WO2021184253A1 - 超声波指纹识别模组、制备方法及电子设备 - Google Patents

超声波指纹识别模组、制备方法及电子设备 Download PDF

Info

Publication number
WO2021184253A1
WO2021184253A1 PCT/CN2020/079980 CN2020079980W WO2021184253A1 WO 2021184253 A1 WO2021184253 A1 WO 2021184253A1 CN 2020079980 W CN2020079980 W CN 2020079980W WO 2021184253 A1 WO2021184253 A1 WO 2021184253A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
ultrasonic fingerprint
ceramic powder
powder particles
composite layer
Prior art date
Application number
PCT/CN2020/079980
Other languages
English (en)
French (fr)
Inventor
刘伟
Original Assignee
南昌欧菲生物识别技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲生物识别技术有限公司 filed Critical 南昌欧菲生物识别技术有限公司
Priority to PCT/CN2020/079980 priority Critical patent/WO2021184253A1/zh
Publication of WO2021184253A1 publication Critical patent/WO2021184253A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials

Definitions

  • This application relates to the field of ultrasonic fingerprint identification, and in particular to an ultrasonic fingerprint identification module, a preparation method and electronic equipment.
  • the ultrasonic fingerprint recognition module uses a flexible polymer film layer as its piezoelectric composite layer.
  • the piezoelectric constant of the polymer film is relatively low, only 15pC/N-28pC/N, and its film thickness is relatively thin, resulting in weaker recognition performance of the ultrasonic fingerprint recognition module.
  • a method for determining the similarity of adjacent lines of a screen is provided.
  • an ultrasonic fingerprint identification module which includes:
  • the piezoelectric composite layer is provided on the substrate; the piezoelectric composite layer includes a polymer film layer provided on the substrate and piezoelectric ceramic powder particles dispersed in the polymer film layer.
  • the above-mentioned ultrasonic fingerprint recognition module because the piezoelectric constant of piezoelectric ceramics is higher than the piezoelectric constant of polymer film, and piezoelectric ceramics are dispersed in the polymer film layer in the form of powder particles, it can not reduce the piezoelectricity.
  • the flexibility of the composite layer also increases the piezoelectric constant of the piezoelectric composite layer. Furthermore, the signal-to-noise ratio of the ultrasonic fingerprint identification module can be improved without changing the thickness of the piezoelectric composite layer, and the identification performance of the ultrasonic fingerprint identification module can be improved.
  • the outer diameter of the piezoelectric ceramic powder particles is 0.05 ⁇ m-5 ⁇ m. On the one hand, it can avoid that the piezoelectric ceramic powder particles are too large to affect the flexibility of the piezoelectric composite layer. On the other hand, the piezoelectric ceramic powder particles can be more uniformly dispersed in the polymer film layer.
  • the outer diameter of the piezoelectric ceramic powder particles is 0.1 ⁇ m-2 ⁇ m. While ensuring that the piezoelectric composite layer has good flexibility, more piezoelectric ceramic powder particles can be dispersed in the polymer film layer. That is, while ensuring the flexibility of the piezoelectric composite layer, the piezoelectric coefficient of the piezoelectric composite layer is greatly increased.
  • the mass percentage of the piezoelectric ceramic powder particles in the piezoelectric composite layer is 1 wt% to 60 wt%.
  • the piezoelectric composite layer is made to have a higher piezoelectric constant, that is, the ultrasonic fingerprint recognition module has a better recognition performance.
  • the polymer film layer is a PVDF layer or a copolymer layer. Both PVDF and copolymer are common materials for piezoelectric composite layers commonly used in ultrasonic fingerprint recognition modules, with low cost and convenient purchase.
  • the piezoelectric ceramic powder particles are selected from the group consisting of barium titanate series piezoelectric ceramic powder particles, lead titanate series piezoelectric ceramic powder particles, and lead zirconate series piezoelectric ceramic powder particles. One or more.
  • a method for preparing an ultrasonic fingerprint identification module which includes the steps:
  • the piezoelectric slurry includes a polymer and piezoelectric ceramic powder particles mixed in the polymer
  • An external electrode layer is formed on the piezoelectric composite layer precursor, and polarization processing is performed to obtain an ultrasonic fingerprint identification module.
  • the piezoelectric constant of the piezoelectric ceramic is higher than the piezoelectric constant of the polymer film, and the piezoelectric ceramic is dispersed in the polymer film layer in the form of powder particles, it can be While not reducing the flexibility of the piezoelectric composite layer, the piezoelectric constant of the piezoelectric composite layer is increased. Furthermore, the signal-to-noise ratio of the ultrasonic fingerprint identification module can be improved without changing the thickness of the piezoelectric composite layer, and the identification performance of the ultrasonic fingerprint identification module can be improved.
  • the outer diameter of the piezoelectric ceramic powder particles is 0.05 ⁇ m-5 ⁇ m. On the one hand, it can avoid that the piezoelectric ceramic powder particles are too large to affect the flexibility of the formed piezoelectric composite layer. On the other hand, the piezoelectric ceramic powder particles can be more uniformly dispersed in the polymer.
  • the outer diameter of the piezoelectric ceramic powder particles is 0.1 ⁇ m-2 ⁇ m. It is possible to disperse more piezoelectric ceramic powder particles in the polymer while ensuring that the formed piezoelectric composite layer has better flexibility. That is, while ensuring the flexibility of the piezoelectric composite layer, the piezoelectric coefficient of the piezoelectric composite layer is greatly increased.
  • the mass percentage of the piezoelectric ceramic powder particles is 1 wt% to 60 wt%.
  • the piezoelectric composite layer is made to have a higher piezoelectric constant, that is, the ultrasonic fingerprint recognition module has a better recognition performance.
  • the polymer in the piezoelectric paste provided in the step of providing the substrate and the piezoelectric paste, is PVDF or a copolymer. Both PVDF and copolymer are common materials for piezoelectric composite layers commonly used in ultrasonic fingerprint recognition modules, with low cost and convenient purchase.
  • the piezoelectric ceramic powder particles are barium titanate-based piezoelectric ceramic powder particles, lead titanate-based piezoelectric One or more of ceramic powder particles and lead zirconate-based piezoelectric ceramic powder particles.
  • the drying temperature is 150°C-250°C, and the drying time is 0.5h-6h.
  • the piezoelectric paste coated on the substrate can be well shaped and adhered to the substrate.
  • the polarization voltage is 3kV/mm-10kV/mm
  • the polarization temperature is 100°C-250°C
  • the polarization time is 30 minutes-120 minutes. So that the piezoelectric composite layer primary body has a better piezoelectric effect, that is, a piezoelectric composite layer with a better piezoelectric effect is obtained, that is, the piezoelectric composite layer has a better piezoelectric constant.
  • an electronic device including the ultrasonic fingerprint identification module provided in the present application.
  • the piezoelectric constant of the piezoelectric ceramic is higher than that of the polymer film, and the piezoelectric ceramic is dispersed in the polymer film layer in the form of powder particles, so the flexibility of the piezoelectric composite layer is not reduced. At the same time, increase the piezoelectric constant of the piezoelectric composite layer. Furthermore, without changing the thickness of the piezoelectric composite layer, the signal-to-noise ratio of the ultrasonic fingerprint identification module can be improved, and the identification performance of the ultrasonic fingerprint identification module can be improved, that is, the identification performance of the electronic device can be improved.
  • FIG. 1 is a schematic cross-sectional view of an ultrasonic fingerprint identification module provided by an embodiment of the application.
  • Ultrasonic fingerprint recognition module 110, substrate; 130, piezoelectric composite layer; 131, polymer film layer; 133, piezoelectric ceramic powder particles; 150, external electrode.
  • the ultrasonic fingerprint identification module 100 provided by an embodiment of the present application includes: a substrate 110 and a piezoelectric composite layer 130 provided on the substrate 110.
