WO2021184401A1 - 一种弧面二次包络冠齿轮章动传动装置 - Google Patents

一种弧面二次包络冠齿轮章动传动装置 Download PDF

Info

Publication number
WO2021184401A1
WO2021184401A1 PCT/CN2020/080994 CN2020080994W WO2021184401A1 WO 2021184401 A1 WO2021184401 A1 WO 2021184401A1 CN 2020080994 W CN2020080994 W CN 2020080994W WO 2021184401 A1 WO2021184401 A1 WO 2021184401A1
Authority
WO
WIPO (PCT)
Prior art keywords
crown gear
nutation
tooth surface
gear
nutating
Prior art date
Application number
PCT/CN2020/080994
Other languages
English (en)
French (fr)
Inventor
李轩
孙立宁
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2021184401A1 publication Critical patent/WO2021184401A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/18Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes the members having helical, herringbone, or like teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • F16H55/0806Involute profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • F16H55/18Special devices for taking up backlash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/028Gearboxes; Mounting gearing therein characterised by means for reducing vibration or noise
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the invention relates to the technical field of gear transmission, in particular to a nutation transmission device of a cambered double-enveloping crown gear.
  • nutation transmission devices mostly adopt involute bevel gear meshing pairs, bevel pendulum pin wheel meshing pairs, rolling bevel movable teeth meshing pairs, double arc spiral bevel gear meshing pairs and other structures. Due to the support of multiple pairs of bearings, the overall size is large and the structure is complex, which is not conducive to the development and application of lightweight and miniaturization. Secondly, there is a single installation method, only one-sided input and output, inflexible use, and poor versatility. Thirdly, the secondary transmission has the problem of unilateral gear meshing. The inertial force generated by the nutation motion of the gear is not easy to offset, and the vibration and impact are serious. , Resulting in reduced service life and poor reliability. Finally, there are problems of tooth root bending and insufficient tooth surface contact strength caused by high gear teeth and small modulus.
  • a crown gear nutation transmission device which adopts a new type of crown gear nutation conjugate meshing pair to solve the problem of over-large overall size, single-sided input and output, and same-side meshing vibration and impact, and can realize "left end input, Two use modes: “right-end output”, “right-end input, left-end output”, and have the advantages of continuous tooth surface, axial anti-backlash, double-sided meshing, multi-line contact, etc., which are beneficial to reduce tooth surface wear and backlash, and improve smooth motion Performance and carrying capacity.
  • the present invention provides a cambered double enveloping crown gear nutation transmission device, comprising a cross roller bearing, a right end crown gear, a left end crown gear, and a nutation crown gear.
  • the cross roller bearing includes a rolling connection The inner ring and the outer ring, the inner ring is fixedly connected to the left end crown gear, the outer ring is fixedly connected to the right end crown gear, and the nutating crown gear is arranged on the right end crown.
  • the tooth surface of the left end crown gear and the left tooth surface of the nutating crown gear constitute the left side few-tooth differential nutation conjugate meshing pair, and the right end passes through the tooth surface of the gear and the nutating crown gear
  • the right tooth surface constitutes the right side few-tooth difference nutation conjugate meshing pair.
  • the transmission device further includes an input shaft
  • the input shaft includes a first shaft section, a second shaft section, and a third shaft section in the axial direction
  • the outer wall of the second shaft section is cylindrical
  • the axial direction of the outer wall of the second shaft section is at an angle with the circumferential direction of the input shaft
  • the outer walls of the first shaft section and the third shaft section are arranged coaxially with the input shaft.
  • the right end crown gear is rotatably mounted on the first shaft section of the input shaft through a first bearing; the nutating crown gear is rotatably mounted on the second shaft of the input shaft through a second bearing Section, the left end crown gear is rotatably mounted on the third shaft section of the input shaft through a third bearing, and the second shaft section is provided with a ring of circlip grooves and a ring of ribs, An elastic retaining ring is installed in the circlip groove, the second bearing is limited between the elastic retaining ring and the retaining edge, and the third bearing passes between the retaining edge A shaft sleeve limit.
  • the left side tooth surface of the nutating crown gear is formed by one-time envelope formation of cylindrical arcuate surface, and the equation of cylindrical arcuate surface formation is:
  • the left side tooth surface equation of the nutating crown gear is:
  • the tooth surface of the left crown gear is a double-enveloped tooth surface, which is formed by the nutation motion of the left tooth surface of the nutating crown gear.
  • the tooth surface equation is:
  • the subscript l represents the left tooth surface
