WO2021182611A1 - L-メントールに対するエステル化活性及び/又はl-メントールエステルに対する加水分解活性を有するポリペプチド - Google Patents

L-メントールに対するエステル化活性及び/又はl-メントールエステルに対する加水分解活性を有するポリペプチド Download PDF

Info

Publication number
WO2021182611A1
WO2021182611A1 PCT/JP2021/010072 JP2021010072W WO2021182611A1 WO 2021182611 A1 WO2021182611 A1 WO 2021182611A1 JP 2021010072 W JP2021010072 W JP 2021010072W WO 2021182611 A1 WO2021182611 A1 WO 2021182611A1
Authority
WO
WIPO (PCT)
Prior art keywords
menthol
amino acid
polypeptide
residue
acid sequence
Prior art date
Application number
PCT/JP2021/010072
Other languages
English (en)
French (fr)
Inventor
和典 吉田
幸秀 佐藤
倫史 亀田
仁善 池部
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to CN202180020621.4A priority Critical patent/CN115279908A/zh
Priority to US17/906,217 priority patent/US20240301463A1/en
Priority to JP2022507303A priority patent/JPWO2021182611A1/ja
Priority to EP21768659.1A priority patent/EP4119673A4/en
Publication of WO2021182611A1 publication Critical patent/WO2021182611A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/004Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of alcohol- or thiol groups in the enantiomers or the inverse reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • C40B40/08Libraries containing RNA or DNA which encodes proteins, e.g. gene libraries
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms

Definitions

  • the present invention relates to a polypeptide having an esterification activity for L-menthol and / or a hydrolysis activity for L-menthol ester. More specifically, the present invention is a poly having an esterification activity for L-menthol and / or a hydrolysis activity for L-menthol ester, and improved substrate specificity for L-menthol and / or L-menthol ester.
  • L-menthol is an important substance that is widely used in the fragrance field, food field, pharmaceutical field, etc. because of its characteristics of producing a refreshing flavor and a refreshing skin sensation. Further, the ester of menthol can be used as a raw material for L-menthol, and the ester of L-menthol itself is used in the perfume field, the food field, the pharmaceutical field and the like.
  • Examples of the method for obtaining L-menthol and its ester optically selectively include a chemical method and an enzymatic method.
  • Examples of the chemical method include a method of selectively crystallizing the L-form by reacting DL-menthol with an optically active acid or base.
  • As an enzymatic method DL-menthol ester is allowed to react with lipase in an aqueous solvent to specifically hydrolyze the L-form, and DL-menthol is allowed to act on lipase in an organic solvent. Examples thereof include a method of specifically esterifying the L-form.
  • Non-Patent Document 1 describes that racemic menthol laurate is hydrolyzed in an aqueous medium by lipase derived from Candida rugosa to preferentially obtain L-menthol (ee: 70%). ing. Such enantioselectivity is also observed when racemic menthol is esterified with lauric acid.
  • a Candida rugosa-derived lipase causes racemic menthol to undergo esterification with lauric acid in a non-aqueous medium with enantioselectivity, resulting in mentil L-laurate preferentially (ee: 95%).
  • Non-Patent Document 2 states that racemic menthol undergoes esterification with acetic anhydride, propionic anhydride and butyric anhydride with specific enantioselection by lipase derived from Candida rugosa, and in particular, butyric anhydride in n-hexane. It is described that the esterification with L-butyrate was preferentially produced (ee: 86%).
  • Non-Patent Document 3 a lipase derived from Candida rugosa is used. It is described that racemic menthol was esterified with propionic anhydride to produce menthyl L-propionic acid with very high optical purity (ee: 95%).
  • an object of the present invention is to provide a technique capable of further improving the substrate specificity for the L-form in the production of L-menthol and / or its ester.
  • the present inventor has focused on the high enantioselectivity of lipase derived from Burkholderia cepasia, and further introduced more than 840 types of mutations into various sites of the lipase.
  • the amino acid residue at position 120 of the lipase was replaced with a glycine residue.
  • a polypeptide consisting of a sequence and a polypeptide consisting of an amino acid sequence in which the amino acid residue at position 88 is replaced with an alanine residue, a glycine residue, an aspartic acid residue, a methionine residue, or a leucine residue It has been found that the substrate specificity for the L-form can be improved.
  • the present invention has been completed based on this finding. That is, the present invention provides the inventions of the following aspects.
  • Polypeptides with improved substrate specificity for L-menthol and / or L-menthol esters as compared to (3) In the amino acid sequence in which the amino acid residue at position 120 in the amino acid sequence shown in SEQ ID NO: 1 is replaced with a glycine residue, the amino acid residue into which the substitution with respect to the amino acid sequence shown in SEQ ID NO: 1 has been introduced is excluded. Compared to a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1, which has 80% or more sequence identity, has esterification activity for L-menthol and / or hydrolysis activity for L-menthol ester. A polypeptide having improved substrate specificity for L-menthol and / or L-menthol ester. Item 2.
  • amino acid residues other than the amino acid residue into which the substitution was introduced are substituted, added, inserted or deleted to form an esterifying activity on L-menthol and / or hydrolysis on L-menthol ester.
  • the sequence identity of the amino acid sequence shown in SEQ ID NO: 1 excluding the amino acid residue into which the substitution was introduced is 80% or more, and has esterifying activity for L-menthol and / or hydrolysis activity for L-menthol ester.
  • Item 3. A DNA encoding the polypeptide according to Item 1 or 2.
  • the method for producing a polypeptide according to claim 1 or 2 which comprises the step of culturing the transformant according to claim 5.
  • Item 7. An enzyme composition containing the polypeptide according to Item 1 or 2.
  • Item 8. An enzyme preparation containing the polypeptide according to Item 1 or 2 or the enzyme composition according to Item 7.
  • Item 9. The polypeptide according to Item 1 or 2, the enzyme composition according to Item 7, or the enzyme agent according to Item 8 is allowed to act on a mixture containing L-menthol and D-menthol to esterify L-menthol.
  • a method for producing L-menthol ester which comprises a step.
  • the polypeptide according to Item 1 or 2 is allowed to act on a mixture containing L-menthol ester and D-menthol ester to obtain L-menthol ester.
  • a method for producing L-menthol which comprises a step of hydrolyzing.
  • glycine G
  • alanine A
  • valine Val
  • Leu L
  • isoleucine I
  • Phe phenylalanine
  • Tyr tyrosine
  • Trp Tryptophan
  • Serin Serin
  • Seronin Thr
  • Cysteine Cysteine
  • Met Methionin
  • Aspartic acid Aspartic acid (Asp) is D
  • Glutamine Glu
  • Aspartic acid Aspartic acid (Asn) is N
  • glutamine Gln
  • Q lysine
  • Arg arginine
  • Histidine Histidine
  • Pro proline
  • amino acid sequence to be displayed has the N-terminal at the left end and the C-terminal at the right end.
  • A120G in this specification are notations for amino acid substitutions.
  • A120G means that the 120th amino acid A from the N-terminal side in a specific amino acid sequence is replaced with the amino acid G.
  • non-polar amino acids include alanine, valine, leucine, isoleucine, proline, methionine, phenylalanine, and tryptophan.
  • Uncharged amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine.
  • Acid amino acids include aspartic acid and glutamic acid.
  • Basic amino acids include lysine, arginine, and histidine.
  • substitution means not only when an amino acid residue substitution is artificially introduced, but also when an amino acid residue substitution is naturally introduced, that is, the amino acid residue is originally different. Is also included.
  • the substitution of the amino acid residue may be an artificial substitution or a natural substitution, but an artificial substitution is preferable.
  • polypeptide of the present invention is a polypeptide shown in any of the following (1) to (3) or a polypeptide shown in any of the following (4) to (6).
  • Polypeptides with improved substrate specificity for L-menthol and / or L-menthol esters as compared to (3)
  • the amino acid residue into which the substitution with respect to the amino acid sequence shown in SEQ ID NO: 1 has been introduced is excluded.
  • a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1, which has 80% or more sequence identity has esterification activity for L-menthol and / or hydrolysis activity for L-menthol ester.
  • a polypeptide having improved substrate specificity for L-menthol and / or L-menthol ester has improved substrate specificity for L-menthol and / or L-menthol ester.
  • amino acid residue at position 88 (glutamine residue) is replaced with an alanine residue, a glycine residue, an aspartic acid residue, a methionine residue, or a leucine residue.
  • Polypeptide consisting of the amino acid sequence of (5) In the amino acid sequence in which the amino acid residue at position 88 in the amino acid sequence shown in SEQ ID NO: 1 is replaced with an alanine residue, a glycine residue, an aspartic acid residue, a methionine residue, or a leucine residue.
