -0.085T + 117 Equation 4: P> -0.0037T + 11.375
  • the conversion rate from hexagonal boron nitride to wurtzite-type boron nitride is further improved as compared with the route in FIG. 3, and as a result, the conversion rate to cubic boron nitride is also further improved. Therefore, the cubic boron nitride polycrystal obtained by the route of FIG. 4 has an increased content of cubic boron nitride as compared with the cubic boron nitride polycrystal obtained by the route of FIG. Defects are unlikely to occur during processing. Therefore, a tool using the cubic boron nitride polycrystal can have a longer tool life even in high-load machining of iron-based materials and difficult-to-cut materials.
  • the boron nitride polycrystal obtained in the second step is held for 3 minutes or more and 60 minutes or less under a temperature of 1700 ° C. or higher and 2500 ° C. or lower and a pressure condition of 8 GPa or higher.
  • the obtained cubic boron nitride polycrystal has a large content of cubic boron nitride, and a longer tool life can be achieved.
  • Example 1 In Example 1, the production conditions of the cubic boron nitride polycrystal, the composition of the obtained cubic boron nitride polycrystal (composition, median diameter of crystal grains, dislocation density), and the cubic boron nitride polycrystal. We investigated the relationship with the tool life when high-load machining of difficult-to-cut materials was performed with a tool using.
  • the cubic boron nitride polycrystal obtained above was cut by a laser and finished to prepare a cutting tool having an insert model number NU-CNGA120408 (manufactured by Sumitomo Electric Hardmetal Corp.).
  • a cutting tool having an insert model number NU-CNGA120408 (manufactured by Sumitomo Electric Hardmetal Corp.).
  • intermittent cutting of a Ti6Al4V round bar ( ⁇ 200 mm, with one V-shaped slit) was performed under the following cutting conditions, and the tool life was evaluated.
  • the Ti6Al4V round bar which is the work material, is a difficult-to-cut material.
  • the tool life was measured by cutting under the above-mentioned cutting conditions and measuring the machining time until the tool defect amount observed from the flank surface became 100 ⁇ m or more. The longer the machining time, the better the fracture resistance and the longer the tool life. The results are shown in the "Tool Life” column of Table 1.
  • Sample 1-1 to Sample 1-3 The methods for producing Samples 1-1 to 1-3 all correspond to Examples.
  • the cubic boron nitride polycrystals of Samples 1-1 to 1-3 all contain 98.5% by volume or more of cubic boron nitride, and the dislocation density of cubic boron nitride is 8 ⁇ 10 15 / m 2 . It is large and the median diameter d50 of the crystal grains is 0.1 ⁇ m or more and 0.5 ⁇ m or less, which corresponds to the example. It was confirmed that the tools using the cubic boron nitride polycrystals of Samples 1-1 to 1-3 have a long tool life even in high-load machining of difficult-to-cut materials.
  • Sample 1-1 and Sample 1-3 were longer than Sample 1-2. This is because the temperature and pressure reached in the first stage of Sample 1-1 and Sample 1-3 are the temperatures and pressures that simultaneously satisfy the above formulas 1, 2 and 3, and at the temperature and the pressure. It is considered that because the step of holding the sample for 10 minutes or more is included, lattice defects are more likely to occur and the strength is higher than that of the sample 1-2 not including the step.
  • Sample 1-1 was longer than Sample 1-3. This is because sample 1-1 has a longer retention time at the ultimate temperature and ultimate pressure (that is, within the stable region of wurtzite-type boron nitride) in the second stage than sample 1-3, and thus hexagonal crystals. It is considered that the conversion rate of boron nitride to wurtzite-type boron nitride is further improved, and as a result, the conversion rate to cubic boron nitride is higher than that of Sample 1-3, and the content of cubic boron nitride is large.
  • Sample 2-1 to Sample 2-3 The methods for producing Samples 2-1 to 2-3 all correspond to Examples.
  • Samples 2-1 and 2-3 were longer than Samples 2-2. This is because the temperature and pressure reached in the second stage of Samples 2-1 and 2-3 are the temperatures and pressures that simultaneously satisfy the above formulas 1, 2 and 3, and at the temperature and the pressure. It is considered that because the step of holding the sample for 10 minutes or more is included, lattice defects are more likely to occur and the strength is higher than that of the sample 2-2 not including the step.
  • Sample 2-1 was longer than Sample 2-3. This is because sample 2-1 has a longer retention time at the ultimate temperature and pressure (that is, within the stable region of wurtzite-type boron nitride) in the third stage than sample 2-3, and thus hexagonal nitridation. It is considered that the conversion rate from boron to wurtzite-type boron nitride is further improved, and as a result, the conversion rate to cubic boron nitride is higher than that of Sample 2-3, and the content of cubic boron nitride is large.
  • Sample 3-1 to Sample 3-3 All of the methods for producing Samples 3-1 to 3-3 correspond to Examples.
  • the cubic boron nitride polycrystals of Samples 3-1 to 3-3 all contain 98.5% by volume or more of cubic boron nitride, and the dislocation density of cubic boron nitride is 8 ⁇ 10 15 / m 2 . It is large and the median diameter d50 of the crystal grains is 0.1 ⁇ m or more and 0.5 ⁇ m or less, which corresponds to the example. It was confirmed that the tools using the cubic boron nitride polycrystals of Samples 3-1 to 3-3 have a long tool life even in high-load machining of difficult-to-cut materials.
  • Samples 3-1 and 3-3 were longer than Samples 3-2. This is because the temperature and pressure reached in the second stage of Sample 3-1 and Sample 3-3 are the temperatures and pressures that simultaneously satisfy the above formulas 1, 2 and 3, and at the temperature and the pressure. It is considered that because the step of holding the sample for 10 minutes or more is included, lattice defects are more likely to occur and the strength is higher than that of the sample 3-2 not including the step.
  • Sample 3-1 was longer than Sample 3-3. This is because sample 3-1 has a longer retention time at the ultimate temperature and ultimate pressure (that is, within the stable region of wurtzite-type boron nitride) in the third stage than sample 3-3. It is considered that the conversion rate of boron nitride to wurtzite-type boron nitride is further improved, and as a result, the conversion rate to cubic boron nitride is higher than that of Sample 3-3, and the content of cubic boron nitride is large.
  • Sample 4 Both the methods for producing Sample 4 and Sample 7 correspond to Examples.
  • the cubic boron nitride polycrystals of Sample 4 and Sample 7 both contain 98.5% by volume or more of cubic boron nitride, and the dislocation density of cubic boron nitride is larger than 8 ⁇ 10 15 / m 2 and are crystal grains.
  • the median diameter d50 of No. 1 is 0.1 ⁇ m or more and 0.5 ⁇ m or less, which corresponds to the example. It was confirmed that the tools using the cubic boron nitride polycrystals of Samples 4 and 7 have a long tool life even in high-load machining of difficult-to-cut materials.
  • sample 4 Comparing the tool life of sample 4 and sample 7, sample 4 was longer. It is considered that this is because the sample 4 has a higher pressure in the third step than the sample 7 and has a large content of cubic boron nitride.
  • Example 5 In both the methods for producing Sample 5 and Sample 6, the temperature at which wurtzite-type boron nitride enters the stable region exceeds 500 ° C., which corresponds to a comparative example.
  • the cubic boron nitride polycrystals of Sample 5 and Sample 6 both have a dislocation density of 8 ⁇ 10 15 / m 2 or less of cubic boron nitride, and correspond to a comparative example.
  • the tools using the cubic boron nitride polycrystals of Sample 5 and Sample 6 had a short tool life.
  • sample 8 The method for producing sample 8 does not include a step of holding the wurtzite-type boron nitride at a temperature and pressure in the stable region for 10 minutes or more, and corresponds to a comparative example.
  • the cubic boron nitride polycrystal of Sample 8 has a content of 98.3% by volume of cubic boron nitride, which corresponds to a comparative example.
  • the tool using the cubic boron nitride polycrystal of Sample 8 had a short tool life.
  • the method for producing sample 8 does not include a step of holding the wurtzite-type boron nitride at a temperature and pressure within the stable region for 10 minutes or more, so that the conversion rate from hexagonal boron nitride to wurtzite-type boron nitride is low. As a result, the conversion rate to cubic boron nitride is also low, and it is considered that the content of the obtained cubic boron nitride polycrystal is small.
  • sample 9 The method for producing sample 9 does not include a step of holding the wurtzite-type boron nitride at a temperature and pressure in the stable region for 10 minutes or more, and corresponds to a comparative example.
  • the cubic boron nitride polycrystal of Sample 9 has a content of 98.2% by volume of cubic boron nitride, which corresponds to a comparative example.
  • the tool using the cubic boron nitride polycrystal of Sample 9 had a short tool life.
  • the method for producing sample 9 does not include a step of holding the wurtzite-type boron nitride at a temperature and pressure within the stable region for 10 minutes or more, so that the conversion rate from hexagonal boron nitride to wurtzite-type boron nitride is low. As a result, the conversion rate to cubic boron nitride is also low, and it is considered that the content of cubic boron nitride is small in the obtained cubic boron nitride polycrystal.
  • Example 2 In Example 2, the production conditions of the cubic boron nitride polycrystal, the composition of the obtained cubic boron nitride polycrystal (composition, median diameter of crystal grains, dislocation density), and the cubic boron nitride polycrystal. We investigated the relationship with the tool life when high-load machining of iron-based materials was performed with a tool using.
  • the tool life was measured by cutting under the above-mentioned cutting conditions and measuring the machining time until the tool defect amount observed from the flank surface became 250 ⁇ m or more. The longer the machining time, the better the fracture resistance and the longer the tool life. The results are shown in the "Tool Life” column of Table 2.
  • the method for producing the sample 10 has a holding time of less than 3 minutes (2 minutes) in the third step (third step), and corresponds to a comparative example.
  • the cubic boron nitride polycrystal of Sample 10 has a grain size d50 of less than 0.1 ⁇ m (0.08 ⁇ m), which corresponds to a comparative example.
  • the tool using the cubic boron nitride polycrystal of Sample 10 had a short tool life. It is considered that this is because, in the sample 10, the holding time in the third step was short, so that the grain growth was insufficient and the median diameter d50 of the crystal grains became small.
  • Sample 11 and Sample 12 Both the methods for producing Sample 11 and Sample 12 correspond to Examples.
  • the cubic boron nitride polycrystals of Sample 11 and Sample 12 both contain 98.5% by volume or more of cubic boron nitride, and the dislocation density of cubic boron nitride is larger than 8 ⁇ 10 15 / m 2 and are crystal grains.
  • the median diameter d50 of No. 1 is 0.1 ⁇ m or more and 0.5 ⁇ m or less, which corresponds to the example. It was confirmed that the tools using the cubic boron nitride polycrystals of Samples 11 and 12 have a long tool life even in high-load machining of iron-based materials.
  • the method for producing the sample 13 has a holding time of more than 60 minutes (70 minutes) in the third step (third step), which corresponds to a comparative example.
  • the cubic boron nitride polycrystal of Sample 13 has a grain size d50 of more than 0.5 ⁇ m (0.59 ⁇ m), which corresponds to a comparative example.
  • the tool using the cubic boron nitride polycrystal of Sample 13 had a short tool life. It is considered that this is because, in the sample 13, since the holding time in the third step was long, the grain growth proceeded excessively and the median diameter d50 of the crystal grains became large.
  • the temperature in the third step is less than 1700 ° C. (1650 ° C.), which corresponds to a comparative example.
  • the cubic boron nitride polycrystal of Sample 14 has a grain size d50 of less than 0.1 ⁇ m (0.09 ⁇ m), which corresponds to a comparative example.
  • the tool using the cubic boron nitride polycrystal of Sample 14 had a short tool life. It is considered that this is because, in the sample 14, the temperature in the third step was low, so that the grain growth was insufficient and the median diameter d50 of the crystal grains became small.
  • the method for producing the sample 15 has a temperature of more than 2500 ° C. (2550 ° C.) in the third step (third step), which corresponds to a comparative example.
  • the cubic boron nitride polycrystal of Sample 15 has a grain size d50 of more than 0.5 ⁇ m (0.60 ⁇ m), which corresponds to a comparative example.
  • the tool using the cubic boron nitride polycrystal of Sample 15 had a short tool life. It is considered that this is because, in the sample 15, the temperature of the third step was high, so that the grain growth proceeded excessively and the median diameter d50 of the crystal grains became large.
  • Example 16 In the method for producing the sample 16, the temperature at which the wurtzite-type boron nitride enters the stable region exceeds 500 ° C. (1000 ° C.), which corresponds to a comparative example.
  • the cubic boron nitride polycrystal of Sample 16 has a dislocation density of 8 ⁇ 10 15 / m 2 or less (6.6 ⁇ 10 15 / m 2 ), which corresponds to a comparative example.
  • the tool using the cubic boron nitride polycrystal of Sample 16 had a short tool life.
  • Example 3 In Example 3, the content of alkali metal elements and alkaline earth metals in the cubic boron nitride polycrystal and the ultra-high speed and high load machining of difficult-to-cut materials with a tool using the cubic boron nitride polycrystal. The relationship with the tool life when this was done was investigated.
  • Example 19 A commercially available cubic boron nitride powder (average particle size 4 ⁇ m) was heat-treated at 1900 ° C. for 1 hour under an argon atmosphere. As a result, cubic boron nitride was converted to hexagonal boron nitride, and hexagonal boron nitride powder was obtained. The obtained hexagonal boron nitride powder was placed in a molybdenum capsule and installed in an ultra-high pressure and high temperature generator.
  • the cubic boron nitride polycrystal obtained above was cut by a laser and finished to prepare a cutting tool having an insert model number NU-CNGA120408 (manufactured by Sumitomo Electric Hardmetal Corp.).
  • a cutting tool having an insert model number NU-CNGA120408 (manufactured by Sumitomo Electric Hardmetal Corp.).
  • intermittent cutting of a Ti6Al4V round bar ( ⁇ 200 mm, with one V-shaped slit) was performed under the following cutting conditions, and the tool life was evaluated.
  • the Ti6Al4V round bar which is the work material, is a difficult-to-cut material.
  • the tool life was measured by cutting under the above-mentioned cutting conditions and measuring the machining time until the tool defect amount observed from the flank surface became 100 ⁇ m or more. The longer the machining time, the better the fracture resistance and the longer the tool life. The results are shown in the "Tool Life" column of Table 3.
  • Sample 17 to 19 The methods for producing Samples 17 to 19 all correspond to Examples.
  • the median diameter d50 of No. 1 is 0.1 ⁇ m or more and 0.5 ⁇ m or less, which corresponds to the example.
  • Samples 17 and 18 had a longer tool life than sample 19. This is because the cubic boron nitride polycrystals of Samples 17 and 18 have a total content of alkali metal elements and alkaline earth metal elements of 10 ppm or less, and the interface between the tool cutting edge and the work material in a cutting environment. It is considered that the conversion from cubic boron nitride to hexagonal boron nitride is unlikely to occur even when the temperature and pressure are high.
  • composition, the total content of the alkali metal element and the alkaline earth metal element, the median diameter d50 of the crystal grains, and the dislocation density of cubic boron nitride were different between Sample 17 and Sample 18. This is considered to be due to variations in the amount of impurities and particle size of the raw material hexagonal boron nitride.
  • Example 4 In Example 4, the content of compression hexagonal boron nitride and wurtzite boron nitride in the cubic boron nitride polycrystal and the high load of the difficult-to-cut material with a tool using the cubic boron nitride polycrystal. The relationship with the tool life when machining was performed was investigated.
  • the cubic boron nitride polycrystal obtained above was cut by a laser and finished to prepare a cutting tool having an insert model number NU-CNGA120408 (manufactured by Sumitomo Electric Hardmetal Corp.).
  • a cutting tool having an insert model number NU-CNGA120408 (manufactured by Sumitomo Electric Hardmetal Corp.).
  • intermittent cutting of a Ti6Al4V round bar ( ⁇ 200 mm, with one V-shaped slit) was performed under the following cutting conditions, and the tool life was evaluated.
  • the Ti6Al4V round bar which is the work material, is a difficult-to-cut material.
  • the tool life was measured by cutting under the above-mentioned cutting conditions and measuring the machining time until the tool defect amount observed from the flank surface became 100 ⁇ m or more. The longer the machining time, the better the fracture resistance and the longer the tool life. The results are shown in the "Tool Life" column of Table 4.
  • Sample 20 to 22 The methods for producing Samples 20 to 22 all correspond to Examples.
  • the median diameter d50 of No. 1 is 0.1 ⁇ m or more and 0.5 ⁇ m or less, which corresponds to the example.
  • Sample 20 and Sample 21 had a longer tool life than Sample 22. It is considered that this is because the cubic boron nitride polycrystals of Sample 20 and Sample 21 contain compression hexagonal boron nitride and / or wurtzite boron nitride, and the adhesion resistance and slidability are improved.
  • the method for producing sample 23 does not include a step of holding the wurtzite-type boron nitride at a temperature and pressure in the stable region for 10 minutes or more, and corresponds to a comparative example.
  • the cubic boron nitride polycrystal of Sample 23 has a cubic boron nitride content of 98.2% by volume, which corresponds to a comparative example.
  • the tool using the cubic boron nitride polycrystal of Sample 23 had a short tool life.
  • the method for producing sample 23 does not include a step of holding the wurtzite-type boron nitride at a temperature and pressure within the stable region for 10 minutes or more, so that the conversion rate from hexagonal boron nitride to wurtzite-type boron nitride is low. As a result, the conversion rate to cubic boron nitride is also low, and it is considered that the content of the obtained cubic boron nitride polycrystal is small.
  • Example 5 In Example 5, the area ratio of the plate-like particles in the cubic boron nitride polycrystal and the tool life when high-load machining of an iron-based material is performed with a tool using the cubic boron nitride polycrystal. I investigated the relationship between.
  • the tool life was measured by cutting under the above cutting conditions and measuring the machining time until the amount of tool defect observed from the flank surface became 250 ⁇ m or more. The longer the machining time, the better the fracture resistance and the longer the tool life. The results are shown in the "Tool Life” column of Table 5.
  • Sample 24-Sample 28 The methods for producing Samples 24 to 28 all correspond to Examples.
  • the median diameter d50 of No. 1 is 0.1 ⁇ m or more and 0.5 ⁇ m or less, which corresponds to the example. It was confirmed that the tools using the cubic boron nitride polycrystals of Samples 24 to 28 have a long tool life even in high-load machining of iron-based materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、前記立方晶窒化硼素の転位密度は8×1015/mより大きく、前記立方晶窒化硼素多結晶体は、複数の結晶粒を含み、前記複数の結晶粒の円相当径のメジアン径d50は0.1μm以上0.5μm以下である。

