WO2021185128A1 - 激光器模块、硅光模块及光传输器件 - Google Patents

激光器模块、硅光模块及光传输器件 Download PDF

Info

Publication number
WO2021185128A1
WO2021185128A1 PCT/CN2021/079886 CN2021079886W WO2021185128A1 WO 2021185128 A1 WO2021185128 A1 WO 2021185128A1 CN 2021079886 W CN2021079886 W CN 2021079886W WO 2021185128 A1 WO2021185128 A1 WO 2021185128A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
chip
optical
silicon optical
silicon
Prior art date
Application number
PCT/CN2021/079886
Other languages
English (en)
French (fr)
Inventor
鲍赟
王安斌
谢崇进
Original Assignee
阿里巴巴集团控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿里巴巴集团控股有限公司 filed Critical 阿里巴巴集团控股有限公司
Publication of WO2021185128A1 publication Critical patent/WO2021185128A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]

Definitions

  • This specification relates to the field of optical communication technology, in particular to a laser module, a silicon optical module, and an optical transmission device.
  • optical modules are used to send and receive optical signals and are one of the core components in the entire optical network.
  • the traditional optical module adopts a discrete structure, and the optical signal in the optical chip is coupled to the optical fiber through passive components, such as a lens.
  • passive components such as a lens.
  • This specification proposes a laser module, a silicon optical module and an optical transmission device, which are easy to assemble and can save the overall volume of the device.
  • a laser module including:
  • a laser waveguide for coupling with a silicon optical chip, and the laser waveguide is packaged on the first substrate;
  • the laser chip is used for butting with the laser waveguide, the laser chip is coupled to the first side end surface of the laser waveguide, and the laser chip is packaged on the first substrate.
  • the second side end surface of the laser waveguide opposite to the first side end surface protrudes from the side end surface of the first substrate.
  • the lower surface of the first fixing member is used to connect with the silicon optical chip;
  • the laser waveguide includes a second side end surface opposite to the first side end surface, and the first The side end surface of the fixing member is adhesively connected with part of the second side end surface.
  • the upper surface of the first fixing member protrudes from the upper surface of the laser waveguide, and a part of the first fixing member protruding from the laser waveguide extends in a direction close to the laser waveguide to form a first fixing member.
  • An extension part, the lower surface of the first extension part abuts against the upper surface of the laser waveguide.
  • a silicon optical module including a laser module, the laser module including a first substrate, a laser waveguide, and a laser chip, the silicon optical module further including a second substrate, a silicon optical chip And fiber optic components:
  • the laser waveguide and the laser chip are both packaged on the first substrate, the laser waveguide is coupled and connected to the silicon optical chip, the silicon optical chip is packaged on the second substrate, and the silicon optical chip is The side of the chip is provided with a first optical coupling port and a second optical coupling port;
  • the optical fiber element is provided with an optical fiber, the optical fiber element is coupled to the silicon optical chip, and the optical fiber is butted with the first optical coupling port; the laser chip is coupled to the first side end surface of the laser waveguide And it is docked with the second optical coupling port.
  • it also includes a cover body encapsulated on the second substrate and covering the outside of the silicon optical chip; a first opening is opened on the side of the cover body, the first light coupling port and The second light coupling port is exposed from the first opening;
  • the optical fiber element is coupled to the silicon optical chip in the first opening, and the laser waveguide is coupled to the silicon optical chip in the first opening.
  • first fixing member disposed on the upper surface of the silicon optical chip, and the first fixing member is exposed from the first opening;
  • the side end surface of the first fixing member is flush with the side end surface of the silicon optical chip provided with the second light coupling port, and the upper surface of the laser waveguide protrudes from the upper surface of the silicon optical chip, so The first fixing member is adhesively connected to the part of the laser waveguide protruding from the silicon optical chip.
  • the upper surface of the first fixing member protrudes from the upper surface of the laser waveguide, and a part of the first fixing member protruding from the laser waveguide extends in a direction close to the laser waveguide to form a first fixing member.
  • An extension part, the lower surface of the first extension part abuts against the upper surface of the laser waveguide.
  • it further includes a second fixing member disposed on the upper surface of the silicon optical chip, and the second fixing member is exposed from the first opening;
  • the side end surface of the second fixing member is flush with the side end surface of the silicon optical chip provided with the first light coupling port, and the upper surface of the optical fiber element protrudes from the upper surface of the silicon optical chip, so The second fixing member is adhesively connected to the part of the optical fiber element protruding from the silicon optical chip.
  • the upper surface of the second fixing member protrudes from the upper surface of the optical fiber element, and a part of the second fixing member protruding from the optical fiber element extends in a direction approaching the optical fiber element to form a first Two extension parts, the lower surface of the second extension part abuts against the upper surface of the optical fiber element.
  • the side end surface of the cover provided with the first opening is flush with the side end surface of the second base.
  • the number of the first optical coupling port is multiple, and the number of the optical fiber corresponds to the number of the first optical coupling port; the optical fiber includes a signal transmitting port and a signal receiving port.
  • the number of the second optical coupling ports is multiple, and the number of the laser chips corresponds to the number of the second optical coupling ports.
  • an optical transmission device including: a circuit board and at least one silicon optical module as described in any of the above embodiments, the second substrate and the first substrate connected to the The circuit board.
  • the laser chip can be connected to the optical coupling port of the silicon optical chip through the laser waveguide, and the emitted light can be coupled to the silicon optical chip without the need for external optical fibers or micro-optics.
  • the device and other components are coupled with the silicon optical chip, which is easy to assemble and can save the overall volume of the device. It can also improve the coupling efficiency, reduce the reliability risk, greatly simplify the coupling process, and save materials, costs, and coupling time.
  • Fig. 1 shows a three-dimensional schematic diagram of a laser module according to an exemplary embodiment of this specification
  • Figure 2 is a top view of Figure 1;
  • Fig. 3 shows a schematic diagram of a connection between a laser module and a silicon optical chip according to an exemplary embodiment of this specification
  • Figure 4 is a side view of Figure 3;
  • Fig. 5 shows a three-dimensional schematic diagram of a silicon optical module according to an exemplary embodiment of this specification
  • Fig. 6 is a perspective schematic view of the silicon optical module shown in Fig. 5 with a cover removed;
  • FIG. 7 is a three-dimensional schematic diagram of the silicon optical module shown in FIG. 6 with the laser module removed;
  • Figure 8 is a side view of Figure 7;
  • Fig. 9 is a three-dimensional schematic diagram of the silicon optical module shown in Fig. 6 with optical fiber components removed;
  • Figure 10 is a side view of Figure 9;
  • Fig. 11 shows a three-dimensional schematic diagram of another silicon optical module according to an exemplary embodiment of the present specification
  • FIG. 12 is a three-dimensional schematic diagram of the silicon optical module shown in FIG. 11 with the cover removed;
  • FIG. 13 is a three-dimensional schematic diagram of the silicon optical module shown in FIG. 12 with the laser module removed;
  • Figure 14 is a side view of Figure 13;
  • FIG. 15 is a three-dimensional schematic diagram of the silicon optical module shown in FIG. 12 with optical fiber components removed;
  • Figure 16 is a side view of Figure 15;