  • amino acid residues other than the amino acid residue into which the substitution was introduced are substituted, added, inserted or deleted to form an esterifying activity on L-menthol and / or hydrolysis on L-menthol ester.
  • sequence identity of the amino acid sequence shown in SEQ ID NO: 1 excluding the amino acid residue into which the substitution was introduced is 80% or more, and has esterifying activity for L-menthol and / or hydrolysis activity for L-menthol ester. Moreover, a polypeptide having improved substrate specificity for L-menthol and / or L-menthol ester as compared with the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1.
  • the polypeptides shown in (1) to (6) have an esterification activity for L-menthol and / or a hydrolysis activity for L-menthol ester, and are improved with respect to L-menthol and / or L-menthol ester.
  • the polypeptides shown in (1) to (6) have improved substrate specificity for L-menthol and L-menthol ester.
  • the polypeptide of SEQ ID NO: 1 is a wild-type lipase (mature) derived from Burkholderia cepasia.
  • polypeptides (1) to (6) above include not only polypeptides obtained by artificially substituting, but also polypeptides originally having such an amino acid sequence.
  • the polypeptide of (1) and the polypeptide of (4) also include a polypeptide containing both the substitution at the 120th position and the substitution at the 88th position.
  • arbitrary difference sites other than the amino acid residue at position 120 or 88 of SEQ ID NO: 1 are used. It may be written as.
  • the term "arbitrary difference site” is a site where a difference is allowed as long as it does not significantly affect the properties of the polypeptide.
  • the amino acid sequence at an arbitrary difference site as compared with the polypeptide of the above (1) or (4), it is comparable to the polypeptide of the above (1) or (4).
  • variants of the polypeptide of (1) or (4) are referred to as variants of the polypeptide of (1) or (4) above.
  • the difference of the polypeptide shows a difference in the amino acid sequence at an arbitrary difference site as compared with the polypeptide of the above (1) or (4), the characteristics of the polypeptide are substantially the same. It is preferable to have.
  • substantially the same means those having substrate specificity for L-menthol and / or L-menthol ester.
  • the polypeptides (2) and (3) are variants of the polypeptide of (1), and the polypeptides of (5) and (6) are variants of the polypeptide of (4). be.
  • the difference in amino acids in the polypeptides (2) and (5) may include only one difference (for example, substitution) from substitutions, additions, insertions, and deletions, and two or more thereof. Differences (eg, substitution and insertion) may be included.
  • the number of amino acid differences at arbitrary difference sites may be one or several, for example, 1 to 50, preferably 1 to 20, 1 to 10. 1, 1 to 8, 1 to 7, 1 to 6, 1 to 5, or 1 to 4, more preferably 1 to 3, particularly preferably 1 or 2 or 1.
  • sequence identity of each amino acid sequence shown in SEQ ID NO: 1 except for the site where the amino acid is substituted may be 80% or more, but is preferable. 85% or more or 90% or more, more preferably 95% or more, 96% or more, 97% or more, or 98% or more, particularly preferably 99% or more.
  • sequence identity excluding the site where the amino acid substitution is made for each amino acid sequence shown in SEQ ID NO: 1 is defined as the sequence identity from each amino acid sequence shown in SEQ ID NO: 1.
  • sequence identity is calculated by extracting only the arbitrary difference site and comparing only the arbitrary difference site.
  • sequence identity is defined as BLESTPACKAGE [sgi32 bit edition, Version 2.0.12; available from National Center for Biotechnology Information (NCBI)] bl2sex The value of the identity of the amino acid sequence obtained by Lett., Vol. 174, p247-250, 1999) is shown.
  • the parameters may be set to Gap insertion Cost value: 11 and Gap extension Cost value: 1.
  • the 87th position (serine), the 264th position (aspartic acid) and the 286th position (histidine) in the amino acid sequence shown in SEQ ID NO: 1 ) Is considered to contribute to the esterification activity for L-menthol and / or the hydrolysis activity for L-menthol ester. Therefore, it is desirable not to introduce substitutions or deletions at these sites.
  • amino acid substitution introduced into the polypeptides (2) and (3) and the polypeptides (5) and (6) a conservative substitution can be mentioned as an embodiment of the amino acid substitution. That is, in the polypeptides (2) and (3) and the above-mentioned (5) and (6), as the amino acid substitution introduced into the amino acid sequence shown in SEQ ID NO: 1, for example, the amino acid before the substitution is non-polar. Substitution with other non-polar amino acids if amino acids, substitution with other uncharged amino acids if the amino acids before substitution are uncharged amino acids, and other acidic amino acids if the amino acids before substitution are acidic amino acids If the amino acid before the substitution is a basic amino acid, the substitution with another basic amino acid can be mentioned.
  • the polypeptides (2) and (3) and the polypeptides (5) and (6) have "esterification activity for L-menthol and / or hydrolysis activity for L-menthol ester, and are shown in SEQ ID NO: 1.
  • the "polypeptide having improved substrate specificity for L-menthol and / or L-menthol ester as compared with the polypeptide consisting of an amino acid sequence" is (i) esterification activity for L-menthol and / or L-.
  • the substrate specificity for (ii-a) L-menthol while having hydrolytic activity for menthol ester the optical purity of L-menthol acetyl ester measured under the conditions of Test Example 2 below is shown in SEQ ID NO: 1.
  • the optical purity of the polypeptide consisting of the amino acid sequence shown is 1.007 times or more, preferably 1.009 times or more, more preferably 1.010 times or more, still more preferably 1.012 times or more (however, L-
  • the menthol ester conversion rate is equivalent to that of the polypeptide of the present invention and the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1, specifically 99 to 101%)), which means (ii-b).
  • the ratio of the conversion rate to L-menthol to the conversion rate to D-menthol (L / D conversion rate) measured under the conditions of Test Example 1 below is the SEQ ID NO: 1.05 times or more, preferably 1.12 times or more, more preferably 1.19 times or more, still more preferably 1.26 times or more, still more preferable, the L / D conversion rate by the polypeptide consisting of the amino acid sequence shown in 1. Means that it is 1.32 times or more.
  • DNA of the present invention is, for example, the DNA encoding the amino acid sequence (SEQ ID NO: 1) of wild-type lipase. It can be obtained by introducing an amino acid mutation.
  • the DNA of the present invention can also be artificially synthesized by a total synthesis method of genes.
  • the DNA encoding the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1 is known as, for example, the nucleotide sequence shown in SEQ ID NO: 2, and is M-12-33 of Burkholderia cepasia. It can be isolated from the genomic DNA of the strain by a conventional method using PCR.
  • a method for introducing a specific mutation into a specific site of a base sequence is known, and for example, a site-specific mutation introduction method for DNA can be used.
  • Specific methods for converting bases in DNA include, for example, the use of commercially available kits (QuickChange Lightning Site-Directed Mutagenesis kit: manufactured by Stratagen, KOD-Plus-Mutagenesis kit: manufactured by Toyobo, etc.).
  • the base sequence of DNA in which a mutation has been introduced into the base sequence can be confirmed using a DNA sequencer. Once the base sequence is determined, the DNA encoding the polypeptide is obtained by chemical synthesis, PCR using a cloned probe as a template, or hybridization using a DNA fragment having the base sequence as a probe. be able to.
  • a mutant form of DNA encoding the peptide and having the same function as before the mutation can be synthesized by a site-specific mutagenesis method or the like.
  • Introducing a mutation into the DNA encoding the peptide can be carried out by a known method such as the Kunkel method, the Gapped duplex method, or the megaprimer PCR method.
  • the DNA of the present invention is preferably one in which the codon utilization frequency is optimized for the host, and more preferably the DNA in which the codon utilization frequency is optimized for Escherichia coli.
  • the total host optimum codon usage frequency of each codon may be adopted.
  • the optimal codon is defined as the most frequently used codon among the codons corresponding to the same amino acid.
  • the frequency of codon utilization is not particularly limited as long as it is optimized for the host, and examples of the optimal codons of Escherichia coli include the following.
  • F phenylalanine (ttt), L: leucine (ctg), I: isoleucine (att), M: methionine (atg), V: valine (gtg), Y: tyrosine (tat), termination codon (taa), H: Histidine (cat), Q: glutamine (cag), N: asparagin (aat), K: lysine (aaa), D: aspartic acid (gat), E: glutamic acid (gaa), S: serine (agc), P: Proline (ccg), T: threonine (acc), A: alanine (ggc), C: cysteine (tgc), W: tryptophan (tgg), R: arginine (cgg), G: glycine (ggc).
  • Examples of the DNA of the present invention include DNAs containing the nucleotide sequences shown in SEQ ID NOs: 3, 13 to 17.