Description

立方晶窒化硼素多結晶体及びその製造方法
 本開示は、立方晶窒化硼素多結晶体及びその製造方法に関する。本出願は、2019年2月28日に出願した日本特許出願である特願2019-036261号に基づく優先権、及び、2020年1月17日に出願した国際出願であるPCT/JP2020/001436に基づく優先権を主張する。当該日本特許出願及び国際出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 立方晶窒化硼素(以下、「cBN」とも記す。)はダイヤモンドに次ぐ硬度を有し、熱的安定性及び化学的安定性にも優れる。このため、立方晶窒化硼素焼結体は工具の材料として用いられてきた。
 立方晶窒化硼素焼結体としては、バインダーを10~40体積%程度含むものが用いられていた。しかし、バインダーは焼結体の強度、熱拡散性を低下させる原因となっていた。
 この問題を解決するために、バインダーを用いずに、六方晶窒化硼素を超高圧高温下で立方晶窒化硼素へ直接変換させると同時に焼結させることにより、バインダーを含まない立方晶窒化硼素焼結体を得る方法が開発されている。
 特開平11-246271号公報(特許文献1)には、低結晶性の六方晶窒化硼素を超高温高圧下で立方晶窒化硼素焼結体に直接変換させ、かつ焼結させて、立方晶窒化硼素焼結体を得る技術が開示されている。
特開平11-246271号公報
 本開示の立方晶窒化硼素多結晶体は、
 立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、
 前記立方晶窒化硼素の転位密度は8×1015/mより大きく、
 前記立方晶窒化硼素多結晶体は、複数の結晶粒を含み、
 前記複数の結晶粒の円相当径のメジアン径d50は0.1μm以上0.5μm以下である、立方晶窒化硼素多結晶体である。
 本開示の立方晶窒化硼素多結晶体の製造方法は、
 上記に記載の立方晶窒化硼素多結晶体の製造方法であって、
 六方晶窒化硼素粉末を準備する第1工程と、
 前記六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1700℃以上2500℃以下の温度、及び、8GPa以上の圧力まで加熱加圧して窒化硼素多結晶体を得る第2工程と、
 前記第2工程により得られた窒化硼素多結晶体を、1700℃以上2500℃以下の温度、及び、8GPa以上の圧力条件下で3分以上60分以下保持して立方晶窒化硼素多結晶体を得る第3工程とを備え、
 前記ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
 式1:P≧-0.0037T+11.301
 式2:P≦-0.085T+117
 前記第2工程の加熱加圧経路において、前記ウルツ鉱型窒化硼素の安定領域への突入温度は500℃以下であり、
 前記第2工程は、その加熱加圧経路における温度及び圧力を、前記ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する工程を含む、立方晶窒化硼素多結晶体の製造方法である。
図1は、窒化硼素の圧力-温度相図である。 図2は、本開示の立方晶窒化硼素多結晶体の製造方法の一例を説明するための図である。 図3は、本開示の立方晶窒化硼素多結晶体の製造方法の他の一例を説明するための図である。 図4は、本開示の立方晶窒化硼素多結晶体の製造方法の他の一例を説明するための図である。 図5は、立方晶窒化硼素多結晶体の製造方法の従来例を説明するための図である。 図6は、結晶粒のアスペクト比を説明するための図である。
 [本開示が解決しようとする課題]
 近年、鉄系材料に加えて、航空機の部品として使用されるTi合金等の難削材の加工が増加している。一般的に、難削材に対して高負荷加工を行った場合、刃先の欠損が生じて、工具寿命が短くなる傾向がある。従って、鉄系材料や、難削材の高負荷加工においても、優れた工具寿命を示すことのできる工具が求められている。
 そこで、本目的は、工具として用いた場合に、特に、鉄系材料や難削材の高負荷加工においても、長い工具寿命を有することのできる立方晶窒化硼素多結晶体を提供することを目的とする。
 [本開示の効果]
 本開示によれば、立方晶窒化硼素多結晶体は、工具として用いた場合に、特に、鉄系材料や難削材の高負荷加工においても、長い工具寿命を有することができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、
 前記立方晶窒化硼素の転位密度は8×1015/mより大きく、
 前記立方晶窒化硼素多結晶体は、複数の結晶粒を含み、
 前記複数の結晶粒の円相当径のメジアン径d50は0.1μm以上0.5μm以下である、立方晶窒化硼素多結晶体である。
 本開示によれば、立方晶窒化硼素多結晶体は、工具として用いた場合に、特に鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 (2)前記転位密度は9×1015/m以上であることが好ましい。これによると、工具の耐欠損性が向上する。
 (3)前記立方晶窒化硼素多結晶体のアルカリ金属元素及びアルカリ土類金属元素の合計含有量は、質量基準で10ppm以下であることが好ましい。
 これによると、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の超高速高負荷加工においても、優れた工具寿命を有することができる。
 (4)前記立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、アスペクト比が4以上の板状粒子の面積比率は30面積%以下であることが好ましい。該立方晶窒化硼素多結晶体を用いた工具は、優れた工具寿命を有することができる。
 (5)前記アスペクト比が4以上の板状粒子の面積比率は5面積%以下であることが好ましい。該立方晶窒化硼素多結晶体を用いた工具は、更に優れた工具寿命を有することができる。
 (6)前記立方晶窒化硼素多結晶体は、圧縮型六方晶窒化硼素を0.01体積%以上含むことが好ましい。該立方晶窒化硼素多結晶体を用いた工具は、優れた工具寿命を有することができる。
 (7)前記立方晶窒化硼素多結晶体は、ウルツ鉱型窒化硼素を0.1体積%以上含むことが好ましい。該立方晶窒化硼素多結晶体を用いた工具は、優れた工具寿命を有することができる。
 (8)前記転位密度は、修正Williamson-Hall法及び修正Warren-Averbach法を用いて算出されることが好ましい。該転位密度は立方晶窒化硼素多結晶体の性能との相関が良好である。
 (9)前記転位密度は、放射光をX線源として測定されることが好ましい。該転位密度は立方晶窒化硼素多結晶体の性能との相関が良好である。
 (10)本開示の立方晶窒化硼素多結晶体の製造方法は、上記の立方晶窒化硼素多結晶体の製造方法であって、
 六方晶窒化硼素粉末を準備する第1工程と、
 前記六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1700℃以上2500℃以下の温度、及び、8GPa以上の圧力まで加熱加圧して窒化硼素多結晶体を得る第2工程と、
 前記第2工程により得られた窒化硼素多結晶体を、1700℃以上2500℃以下の温度、及び、8GPa以上の圧力条件下で3分以上60分以下保持して立方晶窒化硼素多結晶体を得る第3工程とを備え、
 前記ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
 式1:P≧-0.0037T+11.301
 式2:P≦-0.085T+117
 前記第2工程の加熱加圧経路において、前記ウルツ鉱型窒化硼素の安定領域への突入温度は500℃以下であり、
 前記第2工程は、その加熱加圧経路における温度及び圧力を、前記ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する工程を含む。
 この製造方法で得られた立方晶窒化硼素多結晶体は、工具として用いた場合に、特に鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 (11)前記突入温度は300℃以下であることが好ましい。これによると、得られた立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
 (12)前記第2工程は、その加熱加圧経路における温度及び圧力を、前記ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で15分以上保持する工程を含むことが好ましい。これによると、得られた立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
 (13)前記第2工程は、その加熱加圧経路における温度及び圧力を、温度をT℃、圧力をPGPaとした時に、下記式1、下記式2及び下記式3を同時に満たす領域内の温度及び圧力で10分以上保持する工程を含むことが好ましい。
 式1:P≧-0.0037T+11.301
 式2:P≦-0.085T+117
 式3:P≦-0.0037T+11.375
 これによると、得られた立方晶窒化硼素多結晶体を用いた工具の寿命が更に向上する。
 [本開示の実施形態の詳細]
 本開示の立方晶窒化硼素多結晶体及びその製造方法を、以下に図面を参照しつつ説明する。
 [実施の形態1:立方晶窒化硼素多結晶体]
 本開示の一実施の形態に係る立方晶窒化硼素多結晶体について説明する。
 <立方晶窒化硼素多結晶体>
 本開示の立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、該立方晶窒化硼素の転位密度は8×1015/mより大きく、該立方晶窒化硼素多結晶体は、複数の結晶粒を含み、該複数の結晶粒の円相当径のメジアン径d50は0.1μm以上0.5μm以下である。
 本開示の立方晶窒化硼素多結晶体は焼結体であるが、通常焼結体とはバインダーを含むことを意図する場合が多いため、本開示では「多結晶体」という用語を用いている。
 本開示の立方晶窒化硼素多結晶体は、工具として用いた場合、特に鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。この理由は明らかではないが、下記の(i)~(iii)の通りと推察される。
 (i)本開示の立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含み、実質的にバインダー、焼結助剤、触媒等を含まない。このため、立方晶窒化硼素同士が強固に結合しており、立方晶窒化硼素多結晶体の強度及び熱拡散性が向上している。従って、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 (ii)本開示の立方晶窒化硼素多結晶体において、立方晶窒化硼素の転位密度は8×1015/mより大きい。該立方晶窒化硼素多結晶体は、多結晶体中に比較的多くの格子欠陥を有し、歪みが大きいため、強度が向上している。従って、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 (iii)本開示の立方晶窒化硼素多結晶体は、これに含まれる複数の結晶粒の円相当径のメジアン径d50(以下、「粒径」とも記す。)が0.1μm以上0.5μm以下である。従来、立方晶窒化硼素多結晶体は、結晶粒の粒径が小さいほど強度が大きくなるため、切削性能が向上すると考えられていた。このため、立方晶窒化硼素多結晶体を構成する結晶粒の粒径を小さくしていた(例えば、平均粒径100nm未満)が、これにより靱性が低下する傾向があった。一方、本開示の立方晶窒化硼素多結晶体は、上記(ii)に記載の通り、立方晶窒化硼素の転位密度を大きくすることにより強度を確保しているため、粒径を従来よりも大きくすることができる。このため、本開示の立方晶窒化硼素多結晶体は、靱性が向上し、優れた耐亀裂伝搬性を有することができる。従って、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 なお、上記では本開示の立方晶窒化硼素多結晶体は、鉄系材料や、難削材の高負荷加工において長い工具寿命を有することを説明したが、被削材及び加工方法はこれらに限定されない。被削材としては、Ti6Al4V等のTi合金や、コバルト-クロム合金等が挙げられる。加工方法としては、旋削加工やフライス加工等が挙げられる。
 <組成>
 本開示の立方晶窒化硼素多結晶体は、立方晶窒化硼素を98.5体積%以上含む。これにより、立方晶窒化硼素多結晶体は、優れた硬度を有し、熱的安定性及び化学的安定性にも優れる。
 立方晶窒化硼素多結晶体は、本開示の効果を示す範囲において、立方晶窒化硼素に加えて、圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素の一方又は両方を合計で1.5体積%以下含んでいても構わない。ここで、「圧縮型六方晶窒化硼素」とは、通常の六方晶窒化硼素と結晶構造が類似し、c軸方向の面間隔が通常の六方晶窒化硼素の面間隔(0.333nm)よりも小さいものを示す。
 立方晶窒化硼素多結晶体は、本開示の効果を示す範囲において不可避不純物を含んでいても構わない。不可避不純物としては、例えば、水素、酸素、炭素、アルカリ金属元素(本明細書において、アルカリ金属元素は、リチウム(Li)、ナトリウム(Na)、カリウム(K)を含む。)及びアルカリ土類金属元素(本明細書において、アルカリ土類金属元素は、カルシウム(Ca)、マグネシウム(Mg)、ストロンチウム(Sr)、バリウム(Ba)を含む。)、ケイ素(Si)、アルミニウム(Al)等を挙げることができる。立方晶窒化硼素多結晶体が不可避不純物を含む場合は、不可避不純物の含有量は0.1質量%以下であることが好ましい。不可避不純物の含有量は、二次イオン質量分析(SIMS)により測定することができる。
 立方晶窒化硼素多結晶体のアルカリ金属元素(リチウム(Li)、ナトリウム(Na)、カリウム(K))及びアルカリ土類金属元素(カルシウム(Ca)、マグネシウム(Mg)、ストロンチウム(Sr)、バリウム(Ba))の合計含有量は10ppm以下であることが好ましい。上記の不可避不純物の中で、アルカリ金属元素及びアルカリ土類金属元素は、六方晶窒化硼素と立方晶窒化硼素との間の相変換に対する触媒作用を有する。立方晶窒化硼素多結晶体のアルカリ金属元素及びアルカリ土類金属元素の合計含有量が10ppm以下であると、該立方晶窒化硼素多結晶体を用いた工具は、切削環境下で刃先と被削材との界面が高温高圧にさらされた場合であっても、工具を構成する立方晶窒化硼素の一部が六方晶窒化硼素に変換することによる工具の損傷の進展を良好に抑制することができる。六方晶窒化硼素多結晶体中のアルカリ金属元素及びアルカリ土類金属元素の合計含有量の下限は0ppmであることが好ましい。すなわち、六方晶窒化硼素多結晶体中のアルカリ金属元素及びアルカリ土類金属元素の合計含有量は、0ppm以上10ppm以下が好ましい。
 従来の立方晶窒化硼素焼結体は、例えば、特開2006-201216号公報に記載されているように、cBN砥粒を出発原料として作製されている。ここで、該cBN砥粒に残留している触媒成分(アルカリ金属元素、アルカリ土類金属元素)の合計含有量(cBN1モル中の触媒成分の含有量)は2.4×10-4~13.5×10-4モルである。従って、該cBN砥粒を焼結して得られた従来の立方晶窒化硼素多結晶体の触媒成分の合計含有量は、0.01質量%(100ppm)以上であることは当業者に自明である。
 一方、本開示の立方晶窒化硼素多結晶体は、後述するように、六方晶窒化硼素を出発原料とし、触媒を用いることなく、該六方晶窒化硼素を加熱加圧して立方晶窒化硼素に変換させて得られる。従って、該立方晶窒化硼素多結晶体の触媒成分の含有量は、質量基準で10ppm以下とすることができる。
 立方晶窒化硼素多結晶体のケイ素(Si)及びアルミニウム(Al)の合計含有量は、質量基準で50ppm以下であることが好ましい。これによると、該立方晶窒化硼素多結晶体を用いた工具は、切削環境下で刃先と被削材との界面が高温高圧にさらされた場合であっても、工具を構成する立方晶窒化硼素の一部がSiやAlと反応することによる工具の損傷の進展を良好に抑制することができる。
 立方晶窒化硼素多結晶体は、実質的にバインダー、焼結助剤、触媒等を含まないことが好ましい。これにより、立方晶窒化硼素多結晶体の強度及び熱拡散性が向上している。
 立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率は、98.5体積%以上100体積%以下が好ましく、99体積%以上100体積%以下が更に好ましい。立方晶窒化硼素の含有率の上限は、100体積%以下、99.99体積%以下、99.9体積%以下、99.89体積%以下とすることができる。
 立方晶窒化硼素多結晶体中の圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素の含有率の合計は、0体積%以上1.5体積%以下が好ましく、0体積%以上1体積%以下が好ましく、0体積%が好ましい。すなわち、立方晶窒化硼素多結晶体には、圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素のいずれも含まれないことが好ましい。
 立方晶窒化硼素多結晶体中の圧縮型六方晶窒化硼素の含有率は0体積%以上1.5体積%以下が好ましく、0体積%以上1体積%以下が好ましく、0体積%が好ましい。すなわち、立方晶窒化硼素多結晶体には、圧縮型六方晶窒化硼素が含まれないことが好ましい。
 立方晶窒化硼素多結晶体中のウルツ鉱型窒化硼素の含有率は0体積%以上1.5体積%以下が好ましく、0体積%以上1体積%以下が好ましく、0体積%が好ましい。すなわち、立方晶窒化硼素多結晶体には、ウルツ鉱型窒化硼素が含まれないことが好ましい。
[規則91に基づく訂正 28.07.2020] 
 六方晶窒化硼素、圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素は摩擦抵抗が小さく、切削加工時の被削材の凝着を減少させ、切削抵抗を小さくすることができる。更に、六方晶窒化硼素、圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素は、立方晶窒化硼素に比べて柔らかく、優れた耐亀裂伝搬性を有する。このため、加工の用途により、立方晶窒化硼素多結晶体は、六方晶窒化硼素、圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素を含むことが好ましい場合がある。
 上記の場合、立方晶窒化硼素多結晶体は、圧縮型六方晶窒化硼素を0.01体積%以上含むことが好ましい。立方晶窒化硼素多結晶体は、圧縮型六方晶窒化硼素を0.01体積%以上1.5体積%以下含むことが好ましく、0.01体積%以上1体積%以下含むことが好ましい。この場合、立方晶窒化硼素多結晶体は、立方晶窒化硼素を99.99体積%以下含むことが好ましい。