  • the piezoelectric composite layer 130 includes a polymer film layer 131 disposed on the substrate 110 and piezoelectric ceramic powder particles 133 dispersed in the polymer film layer 131.
  • the ultrasonic fingerprint recognition module 100 also includes an external electrode 150 provided on the piezoelectric composite layer 130 and other structures. It can be understood that the external electrode 150 is located on the side of the super piezoelectric composite layer 130 away from the substrate 110.
  • the external electrodes 150 and the like can be set using conventional technical means in the art, and will not be repeated here.
  • the substrate 110 can support the piezoelectric composite layer 130 and serve as a carrier for the piezoelectric composite layer 130 during molding.
  • the substrate 110 is a TFT substrate.
  • the substrate 110 includes a number of thin film transistors arranged in an array.
  • the substrate 110 and the external electrode 150 can apply an electrical signal with a pressure difference to the piezoelectric composite layer 130 to make it emit ultrasonic waves.
  • the substrate 110 can receive electrical signals generated by the piezoelectric composite layer 130 based on the returned ultrasonic waves.
  • the substrate 110 is not limited to the TFT substrate 110, and may also be a structure such as a silicon wafer, which can be used as a carrier to facilitate the formation of the piezoelectric composite layer 130.
  • the above-mentioned ultrasonic fingerprint recognition module 100 because the piezoelectric constant of the piezoelectric ceramic is higher than that of the polymer film, and the piezoelectric ceramic is dispersed in the polymer film layer 131 in the form of powder particles, it can not be lowered.
  • the flexibility of the piezoelectric composite layer 130 also increases the piezoelectric constant of the piezoelectric composite layer 130. Furthermore, without changing the thickness of the piezoelectric composite layer 130, the signal-to-noise ratio of the ultrasonic fingerprint identification module 100 can be improved, and the identification performance of the ultrasonic fingerprint identification module 100 can be improved.
  • the ultrasonic fingerprint recognition module 100 since the piezoelectric constant of the piezoelectric composite layer 130 is increased, compared with the conventional ultrasonic fingerprint recognition module 100, the ultrasonic fingerprint recognition module 100 with the same signal-to-noise ratio is obtained.
  • the ultrasonic fingerprint recognition module 100 provided in this application The thickness of the piezoelectric composite layer 130 in the middle is small, thereby reducing the thickness of the ultrasonic fingerprint identification module 100 and meeting the thinning requirements of the ultrasonic fingerprint identification module 100.
  • the piezoelectric ceramic powder particles 133 are uniformly dispersed in the polymer film layer 131.
  • the piezoelectric ceramic powder particles 133 may not be completely uniformly dispersed in the polymer film layer 131, that is, the piezoelectric ceramic powder particles 133 are in different positions of the piezoelectric composite layer 130. The density is different.
  • the outer diameter of the piezoelectric ceramic powder particles 133 is 0.05 ⁇ m-5 ⁇ m. On the one hand, it can avoid that the piezoelectric ceramic powder particles 133 are too large to affect the flexibility of the piezoelectric composite layer 130. On the other hand, the piezoelectric ceramic powder particles 133 can be made small enough to be more uniformly dispersed in the polymer film layer 131. Specifically, the outer diameter of the piezoelectric ceramic powder particles 133 may be 0.05 ⁇ m, 0.06 ⁇ m, 0.07 ⁇ m, 0.08 ⁇ m, 0.09 ⁇ m, 0.1 ⁇ m, 0.12 ⁇ m, 0.15 ⁇ m, 0.18 ⁇ m, 0.2 ⁇ m, 0.25 ⁇ m, 0.3 ⁇ m.
  • the outer diameter of the piezoelectric ceramic powder particles 133 is not limited to this, and may be any value between 0.05 ⁇ m and 5 ⁇ m.
  • the outer diameter of the piezoelectric ceramic powder particles 133 is 0.1 ⁇ m-2 ⁇ m. It is possible to disperse more piezoelectric ceramic powder particles 133 in the polymer film layer 131 while ensuring that the piezoelectric composite layer 130 has better flexibility. That is, while ensuring the flexibility of the piezoelectric composite layer 130, the piezoelectric coefficient of the piezoelectric composite layer 130 is greatly increased.
  • the mass percentage of the piezoelectric ceramic powder particles 133 in the piezoelectric composite layer 130 is 1 wt% to 60 wt%.
  • the piezoelectric composite layer 130 has a higher piezoelectric constant, that is, the ultrasonic fingerprint recognition module 100 has better recognition performance.
  • the mass percentage of the piezoelectric ceramic powder particles 133 is 1wt%, 2wt%, 5wt%, 8wt%, 10wt%, 13wt%, 15wt%, 18wt%, 20wt%, 25wt% , 28wt%, 30wt%, 33wt%, 35wt%, 38wt%, 40wt%, 45wt%, 50wt%, 52wt%, 55wt%, 58wt%, 60wt%.
  • the mass percentage of the piezoelectric ceramic powder particles 133 is not limited to this, and can also be any value between 1 wt% and 60 wt%.
  • FIG. 1 only schematically indicates that the piezoelectric ceramic powder particles 133 in the piezoelectric composite layer 130 are embedded in the polymer film layer 133, and does not indicate the size of the piezoelectric ceramic powder particles 133 contained therein. , Number and shape.
  • the polymer film layer 131 is a PVDF (polyvinylidene fluoride, polyvinylidene fluoride) layer or a copolymer layer.
  • the copolymer layer may be a polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) copolymer layer or a polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) copolymer layer.
  • PVDF-TrFE polyvinylidene fluoride-trifluoroethylene
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene copolymer layer.
  • Both PVDF and copolymer are commonly used materials for the piezoelectric composite layer 130 commonly used in the ultrasonic fingerprint identification module 100, which are low in cost and convenient to purchase.
  • the polymer film layer 131 is not limited to a PVDF layer and a copolymer layer, and may also be a
  • the piezoelectric ceramic powder particles 133 are one or more of barium titanate series piezoelectric ceramic powder particles, lead titanate series piezoelectric ceramic powder particles, and lead zirconate series piezoelectric ceramic powder particles. kind.
  • the piezoelectric ceramic powder particles 133 are not limited to this, and may also be powder particles formed of other piezoelectric ceramic materials.
  • the inventors used the PVDF layer as the polymer film layer, in the polymer film layer Add piezoelectric ceramic powder particles with different mass percentages to form test samples of multiple ultrasonic fingerprint recognition modules and test their piezoelectric constants.
  • the test results are as follows:
  • the higher the mass percentage of piezoelectric ceramic powder particles the higher the piezoelectric constant of the piezoelectric composite layer.
  • the inventor also tested the dielectric constant of the ultrasonic fingerprint recognition module of the sample. According to the test results shown in the above table, the higher the mass percentage of piezoelectric ceramic powder particles, the greater the dielectric constant of the piezoelectric composite layer. high. Because the dielectric constant of the piezoelectric composite layer also affects the signal-to-noise ratio of the ultrasonic fingerprint recognition module, and the higher the dielectric constant of the piezoelectric composite layer, the greater the signal-to-noise ratio of the ultrasonic fingerprint recognition module, which can improve the ultrasonic fingerprint The recognition performance of the recognition module.
  • the mass percentage of the piezoelectric ceramic powder particles is too low, the piezoelectric constant and the dielectric constant of the piezoelectric composite layer will be less improved.
  • the mass percentage of piezoelectric ceramic powder particles is too high, although the piezoelectric constant and dielectric constant of the piezoelectric composite layer will be improved, which is beneficial to signal transmission and collection, the film-forming properties of the piezoelectric composite layer And the worse the adhesion.
  • the inventor’s experiments have confirmed that when the mass percentage of the piezoelectric ceramic powder particles is 2wt%-60wt%, the piezoelectric composite layer can have better film-forming properties and adhesion, and have a higher pressure. Electric constant and dielectric constant. Furthermore, when the mass percentage of the piezoelectric ceramic powder particles is 2wt%-30wt%, the piezoelectric composite layer can have better film-forming properties and adhesion, and have a higher piezoelectric constant and dielectric constant. A better balance is reached between.