  • the DNA consisting of the nucleotide sequence shown in SEQ ID NO: 3 encodes a polypeptide in which the 120th position of the amino acid sequence of the polypeptide shown in SEQ ID NO: 1 described in (1) above is replaced with a glycine residue.
  • the DNA consisting of the base sequences shown in SEQ ID NOs: 13, 14, 15, 16 and 17 has the amino acid residue at position 88 of the amino acid sequence of the polypeptide shown in SEQ ID NO: 1 described in (4) above, respectively.
  • a polypeptide having improved substrate specificity for L-menthol and / or L-menthol ester as compared with the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1 is encoded.
  • Examples thereof include DNA containing a base sequence complementary to the DNA consisting of the base sequences shown in SEQ ID NOs: 3 and 13 to 17, and DNA that hybridizes under stringent conditions.
  • stringent conditions are 0.5% SDS, 5 ⁇ Denhardz's, 0.1% bovine serum albumin (BSA), 0.1% polyvinylpyrrolidone, 0.1% ficol. 400] and in 6 ⁇ SSC containing 100 ⁇ g / ml salmon sperm DNA (1 ⁇ SSC is 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0) at 50 ° C. to 65 ° C. for 4 hours to overnight. The condition to keep warm.
  • BSA bovine serum albumin
  • polyvinylpyrrolidone 0.1% ficol. 400
  • Hybridization under stringent conditions is specifically carried out by the following method. That is, a nylon membrane on which a DNA library or cDNA library was immobilized was prepared, and in a prehybridization solution containing 6 ⁇ SSC, 0.5% SDS, 5 ⁇ Denhalz, 100 ⁇ g / ml salmon sperm DNA, at 65 ° C. Block the nylon membrane. Then, each probe labeled with 32 P is added and kept warm at 65 ° C. overnight. This nylon film was placed in 6 ⁇ SSC at room temperature for 10 minutes, in 2 ⁇ SSC containing 0.1% SDS, at room temperature for 10 minutes, in 0.2 ⁇ SSC containing 0.1% SDS, at 45 ° C. for 30 minutes. After washing, autoradiography can be taken to detect DNA that is specifically hybridized with the probe.
  • a polypeptide having improved substrate specificity for L-menthol and / or L-menthol ester as compared with the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1 is encoded.
  • a DNA having 80% or more homology with the DNA consisting of the base sequences shown in SEQ ID NOs: 3 and 13 to 17 can be mentioned.
  • the homology preferably includes 85% or more or 90% or more, more preferably 95% or more, 96% or more, or 97% or more, and particularly preferably 98% or more or 99% or more.
  • the "homology" of DNA is calculated using publicly available or commercially available software having an algorithm for comparing a reference sequence as a query sequence.
  • BLAST, FASTA, GENETYX manufactured by Software Development Co., Ltd.
  • these may be set to default parameters and used.
  • Recombinant vector of the present invention A recombinant vector containing a DNA encoding the peptide of the present invention (hereinafter, may be referred to as “recombinant vector of the present invention”) can be obtained by inserting the DNA of the present invention into an expression vector. Can be done.
  • the recombinant vector of the present invention contains a regulator such as a promoter operably linked to the DNA of the present invention.
  • a promoter is typically used as a regulator, but if necessary, a transcription element such as an enhancer, a CCAAT box, a TATA box, or an SPI site may be included.
  • operably linked means that various regulators such as promoters and enhancers that regulate the DNA of the present invention are linked to the DNA of the present invention in a state in which they can act in the host cell.
  • the expression vector a vector constructed from phages, plasmids, or viruses that can grow autonomously in the host for gene recombination is preferable.
  • Such expression vectors are known, and for example, commercially available expression vectors include pQE-based vector (Qiagen Co., Ltd.), pDR540, pRIT2T (GE Healthcare Bioscience Co., Ltd.), and pET-based vector (Merck). Co., Ltd.) etc.
  • the expression vector may be used by selecting an appropriate combination with the host cell.
  • Escherichia coli when Escherichia coli is used as the host cell, a combination of a pET-based vector and a DH5 ⁇ Escherichia coli strain, a pET-based vector and BL21 (DE3) Escherichia coli. A combination of strains, a combination of pDR540 vector and JM109 Escherichia coli strain, and the like are preferable.
  • Transformant of the present invention can be obtained by transforming a host with the recombinant vector of the present invention.
  • the host used for producing the transformant is not particularly limited as long as the recombinant vector is stable, autonomously proliferative, and can express the trait of a foreign gene, and is not particularly limited.
  • Escherichia coli and the like Bacteria belonging to the genus Escherichia, the genus Bacillus such as Bacillus subtilis, the genus Pseudomonas such as Pseudomonas putida; yeast and the like are preferable examples, but other animal cells and insect cells , Plants and the like. Of these, Escherichia coli is particularly preferable.
  • the transformant of the present invention can be obtained by introducing the recombinant vector of the present invention into the host, and the conditions for introducing the recombinant vector into the host may be appropriately set according to the type of host and the like.
  • the host is a bacterium, for example, a method using competent cells treated with calcium ions, an electroporation method, and the like can be mentioned.
  • the host is yeast, for example, an electroporation method, a spheroplast method, a lithium acetate method and the like can be mentioned.
  • the host is an animal cell, for example, an electroporation method, a calcium phosphate method, a lipofection method and the like can be mentioned.
  • the host is an insect cell, for example, a calcium phosphate method, a lipofection method, an electroporation method and the like can be mentioned.
  • a plant cell for example, an electroporation method, an Agrobacterium method, a particle gun method, a PEG method and the like can be mentioned.
  • the recombinant vector When confirming whether or not the recombinant vector of the present invention has been incorporated into the host by the PCR method, for example, the recombinant vector may be separated and purified from the transformant.
  • Separation and purification of the recombinant vector is performed based on the lysed product obtained by lysing the bacterium, for example, when the host is a bacterium.
  • a method of lysis treatment is performed with a lytic enzyme such as lysozyme, and if necessary, a protease and other enzymes and a surfactant such as sodium lauryl sulfate (SDS) are used in combination.
  • a lytic enzyme such as lysozyme
  • a protease and other enzymes and a surfactant such as sodium lauryl sulfate (SDS) are used in combination.
  • SDS sodium lauryl sulfate
  • Separation and purification of DNA from the lysate can be performed, for example, by appropriately combining a deproteinization treatment by phenol treatment and protease treatment, a ribonuclease treatment, an alcohol precipitation treatment, and a commercially available kit.
  • DNA can be cleaved according to a conventional method, for example, using restriction enzyme treatment.
  • restriction enzyme for example, a type II restriction enzyme that acts on a specific nucleotide sequence is used.
  • the binding between the DNA and the expression vector is performed using, for example, DNA ligase.
  • a primer specific to the DNA of the present invention is designed and PCR is performed.
  • the amplified product obtained by PCR is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., stained with ethidium bromide, SYBR Green solution, etc., and the amplified product is detected as a band. You can confirm that it has been converted.
  • amplification product it is also possible to detect the amplification product by performing PCR using a primer labeled with a fluorescent dye or the like in advance. Further, a method of binding the amplification product to a solid phase such as a microplate and confirming the amplification product by fluorescence, an enzymatic reaction or the like may also be adopted.
  • the polypeptide of the present invention can be obtained by a production method including a step of culturing the transformant of the present invention.
  • the culture conditions of the transformant may be appropriately set in consideration of the nutritional and physiological properties of the host, but liquid culture is preferable. Further, in the case of industrial production, aeration stirring culture is preferable.
  • the carbon source may be any carbon compound that can be assimilated, and examples thereof include glucose, sucrose, lactose, maltose, molasses, and pyruvic acid.
  • the nitrogen source may be any assimilation nitrogen compound, and examples thereof include peptone, meat extract, yeast extract, casein hydrolyzate, and soybean meal alkaline extract.
  • salts such as phosphates, carbonates, sulfates, magnesium, calcium, potassium, iron, manganese and zinc, specific amino acids and specific vitamins are used as needed. You may.
  • the culture temperature can be appropriately set within a range in which the transformant of the present invention can grow and the transformant of the present invention produces the polypeptide of the present invention, but is preferably about 15 to 37 ° C.
  • the culturing may be completed at an appropriate time in anticipation of the time when the polypeptide of the present invention reaches the maximum yield, and the culturing time is usually about 12 to 48 hours.
  • the transformant of the present invention is cultured, the culture solution is collected by a method such as centrifugation, and the cells are treated by a mechanical method such as ultrasonic waves and a French press or a lytic enzyme such as lysozyme. Then, if necessary, solubilization can be obtained by using an enzyme such as protease or a surfactant such as sodium lauryl sulfate (SDS) to obtain a water-soluble fraction containing the polypeptide of the present invention.