 上記の場合、立方晶窒化硼素多結晶体は、ウルツ鉱型窒化硼素を0.1体積%以上含むことが好ましい。立方晶窒化硼素多結晶体は、ウルツ鉱型窒化硼素を0.1体積%以上1.5体積%以下含むことが好ましく、0.1体積%以上1体積%以下含むことが好ましい。この場合、立方晶窒化硼素多結晶体は、立方晶窒化硼素を99.9体積%以下含むことが好ましい。
 立方晶窒化硼素多結晶体中の立方晶窒化硼素、圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素の含有率(体積%)は、X線回折法により測定することができる。具体的な測定方法は下記の通りである。
 立方晶窒化硼素多結晶体をダイヤモンド砥石電着ワイヤーで切断し、切断面を観察面とする。
 X線回折装置(Rigaku社製「MiniFlex600」(商品名))を用いて立方晶窒化硼素多結晶体の切断面のX線スペクトルを得る。このときのX線回折装置の条件は、下記の通りとする。
 特性X線: Cu-Kα(波長1.54Å)
 管電圧: 45kV
 管電流: 40mA
 フィルター: 多層ミラー
 光学系: 集中法
 X線回折法: θ-2θ法。
 得られたX線スペクトルにおいて、下記のピーク強度A、ピーク強度B及びピーク強度Cを測定する。
 ピーク強度A:回折角2θ=28.5°付近のピーク強度から、バックグランドを除いた圧縮型六方晶窒化硼素のピーク強度。
 ピーク強度B:回折角2θ=40.8°付近のピーク強度から、バックグラウンドを除いたウルツ鉱型窒化硼素のピーク強度。
 ピーク強度C:回折角2θ=43.5°付近のピーク強度から、バックグラウンドを除いた立方晶窒化硼素のピーク強度。
 圧縮型六方晶窒化硼素の含有率は、ピーク強度A/(ピーク強度A+ピーク強度B+ピーク強度C)の値を算出することにより得られる。ウルツ鉱型窒化硼素の含有率は、ピーク強度B/(ピーク強度A+ピーク強度B+ピーク強度C)の値を算出することにより得られる。立方晶窒化硼素の含有率は、ピーク強度C/(ピーク強度A+ピーク強度B+ピーク強度C)の値を算出することにより得られる。圧縮型六方晶窒化硼素、ウルツ鉱型窒化硼素及び立方晶窒化硼素は、全て同程度の電子的な重みを有するため、上記のX線ピーク強度比を立方晶窒化硼素多結晶体中の体積比と見なすことができる。
 <転位密度>
 本開示の立方晶窒化硼素多結晶体において、立方晶窒化硼素の転位密度は8×1015/mより大きい。該立方晶窒化硼素多結晶体は、多結晶体中に比較的多くの格子欠陥を有し、歪が大きいため、強度が向上している。従って、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。転位密度は、9×1015/m以上が好ましく、1.0×1016/m以上が更に好ましい。転位密度の上限は特に限定されないが、製造上の観点から、1.4×1016/mとすることができる。すなわち、転位密度は8×1015/mより大きく1.4×1016/m以下が好ましく、9×1015/m以上1.4×1016/m以下がより好ましく、1.0×1016/m以上1.4×1016/m以下が更に好ましい。
 本明細書において、転位密度とは下記の手順により算出される。
 立方晶窒化硼素多結晶体からなる試験片を準備する。試験片の大きさは、観察面が2.0mm×2.0mmであり、厚みが1.0mmである。試験片の観察面を研磨する。
 該試験片の観察面について、下記の条件でX線回折測定を行い、立方晶窒化硼素の主要な方位である(111)、(200)、(220)、(311)、(400)、(331)の各方位面からの回折ピークのラインプロファイルを得る。
 (X線回折測定条件)
 X線源:放射光
 装置条件:検出器NaI(適切なROIにより蛍光をカットする。)
 エネルギー:18keV(波長:0.6888Å)
 分光結晶:Si(111)
 入射スリット:幅5mm×高さ0.5mm
 受光スリット:ダブルスリット(幅3mm×高さ0.5mm)
 ミラー:白金コート鏡
 入射角:2.5mrad
 走査方法:2θ-θscan
 測定ピーク:立方晶窒化硼素の(111)、(200)、(220)、(311)、(400)、(331)の6本。ただし、集合組織、配向によりプロファイルの取得が困難な場合は、その面指数のピークを除く。
 測定条件:半値幅中に、測定点が9点以上となるようにする。ピークトップ強度は2000counts以上とする。ピークの裾も解析に使用するため、測定範囲は半値幅の10倍程度とする。
 上記のX線回折測定により得られるラインプロファイルは、試料の不均一ひずみなどの物理量に起因する真の拡がりと、装置起因の拡がりの両方を含む形状となる。不均一ひずみや結晶子サイズを求めるために、測定されたラインプロファイルから、装置起因の成分を除去し、真のラインプロファイルを得る。真のラインプロファイルは、得られたラインプロファイルおよび装置起因のラインプロファイルを擬Voigt関数によりフィッティングし、装置起因のラインプロファイルを差し引くことにより得る。装置起因の回折線拡がりを除去するための標準サンプルとしては、LaBを用いた。また、平行度の高い放射光を用いる場合は、装置起因の回折線拡がりは0とみなすことができる。
 得られた真のラインプロファイルを修正Williamson-Hall法及び修正Warren-Averbach法を用いて解析することによって転位密度を算出する。修正Williamson-Hall法及び修正Warren-Averbach法は、転位密度を求めるために用いられている公知のラインプロファイル解析法である。
 修正Williamson-Hall法の式は、下記式(I)で示される。
Figure JPOXMLDOC01-appb-M000001
(上記式(I)において、ΔKはラインプロファイルの半値幅、Dは結晶子サイズ、Mは配置パラメータ、bはバーガースベクトル、ρは転位密度、Kは散乱ベクトル、O(KC)はKCの高次項、Cはコントラストファクターの平均値を示す。)
 上記式(I)におけるCは、下記式(II)で表される。
 C=Ch00[1-q(hk+hl+kl)/(h+k+l)] (II)
 上記式(II)において、らせん転位と刃状転位におけるそれぞれのコントラストファクターCh00およびコントラストファクターに関する係数qは、計算コードANIZCを用い、すべり系が<110>{111}、弾性スティフネスC11が8.44GPa、C12が1.9GPa、C44が4.83GPaとして求める。コントラストファクターCh00は、らせん転位は0.203であり、刃状転位は0.212である。コントラストファクターに関する係数qは、らせん転位は1.65であり、刃状転位は0.58である。なお、らせん転位比率は0.5、刃状転位比率は0.5に固定する。
 また、転位と不均一ひずみの間にはコントラストファクターCを用いて下記式(III)の関係が成り立つ。
 <ε(L)>=(ρCb/4π)ln(R/L) (III)
(上記式(III)において、Rは転位の有効半径を示す。)
 上記式(III)の関係と、Warren-Averbachの式より、下記式(IV)の様に表すことができ、修正Warren-Averbach法として、転位密度ρ及び結晶子サイズを求めることができる。
 lnA(L)=lnA(L)-(πLρb/2)ln(R/L)(KC)+O(KC) (IV)(上記式(IV)において、A(L)はフーリエ級数、A(L)は結晶子サイズに関するフーリエ級数、Lはフーリエ長さを示す。)
 修正Williamson-Hall法及び修正Warren-Averbach法の詳細は、“T.Ungar and A.Borbely,“The effect of dislocation contrast on x-ray line broadening:A new approach to line profile analysis”Appl.Phys.Lett.,vol.69,no.21,p.3173,1996.”及び“T.Ungar,S.Ott,P.Sanders,A.Borbely,J.Weertman,“Dislocations,grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis”Acta Mater.,vol.46,no.10,pp.3693-3699,1998.”に記載されている。
 <結晶粒>
 (メジアン径d50)
 本開示の立方晶窒化硼素多結晶体に含まれる複数の結晶粒の円相当径のメジアン径d50(以下、「メジアン径d50」とも記す。)は0.1μm以上0.5μm以下である。従来、立方晶窒化硼素多結晶体は、結晶粒の粒径が小さいほど高強度となり、切削性能が向上すると考えられていた。このため、立方晶窒化硼素多結晶体を構成する結晶粒の粒径を小さくしていた(例えば、平均粒径100nm未満)が、これにより靱性が低下する傾向があった。
 一方、本開示の立方晶窒化硼素多結晶体は、上記(ii)に記載の通り、立方晶窒化硼素の転位密度を大きくすることにより強度を確保しているため、粒径を従来よりも大きくすることができる。このため、本開示の立方晶窒化硼素多結晶体は、靱性が向上し、優れた耐亀裂伝搬性を有することができる。従って、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 (アスペクト比が4以上の板状粒子の面積比率)
 立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、アスペクト比が4以上の板状粒子の面積比率は30面積%以下であることが好ましい。従来の立方晶窒化硼素多結晶体では、粒径を小さくすることに伴う靱性の低下を、立方晶多結晶体中に板状組織を存在させることにより補っていた。しかし、この板状粒子は、特に難削材の高能率加工中に、突発的に刃先から脱落して刃先の欠損を生じさせるため、工具寿命のばらつき及び低下の要因となっていた。
 本実施形態に係る該立方晶窒化硼素多結晶体においては、アスペクト比が4以上の板状粒子の含有率が低減されている。よって、該立方晶窒化硼素多結晶体は、板状粒子に起因する突発的な刃先の欠損が生じにくく、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 アスペクト比が4以上の板状粒子の面積比率は、30面積%以下が好ましい。アスペクト比が4以上の板状粒子の面積比率は、0面積%以上30面積%以下が好ましく、0面積%以上5面積%以下がより好ましい。
 (メジアン径d50、アスペクト比が4以上の板状粒子の面積比率の測定方法)
 本明細書において、立方晶窒化硼素多結晶体に含まれる複数の結晶粒の円相当径のメジアン径d50とは、任意に選択された5箇所の各測定箇所において、複数の結晶粒のメジアン径d50をそれぞれ測定し、これらの平均値を算出することにより得られた値を意味する。
 本明細書において、立方晶窒化硼素多結晶体におけるアスペクト比が4以上の板状粒子の面積比率とは、任意に選択された5箇所の各測定箇所において、アスペクト比が4以上の板状粒子の面積比率をそれぞれ測定し、これらの平均値を算出することにより得られた値を意味する。
 なお、出願人が測定した限りでは、同一の試料においてメジアン径d50及びアスペクト比が4以上の板状粒子の面積比率を測定する限り、立方晶窒化硼素多結晶体における測定視野の選択個所を変更して複数回算出しても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 立方晶窒化硼素多結晶体が工具の一部として用いられている場合は、立方晶窒化硼素多結晶体の部分を、ダイヤモンド砥石電着ワイヤー等で切り出して、切り出した断面を研磨し、当該研磨面において5箇所の測定箇所を任意に設定する。
 各測定箇所における複数の結晶粒の円相当径のメジアン径d50及びアスペクト比が4以上の板状粒子の面積比率の測定方法について下記に具体的に説明する。
 測定箇所が露出するように立方晶窒化硼素多結晶体をダイヤモンド砥石電着ワイヤー等で切断し、切断面を研磨する。当該研磨面上の測定箇所をSEM(日本電子株式会社社製「JSM-7500F」(商品名))を用いて観察し、SEM画像を得る。測定視野のサイズは12μm×15μmとし、観察倍率は10000倍とする。
 5つのSEM画像のそれぞれについて、測定視野内に観察される結晶粒の粒界を分離した状態で、画像処理ソフト(Win Roof ver.7.4.5)を用いて、各結晶粒のアスペクト比及び各結晶粒の円相当径を算出する。ここでアスペクト比は、切断面における結晶粒の長径と短径との比の値(長径/短径)を意味する。結晶粒の形状が図6に示されるような不定形状の場合は、アスペクト比は、画像処理ソフトを用いて、下記(a)~(c)の手順に従い算出される。
 (a)結晶粒の内部で引くことができる(両端が結晶粒界に接する)最も長い線分(以下、「第1の線分」とも記す。)を特定し、該第1の線分の長さL1を測定する。
 (b)上記の第1の線分に直交し、かつ、結晶粒の内部で引くことができる(両端が結晶粒界に接する)最も長い線分(以下、「第2の線分」とも記す。)を特定し、該第2の線分の長さL2を測定する。
 (c)第1の線分の長さL1と第2の線分の長さL2との比の値(L1/L2)を算出する。該(L1/L2)の値をアスペクト比とする。
 測定視野の全結晶粒の円相当径の分布から、メジアン径d50を算出する。アスペクト比が4以上の板状粒子の面積比率は、測定視野の全体の面積を分母として算出する。
 <用途>
 本開示の立方晶窒化硼素多結晶体は、切削工具、耐摩工具、研削工具などに用いることが好適である。
 本開示の立方晶窒化硼素多結晶体を用いた切削工具、耐摩工具および研削工具はそれぞれ、その全体が立方晶窒化硼素多結晶体で構成されていても良いし、その一部(たとえば切削工具の場合、刃先部分)のみが立方晶窒化硼素多結晶体で構成されていても良い。さらに、各工具の表面にコーティング膜が形成されていても良い。
 切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、切削バイトなどを挙げることができる。
 耐摩工具としては、ダイス、スクライバー、スクライビングホイール、ドレッサーなどを挙げることができる。研削工具としては、研削砥石などを挙げることができる。
 [実施の形態2:立方晶窒化硼素多結晶体の製造方法]
 本開示の立方晶窒化硼素多結晶体の製造方法を、図1~図5を用いて説明する。図1は、窒化硼素の圧力-温度相図である。図2~図4は、本開示の立方晶窒化硼素多結晶体の製造方法を説明するための図である。図5は、立方晶窒化硼素多結晶体の製造方法の従来例を説明するための図である。
 本開示の立方晶窒化硼素多結晶体の製造方法は、実施の形態1の立方晶窒化硼素多結晶体の製造方法である。本開示の立方晶窒化硼素多結晶体の製造方法は、六方晶窒化硼素粉末を準備する第1工程(以下、「第1工程」とも記す。)と、該六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1700℃以上2500℃以下の温度、及び、8GPa以上の圧力まで加熱加圧して窒化硼素多結晶体を得る第2工程(以下、「第2工程」とも記す。)と、第2工程により得られた窒化硼素多結晶体を、1700℃以上2500℃以下の温度、及び、8GPa以上の圧力条件下で3分以上60分以下保持して立方晶窒化硼素多結晶体を得る第3工程(以下、「第3工程」とも記す。)とを備える。ここで、ウルツ鉱型窒化硼素の安定領域は、温度をT(℃)、圧力をP(GPa)とした時に、下記式1及び下記式2を同時に満たす領域であり、
 式1:P≧-0.0037T+11.301
 式2:P≦-0.085T+117
第2工程の加熱加圧経路において、ウルツ鉱型窒化硼素の安定領域への突入温度は500℃以下であり、第2工程は、その加熱加圧経路における温度及び圧力を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する工程を含む。
 本開示の立方晶窒化硼素多結晶体の製造方法の詳細な説明を行う前に、その理解を助けるため、立方晶窒化硼素多結晶体の製造方法の従来例について説明する。
 図1に示されるように、窒化硼素には、常温常圧の安定相である六方晶窒化硼素、高温高圧の安定相である立方晶窒化硼素、及び、六方晶窒化硼素から立方晶窒化硼素への転位の間の準安定相であるウルツ鉱型窒化硼素の3つの相が存在する。
 各相の境界は一次関数で表すことができる。本明細書において、各相の安定領域内の温度及び圧力は、一次関数を用いて示すことができるものとする。
 本明細書において、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力(図1において、「wBN安定領域」と記す。)は、温度をT(℃)、圧力をP(GPa)とした時に、下記式1及び下記式2を同時に満たす温度及び圧力として定義する。
 式1:P≧-0.0037T+11.301
 式2:P≦-0.085T+117
 本明細書において、六方晶窒化硼素の安定領域内の温度及び圧力(図1において、「hBN安定領域」と記す。)は、温度をT(℃)、圧力をP(GPa)とした時に、下記式A及び下記式Bを同時に満たす温度及び圧力、又は下記式C及び下記式Dを同時に満たす温度及び圧力として定義する。
 式A:P≦-0.0037T+11.301
 式B:P≦-0.085T+117
 式C:P≦0.0027T+0.3333
 式D:P≧-0.085T+117
 本明細書において、立方晶窒化硼素の安定領域内の温度及び圧力(図1において、「cBN安定領域」と記す。)は、温度をT(℃)、圧力をP(GPa)とした時に、下記式D及び下記式Eを同時に満たす温度及び圧力として定義する。
 式D:P≧-0.085T+117
 式E:P≧0.0027T+0.3333
 従来、六方晶窒化硼素を、立方晶窒化硼素の安定領域内の温度及び圧力まで到達させるための加熱加圧経路として、図5に示される経路(以下、「図5の経路」とも記す。)が検討されていた。
 図5の経路では、開始点Sの温度及び圧力(常温常圧)から、立方晶窒化硼素の安定領域内の温度(以下、「目的温度」とも記す。)及び圧力(以下、「目的圧力」とも記す。)まで加熱加圧する際に、まず、圧力を目的圧力(図5では約8GPa)まで上げ(図5の矢印E1)、その後に、温度を目的温度(図5では約1900℃)まで上げる(図5の矢印E2)。図5の経路は、加熱と加圧がそれぞれ1回ずつ行われるため、加熱加圧操作の制御が単純であり、従来採用されていた。
 図5の経路では、開始点Sから立方晶窒化硼素の安定領域内の温度及び圧力へ到達する途中で、ウルツ鉱型窒化硼素の安定領域を通過する。従来は、製造工程のサイクルタイムを短くするために、開始点Sから立方晶窒化硼素の安定領域内へ到達するための時間は短い方が良いと考えられていた。また、第2工程の加熱加圧経路において、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で一定時間保持することにより、得られる立方晶窒化硼素多結晶体の品質が向上するという知見も存在しなかった。このため、加熱加圧条件は、ウルツ鉱型窒化硼素の安定領域を通過する時間がより短くなるように設定されていた。