  • the inventor used the PVDF layer as the polymer film layer, and added 30wt% piezoelectric ceramic powder in the polymer film layer.
  • the bulk particles are used to form test samples of ultrasonic fingerprint recognition modules with different piezoelectric composite layer thicknesses, and the device signal-to-noise ratio is directly tested.
  • the test results are as follows:
  • the piezoelectric composite layer contains piezoelectric ceramic powder under the condition of the same thickness.
  • the signal-to-noise ratio of the granular ultrasonic fingerprint recognition module is large, that is, the arrangement of piezoelectric ceramic powder particles can better improve the recognition performance of the ultrasonic fingerprint recognition module.
  • the piezoelectric composite layer containing piezoelectric ceramic powder particles of the present application has a small thickness, so as to meet the requirements for the thinning of the ultrasonic fingerprint recognition module.
  • An embodiment of the present application also provides a method for preparing an ultrasonic fingerprint identification module, which includes the steps:
  • S01 Provide a substrate and a piezoelectric slurry; wherein the piezoelectric slurry includes a polymer and piezoelectric ceramic powder particles mixed in the polymer.
  • the substrate is a TFT substrate.
  • the substrate includes a number of thin film transistors arranged in an array.
  • the thin film transistors can amplify the electrical signals obtained by the piezoelectric composite layer according to the reflected ultrasonic waves. Therefore, in addition to the supporting function, the substrate can also perform processing such as amplifying the electrical signal obtained by the piezoelectric composite layer according to the reflected ultrasonic wave.
  • the substrate is not limited to a TFT substrate, and may also be a structure such as a silicon wafer, which can be used as a carrier to facilitate the formation of the piezoelectric composite layer.
  • step S03 the piezoelectric composite layer precursor that has undergone polarization processing forms a piezoelectric composite layer.
  • the ultrasonic fingerprint identification module prepared by the above-mentioned preparation method is the ultrasonic fingerprint identification module provided in this application.
  • the piezoelectric constant of the piezoelectric ceramic is higher than the piezoelectric constant of the polymer film, and the piezoelectric ceramic is dispersed in the polymer film layer in the form of powder particles, it can be While not reducing the flexibility of the piezoelectric composite layer, the piezoelectric constant of the piezoelectric composite layer is increased. Furthermore, the signal-to-noise ratio of the ultrasonic fingerprint identification module can be improved without changing the thickness of the piezoelectric composite layer, and the identification performance of the ultrasonic fingerprint identification module can be improved.
  • the piezoelectric constant of the piezoelectric composite layer is increased, compared with the traditional ultrasonic fingerprint recognition module, an ultrasonic fingerprint recognition module with the same signal-to-noise ratio is obtained.
  • the ultrasonic fingerprint recognition module prepared by the preparation method provided in this application The thickness of the piezoelectric composite layer is small, thereby reducing the thickness of the ultrasonic fingerprint identification module, and meeting the thinning requirements of the ultrasonic fingerprint identification module.
  • piezoelectric ceramic powder particles are uniformly dispersed in the polymer.
  • the piezoelectric ceramic powder particles may not be completely uniformly dispersed in the polymer.
  • the outer diameter of the piezoelectric ceramic powder particles is 0.05 ⁇ m-5 ⁇ m.
  • the piezoelectric ceramic powder particles can be more uniformly dispersed in the polymer.
  • the outer diameter of the piezoelectric ceramic powder particles may be 0.05 ⁇ m, 0.06 ⁇ m, 0.07 ⁇ m, 0.08 ⁇ m, 0.09 ⁇ m, 0.1 ⁇ m, 0.12 ⁇ m, 0.15 ⁇ m, 0.18 ⁇ m, 0.2 ⁇ m, 0.25 ⁇ m, 0.3 ⁇ m, 0.35 ⁇ m, 0.4 ⁇ m, 0.5 ⁇ m, 0.6 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.1 ⁇ m, 1.3 ⁇ m, 1.5 ⁇ m, 1.7 ⁇ m, 1.8 ⁇ m, 1.9 ⁇ m, 2 ⁇ m, 2.1 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m or 5 ⁇ m.
  • the outer diameter of the piezoelectric ceramic powder particles is not limited to this, and can also be any value between 0.05 ⁇ m and 5 ⁇ m.
  • the outer diameter of the piezoelectric ceramic powder particles is 0.1 ⁇ m-2 ⁇ m.
  • the mass percentage of piezoelectric ceramic powder particles is 1 wt% to 60 wt%.
  • the piezoelectric composite layer has a higher piezoelectric constant, that is, the ultrasonic fingerprint recognition module obtained in step S03 has better recognition performance.
  • the mass percentage of piezoelectric ceramic powder particles can be 1wt%, 2wt%, 5wt%, 8wt%, 10wt%, 13wt%, 15wt%, 18wt%, 20wt%, 25wt%, 28wt%, 30wt%, 33wt%, 35wt%, 38wt%, 40wt%, 45wt%, 50wt%, 52wt%, 55wt%, 58wt%, 60wt%.
  • the mass percentage of the piezoelectric ceramic powder particles is not limited to this, and can also be any value between 1 wt% and 60 wt%.
  • the polymer is PVDF (polyvinylidene fluoride, polyvinylidene fluoride) or a copolymer.
  • PVDF polyvinylidene fluoride, polyvinylidene fluoride
  • copolymers are piezoelectric composite layers commonly used in ultrasonic fingerprint recognition modules.
  • the polymer is not limited to PVDF (polyvinylidene fluoride, polyvinylidene fluoride) and copolymers, and may also be other polymers with piezoelectric properties.
  • the piezoelectric ceramic powder particles are barium titanate series piezoelectric ceramic powder particles, lead titanate series piezoelectric ceramic powder particles, lead zirconate series piezoelectric ceramics One or more of the powder particles.
  • the piezoelectric ceramic powder particles are not limited to this, and may also be powder particles formed of other piezoelectric ceramic materials.
  • step S02 during the drying process, the drying temperature is 100°C-250°C, and the drying time is 0.5h-6h.
  • the piezoelectric paste coated on the substrate can be well formed and adhered to the substrate, and the conductive paste can be prevented from cracking due to excessive drying temperature or too long time.
  • the drying temperature is 120°C-180°C, and the drying time is 1h-2h. It can achieve a good shape between the piezoelectric paste coated on the substrate and good adhesion with the substrate, and a good avoidance of the conductive paste from cracking due to too high drying temperature or too long time. A better balance.
  • step S03 during the polarization treatment, the polarization voltage is 3kV/mm-10kV/mm, the polarization temperature is 100°C-250°C, and the polarization time is 30 minutes-120 minutes. So that the piezoelectric composite layer primary body has a better piezoelectric effect, that is, a piezoelectric composite layer with a better piezoelectric effect is obtained, that is, the piezoelectric composite layer has a better piezoelectric constant.
  • the polarization voltage is 3.5kV/mm-5.5kV/mm
  • the polarization temperature is 120°C-180°C
  • the polarization time is 30 minutes-60 minutes
  • An embodiment of the present application also provides an electronic device, which includes the ultrasonic fingerprint identification module provided in the present application.
  • the piezoelectric constant of the piezoelectric ceramic is higher than that of the polymer film, and the piezoelectric ceramic is dispersed in the polymer film layer in the form of powder particles, so the flexibility of the piezoelectric composite layer is not reduced. At the same time, increase the piezoelectric constant of the piezoelectric composite layer. Furthermore, without changing the thickness of the piezoelectric composite layer, the signal-to-noise ratio of the ultrasonic fingerprint identification module can be improved, and the identification performance of the ultrasonic fingerprint identification module can be improved, that is, the identification performance of the electronic device can be improved.
  • the electronic device may be a mobile device, a communication device, a display device, and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种超声波指纹识别模组(100)、制备方法及电子设备。超声波指纹识别模组(100)包括:基板(110);以及设于基板(110)上的压电复合层(130);压电复合层(130)包括设于基板(110)上的聚合物薄膜层(131)以及分散于聚合物薄膜层(131)内的压电陶瓷粉体颗粒(133)。该超声波指纹识别模组(100)可在不降低压电复合层(130)的柔韧性的同时,增大压电复合层(130)的压电常数,进而可在不改变压电复合层(130)厚度的情况下,提高超声波指纹识别模组(100)的信噪比,提高超声波指纹识别模组(100)的识别性能。