  • 17 is a schematic diagram of the connection of the silicon optical chip, the cover and the second substrate of the silicon optical module shown in FIG. 11;
  • FIG. 18 is a three-dimensional schematic diagram of the silicon optical module shown in FIG. 17 with the silicon optical chip removed;
  • FIG. 19 is a perspective schematic view of the silicon optical module shown in FIG. 17 with the cover removed;
  • FIG. 20 shows a three-dimensional schematic diagram of still another silicon optical module according to an exemplary embodiment of the present specification
  • 21 is a schematic diagram of the connection of the silicon optical chip, the cover and the second substrate of the silicon optical module shown in FIG. 20;
  • FIG. 22 is a three-dimensional schematic diagram of the silicon optical module shown in FIG. 21 with a cover removed.
  • first, second, third, etc. may be used in this specification to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or “when” or "in response to determination”.
  • Silicon Photonics is based on waveguide transmission, and uses the very mature silicon wafer processing technology of the semiconductor industry to highly integrate various devices, such as optical modulators, receivers, and passive waveguide devices, on a silicon substrate through an etching process. Therefore, this silicon optical chip module has the advantages of small size and high integration, and at the same time, it can reduce assembly links and improve test efficiency, thereby saving various time, manpower, process, and material costs.
  • This specification proposes a laser module, a silicon optical module and an optical transmission device, which are easy to assemble and can save the overall volume of the device.
  • the laser module, silicon optical module and optical transmission device of this specification will be described in detail below with reference to the accompanying drawings. In the case of no conflict, the following embodiments and features in the implementation can be combined with each other.
  • an embodiment of the present specification provides a laser module 50, which includes: a first substrate 51, a laser waveguide 52 and a laser chip 53.
  • the laser waveguide 52 is used for coupling and connection with a silicon optical chip, and the laser waveguide 52 is packaged on the first substrate 51.
  • the laser chip 53 is used for docking with the laser waveguide 52, the laser chip 53 is coupled to the first side end surface 521 of the laser waveguide 52, and the laser chip 53 is packaged on the first substrate 51.
  • the first substrate 51 may be an organic material, a ceramic material, or an aluminum nitride material.
  • the laser waveguide 52 and the first substrate 51 can be mounted on the first substrate 51 by a flip chip process, or can be mounted on the first substrate 51 by means of glue.
  • the number of the laser chips corresponds to the number of optical coupling ports of the silicon optical chip. In this embodiment, the number of laser chips 53 is two.
  • the position of the light coupling port of the silicon optical chip 20 can be seen in the direction of the dotted line in FIG. 4.
  • the laser chip 53 can be connected to the optical coupling port of the silicon optical chip 20 through the laser waveguide 52, and the emitted light can be coupled to the silicon optical chip 20 without using external optical fibers or micro-optical devices.
  • Other components are coupled with the silicon optical chip, which is easy to assemble and can save the overall volume of the device. It can also improve the coupling efficiency, reduce the reliability risk, greatly simplify the coupling process, and save materials, costs, and coupling time.
  • the second side end surface 522 of the laser waveguide 52 facing away from the first side end surface 521 protrudes from the side end surface of the first substrate 51.
  • the laser module 50 of this specification may further include a first fixing member 54, and the lower surface of the first fixing member 54 is used to connect with the silicon optical chip 20.
  • the laser waveguide 52 includes a second side end surface 522 facing away from the first side end surface 521, and the side end surface of the first fixing member 54 is adhesively connected to a part of the second side end surface 522 of the laser waveguide 52. In this way, the laser waveguide 52 is connected to the silicon optical chip 20 through the first fixing member 54, which is more reliable.
  • the first fixing member 54 may be an independent element provided separately, such as a glass device.
  • the laser waveguide 52 can be aligned with the first optical coupling port of the silicon optical chip 20 through an edge coupling process, and connected with the first fixing member 54 by adhesive, thereby fixing the laser waveguide 52 and the silicon optical chip 20.
  • the side end surface of the first fixing member 54 may be flush with the side end surface of the silicon optical chip 20 to facilitate the alignment and assembly of the laser waveguide 52 and the silicon optical chip 20.
  • the first fixing member 54 and the laser waveguide 52 are connected by glue bonding, so that the laser waveguide 52 and the silicon optical chip 20 are fixed to each other.
  • the upper surface of the first fixing member 54 protrudes from the upper surface of the laser waveguide 52, and the first fixing The part 54 protruding from the laser waveguide 52 extends toward the laser waveguide 52 to form a first extension portion 541, and the lower surface of the first extension portion 541 is against the upper surface of the laser waveguide 52. Then, the first extension 541 can be fixed to the laser waveguide 52 in the longitudinal direction.
  • the laser waveguide 52 is fixed to the first fixing member 54 in both the horizontal and vertical directions, so as to better fix the laser waveguide 52 and the silicon optical chip 20 to prevent the laser waveguide 52 and the silicon optical chip 20 from interacting with each other.
  • the bonding between them is not strong enough.
  • the laser chip can be connected to the optical coupling port of the silicon optical chip through the laser waveguide, and the emitted light can be coupled to the silicon optical chip without external optical fibers, micro-optical devices, etc.
  • the component is coupled with the silicon optical chip, which is easy to assemble and can save the overall volume of the device. It can also improve the coupling efficiency, reduce the reliability risk, greatly simplify the coupling process, and save materials, costs, and coupling time.
  • an embodiment of this specification also provides a silicon optical module, including a laser module 50.
  • the laser module 50 includes a first substrate 51, a laser waveguide 52, and a laser.
  • the chip 53, the silicon optical module further includes a second substrate 10, a silicon optical chip 20 and an optical fiber element 40.
  • the laser waveguide 52 and the laser chip 53 are both packaged on the first substrate 51, the laser waveguide 52 is coupled to the silicon optical chip 20, and the silicon optical chip 20 is packaged on the second substrate 10. superior.
  • the number of laser chips 53 is two.
  • the silicon optical chip 20 and the second substrate 10 can be mounted on the second substrate 10 through a flip chip (Flip chip) process, or can be mounted on the second substrate 10 by means of glue.
  • the side of the silicon optical chip 20 is provided with a first optical coupling port and a second optical coupling port.
  • the position of the first optical coupling port can be referred to as shown in the dotted line in FIG. 8, and the position of the second optical coupling port can be referred to as shown in the figure. 10 shows the direction of the dashed line.
  • the first optical coupling port includes a transmitting port (TX port, transport) and a receiving port (RX port, receive port).
  • the second optical coupling port includes a laser input end.
  • the laser chip 53 is coupled to the first side end surface (the front end surface shown in FIG. 5) of the laser waveguide 52, and is connected to the second optical coupling port of the silicon optical chip 20.
  • the optical fiber element 40 is provided with an optical fiber 41, the optical fiber element 40 is coupled to the silicon optical chip 20, and the optical fiber 41 is butted with the first optical coupling port of the silicon optical chip 20.
  • the silicon optical module of this specification integrates the laser module and the silicon optical chip into an integrated structure, which can save the overall volume of the device.