 しかし、図5の経路で得られた立方晶窒化硼素多結晶体では、加工時に欠損が生じやすく、工具寿命が短くなる傾向があった。本発明者らは、その理由を究明すべく図5の経路で得られた立方晶窒化硼素多結晶体について分析評価を行ったところ、立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率が工具寿命に影響を与えると推察された。ここで、立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率とは、立方晶窒化硼素多結晶体が立方晶窒化硼素とともに、六方晶窒化硼素及び/又はウルツ鉱型窒化硼素を含む場合、立方晶窒化硼素、六方晶窒化硼素及びウルツ鉱型窒化硼素の含有率の合計を分母とした場合の立方晶窒化硼素の含有率を意味する。
 具体的には、図5の経路では、ウルツ鉱型窒化硼素の安定領域内での保持時間が短いため、六方晶窒化硼素からウルツ鉱型窒化硼素への変換率が低下し、結果として立方晶窒化硼素への変換率も低下する傾向があると推察された。このため、得られた立方晶窒化硼素多結晶体では、立方晶窒化硼素の含有率が低下し、加工時に欠損が生じやすく、工具寿命が短くなる傾向があると推察された。
 更に本発明者らが検討を重ねた結果、立方晶窒化硼素多結晶体の製造工程において、ウルツ鉱型窒化硼素の安定領域への突入温度が、立方晶窒化硼素の転位密度と関係し、結果として、得られた立方晶窒化硼素多結晶体の強度に影響を与えることが推察された。
 本発明者らは上記の状況、並びに、立方晶窒化硼素多結晶体に含まれる複数の結晶粒の粒径が靱性に与える影響を考慮しつつ、立方晶窒化硼素多結晶体の製造工程における圧力及び温度の経路を鋭意検討した。この結果、本発明者らは、鉄系材料や、難削材の加工においても、長い工具寿命を有することができる立方晶窒化硼素多結晶体を得ることができる加熱加圧条件を見いだした。
 なお、従来のcBN焼結体の製造方法では、cBN粉末を出発原料とし、該cBN粉末を加圧した後に加熱して焼結を行う。加圧により、高硬度のcBN粉末同士が接触し、cBN粒子に転位が導入されることは類推される。しかし、本開示の立方晶窒化硼素多結晶体の製造方法のように、低硬度のhBN粉末を出発原料とし、該hBN粉末に対して加熱加圧処理を行い立方晶窒化硼素多結晶体に変換させる場合、該立方晶窒化硼素多結晶体の転位密度は予測できなかった。本発明者らは鋭意検討の結果、加熱加圧条件と、立方晶窒化硼素多結晶体の転位密度及び工具性能との関係を新たに見出した。
 本開示の立方晶窒化硼素多結晶体の製造方法の各工程の詳細について、図2~図4を用いて下記に説明する。なお、図2~図4において、矢印は加熱加圧経路を示す。また、矢印の先端に丸が記載されている場合は、その温度及び圧力で一定時間保持されることを示す。また、図2~図4で示される経路は一例であり、これに限定されるものではない。
 <第1工程>
 立方晶窒化硼素多結晶体の原料として、六方晶窒化硼素粉末を準備する。六方晶窒化硼素粉末は、純度(六方晶窒化硼素の含有率)が98.5%以上が好ましく、99%以上がより好ましく、100%が最も好ましい。六方晶窒化硼素粉末の粒径は特に限定されないが、例えば、0.1μm以上10μm以下とすることができる。
 <第2工程>
 次に、六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1700℃以上2500℃以下の温度(以下、「到達温度」とも記す。)、及び、8GPa以上の圧力(以下、「到達圧力」とも記す。)まで加熱加圧して窒化硼素多結晶体を得る(図2では矢印A1、A2及びA3、図3では矢印B1、B2、B3及びB4、図4では矢印C1、C2、C3及びC4)。第2工程の加熱加圧経路において、ウルツ鉱型窒化硼素の安定領域への突入温度は500℃以下である。更に、第2工程は、その加熱加圧経路における温度及び圧力を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する工程を含む(図2ではa1、図3ではb1、図4ではc1及びc2)。
 第2工程により得られる焼結体は、第3工程の後に得られる立方晶窒化硼素多結晶体よりも、立方晶窒化硼素の含有率が低い。従って、第2工程により得られる焼結体と、第3工程の後に得られる立方晶窒化硼素多結晶体とを区別するために、本明細書中、第2工程により得られる焼結体は、窒化硼素焼結体と記す。
 本明細書中、ウルツ鉱型窒化硼素の安定領域への突入温度とは、第2工程の加熱加圧経路において、初めてウルツ鉱型窒化硼素の安定領域内へ到達した時点での温度を意味する。該突入温度は、図2では、矢印A2とP=-0.0037T+11.301の線との交点における温度(約250℃)であり、図3では、矢印B2とP=-0.0037T+11.301の線との交点における温度(約250℃)であり、図4では、矢印C2とP=-0.0037T+11.301の線との交点における温度(約250℃)である。
 第2工程の加熱加圧経路において、ウルツ鉱型窒化硼素の安定領域への突入温度は500℃以下である。これによると、六方晶窒化硼素粉末は原子拡散が起こり難い環境で、ウルツ鉱型窒化硼素に変換され、その後、立方晶窒化硼素に変換される。このため、最終的に得られる立方晶窒化硼素多結晶体は、多結晶体中に比較的多くの格子欠陥を有し、立方晶窒化硼素の転位密度が大きく、歪みが大きいため、強度が向上している。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 ウルツ鉱型窒化硼素の安定領域への突入温度は300℃以下が好ましく、100℃以下が更に好ましい。突入温度が低いほど原子拡散が起こりにくく、格子欠陥が増加する傾向がある。突入温度の下限は、例えば10℃とすることができる。ウルツ鉱型窒化硼素の安定領域への突入温度は10℃以上500℃以下が好ましく、10℃以上300℃以下がより好ましく、10℃以上100℃以下が更に好ましい。
 第2工程は、その加熱加圧経路における温度及び圧力を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する工程を含む。これによると、六方晶窒化硼素粉末、又は、hBN粉末とその一部が相変換したものを含む粉末が、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力条件下で10分以上保持されることになる。ウルツ鉱型窒化硼素の安定領域内での保持時間が長いため、六方晶窒化硼素からウルツ鉱型窒化硼素への変換率が向上し、結果として立方晶窒化硼素への変換率も向上する。このため、最終的に得られる立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が増加し、加工時に欠損が生じ難い。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 ウルツ鉱型窒化硼素の安定領域内の温度及び圧力での保持時間は、15分以上が好ましく、30分以上がより好ましい。保持時間の上限は、製造上の観点から、60分が好ましい。保持時間は10分以上60分以下が好ましく、15分以上60分以下がより好ましく、30分以上60分以下が更に好ましい。
 第2工程は、その加熱加圧経路における温度及び圧力を、温度をT(℃)、圧力をP(GPa)とした時に、下記式1、下記式2及び下記式3を同時に満たす領域内の温度及び圧力で10分以上保持する工程(以下、「第2A工程」とも記す。)を含むことが好ましい。
 式1:P≧-0.0037T+11.301
 式2:P≦-0.085T+117
 式3:P≦-0.0037T+11.375
 上記式1、式2及び式3を同時に満たす領域とは、ウルツ鉱型窒化硼素の安定領域内で、六方晶窒化硼素の安定領域とウルツ鉱型窒化硼素の安定領域との境界近傍の領域である。これによると、六方晶窒化硼素粉末、又は、hBN粉末とその一部が相変換したものを含む粉末が、上記式1、式2及び式3を同時に満たす温度及圧力条件下で10分以上保持されることになる。この領域で10分以上保持することにより、格子欠陥が更に生じやすくなる。このため、最終的に得られる立方晶窒化硼素多結晶体は、多結晶体中に多くの格子欠陥を有し、歪みが大きいため、更に強度が向上すると考えられる。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、更に長い工具寿命を有することができる。
 上記式1、式2及び式3を同時に満たす領域内の温度及び圧力での保持時間は、15分以上がより好ましく、20分以上が更に好ましい。保持時間の上限は、製造上の観点から、60分が好ましい。保持時間は10分以上60分以下が好ましく、15分以上60分以下がより好ましく、20分以上60分以下が更に好ましい。
 第2工程が上記式1、式2及び式3を同時に満たす領域内の温度及び圧力で10分以上保持する工程を含む場合、第2工程は、その加熱加圧経路における温度及び圧力を、その後、更に下記式2及び下記式4を満たす領域内の温度及び圧力で1分以上保持する工程(以下、「第2B工程」とも記す。)を含むことができる。
 式2:P≦-0.085T+117
 式4:P>-0.0037T+11.375
 これによると、六方晶窒化硼素からウルツ鉱型窒化硼素への変換率が更に向上し、結果として立方晶窒化硼素への変換率も向上する。このため、最終的に得られる立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が増加し、加工時に欠損が生じ難い。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 上記式2及び式4を満たす領域内の温度及び圧力での保持時間は、10分以上がより好ましく、15分以上が更に好ましい。保持時間の上限は、製造上の観点から、60分が好ましい。保持時間は1分以上60分以下が好ましく、10分以上60分以下がより好ましく、15分以上60分以下が更に好ましい。
 第2工程において、上記の第2A工程のみを行っても良いし、上記の第2A工程の後に、上記の第2B工程を行っても良い。また、第2工程は、上記式2及び上記式4を満たす領域内で10分以上保持する工程とすることもできる。
 第2工程における到達圧力は8GPa以上であり、10GPa以上が好ましく、13GPa以上が更に好ましい。該到達圧力の上限は特に限定されないが、例えば、15GPaとすることができる。第2工程における到達圧力は、8GPa以上15GPa以下が好ましく、10GPa以上15GPa以下がより好ましく、13GPa以上15GPa以下が更に好ましい。
 第2工程において、図2~図4の経路では、加熱を行った後に加圧を行い、更に加熱を行っているが、加熱加圧の経路はこれに限定されない。加熱加圧の経路は、ウルツ鉱型窒化硼素の安定領域への突入温度を500℃以下とし、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持でき、到達温度を1700℃以上2500℃以下、到達圧力を8GPa以上とすることができる経路であればよい。例えば、加熱と加圧を同時に行ってもよい。
 上記の通り、六方晶窒化硼素粉末に第2工程を行うことにより、窒化硼素多結晶体を得ることができる。
 <第3工程>
 上記の第2工程の後に、第2工程により得られた窒化硼素多結晶体を、1700℃以上2500℃以下の温度(以下、「最終焼結温度」とも記す。)、及び、8GPa以上の圧力(以下、「最終焼結圧力」とも記す。)条件下で3分以上60分以下保持する工程を行う。これにより、得られた立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が大きくなり、更に長い工具寿命を達成することができる。
 最終焼結温度は1900℃以上2400℃以下が好ましい。最終焼結圧力は8GPa以上15GPa以下が好ましく、10GPa以上15GPa以下がより好ましい。第3工程における保持時間は10分以上20分以下が好ましい。
 <図2~図4の経路により得られる立方晶窒化硼素多結晶体の特性>
 [図2の経路]
 図2の経路では、まず、開始点Sから500℃以下の所定温度(図2では約250℃)まで昇温し(矢印A1)、その後、温度を維持したままウルツ鉱型窒化硼素の安定領域内の圧力(図2では約13GPa)まで加圧し(矢印A2)、該温度(約250℃)及び該圧力(約13GPa)において、10分以上保持する(図2のa1)。その後、該圧力(約13GPa)を維持したまま、温度を1700℃以上2500℃以下(図2では約2000℃)に昇温し(矢印A3)、該温度(約2000℃)及び該圧力(約13GPa)において、3分以上60分以下保持する(図2のa2)。図2では、第2工程は、矢印A1、A2及びA3、並びにa1で示され、第3工程はa2で示される。
 図2の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が500℃以下(約250℃)である。これによると、六方晶窒化硼素粉末は原子拡散が起こり難い環境で、ウルツ鉱型窒化硼素に変換され、その後、立方晶窒化硼素に変換される。このため、得られた立方晶窒化硼素多結晶体は、多結晶体中に比較的多くの格子欠陥を有し、立方晶窒化硼素の転位密度が大きく、歪みが大きいため、強度が向上している。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 図2の経路では、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する。これによると、ウルツ鉱型窒化硼素の安定領域内での保持時間が長いため、六方晶窒化硼素からウルツ鉱型窒化硼素への変換率が向上し、結果として立方晶窒化硼素への変換率も向上する。このため、得られた立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が増加し、加工時に欠損が生じ難い。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 図2の経路では、第2工程により得られた窒化硼素多結晶体を、1700℃以上2500℃以下の温度、及び、8GPa以上の圧力条件下で3分以上60分以下保持する。これにより、得られた立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が大きくなり、更に長い工具寿命を有することができる。
 [図3の経路]
 図3の経路では、まず、開始点Sから500℃以下の所定温度(図3では約250℃)まで昇温し(矢印B1)、その後、温度を維持したまま、下記式1、下記式2及び下記式3を同時に満たす領域内の圧力(図3では約10.4GPa)まで昇圧し(矢印B2)、該温度(約250℃)及び該圧力(約10.4GPa)において、10分以上保持する(図3のb1)。
 式1:P≧-0.0037T+11.301
 式2:P≦-0.085T+117
 式3:P≦-0.0037T+11.375
 次に、該温度(約250℃)を維持したまま、ウルツ鉱型窒化硼素の安定領域内で昇圧する(図3では約13GPa)(矢印B3)。続いて、該圧力(約13GPa)を維持したまま、温度を1700℃以上2500℃以下(図3では約2000℃)に昇温し(矢印B4)、該温度(約2000℃)及び該圧力(約13GPa)において、3分以上60分以下保持する(図3のb2)。図3では、第2工程は、矢印B1、B2、B3及びB4、並びに、b1で示され、第3工程はb2で示される。
 図3の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が500℃以下(約250℃)である。これによると、六方晶窒化硼素粉末は原子拡散が起こり難い環境で、ウルツ鉱型窒化硼素に変換され、その後、立方晶窒化硼素に変換される。このため、得られた立方晶窒化硼素多結晶体は、多結晶体中に比較的多くの格子欠陥を有し、立方晶窒化硼素の転位密度が大きく、歪みが大きいため、強度が向上している。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 図3の経路では、上記式1、上記式2及び上記式3を同時に満たす領域内の温度及び圧力で10分以上保持する工程を含む。すなわち、図3の経路は、図2の経路に比べて、ウルツ鉱型窒化硼素の安定領域内で、より六方晶窒化硼素の安定領域に近い温度及び圧力(すなわち、ウルツ鉱型窒化硼素の安定領域と六方晶窒化硼素の安定領域の境界近傍の温度及び圧力)で10分以上保持している。このため、図2の経路よりも、格子欠陥が更に生じやすく、図3の経路で得られた立方晶窒化硼素多結晶体は、図2の経路で得られた立方晶窒化硼素多結晶体に比べて、多結晶体中により多くの格子欠陥を有し、歪みが大きいため、更に強度が向上すると考えられる。よって、図3の経路で得られた立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、更に長い工具寿命を有することができる。
 図3の経路では、第2工程により得られた窒化硼素多結晶体を、1700℃以上2500℃以下の温度、及び、8GPa以上の圧力条件下で3分以上60分以下保持する。これにより、得られた立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が大きくなり、更に長い工具寿命を有することができる。
[規則91に基づく訂正 28.07.2020] 
 [図4の経路]
 図4の経路では、まず、開始点Sから500℃以下の所定温度(図4では約250℃)まで昇温し(矢印C1)、その後、温度を維持したまま、下記式1、下記式2及び下記式3を同時に満たす領域内の圧力(図4では約10.4GPa)まで昇圧し(矢印C2)、該温度(約250℃)及び該圧力(約10.4GPa)において、10分以上保持する(図4のc1)。
 式1:P≧-0.0037T+11.301
 式2:P≦-0.085T+117
 式3:P≦-0.0037T+11.375
 次に、該温度(約250℃)を維持したまま、ウルツ鉱型窒化硼素の安定領域内で昇圧し(図4では約13GPa)(矢印C3)、該温度(約250℃)及び該圧力(約13GPa)(図4のc2で示される温度及び圧力)において、1分以上保持する。すなわち、図4の経路では、上記式1、上記式2及び上記式3を同時に満たす温度及び圧力で10分以上保持する工程の後に、更に下記式2及び下記式4を満たす領域内の温度及び圧力で1分以上保持する工程を含む。
 式2:P≦-0.085T+117
 式4:P>-0.0037T+11.375
 続いて、上記の圧力(約13GPa)を維持したまま、温度を1700℃以上2500℃以下(図4では約2000℃)に昇温し(矢印C4)、該温度(約2000℃)及び該圧力(約13GPa)において、3分以上60分以下保持する(図4のc3)。図4では、第2工程は、矢印C1、C2、C3及びC4、並びに、c1及びc2で示され、第3工程はc3で示される。
 図4の経路では、ウルツ鉱型窒化硼素の安定領域への突入温度が500℃以下(約250℃)である。これによると、六方晶窒化硼素粉末は原子拡散が起こり難い環境で、ウルツ鉱型窒化硼素に変換され、その後、立方晶窒化硼素に変換される。このため、得られた立方晶窒化硼素多結晶体は、多結晶体中に比較的多くの格子欠陥を有し、立方晶窒化硼素の転位密度が大きく、歪みが大きいため、強度が向上している。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、長い工具寿命を有することができる。