Description

超声波指纹识别模组、制备方法及电子设备 技术领域
本申请涉及超声波指纹识别领域,特别是涉及一种超声波指纹识别模组、制备方法及电子设备。
背景技术
随着,超声波指纹识别模组中,采用具有柔韧性的聚合物薄膜层作为其压电复合层。然而,聚合物薄膜的压电常数较低,仅为15pC/N-28pC/N,且其膜厚较薄,从而导致超声波指纹识别模组的识别性能较弱。
发明内容
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
根据本申请的各种实施例,提供一种用于确定画面相邻行相似度的方法。
根据本申请的一个方面,提供了一种超声波指纹识别模组,其包括:
基板;以及
压电复合层,设于所述基板上;所述压电复合层包括设于所述基板上的聚合物薄膜层以及分散于所述聚合物薄膜层内的压电陶瓷粉体颗粒。
上述超声波指纹识别模组,由于压电陶瓷的压电常数高于聚合物薄膜的压电常数,且压电陶瓷以粉体颗粒的形式分散在聚合物薄膜层内,故可在不降低压电复合层的柔韧性的同时,增大压电复合层的压电常数。进而可在不改变压电复合层厚度的情况下,提高超声波指纹识别模组的信噪比,提高超声波指纹识别模组的识别性能。
在其中一个实施例中,所述压电陶瓷粉体颗粒的外径为0.05μm-5μm。一方面,可以避免压电陶瓷粉体颗粒过大而影响压电复合层的柔韧性。 另一方面,还能使得压电陶瓷粉体颗粒能够更均匀的分散在聚合物薄膜层内。
在其中一个实施例中,所述压电陶瓷粉体颗粒的外径为0.1μm-2μm。可以在保证压电复合层具有较好的柔韧性的同时,将较多的压电陶瓷粉体颗粒分散在聚合物薄膜层内。即在保证压电复合层的柔韧性的同时,较大的增加压电复合层的压电系数。
在其中一个实施例中,所述压电复合层中,所述压电陶瓷粉体颗粒的质量百分比为1wt%-60wt%。在不过大的影响压电复合层的柔韧性的情况下,使得压电复合层具有较高的压电常数,即使得超声波指纹识别模组具有较好的识别性能。
在其中一个实施例中,所述聚合物薄膜层为PVDF层或共聚物层。PVDF和共聚物均为超声波指纹识别模组中常用的压电复合层的常用材料,成本低,且方便采购。
在其中一个实施例中,所述压电陶瓷粉体颗粒为钛酸钡系压电陶瓷粉体颗粒、钛酸铅系压电陶瓷粉体颗粒、锆酸铅系压电陶瓷粉体颗粒中的一种或者几种。
根据本申请的另一个方面,提供了一种超声波指纹识别模组的制备方法,其包括步骤:
提供基板以及压电浆料;其中,所述压电浆料包括聚合物以及混合在所述聚合物中的压电陶瓷粉体颗粒;
将所述压电浆料涂覆在所述基板上,并进行烘干处理,形成压电复合层初体;
在所述压电复合层初体上形成外电极层,并进行极化处理,得到超声波指纹识别模组。
上述制备方法制备的超声波指纹识别模组中,由于压电陶瓷的压电常数高于聚合物薄膜的压电常数,且压电陶瓷以粉体颗粒的形式分散在聚合 物薄膜层内,故可在不降低压电复合层的柔韧性的同时,增大压电复合层的压电常数。进而可在不改变压电复合层厚度的情况下,提高超声波指纹识别模组的信噪比,提高超声波指纹识别模组的识别性能。
在其中一个实施例中,在提供基板以及压电浆料的步骤,提供的压电浆料中,所述压电陶瓷粉体颗粒的外径为0.05μm-5μm。一方面,可以避免压电陶瓷粉体颗粒过大而影响形成的压电复合层的柔韧性。另一方面,还能使得压电陶瓷粉体颗粒能够更均匀的分散在聚合物内。
在其中一个实施例中,提供基板以及压电浆料的步骤提供的压电浆料中,所述压电陶瓷粉体颗粒的外径为0.1μm-2μm。可以在保证形成的压电复合层具有较好的柔韧性的同时,将较多的压电陶瓷粉体颗粒分散在聚合物内。即在保证压电复合层的柔韧性的同时,较大的增加压电复合层的压电系数。
在其中一个实施例中,所述压电浆料中,提供基板以及压电浆料的步骤提供的压电浆料中,所述压电陶瓷粉体颗粒的质量百分比为1wt%-60wt%。在不过大的影响压电复合层的柔韧性的情况下,使得压电复合层具有较高的压电常数,即使得超声波指纹识别模组具有较好的识别性能。
在其中一个实施例中,提供基板以及压电浆料的步骤提供的压电浆料中,所述聚合物为PVDF或共聚物。PVDF和共聚物均为超声波指纹识别模组中常用的压电复合层的常用材料,成本低,且方便采购。
在其中一个实施例中,提供基板以及压电浆料的步骤提供的压电浆料中,所述压电陶瓷粉体颗粒为钛酸钡系压电陶瓷粉体颗粒、钛酸铅系压电陶瓷粉体颗粒、锆酸铅系压电陶瓷粉体颗粒中的一种或者几种。
在其中一个实施例中,在进行烘干处理的步骤中,烘干温度为150℃-250℃,烘干时间为0.5h-6h。能够使得涂覆在基板上的压电浆料很好的成型并与基板粘合。
在其中一个实施例中,在进行极化处理的步骤中,极化电压为3kV/mm-10kV/mm,极化温度100℃-250℃,极化时间为30分钟-120分钟。以使得压电复合层初体具有较好的压电效应,即得到压电效应较好的压电复合层,即使得压电复合层具有较好的压电常数。
根据本申请的又一个方面,提供了一种电子设备,包括本申请提供的超声波指纹识别模组。
上述电子设备,压电陶瓷的压电常数高于聚合物薄膜的压电常数,且压电陶瓷以粉体颗粒的形式分散在聚合物薄膜层内,故可在不降低压电复合层的柔韧性的同时,增大压电复合层的压电常数。进而可在不改变压电复合层厚度的情况下,提高超声波指纹识别模组的信噪比,提高超声波指纹识别模组的识别性能,即提高电子设备的识别性能。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请一实施例提供的超声波指纹识别模组的截面示意图。
100、超声波指纹识别模组;110、基板;130、压电复合层;131、聚合物薄膜层;133、压电陶瓷粉体颗粒;150、外电极。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实 施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
如图1所示,本申请一实施例提供的超声波指纹识别模组100,包括:基板110以及设于基板110上的压电复合层130。具体地,压电复合层130包括设于基板110上的聚合物薄膜层131以及分散于所述聚合物薄膜层131内的压电陶瓷粉体颗粒133。
当然,超声波指纹识别模组100还包括设于压电复合层130上的外电极150等结构。可以理解的是,外电极150位于超压电复合层130的远离基板110的一侧。外电极150等采用本领域常规技术手段进行设置即可,此处不再赘述。
可以理解的是,基板110可以构成对压电复合层130的支撑作用,且作为压电复合层130在成型时的载体。