  • an enzyme such as protease or a surfactant such as sodium lauryl sulfate (SDS)
  • the expressed polypeptide of the present invention can be secreted into the culture medium.
  • the water-soluble fraction containing the polypeptide of the present invention obtained as described above may be subjected to the purification treatment as it is, but the polypeptide of the present invention in the water-soluble fraction is concentrated and then subjected to the purification treatment. May be served.
  • Concentration can be performed by, for example, vacuum concentration, membrane concentration, salting out treatment, fractional precipitation method using a hydrophilic organic solvent (for example, methanol, ethanol and acetone), or the like.
  • a hydrophilic organic solvent for example, methanol, ethanol and acetone
  • the purification treatment of the polypeptide of the present invention can be performed, for example, by appropriately combining methods such as gel filtration, adsorption chromatography, ion exchange chromatography, and affinity chromatography.
  • the purification process is already known and can be proceeded by referring to appropriate documents, magazines, textbooks, etc.
  • the polypeptide of the present invention purified in this manner can be pulverized by freeze-drying, vacuum-drying, spray-drying or the like and distributed on the market, if necessary.
  • the polypeptide of the invention may be provided, for example, in the form of a composition in which other components coexist.
  • the form of the enzyme composition is as follows: a culture solution containing the polypeptide obtained in the process of producing the polypeptide of the present invention, a water-soluble fraction containing the polypeptide obtained from the culture solution, or a water-soluble fraction thereof.
  • Examples of other components contained in the enzyme composition include arbitrary components added, produced or mixed in the process of preparing the enzyme composition, for example, a contaminating protein derived from the medium used for producing the polypeptide of the present invention. Ingredients and / or Ingredients other than protein; Additives or bases shown in "7. Enzymes” described below; Unreacted raw materials and products contained in the reaction mixture obtained in the production of L-menthol and / or its esters. And so on. And so on.
  • the enzyme composition may also contain other enzymes.
  • Other enzymes include, for example, amylase ( ⁇ -amylase, ⁇ -amylase, glucoamylase), glucosidase ( ⁇ -glucosidase, ⁇ -glucosidase), galactosidase ( ⁇ -galactosidase, ⁇ -galactosidase), protease (acidic protease, medium).
  • the content of the polypeptide of the present invention in the enzyme composition is not particularly limited, but preferably 10% by mass or more, more preferably 30% by mass or more, based on the total protein of the enzyme composition.
  • the form of the enzyme composition is not particularly limited, and examples thereof include liquids, powders, and granules.
  • the enzyme composition can be prepared by a generally known method or a method shown in "8-3. Method for producing L-menthol ester" described later.
  • the polypeptide of the present invention may be provided, for example, in the form of an enzyme agent.
  • the enzyme preparation is an enzyme composition prepared for the purpose of using the polypeptide of the present invention in "8. Uses" described later, and contains the polypeptide of the present invention as an active ingredient.
  • the enzyme preparation may contain additives or bases such as excipients, buffers, suspensions, stabilizers, preservatives, preservatives, saline solutions, and solvents. good.
  • starch, dextrin, maltose, trehalose, lactose, D-glucose, sorbitol, D-mannitol, sucrose, glycerol and the like can be used.
  • buffer phosphate, citrate, acetate and the like can be used.
  • Propylene glycol, ascorbic acid and the like can be used as the stabilizer.
  • phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben and the like can be used.
  • ethanol, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
  • the enzyme preparation contains other components (for example, any component added, produced or mixed in the production process of the polypeptide which is an active ingredient) to the extent that the effect of the present invention is not affected. May be good.
  • the content of the polypeptide in the enzyme preparation is appropriately set within a range in which the effect of the polypeptide is exhibited.
  • the polypeptide of the present invention can be used in applications that require an esterification treatment for L-menthol and a hydrolysis treatment for L-menthol ester.
  • applications requiring esterification treatment of L-menthol include production of L-menthol ester
  • applications requiring hydrolysis treatment of L-menthol ester include production of L-menthol.
  • More specific examples of these applications are the production of fragrance compounds; the production of additives for foods and drinks, cosmetics, pharmaceuticals, or quasi-drugs; the production of active ingredients for cosmetics, pharmaceuticals, or quasi-drugs; Examples include the production of intermediates of active ingredients of cosmetics, pharmaceuticals, or quasi-drugs.
  • the L-menthol and / or L-menthol ester used as the substrate for the polypeptide of the present invention is a fragrance compound; an additive for foods and drinks, cosmetics, pharmaceuticals, or quasi-drugs; cosmetics, pharmaceuticals, or quasi-drugs.
  • the active ingredient of; is known as an intermediate of the active ingredient of cosmetics, pharmaceuticals, or quasi-drugs.
  • L-menthol is (1R, 2S, 5R) -5-methyl l-2- (1-ethylethyl) cyclohexanol.
  • the L-menthol ester is not particularly limited as long as it is an ester of L-menthol and a carboxylic acid, and specific examples thereof include a compound represented by the following formula (1).
  • R 1 has a linear or branched alkyl group having 1 to 20, preferably 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, and 6 to 14 carbon atoms. It represents an aryl group, an aralkyl group having 7 to 15 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkylamino group having 1 to 20 carbon atoms.
  • the alkyl group, the cycloalkyl group, the aryl group, the aralkyl group, the alkyl group of the alkoxy group, and the alkyl group of the alkylamino group may be unsubstituted or substituted, and are substituted.
  • the substituents include a hydroxyl group, a formyl group, an alkoxy group having 1 to 6 carbon atoms, a carboxyl group, a mercapto group, a sulfo group, an amino group, an alkylamino group having 1 to 6 carbon atoms, a nitro group and a halogen group.
  • a hydroxyl group a formyl group, an alkoxy group having 1 to 6 carbon atoms, a carboxyl group, a mercapto group, a sulfo group, an amino group, an alkylamino group having 1 to 6 carbon atoms, a nitro group and a halogen group.
  • L-menthol ester Preferred examples of L-menthol ester are acetic acid-L-menthol, benzoic acid-L-menthyl, isovaleric acid-L-menthol, lactic acid-L-menthol, succinic acid-L-menthyl, propionic acid-L-menthol. , Butyric acid-L-menthol and the like, preferably acetic acid-L-menthol.
  • the immobilized polypeptide may be one in which the polypeptide of the present invention is immobilized on a carrier (for example, ion exchange resin, porous resin, ceramics, calcium carbonate, etc.) according to a conventional method.
  • a carrier for example, ion exchange resin, porous resin, ceramics, calcium carbonate, etc.
  • polypeptide of the present invention one type may be used alone, or a plurality of types may be used in combination.
  • Method for producing L-menthol ester is the above-mentioned polypeptide of the present invention, the above-mentioned enzyme composition of the present invention, or the above-mentioned enzyme agent of the present invention (hereinafter, "poly of the present invention”. "Peptide, etc.") is allowed to act on a mixture containing L-menthol and D-menthol to esterify L-menthol.
  • the polypeptide or the like of the present invention is preferably used in the form of an immobilized polypeptide in which the polypeptide is immobilized on a carrier.
  • the polypeptide or the like of the present invention not only improves the substrate specificity for L-menthol, but can also exhibit an excellent transesterification rate of L-menthol for its transesterification activity value. Therefore, the polypeptide or the like of the present invention used in the method for producing an L-menthol ester is effectively high even if its transesterification activity value is less than the transesterification activity value of the wild-type lipase of SEQ ID NO: 1. It exhibits the transesterification rate of L-menthol.
  • the transesterification activity value of the polypeptide or the like of the present invention is, for example, 0.3 as a ratio (ratio of transesterification activity value) of the wild-type lipase of SEQ ID NO: 1 having the same mass to the transesterification activity value. It may be about 0.8 times, preferably 0.45 to 0.7 times, and more preferably 0.55 to 0.6 times. (Method of deriving the ratio of transesterification activity value) Using phenylethyl alcohol (20 parts by weight) and vinyl acetate (80 parts by weight) as substrates, the wild-type lipase of SEQ ID NO: 1 or the modified lipase of the present invention was allowed to act at 30 ° C.
  • the obtained phenylethyl alcohol acetyl ester is quantified by HPLC analysis.
  • the amount of phenylethyl alcohol acetyl ester obtained by the modified lipase of the present invention when the amount of phenylethyl alcohol acetyl ester obtained by wild lipase is 1 (the present invention).
  • the ester activity value of the modified lipase is taken as the ratio of the transesterification activity value.