 図4の経路では、上記式1、上記式2及び上記式3を同時に満たす領域内の温度及び圧力で10分以上保持する工程を含む。すなわち、図4の経路は、図2の経路に比べて、ウルツ鉱型窒化硼素の安定領域内で、より六方晶窒化硼素の安定領域に近い温度及び圧力(すなわち、ウルツ鉱型窒化硼素の安定領域と六方晶窒化硼素の安定領域の境界近傍の温度及び圧力)で10分以上保持している。このため、図4の経路では、図2の経路よりも、格子欠陥が更に生じやすく、図4の経路で得られた立方晶窒化硼素多結晶体は、図2の経路で得られた立方晶窒化硼素多結晶体に比べて、多結晶体中に多くの格子欠陥を有し、歪みが大きいため、更に強度が向上すると考えられる。よって、図4の経路で得られた立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、更に長い工具寿命を有することができる。
 図4の経路では、上記式1、上記式2及び上記式3を同時に満たす領域内の温度及び圧力で10分以上保持する工程の後、更に、ウルツ鉱型窒化硼素の安定領域内で昇圧し(図4では約13GPa)(矢印C3)、該温度(約250℃)及び該圧力(約13GPa)において、1分以上保持する(図4のc2)。すなわち、図4の経路では、上記式1、上記式2及び上記式3を同時に満たす温度及び圧力で10分以上保持する工程の後に、更に下記式2及び下記式4を満たす領域内の温度及び圧力で1分以上保持する工程を含む。
 式2:P≦-0.085T+117
 式4:P>-0.0037T+11.375
 このため、図4の経路では、図3の経路よりも、六方晶窒化硼素からウルツ鉱型窒化硼素への変換率が更に向上し、結果として立方晶窒化硼素への変換率も更に向上する。このため、図4の経路で得られた立方晶窒化硼素多結晶体は、図3の経路で得られた立方晶窒化硼素多結晶体に比べて、立方晶窒化硼素の含有率が増加し、加工時に欠損が生じ難い。よって、該立方晶窒化硼素多結晶体を用いた工具は、鉄系材料や、難削材の高負荷加工においても、更に長い工具寿命を有することができる。
 図4の経路では、第2工程により得られた窒化硼素多結晶体を、1700℃以上2500℃以下の温度、及び、8GPa以上の圧力条件下で3分以上60分以下保持する。これにより、得られた立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が大きくなり、更に長い工具寿命を達成することができる。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 [実施例1]
 実施例1では、立方晶窒化硼素多結晶体の製造条件と、得られる立方晶窒化硼素多結晶体の構成(組成、結晶粒のメジアン径、転位密度)と、該立方晶窒化硼素多結晶体を用いた工具で難削材の高負荷加工を行った場合の工具寿命との関係を調べた。
 <立方晶窒化硼素多結晶体の作製>
 試料1-1~試料9の立方晶窒化硼素多結晶体を、下記の手順に従って作製した。
 (第1工程)
 六方晶窒化硼素粉末(デンカ社製の「デンカボロンナイトライド」(商品名)、粒径5μm)を6g準備した。上記の六方晶窒化硼素粉末を、モリブデン製のカプセルに入れ、超高圧高温発生装置に設置した。
 (第2工程及び第3工程)
 [試料1-1、試料1-3、試料2-2、試料3-2、試料4~試料9]
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表1の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、「第1段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温及び/又は昇圧し、「保持時間」の欄に記載される長さで保持した。
 続いて、温度を維持したまま、表1の「第2段階」の「到達圧力」欄に記載される圧力まで昇圧し、「保持時間」の欄に記載される長さで保持した。
 続いて、圧力を維持したまま、表1の「第3段階」の「到達温度」欄に記載される温度まで昇温し、「保持時間」の欄に記載される長さで保持して立方晶窒化硼素多結晶体を得た。試料1-1、試料1-3、試料2-2、試料3-2、試料4~試料9では、「第3段階」に記載されている「到達温度」、「到達圧力」及び「保持時間」での高温高圧処理は第3工程に該当する。
 [試料1-2]
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表1の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、温度を維持したまま、「第1段階」の「到達圧力」欄に記載される圧力まで昇圧し、「保持時間」の欄に記載される長さで保持した。
 続いて、圧力を維持したまま、表1の「第2段階」の「到達温度」欄に記載される温度まで昇温し、「保持時間」の欄に記載される長さで保持して立方晶窒化硼素多結晶体を得た。試料1-2では、「第2段階」に記載されている「到達温度」、「到達圧力」及び「保持時間」での高温高圧処理は第3工程に該当する。
 [試料2-1、試料2-3、試料3-1、試料3-3]
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表1の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、「第1段階」の「到達温度」及び「到達圧力」欄に記載される温度及び圧力まで昇温及び昇圧し、「保持時間」の欄に記載される長さで保持した。
 続いて、温度を維持したまま、表1の「第2段階」の「到達圧力」欄に記載される圧力まで昇圧し、「保持時間」の欄に記載される長さで保持した。
 続いて、温度を維持したまま、表1の「第3段階」の「到達圧力」欄に記載される圧力まで昇圧し、「保持時間」の欄に記載される長さで保持した。
 続いて、圧力を維持したまま、表1の「第4段階」の「到達温度」欄に記載される温度まで昇温し、「保持時間」の欄に記載される長さで保持して立方晶窒化硼素多結晶体を得た。試料2-1、試料2-3、試料3-1、試料3-3では、「第4段階」に記載されている「到達温度」、「到達圧力」及び「保持時間」での高温高圧処理は第3工程に該当する。
 <評価>
 (組成の測定)
 上記で得られた立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率を、X線回折法により測定した。X線回折法の具体的な方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。結果を表1の「cBN含有率」欄に示す。
 なお、全ての試料において、cBN、wBN及び圧縮型hBN以外の成分は同定されなかった。
 (転位密度の測定)
 上記で得られた立方晶窒化硼素多結晶体中の立方晶窒化硼素の転位密度を、X線回折測定により得られるラインプロファイルを修正Williamson-Hall法及び修正Warren-Averbach法を用いて解析することにより算出した。転位密度の具体的な算出方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。結果を表1の「転位密度」欄に示す。
 (結晶粒のメジアン径d50の測定)
 上記で得られた立方晶窒化硼素多結晶体に含まれる結晶粒について、円相当径のメジアン径d50を測定した。具体的な方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。結果を表1の「メジアン径(d50)」欄に示す。
 (切削試験)
 上記で得られた立方晶窒化硼素多結晶体を、レーザにより切断して仕上げ加工し、インサート型番NU-CNGA120408(住友電工ハードメタル(株)製)の切削工具を作製した。得られた切削工具を用いて、以下の切削条件でTi6Al4V丸棒(φ200mm、V形状スリット1本あり)の断続切削を行い、工具寿命を評価した。なお、被削材であるTi6Al4V丸棒は難削材である。
 (切削条件)
 被削材:Ti6Al4V丸棒(φ200mm、V形状スリット1本あり)
 工具形状:
 ホルダー型番DCLNR2525(住友電工ハードメタル(株)製)
 インサート型番NU-CNGA120408(住友電工ハードメタル(株)製)
 切削速度:180m/min
 送り量:0.1mm/刃
 切込み量:0.15mm
 クーラント:WET
 なお、上記の切削条件は、難削材の高負荷加工に該当する。
 上記の切削条件で切削し、逃げ面から観察した工具の欠損量が100μm以上となるまでの加工時間を工具寿命として測定した。加工時間が長いほど、耐欠損性に優れ、工具寿命が長いことを示している。結果を表1の「工具寿命」欄に示す。
Figure JPOXMLDOC01-appb-T000002
 <考察>
 [試料1-1~試料1-3]
 試料1-1~試料1-3の製造方法は、いずれも実施例に該当する。試料1-1~試料1-3の立方晶窒化硼素多結晶体は、いずれも立方晶窒化硼素を98.5体積%以上含み、立方晶窒化硼素の転位密度が8×1015/mより大きく、結晶粒のメジアン径d50が0.1μm以上0.5μm以下であり、実施例に該当する。試料1-1~試料1-3の立方晶窒化硼素多結晶体を用いた工具は、難削材の高負荷加工においても、長い工具寿命を有することが確認された。
 なお、試料1-1~試料1-3の工具寿命を比べると、試料1-1及び試料1-3は、試料1-2よりも長かった。これは、試料1-1及び試料1-3は、第1段階での到達温度及び到達圧力が、上記式1、式2及び式3を同時に満たす温度及び圧力であり、該温度及び該圧力で10分以上保持する工程を含むため、該工程を含まない試料1-2よりも格子欠陥が生じやすく、強度が大きいためと考えられる。
 更に、試料1-1及び試料1-3の工具寿命を比べると、試料1-1は、試料1-3よりも長かった。これは、試料1-1は、試料1-3に比べて、第2段階での到達温度及び到達圧力(すなわち、ウルツ鉱型窒化硼素の安定領域内)での保持時間が長いため、六方晶窒化硼素からウルツ鉱型窒化硼素への変換率が更に向上し、結果として立方晶窒化硼素への変換率が試料1-3よりも高く、立方晶窒化硼素の含有率が大きいためと考えられる。
 [試料2-1~試料2-3]
 試料2-1~試料2-3の製造方法は、いずれも実施例に該当する。試料2-1~試料2-3の立方晶窒化硼素多結晶体は、いずれも立方晶窒化硼素を98.5体積%以上含み、立方晶窒化硼素の転位密度が8×1015/mより大きく、結晶粒のメジアン径d50が0.1μm以上0.5μm以下であり、実施例に該当する。試料2-1~試料2-3の立方晶窒化硼素多結晶体を用いた工具は、難削材の高負荷加工においても、長い工具寿命を有することが確認された。
 なお、試料2-1~試料2-3の工具寿命を比べると、試料2-1及び試料2-3は、試料2-2よりも長かった。これは、試料2-1及び試料2-3は、第2段階での到達温度及び到達圧力が、上記式1、式2及び式3を同時に満たす温度及び圧力であり、該温度及び該圧力で10分以上保持する工程を含むため、該工程を含まない試料2-2よりも格子欠陥が生じやすく、強度が大きいためと考えられる。
 更に、試料2-1及び試料2-3の工具寿命を比べると、試料2-1は、試料2-3よりも長かった。これは、試料2-1は、試料2-3に比べて、第3段階の到達温度及び到達圧力(すなわち、ウルツ鉱型窒化硼素の安定領域内)での保持時間が長いため、六方晶窒化硼素からウルツ鉱型窒化硼素への変換率が更に向上し、結果として立方晶窒化硼素への変換率が試料2-3よりも高く、立方晶窒化硼素の含有率が大きいためと考えられる。
 [試料3-1~試料3-3]
 試料3-1~試料3-3の製造方法は、いずれも実施例に該当する。試料3-1~試料3-3の立方晶窒化硼素多結晶体は、いずれも立方晶窒化硼素を98.5体積%以上含み、立方晶窒化硼素の転位密度が8×1015/mより大きく、結晶粒のメジアン径d50が0.1μm以上0.5μm以下であり、実施例に該当する。試料3-1~試料3-3の立方晶窒化硼素多結晶体を用いた工具は、難削材の高負荷加工においても、長い工具寿命を有することが確認された。
 なお、試料3-1~試料3-3の工具寿命を比べると、試料3-1及び試料3-3は、試料3-2よりも長かった。これは、試料3-1及び試料3-3は、第2段階での到達温度及び到達圧力が、上記式1、式2及び式3を同時に満たす温度及び圧力であり、該温度及び該圧力で10分以上保持する工程を含むため、該工程を含まない試料3-2よりも格子欠陥が生じやすく、強度が大きいためと考えられる。
 更に、試料3-1及び試料3-3の工具寿命を比べると、試料3-1は、試料3-3よりも長かった。これは、試料3-1は、試料3-3に比べて、第3段階での到達温度及び到達圧力(すなわち、ウルツ鉱型窒化硼素の安定領域内)での保持時間が長いため、六方晶窒化硼素からウルツ鉱型窒化硼素への変換率が更に向上し、結果として立方晶窒化硼素への変換率が試料3-3よりも高く、立方晶窒化硼素の含有率が大きいためと考えられる。
 [試料4、試料7]
 試料4及び試料7の製造方法は、いずれも実施例に該当する。試料4及び試料7の立方晶窒化硼素多結晶体は、いずれも立方晶窒化硼素を98.5体積%以上含み、立方晶窒化硼素の転位密度が8×1015/mより大きく、結晶粒のメジアン径d50が0.1μm以上0.5μm以下であり、実施例に該当する。試料4及び試料7の立方晶窒化硼素多結晶体を用いた工具は、難削材の高負荷加工においても、長い工具寿命を有することが確認された。
 なお、試料4及び試料7の工具寿命を比べると、試料4の方が長かった。これは、試料4は、試料7よりも、第3工程における圧力が高く、立方晶窒化硼素の含有率が大きいためと考えられる。
 [試料5、試料6]
 試料5及び試料6の製造方法は、いずれもウルツ鉱型窒化硼素の安定領域内への突入温度が500℃を超えており、比較例に該当する。試料5及び試料6の立方晶窒化硼素多結晶体は、いずれも立方晶窒化硼素の転位密度が8×1015/m以下であり、比較例に該当する。試料5及び試料6の立方晶窒化硼素多結晶体を用いた工具は、工具寿命が短かった。これは、試料5及び試料6の製造方法では、ウルツ鉱型窒化硼素の安定領域内への突入温度が500℃を超えているため、格子欠陥が生じ難く、得られた立方晶窒化硼素多結晶体において転位密度が小さくなり、強度が低下したためと考えられる。
 [試料8]
 試料8の製造方法は、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する工程を含まず、比較例に該当する。試料8の立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が98.3体積%であり、比較例に該当する。試料8の立方晶窒化硼素多結晶体を用いた工具は、工具寿命が短かった。これは、試料8の製造方法はウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する工程を含ないため、六方晶窒化硼素からウルツ鉱型窒化硼素への変換率が低く、結果として立方晶窒化硼素への変換率も低くなり、得られた立方晶窒化硼素多結晶体の立方晶窒化硼素の含有率が小さいためと考えられる。また、試料8の製造方法は、試料4及び試料7に比べて、第3工程における焼結圧力が低いため、立方晶窒化硼素への変換率が低くなり、得られた立方晶窒化硼素多結晶体において立方晶窒化硼素の含有率が小さくなり、結果として、試料8の立方晶窒化硼素多結晶体は、試料4及び試料7に比べて、工具寿命が短くなったと考えられる。
 [試料9]
 試料9の製造方法は、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する工程を含まず、比較例に該当する。試料9の立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が98.2体積%であり、比較例に該当する。試料9の立方晶窒化硼素多結晶体を用いた工具は、工具寿命が短かった。これは、試料9の製造方法はウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する工程を含ないため、六方晶窒化硼素からウルツ鉱型窒化硼素への変換率が低く、結果として立方晶窒化硼素への変換率も低くなり、得られた立方晶窒化硼素多結晶体において立方晶窒化硼素の含有率が小さいためと考えられる。また、試料9の製造方法は、試料4に比べて、ウルツ鉱型窒化硼素の安定領域内での保持時間が短いため、立方晶窒化硼素への変換率が低くなり、得られた立方晶窒化硼素多結晶体において立方晶窒化硼素の含有率が小さくなり、結果として、試料9の立方晶窒化硼素多結晶体は、試料4に比べて、工具寿命が短くなったと考えられる。
 [実施例2]
 実施例2では、立方晶窒化硼素多結晶体の製造条件と、得られる立方晶窒化硼素多結晶体の構成(組成、結晶粒のメジアン径、転位密度)と、該立方晶窒化硼素多結晶体を用いた工具で鉄系材料の高負荷加工を行った場合の工具寿命との関係を調べた。
 <立方晶窒化硼素多結晶体の作製>
 試料10~試料16の立方晶窒化硼素多結晶体を、下記の手順に従って作製した。
 (第1工程)
 市販の六方晶窒化硼素粉末(粒径5μm)を6g準備した。上記の六方晶窒化硼素粉末を、モリブデン製のカプセルに入れ、超高圧高温発生装置に設置した。
 (第2工程及び第3工程)
 [試料1~試料16]
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表1の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、圧力を維持したまま、「第1段階」の「到達温度」欄に記載される温度まで昇温し、「保持時間」の欄に記載される長さで保持した。
 続いて、温度を維持したまま、表1の「第2段階」の「到達圧力」欄に記載される圧力まで昇圧し、「保持時間」の欄に記載される長さで保持した。
 続いて、圧力を維持したまま、表1の「第3段階」の「到達温度」欄に記載される温度まで昇温し、「保持時間」の欄に記載される長さで保持して立方晶窒化硼素多結晶体を得た。なお、「第3段階」に記載されている「到達温度」、「到達圧力」及び「保持時間」での高温高圧処理は第3工程に該当する。
 <評価>
 (組成の測定)
 上記で得られた立方晶窒化硼素多結晶体中の立方晶窒化硼素の含有率を、X線回折法により測定した。X線回折法の具体的な方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。結果を表2の「cBN含有率」欄に示す。
 (転位密度の測定)
 上記で得られた立方晶窒化硼素多結晶体中の立方晶窒化硼素の転位密度を、X線回折測定により得られるラインプロファイルを修正Williamson-Hall法及び修正Warren-Averbach法を用いて解析することにより算出した。転位密度の具体的な算出方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。結果を表2の「転位密度」欄に示す。
 (結晶粒のメジアン径d50の測定)
