WO2021184581A1 - 模糊主从反馈协同多电机闭环耦合协同控制系统及方法 - Google Patents

模糊主从反馈协同多电机闭环耦合协同控制系统及方法 Download PDF

Info

Publication number
WO2021184581A1
WO2021184581A1 PCT/CN2020/099143 CN2020099143W WO2021184581A1 WO 2021184581 A1 WO2021184581 A1 WO 2021184581A1 CN 2020099143 W CN2020099143 W CN 2020099143W WO 2021184581 A1 WO2021184581 A1 WO 2021184581A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
fuzzy
controller
output
master
Prior art date
Application number
PCT/CN2020/099143
Other languages
English (en)
French (fr)
Inventor
吴艳娟
王云亮
程闫斌
Original Assignee
天津理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津理工大学 filed Critical 天津理工大学
Publication of WO2021184581A1 publication Critical patent/WO2021184581A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor

Definitions

  • the invention relates to the technical field of motor control systems, in particular to a fuzzy master-slave feedback cooperative multi-motor closed-loop coupling cooperative control system and method.
  • domestic multi-motor coordinated control is mostly concentrated in parallel control, master-slave control, cross-coupling control, and the combined control of these three control methods.
  • These control methods have improved the control coordination among multiple motors to a certain extent, but they have disadvantages. It does not eliminate the hysteresis between the motors, and the following and synchronization between the motors are poor. Therefore, in order to meet the control requirements, the working environment is very demanding, and it is not suitable for the complex and uncertain working environment, once it is out of the control range of the specific working environment. The system will be unstable, and severely will cause the system to crash and cause economic losses.
  • the coordinated control of multiple motors has the problems of poor stability, poor synchronization, and poor accuracy.
  • the purpose of the present invention is to provide a fuzzy master-slave feedback cooperative multi-motor closed-loop coupling cooperative control system and method to alleviate the technical problems of poor stability, poor synchronization, and poor accuracy in multi-motor coordinated control in the prior art.
  • the present invention provides a fuzzy master-slave feedback cooperative multi-motor closed-loop coupling cooperative control system, including:
  • a controller includes a fuzzy controller, a master-slave controller, and a feedback controller;
  • the fuzzy master-slave feedback cooperative multi-motor cooperative control system includes N motors, and each motor is equipped with a controller and a regulator;
  • the N motors are connected by the controller to form a closed-loop system coupled end to end, and the output of each motor is controlled by a regulator.
  • the present invention provides a fuzzy master-slave feedback cooperative multi-motor closed-loop coupling cooperative control method of the fuzzy master-slave feedback cooperative multi-motor closed-loop coupling cooperative control system described in the first aspect, which specifically follows the following steps:
  • S1 Construct a closed-loop system coupled end-to-end: the input of the master-slave controller used to control the i+1 motor is the output of the i motor, 1 ⁇ i ⁇ N-1, used for control The input of the master-slave controller of the first motor is the output of the Nth motor;
  • the input of the fuzzy controller for controlling the i+1 motor is the difference between the output of the i motor and the output of the i+1 motor, 1 ⁇ i ⁇ N-1, used for control
  • the input of the fuzzy controller of the first motor is the difference between the output of the Nth motor and the output of the first motor;
  • the input of the feedback controller for controlling the i-th motor is the difference between the output of the i-th motor and the output of the i+1-th motor, 1 ⁇ i ⁇ N-1, which is used to control the N-th motor
  • the input of the feedback controller of each motor is the difference between the output of the Nth motor and the output of the first motor;
  • S2 Determine the control parameters of the fuzzy controller and/or the master-slave controller and/or the feedback controller respectively;
  • the step of separately determining the control parameters of the fuzzy controller and/or the master-slave controller and/or the feedback controller includes;
  • S21 Acquire control parameters of the master-slave controller, and control the j-th motor based on the input of the master-slave controller that controls the j-th motor.
  • the step of separately determining the control parameters of the fuzzy controller and/or the master-slave controller and/or the feedback controller includes;
  • S22 Acquire control parameters of the feedback controller, and control the j-th motor based on the input of the feedback controller that controls the j-th motor.
  • the step of separately determining the control parameters of the fuzzy controller and/or the master-slave controller and/or the feedback controller includes;
  • control parameters of the fuzzy controller are determined by using the membership function described in the following formula to obtain the control parameters of the fuzzy controller:
  • the motor is an AC asynchronous motor
  • the output is the actual speed of the AC asynchronous motor
  • the given input of the AC asynchronous motor is the given speed of the AC asynchronous motor
  • the output is the actual position of the actuator of the AC asynchronous motor