  • polypeptide or the like of the present invention for example, 0.01 to 200 mg, preferably 0.03 to 20 mg, and more preferably 0.05 to 1 mg can be used with respect to 1 g of L-menthol.
  • R 2 is a linear or branched alkyl group having 1 to 20, preferably 1 to 6 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, and an aryl having 6 to 14 carbon atoms. It represents a group, an aralkyl group having 7 to 15 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkylamino group having 1 to 20 carbon atoms, and R 3 is a linear or branched carbon number 1 to 20. It preferably represents an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group, the cycloalkyl group, the aryl group, the aralkyl group, the alkyl group of the alkoxy group, and the alkyl group of the alkylamino group may be unsubstituted or substituted, and are substituted.
  • the substituents include a hydroxyl group, a formyl group, an alkoxy group having 1 to 6 carbon atoms, a carboxyl group, a mercapto group, a sulfo group, an amino group, an alkylamino group having 1 to 6 carbon atoms, a nitro group and a halogen group.
  • One of these acylating agents may be used alone, or a plurality of types may be used in combination.
  • the polypeptide or the like of the present invention can be allowed to act on a mixture containing L-menthol and D-menthol together with an acylating agent.
  • the acylating agent include carboxylic acid esters, more preferably carboxylic acid vinyl esters, and even more preferably vinyl acetate, vinyl propionate, vinyl butanoate, vinyl caproate, vinyl caprylate.
  • the acylating agent is, for example, 0.5 to 3 mol, preferably 0.8 to 2 mol, more preferably 1 to 1.5 mol, still more preferably 1.1 to 1. 3 mol can be used.
  • the solvent used for the mixture containing L-menthol and D-menthol is a non-aqueous solvent.
  • the non-aqueous solvent is an organic solvent that does not substantially contain water, and examples of such an organic solvent include hydrocarbon solvents such as pentane, hexane, heptane, and octane; diethyl ether, methyl-t-butyl ether, and dibutyl ether.
  • Ether-based solvent such as tetrahydrofuran
  • aromatic solvent such as toluene, xylene, benzene
  • halogen-based solvent such as dichloromethane and chloroform.
  • organic solvents a hydrocarbon solvent is preferable, and heptane is more preferable.
  • These organic solvents may be used alone or in combination of two or more.
  • the term "substantially free of water” means that it does not contain water at all and that it contains a small amount of water that does not affect the esterification reaction. Examples of the amount of water include a trace amount of water that can be mixed due to humidity such as the storage environment of the solvent, and specific examples thereof include 1000 ppm or less, preferably 500 ppm or less.
  • the amount of these solvents used may be an amount that completely dissolves the mixture containing L-menthol and D-menthol, and is, for example, 0.3 to 0.3 to 1 g of the total weight of L-menthol and D-menthol. Examples thereof include 3 ml, preferably 0.5 to 2 ml, and more preferably 0.8 to 1.5 ml.
  • L-menthol ester of the present invention As a specific operation in the method for producing L-menthol ester of the present invention, as long as an ester exchange system in which a mixture containing L-menthol and D-menthol, an acylating agent and the polypeptide of the present invention coexist can be constructed.
  • the present invention is not particularly limited, but for example, L-menthol and D-menthol (DL-menthol (racem)) are dissolved in the above solvent, an acylating agent is added thereto, and the mixture is mixed. Can be mixed.
  • L-menthol is specifically transesterified.
  • the method for producing an L-menthol ester of the present invention has a relatively high esterification exchange rate of L-menthol (that is, ester exchange). Even if a large amount of D-menthol is present in the system), an L-menthol ester having high optical purity can be obtained.
  • the transesterification exchange rate of L-menthol is 80% or more, 85% or more, 90% or more as the timing for terminating the reaction in the ester exchange system. The timing can be 93% or more, or 95% or more.
  • the upper limit of the range of the esterification exchange rate of L-menthol is not particularly limited, but from the viewpoint of obtaining high optical purity, for example, the timing at which it becomes 99% or less, preferably 97% or less, more preferably 96% or less. Can be.
  • the obtained L-menthol ester can be purified by fractional extraction, fractional distillation, column chromatography and the like.
  • the L-menthol ester thus obtained is, as L-menthol ester, a fragrance compound; an additive for foods and drinks, cosmetics, pharmaceuticals, or quasi-drugs; an active ingredient for cosmetics, pharmaceuticals, or quasi-drugs. It may be used as an intermediate of an active ingredient of cosmetics, pharmaceuticals, or quasi-drugs, or may be used as a raw material of L-menthol.
  • L-menthol ester obtained from the L-menthol ester of the present invention is used as a raw material for L-menthol, L-menthol can be produced by chemically hydrolyzing with an acid or an alkali.
  • the polypeptide or the like of the present invention is preferably used in the form of a free polypeptide.
  • the polypeptide or the like of the present invention not only improves the substrate specificity for the L-menthol ester, but can also exhibit an excellent L-menthol conversion rate for its lipase activity value. Therefore, even if the lipase activity value of the polypeptide or the like of the present invention used in the method for producing L-menthol is less than the lipase activity value of the wild-type lipase of SEQ ID NO: 1, the L-menthol is effectively high. Plays the conversion rate. From this point of view, the lipase activity value of the polypeptide or the like of the present invention is, for example, 0.1 to 0.
  • the lipase activity value is measured by the following procedure using Lipase Kit S (DS Pharma Biomedical Co., Ltd.). Prepare an activity measurement solution by mixing 1 mL of the color-developing solution attached to the kit, 20 ⁇ L of the esterase inhibitor attached to the kit, 1 mL of the buffer solution attached to the kit, 100 ⁇ L of the substrate solution attached to the kit, and 8 mL of water.
  • 20 mM potassium phosphate buffer (pH 7.0) is used instead of the enzyme solution.
  • the value obtained by multiplying the absorbance difference between the wild-type lipase or the polypeptide of the present invention and the blank by a coefficient of 1.3 and a dilution factor was calculated as the lipase activity value (U / mL), and the value obtained by the wild-type lipase was defined as 1.
  • the ratio of the values obtained by the modified lipase of the present invention is calculated.
  • polypeptide or the like of the present invention for example, 0.1 to 1000 mg, preferably 1 to 100 mg can be used with respect to 1 g of L-menthol ester. Further, the polypeptide of the present invention can be used so that the lipase activity is, for example, 500 to 50,000 U, preferably 1000 to 30,000 U, with respect to 1 g of L-menthol ester.
  • the solvent used in the mixture containing L-menthol ester and D-menthol ester contains at least water.
  • the solvent may be mixed with an organic solvent in addition to water, and examples of such an organic solvent include hydrocarbon solvents such as pentane, hexane, heptane, and octane; diethyl ether and methyl-t-butyl ether.
  • Dibutyl ether ether-based solvent such as tetrahydrofuran
  • aromatic solvent such as toluene, xylene, benzene
  • halogen-based solvent such as dichloromethane and chloroform
  • alcohol-based solvent such as methanol, ethanol, propanol and isopropanol
  • acetone methyl ethyl ketone, methyl
  • ketone solvents such as isobutyl ketone.
  • reaction temperature for example, 10 to 50 ° C., preferably 20 to 45 ° C., more preferably 30 to 40 ° C., still more preferably 33 to 38 ° C. can be mentioned.
  • L-menthol ester and D-menthol ester As a specific operation in the method for producing L-menthol of the present invention, as long as a hydrolysis system in which a mixture containing L-menthol ester and D-menthol ester together with water and the polypeptide of the present invention coexist can be constructed.
  • L-menthol ester and D-menthol ester L-menthol ester and D-menthol ester (DL-menthol ester (racemiform)
  • the polypeptide of the present invention or the like can be further mixed.
  • the L-menthol ester is specifically hydrolyzed.
  • the method for producing L-menthol of the present invention has a high optical purity even if the exchange rate for L-menthol is relatively high. -You can get menthol.
  • the obtained L-menthol can be purified by removing unreacted substances by fractional extraction, fractional distillation, column chromatography and the like.
  • Test Example 1 Substrate specificity for L-menthol ester in hydrolysis-1] [1-1. When acetic acid-D-mentyl and acetic acid-L-mentyl are used as substrates, respectively]
  • the mutants of Burkholderia sepacia-derived lipase were prepared as shown in Table 1. Specifically, an enzyme extract containing each mutant was prepared by the following method.
  • PCR amplification (PrimeSTAR GXL DNA Polymerase (TaKaRa)) using the fully synthesized structural gene (LipA; SEQ ID NO: 4) as a template, primer (forward primer: 5'-TTTTCCATGGCTCGTTCTATGCGTTCTCG-3': SEQ ID NO: 6, reverse primer: 5' -AAAAAAGCTTAAACACCCGCCAGTTTCAGACGG-3': SEQ ID NO: 7)) to add a linker sequence (Nco I, Hind III), then purify (NucleoSpin Gel and PCR Clean-up (MACHEREY-NAGEL)) and gene fragment (BCL-LipA). ) was acquired.