  • u is the tooth width
  • is the nutation angle
  • is the pitch cone angle
  • is the radius of the rounding
  • is the variable of the rounding
  • is the gear rotation angle
  • n is the number of gear teeth
  • the subscripts 1, 2 represent the left side tooth surface of the left end crown gear and the nutation crown gear in turn
  • n 1 n 2 +1.
  • the right side tooth surface of the nutating crown gear is formed by one-time envelope formation of another cylindrical arcuate surface, and the equation of the cylindrical arcuate surface is as follows:
  • the tooth surface of the right crown gear is a double-enveloped tooth surface, which is formed by the nutation motion of the right tooth surface of the nutating crown gear.
  • the tooth surface equation is:
  • the subscript r represents the right tooth surface
  • u is the tooth width
  • is the nutation angle
  • is the pitch cone angle
  • is the radius of the rounding
  • is the variable of the rounding.
  • n represents the number of gear teeth
  • the subscripts 3 and 4 represent the right side tooth surface of the nutating crown gear and the right end crown gear in turn
  • n 4 n 3 +1.
  • At least a part of the gear tooth pairs in the said few-tooth differential nutation conjugate meshing pair have a double-wire contact characteristic.
  • the inner ring and the outer ring of the cross roller bearing are respectively fixedly connected with the left end crown gear and the right end crown gear by screws, a washer is provided between the inner ring and the left end crown gear, and the The washer is used to adjust the axial clearance between the inner ring and the left crown gear.
  • the working method of the crown gear nutation transmission device of the present application includes the following steps:
  • Step 1) The keyway of the input shaft is connected to the motor shaft.
  • the power of the motor is input from the left (or right) end and fixedly connected to the inner ring (or outer ring) of the cross roller bearing, which will drive the input shaft to rotate.
  • Step 2 During the rotation of the input shaft, the outer ring of the bearing and the nutation crown gear on the upper second shaft section make precession, the left (or right) side tooth surface of the nutation gear and the left (or right) end crown gear The tooth surface is conjugate meshed to realize the first-stage deceleration.
  • Step 3 The right (or left) side tooth surface of the decelerated nutating gear meshes with the tooth surface of the right (or left) end crown gear in conjugate meshing, through the end crown gear and the fixed cross roller bearing outer ring ( (Or inner ring) to output the power to realize the second-stage reducer.
  • the crown gear transmission device of the present application solves the problem of excessively large axial size of the traditional bevel gear nutation transmission, which is beneficial to realize light weight and miniaturization.
  • the tooth side clearance is eliminated, which is beneficial to reduce The backlash improves the transmission accuracy of the device.
  • the crown gear of the present application has continuous tooth surfaces and all engage in meshing, which can reduce tooth surface wear, easily form a lubricating oil film, and improve the transmission efficiency of the device.
  • the nutating crown gear of the present application has double-sided tooth surfaces and a conjugate meshing pair formed with the tooth surfaces at the left and right ends, which cancels the inertial force generated by the nutation motion, reduces vibration and impact, improves the smoothness of motion, and meshes at the same time
  • the pair of auxiliary teeth has a double-line contact characteristic, which increases the number of contact lines and improves the load-bearing capacity of the device.
  • the nutation transmission device of this application adopts crossed roller bearings, which simplifies the support structure of the device, can bear large external axial force and radial force, and can realize "left end input, right end output", “right end input, left end output” "Two modes of use.
  • Figure 1 is an assembly diagram of the present invention
  • Figure 2 is a three-dimensional cross-sectional view of the present invention
  • Figure 3 is an exploded view of the present invention
  • Figure 4 is a schematic diagram of the input shaft of the present invention.
  • Figure 5 is a schematic diagram of the nutating crown gear of the present invention.
  • Fig. 6 is a schematic diagram of the right end crown gear of the present invention.
  • Figure 7 is a schematic diagram of the left end crown gear of the present invention.
  • Figure 8 is a schematic diagram of gear meshing of the present invention.
  • FIG. 9 is a schematic diagram of the formation of the tooth surfaces of the left and right conjugate meshing pairs of the present invention.
  • the crown gear nutation transmission device of the present invention which includes a cross roller bearing 1 composed of an inner ring 1a, an oil seal 1b, an outer ring 1c, and cylindrical rollers 1d.
  • the inner ring 1a of the sub-bearing 1 and the left end crown gear 4 are fixedly connected by screws 3, and there is a washer 2 therebetween.
  • the outer ring 1c of the crossed roller bearing 1 and the right end crown gear 6 are fixedly connected by screws 7.
  • This invention uses crossed rollers