可选地,本实施例中,基板110为TFT基板。具体地,基板110包括若干按照阵列方式排布的薄膜晶体管。基板110与外电极150可施加具有压差的电信号给压电复合层130使其发出超声波。并压电复合层130接收返回的超声波后,基板110可以接收压电复合层130基于返回的超声波产 生的电信号。
需要说明的是,在另外可行的实施例中,基板110不限于TFT基板110,还可以是硅片等结构,能作为载体便于压电复合层130成型即可。
上述超声波指纹识别模组100,由于压电陶瓷的压电常数高于聚合物薄膜的压电常数,且压电陶瓷以粉体颗粒的形式分散在聚合物薄膜层131内,故可在不降低压电复合层130的柔韧性的同时,增大压电复合层130的压电常数。进而可在不改变压电复合层130厚度的情况下,提高超声波指纹识别模组100的信噪比,提高超声波指纹识别模组100的识别性能。
另外,由于压电复合层130的压电常数增加,故与传统的超声波指纹识别模组100相比,获得信噪比相同的超声波指纹识别模组100,本申请提供的超声波指纹识别模组100中的压电复合层130的厚度较小,从而减小超声波指纹识别模组100的厚度,满足超声波指纹识别模组100的薄形化需求。
可选地,本实施例中,压电陶瓷粉体颗粒133均匀的分散于所述聚合物薄膜层131内。当然,受工艺精度等的影响,压电陶瓷粉体颗粒133也可以不完全均匀的分散于所述聚合物薄膜层131内,即压电陶瓷粉体颗粒133在压电复合层130的不同位置的密度有差别。
可选地,压电陶瓷粉体颗粒133的外径为0.05μm-5μm。一方面,可以避免压电陶瓷粉体颗粒133过大而影响压电复合层130的柔韧性。另一方面,还能使得压电陶瓷粉体颗粒133足够小,进而能够更均匀的分散在聚合物薄膜层131内。具体地,压电陶瓷粉体颗粒133的外径可以是0.05μm、0.06μm、0.07μm、0.08μm、0.09μm、0.1μm、0.12μm、0.15μm、0.18μm、0.2μm、0.25μm、0.3μm、0.35μm、0.4μm、0.5μm、0.6μm、0.8μm、1μm、1.1μm、1.3μm、1.5μm、1.7μm、1.8μm、1.9μm、2μm、2.1μm、2.5μm、3μm、3.5μm、4μm、4.5μm或5μm。当然,压电陶瓷粉体颗粒133的外径不限于此,还可以是0.05μm-5μm之间的任意 数值。
进一步地,可选地,压电陶瓷粉体颗粒133的外径为0.1μm-2μm。可以在保证压电复合层130具有较好的柔韧性的同时,将较多的压电陶瓷粉体颗粒133分散在聚合物薄膜层131内。即在保证压电复合层130的柔韧性的同时,较大的增加压电复合层130的压电系数。
可选地,压电复合层130中,压电陶瓷粉体颗粒133的质量百分比为1wt%-60wt%。在不过大的影响压电复合层130的柔韧性的情况下,使得压电复合层130具有较高的压电常数,即使得超声波指纹识别模组100具有较好的识别性能。具体地,压电复合层130中,压电陶瓷粉体颗粒133的质量百分比为1wt%、2wt%、5wt%、8wt%、10wt%、13wt%、15wt%、18wt%、20wt%、25wt%、28wt%、30wt%、33wt%、35wt%、38wt%、40wt%、45wt%、50wt%、52wt%、55wt%、58wt%、60wt%。当然,压电陶瓷粉体颗粒133的质量百分比不限于此,还可以是1wt%-60wt%之间的任意数值。
可以理解的是,图1仅示意性的标示压电复合层130中的压电陶瓷粉体颗粒133埋设在聚合物薄膜层133内,并不表示所包含的压电陶瓷粉体颗粒133的大小、个数和形状。
可选地,聚合物薄膜层131为PVDF(poly vinylidene fluoride,聚偏氟乙烯)层或共聚物层。具体地,共聚物层可以是聚偏氟乙烯-三氟乙烯(PVDF-TrFE)共聚物层或聚偏二氟乙烯-六氟丙烯(PVDF-HFP)共聚物层。PVDF和共聚物均为超声波指纹识别模组100中常用的压电复合层130的常用材料,成本低,且方便采购。当然,可以理解的是,在另外可行的实施例中,聚合物薄膜层131不限于PVDF层和共聚物层,还可以是由其它聚合物形成的聚合物薄膜层131。
可选地,压电陶瓷粉体颗粒133为钛酸钡系压电陶瓷粉体颗粒、钛酸铅系压电陶瓷粉体颗粒、锆酸铅系压电陶瓷粉体颗粒中的一种或者几种。当然,在另外可行的实施例中,压电陶瓷粉体颗粒133不限于此,还可以 是其它压电陶瓷材料形成的粉体颗粒。
为证实压电陶瓷粉体颗粒在压电复合层中所占的质量百分比与压电复合层的压电常数之间的关系,发明人以PVDF层作为聚合物薄膜层,在聚合物薄膜层内增加质量百分比不同的压电陶瓷粉体颗粒,以形成多个超声波指纹识别模组的测试样本,并测试其压电常数,测试结果如下:
Figure PCTCN2020079980-appb-000001
如上表所示,压电陶瓷粉体颗粒的质量百分比越高,压电复合层的压电常数越高。另外,发明人还测试了该样本的超声波指纹识别模组的介电常数,根据上表所示测试结果可知,压电陶瓷粉体颗粒的质量百分比越高,压电复合层的介电常数越高。由于压电复合层的介电常数同样影响超声波指纹识别模组的信噪比,且压电复合层的介电常数越高,超声波指纹识别模组的信噪比越大,进而可以提高超声波指纹识别模组的识别性能。
另外,根据上表所示,压电陶瓷粉体颗粒的质量百分比过低,则使得压电复合层的压电常数和介电常数提高的较少。另外,若压电陶瓷粉体颗粒的质量百分比过高,虽然会较好的提高压电复合层的压电常数和介电常数,有利于信号发射和采集,但压电复合层的成膜性和附着力越差。
经发明人实验证实,当压电陶瓷粉体颗粒的质量百分比为2wt%-60wt%时,可在保证压电复合层具有较好的成膜性和附着力的情况下,具有较高的压电常数和介电常数。进一步地,当压电陶瓷粉体颗粒的质量百分比为2wt%-30wt%时,可以在压电复合层具有较好的成膜性和附着力,且具有较高的压电常数和介电常数之间达到一个更好的平衡。
另外,为了证实压电复合层厚度与超声波指纹识别模组的信噪比的关系,发明人以PVDF层作为聚合物薄膜层,在聚合物薄膜层内增加质量百分 比为30wt%的压电陶瓷粉体颗粒,以形成多个压电复合层厚度不同的超声波指纹识别模组的测试样本,并直接测试其器件化信噪比,测试结果如下:
Figure PCTCN2020079980-appb-000002