  • the given input of the AC asynchronous motor is the given position of the actuator of the AC asynchronous motor
  • the motor is a synchronous motor
  • the output is the actual speed of the synchronous motor
  • the given input of the synchronous motor is the given speed of the synchronous motor
  • the output is the actual output frequency of the synchronous motor
  • the given input of the synchronous motor is the given frequency of the synchronous motor
  • the motor is a switched reluctance motor
  • the output of the switched reluctance motor is the rotor position of the switched reluctance motor
  • the given input of the switched reluctance motor is the switched reluctance motor The given position of the rotor.
  • the fuzzy rules adopt IF...AND...THEN fuzzy rules to divide the fuzzy space into 7 symmetrical fuzzy sets.
  • the present invention provides a fuzzy master-slave feedback cooperative multi-motor closed-loop coupling cooperative control system and method.
  • multiple motors are formed by a controller.
  • the connected closed-loop coupling system, and each controller includes a master-slave controller, a fuzzy controller, and a feedback controller.
  • the closed-loop coupling arrangement of multiple motors alleviates the problem of poor synchronization of multi-motor coordinated control in the prior art.
  • the fuzzy master-slave feedback control strategy provided by the present invention alleviates the technical problems of poor stability and poor accuracy of the existing control strategy.
  • Fig. 1 is a flow chart of a fuzzy master-slave feedback cooperative multi-motor closed-loop coupling cooperative control method provided by an embodiment of the present invention
  • FIG. 2 is a control block diagram of a fuzzy master-slave feedback cooperative multi-motor closed-loop coupling cooperative control system provided by an embodiment of the present invention
  • Figure 3 is a schematic diagram of a fuzzy controller provided by an embodiment of the present invention.
  • Fig. 4 is a curve diagram of a triangular waveform membership function provided by an embodiment of the present invention.
  • the current multi-motor coordinated control has the problems of poor stability, poor synchronization, and poor accuracy.
  • the embodiment of the present invention provides a fuzzy master-slave feedback cooperative multi-motor closed-loop coupling cooperative control system and method, which can alleviate the problems in the prior art.
  • Motor coordinated control has the problems of poor stability, poor synchronization and poor accuracy.
  • the present invention provides a fuzzy master-slave feedback cooperative multi-motor closed-loop coupling cooperative control system, which includes:
  • a controller includes a fuzzy controller, a master-slave controller, and a feedback controller;
  • the fuzzy master-slave feedback cooperative multi-motor cooperative control system includes N motors, and each motor is equipped with a controller and a regulator;
  • the N motors are connected by the controller to form a closed-loop system coupled end to end, and the output of each motor is controlled by a regulator.
  • each motor is equipped with a controller.
  • Each of the controllers includes the fuzzy controller, a master-slave controller, and a feedback controller.
  • the fuzzy controller, the master The slave controller and the feedback controller are in a parallel relationship, and the motor is controlled under the joint action of the fuzzy controller, the master-slave controller and the feedback controller.
  • the second embodiment of the present invention provides a fuzzy master-slave feedback cooperative multi-motor closed-loop coupling cooperative control method based on the system of the first embodiment.
  • the specific steps are as follows:
  • S1 Construct a closed-loop system coupled end-to-end: the input of the master-slave controller used to control the i+1 motor is the output of the i motor, 1 ⁇ i ⁇ N-1, used for control The input of the master-slave controller of the first motor is the output of the Nth motor;
  • the input of the fuzzy controller for controlling the i+1 motor is the difference between the output of the i motor and the output of the i+1 motor, 1 ⁇ i ⁇ N-1, used for control
  • the input of the fuzzy controller of the first motor is the difference between the output of the Nth motor and the output of the first motor;
  • the input of the feedback controller for controlling the i-th motor is the difference between the output of the i-th motor and the output of the i+1-th motor, 1 ⁇ i ⁇ N-1, which is used to control the N-th motor
  • the input of the feedback controller of each motor is the difference between the output of the Nth motor and the output of the first motor;
  • the N motors controlled under the system form a closed-loop coupling system that is connected end to end. It can then be seen that when the output difference between the i-th motor and the i-1th motor is 0
  • the fuzzy controller does not act, it belongs to cross-coupled loop network control. When the motor speed is disturbed to produce a speed difference, the fuzzy controller will output the corresponding feedback coefficient according to the magnitude of the error. Compared with the cross-coupled control with fixed feedback gain, this This control method is applicable to a wider range of occasions, and the control is more flexible;
  • S2 Determine the control parameters of the fuzzy controller and/or the master-slave controller and/or the feedback controller respectively;