  • the laser chip of the laser module can be connected to the optical coupling port of the silicon optical chip through the laser waveguide, and the emitted light can be coupled to the silicon optical chip without coupling with the silicon optical chip through external optical fibers, micro-optical devices and other components. It is easy to assemble and can save the overall volume of the device. It can also improve the coupling efficiency, reduce the reliability risk, greatly simplify the coupling process, and save materials, costs, and coupling time.
  • the silicon optical module may further include a cover 30, which is packaged on the second substrate 10 and wraps the outside of the silicon optical chip 20, the cover 30 and the second substrate 10 Glue can also be used for encapsulation. It can be understood that a recessed cavity is formed on the cover 30, and the silicon optical chip 20 can be contained therein.
  • the side of the cover 30 is provided with a first opening 31, and the first light coupling port and the second light coupling port are exposed from the first opening 31. It is understandable that the first opening 31 can be formed by opening a gap on the upper surface and the side surface of the cover 30 to expose part of the upper surface of the silicon optical chip 20 and the first light coupling port and the second light coupling port.
  • the laser chip 53 is coupled to the first side end surface of the laser waveguide 52 in the first opening 31, and the optical fiber element 40 is coupled to the silicon optical chip 20 in the first opening 31.
  • the cover body is wrapped on the outside of the silicon optical chip, which can protect the silicon optical chip.
  • the first light coupling port and the second light coupling port of the silicon optical chip are partially exposed, which facilitates the coupling of the optical fiber element and the laser waveguide with the silicon optical chip, thereby forming an integrated structure. Easy to assemble, saving labor and material costs.
  • the second substrate 10 and the cover 30 are both rectangular plates, and the size of the cover 30 is matched with the size of the cover 10 to ensure the flatness of the appearance of the silicon optical module. Easy to assemble.
  • the width of the first opening 31 is smaller than the width of the silicon optical chip 20.
  • the inner side wall 32 of the first opening 31 and the rear end of the cover 30 can cover the outside of the silicon optical chip 20 from the front to back.
  • the left end and the right end can be wrapped around the outside of the silicon optical chip 20 from the left and right directions, and then the silicon optical chip 20 is covered in the front and rear, left and right directions, which can protect the silicon optical chip 20.
  • the second substrate 10 may be an organic material, a ceramic material, or an aluminum nitride material.
  • the cover 30 can be made of a metal material, for example, a nickel-copper alloy, which can protect the silicon optical chip 20 and also have a good heat dissipation effect.
  • the second side end surface 522 of the laser waveguide 52 facing away from the first side end surface 521 protrudes from the side end surface of the first substrate 51.
  • the laser module 50 of this specification may further include a first fixing member 54, and the lower surface of the first fixing member 54 is used to connect with the silicon optical chip 20.
  • the laser waveguide 52 includes a second side end surface 522 facing away from the first side end surface 521, and the side end surface of the first fixing member 54 is adhesively connected to a part of the second side end surface 522 of the laser waveguide 52. In this way, the laser waveguide 52 is connected to the silicon optical chip 20 through the first fixing member 54, which is more reliable.
  • the first fixing member 54 may be an independent element provided separately, such as a glass device.
  • the laser waveguide 52 can be aligned with the first optical coupling port of the silicon optical chip 20 through an edge coupling process, and connected with the first fixing member 54 by adhesive, thereby fixing the laser waveguide 52 and the silicon optical chip 20.
  • the side end surface of the first fixing member 54 may be flush with the side end surface (the front end surface shown in the figure) of the silicon optical chip 20 provided with the first light coupling port and the second light coupling port, so as to facilitate The laser waveguide 52 and the silicon optical chip 20 are assembled in alignment.
  • the laser waveguide 52 can be aligned with the second optical coupling port of the silicon optical chip 20 through an edge coupling process, and the first fixing member 54 and the laser waveguide 52 are connected by glue bonding, thereby connecting the laser waveguide 52 and the silicon optical chip 20 Fixed to each other.
  • the height of the upper surface of the first fixing member 54 is lower than the height of the upper surface of the cover 30 to ensure the flatness of the appearance of the silicon light module.
  • the upper surface of the first fixing member 54 protrudes from the upper surface of the laser waveguide 52, and the first fixing The part 54 protruding from the laser waveguide 52 extends toward the laser waveguide 52 to form a first extension portion 541, and the lower surface of the first extension portion 541 is against the upper surface of the laser waveguide 52. Then, the first extension 541 can be fixed to the laser waveguide 52 in the longitudinal direction.
  • the laser waveguide 52 is fixed to the first fixing member 54 in both the horizontal and vertical directions, so as to better fix the laser waveguide 52 and the silicon optical chip 20 to prevent the laser waveguide 52 and the silicon optical chip 20 from interacting with each other.
  • the bonding between them is not strong enough.
  • the silicon optical module may further include a second fixing member 60, which may be arranged on the exposed part of the silicon optical chip 20 from the first opening 31 of the cover 30 by glue bonding. On the upper surface, the second fixing member 60 is also exposed from the first opening 31.
  • the second fixing member 60 may be an independent element provided separately, such as a glass device.
  • the side end surface of the second fixing member 60 is flush with the side end surface (the front end surface shown in the figure) of the silicon optical chip 20 where the first light coupling port and the second light coupling port are provided.
  • the two fixing members 60 and the optical fiber element 40 are connected by glue bonding, thereby fixing the optical fiber element 40 and the silicon optical chip 20 to each other.
  • the height of the upper surface of the second fixing member 60 is lower than the height of the upper surface of the cover 30 to ensure the flatness of the appearance of the silicon light module.
  • a second extension 61 is formed on the side of the second fixing member 60 in a direction approaching the optical fiber element 40.
  • the lower surface of the second extension portion 61 abuts the upper surface of the optical fiber element 40, that is, the second extension portion 61 can be fixed to the optical fiber element 40 in the longitudinal direction.
  • the first opening 31 is formed by the upper surface and the side surface of the cover body 30 jointly opening a gap to expose part of the upper surface of the silicon optical chip 20, which is convenient for tooling when assembling the optical fiber element 40 and the laser waveguide 52
  • the optical fiber element 40 and the laser waveguide 52 are clamped to achieve a precise position for docking with the silicon optical chip 20.
  • the optical fiber element 40 may be aligned with the first optical coupling port of the silicon optical chip 20 through an edge coupling process, and connected to the second fixing member 60 by adhesive, thereby fixing the optical fiber element 40 and the silicon optical chip 20.
  • the laser waveguide 52 can be aligned with the second optical coupling port of the silicon optical chip 20 through an edge coupling process, and the first fixing member 54 and the laser waveguide 52 are connected by glue bonding, thereby connecting the laser waveguide 52 and the silicon optical chip 20 Fixed to each other.
  • the laser module 50 can be separately assembled as a whole for coupling and assembly until the optical performance after assembly reaches the optimum, and then the laser module 50 is integrally coupled to the silicon optical chip 20,
  • the first fixing member 54 is fixed to ensure that the laser waveguide 52 can maintain a fixed polarization state, which can greatly improve coupling efficiency, has a simple structure, reduces coupling difficulty, and reduces production costs.
  • the first light coupling port and the second light coupling port are located on the upper side of the silicon optical chip 20, and the position of the first light coupling port can be referred to as shown by the dotted line in FIG. 8.
  • the position of the second optical coupling port can refer to the direction of the dotted line in FIG. 10.