 上記で得られた立方晶窒化硼素多結晶体に含まれる結晶粒について、円相当径のメジアン径d50を測定した。具体的な方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。結果を表2の「メジアン径(d50)」欄に示す。
 (切削試験)
 上記で得られた立方晶窒化硼素多結晶体を、レーザにより切断して仕上げ加工し、インサート型番SNEW1203ADTR(住友電工ハードメタル(株)製)の切削工具を作製した。得られた切削工具を用いて、以下の切削条件でねずみ鋳鉄FC300ブロック材(80mm×300mm×150mm)の正面フライス加工を行い、工具寿命を評価した。
 (切削条件)
 被削材:ねずみ鋳鉄FC300ブロック材(80mm×300mm×150mm)
 工具形状:
 カッタ型番FMU4100R(住友電工ハードメタル(株)製)
 インサート型番SNEW1203ADTR(住友電工ハードメタル(株)製)
 切削速度:2400m/min
 送り量:0.15mm/刃
 切込み量:0.4mm
 クーラント:DRY
 なお、上記の切削条件は、鉄系材料の高負荷加工に該当する。
 上記の切削条件で切削し、逃げ面から観察した工具の欠損量が250μm以上となるまでの加工時間を工具寿命として測定した。加工時間が長いほど、耐欠損性に優れ、工具寿命が長いことを示している。結果を表2の「工具寿命」欄に示す。
Figure JPOXMLDOC01-appb-T000003
 <考察>
 [試料10]
 試料10の製造方法は、第3段階(第3工程)における保持時間が3分未満(2分)であり、比較例に該当する。試料10の立方晶窒化硼素多結晶体は、結晶粒のメジアン径d50が0.1μm未満(0.08μm)であり、比較例に該当する。試料10の立方晶窒化硼素多結晶体を用いた工具は、工具寿命が短かった。これは、試料10では、第3工程での保持時間が短かったため、粒成長が不十分となり、結晶粒のメジアン径d50が小さくなったためと考えられる。
 [試料11及び試料12]
 試料11及び試料12の製造方法は、いずれも実施例に該当する。試料11及び試料12の立方晶窒化硼素多結晶体は、いずれも立方晶窒化硼素を98.5体積%以上含み、立方晶窒化硼素の転位密度が8×1015/mより大きく、結晶粒のメジアン径d50が0.1μm以上0.5μm以下であり、実施例に該当する。試料11及び試料12の立方晶窒化硼素多結晶体を用いた工具は、鉄系材料の高負荷加工においても、長い工具寿命を有することが確認された。
 [試料13]
 試料13の製造方法は、第3段階(第3工程)における保持時間が60分超(70分)であり、比較例に該当する。試料13の立方晶窒化硼素多結晶体は、結晶粒のメジアン径d50が0.5μm超(0.59μm)であり、比較例に該当する。試料13の立方晶窒化硼素多結晶体を用いた工具は、工具寿命が短かった。これは、試料13では、第3工程での保持時間が長かったため、粒成長が過剰に進み、結晶粒のメジアン径d50が大きくなったためと考えられる。
 [試料14]
 試料14の製造方法は、第3段階(第3工程)の温度が1700℃未満(1650℃)であり、比較例に該当する。試料14の立方晶窒化硼素多結晶体は、結晶粒のメジアン径d50が0.1μm未満(0.09μm)であり、比較例に該当する。試料14の立方晶窒化硼素多結晶体を用いた工具は、工具寿命が短かった。これは、試料14では、第3工程の温度が低かったため、粒成長が不十分となり、結晶粒のメジアン径d50が小さくなったためと考えられる。
 [試料15]
 試料15の製造方法は、第3段階(第3工程)の温度が2500℃超(2550℃)であり、比較例に該当する。試料15の立方晶窒化硼素多結晶体は、結晶粒のメジアン径d50が0.5μm超(0.60μm)であり、比較例に該当する。試料15の立方晶窒化硼素多結晶体を用いた工具は、工具寿命が短かった。これは、試料15では、第3工程の温度が高かったため、粒成長が過剰に進み、結晶粒のメジアン径d50が大きくなったためと考えられる。
 [試料16]
 試料16の製造方法は、ウルツ鉱型窒化硼素の安定領域への突入温度が500℃を超えており(1000℃)であり、比較例に該当する。試料16の立方晶窒化硼素多結晶体は、立方晶窒化硼素の転位密度が8×1015/m以下(6.6×1015/m)であり、比較例に該当する。試料16の立方晶窒化硼素多結晶体を用いた工具は、工具寿命が短かった。これは、試料16では、ウルツ鉱型窒化硼素の安定領域内への突入温度が500℃を超えているため、格子欠陥が生じ難く、転位密度が小さくなり、強度が低下したためと考えられる。
 [実施例3]
 実施例3では、立方晶窒化硼素多結晶体中のアルカリ金属元素及びアルカリ土類金属の含有量と、該立方晶窒化硼素多結晶体を用いた工具で難削材の超高速高負荷加工を行った場合の工具寿命との関係を調べた。
 <立方晶窒化硼素多結晶体の作製>
 試料17~試料19の立方晶窒化硼素多結晶体を、下記の手順に従って作製した。なお、試料17は、上記の試料2-2と同一の原料及び製造工程により作製されたものであり、得られた立方晶窒化硼素多結晶体も試料2-2と同一である。
 (第1工程)
 [試料17、試料18]
 市販の六方晶窒化硼素粉末(粒径5μm)を6g準備した。上記の六方晶窒化硼素粉末を、モリブデン製のカプセルに入れ、超高圧高温発生装置に設置した。
 [試料19]
 市販の立方晶窒化硼素粉末(平均粒径4μm)に対して、アルゴン雰囲気下、1900℃で1時間熱処理を行った。これにより、立方晶窒化硼素が六方晶窒化硼素に変換され、六方晶窒化硼素粉末が得られた。得られた六方晶窒化硼素粉末を、モリブデン製のカプセルに入れ、超高圧高温発生装置に設置した。
 (第2工程及び第3工程)
 [試料17~試料19]
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表3の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、圧力を維持したまま「第1段階」の「到達温度」欄に記載される温度まで昇温し、「保持時間」の欄に記載される長さで保持した。
 続いて、温度を維持したまま、表3の「第2段階」の「到達圧力」欄に記載される圧力まで昇圧し、「保持時間」の欄に記載される長さで保持した。
 続いて、圧力を維持したまま、表3の「第3段階」の「到達温度」欄に記載される温度まで昇温し、「保持時間」の欄に記載される長さで保持して立方晶窒化硼素多結晶体を得た。「第3段階」に記載されている「到達温度」、「到達圧力」及び「保持時間」での高温高圧処理は第3工程に該当する。
 <評価>
 (立方晶窒化硼素の含有率の測定、転位密度の測定、結晶粒のメジアン径d50の測定)
 上記で得られた立方晶窒化硼素多結晶体について、立方晶窒化硼素の含有率、立方晶窒化硼素の転位密度、及び、結晶粒のメジアン径d50の測定を行った。具体的な測定方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。結果を表3の「cBN含有率」、「cBN転位密度」、「メジアン径(d50)」欄に示す。
 なお、全ての試料において、cBN、wBN及び圧縮型hBN以外の成分は同定されなかった。
 (アルカリ金属元素及びアルカリ土類金属元素の合計含有量の測定)
 上記で得られた立方晶窒化硼素多結晶体中のアルカリ金属元素及びアルカリ土類金属元素の合計含有量を、SIMSにより測定した。具体的な測定方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。アルカリ金属元素及びアルカリ土類金属元素の合計含有量を表3の「アルカリ金属/アルカリ土類金属含有量」欄に示す。
 (切削試験)
 上記で得られた立方晶窒化硼素多結晶体を、レーザにより切断して仕上げ加工し、インサート型番NU-CNGA120408(住友電工ハードメタル(株)製)の切削工具を作製した。得られた切削工具を用いて、以下の切削条件でTi6Al4V丸棒(φ200mm、V形状スリット1本あり)の断続切削を行い、工具寿命を評価した。なお、被削材であるTi6Al4V丸棒は難削材である。
 (切削条件)
 被削材:Ti6Al4V丸棒(φ200mm、V形状スリット1本あり)
 工具形状:
 ホルダー型番DCLNR2525(住友電工ハードメタル(株)製)
 インサート型番NU-CNGA120408(住友電工ハードメタル(株)製)
 切削速度:250m/min
 送り量:0.1mm/刃
 切込み量:0.15mm
 クーラント:WET
 なお、上記の切削条件は、難削材の超高速高負荷加工に該当する。
 上記の切削条件で切削し、逃げ面から観察した工具の欠損量が100μm以上となるまでの加工時間を工具寿命として測定した。加工時間が長いほど、耐欠損性に優れ、工具寿命が長いことを示している。結果を表3の「工具寿命」欄に示す。
Figure JPOXMLDOC01-appb-T000004
 <考察>
 [試料17~試料19]
 試料17~試料19の製造方法は、いずれも実施例に該当する。試料17~試料19の立方晶窒化硼素多結晶体は、いずれも立方晶窒化硼素を98.5体積%以上含み、立方晶窒化硼素の転位密度が8×1015/mより大きく、結晶粒のメジアン径d50が0.1μm以上0.5μm以下であり、実施例に該当する。試料17~試料19の立方晶窒化硼素多結晶体を用いた工具は、難削材の超高速高負荷加工においても、15分以上の工具寿命を達成することができた。
 試料17及び試料18は、試料19よりも工具寿命がより長かった。これは、試料17及び試料18の立方晶窒化硼素多結晶体は、アルカリ金属元素及びアルカリ土類金属元素の合計含有量が10ppm以下であり、切削環境下で工具刃先と被削材との界面が高温高圧となった場合においても、立方晶窒化硼素から六方晶窒化硼素への変換が生じにくいためと考えられる。
 試料17及び試料18では、組成、アルカリ金属元素及びアルカリ土類金属元素の合計含有量、結晶粒のメジアン径d50、立方晶窒化硼素の転位密度が異なっていた。これは原料の六方晶窒化硼素の不純物量や粒径等のばらつきに起因すると考えられる。
 [実施例4]
 実施例4では、立方晶窒化硼素多結晶体中の圧縮型六方晶窒化硼素及びウルツ鉱型窒化硼素の含有量と、該立方晶窒化硼素多結晶体を用いた工具で難削材の高負荷加工を行った場合の工具寿命との関係を調べた。
 <立方晶窒化硼素多結晶体の作製>
 試料17~試料19の立方晶窒化硼素多結晶体を、下記の手順に従って作製した。
 (第1工程)
 市販の六方晶窒化硼素粉末(粒径5μm)を6g準備した。上記の六方晶窒化硼素粉末を、モリブデン製のカプセルに入れ、超高圧高温発生装置に設置した。
 (第2工程及び第3工程)
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表4の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、圧力を維持したまま「第1段階」の「到達温度」欄に記載される温度まで昇温し、「保持時間」の欄に記載される長さで保持した。
 続いて、温度を維持したまま、表4の「第2段階」の「到達圧力」欄に記載される圧力まで昇圧し、「保持時間」の欄に記載される長さで保持した。
 続いて、圧力を維持したまま、表4の「第3段階」の「到達温度」欄に記載される温度まで昇温し、「保持時間」の欄に記載される長さで保持して立方晶窒化硼素多結晶体を得た。「第3段階」に記載されている「到達温度」、「到達圧力」及び「保持時間」での高温高圧処理は第3工程に該当する。
 <評価>
 (組成の測定、転位密度の測定、結晶粒のメジアン径d50の測定)
 上記で得られた立方晶窒化硼素多結晶体について、組成(立方晶窒化硼素の含有率、圧縮型六方晶窒化硼素(以下、「comp.hBN」とも記す。)の含有率、ウルツ鉱型窒化硼素の含有率)、立方晶窒化硼素の転位密度、及び、結晶粒のメジアン径d50の測定を行った。具体的な測定方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。結果を表4の「cBN含有率」、「comp.hBN含有率」、「wBN含有率」、「cBN転位密度」、「メジアン径(d50)」欄に示す。
 なお、全ての試料において、cBN、wBN及び圧縮型hBN以外の成分は同定されなかった。
 (切削試験)
 上記で得られた立方晶窒化硼素多結晶体を、レーザにより切断して仕上げ加工し、インサート型番NU-CNGA120408(住友電工ハードメタル(株)製)の切削工具を作製した。得られた切削工具を用いて、以下の切削条件でTi6Al4V丸棒(φ200mm、V形状スリット1本あり)の断続切削を行い、工具寿命を評価した。なお、被削材であるTi6Al4V丸棒は難削材である。
 (切削条件)
 被削材:Ti6Al4V丸棒(φ200mm、V形状スリット1本あり)
 工具形状:
 ホルダー型番DCLNR2525(住友電工ハードメタル(株)製)
 インサート型番NU-CNGA120408(住友電工ハードメタル(株)製)
 切削速度:120m/min
 送り量:0.1mm/刃
 切込み量:0.15mm
 クーラント:WET
 なお、上記の切削条件は、難削材の高負荷加工に該当する。
 上記の切削条件で切削し、逃げ面から観察した工具の欠損量が100μm以上となるまでの加工時間を工具寿命として測定した。加工時間が長いほど、耐欠損性に優れ、工具寿命が長いことを示している。結果を表4の「工具寿命」欄に示す。
Figure JPOXMLDOC01-appb-T000005
 <考察>
 [試料20~試料22]
 試料20~試料22の製造方法は、いずれも実施例に該当する。試料20~試料22の立方晶窒化硼素多結晶体は、いずれも立方晶窒化硼素を98.5体積%以上含み、立方晶窒化硼素の転位密度が8×1015/mより大きく、結晶粒のメジアン径d50が0.1μm以上0.5μm以下であり、実施例に該当する。試料20~試料22の立方晶窒化硼素多結晶体を用いた工具は、難削材の高負荷加工においても、長い工具寿命を達成することができた。
[規則91に基づく訂正 28.07.2020] 
 試料20及び試料21は、試料22よりも工具寿命が長かった。これは、試料20及び試料21の立方晶窒化硼素多結晶体が圧縮型六方晶窒化硼素及び/又はウルツ鉱型窒化硼素を含み、耐凝着性及び摺動性が向上したためと考えられる。
 [試料23]
 試料23の製造方法は、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する工程を含まず、比較例に該当する。試料23の立方晶窒化硼素多結晶体は、立方晶窒化硼素の含有率が98.2体積%であり、比較例に該当する。試料23の立方晶窒化硼素多結晶体を用いた工具は、工具寿命が短かった。これは、試料23の製造方法はウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する工程を含ないため、六方晶窒化硼素からウルツ鉱型窒化硼素への変換率が低く、結果として立方晶窒化硼素への変換率も低くなり、得られた立方晶窒化硼素多結晶体の立方晶窒化硼素の含有率が小さいためと考えられる。
 [実施例5]
 実施例5では、立方晶窒化硼素多結晶体中の板状粒子の面積比率と、該立方晶窒化硼素多結晶体を用いた工具で鉄系材料の高負荷加工を行った場合の工具寿命との関係を調べた。
 <立方晶窒化硼素多結晶体の作製>
 試料24~試料28の立方晶窒化硼素多結晶体を、下記の手順に従って作製した。
 (第1工程)
 市販の六方晶窒化硼素粉末(粒径5μm)を6g準備した。上記の六方晶窒化硼素粉末を、モリブデン製のカプセルに入れ、超高圧高温発生装置に設置した。
 (第2工程及び第3工程)
 上記の六方晶窒化硼素粉末を、超高圧高温発生装置を用いて、表5の「開始点」の「温度」及び「圧力」欄に記載される温度及び圧力から、圧力を維持したまま「第1段階」の「到達温度」欄に記載される温度まで昇温し、「保持時間」の欄に記載される長さで保持した。
 続いて、温度を維持したまま、表5の「第2段階」の「到達圧力」欄に記載される圧力まで昇圧し、「保持時間」の欄に記載される長さで保持した。
 続いて、圧力を維持したまま、表5の「第3段階」の「到達温度」欄に記載される温度まで昇温し、「保持時間」の欄に記載される長さで保持して立方晶窒化硼素多結晶体を得た。「第3段階」に記載されている「到達温度」、「到達圧力」及び「保持時間」での高温高圧処理は第3工程に該当する。
 <評価>
 (立方晶窒化硼素の含有率の測定、転位密度の測定、結晶粒のメジアン径d50の測定)
 上記で得られた立方晶窒化硼素多結晶体について、立方晶窒化硼素の含有率、立方晶窒化硼素の転位密度、及び、結晶粒のメジアン径d50の測定を行った。具体的な測定方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。結果を表5の「cBN含有率」、「cBN転位密度」、「メジアン径(d50)」欄に示す。
 なお、全ての試料において、cBN、wBN及び圧縮型hBN以外の成分は同定されなかった。
 (板状粒子の面積比率の測定)
 上記で得られた立方晶窒化硼素多結晶体について、板状粒子の面積比率を測定した。具体的な測定方法は、実施の形態1に示される通りであるため、その説明は繰り返さない。結果を表5の「板状粒子の面積比率」欄に示す。
 (切削試験)
 上記で得られた立方晶窒化硼素多結晶体を、レーザにより切断して仕上げ加工し、インサート型番SNEW1203ADTR(住友電工ハードメタル(株)製)の切削工具を作製した。得られた切削工具を用いて、以下の切削条件でねずみ鋳鉄FC300ブロック材(80mm×300mm×150mm)の正面フライス加工を行い、工具寿命を評価した。
 (切削条件)
 被削材:ねずみ鋳鉄FC300ブロック材(80mm×300mm×150mm)
 工具形状:
 カッタ型番FMU4100R(住友電工ハードメタル(株)製)
 インサート型番SNEW1203ADTR(住友電工ハードメタル(株)製)
 切削速度:2250m/min
 送り量:0.13mm/刃
 切込み量:0.45mm
 クーラント:DRY
 なお、上記の切削条件は、鉄系材料の高負荷加工に該当する。
 上記の切削条件で切削し、逃げ面から観察した工具の欠損量が250μm以上となるまでの加工時間を工具寿命として測定した。加工時間が長いほど、耐欠損性に優れ、工具寿命が長いことを示している。結果を表5の「工具寿命」欄に示す。
Figure JPOXMLDOC01-appb-T000006
 [試料24~試料28]
 試料24~試料28の製造方法は、いずれも実施例に該当する。試料24~試料28の立方晶窒化硼素多結晶体は、いずれも立方晶窒化硼素を98.5体積%以上含み、立方晶窒化硼素の転位密度が8×1015/mより大きく、結晶粒のメジアン径d50が0.1μm以上0.5μm以下であり、実施例に該当する。試料24~試料28の立方晶窒化硼素多結晶体を用いた工具は、鉄系材料の高負荷加工においても、長い工具寿命を有することが確認された。
 試料24~試料28を比べると、板状粒子の面積比率が小さいほど、工具寿命が長くなる傾向が確認された。これは、板状粒子の面積比率が小さいほど、板状粒子に起因する突発的な刃先の欠損が生じ難いためと考えられる。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (13)