  • Center of gravity method specifically use the membership function described in the following formula to determine the control parameters of the fuzzy controller to obtain the control parameters of the fuzzy controller:
  • k i is a weighting coefficient selected according to the actual situation
  • c i is the extracted i-th fuzzy value in the fuzzy set interval.
  • Membership limit element averaging method Use a certain membership value to cut the membership function curve. After cutting, all elements equal to the membership are averaged, and this average value is used as the output value.
  • the third embodiment of the present invention explains the aforementioned fuzzy sets and fuzzy rules.
  • the fuzzy rules adopt IF...AND...THEN fuzzy rules, as shown in FIG.
  • the difference between the output of the i-th motor and the output of the i+1-th motor (in this implementation, replaced by e) is A, and the output of the i-th motor and the output of the i+1-th motor
  • the rate of change of the difference (replaced by ec in this implementation) is B, the output of then is c, and the fuzzy space is divided into 7 symmetric fuzzy sets, namely ⁇ NB (negative large), NM (negative middle), NS (Negative small), ZE (zero), PS (positive small), PM (positive middle), PB (positive large), the specific fuzzy rules are shown in Table 1:
  • A takes the value from the first column, which represents the fuzzy set of 7 output differences e; B takes the value from the first row, which represents the fuzzy set of 7 output differences change rate ec, and E represents Corresponding to the 49 fuzzy sets of output c of A and B, the fuzzy sets of real-time adjustment parameters output by the fuzzy controller can be derived from Table 1.
  • the abscissa r represents the fuzzy set range, ⁇ represents the corresponding degree of membership, using any one of the defuzzification methods such as the maximum degree of membership method, the median line method, the center of gravity method, the weighted average method, and the membership degree limiting element method.
  • the method obtains the control parameters of the fuzzy controller.
  • the membership degree can be obtained by the center of gravity method and the control parameters of the fuzzy controller can be determined.
  • the fourth embodiment of the present invention describes the aforementioned given input quantity and given output quantity, specifically for different motors, the choice of given input quantity and given output quantity is also different:
  • the motor is an AC asynchronous motor
  • the output is the actual speed of the AC asynchronous motor
  • the given input of the AC asynchronous motor is the given speed of the AC asynchronous motor
  • the net speed of the motor has the following equivalent relationship:
  • i denotes the system of the i motor
  • v i is the net speed of the i-th stage of the motor
  • v refi i-th motor setpoint speed v refi i-th motor setpoint speed
  • ⁇ i is the i-th motor output speed
  • ⁇ i is the i-th set of phase
  • A is the master-slave feedback coefficient matrix
  • B is the feedback coefficient matrix
  • is the fuzzy relationship matrix
  • the net output is the output of the feedback controller, the output of the fuzzy controller, the output of the master-slave controller, and the output of the given motor speed after the comparison link.
  • the output is the actual position of the actuator of the AC asynchronous motor
  • the given input of the AC asynchronous motor is the given position of the actuator of the AC asynchronous motor
  • the executive element of the AC asynchronous motor is an executive functional element connected to the output shaft of the AC motor.
  • the manipulator is controlled by the motor to work, and the manipulator is the executive element of the AC asynchronous motor;
  • the motor is a synchronous motor
  • the output is the actual speed of the synchronous motor
  • the given input of the synchronous motor is the given speed of the synchronous motor
  • the output is the actual output frequency of the synchronous motor
  • the given input of the synchronous motor is the given frequency of the synchronous motor
  • the motor is a switched reluctance motor
  • the output of the switched reluctance motor is the rotor position of the switched reluctance motor
  • the given input of the switched reluctance motor is the switched reluctance motor The given position of the rotor.
  • the closed-loop coupling system is used to control the motor, which alleviates the lag and synchronization problems of the multi-motor control in the prior art, the control application is more flexible, and the coordination of the work of multiple motors is improved;
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code contains one or more functions for realizing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed substantially in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or actions Or it can be realized by a combination of dedicated hardware and computer instructions.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, they may be fixed connections or detachable connections. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they may be fixed connections or detachable connections. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种模糊主从反馈协同多电机闭环耦合协同控制系统及方法,涉及电机控制的技术领域,该系统是将多台电机通过控制器构成首尾相连的闭环耦合系统,同时每个控制器均包括主从控制器、模糊控制器以及反馈控制器,通过多电机的闭环耦合的布设缓解了现有技术中多电机协调控制的同步性差的问题,通过模糊主从反馈控制策略缓解了现有控制策略稳定性差、准确性差的技术问题。