  • the side end surfaces of the silicon optical chip 20 provided with the first light coupling port and the second light coupling port are located inside the second substrate 10. It is understandable that the first optical coupling port and the second optical coupling port are arranged on the upper side of the silicon optical chip 20, the thickness of the silicon optical chip 20 can be appropriately increased, and the edge of the silicon optical chip 20 does not exceed the second substrate 10 the edge of.
  • the cover 30 is provided with a side end surface of the first opening 31 (the front end surface shown in the figure) is flush with the side end surface of the second substrate 10, which can ensure the appearance of the silicon optical module. Flatness for ease of assembly.
  • the optical fiber component 40 may adopt a ribbon-shaped optical fiber structure.
  • the number of the first optical coupling ports may be multiple, and the number of the optical fibers 41 corresponds to the number of the first optical coupling ports, and they are connected in a one-to-one correspondence.
  • the optical fiber 41 includes a signal transmitting port (TX port, transport) and a signal receiving port (RX port, receive port).
  • TX port, transport a signal transmitting port
  • RX port, receive port a signal receiving port
  • the number of first optical coupling ports may be eight
  • the total number of optical fibers 41 may be eight
  • the number of signal transmitting ports and signal receiving ports may be four respectively.
  • the number of first optical coupling ports and the number of optical fibers 41 can be set according to actual needs, which is not limited in this specification.
  • the plurality of first optical coupling ports may be arranged in the same direction, for example, arranged in the width direction of the silicon optical chip 20, which can reduce the thickness of the silicon optical chip 20 and reduce the overall space of the silicon optical module.
  • 41 is arranged along the same arrangement direction as the plurality of first optical coupling ports, which is convenient for docking with the first optical coupling ports.
  • the number of the second optical coupling ports may be multiple, and the number of the laser chips 53 corresponds to the number of the second optical coupling ports, and they are connected in a one-to-one correspondence.
  • the number of the second optical coupling port and the number of the laser chip 53 is two respectively.
  • the number of second optical coupling ports and the number of laser chips 53 can be set according to actual needs, which is not limited in this specification.
  • the multiple second optical coupling ports can be arranged in the same direction, for example, along the width direction of the silicon optical chip 20, which can reduce the thickness of the silicon optical chip 20 and reduce the overall space of the silicon optical module.
  • the multiple second optical coupling ports are coupled to the side of the laser waveguide 52 in the same arrangement direction, so as to facilitate the docking with the second optical coupling ports.
  • the first optical coupling port is located at the lower side of the silicon optical chip 20, and the silicon optical chip 20 is provided with the first optical coupling
  • the side end surface of the port and the second light coupling port are located inside the second substrate 10. Since the first optical coupling port and the second optical coupling port are arranged on the lower side of the silicon optical chip 20, when the silicon optical chip 20 is mounted on the second substrate 10, there may be overflow of glue that affects the first optical coupling port and The second optical coupling port affects the normal operation of the device. To this end, as shown in FIGS.
  • the side of the second base 10 may be provided with a second opening 11, and the second opening 11 is located in the first opening 31 of the cover 30 Below, the side end surfaces of the silicon optical chip 20 provided with the first light coupling port and the second light coupling port protrude from the second opening 11. The positions of the first light coupling port and the second light coupling port of the silicon optical chip 20 are suspended.
  • the silicon optical chip 20 is mounted on the second substrate 10, even a small amount of glue overflow will not affect the first The optical coupling port and the second optical coupling port ensure that the device can work normally.
  • the overall thickness of the laser module 50 and the thickness of the optical fiber element 40 are greater than the thickness of the silicon optical chip 20.
  • a part of the optical fiber element 40 and a part of the laser module 50 can be sunk into the second opening 11, and the thickness space of the second substrate 10 is used to prevent the overall thickness of the laser module 50 and the thickness of the optical fiber element 40 from exceeding the cover.
  • the upper surface of the body 30 affects the flatness of the appearance of the silicon optical module.
  • the first light coupling port and the second light coupling port are located on the lower side of the silicon optical chip 20, and the silicon optical chip 20 is provided with The side end surfaces of the first light coupling port and the second light coupling port protrude from the second substrate 10. Since the first optical coupling port and the second optical coupling port are located on the lower side of the silicon optical chip 20, when the silicon optical chip 20 is mounted on the second substrate 10, the glue overflow may affect the first optical coupling port. Thereby affecting the normal operation of the device.
  • the side end surfaces of the silicon optical chip 20 provided with the first optical coupling port and the second optical coupling port are set to protrude from the second substrate 10, so that the first optical coupling port and the second optical coupling port of the silicon optical chip 20 The position of the second optical coupling port is suspended below.
  • the side end surface of the cover body 30 with the first opening 31 protrudes from the second substrate 10, and the cover body 30.
  • the part protruding from the second substrate 10 extends toward the second substrate 10 to form an extension portion 33.
  • the extension portion 33 abuts against the side end surface of the second substrate 10 and can be used for silicon light
  • the chip 20 plays a protective role. It can be understood that an extension 33 is formed on both side walls of the first opening 31 respectively.
  • a space is formed between the two extensions 33 of the cover 30.
  • the overall thickness of the laser module 50 and the thickness of the optical fiber element 40 are greater than the thickness of the silicon optical chip 20.
  • a part of the optical fiber element 40 and a part of the laser module 50 can be sunk into the space, so as to ensure the best coupling with the silicon optical chip 20 Location.
  • a protective sheet is provided on the lower surface of the extension portion 33.
  • the protective sheet is flush with the lower surface of the second substrate 10 and covers the silicon optical chip 20.
  • the protective sheet can be a metal protective sheet, which can achieve a certain heat dissipation effect.
  • the embodiment of this specification also provides an optical transmission device, which includes a circuit board and at least one silicon optical module.
  • the first substrate and the second substrate of the silicon optical module are arranged on the circuit board.
  • the optical module may be a QSFP DD module, a Co-package module, and so on.
  • the circuit board of the QSFP DD module can be configured with a silicon optical module.
  • the circuit board of the Co-package module can be configured with multiple silicon optical modules.
  • the silicon optical module used in the optical module of this specification integrates the laser module and the silicon optical chip into an integrated structure, which can save the overall volume of the device.
  • the laser chip of the laser module can be connected to the optical coupling port of the silicon optical chip through the laser waveguide, and the emitted light can be coupled to the silicon optical chip without coupling with the silicon optical chip through external optical fibers, micro-optical devices and other components. It is easy to assemble and can save the overall volume of the device. It can also improve the coupling efficiency, reduce the reliability risk, greatly simplify the coupling process, and save materials, costs, and coupling time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器模块(50)、硅光模块及光传输器件。激光器模块(50)包括:第一基底(51);激光波导(52),用于与硅光芯片(20)耦合连接,激光波导(52)封装于第一基底(51);激光器芯片(53),用于与激光波导(52)对接,激光器芯片(53)耦合连接于激光波导(52)的第一侧端面(521),激光器芯片(53)封装于第一基底(51)。