  1.  立方晶窒化硼素を98.5体積%以上含む立方晶窒化硼素多結晶体であって、
     前記立方晶窒化硼素の転位密度は8×1015/mより大きく、
     前記立方晶窒化硼素多結晶体は、複数の結晶粒を含み、
     前記複数の結晶粒の円相当径のメジアン径d50は0.1μm以上0.5μm以下である、立方晶窒化硼素多結晶体。
  2.  前記転位密度は9×1015/m以上である、請求項1に記載の立方晶窒化硼素多結晶体。
  3.  前記立方晶窒化硼素多結晶体のアルカリ金属元素及びアルカリ土類金属元素の合計含有量は、質量基準で10ppm以下である、請求項1又は請求項2に記載の立方晶窒化硼素多結晶体。
  4.  前記立方晶窒化硼素多結晶体において、その断面を走査型電子顕微鏡を用いて10000倍の倍率で観察した場合、アスペクト比が4以上の板状粒子の面積比率は30面積%以下である、請求項1から請求項3のいずれか1項に記載の立方晶窒化硼素多結晶体。
  5.  前記アスペクト比が4以上の板状粒子の面積比率は5面積%以下である、請求項4に記載の立方晶窒化硼素多結晶体。
  6.  前記立方晶窒化硼素多結晶体は、圧縮型六方晶窒化硼素を0.01体積%以上含む、請求項1から請求項5のいずれか1項に記載の立方晶窒化硼素多結晶体。
  7.  前記立方晶窒化硼素多結晶体は、ウルツ鉱型窒化硼素を0.1体積%以上含む、請求項1から請求項6のいずれか1項に記載の立方晶窒化硼素多結晶体。
  8.  前記転位密度は、修正Williamson-Hall法及び修正Warren-Averbach法を用いて算出される、請求項1から請求項7のいずれか1項に記載の立方晶窒化硼素多結晶体。
  9.  前記転位密度は、放射光をX線源として測定される、請求項1から請求項8のいずれか1項に記載の立方晶窒化硼素多結晶体。
  10.  請求項1から請求項9のいずれか1項に記載の立方晶窒化硼素多結晶体の製造方法であって、
     六方晶窒化硼素粉末を準備する第1工程と、
     前記六方晶窒化硼素粉末を、ウルツ鉱型窒化硼素の安定領域内の温度及び圧力を通過して、1700℃以上2500℃以下の温度、及び、8GPa以上の圧力まで加熱加圧して窒化硼素多結晶体を得る第2工程と、
     前記第2工程により得られた窒化硼素多結晶体を、1700℃以上2500℃以下の温度、及び、8GPa以上の圧力条件下で3分以上60分以下保持して立方晶窒化硼素多結晶体を得る第3工程とを備え、
     前記ウルツ鉱型窒化硼素の安定領域は、温度をT℃、圧力をPGPaとした時に、下記式1及び下記式2を同時に満たす領域であり、
     式1:P≧-0.0037T+11.301
     式2:P≦-0.085T+117
     前記第2工程の加熱加圧経路において、前記ウルツ鉱型窒化硼素の安定領域への突入温度は500℃以下であり、
     前記第2工程は、その加熱加圧経路における温度及び圧力を、前記ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で10分以上保持する工程を含む、立方晶窒化硼素多結晶体の製造方法。
  11.  前記突入温度は300℃以下である、請求項10に記載の立方晶窒化硼素多結晶体の製造方法。
  12.  前記第2工程は、その加熱加圧経路における温度及び圧力を、前記ウルツ鉱型窒化硼素の安定領域内の温度及び圧力で15分以上保持する工程を含む、請求項10又は請求項11に記載の立方晶窒化硼素多結晶体の製造方法。
  13.  前記第2工程は、その加熱加圧経路における温度及び圧力を、温度をT℃、圧力をPGPaとした時に、下記式1、下記式2及び下記式3を同時に満たす領域内の温度及び圧力で10分以上保持する工程を含む、
     式1:P≧-0.0037T+11.301
     式2:P≦-0.085T+117
     式3:P≦-0.0037T+11.375
     請求項10から請求項12のいずれか1項に記載の立方晶窒化硼素多結晶体の製造方法。
PCT/JP2020/008149 2019-02-28 2020-02-27 立方晶窒化硼素多結晶体及びその製造方法 WO2020175642A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20762962.7A EP3932893A4 (en) 2019-02-28 2020-02-27 POLYCRYSTALLINE CUBIC BORON NITRIDE AND METHOD FOR PRODUCTION THEREOF
JP2020541821A JP6798090B1 (ja) 2019-02-28 2020-02-27 立方晶窒化硼素多結晶体及びその製造方法
CN202080010567.0A CN113329985A (zh) 2019-02-28 2020-02-27 立方晶氮化硼多晶体及其制造方法
KR1020217026969A KR20210130151A (ko) 2019-02-28 2020-02-27 입방정 질화붕소 다결정체 및 그 제조 방법
US17/052,920 US11208324B2 (en) 2019-02-28 2020-02-27 Polycrystalline cubic boron nitride and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019036261 2019-02-28
JP2019-036261 2019-02-28
PCT/JP2020/001436 WO2020174921A1 (ja) 2019-02-28 2020-01-17 立方晶窒化硼素多結晶体及びその製造方法
JPPCT/JP2020/001436 2020-01-17