由上表可知,压电复合层的厚度越大,超声波指纹识别模组的信噪比越大,从而使得超声波指纹识别模组的识别性能越好。另外,与传统的压电复合层中不包含压电陶瓷粉体颗粒的超声波指纹识别模组相比,在厚度不变的情况下,本申请提供的压电复合层中包含压电陶瓷粉体颗粒的超声波指纹识别模组的信噪比较大,即压电陶瓷粉体颗粒的设置,可以较好的提高超声波指纹识别模组的识别性能。
再者,压电复合层的厚度越大,超声波指纹识别模组的信噪比越大。故在需要达到相同器件化信噪比的需求时,本申请的包含压电陶瓷粉体颗粒的压电复合层的厚度较小,从而可以满足超声波指纹识别模组的薄型化的需求。
本申请一实施例还提供一种超声波指纹识别模组的制备方法,包括步骤:
S01、提供基板以及压电浆料;其中,压电浆料包括聚合物以及混合在聚合物中的压电陶瓷粉体颗粒。
可选地,步骤S01中,基板为TFT基板。基板包括若干按照阵列方式排布的薄膜晶体管,薄膜晶体管可以对压电复合层根据反射的超声波转换得到的电信号进行放大等处理。故,除支撑作用外,基板还能对压电复合层根据反射的超声波转换得到的电信号进行放大等处理。
需要说明的是,在另外可行的实施例中,基板不限于TFT基板,还可以是硅片等结构,能作为载体便于压电复合层成型即可。
S02、将所述压电浆料涂覆在所述基板上,并进行烘干处理,形成压电复合层初体。
S03、在所述压电复合层初体上形成外电极层,并进行极化处理,得到超声波指纹识别模组。
可以理解的是,步骤S03后,经过极化处理的压电复合层初体形成了压电复合层。
可以理解的是,上述制备方法制备的超声波指纹识别模组,即为本申请提供的超声波指纹识别模组。
上述制备方法制备的超声波指纹识别模组中,由于压电陶瓷的压电常数高于聚合物薄膜的压电常数,且压电陶瓷以粉体颗粒的形式分散在聚合物薄膜层内,故可在不降低压电复合层的柔韧性的同时,增大压电复合层的压电常数。进而可在不改变压电复合层厚度的情况下,提高超声波指纹识别模组的信噪比,提高超声波指纹识别模组的识别性能。
另外,由于压电复合层的压电常数增加,故与传统的超声波指纹识别模组相比,获得信噪比相同的超声波指纹识别模组,本申请提供的制备方法制备的超声波指纹识别模组,压电复合层的厚度较小,从而减小超声波指纹识别模组的厚度,满足超声波指纹识别模组的薄形化需求。
可选地,步骤S01提供的压电浆料中,压电陶瓷粉体颗粒均匀的分散于聚合物内。当然,受工艺精度等的影响,压电陶瓷粉体颗粒也可以不完全均匀的分散于所述聚合物内。
可选地,步骤S01提供的压电浆料中,压电陶瓷粉体颗粒的外径为0.05μm-5μm。一方面,可以避免压电陶瓷粉体颗粒过大而影响步骤S03形成的压电复合层的柔韧性。另一方面,还能使得压电陶瓷粉体颗粒能够更均匀的分散在聚合物内。具体地,压电陶瓷粉体颗粒的外径可以是0.05μm、0.06μm、0.07μm、0.08μm、0.09μm、0.1μm、0.12μm、0.15μm、0.18μm、0.2μm、0.25μm、0.3μm、0.35μm、0.4μm、0.5μm、0.6μm、0.8 μm、1μm、1.1μm、1.3μm、1.5μm、1.7μm、1.8μm、1.9μm、2μm、2.1μm、2.5μm、3μm、3.5μm、4μm、4.5μm或5μm。当然,压电陶瓷粉体颗粒的外径不限于此,还可以是0.05μm-5μm之间的任意数值。
进一步地,可选地,压电陶瓷粉体颗粒的外径为0.1μm-2μm。
可选地,步骤S01提供的压电浆料中,压电陶瓷粉体颗粒的质量百分比为1wt%-60wt%。在不过大的影响在步骤S03形成的压电复合层的柔韧性的情况下,使得压电复合层具有较高的压电常数,即使得步骤S03得到的超声波指纹识别模组具有较好的识别性能。具体地,压电陶瓷粉体颗粒的质量百分比可以为1wt%、2wt%、5wt%、8wt%、10wt%、13wt%、15wt%、18wt%、20wt%、25wt%、28wt%、30wt%、33wt%、35wt%、38wt%、40wt%、45wt%、50wt%、52wt%、55wt%、58wt%、60wt%。当然,压电陶瓷粉体颗粒的质量百分比不限于此,还可以是1wt%-60wt%之间的任意数值。
可选地,步骤S01提供的压电浆料中,聚合物为PVDF(poly vinylidene fluoride,聚偏氟乙烯)或共聚物。PVDF(poly vinylidene fluoride,聚偏氟乙烯)和共聚物均为超声波指纹识别模组中常用的压电复合层。当然,可以理解的是,在另外可行的实施例中,聚合物不限于PVDF(poly vinylidene fluoride,聚偏氟乙烯)和共聚物,还可以是其它具有压电性能的聚合物。
可选地,步骤S01提供的压电浆料中,压电陶瓷粉体颗粒为钛酸钡系压电陶瓷粉体颗粒、钛酸铅系压电陶瓷粉体颗粒、锆酸铅系压电陶瓷粉体颗粒中的一种或者几种。当然,在另外可行的实施例中,压电陶瓷粉体颗粒不限于此,还可以是其它压电陶瓷材料形成的粉体颗粒。
可选地,步骤S02中,在进行烘干处理时,烘干温度为100℃-250℃,烘干时间为0.5h-6h。能够使得涂覆在基板上的压电浆料很好的成型并与基板粘合,又能避免导电浆料因烘干温度过高或时间过长而出现裂纹等。
进一步地,可选地,在进行烘干处理时,烘干温度为120℃-180℃, 烘干时间为1h-2h。能在使得涂覆在基板上的压电浆料很好的成型并与基板很好的粘合,与很好的避免导电浆料因烘干温度过高或时间过长而出现裂纹之间达到一个较好的平衡。
可选地,步骤S03中,在进行极化处理的过程中,极化电压为3kV/mm-10kV/mm,极化温度100℃-250℃,极化时间为30分钟-120分钟。以使得压电复合层初体具有较好的压电效应,即得到压电效应较好的压电复合层,即使得压电复合层具有较好的压电常数。
进一步地,可选地,在进行极化处理的过程中,极化电压为3.5kV/mm-5.5kV/mm,极化温度为120℃-180℃,极化时间为30分钟-60分钟,从而使得压电复合层具有较高的压电常数,使得超声波指纹识别模组具有较好的的识别性能。
本申请一实施例还提供一种电子设备,其包括本申请提供的超声波指纹识别模组。
上述电子设备,压电陶瓷的压电常数高于聚合物薄膜的压电常数,且压电陶瓷以粉体颗粒的形式分散在聚合物薄膜层内,故可在不降低压电复合层的柔韧性的同时,增大压电复合层的压电常数。进而可在不改变压电复合层厚度的情况下,提高超声波指纹识别模组的信噪比,提高超声波指纹识别模组的识别性能,即提高电子设备的识别性能。
具体地,电子设备可以是移动设备、通讯设备、显示设备等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围 应以所附权利要求为准。