Description

模糊主从反馈协同多电机闭环耦合协同控制系统及方法 技术领域
本发明涉及电机控制系统的技术领域,尤其是涉及一种模糊主从反馈协同多电机闭环耦合协同控制系统及方法。
背景技术
随着现代化工业制造要求的不断提高,人工成本的不断加大,大量重复的机械生产可以被智能机械臂替代,但目前智能机械臂应用范围还较少、并且对工作环境要求高、维护成本也很高,不适用于一般的工业生产,其中,对驱动机械臂的多电机采取有效的协调控制,提高控制精度是解决智能机械臂使用局限性的关键技术之一,这对机械臂电机的速度协调控制提出了更高的要求。采用多电机协调控制既可以提高多电机转速之间的跟随性、同步性、位置准确性,又可以降低智能机械臂的运营成本,因此研究更加高效的多电机协调控制策略和方法对于智能机器人的发展具有一定促进作用。
目前国内多电机协调控制多集中在平行控制、主从控制和交叉耦合控制以及这三种控制方式的组合控制,这些控制方法在一定程度上提高了多电机之间控制协调性,但存在的缺点是没有消除电机间的滞后性,各电机之间的跟随性和同步性较差。因此,为了达到控制要求,对工作环境要求非常高,不适应复杂不确定工作环境,一旦脱离特定工作环境的控制范围。系统将会不稳定,严重的会导致系统崩溃,造成经济损失。
因此,现有技术中,多电机协调控制存在稳定性差、同步性差以及准确性差的问题。
发明内容
有鉴于此,本发明的目的在于提供一种模糊主从反馈协同多电机闭环耦合协同控制系统及方法,以缓解现有技术中多电机协调控制存在稳定性差、同步性差以及准确性差等技术问题。
第一方面,本发明提供了一种模糊主从反馈协同多电机闭环耦合协同控制系统,包括:
控制器,所述控制器包括模糊控制器、主从控制器以及反馈控制器;
所述的模糊主从反馈协同多电机协同控制系统包括N台电机,每台电机均配有控制器以及调节器;
所述N台电机通过所述控制器相连,构成首尾相连耦合相连的闭环系统,通过调节器对每台电机的输出量进行控制。
第二方面,本发明提供了一种第一方面所述模糊主从反馈协同多电机闭环耦合协同控制系统的模糊主从反馈协同多电机闭环耦合协同控制方法,具体按照如下步骤进行:
S1:构建首尾相连耦合相连的闭环系统:用于控制第i+1台电机的所述主从控制器的输入量为第i台电机的输出量,1≤i≤N-1,用于控制第1台电机的所述主从控制器的输入量为第N台电机的输出量;
用于控制第i+1台电机的所述模糊控制器的输入量为第i台电机的输出量与第i+1台电机的输出量之差,1≤i≤N-1,用于控制第1台电机的所述模糊控制器的输入量为第N台电机的输出量与第1台电机的输出量之差;
用于控制第i台电机的所述反馈控制器的输入量为第i台电机的输出量与第i+1台电机的输出量之差,1≤i≤N-1,用于控制第N台电机的所述反馈控制器的输入量为第N台电机的输出量与第1台电机的输出量之差;
S2:分别确定所述模糊控制器和/或主从控制器和/或反馈控制器的控制参数;
S3:基于所述模糊控制器的控制参数和/或主从控制器的控制参数和/或反馈控制器的控制参数,对所述模糊主从反馈协同多电机协同控制系统的每台电机的输出量进行控制。
具体的,所述分别确定所述模糊控制器和/或主从控制器和/或反馈控制器的控制参数的步骤包括;
S21:获取所述主从控制器的控制参数,基于控制第j台电机的所述主从控制器的输入量对所述第j台电机进行控制。
具体的,所述分别确定所述模糊控制器和/或主从控制器和/或反馈控制器的控制参数的步骤包括;
S22:获取所述反馈控制器的控制参数,基于控制第j台电机的所述反馈控制器的输入量对所述第j台电机进行控制。
具体的,所述分别确定所述模糊控制器和/或主从控制器和/或反馈控制器的控制参数的步骤包括;
S23:获取所述模糊控制器的控制参数:
1)建立模糊规则以及模糊集合,获取隶属度函数;
2)获取所述第i台电机的输出量与第i+1台电机的输出量之差以及所述第i台电机的输出量与第i+1台电机的输出量之差变化率并基于所述模糊规则以及模糊集合,利用所述隶属度函数确定所述模糊控制器的控制参数以对第i+1台电机的输出量进行控制。
具体的,利用如下公式所述隶属度函数确定所述模糊控制器的控制参数获取所述模糊控制器的控制参数:
Figure PCTCN2020099143-appb-000001
Figure PCTCN2020099143-appb-000002
—模糊集合
Figure PCTCN2020099143-appb-000003
的隶属度函数;
C—模糊集合取值区间;
c 0—模糊控制器的控制参数;
或利用如下公式所述隶属度函数确定所述模糊控制器的控制参数获取所述模糊控制器的控制参数:
Figure PCTCN2020099143-appb-000004
k i—根据实际情况选定的加权系数;
c i—模糊集合区间中的提取的第i个模糊值。
具体的,所述电机为交流异步电机,所述输出量为所述交流异步电机的实际转速,所述交流异步电机的给定输入量为所述交流异步电机的给定转速;
或所述输出量为所述交流异步电机执行元件实际位置,所述交流异步电机的给定输入量为所述交流异步电机的执行元件给定位置。
具体的,所述电机为同步电机,所述输出量为所述同步电机的实际转速,所述同步电机给定输入量为同步电机的给定转速;