Publications (2)

Publication Number Publication Date
WO2020175642A1 WO2020175642A1 (ja) 2020-09-03
WO2020175642A9 true WO2020175642A9 (ja) 2020-11-05

Family

ID=72238930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008149 WO2020175642A1 (ja) 2019-02-28 2020-02-27 立方晶窒化硼素多結晶体及びその製造方法

Country Status (3)

Country Link
US (1) US11208324B2 (ja)
EP (1) EP3932893A4 (ja)
WO (1) WO2020175642A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220095233A (ko) * 2019-12-16 2022-07-06 스미토모덴키고교가부시키가이샤 입방정 질화붕소 소결체

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109278A (en) 1979-02-17 1980-08-22 Kuratomi Tatsuro Cubic boron nitride solidified body and its manufacture
US4289503A (en) 1979-06-11 1981-09-15 General Electric Company Polycrystalline cubic boron nitride abrasive and process for preparing same in the absence of catalyst
JPS582269A (ja) 1981-06-27 1983-01-07 ベロルススキ−・ポリテクニチエスキ−・インステイテユト 密な構造の窒化硼素多結晶体の製造方法
JP4106574B2 (ja) 1998-02-28 2008-06-25 住友電気工業株式会社 立方晶窒化ホウ素焼結体およびその製造方法
JP2006201216A (ja) 2005-01-18 2006-08-03 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、電子機器
EP2039667B1 (en) * 2006-06-12 2011-10-12 Sumitomo Electric Hardmetal Corp. Composite sintered body
FR2933690B1 (fr) * 2008-07-11 2010-09-10 Centre Nat Rech Scient Nanonitrure de bore cubique
WO2014055230A1 (en) * 2012-10-03 2014-04-10 Diamond Innovations, Inc Cubic boron nitride particles having a unique morphology
JP2014080323A (ja) 2012-10-16 2014-05-08 Sumitomo Electric Ind Ltd 立方晶窒化ホウ素複合多結晶体およびその製造方法ならびにその立方晶窒化ホウ素複合多結晶を備える切削工具、耐摩工具および研削工具
JP6256169B2 (ja) 2014-04-14 2018-01-10 住友電気工業株式会社 立方晶窒化ホウ素複合焼結体およびその製造方法、ならびに切削工具、耐摩工具および研削工具
JP6447197B2 (ja) * 2015-02-04 2019-01-09 住友電気工業株式会社 立方晶窒化ホウ素多結晶体、切削工具、耐摩工具、研削工具、および立方晶窒化ホウ素多結晶体の製造方法
EP3333141B1 (en) 2016-10-06 2021-12-15 Sumitomo Electric Industries, Ltd. Method for producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resistant tool, and grinding tool
JP6762281B2 (ja) 2017-08-22 2020-09-30 日立オートモティブシステムズ株式会社 スタックオーバーフロー検知装置及び車両制御システム

Also Published As

Publication number Publication date
US11208324B2 (en) 2021-12-28
US20210238036A1 (en) 2021-08-05
WO2020175642A1 (ja) 2020-09-03
EP3932893A4 (en) 2022-05-11
EP3932893A1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP6798091B1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
WO2020175647A9 (ja) 立方晶窒化硼素多結晶体及びその製造方法
JP6798089B1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
JP6818966B1 (ja) 複合焼結体及びそれを用いた工具
WO2020175642A9 (ja) 立方晶窒化硼素多結晶体及びその製造方法
JP6798090B1 (ja) 立方晶窒化硼素多結晶体及びその製造方法
JP7042989B1 (ja) ダイヤモンド焼結体、及びダイヤモンド焼結体を備える工具
JP7076531B2 (ja) 立方晶窒化硼素多結晶体
JP7180054B1 (ja) ダイヤモンド多結晶体、及びダイヤモンド多結晶体を備える工具
JP7180053B1 (ja) ダイヤモンド多結晶体、及びダイヤモンド多結晶体を備える工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020541821

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020762962

Country of ref document: EP

Effective date: 20210928