  • the bearing simplifies the support structure of the device and can withstand large external axial and radial forces.
  • the tooth surfaces of the left and right crown gears 4 and 6 mesh with the nutating crown gear 5 (refer to Figure 5) with double-sided tooth surfaces between them, forming a few teeth Differential nutation conjugate meshing pair.
  • the meshing pair can be adjusted axially through the washer 2 to eliminate the tooth side clearance, which is beneficial to reduce the backlash and improve the transmission accuracy of the device; all crown gears 4, 5, and 6 in this invention have continuous tooth surfaces, and all of them have continuous tooth surfaces.
  • Participation in meshing can reduce tooth surface wear, easy to form a lubricating oil film, and improve the transmission efficiency of the device; the nutation crown gear meshes with both sides of the left and right end crown gears, as shown in Figure 8, offsetting the inertial force generated by the nutation motion , Reduce vibration and impact, improve the smoothness of movement.
  • the input shaft 8 includes a first shaft section 8a, a second shaft section 8b, and a third shaft section 8c in the axial direction.
  • the outer wall of the second shaft section 8b is cylindrical, and The axial direction of the outer wall of the second shaft section 8b is at an angle with the circumferential direction of the input shaft 8, and the outer walls of the first shaft section 8a and the third shaft section 8c are coaxially arranged with the input shaft 8
  • the right end crown gear 4 is rotatably mounted on the first shaft section 8a of the input shaft 8 through the first bearing 13; the nutating crown gear 5 is rotatably mounted on the second bearing 11
  • the left crown gear 4 is rotatably mounted on the third shaft section 8c of the input shaft 8 through a third bearing 10.
  • the shaft section 8c is provided with a ring of circlip grooves and a ring of ribs, the circlips 12, 14 are installed in the circlip grooves, and the second bearing 11 is limited to the elastic ring 12. , 14 and the rib, between the third bearing 10 and the rib is limited by a shaft sleeve 9.
  • the left side tooth surface of the nutating crown gear is formed by one-time envelopment of the cylindrical arc surface, and the equation of the cylindrical arc surface is as follows:
  • the left side tooth surface equation of the nutating crown gear is:
  • the tooth surface of the left crown gear is a double-enveloped tooth surface, which is formed by the nutation motion of the left tooth surface of the nutating crown gear.
  • the tooth surface equation is:
  • the subscript l represents the left tooth surface
  • u is the tooth width
  • is the nutation angle
  • is the pitch cone angle
  • is the radius of the rounding
  • is the variable of the rounding
  • is the gear rotation angle
  • n is the number of gear teeth
  • the subscripts 1, 2 represent the left side tooth surface of the left end crown gear and the nutation crown gear in turn
  • n 1 n 2 +1.
  • the right side tooth surface of the nutating crown gear is formed by one-time envelope formation of another cylindrical arcuate surface, the equation of the cylindrical arcuate surface is as follows:
  • the tooth surface of the right crown gear is a double-enveloped tooth surface, which is formed by the nutation motion of the right tooth surface of the nutating crown gear.
  • the tooth surface equation is:
  • the subscript r represents the right tooth surface
  • u is the tooth width
  • is the nutation angle
  • is the pitch cone angle
  • is the radius of the rounding
  • is the variable of the rounding.
  • n represents the number of gear teeth
  • the subscripts 3 and 4 represent the right side tooth surface of the nutating crown gear and the right end crown gear in turn
  • n 4 n 3 +1.
  • the left and right side tooth surfaces (Lb, Rb) of the middle nutating crown gear are formed by a cylindrical arc surface (La, Ra) through a single envelope process
  • the left and right end crown gear tooth surfaces (Lc , Rc) is the left and right side tooth surfaces (Lb, Rb) of the middle nutation crown gear produced by the first envelope, formed by the second envelope process, which constitutes the left and right arc surface double envelope chapter
  • the movable conjugate meshing gear pair has a double-line contact characteristic on the meshing pair of teeth at the same time, which increases the number of contact lines and improves the load-bearing capacity of the device.
  • the working method of the crown gear nutation transmission device includes the following steps:
  • Step 1) The keyway of the input shaft 8 is connected to the motor shaft, and the motor is fixedly connected to the inner ring 1a of the cross roller bearing.
  • the power of the motor is input from the left end, which will drive the input shaft 8 to rotate.
  • Step 2 During the rotation of the input shaft 8, the outer ring of the bearing 11 on the second shaft section 8a and the nutation crown gear 5 perform precession. The yoke is engaged to realize the first-stage deceleration.
  • Step 3 The right side tooth surface of the decelerated nutating gear 5 meshes with the tooth surface of the right end crown gear 6 in conjugate mesh, and the power is output through the right end crown gear 6 and the fixed cross roller bearing outer ring 1c to realize the second Stage reducer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)
  • Gear Transmission (AREA)