或所述输出量为所述同步电机的实际输出频率,所述同步电机给定输入量为同步电机的给定频率。
具体的,所述电机为开关磁阻电机,所述开关磁阻电机的输出量为所述开关磁阻电机的转子位置,所述开关磁阻电机的给定输入量为所述开关磁阻电机的转子给定位置。
具体的,所述模糊规则采用IF…AND…THEN模糊规则,将所述模糊空间划分成7个对称的模糊集合。
本发明实施例带来了以下有益效果:本发明提供了一种模糊主从反馈协同多电机闭环耦合协同控制系统及方法,在本发明提供的系统及方法中将多台电机通过控制器构成首尾相连的闭环耦合系统,同时每个控制器均包括主从控制器、模 糊控制器以及反馈控制器,通过多电机的闭环耦合的布设缓解了现有技术中多电机协调控制的同步性差的问题,通过本发明提供的模糊主从反馈控制策略缓解了现有控制策略稳定性差、准确性差的技术问题。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种模糊主从反馈协同多电机闭环耦合协同控制方法流程图;
图2为本发明实施例提供的一种模糊主从反馈协同多电机闭环耦合协同控制系统控制框图;
图3为本发明实施例提供的模糊控制器示意图;
图4为本发明实施例提供的三角波形隶属度函数曲线图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在 没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前多电机协调控制存在稳定性差、同步性差以及准确性差的问题,基于此,本发明实施例提供的一种模糊主从反馈协同多电机闭环耦合协同控制系统及方法,可以缓解现有技术中多电机协调控制存在稳定性差、同步性差以及准确性差的问题。
为便于对本实施例进行理解,首先对本发明实施例所公开一种模糊主从反馈协同多电机闭环耦合协同控制系统进行详细介绍。
实施例一:
本发明提供了一种模糊主从反馈协同多电机闭环耦合协同控制系统,包括:
控制器,所述控制器包括模糊控制器、主从控制器以及反馈控制器;
所述的模糊主从反馈协同多电机协同控制系统包括N台电机,每台电机均配有控制器以及调节器;
所述N台电机通过所述控制器相连,构成首尾相连耦合相连的闭环系统,通过调节器对每台电机的输出量进行控制。
进一步的,具有N个控制器,且每个电机均配有一个控制器,每个所述控制器均包括所述模糊控制器、主从控制器以及反馈控制器,所述模糊控制器、主从控制器以及反馈控制器呈并联关系,在所述模糊控制器、主从控制器以及反馈控制器的共同作用下,对电机进行控制。
实施例二:
本发明实施例二提供了一种基于实施例一的系统的模糊主从反馈协同多电机闭环耦合协同控制方法,结合图1以及图2,具体按照如下步骤进行:
S1:构建首尾相连耦合相连的闭环系统:用于控制第i+1台电机的所述主从控制器的输入量为第i台电机的输出量,1≤i≤N-1,用于控制第1台电机的所述主从控制器的输入量为第N台电机的输出量;
用于控制第i+1台电机的所述模糊控制器的输入量为第i台电机的输出量与第i+1台电机的输出量之差,1≤i≤N-1,用于控制第1台电机的所述模糊控制器的输入量为第N台电机的输出量与第1台电机的输出量之差;
用于控制第i台电机的所述反馈控制器的输入量为第i台电机的输出量与第i+1台电机的输出量之差,1≤i≤N-1,用于控制第N台电机的所述反馈控制器的输入量为第N台电机的输出量与第1台电机的输出量之差;
如图2所示,通过控制器的连接,将系统下控制的N台电机构成首尾相连的闭环耦合系统,进而可知,当第i台电机与第i-1台电机的输出量之差为0时,模糊控制器不动作,属于交叉耦合环网控制,,当电机转速受到扰动产生速度差,模糊控制器会根据误差的大小输出相应的反馈系数,相对于固定反馈增益的交叉耦合控制,这种控制方法适用的场合更广泛,控制更灵活;
S2:分别确定所述模糊控制器和/或主从控制器和/或反馈控制器的控制参数;
具体的,为了获取主从控制器的控制参数,执行S21:获取所述主从控制器的控制参数,基于控制第j台电机的所述主从控制器的输入量对所述第j台电机进行控制的步骤;
为了获取反馈控制器的控制参数,执行S22:获取所述反馈控制器的控制参数,基于控制第j台电机的所述反馈控制器的输入量对所述第j台电机进行控制的步骤;
为了获取模糊控制器的控制参数,执行S23:获取所述模糊控制器的控制参数的步骤:
进一步的,具体包括如下步骤:
1)建立模糊规则以及模糊集合,获取隶属度函数;
2)获取所述第i台电机的输出量与第i+1台电机的输出量之差以及所述第i台电机的输出量与第i+1台电机的输出量之差变化率并基于所述模糊规则以及模 糊集合,利用所述隶属度函数确定所述模糊控制器的控制参数以对第i+1台电机的输出量进行控制。
可采用如下方法获取模糊控制器的控制参数:
a)最大隶属度法:
取隶属度最大的元素作为输出值,如果曲线出现梯形时取上边的中点;
b)中位线法:
将输出量的隶属函数曲线与横坐标构成的面积一分为二,则将面积分成两半的横坐标数值即为输出值。
c)重心法:具体利用如下公式所述隶属度函数确定所述模糊控制器的控制参数获取所述模糊控制器的控制参数:
Figure PCTCN2020099143-appb-000005
Figure PCTCN2020099143-appb-000006
—模糊集合
Figure PCTCN2020099143-appb-000007
的隶属度函数;
C—模糊集合取值区间;
c 0—模糊控制器的控制参数;
d)加权平均法:
计算公式为:
Figure PCTCN2020099143-appb-000008
其中,k i是根据实际情况选定的加权系数,c i为模糊集合区间中的提取的第i个模糊值。当取为隶属函数时,就等价为重心法。
(e)隶属度限幅元素平均法:用一个确定的隶属度值,对隶属函数曲线进行平切,在对切割后等于该隶属度的所有元素进行平均,将此平均值作为输出值。
实施例三:
本发明实施例三对前述的模糊集合以及模糊规则进行了阐释,具体的在本发明提供的实施例中,所述模糊规则采用IF…AND…THEN模糊规则,结合图3所示,即所述第i台电机的输出量与第i+1台电机的输出量之差(本实施中以e代替)is A,and所述第i台电机的输出量与第i+1台电机的输出量之差变化率(本实施中以ec代替)is B,then输出为c,并将所述模糊空间划分成7个对称的模糊集合,即{NB(负大),NM(负中),NS(负小),ZE(零),PS(正小),PM(正中),PB(正大),具体模糊规则如表1所示:
表1模糊规则表
Figure PCTCN2020099143-appb-000009
表1中,A从第一列中取值,代表7个输出量之差e的模糊集合;B从第一行中取值,代表7个输出量之差变化率ec的模糊集合,E代表对应A和B的输出c的49个模糊集合,通过表1可推导出模糊控制器输出的实时调整参数的模糊集合。完成模糊控制器由输入到输出的模糊推理机模糊推理过程。结合图4,横坐标r代表模糊集合范围,μ代表对应的隶属度,采用最大隶属度法、中位线法、重心法、加权平均法和隶属度限幅元素法等解模糊方法的任一方法获取模糊控制器的控制参数,在本发明提供的实施例中,通过重心法即可求取隶属度并确定模糊控制器的控制参数。
实施例四:
本发明实施例四对前述的给定输入量以及给定输出量进行说明,具体的针对于电机的不同,给定输入量、给定输出量的选择也不同:
可选择的,所述电机为交流异步电机,所述输出量为所述交流异步电机的实际转速,所述交流异步电机的给定输入量为所述交流异步电机的给定转速;
具体的,以输出量为电机的净转速为例,电机净转速存在如下等量关系:
Figure PCTCN2020099143-appb-000010
其中,i表示系统中第i台电机,v i是第i台电机的净转速,v refi第i台电机的给定转速,Δω i是第i台电机输出转速,Δω i是第i组相邻电机之间的转速差,A是主从反馈系数矩阵,B是反馈系数矩阵,λ为模糊关系矩阵;
进一步的,所述净输出量为所述反馈控制器的输出量、模糊控制器的输出量、主从控制器的输出量以及电机给定转速经比较环节后的输出量,在上式中,为净转速;
或所述输出量为所述交流异步电机执行元件实际位置,所述交流异步电机的给定输入量为所述交流异步电机的执行元件给定位置。
进一步的,交流异步电机的执行元件为与交流电机输出轴相连的执行功能元件,具体的,以机械手控制系统为例,通过电机控制机械手工作,所述机械手为交流异步电机的执行元件;
可选择的,所述电机为同步电机,所述输出量为所述同步电机的实际转速,所述同步电机给定输入量为同步电机的给定转速;
或所述输出量为所述同步电机的实际输出频率,所述同步电机给定输入量为同步电机的给定频率。
可选择的,所述电机为开关磁阻电机,所述开关磁阻电机的输出量为所述开关磁阻电机的转子位置,所述开关磁阻电机的给定输入量所述开关磁阻电机的转子给定位置。
本发明具有如下效果:
1)采用闭环耦合系统对电机进行控制,缓解了现有技术中多电机控制的滞后性、同步性问题,控制应用更加灵活,提高了多台电机工作的协调性;
2)采用模糊主从反馈控制策略,利用电机之间输出量之差和输出量之差变化率作为输入,首先将输入量模糊化映射到输入论域的模糊集合上,然后通过建立好的模糊规则库和模糊推理机根据模糊控制器的输入匹配出不同的模糊输出,最后将模糊输出量解模糊得出实时反馈调整参数,提高电机之间的实时跟随性,提高了多电机控制系统的准确性,稳定性。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对步骤、数字表达式和数值并不限制本发明的范围。
本发明实施例所提供的装置,其实现原理及产生的技术效果和前述方法实施例相同,为简要描述,装置实施例部分未提及之处,可参考前述方法实施例中相应内容。
附图中的流程图和框图显示了根据本发明的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
另外,在本发明实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发 明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种模糊主从反馈协同多电机闭环耦合协同控制系统,其特征在于,包括:
    控制器,所述控制器包括主从控制器以及反馈控制器以及模糊控制器;
    所述的模糊主从反馈协同多电机协同控制系统包括N台电机,每台电机均配有控制器以及调节器;
    所述N台电机通过所述控制器相连,构成首尾相连耦合相连的闭环系统,通过调节器对每台电机的输出量进行控制。
  2. 一种采用权利要求1所述模糊主从反馈协同多电机闭环耦合协同控制系统的模糊主从反馈协同多电机闭环耦合协同控制方法,其特征在于,具体按照如下步骤进行:
    S1:构建首尾相连耦合相连的闭环系统:用于控制第i+1台电机的所述主从控制器的输入量为第i台电机的输出量,1≤i≤N-1,用于控制第1台电机的所述主从控制器的输入量为第N台电机的输出量;
    用于控制第i+1台电机的所述模糊控制器的输入量为第i台电机的输出量与第i+1台电机的输出量之差,1≤i≤N-1,用于控制第1台电机的所述模糊控制器的输入量为第N台电机的输出量与第1台电机的输出量之差;
    用于控制第i台电机的所述反馈控制器的输入量为第i台电机的输出量与第i+1台电机的输出量之差,1≤i≤N-1,用于控制第N台电机的所述反馈控制器的输入量为第N台电机的输出量与第1台电机的输出量之差;
    S2:分别确定所述模糊控制器和/或主从控制器和/或反馈控制器的控制参数;
    S3:基于所述模糊控制器的控制参数和/或主从控制器的控制参数和/或反馈控制器的控制参数,对所述模糊主从反馈协同多电机协同控制系统的每台电机的输出量进行控制。
  3. 根据权利要求2所述的方法,其特征在于,所述分别确定所述模糊控制器和/或主从控制器和/或反馈控制器的控制参数的步骤包括;
    S21:获取所述主从控制器的控制参数,基于控制第j台电机的所述主从控制器的输入量对所述第j台电机进行控制;1≤j≤N。
  4. 根据权利要求2所述的方法,其特征在于,所述分别确定所述模糊控制器和/或主从控制器和/或反馈控制器的控制参数的步骤包括;
    S22:获取所述反馈控制器的控制参数,基于控制第j台电机的所述反馈控制器的输入量对所述第j台电机进行控制;1≤j≤N。
  5. 根据权利要求2所述的方法,其特征在于,所述分别确定所述模糊控制器和/或主从控制器和/或反馈控制器的控制参数的步骤包括;
    S23:获取所述模糊控制器的控制参数:
    1)建立模糊规则以及模糊集合,获取隶属度函数;
    2)获取所述第i台电机的输出量与第i+1台电机的输出量之差以及所述第i台电机的输出量与第i+1台电机的输出量之差变化率并基于所述模糊规则以及模糊集合,利用所述隶属度函数确定所述模糊控制器的控制参数以对第i+1台电机的输出量进行控制。
  6. 根据权利要求5所述的方法,其特征在于,利用如下公式所述隶属度函数确定所述模糊控制器的控制参数获取所述模糊控制器的控制参数:
    Figure PCTCN2020099143-appb-100001
    Figure PCTCN2020099143-appb-100002
    —模糊集合
    Figure PCTCN2020099143-appb-100003
    的隶属度函数;
    C—模糊集合取值区间;
    c 0—模糊控制器的控制参数;
    或利用如下公式所述隶属度函数确定所述模糊控制器的控制参数获取所述模糊控制器的控制参数:
    Figure PCTCN2020099143-appb-100004
    k i—根据实际情况选定的加权系数;
    c i—模糊集合区间中所提取的第i个模糊值。
  7. 根据权利要求2所述的方法,其特征在于:所述电机为交流异步电机,所述输出量为所述交流异步电机的实际转速,所述交流异步电机的给定输入量为所述交流异步电机的给定转速;
    或所述输出量为所述交流异步电机执行元件实际位置,所述交流异步电机的给定输入量为所述交流异步电机的执行元件给定位置。
  8. 根据权利要求2所述的方法,其特征在于:所述电机为同步电机,所述输出量为所述同步电机的实际转速,所述同步电机给定输入量为同步电机的给定转速;
    或所述输出量为所述同步电机的实际输出频率,所述同步电机给定输入量为同步电机的给定频率。
  9. 根据权利要求2所述的方法,其特征在于,所述电机为开关磁阻电机,所述开关磁阻电机的输出量为所述开关磁阻电机的转子位置,所述开关磁阻电机的给定输入量为所述开关磁阻电机的转子给定位置。
  10. 根据权利要求5所述的方法,其特征在于,所述模糊规则采用IF…AND…THEN模糊规则,将所述模糊空间划分成7个对称的模糊集合。
PCT/CN2020/099143 2020-03-15 2020-06-30 模糊主从反馈协同多电机闭环耦合协同控制系统及方法 WO2021184581A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010178976.3 2020-03-15
CN202010178976.3A CN111404424A (zh) 2020-03-15 2020-03-15 模糊主从反馈协同多电机闭环耦合协同控制系统及方法