Description

激光器模块、硅光模块及光传输器件
本申请要求2020年03月18日递交的申请号为202010193380.0、发明名称为“激光器模块、硅光模块及光传输器件”中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本说明书涉及光学通信技术领域,尤其涉及一种激光器模块、硅光模块及光传输器件。
背景技术
在数通、传输及电信领域中,光模块用来发送和接收光信号,是整个光网络中的核心部件之一。传统的光模块采用分立式结构,通过无源器件,比如lens(透镜),将光芯片中的光信号耦合到光纤中。对于长距离传输模块来说,由于所需要的无源器件较多,因此在装配过程中,往往需要对每个无源器件一个个进行耦合对准。因此,这需要较高的时间成本,人力成本,工艺成本以及材料成本等。
发明内容
本说明书提出一种激光器模块、硅光模块及光传输器件,易于装配并能节省器件的整体体积。
根据本说明书实施例的第一方面,提供一种激光器模块,包括:
第一基底;
激光波导,用于与硅光芯片耦合连接,所述激光波导封装于所述第一基底;
激光器芯片,用于与所述激光波导对接,所述激光器芯片耦合连接于所述激光波导的第一侧端面,所述激光器芯片封装于所述第一基底。
进一步地,所述激光波导背对所述第一侧端面的第二侧端面凸出于所述第一基底的侧端面。
进一步地,还包括第一固定件,所述第一固定件的下表面用于与硅光芯片连接;所述激光波导包括背对所述第一侧端面的第二侧端面,所述第一固定件的侧端面与部分所述第二侧端面粘合连接。
进一步地,所述第一固定件的上表面凸出于所述激光波导的上表面,所述第一固定 件凸出于所述激光波导的部分向靠近所述激光波导的方向延伸形成有第一延伸部,所述第一延伸部的下表面与所述激光波导的上表面相抵接。
根据本说明书实施例的第二方面,提供一种硅光模块,包括激光器模块,所述激光器模块包括第一基底、激光波导以及激光器芯片,所述硅光模块还包括第二基底、硅光芯片以及光纤元件:
其中,所述激光波导和所述激光器芯片均封装于所述第一基底,所述激光波导与所述硅光芯片耦合连接,所述硅光芯片封装于所述第二基底,所述硅光芯片的侧部设有第一光耦合口和第二光耦合口;
所述光纤元件设有光纤,所述光纤元件与所述硅光芯片耦合连接,所述光纤与所述第一光耦合口对接;所述激光器芯片耦合连接于所述激光波导的第一侧端面并与所述第二光耦合口对接。
进一步地,还包括盖体,封装于所述第二基底,并包覆于所述硅光芯片的外部;所述盖体的侧部开设有第一开口部,所述第一光耦合口和所述第二光耦合口自所述第一开口部裸露;
所述光纤元件在所述第一开口部内与所述硅光芯片耦合连接,所述激光波导在所述第一开口部内与所述硅光芯片耦合连接。
进一步地,还包括第一固定件,设置于所述硅光芯片的上表面,所述第一固定件自所述第一开口部裸露;
所述第一固定件的侧端面与所述硅光芯片设有所述第二光耦合口的侧端面平齐,所述激光波导的上表面凸出于所述硅光芯片的上表面,所述第一固定件与所述激光波导凸出于所述硅光芯片的部分粘合连接。
进一步地,所述第一固定件的上表面凸出于所述激光波导的上表面,所述第一固定件凸出于所述激光波导的部分向靠近所述激光波导的方向延伸形成有第一延伸部,所述第一延伸部的下表面与所述激光波导的上表面相抵接。
进一步地,还包括第二固定件,设置于所述硅光芯片的上表面,所述第二固定件自所述第一开口部裸露;
所述第二固定件的侧端面与所述硅光芯片设有所述第一光耦合口的侧端面平齐,所述光纤元件的上表面凸出于所述硅光芯片的上表面,所述第二固定件与所述光纤元件凸出于所述硅光芯片的部分粘合连接。
进一步地,所述第二固定件的上表面凸出于所述光纤元件的上表面,所述第二固定 件凸出于所述光纤元件的部分向靠近所述光纤元件的方向延伸形成有第二延伸部,所述第二延伸部的下表面与所述光纤元件的上表面相抵接。
进一步地,所述盖体开设有所述第一开口部的侧端面与所述第二基底的侧端面平齐。
进一步地,所述第一光耦合口的数量为多个,所述光纤的数量与所述第一光耦合口的数量相对应;所述光纤包括信号发射端口和信号接收端口。
进一步地,所述第二光耦合口的数量为多个,所述激光器芯片的数量与所述第二光耦合口的数量对应。
根据本说明书实施例的第三方面,提供一种光传输器件,包括:电路板和至少一个如上任一实施例所述的硅光模块,所述第二基底和所述第一基底连接于所述电路板上。
由以上技术方案可见,本说明书的激光器模块,激光器芯片可以通过激光波导与硅光芯片的光耦合口对接,将发出的光耦合到硅光芯片中,而不需要通过外置的光纤、微光学器件等部件与硅光芯片耦合,易于装配并能节省器件的整体体积,还可以提高耦合效率,降低可靠性风险,大大简化耦合工艺,节省物料、成本、耦合时间等。
附图说明
图1示出了本说明书一示例性实施例的一种激光器模块的立体示意图;
图2是图1的俯视图;
图3示出了本说明书一示例性实施例的一种激光器模块与硅光芯片的连接示意图;
图4是图3的侧视图;
图5示出了本说明书一示例性实施例的一种硅光模块的立体示意图;
图6是图5所示的硅光模块去除盖体的立体示意图;
图7是图6所示的硅光模块去除激光器模块的立体示意图;
图8是图7的侧视图;
图9是图6所示的硅光模块去除光纤元件的立体示意图;
图10是图9的侧视图;
图11示出了本说明书一示例性实施例的另一种硅光模块的立体示意图;
图12是图11所示的硅光模块去除盖体的立体示意图;
图13是图12所示的硅光模块去除激光器模块的立体示意图;
图14是图13的侧视图;
图15是图12所示的硅光模块去除光纤元件的立体示意图;
图16是图15的侧视图;
图17是图11所示的硅光模块的硅光芯片、盖体以及第二基底的连接示意图;
图18是图17所示的硅光模块去除硅光芯片的立体示意图;
图19是图17所示的硅光模块去除盖体的立体示意图;
图20示出了本说明书一示例性实施例的又一种硅光模块的立体示意图;
图21是图20所示的硅光模块的硅光芯片、盖体以及第二基底的连接示意图;
图22是图21所示的硅光模块去除盖体的立体示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本说明书相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本说明书的一些方面相一致的装置和方法的例子。
在本说明书使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本说明书。在本说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本说明书可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本说明书范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
硅光基于波导传输,利用半导体产业非常成熟的硅晶圆加工工艺,在硅基底上通过蚀刻工艺把各种器件,如光调制器、接收器以及无源波导器件,高度集成在一起。因此这种硅光芯片模块具有体积小,高集成度的优点,同时又可以减少装配环节,提高测试效率,从而节省各种时间,人力,工艺以及材料等成本。
本说明书提出一种激光器模块、硅光模块及光传输器件,易于装配并能节省器件的整体体积。下面结合附图,对本说明书的激光器模块、硅光模块及光传输器件进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
参见图1至图4所示,本说明书实施例提供一种激光器模块50,包括:第一基底51、 激光波导52以及激光器芯片53。其中,激光波导52用于与硅光芯片耦合连接,所述激光波导52封装于所述第一基底51。激光器芯片53用于与激光波导52对接,所述激光器芯片53耦合连接于所述激光波导52的第一侧端面521,所述激光器芯片53封装于所述第一基底51。第一基底51可以采用有机材料、陶瓷材料或氮化铝材料。激光波导52与第一基底51之间可以通过倒装芯片(Flip chip)工艺贴装到第一基底51上,或是采用粘胶的方式贴装在第一基底51上。可选地,所述激光器芯片的数量与硅光芯片的光耦合口的数量对应。在本实施例中,激光器芯片53的数量为两个。
结合图3和图4所示,硅光芯片20的光耦合口的位置可以参见图4中虚线方向所示。本说明书的激光器模块50,激光器芯片53可以通过激光波导52与硅光芯片20的光耦合口对接,将发出的光耦合到硅光芯片20中,而不需要通过外置的光纤、微光学器件等部件与硅光芯片耦合,易于装配并能节省器件的整体体积,还可以提高耦合效率,降低可靠性风险,大大简化耦合工艺,节省物料、成本、耦合时间等。