Abstract

一种弧面二次包络冠齿轮章动传动装置,包括交叉滚子轴承(1)、右端冠齿轮(6)、左端冠齿轮(4)、章动冠齿轮(5),交叉滚子轴承(1)包括相滚动连接的内圈(1a)和外圈(1c),内圈(1a)与左端冠齿轮(4)固定连接,外圈(1c)与右端冠齿轮(6)固定连接,章动冠齿轮(5)设于右端冠齿轮(6)与左端冠齿轮(4)之间,左端冠齿轮(4)的齿面与章动冠齿轮(5)的左齿面构成左侧少齿差章动共轭啮合副,右端冠齿轮(6)的齿面与章动冠齿轮(5)的右齿面构成右侧少齿差章动共轭啮合副。

Description

一种弧面二次包络冠齿轮章动传动装置 技术领域
本发明涉及齿轮传动技术领域,具体涉及一种弧面二次包络冠齿轮章动传动装置。
背景技术
目前传统章动传动装置中多采用渐开线锥齿轮啮合副、锥摆针轮啮合副、滚锥活齿啮合副、双圆弧螺旋锥齿轮啮合副等结构。由于多对轴承支撑,整体较大,结构复杂,不利于轻量化和小型化开发应用。其次,存在安装方式单一,只能单侧输入、输出,使用不灵活,通用性差,再次,二级传动存在齿轮单侧啮合问题,齿轮章动运动产生的惯性力不易抵消,振动、冲击现象严重,导致使用寿命减低、可靠性差,最后,存在轮齿高、模数小,导致的齿根弯曲及齿面接触强度不足的问题。
针对以上问题,发明了一种冠齿轮章动传动装置,采用新型冠齿轮章动共轭啮合副,解决整体尺寸过大、单侧输入输出、同侧啮合振动冲击问题,能实现“左端输入、右端输出”,“右端输入、左端输出”两种使用模式,并具有连续齿面、轴向消隙、双侧啮合、多线接触等优点,有利于降低齿面磨损及回差,提高运动平稳性及承载能力。
发明内容
本发明提供了一种弧面二次包络冠齿轮章动传动装置,包括交叉滚子轴承、右端冠齿轮、左端冠齿轮、章动冠齿轮,所述的交叉滚子轴承包括相滚动连接的内圈和外圈,所述的内圈与所述的左端冠齿轮固定连接,所述的外圈与所述 的右端冠齿轮固定连接,所述的章动冠齿轮设于所述的右端冠齿轮与左端冠齿轮之间,所述的左端冠齿轮的齿面与章动冠齿轮的左齿面构成左侧少齿差章动共轭啮合副,右端穿齿轮的齿面与章动冠齿轮的右齿面构成右侧少齿差章动共轭啮合副。
优选地,所述的传动装置还包括输入轴,所述的输入轴沿轴线方向依次包括第一轴段、第二轴段和第三轴段,所述的第二轴段的外壁呈圆柱形,且所述的第二轴段的外壁所在的轴线方向与输入轴的周向方向呈一夹角,所述的第一轴段和第三轴段的外壁与输入轴同轴设置,所述的右端冠齿轮通过第一轴承可转动的安装在所述的输入轴的第一轴段上;所述的章动冠齿轮通过第二轴承可转动的安装在所述的输入轴的第二轴段上,所述的左端冠齿轮通过第三轴承可转动的安装在所述的输入轴的第三轴段上,所述的第二轴段上设置有一圈卡簧槽、一圈挡边,所述的卡簧槽内安装有弹性挡圈,所述的第二轴承被限位在所述的弹性挡圈与挡边之间,所述的第三轴承与所述的挡边之间通过一轴套限位。
优选地,所述的章动冠齿轮的左侧齿面由圆柱弧面产形曲面一次包络形成,圆柱弧面产形曲面方程为:
Figure PCTCN2020080994-appb-000001
章动冠齿轮的左侧齿面方程为:
Figure PCTCN2020080994-appb-000002
一次包络过程啮合方程为:
Figure PCTCN2020080994-appb-000003
左端冠齿轮齿面为二次包络齿面,即由章动冠齿轮左侧齿面章动运动包络而成,其齿面方程为:
Figure PCTCN2020080994-appb-000004
二次包络过程啮合方程为:
Figure PCTCN2020080994-appb-000005
其中,下标l表示左齿面,u为齿宽,ε为章动角,δ为节锥角,ρ为发生圆半径,θ为发生圆角变量,
Figure PCTCN2020080994-appb-000006
φ为齿轮转角,n表示齿轮齿数,下标1、2、依次代表左端冠齿轮、章动冠齿轮左侧齿面,且n 1=n 2+1。
优选地,章动冠齿轮的右侧齿面由另一圆柱弧面产形曲面一次包络形成,该圆柱弧面产形曲面方程为:
Figure PCTCN2020080994-appb-000007
章动冠齿轮的右侧齿面方程为:
Figure PCTCN2020080994-appb-000008