Publications (1)

Publication Number Publication Date
WO2021184581A1 true WO2021184581A1 (zh) 2021-09-23

Family

ID=71430783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099143 WO2021184581A1 (zh) 2020-03-15 2020-06-30 模糊主从反馈协同多电机闭环耦合协同控制系统及方法

Country Status (2)

Country Link
CN (1) CN111404424A (zh)
WO (1) WO2021184581A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114153138A (zh) * 2021-10-27 2022-03-08 共享智能装备有限公司 一种agv多轮系统及其同步控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976997A (zh) * 2010-10-25 2011-02-16 四川省安普瑞自动化设备有限公司 带式运输机多电机同步控制系统
CN201854229U (zh) * 2010-10-25 2011-06-01 四川省安普瑞自动化设备有限公司 一种带式运输机多电机同步控制系统
CN102868336A (zh) * 2012-09-12 2013-01-09 江苏大学 基于模糊二阶自抗扰控制器的三电机同步控制系统
JP5904865B2 (ja) * 2012-05-02 2016-04-20 三菱電機株式会社 電動機制御装置
CN106026793A (zh) * 2016-06-28 2016-10-12 东华大学 一种基于模糊pid的主从式多电机同步控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652485A (en) * 1995-02-06 1997-07-29 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Fuzzy logic integrated electrical control to improve variable speed wind turbine efficiency and performance
CN104753406A (zh) * 2013-12-30 2015-07-01 南京理工大学常熟研究院有限公司 一种多电机协同控制方法
CN106655903B (zh) * 2016-10-27 2019-04-23 江苏浩万智能科技有限公司 基于模糊自适应云模型的双永磁同步电机矢量控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976997A (zh) * 2010-10-25 2011-02-16 四川省安普瑞自动化设备有限公司 带式运输机多电机同步控制系统
CN201854229U (zh) * 2010-10-25 2011-06-01 四川省安普瑞自动化设备有限公司 一种带式运输机多电机同步控制系统
JP5904865B2 (ja) * 2012-05-02 2016-04-20 三菱電機株式会社 電動機制御装置
CN102868336A (zh) * 2012-09-12 2013-01-09 江苏大学 基于模糊二阶自抗扰控制器的三电机同步控制系统
CN106026793A (zh) * 2016-06-28 2016-10-12 东华大学 一种基于模糊pid的主从式多电机同步控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU YANJUAN; CHENG YANBIN; WANG YUNLIANG: "Research on a Multi-Motor Coordinated Control Strategy Based on Fuzzy Ring Network Control", IEEE ACCESS, vol. 8, 18 February 2020 (2020-02-18), USA, pages 39375 - 39388, XP011775953, DOI: 10.1109/ACCESS.2020.2974906 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114153138A (zh) * 2021-10-27 2022-03-08 共享智能装备有限公司 一种agv多轮系统及其同步控制方法
CN114153138B (zh) * 2021-10-27 2024-04-12 共享智能装备有限公司 一种agv多轮系统及其同步控制方法

Also Published As

Publication number Publication date
CN111404424A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
TWI445276B (zh) 一種整合自動電壓調整器之控制系統和方法
Shekhar et al. Review of model reference adaptive control
CN109407520A (zh) 基于滑模控制理论的二阶多智能体系统的容错一致性控制算法
WO2021184581A1 (zh) 模糊主从反馈协同多电机闭环耦合协同控制系统及方法
CN110705034B (zh) 一种基于事件触发的永磁同步电机位置跟踪控制方法
Peroni et al. Optimal control of a fed-batch bioreactor using simulation-based approximate dynamic programming
CN111459016A (zh) 一种提高裁床切割机轨迹轮廓跟踪控制精度的方法
CN108092560B (zh) 一种双电机伺服系统的保性能鲁棒分散控制方法
CN112769364B (zh) 一种直流电机伺服系统的快速自适应抗扰控制方法
CN112039394A (zh) 一种基于模糊自抗扰的pmsm伺服控制系统
CN106406097A (zh) 多机械臂系统的分布式自适应协调控制方法
CN113315420B (zh) 基于转矩补偿控制的tbm刀盘驱动多电机同步控制方法
Okoro et al. Model-based speed control of a DC motor using a combined control scheme
CN106712057A (zh) 电力系统稳定器与静止无功补偿器的协调优化方法
CN112737435A (zh) 一种基于t-s模糊滑模控制的步进电机抗干扰系统
Yu et al. Research on a multi-motor coordinated control strategy based on fuzzy ring coupling control
Zhang et al. Neural direct adaptive active disturbance rejection controller for electro-hydraulic servo system
CN115616953A (zh) 一种基于反步的远程伺服电机跟踪控制方法
Xu et al. Servo control system of permanent magnet synchronous motor based on feedforward control
CN102790582B (zh) 无轴承异步电机径向模糊神经网络广义逆控制器构造方法
CN113890450B (zh) 提高双电机柔性联接传动系统转速同步控制性能的方法
Liu et al. Research on Key Problems of Synchronous Control of Hydraulic System Based on Particle Swarm Fuzzy PID
CN114326616B (zh) 基于多元负荷改进动态矩阵预测算法的工业过程控制方法
CN112821829B (zh) 一种考虑电流限幅的永磁同步电机鲁棒位置控制方法
Shen et al. Finite-time circle formation control of multi-agent systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925936

Country of ref document: EP

Kind code of ref document: A1