在一可选的实施方式中,所述激光波导52背对所述第一侧端面521的第二侧端面522凸出于所述第一基底51的侧端面。当过激光波导52与硅光芯片20耦合时,可以保证硅光芯片与第一基底51之间保持一定间隙,避免硅光芯片与第一基底51接触而导致失效。
在一可选的实施方式中,由于硅光芯片的厚度很小,激光波导52直接与硅光芯片粘合牢固性较低。为了便于将激光波导52于硅光芯片相互耦合,本说明书的激光器模块50还可以包括第一固定件54,所述第一固定件54的下表面用于与硅光芯片20连接。所述激光波导52包括背对所述第一侧端面521的第二侧端面522,所述第一固定件54的侧端面与激光波导52的部分第二侧端面522粘合连接。这样,激光波导52通过第一固定件54与硅光芯片20连接,可靠性更强。可选地,第一固定件54可以采用单独设置的独立元件,例如玻璃器件。激光波导52可以通过边缘耦合工艺和硅光芯片20的第一光耦合口对准,并且通过与第一固定件54黏胶连接,从而将激光波导52与硅光芯片20固定。
所述第一固定件54的侧端面可以与所述硅光芯片20的侧端面平齐,便于将激光波导52与硅光芯片20对位组装。所述第一固定件54与激光波导52通过胶体粘合连接,从而将激光波导52与硅光芯片20相互固定。
为了进一步提高激光波导52和硅光芯片20组装的精确性及两者连接位置的稳固,所述第一固定件54的上表面凸出于所述激光波导52的上表面,所述第一固定件54凸出 于所述激光波导52的部分向靠近所述激光波导52的方向延伸形成有第一延伸部541,所述第一延伸部541的下表面与所述激光波导52的上表面相抵接,即第一延伸部541可以沿纵向与激光波导52固定。通过上述设置,激光波导52从横向、竖向两个方向均与第一固定件54固定,从而更好地将激光波导52与硅光芯片20固定,以避免激光波导52和硅光芯片20相互之间粘接不够牢固的情况发生。
通过上述设置,本说明书的激光器模块,激光器芯片可以通过激光波导与硅光芯片的光耦合口对接,将发出的光耦合到硅光芯片中,而不需要通过外置的光纤、微光学器件等部件与硅光芯片耦合,易于装配并能节省器件的整体体积,还可以提高耦合效率,降低可靠性风险,大大简化耦合工艺,节省物料、成本、耦合时间等。
参见图5至图10,并结合图1至图4所示,本说明书实施例还提供一种硅光模块,包括激光器模块50,所述激光器模块50包括第一基底51、激光波导52以及激光器芯片53,所述硅光模块还包括第二基底10、硅光芯片20以及光纤元件40。
其中,所述激光波导52和所述激光器芯片53均封装于所述第一基底51,所述激光波导52与所述硅光芯片20耦合连接,硅光芯片20封装于所述第二基底10上。在本实施例中,激光器芯片53的数量为两个。硅光芯片20与第二基底10之间可以通过倒装芯片(Flip chip)工艺贴装到第二基底10上,或是采用粘胶的方式贴装在第二基底10上。所述硅光芯片20的侧部设有第一光耦合口和第二光耦合口,第一光耦合口的位置可以参照图8中虚线方向所示,第二光耦合口的位置可以参照图10中虚线方向所示。可选地,所述第一光耦合口包括发射端口(TX port,transport)和接收端口(RX port,receive port)。所述第二光耦合口包括激光器输入端。
所述激光器芯片53与所述激光波导52的第一侧端面(图5中所示为前端面)耦合连接,并与硅光芯片20的第二光耦合口对接。所述光纤元件40设有光纤41,所述光纤元件40与所述硅光芯片20耦合连接,所述光纤41与硅光芯片20的第一光耦合口对接。通过上述设置,本说明书的硅光模块可以将激光器模块与硅光芯片采用封装的方式封装在一起,作为整体模块使用,节约了器件的整体体积。
由以上技术方案可见,本说明书的硅光模块,将激光器模块和硅光芯片整合为一体结构,能够节约器件的整体体积。激光器模块的激光器芯片可以通过激光波导与硅光芯片的光耦合口对接,将发出的光耦合到硅光芯片中,而不需要通过外置的光纤、微光学器件等部件与硅光芯片耦合,易于装配并能节省器件的整体体积,还可以提高耦合效率,降低可靠性风险,大大简化耦合工艺,节省物料、成本、耦合时间等。
在一可选的实施方式中,硅光模块还可以包括盖体30,封装于所述第二基底10上,并包覆于所述硅光芯片20的外部,盖体30与第二基底10之间也可以采用胶进行封装。可以理解的,盖体30上形成有凹陷的腔体,可以将硅光芯片20收纳在内。所述盖体30的侧部开设有第一开口部31,所述第一光耦合口和第二光耦合口自所述第一开口部31裸露。可以理解的,第一开口部31可以由盖体30的上表面及侧面共同开设缺口形成,以裸露出硅光芯片20的部分上表面以及设有第一光耦合口和第二光耦合口的侧面,以便组装光纤元件40和激光波导52。所述激光器芯片53在第一开口部31内与所述激光波导52的第一侧端面耦合连接,所述光纤元件40在所述第一开口部31内与所述硅光芯片20耦合连接。
通过上述设置,盖体包覆在硅光芯片的外部,可以对硅光芯片起到保护作用。通过在盖体上开设第一开口部,将硅光芯片的第一光耦合口和第二光耦合口部分露出,便于光纤元件以及激光波导与硅光芯片的耦合,进而形成一体式的结构,易于组装,节约了人力及材料成本。
在一可选的实施方式中,第二基底10和盖体30均为矩形板体,盖体30的尺寸大小与盖板10的尺寸大小相适配,以保证硅光模块外观的平整性,便于组装。第一开口部31的宽度小于硅光芯片20的宽度,第一开口部31的内侧壁32以及盖体30的后端部可以从前后方向包覆在硅光芯片20的外部,盖体30的左端部和右端部可以从左右方向包覆在硅光芯片20的外部,进而从前后、左右两个方向将硅光芯片20包覆在内,能够对硅光芯片20起到保护作用。可选地,第二基底10可以采用有机材料、陶瓷材料或氮化铝材料。盖体30可以采用金属材料,例如采用镍铜合金,既可以对硅光芯片20起到保护作用,也可以起到良好的散热作用。
在一可选的实施方式中,所述激光波导52背对所述第一侧端面521的第二侧端面522凸出于所述第一基底51的侧端面。当过激光波导52与硅光芯片20耦合时,可以保证硅光芯片与第一基底51之间保持一定间隙,避免硅光芯片与第一基底51接触而导致失效。
在一可选的实施方式中,由于硅光芯片的厚度很小,激光波导52直接与硅光芯片粘合牢固性较低。为了便于将激光波导52于硅光芯片相互耦合,本说明书的激光器模块50还可以包括第一固定件54,所述第一固定件54的下表面用于与硅光芯片20连接。所述激光波导52包括背对所述第一侧端面521的第二侧端面522,所述第一固定件54的侧端面与激光波导52的部分第二侧端面522粘合连接。这样,激光波导52通过第一固 定件54与硅光芯片20连接,可靠性更强。可选地,第一固定件54可以采用单独设置的独立元件,例如玻璃器件。激光波导52可以通过边缘耦合工艺和硅光芯片20的第一光耦合口对准,并且通过与第一固定件54黏胶连接,从而将激光波导52与硅光芯片20固定。
所述第一固定件54的侧端面可以与所述硅光芯片20设有所述第一光耦合口及第二光耦合口的侧端面(图中所示为前端面)平齐,便于将激光波导52与硅光芯片20对位组装。激光波导52可以通过边缘耦合工艺和硅光芯片20的第二光耦合口对准,并且所述第一固定件54与激光波导52通过胶体粘合连接,从而将激光波导52与硅光芯片20相互固定。可选地,第一固定件54的上表面的高度低于盖体30的上表面的高度,以保证硅光模块外观的平整性。
为了进一步提高激光波导52和硅光芯片20组装的精确性及两者连接位置的稳固,所述第一固定件54的上表面凸出于所述激光波导52的上表面,所述第一固定件54凸出于所述激光波导52的部分向靠近所述激光波导52的方向延伸形成有第一延伸部541,所述第一延伸部541的下表面与所述激光波导52的上表面相抵接,即第一延伸部541可以沿纵向与激光波导52固定。通过上述设置,激光波导52从横向、竖向两个方向均与第一固定件54固定,从而更好地将激光波导52与硅光芯片20固定,以避免激光波导52和硅光芯片20相互之间粘接不够牢固的情况发生。
在一可选的实施方式中,由于硅光芯片20的厚度很小,光纤元件40直接与硅光芯片20粘合牢固性较低。为了便于组装光纤元件40,硅光模块还可以包括第二固定件60,第二固定件60可以通过胶体粘合设置于所述硅光芯片20自盖体30的第一开口部31裸露部分的上表面,所述第二固定件60同样自所述第一开口部31裸露。可选地,第二固定件60可以采用单独设置的独立元件,例如玻璃器件。
所述第二固定件60的侧端面与所述硅光芯片20设有所述第一光耦合口及第二光耦合口的侧端面(图中所示为前端面)平齐,所述第二固定件60与所述光纤元件40通过胶体粘合连接,从而将光纤元件40与硅光芯片20相互固定。可选地,第二固定件60的上表面的高度低于盖体30的上表面的高度,以保证硅光模块外观的平整性。