右端冠齿轮齿面为二次包络齿面,即由章动冠齿轮右侧齿面章动运动包络而成,其齿面方程为:
Figure PCTCN2020080994-appb-000009
二次包络过程啮合方程为:
Figure PCTCN2020080994-appb-000010
其中,下标r表示右齿面,u为齿宽,ε为章动角,δ为节锥角,ρ为发生圆半径,θ为发生圆角变量,
Figure PCTCN2020080994-appb-000011
为齿轮转角,n表示齿轮齿数,下标3、4依次代表章动冠齿轮右侧齿面、右端冠齿轮,且n 4=n 3+1。
优选地,所述的少齿差章动共轭啮合副中至少一部分的轮齿对存在双线接 触特性。
优选地,所述的交叉滚子轴承的内圈和外圈分别通过螺钉与左端冠齿轮固定连接、右端冠齿轮固定连接,所述的内圈与左端冠齿轮之间设置有垫圈,所述的垫圈用于调节所述的内圈与左端冠齿轮的轴向间隙。
优选地,所述传动装置在“左端输入、右端输出”的模式下,其传动比为i lr=(n 3·n 2+n 3)/(n 3-n 2),输出转动方向与输入转动方向相同,所述传动装置工作在“右端输入、左端输出”的模式下,其传动比为i rl=(n 3·n 2+n 2)/(n 2-n 3),输出转动方向与输入转动方向相反。
本申请的冠齿轮章动传动装置的工作方法,包括如下步骤:
步骤1)通过输入轴的键槽与电机轴连接,电机动力由左(或右)端输入与交叉滚子轴承内圈(或外圈)固联,将带动输入轴转动。
步骤2)输入轴转动过程中,其上第二轴段上的轴承外圈及章动冠齿轮作进动运动,章动齿轮左(或右)侧齿面与左(或右)端冠齿轮齿面共轭啮合,实现第一级减速。
步骤3)减速后的章动齿轮右(或左)侧齿面与右(或左)端冠齿轮齿面共轭啮合,通过该端冠齿轮和与之固联的交叉滚子轴承外圈(或内圈)将动力输出,实现第二级减速器。
本发明的冠齿轮章动传动装置的有益效果如下:
1、本申请的冠齿轮传动装置,解决了传统锥齿轮章动传动轴向尺寸过大的问题,有利于实现轻量化、小型化,通过垫圈轴向调节,消除齿侧间隙,有利于减小回差,提高了装置的传动精度。
2、本申请的冠齿轮具有连续齿面,且全部参与啮合,可减低齿面磨损,易于形成润滑油膜,提高了装置的传动效率。
3、本申请的章动冠齿轮具有双侧齿面,与左右两端齿面形成的共轭啮合副,抵消了章动运动产生的惯性力,减小振动冲击,提高运动平稳性,同时啮合副齿对上具有双线接触特性,使接触线增多,提高了装置的承载能力。
4、本申请的章动传动装置采用交叉滚子轴承,简化了装置支撑结构,可以承受较大外加轴向力与径向力,可实现“左端输入、右端输出”,“右端输入、左端输出”两种使用模式。
附图说明
图1是本发明装配图;
图2是本发明三维剖视图;
图3是本发明爆炸图;
图4是本发明输入轴示意图图;
图5是本发明章动冠齿轮示意图;
图6是本发明右端冠齿轮示意图;
图7是本发明左端冠齿轮示意图;
图8是本发明齿轮啮合示意图;
图9是本发明左右侧共轭啮合副齿面形成示意图;
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1-3所示,为本发明冠齿轮章动传动装置的一实施例,包括由内圈1a、油封1b、外圈1c、圆柱滚子1d构成的交叉滚子轴承1,其中交叉滚子轴承1的内圈1a与左端冠齿轮4通过螺钉3固联,之间具有垫圈2,交叉滚子轴 承1的外圈1c与右端冠齿轮6通过螺钉7固联,该发明采用交叉滚子轴承简化了装置支撑结构,可以承受较大外加轴向力与径向力,内圈1a、外圈1c上具有螺纹孔,均可作为输入、输出连接接口,可实现“左端输入、右端输出”,“右端输入、左端输出”两种使用模式。
左、右端冠齿轮4、6的齿面(参照图6、7所示)与介于两者之间具有双侧齿面的章动冠齿轮5(参照图5所示)啮合,构成少齿差章动共轭啮合副。该啮合副可通过垫圈2进行轴向调节,消除齿侧间隙,有利于减小回差,提高了装置的传动精度;该发明中所有冠齿轮4、5、6均具有连续齿面,且全部参与啮合,可减低齿面磨损,易于形成润滑油膜,提高了装置的传动效率;章动冠齿轮与左右端冠齿轮的双侧啮合,参照图8所示,抵消了章动运动产生的惯性力,减小振动冲击,提高运动平稳性。