  • primer forward primer: 5'-TTTTCCATGGCTCGTTCTATGCGTTCTCG-3': SEQ ID NO: 6
  • reverse primer 5' -AAAAAAGCTTAAACACCCGCCAGTTTCAGACGG-3': SEQ ID NO: 7
  • linker sequence Nco I, Hind
  • the gene fragment (BCL-LipX) and pETBCL-LipA were treated with restriction enzymes (NdeI (TaKaRa), XhoI (TaKaRa)) and then ligated to E. coli.
  • restriction enzymes NdeI (TaKaRa), XhoI (TaKaRa)
  • E.I. We acquired colli BCL-LipAX.
  • E. coli expression plasmid (Construction of E. coli expression system) Acquired E.
  • the coli expression plasmid (pETBCL-LipAX) was prepared by E. coli. Transformed into colli BL21 (DE3) (Nippongene), E. coli coli-expressing strain: E.I. color BL21 (BCL-LipAX) was acquired.
  • -A120X primer (Forward primer: 5'-NNKGATTTCGTTCAGGGCGTTCTGGC-3': SEQ ID NO: 11, reverse primer: 5'-GAATTCAGAACCGCGATGCGGAGTG-3': SEQ ID NO: 12)
  • Mutation was introduced into the mutation point by PCR amplification (PrimeSTAR GXL DNA Polymerase (TaKaRa)) using Primer using a plasmid (pETBCL-LipAX) as a template. After PCR amplification, treatment of the template plasmid using Dpn I (TaKaRa) (37 ° C., 16h) and ligation reaction using T4 polymerase (Toyobo) and Ligation High (Toyobo) (16 ° C., o / n) were performed. Later, E. A random mutant strain (E. coli BL21 (BCL-A120X)) was obtained by transforming it into E. coli BL21 (DE3) and introducing a random mutation into the mutation point.
  • Mutant points In order to prepare a mutant strain library, the mutant strains selected above were inoculated into Terific Broth (invitrogen) (Amp: 100 ⁇ g / mL): 1 mL, and then shake-cultured in a shaking incubator (Taitec). (33 ° C., 48 hours). Induction of enzyme expression was carried out by adding IPTG to the culture broth so that the final concentration was 0.1 mM at the time of culturing: 24 hours.
  • the cells were collected by centrifugation (3,300 g ⁇ 15 min, 4 ° C.), lysed with B-PER (Thermo Fisher) (25 ° C., 1,000 rpm), and then centrifuged (3, 300 g ⁇ 15 min, 4 ° C.), and the supernatant was collected to obtain an enzyme extract containing a modified lipase.
  • B-PER Thermo Fisher
  • the obtained enzyme extract containing the modified lipase (used so that the lipase activity was in the range of 10 to 200 U.
  • the solvent was water, and the protein concentration was about 20 mg / mL) and the substrate.
  • 12 ⁇ L was placed in a reaction vessel (96-well plate), mixed, and hydrolyzed using a plate shaker at 35 ° C., 1,000 rpm, and 72 hours.
  • a protein concentration of about 20 mg / mL and a substrate of 12 ⁇ L were placed in a reaction vessel (96-well plate), mixed, and used at 35 ° C., 1,000 rpm, 72 using a plate shaker. Hydrolysis was carried out under the condition of time.
  • the lipase activity value was measured by the following procedure using Lipase Kit S (DS Pharma Biomedical Co., Ltd.). An activity measurement solution was prepared by mixing 1 mL of the color-developing solution attached to the kit, 20 ⁇ L of the esterase inhibitor solution attached to the kit, 1 mL of the buffer solution attached to the kit, 100 ⁇ L of the substrate solution attached to the kit, and 8 mL of water.
  • the value obtained by multiplying the absorbance difference between the wild-type lipase or the polypeptide of the present invention and the blank by a coefficient of 1.3 and a dilution factor was calculated as the lipase activity value (U / mL), and the value obtained by the wild-type lipase was defined as 1.
  • the ratio of the values obtained by the modified lipase of the present invention was calculated.
  • the reaction mixture was transferred to a 1.5 mL Eppen tube, 12 ⁇ L of a 6 M hydrochloric acid solution and 200 ⁇ L of heptane were added, mixed by vortex, and then centrifuged (15,000 rpm, 10 min, 25 ° C.) to form a heptane layer (upper layer).
  • the reaction product was extracted by collecting 150 ⁇ L in a vial for instrumental analysis.
  • An analytical sample of 300 ⁇ L was prepared by further adding 150 ⁇ L of heptane to the obtained heptane layer and diluting it.
  • Test Example 2 Substrate specificity for L-menthol in transesterification reaction
  • DL-menthol purity 98% or more, manufactured by Tokyo Kasei Kogyo Co., Ltd., racemate, solid state
  • PS lipase birkholderia sepacia-derived lipase
  • the modified lipase obtained by converting A at position 120 of Berkholderia sepacia-derived lipase (PS lipase) into G was immobilized on a carrier (silica particles) according to a conventional method to obtain an immobilized enzyme (Example 2). rice field.
  • the wild-type lipase was also immobilized in the same manner to obtain an immobilized enzyme (Comparative Example 20). Wild-type lipase or modified lipase accounts for about 0.2 to 2% by weight of the obtained immobilized enzyme.
  • the ratio of transesterification activity values of the same mass of wild-type lipase-immobilized enzyme (Comparative Example 20) and modified lipase-immobilized enzyme (Example 2) was measured by the following method. The results are shown in Table 4. (Measuring method of transesterification activity value ratio) Using phenylethyl alcohol (20 parts by weight) and vinyl acetate (80 parts by weight) as substrates, each immobilized enzyme was allowed to act at 30 ° C. for 20 minutes to carry out a transesterification reaction. The obtained phenylethyl alcohol acetyl ester was quantified by HPLC analysis.
  • the amount of phenylethyl alcohol acetyl ester obtained by the modified lipase of the present invention when the amount of phenylethyl alcohol acetyl ester obtained by wild lipase was 1 (the present invention).
  • the ester activity value of the modified lipase) was taken as the ratio of the transesterification activity value.
  • the reaction product was analyzed by subjecting the analytical sample to gas chromatography under the following conditions.
  • Gas chromatography analysis conditions Column: CP-Chiral-DEX CB (0.25 mm ID x 25 m, J & W) Injection volume: 1 ⁇ L Injection temperature: 25 ° C Injection method: Split 1: 100 Carrier gas: Flow rate: 1.3 mL / min Oven: 110 ° C, 25 minutes Detector: FID, 300 ° C
  • Test Example 3 Substrate specificity for L-menthol ester in hydrolysis-2
  • the same procedure as in Test Example 1 was carried out except that the polypeptides shown in Table 6 were prepared using appropriately designed primers.
  • the substrate specificity for L-menthol ester in hydrolysis was investigated. The results are shown in Table 6.
  • SEQ ID NO: 3 is the DNA encoding the A120G mutant of Burkholderia sepacia-derived lipase.
  • SEQ ID NO: 6 is a forward primer for LipA.
  • SEQ ID NO: 7 is a reverse primer for LipA.
  • SEQ ID NO: 9 is a forward primer for LipX.
  • SEQ ID NO: 10 is a reverse primer for LipX.
  • SEQ ID NO: 11 is a forward primer for A120X.
  • SEQ ID NO: 12 is a reverse primer for A120X.
  • SEQ ID NO: 13 is the DNA encoding the Q88A mutant of Burkholderia sepacia-derived lipase.
  • SEQ ID NO: 14 is the DNA encoding the Q88G mutant of Burkholderia sepacia-derived lipase.
  • SEQ ID NO: 15 is the DNA encoding the Q88D mutant of Burkholderia sepacia-derived lipase.
  • SEQ ID NO: 16 is the DNA encoding the Q88M mutant of Burkholderia sepacia-derived lipase.