为了进一步提高光纤元件40和硅光芯片20组装的精确性及两者连接位置的稳固,所述第二固定件60的侧部向靠近所述光纤元件40的方向延伸形成有第二延伸部61,所述第二延伸部61的下表面与所述光纤元件40的上表面相抵接,即第二延伸部61可以沿纵向与光纤元件40固定。通过上述设置,光纤元件40从横向、竖向两个方向均与第二 固定件60固定,从而更好地将光纤元件40与硅光芯片20固定,以避免光纤元件40和硅光芯片20相互之间粘接不够牢固的情况发生。
因此,可以理解的,第一开口部31由盖体30的上表面及侧面共同开设缺口形成,以裸露出硅光芯片20的部分上表面,在组装光纤元件40及激光波导52时便于工装夹具对光纤元件40及激光波导52进行夹持,以达到与硅光芯片20对接的位置精准。具体地,光纤元件40可以通过边缘耦合工艺和硅光芯片20的第一光耦合口对准,并且通过与第二固定件60黏胶连接,从而将光纤元件40与硅光芯片20固定。激光波导52可以通过边缘耦合工艺和硅光芯片20的第二光耦合口对准,并且所述第一固定件54与激光波导52通过胶体粘合连接,从而将激光波导52与硅光芯片20相互固定。
本说明书的硅光模块装配时,可先单独将激光器模块50当做一个整体进行耦合装配,直到其装配后的光学性能达到最优后,再将激光器模块50整体耦合到硅光芯片20上,通过第一固定件54进行固定,以保证激光波导52可以保持固定偏振态,能够大大提高耦合效率,结构简单,降低耦合难度,降低生产成本。
在一可选的实施方式中,所述第一光耦合口和第二光耦合口位于所述硅光芯片20的侧上部,第一光耦合口的位置可以参照图8中虚线方向所示,第二光耦合口的位置可以参照图10中虚线方向。所述硅光芯片20设有所述第一光耦合口和第二光耦合口的侧端面位于所述第二基底10的内侧。可以理解的,将第一光耦合口和第二光耦合口设置在所述硅光芯片20的侧上部,硅光芯片20的厚度可以适当增加,硅光芯片20的边缘不超过第二基底10的边缘。这样,硅光芯片20与第二基底10贴装时,即使存在少量的溢胶也不会影响到第一光耦合口和第二光耦合口,确保器件可以正常工作。可选地,所述盖体30开设有所述第一开口部31的侧端面(图中所示为前端面)与所述第二基底10的侧端面平齐,可以保证硅光模块外观的平整性,以便组装。
在一可选的实施方式中,光纤元件40可以采用带状光纤的结构。所述第一光耦合口的数量可以是多个,所述光纤41的数量与所述第一光耦合口的数量相对应,并且一一对应的对接。所述光纤41包括信号发射端口(TX port,transport)和信号接收端口(RX port,receive port)。在本实施例中,第一光耦合口的数量可以是八个,光纤41的总数量可以是八个,信号发射端口和信号接收端口的数量可以分别是四个。当然,在其他实施例中,第一光耦合口的数量和光纤41的数量可以根据实际需要设置,本说明书对此不作限制。
所述多个第一光耦合口可以沿同一方向排布,例如沿硅光芯片20的宽度方向排布, 可以降低硅光芯片20的厚度,减少硅光模块的整体空间,所述多个光纤41沿与所述多个第一光耦合口相同的排布方向排布,便于与第一光耦合口对接。
所述第二光耦合口的数量可以为多个,所述激光器芯片53的数量与第二光耦合口的数量对应,并且一一对应的对接。在本实施例中,第二光耦合口和激光器芯片53的数量分别是两个。当然,在其他实施例中,第二光耦合口的数量和激光器芯片53的数量可以根据实际需要设置,本说明书对此不作限制。
多个第二光耦合口可以沿同一方向排布,例如沿硅光芯片20的宽度方向排布,可以降低硅光芯片20的厚度,减少硅光模块的整体空间,多个激光器芯片53沿与所述多个第二光耦合口相同的排布方向耦合连接在激光波导52的侧部,便于与第二光耦合口对接。
参见图11至图19所示,在一可选的实施方式中,所述第一光耦合口位于所述硅光芯片20的侧下部,所述硅光芯片20设有所述第一光耦合口和第二光耦合口的侧端面位于所述第二基底10的内侧。由于第一光耦合口和第二光耦合口设在硅光芯片20的侧下部,硅光芯片20与第二基底10贴装时,可能会出现溢胶的情况影响到第一光耦合口和第二光耦合口,从而影响器件的正常工作。为此,结合图17至图19所示,所述第二基底10的侧部可以开设有第二开口部11,所述第二开口部11位于盖体30的所述第一开口部31的下方,所述硅光芯片20设有所述第一光耦合口和第二光耦合口的侧端面凸出于所述第二开口部11。使得硅光芯片20的第一光耦合口和第二光耦合口的位置下方是悬空的,硅光芯片20与第二基底10贴装时,即使存在少量的溢胶也不会影响到第一光耦合口和第二光耦合口,确保器件可以正常工作。
通常激光器模块50的整体厚度及光纤元件40的厚度是大于硅光芯片20的厚度的,为了保证硅光模块外观的平整性,并且保证耦合的最佳位置,以及节省硅光模块的整体体积,所述光纤元件40的一部分以及激光器模块50的一部分可以下沉到第二开口部11内,利用第二基底10的厚度空间,避免由于激光器模块50的整体厚度及光纤元件40厚度太高超出盖体30的上表面,而影响硅光模块外观的平整性。
参见图20至图22所示,在一可选的实施方式中,所述第一光耦合口和第二光耦合口位于所述硅光芯片20的侧下部,所述硅光芯片20设有所述第一光耦合口和第二光耦合口的侧端面凸出于所述第二基底10。由于第一光耦合口和第二光耦合口设在硅光芯片20的侧下部,硅光芯片20与第二基底10贴装时,可能会出现溢胶的情况影响到第一光耦合口,从而影响器件的正常工作。因此,将硅光芯片20设有所述第一光耦合口和第二 光耦合口的侧端面设置为凸出于所述第二基底10,使得硅光芯片20的第一光耦合口和第二光耦合口的位置下方是悬空的,硅光芯片20与第二基底10贴装时,即使存在少量的溢胶也不会影响到第一光耦合口,确保器件可以正常工作。
为了进一步对硅光芯片20凸出于第二基底10的部分进行保护,所述盖体30开设有所述第一开口部31的侧端面凸出于所述第二基底10,所述盖体30凸出所述第二基底10的部分向靠近所述第二基底10的方向延伸形成有延伸部33,所述延伸部33与所述第二基底10的侧端面相抵接,可以对硅光芯片20起到保护作用。可以理解的,第一开口部31的两侧侧壁分别形成有一个延伸部33。
盖体30的两个延伸部33之间形成有一段间隔空间,通常激光器模块50的整体厚度及光纤元件40的厚度是大于硅光芯片20的厚度的,为了保证硅光模块外观的平整性,并且保证耦合的最佳位置,以及节省硅光模块的整体体积,所述光纤元件40的一部分以及激光器模块50的一部分可以下沉到该间隔空间内,从而保证与硅光芯片20耦合的最佳位置。
进一步地,为了对硅光芯片20起到更好的保护作用,所述延伸部33的下表面设有保护片,所述保护片与所述第二基底10的下表面平齐,覆盖硅光芯片20底面裸露的部分。可选地,保护片可以采用金属保护片,可以起到一定的散热效果。
本说明书实施例还提供一种光传输器件,包括电路板和至少一个硅光模块,所述硅光模块的第一基底和第二基底设置于所述电路板上。需要说明的是,上述实施例和实施方式中关于所述硅光模块的描述,同样适用于本说明书的光模块。可选地,光模块可以是QSFP DD模块、Co-package模块等。其中,QSFP DD模块的电路板可以配置一个硅光模块。Co-package模块的电路板可以配置多个硅光模块。
由以上技术方案可见,本说明书的光模块所采用的硅光模块,将激光器模块和硅光芯片整合为一体结构,能够节约器件的整体体积。激光器模块的激光器芯片可以通过激光波导与硅光芯片的光耦合口对接,将发出的光耦合到硅光芯片中,而不需要通过外置的光纤、微光学器件等部件与硅光芯片耦合,易于装配并能节省器件的整体体积,还可以提高耦合效率,降低可靠性风险,大大简化耦合工艺,节省物料、成本、耦合时间等。
本领域技术人员在考虑说明书及实践这里公开的发明创造后,将容易想到本说明书的其它实施方案。本说明书旨在涵盖本说明书的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本说明书的一般性原理并包括本说明书未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本说明书的真 正范围和精神由下面的权利要求指出。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本说明书的较佳实施例而已,并不用以限制本说明书,凡在本说明书的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本说明书保护的范围之内。