参照图4所示,所述的输入轴8沿轴线方向依次包括第一轴段8a、第二轴段8b和第三轴段8c,所述的第二轴段8b的外壁呈圆柱形,且所述的第二轴段8b的外壁所在的轴线方向与输入轴8的周向方向呈一夹角,所述的第一轴段8a和第三轴段8c的外壁与输入轴8同轴设置,所述的右端冠齿轮4通过第一轴承13可转动的安装在所述的输入轴8的第一轴段8a上;所述的章动冠齿轮5通过第二轴承11可转动的安装在所述的输入轴8的第二轴段8b上,所述的左端冠齿轮4通过第三轴承10可转动的安装在所述的输入轴8的第三轴段8c上,所述的第二轴段8c上设置有一圈卡簧槽、一圈挡边,所述的卡簧槽内安装有弹性挡圈12、14,所述的第二轴承11被限位在所述的弹性挡圈12、14与挡边之间,所述的第三轴承10与所述的挡边之间通过一轴套9限位。
所述的章动冠齿轮的左侧齿面由圆柱弧面产形曲面一次包络形成,圆柱弧面产形曲面方程为:
Figure PCTCN2020080994-appb-000012
章动冠齿轮的左侧齿面方程为:
Figure PCTCN2020080994-appb-000013
一次包络过程啮合方程为:
Figure PCTCN2020080994-appb-000014
左端冠齿轮齿面为二次包络齿面,即由章动冠齿轮左侧齿面章动运动包络而成,其齿面方程为:
Figure PCTCN2020080994-appb-000015
二次包络过程啮合方程为:
Figure PCTCN2020080994-appb-000016
其中,下标l表示左齿面,u为齿宽,ε为章动角,δ为节锥角,ρ为发生 圆半径,θ为发生圆角变量,
Figure PCTCN2020080994-appb-000017
φ为齿轮转角,n表示齿轮齿数,下标1、2、依次代表左端冠齿轮、章动冠齿轮左侧齿面,且n 1=n 2+1。
章动冠齿轮的右侧齿面由另一圆柱弧面产形曲面一次包络形成,该圆柱弧面产形曲面方程为:
Figure PCTCN2020080994-appb-000018
章动冠齿轮的右侧齿面方程为:
Figure PCTCN2020080994-appb-000019
右端冠齿轮齿面为二次包络齿面,即由章动冠齿轮右侧齿面章动运动包络而成,其齿面方程为:
Figure PCTCN2020080994-appb-000020
二次包络过程啮合方程为:
Figure PCTCN2020080994-appb-000021
其中,下标r表示右齿面,u为齿宽,ε为章动角,δ为节锥角,ρ为发生圆半径,θ为发生圆角变量,
Figure PCTCN2020080994-appb-000022
为齿轮转角,n表示齿轮齿数,下标3、4依次代表章动冠齿轮右侧齿面、右端冠齿轮,且n 4=n 3+1。
参照图9所示,中间章动冠齿轮左右侧齿面(Lb、Rb)是以圆柱弧面为产形面(La、Ra),通过一次包络过程形成,左右端冠齿轮齿面(Lc、Rc)是以第一次包络产生的中间章动冠齿轮左右侧齿面(Lb、Rb),通过二次包络过程形成,由此构成了左、右侧弧面二次包络章动共轭啮合齿轮副,同时啮合副齿对上具有双线接触特性,使接触线增多,提高了装置的承载能力。
装置工作在“左端输入、右端输出”模式下,其传动比为i lr=(n 3·n 2+n 3)/(n 3-n 2),输出转动方向与输入转动方向相同,工作在“右端输入、左端输出”模式下,其传动比为i rl=(n 3·n 2+n 2)/(n 2-n 3),输出转动方向与输入转动方向相反。
以左端输入为例,该冠齿轮章动传动装置的工作方法,包括如下步骤:
步骤1)通过输入轴8的键槽与电机轴连接,电机与交叉滚子轴承内圈1a固联,电机动力由左端输入,将带动输入轴8转动。
步骤2)输入轴8转动过程中,其上第二轴段8a上的轴承11外圈及章动冠齿轮5作进动运动,章动齿轮5左侧齿面与左端冠齿轮4齿面共轭啮合,实现第一级减速。
步骤3)减速后的章动齿轮5右侧齿面与右端冠齿轮6齿面共轭啮合,通过右端冠齿轮6和与之固联的交叉滚子轴承外圈1c将动力输出,实现第二级减速器。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护 范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (7)