  • SEQ ID NO: 17 is the DNA encoding the Q88L mutant of Burkholderia sepacia-derived lipase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

L-メントール及び/又はそのエステルの製造において、L-体に対する基質特異性をさらに向上できる技術を提供する。配列番号1に示すアミノ酸配列からなるポリペプチドのA120G、Q88A、Q88G、Q88D、Q88M、Q88L変異体、及び、当該変異体において、前記置換が導入されたアミノ酸残基以外の任意相違部位を有し、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチドは、L-メントール及び/又はそのエステルの製造において、製造物の光学純度をさらに向上できる。

Description

L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有するポリペプチド
 本発明は、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有するポリペプチドに関する。より具体的には、本発明は、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、L-メントール及び/又はL-メントールエステルに対する基質特異性が向上したポリペプチド、そのポリペプチドをコードするDNA、組換えベクター、形質転換体、酵素組成物、酵素剤、そのポリペプチドの製造方法、並びに、そのポリペプチドを用いたL-メントールエステルの製造方法及びL-メントールの製造方法に関する。
 L-メントールは、清涼な風味及び爽快な皮膚感覚等を奏する特性から、香料分野、食品分野、医薬分野等で汎用されている重要な物質である。また、メントールのエステルは、L-メントールの原料になる他、L-メントールのエステルは、それ自体、香料分野、食品分野、医薬分野等で用いられている。
 これらの成分は、工業的には人工的に合成することで製造されている。一方で、合成で得られるL-メントール及びそのエステルには、その光学異性体であるD-体が混入する。L-メントール及びそのエステルは、いずれも、D-体の混入によってそれらの品質に大きな影響を受ける。このため、L-メントール及びそのエステルを光学純度高く得ることが求められている。
 L-メントール及びそのエステルを光学選択的に得る方法としては、化学的手法及び酵素学的手法が挙げられる。化学的手法としては、DL-メントールに、光学的に活性な酸又は塩基を反応させることでL-体を選択的に結晶化する方法等が挙げられる。また、酵素学的手法としては、DL-メントールエステルに水性溶媒中でリパーゼを作用させることで特異的にL-体を加水分解する方法、DL-メントールに有機溶媒中でリパーゼを作用させることで特異的にL-体をエステル化する方法等が挙げられる。
 中でも酵素学的手法は、酵素が持つ特異性の高さから種々研究されている。例えば、非特許文献1には、Candida rugosa由来のリパーゼによって、ラセミ型ラウリン酸メンチルが水性媒体中で加水分解を受けてL-メントールが優先的(ee:70%)に得られることが記載されている。このようなエナンチオ選択性は、ラセミ型メントールをラウリン酸でエステル化する時にも認められる。例えば、Candida rugosa由来のリパ-ゼによって、ラセミ型メントールが非水性媒体中でラウリン酸によるエステル化をエナンチオ選択的に受けて、L-ラウリン酸メンチルが優先的(ee:95%)に生じる。
 また、非特許文献2には、Candida rugosa由来のリパーゼによって、ラセミ型メントールが無水酢酸、無水プロピオン酸及び無水酪酸によるエステル化を特定のエナンチオ選択で受け、特に、n-ヘキサン中での無水酪酸によるエステル化により、L-酪酸メンチルを優先的(ee:86%)に生じたことが記載されている。
 さらに、非特許文献3には、Candida rugosa由来のリパーゼによって、
ラセミ型メント-ルが無水プロピオン酸によるエステル化により、非常に高い光学純度(ee:95%)のL-プロピオン酸メンチルを生じたことが記載されている。
Tetrahedron Letters, Vo1.27, No-l, pp 29-32, 1986 Enzyme and Microbial Technology Volume 18, Issue 7, 1996, pp536-539 Applied Microbiology and Biotechnology. 1995, Volume 43, Issue 4, pp 639-643
 しかしながら、L-メントール及び/又はそのエステルの製造で得られるエナンチオ選択性には、未だ改善の余地がある。
 そこで本発明の目的は、L-メントール及び/又はそのエステルの製造において、L-体に対する基質特異性をさらに向上できる技術を提供することにある。
 本発明者は、鋭意検討の結果、バークホルデリア・セパシア(Burkholderia cepacia)由来のリパーゼによるエナンチオ選択性の高さに着眼するとともに、更に、当該リパーゼの様々な部位に変異を導入した840種類以上のリパーゼ変異体についてL-メントール及び/又はそのエステルの製造におけるL-体に対する基質特異性を網羅的に検証したところ、当該リパーゼの第120位のアミノ酸残基がグリシン残基に置換されたアミノ酸配列からなるポリペプチドと、第88位のアミノ酸残基が、アラニン残基、グリシン残基、アスパラギン酸残基、メチオニン残基、又はロイシン残基に置換されたアミノ酸配列からなるポリペプチドとが、L-体に対する基質特異性を向上できることを見出した。本発明は、この知見に基づいて完成されたものである。即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 以下の(1)から(3)のいずれかに示すポリペプチド:
(1)配列番号1に示すアミノ酸配列において、第120位のアミノ酸残基がグリシン残基に置換されているアミノ酸配列からなるポリペプチド、
(2)配列番号1に示すアミノ酸配列における第120位のアミノ酸残基がグリシン残基に置換されているアミノ酸配列において、前記置換が導入されたアミノ酸残基以外の1個又は数個のアミノ酸残基が置換、付加、挿入又は欠失されてなり、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド、
(3)配列番号1に示すアミノ酸配列における第120位のアミノ酸残基がグリシン残基に置換されているアミノ酸配列において、配列番号1に示すアミノ酸配列に対する前記置換が導入されたアミノ酸残基を除いた配列同一性が80%以上であり、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド。
項2. 以下の(4)から(6)のいずれかに示すポリペプチド:
(4)配列番号1に示すアミノ酸配列において、第88位のアミノ酸残基が、アラニン残基、グリシン残基、アスパラギン酸残基、メチオニン残基、又はロイシン残基に置換されているアミノ酸配列からなるポリペプチド、
(5)配列番号1に示すアミノ酸配列における第88位のアミノ酸残基が、アラニン残基、グリシン残基、アスパラギン酸残基、メチオニン残基、又はロイシン残基に置換されているアミノ酸配列において、前記置換が導入されたアミノ酸残基以外の1個又は数個のアミノ酸残基が置換、付加、挿入又は欠失されてなり、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド、
(6)配列番号1に示すアミノ酸配列における第88位のアミノ酸残基が、アラニン残基、グリシン残基、アスパラギン酸残基、メチオニン残基、又はロイシン残基に置換されているアミノ酸配列において、配列番号1に示すアミノ酸配列に対する前記置換が導入されたアミノ酸残基を除いた配列同一性が80%以上であり、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド。
項3. 項1又は2に記載のポリペプチドをコードしているDNA。
項4. 項3に記載のDNAを含む組換えベクター。
項5. 項4に記載の組換えベクターにより宿主を形質転換して得られる形質転換体。
項6. 項5に記載の形質転換体を培養する工程を含む、請求項1又は2に記載のポリペプチドの製造方法。
項7. 項1又は2に記載のポリペプチドを含む酵素組成物。
項8. 項1又は2に記載のポリペプチド、又は項7に記載の酵素組成物を含む酵素剤。
項9. 項1又は2に記載のポリペプチド、項7に記載の酵素組成物、又は項8に記載の酵素剤を、L-メントール及びD-メントールを含む混合物に作用させてL-メントールをエステル
化する工程を含む、L-メントールエステルの製造方法。
項10. 項1又は2に記載のポリペプチド、項7に記載の酵素組成物、又は項8に記載の酵素剤を、L-メントールエステル及びD-メントールエステルを含む混合物に作用させてL-メントールエステルを加水分解する工程を含む、L-メントールの製造方法。
 本発明によれば、L-メントール及び/又はそのエステルの製造において、L-体に対する基質特異性をさらに向上できる技術が提供される。
 以下、本発明を詳細に説明する。なお、配列表以外では、アミノ酸配列における20種類のアミノ酸残基は、一文字略記で表現することがある。即ち、グリシン(Gly)はG、アラニン(Ala)はA、バリン(Val)はV、ロイシン(Leu)はL、イソロイシン(Ile)はI、フェニルアラニン(Phe)はF、チロシン(Tyr)はY、トリプトファン(Trp)はW、セリン(Ser)はS、スレオニン(Thr)はT、システイン(Cys)はC、メチオニン(Met)はM、アスパラギン酸(Asp)はD、グルタミン酸(Glu)はE、アスパラギン(Asn)はN、グルタミン(Gln)はQ、リジン(Lys)はK、アルギニン(Arg)はR、ヒスチジン(His)はH、プロリン(Pro)はPである。