Claims (14)

  1. 一种激光器模块,其特征在于,包括:
    第一基底;
    激光波导,用于与硅光芯片耦合连接,所述激光波导封装于所述第一基底;
    激光器芯片,用于与所述激光波导对接,所述激光器芯片耦合连接于所述激光波导的第一侧端面,所述激光器芯片封装于所述第一基底。
  2. 根据权利要求1所述的激光器模块,其特征在于,所述激光波导背对所述第一侧端面的第二侧端面凸出于所述第一基底的侧端面。
  3. 根据权利要求1所述的激光器模块,其特征在于,还包括第一固定件,所述第一固定件的下表面用于与硅光芯片连接;所述激光波导包括背对所述第一侧端面的第二侧端面,所述第一固定件的侧端面与部分所述第二侧端面粘合连接。
  4. 根据权利要求3所述的激光器模块,其特征在于,所述第一固定件的上表面凸出于所述激光波导的上表面,所述第一固定件凸出于所述激光波导的部分向靠近所述激光波导的方向延伸形成有第一延伸部,所述第一延伸部的下表面与所述激光波导的上表面相抵接。
  5. 一种硅光模块,其特征在于,包括激光器模块,所述激光器模块包括第一基底、激光波导以及激光器芯片,所述硅光模块还包括第二基底、硅光芯片以及光纤元件:
    其中,所述激光波导和所述激光器芯片均封装于所述第一基底,所述激光波导与所述硅光芯片耦合连接,所述硅光芯片封装于所述第二基底,所述硅光芯片的侧部设有第一光耦合口和第二光耦合口;
    所述光纤元件设有光纤,所述光纤元件与所述硅光芯片耦合连接,所述光纤与所述第一光耦合口对接;所述激光器芯片耦合连接于所述激光波导的第一侧端面并与所述第二光耦合口对接。
  6. 根据权利要求5所述的硅光模块,其特征在于,还包括盖体,封装于所述第二基底,并包覆于所述硅光芯片的外部;所述盖体的侧部开设有第一开口部,所述第一光耦合口和所述第二光耦合口自所述第一开口部裸露;
    所述光纤元件在所述第一开口部内与所述硅光芯片耦合连接,所述激光波导在所述第一开口部内与所述硅光芯片耦合连接。
  7. 根据权利要求6所述的硅光模块,其特征在于,还包括第一固定件,设置于所述硅光芯片的上表面,所述第一固定件自所述第一开口部裸露;
    所述第一固定件的侧端面与所述硅光芯片设有所述第二光耦合口的侧端面平齐,所述激光波导的上表面凸出于所述硅光芯片的上表面,所述第一固定件与所述激光波导凸出于所述硅光芯片的部分粘合连接。
  8. 根据权利要求7所述的硅光模块,其特征在于,所述第一固定件的上表面凸出于所述激光波导的上表面,所述第一固定件凸出于所述激光波导的部分向靠近所述激光波导的方向延伸形成有第一延伸部,所述第一延伸部的下表面与所述激光波导的上表面相抵接。
  9. 根据权利要求6所述的硅光模块,其特征在于,还包括第二固定件,设置于所述硅光芯片的上表面,所述第二固定件自所述第一开口部裸露;
    所述第二固定件的侧端面与所述硅光芯片设有所述第一光耦合口的侧端面平齐,所述光纤元件的上表面凸出于所述硅光芯片的上表面,所述第二固定件与所述光纤元件凸出于所述硅光芯片的部分粘合连接。
  10. 根据权利要求9所述的硅光模块,其特征在于,所述第二固定件的上表面凸出于所述光纤元件的上表面,所述第二固定件凸出于所述光纤元件的部分向靠近所述光纤元件的方向延伸形成有第二延伸部,所述第二延伸部的下表面与所述光纤元件的上表面相抵接。
  11. 根据权利要求6所述的硅光模块,其特征在于,所述盖体开设有所述第一开口部的侧端面与所述第二基底的侧端面平齐。
  12. 根据权利要求5所述的硅光模块,其特征在于,所述第一光耦合口的数量为多个,所述光纤的数量与所述第一光耦合口的数量相对应;所述光纤包括信号发射端口和信号接收端口。
  13. 根据权利要求5所述的硅光模块,其特征在于,所述第二光耦合口的数量为多个,所述激光器芯片的数量与所述第二光耦合口的数量对应。
  14. 一种光传输器件,其特征在于,包括:电路板和至少一个如权利要求5至13中任一项所述的硅光模块,所述第二基底和所述第一基底连接于所述电路板上。
PCT/CN2021/079886 2020-03-18 2021-03-10 激光器模块、硅光模块及光传输器件 WO2021185128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010193380.0A CN113495332A (zh) 2020-03-18 2020-03-18 激光器模块、硅光模块及光传输器件
CN202010193380.0 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021185128A1 true WO2021185128A1 (zh) 2021-09-23

Family

ID=77769979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079886 WO2021185128A1 (zh) 2020-03-18 2021-03-10 激光器模块、硅光模块及光传输器件

Country Status (2)

Country Link
CN (1) CN113495332A (zh)
WO (1) WO2021185128A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488438A (zh) * 2022-03-07 2022-05-13 青岛海信宽带多媒体技术有限公司 一种光模块
CN114690342A (zh) * 2022-03-30 2022-07-01 Nano科技(北京)有限公司 光纤阵列与硅光芯片端面耦合时的表面平行度调节系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137656A (zh) * 2021-11-18 2022-03-04 深圳市艾德光子有限公司 硅光器件及光传输设备
CN114675379A (zh) * 2022-02-22 2022-06-28 北京大学长三角光电科学研究院 面向硅光芯片端面封装的fa结构设计及封装方法
CN115327702B (zh) * 2022-08-01 2023-07-11 三序光学科技(苏州)有限公司 多个激光器芯片与硅光芯片端面耦合封装结构及耦合方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5960141A (en) * 1997-10-17 1999-09-28 Fujitsu Limited Optical transmission terminal device
CN105866903A (zh) * 2016-05-18 2016-08-17 武汉光迅科技股份有限公司 一种激光器与平面光波导混合集成结构及其制造方法
CN107300741A (zh) * 2017-08-22 2017-10-27 华进半导体封装先导技术研发中心有限公司 一种边耦合光器件与光纤的直接光耦合结构
CN109254363A (zh) * 2018-11-08 2019-01-22 武汉光迅科技股份有限公司 一种倒装硅光芯片的耦合封装结构及方法
CN109669248A (zh) * 2017-10-13 2019-04-23 苏州旭创科技有限公司 光波导耦合封装结构、安装方法及光模块
CN110401101A (zh) * 2019-07-26 2019-11-01 中国科学院半导体研究所 半导体激光器芯片与硅光芯片的耦合结构及耦合方法
CN210123484U (zh) * 2019-07-04 2020-03-03 上海新微技术研发中心有限公司 硅基光耦合结构、硅基单片集成光器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5323646B2 (ja) * 2009-11-10 2013-10-23 古河電気工業株式会社 ハイブリッド集積光モジュール
US20180180808A1 (en) * 2016-12-22 2018-06-28 Oracle International Corporation Wafer-level packaged optoelectronic module
CN209044108U (zh) * 2018-09-27 2019-06-28 上海新微科技服务有限公司 激光器与硅光芯片集成结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5960141A (en) * 1997-10-17 1999-09-28 Fujitsu Limited Optical transmission terminal device
CN105866903A (zh) * 2016-05-18 2016-08-17 武汉光迅科技股份有限公司 一种激光器与平面光波导混合集成结构及其制造方法
CN107300741A (zh) * 2017-08-22 2017-10-27 华进半导体封装先导技术研发中心有限公司 一种边耦合光器件与光纤的直接光耦合结构
CN109669248A (zh) * 2017-10-13 2019-04-23 苏州旭创科技有限公司 光波导耦合封装结构、安装方法及光模块
CN109254363A (zh) * 2018-11-08 2019-01-22 武汉光迅科技股份有限公司 一种倒装硅光芯片的耦合封装结构及方法
CN210123484U (zh) * 2019-07-04 2020-03-03 上海新微技术研发中心有限公司 硅基光耦合结构、硅基单片集成光器件
CN110401101A (zh) * 2019-07-26 2019-11-01 中国科学院半导体研究所 半导体激光器芯片与硅光芯片的耦合结构及耦合方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488438A (zh) * 2022-03-07 2022-05-13 青岛海信宽带多媒体技术有限公司 一种光模块
CN114488438B (zh) * 2022-03-07 2023-09-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN114690342A (zh) * 2022-03-30 2022-07-01 Nano科技(北京)有限公司 光纤阵列与硅光芯片端面耦合时的表面平行度调节系统

Also Published As

Publication number Publication date
CN113495332A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2021185128A1 (zh) 激光器模块、硅光模块及光传输器件
WO2021036900A1 (zh) 硅光模块及光传输器件
WO2021212849A1 (zh) 一种光模块
US9939593B2 (en) Light steering for silicon photonic devices
US9442255B2 (en) Low profile fiber-to-module interface with relaxed alignment tolerances
WO2021164669A1 (zh) 光学收发模块及光纤缆线模块
US11828991B2 (en) Optical module
CN103278894A (zh) 耦合组件及应用其的光纤阵列模块、光收发引擎模块
CN216351374U (zh) 一种光模块
JP2010122311A (ja) レンズブロック及びそれを用いた光モジュール
CN203414640U (zh) 耦合组件及应用其的光纤阵列模块、光收发引擎模块
CN216351373U (zh) 一种光模块
CN105717586B (zh) 一种sip芯片与激光器的耦合方法及其组成的光收发模块
TWI806777B (zh) 光模組
TWI498619B (zh) 雙向光傳輸次組件
WO2022166350A1 (zh) 一种光模块
WO2022193733A1 (zh) 一种光模块
US20220146763A1 (en) Optical module
CN114200603B (zh) 一种光模块
WO2020186862A1 (zh) 一种光模块
CN113507036A (zh) 一种半导体光放大器及一种光模块
JP2009151053A (ja) 受光モジュール
US20230127729A1 (en) Optical module
CN216210058U (zh) 一种to封装soa管芯组件及一种光器件
WO2023241378A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770513

Country of ref document: EP

Kind code of ref document: A1