  1. 一种弧面二次包络冠齿轮章动传动装置,其特征在于,包括交叉滚子轴承、右端冠齿轮、左端冠齿轮、章动冠齿轮,所述的交叉滚子轴承包括相滚动连接的内圈和外圈,所述的内圈与所述的左端冠齿轮固定连接,所述的外圈与所述的右端冠齿轮固定连接,所述的章动冠齿轮设于所述的右端冠齿轮与左端冠齿轮之间,所述的左端冠齿轮的齿面与章动冠齿轮的左齿面构成左侧少齿差章动共轭啮合副,右端穿齿轮的齿面与章动冠齿轮的右齿面构成右侧少齿差章动共轭啮合副。
  2. 如权利要求1所述的弧面二次包络冠齿轮章动传动装置,其特征在于,所述的传动装置还包括输入轴,所述的输入轴沿轴线方向依次包括第一轴段、第二轴段和第三轴段,所述的第二轴段的外壁呈圆柱形,且所述的第二轴段的外壁所在的轴线方向与输入轴的周向方向呈一夹角,所述的第一轴段和第三轴段的外壁与输入轴同轴设置,所述的右端冠齿轮通过第一轴承可转动的安装在所述的输入轴的第一轴段上,所述的章动冠齿轮通过第二轴承可转动的安装在所述的输入轴的第二轴段上,所述的左端冠齿轮通过第三轴承可转动的安装在所述的输入轴的第三轴段上,所述的第二轴段上设置有一圈卡簧槽、一圈挡边,所述的卡簧槽内安装有弹性挡圈,所述的第二轴承被限位在所述的弹性挡圈与挡边之间,所述的第三轴承与所述的挡边之间通过一轴套限位。
  3. 如权利要求1所述的弧面二次包络冠齿轮章动传动装置,其特征在于,所述的章动冠齿轮的左侧齿面由圆柱弧面产形曲面一次包络形成,圆柱弧面产形曲面方程为:
    Figure PCTCN2020080994-appb-100001
    章动冠齿轮的左侧齿面方程为:
    Figure PCTCN2020080994-appb-100002
    一次包络过程啮合方程为:
    Figure PCTCN2020080994-appb-100003
    左端冠齿轮齿面为二次包络齿面,即由章动冠齿轮左侧齿面章动运动包络而成,其齿面方程为:
    Figure PCTCN2020080994-appb-100004
    二次包络过程啮合方程为:
    Figure PCTCN2020080994-appb-100005
    其中,下标l表示左齿面,u为齿宽,ε为章动角,δ为节锥角,ρ为发生圆半径,θ为发生圆角变量,
    Figure PCTCN2020080994-appb-100006
    φ为齿轮转角,n表示齿轮齿数,下标1、2、依次代表左端冠齿轮、章动冠齿轮左侧齿面,且n 1=n 2+1。
  4. 如权利要求3所述的弧面二次包络冠齿轮章动传动装置,其特征在于,章动冠齿轮的右侧齿面由另一圆柱弧面产形曲面一次包络形成,该圆柱弧面产形曲面方程为:
    Figure PCTCN2020080994-appb-100007
    章动冠齿轮的右侧齿面方程为:
    Figure PCTCN2020080994-appb-100008
    右端冠齿轮齿面为二次包络齿面,即由章动冠齿轮右侧齿面章动运动包络而成,其齿面方程为:
    Figure PCTCN2020080994-appb-100009
    二次包络过程啮合方程为:
    Figure PCTCN2020080994-appb-100010
    其中,下标r表示右齿面,u为齿宽,ε为章动角,δ为节锥角,ρ为发生圆半径,θ为发生圆角变量,
    Figure PCTCN2020080994-appb-100011
    为齿轮转角,n表示齿轮齿数,下标3、4依次代表章动冠齿轮右侧齿面、右端冠齿轮,且n 4=n 3+1。
  5. 如权利要求1所述的弧面二次包络冠齿轮章动传动装置,其特征在于,所述的少齿差章动共轭啮合副中至少一部分的轮齿对存在双线接触特性。
  6. 如权利要求1所述的弧面二次包络冠齿轮章动传动装置,其特征在于,所述的交叉滚子轴承的内圈和外圈分别通过螺钉与左端冠齿轮固定连接、右端冠齿轮固定连接,所述的内圈与左端冠齿轮之间设置有垫圈,所述的垫圈用于调节所述的内圈与左端冠齿轮的轴向间隙。
  7. 如权利要求4所述的弧面二次包络冠齿轮章动传动装置,其特征在于,所述传动装置在“左端输入、右端输出”的模式下,其传动比为i lr=(n 3·n 2+n 3)/(n 3-n 2),输出转动方向与输入转动方向相同,所述传动装置工作在“右端输入、左端输出”的模式下,其传动比为i rl=(n 3·n 2+n 2)/(n 2-n 3),输出转动方向与输入转动方向相反。
PCT/CN2020/080994 2020-03-17 2020-03-25 一种弧面二次包络冠齿轮章动传动装置 WO2021184401A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010187770.7 2020-03-17
CN202010187770.7A CN111219447B (zh) 2020-03-17 2020-03-17 一种弧面二次包络冠齿轮章动传动装置