Claims (15)

  1. 一种超声波指纹识别模组,所述超声波指纹识别模组包括:
    基板;以及
    压电复合层,设于所述基板上;所述压电复合层包括设于所述基板上的聚合物薄膜层以及分散于所述聚合物薄膜层内的压电陶瓷粉体颗粒。
  2. 根据权利要求1所述的超声波指纹识别模组,所述压电陶瓷粉体颗粒的外径为0.05μm-5μm。
  3. 根据权利要求2所述的超声波指纹识别模组,所述压电陶瓷粉体颗粒的外径为0.1μm-2μm。
  4. 根据权利要求1所述的超声波指纹识别模组,所述压电复合层中,所述压电陶瓷粉体颗粒的质量百分比为1wt%-60wt%。
  5. 根据权利要求1所述的超声波指纹识别模组,所述聚合物薄膜层为PVDF层或共聚物层。
  6. 根据权利要求1所述的超声波指纹识别模组,所述压电陶瓷粉体颗粒为钛酸钡系压电陶瓷粉体颗粒、钛酸铅系压电陶瓷粉体颗粒、锆酸铅系压电陶瓷粉体颗粒中的一种或者几种。
  7. 一种超声波指纹识别模组的制备方法,所述方法包括步骤:
    提供基板以及压电浆料;其中,所述压电浆料包括聚合物以及混合在所述聚合物中的压电陶瓷粉体颗粒;
    将所述压电浆料涂覆在所述基板上,并进行烘干处理,形成压电复合层初体;
    在所述压电复合层初体上形成外电极层,并进行极化处理,得到超声波指纹识别模组。
  8. 根据权利要求7所述的超声波指纹识别模组的制备方法,在提供基板以及压电浆料的步骤,提供的压电浆料中,所述压电陶瓷粉体颗粒的外径为0.05μm-5μm。
  9. 根据权利要求8所述的超声波指纹识别模组的制备方法,提供基板以及压电浆料的步骤提供的压电浆料中,所述压电陶瓷粉体颗粒的外径为0.1μm-2μm。
  10. 根据权利要求7所述的超声波指纹识别模组的制备方法,所述压电浆料中,提供基板以及压电浆料的步骤提供的压电浆料中,所述压电陶瓷粉体颗粒的质量百分比为1wt%-60wt%。
  11. 根据权利要求7所述的超声波指纹识别模组的制备方法,提供基板以及压电浆料的步骤提供的压电浆料中,所述聚合物为PVDF或共聚物。
  12. 根据权利要求7所述的超声波指纹识别模组的制备方法,提供基板以及压电浆料的步骤提供的压电浆料中,所述压电陶瓷粉体颗粒为钛酸钡系压电陶瓷粉体颗粒、钛酸铅系压电陶瓷粉体颗粒、锆酸铅系压电陶瓷粉体颗粒中的一种或者几种。
  13. 根据权利要求7所述的超声波指纹识别模组的制备方法,在进行烘干处理的步骤中,烘干温度为150℃-250℃,烘干时间为0.5h-6h。
  14. 根据权利要求7所述的超声波指纹识别模组的制备方法,在进行极化处理的步骤中,极化电压为3kV/mm-10kV/mm,极化温度100℃-250℃,极化时间为30分钟-120分钟。
  15. 一种电子设备,所述电子设备包括超声波指纹识别模组;
    所述超声波指纹识别模组包括:
    基板;以及
    压电复合层,设于所述基板上;所述压电复合层包括设于所述基板上的聚合物薄膜层以及分散于所述聚合物薄膜层内的压电陶瓷粉体颗粒。
PCT/CN2020/079980 2020-03-18 2020-03-18 超声波指纹识别模组、制备方法及电子设备 WO2021184253A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079980 WO2021184253A1 (zh) 2020-03-18 2020-03-18 超声波指纹识别模组、制备方法及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079980 WO2021184253A1 (zh) 2020-03-18 2020-03-18 超声波指纹识别模组、制备方法及电子设备