Publications (1)

Publication Number Publication Date
WO2021184401A1 true WO2021184401A1 (zh) 2021-09-23

Family

ID=70828456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080994 WO2021184401A1 (zh) 2020-03-17 2020-03-25 一种弧面二次包络冠齿轮章动传动装置

Country Status (2)

Country Link
CN (1) CN111219447B (zh)
WO (1) WO2021184401A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112377595B (zh) * 2020-11-10 2024-05-10 重庆交通大学 一种基于空间共轭曲线的内啮合斜齿轮副
CN114198460B (zh) * 2021-12-22 2023-05-16 姜虹 一种章动减速器
CN114198464B (zh) * 2021-12-22 2023-04-28 姜虹 一种齿轮副及章动减速器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1545019A1 (ru) * 1987-07-20 1990-02-23 Ленинградский Политехнический Институт Им.М.И.Калинина Планетарна коническа зубчата передача
CN2235046Y (zh) * 1995-06-23 1996-09-11 韩利生 齿轮减速器
CN1844704A (zh) * 2006-04-30 2006-10-11 重庆大学 二次包络摆线行星传动装置
CN205064705U (zh) * 2015-10-14 2016-03-02 天津市三鑫阳光工贸有限公司 具有高传动比的紧凑型齿轮传动装置
CN107614931A (zh) * 2015-05-25 2018-01-19 Thk株式会社 减速或增速装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392814B (zh) * 2008-10-29 2010-08-25 重庆大学 抛物线型二次包络柱销浮动盘行星传动装置
CN101893063B (zh) * 2010-07-16 2012-07-04 重庆大学 少齿差行星减速器
US9022892B1 (en) * 2014-04-23 2015-05-05 American Axle & Manufacturing, Inc. Axle assembly having differential assembly with inverted differential bearings
JP6507605B2 (ja) * 2014-12-04 2019-05-08 三菱重工業株式会社 差動歯車変速機構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1545019A1 (ru) * 1987-07-20 1990-02-23 Ленинградский Политехнический Институт Им.М.И.Калинина Планетарна коническа зубчата передача
CN2235046Y (zh) * 1995-06-23 1996-09-11 韩利生 齿轮减速器
CN1844704A (zh) * 2006-04-30 2006-10-11 重庆大学 二次包络摆线行星传动装置
CN107614931A (zh) * 2015-05-25 2018-01-19 Thk株式会社 减速或增速装置
CN205064705U (zh) * 2015-10-14 2016-03-02 天津市三鑫阳光工贸有限公司 具有高传动比的紧凑型齿轮传动装置

Also Published As

Publication number Publication date
CN111219447A (zh) 2020-06-02
CN111219447B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
WO2021184401A1 (zh) 一种弧面二次包络冠齿轮章动传动装置
US10865853B2 (en) Multi-crankshaft cycloidal pin wheel reducer
CN101893063B (zh) 少齿差行星减速器
WO2021098412A1 (zh) 齿针双模啮合少齿差行星齿轮副及精密减速器
JP7466255B2 (ja) 歯車対及び章動減速機
CN113309842B (zh) 摆线针轮谐波减速器
WO2022148058A1 (zh) 基于柔性机构的行星轮系消隙装置、减速器及机器人关节
JP2834286B2 (ja) インボリュート歯車対および歯車変速機
US7331895B2 (en) Composite planetary device
WO1992021895A1 (fr) Transmission variable
CN216045250U (zh) 一种工业重载机器人用中空型摆线减速机
CN211778831U (zh) 同位差动减速器
WO2014097855A1 (ja) 遊星歯車機構
KR102433732B1 (ko) 박형 사이클로이드 감속기
CN2535610Y (zh) 滚动接触式摆动活齿行星减速器
US10920865B2 (en) Differential and cycloidal differential
WO2021184423A1 (zh) 双球面摆线滚子章动传动装置
CN111677819A (zh) 一种差动减速机构及差动减速器
JP2008069928A (ja) 摩擦伝動変速装置
KR102314146B1 (ko) 외치기어 유동방지기능을 구비한 사이클로이드 감속기
WO2020238816A1 (zh) 同位差动减速器
RU2812085C1 (ru) Многопоточная бесподшипниковая планетарная зубчатая передача
CN211599406U (zh) 少齿差齿轮啮合减速器
CN212928699U (zh) 一种新型穿杆活齿传动装置
CN211501499U (zh) 差动摆线齿轮变速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925033

Country of ref document: EP

Kind code of ref document: A1