Publications (1)

Publication Number Publication Date
WO2021184253A1 true WO2021184253A1 (zh) 2021-09-23

Family

ID=77768391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079980 WO2021184253A1 (zh) 2020-03-18 2020-03-18 超声波指纹识别模组、制备方法及电子设备

Country Status (1)

Country Link
WO (1) WO2021184253A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505870A (en) * 1994-04-20 1996-04-09 Korea Institute Of Science And Technology Piezoelectric ceramic-polymer composite material and method for preparing the same
WO2015066599A2 (en) * 2013-06-03 2015-05-07 Qualcomm Incorporated Piezoelectric force sensing array
US20160092716A1 (en) * 2014-09-30 2016-03-31 Apple Inc. Active Sensing Element for Acoustic Imaging Systems
CN106778691A (zh) * 2017-01-16 2017-05-31 麦克思商务咨询(深圳)有限公司 声波式指纹识别装置及其制作方法以及应用其的电子装置
CN106874853A (zh) * 2017-01-16 2017-06-20 麦克思商务咨询(深圳)有限公司 声波式指纹识别装置及其制作方法以及应用其的电子装置
US20180144180A1 (en) * 2016-11-18 2018-05-24 Keycore Technology Corp. Fingerprint identification module
WO2019004906A1 (en) * 2017-06-28 2019-01-03 Fingerprint Cards Ab METHOD FOR MANUFACTURING DIGITAL FOOTPRINT SENSOR MODULE
CN109494298A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 压电层的极化方法和超声波生物识别装置的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505870A (en) * 1994-04-20 1996-04-09 Korea Institute Of Science And Technology Piezoelectric ceramic-polymer composite material and method for preparing the same
WO2015066599A2 (en) * 2013-06-03 2015-05-07 Qualcomm Incorporated Piezoelectric force sensing array
US20160092716A1 (en) * 2014-09-30 2016-03-31 Apple Inc. Active Sensing Element for Acoustic Imaging Systems
US20180144180A1 (en) * 2016-11-18 2018-05-24 Keycore Technology Corp. Fingerprint identification module
CN106778691A (zh) * 2017-01-16 2017-05-31 麦克思商务咨询(深圳)有限公司 声波式指纹识别装置及其制作方法以及应用其的电子装置
CN106874853A (zh) * 2017-01-16 2017-06-20 麦克思商务咨询(深圳)有限公司 声波式指纹识别装置及其制作方法以及应用其的电子装置
WO2019004906A1 (en) * 2017-06-28 2019-01-03 Fingerprint Cards Ab METHOD FOR MANUFACTURING DIGITAL FOOTPRINT SENSOR MODULE
CN109494298A (zh) * 2017-09-12 2019-03-19 南昌欧菲生物识别技术有限公司 压电层的极化方法和超声波生物识别装置的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKESHI YAMADA, TOSHINOBU UEDA, TOYOKI KITAYAMA: "Piezoelectricity of a high‐content lead zirconate titanate/polymer composite", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 53, no. 6, 1 June 1982 (1982-06-01), US, pages 4328 - 4332, XP055562055, ISSN: 0021-8979, DOI: 10.1063/1.331211 *

Similar Documents

Publication Publication Date Title
EP0888643B1 (en) Improved piezoelectric ceramic-polymer composites
JP2014157822A (ja) 強誘電体薄膜の製造方法
JP6043673B2 (ja) 電気音響変換用高分子複合圧電体
JP2015192120A (ja) 高分子複合圧電体
US20150322220A1 (en) Ultrasonic transducer using ferroelectric polymer
EP1758153A2 (en) Perovskite type capacitor and method of manufacturing the same
WO2021184253A1 (zh) 超声波指纹识别模组、制备方法及电子设备
JP2777976B2 (ja) 圧電セラミックス−高分子複合材料及びその製造方法
CN116114401A (zh) 压电复合材料及方法
CN108485133B (zh) 一种高储能密度复合材料及其制备方法
JP4795633B2 (ja) 基材上に圧電性厚膜を製造する方法
CN107144299A (zh) 一种超声传感器
JP2007184622A (ja) 高キャパシタンス薄膜キャパシタの製造方法
CN111460935A (zh) 超声波指纹识别模组、制备方法及电子设备
CN112723880A (zh) 一种耐高腐蚀的复合压电陶瓷材料的制备方法
JP2010209277A (ja) 有機圧電材料、超音波振動子および超音波探触子
JPH0624222B2 (ja) 薄膜コンデンサの製造方法
KR101704180B1 (ko) 아조벤젠 결합 pvdf필름을 이용하는 압전소자 및 그 제조방법
CN114605150B (zh) 一种高密度、低损耗及高介电常数压电陶瓷及其制备方法
JPH11330578A (ja) 圧電素子並びにそれを用いた圧電振動子、発音体、圧電アクチュエータ、超音波探触子及び圧電トランス
CN115069524B (zh) 一种高频超声换能器用1-3复合压电材料及其制备方法
JP3116484B2 (ja) 圧電セラミック薄板素子
JPH07226334A (ja) 薄膜コンデンサ及びその製造方法
Shi et al. Enhanced energy storage performance of (Ba0. 85Ca0. 15)(Zr0. 10Ti0. 90) O3-based ceramics through a synergistic optimization strategy
WO2021184171A1 (zh) 一种多层薄膜制备方法及多层薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925883

Country of ref document: EP

Kind code of ref document: A1