 本明細書において、表示するアミノ酸配列は、左端がN末端、右端がC末端である。
 本明細書における「A120G」等の表現は、アミノ酸置換の表記法である。例えば、「A120G」とは、特定のアミノ酸配列におけるN末端側から120番目のアミノ酸Aが、アミノ酸Gに置換されていることを意味する。
 本明細書において、「非極性アミノ酸」には、アラニン、バリン、ロイシン、イソロイシン、プロリン、メチオニン、フェニルアラニン、及びトリプトファンが含まれる。「非電荷アミノ酸」には、グリシン、セリン、スレオニン、システイン、チロシン、アスパラギン、及びグルタミンが含まれる。「酸性アミノ酸」には、アスパラギン酸及びグルタミン酸が含まれる。「塩基性アミノ酸」には、リジン、アルギニン、及びヒスチジンが含まれる。
 本明細書において、「置換」とは、人為的にアミノ酸残基の置換を導入した場合のみならず、自然にアミノ酸残基の置換が導入された場合、すなわち、もともとアミノ酸残基が相違していた場合も含まれる。本明細書においては、アミノ酸残基の置換は、人為的な置換であってもよく、自然な置換であってもよいが、人為的な置換が好ましい。
1.ポリペプチド
 本発明のポリペプチドは、下記(1)から(3)のいずれかに示すポリペプチド、又は、下記(4)から(6)のいずれかに示すポリペプチドである。
(1)配列番号1に示すアミノ酸配列において、第120位のアミノ酸残基(アラニン残基)がグリシン残基に置換されているアミノ酸配列からなるポリペプチド、
(2)配列番号1に示すアミノ酸配列における第120位のアミノ酸残基がグリシン残基に置換されているアミノ酸配列において、前記置換が導入されたアミノ酸残基以外の1個又は数個のアミノ酸残基が置換、付加、挿入又は欠失されてなり、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド、
(3)配列番号1に示すアミノ酸配列における第120位のアミノ酸残基がグリシン残基に置換されているアミノ酸配列において、配列番号1に示すアミノ酸配列に対する前記置換が導入されたアミノ酸残基を除いた配列同一性が80%以上であり、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド。
(4)配列番号1に示すアミノ酸配列において、第88位のアミノ酸残基(グルタミン残基)が、アラニン残基、グリシン残基、アスパラギン酸残基、メチオニン残基、又はロイシン残基に置換されているアミノ酸配列からなるポリペプチド、
(5)配列番号1に示すアミノ酸配列における第88位のアミノ酸残基が、アラニン残基、グリシン残基、アスパラギン酸残基、メチオニン残基、又はロイシン残基に置換されているアミノ酸配列において、前記置換が導入されたアミノ酸残基以外の1個又は数個のアミノ酸残基が置換、付加、挿入又は欠失されてなり、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド、
(6)配列番号1に示すアミノ酸配列における第88位のアミノ酸残基が、アラニン残基、グリシン残基、アスパラギン酸残基、メチオニン残基、又はロイシン残基に置換されているアミノ酸配列において、配列番号1に示すアミノ酸配列に対する前記置換が導入されたアミノ酸残基を除いた配列同一性が80%以上であり、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド。
 前記(1)~(6)に示すポリペプチドは、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、L-メントール及び/又はL-メントールエステルに対する向上した基質特異性を有する。好ましくは、前記(1)~(6)に示すポリペプチドは、L-メントール及びL-メントールエステルに対する向上した基質特異性を有する。
 配列番号1のポリペプチドは、バークホルデリア・セパシア(Burkholderia cepacia)由来の野生型リパーゼ(成熟体)である。
 前記(1)~(6)のポリペプチドには、人為的に置換して得られるポリペプチドのみならず、そのようなアミノ酸配列を元々有するポリペプチドも含まれる。
 前記(1)のポリペプチド及び前記(4)のポリペプチドには、第120位の置換と第88位の置換との両方を含むポリペプチドも含まれる。
 以下、前記(2)及び(3)のポリペプチド、並びに前記(5)及び(6)において、配列番号1の第120位のアミノ酸残基又は第88位のアミノ酸残基以外を「任意相違部位」と表記することもある。本明細書において、用語「任意相違部位」とは、ポリペプチドの特性に大きく影響しない限り、相違が許容される部位である。また、本明細書において、前記(1)又は(4)のポリペプチドと比較して、任意相違部位においてアミノ酸配列に相違がみられるものの、前記(1)又は(4)のポリペプチドと同程度又はそれ以上のL-メントール及び/又はL-メントールエステルに対する基質特異性を有しているものを、前記(1)又は(4)のポリペプチドの相違体という。また、前記ポリペプチドの相違体は、前記(1)又は(4)のポリペプチドと比較して、任意相違部位においてアミノ酸配列に相違がみられるものの、当該ポリペプチドの特性が実質的に同一であることが好ましい。なお、「実質的に同一」とは、L-メントール及び/又はL-メントールエステルに対する基質特異性を有しているものをいう。前記(2)及び(3)のポリペプチドは、前記(1)のポリペプチドの相違体であり、前記(5)及び(6)のポリペプチドは、前記(4)のポリペプチドの相違体である。
 前記(2)及び(5)のポリペプチドにおけるアミノ酸の相違は、置換、付加、挿入、及び欠失の中から1種類の相違(例えば置換)のみを含むものであってもよく、2種以上の相違(例えば、置換と挿入)を含んでいてもよい。前記(2)及び(5)のポリペプチドにおいて、任意相違部位におけるアミノ酸の相違の数は、1個又は数個であればよく、例えば1~50個、好ましくは1~20個、1~10個、1~8個、1~7個、1~6個、1~5個、又は1~4個、更に好ましくは1~3個、特に好ましくは1又は2個或いは1個が挙げられる。
 また、前記(2)及び(5)のポリペプチドにおいて、配列番号1に示す各アミノ酸配列に対する前記アミノ酸置換がされた部位を除いた配列同一性は、80%以上であればよいが、好ましくは85%以上又は90%以上、更に好ましくは95%以上、96%以上、97%以上、又は98%以上、特に好ましくは99%以上が挙げられる。
 ここで、前記(3)及び(6)のポリペプチドにおいて、配列番号1に示す各アミノ酸配列に対する前記アミノ酸置換がされた部位を除いた配列同一性とは、配列番号1に示す各アミノ酸配列から前記任意相違部位のみを抜き出して、当該任意相違部位のみを比較して算出される配列同一性である。また、「配列同一性」とは、BLASTPACKAGE[sgi32 bit edition,Version 2.0.12;available from National Center for Biotechnology Information(NCBI)]のbl2seq program(Tatiana A.Tatsusova,Thomas L.Madden,FEMS Microbiol.Lett.,Vol.174,p247-250,1999)により得られるアミノ酸配列の同一性の値を示す。パラメーターは、Gap insertion Cost value:11、Gap extension Cost value:1に設定すればよい。
 前記(2)及び(3)並びに前記(5)及び(6)のポリペプチドにおいて、配列番号1に示すアミノ酸配列における第87位(セリン)、第264位(アスパラギン酸)、第286位(ヒスチジン)のアミノ酸は、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性に寄与していると考えられることから、これらの部位には置換又は欠失を導入しないことが望ましい。
 前記(2)及び(3)並びに前記(5)及び(6)のポリペプチドにアミノ酸置換が導入される場合、アミノ酸置換の態様として、保存的置換が挙げられる。即ち、(2)及び(3)並びに前記(5)及び(6)のポリペプチドにおいて、配列番号1に示すアミノ酸配列に対して導入されるアミノ酸置換としては、例えば、置換前のアミノ酸が非極性アミノ酸であれば他の非極性アミノ酸への置換、置換前のアミノ酸が非荷電性アミノ酸であれば他の非荷電性アミノ酸への置換、置換前のアミノ酸が酸性アミノ酸であれば他の酸性アミノ酸への置換、及び置換前のアミノ酸が塩基性アミノ酸であれば他の塩基性アミノ酸への置換が挙げられる。
 前記(2)及び(3)並びに前記(5)及び(6)のポリペプチドにおいて、「L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド」とは、(i)L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有するとともに、(ii-a)L-メントールに対する基質特異性については、下記試験例2の条件で測定される、L-メントールアセチルエステルの光学純度が、配列番号1に示すアミノ酸配列からなるポリペプチドによる光学純度の1.007倍以上、好ましくは1.009倍以上、より好ましくは1.010倍以上、さらに好ましくは1.012倍以上であること(但し、L-メントールエステル変換率を、本発明のポリペプチドと配列番号1に示すアミノ酸配列からなるポリペプチドとで、同等、具体的には99~101%に揃えた場合)を意味し、(ii-b)L-メントールエステルに対する基質特異性については、下記試験例1の条件で測定される、D-メントールへの変換率に対するL-メントールへの変換率の比率(L/D変換率)が、配列番号1に示すアミノ酸配列からなるポリペプチドによるL/D変換率の1.05倍以上、好ましくは1.12倍以上、より好ましくは1.19倍以上、さらに好ましくは1.26倍以上、一層好ましくは1.32倍以上であることを意味する。
2.DNA
 本発明のポリペプチドをコードしているDNA(以下、「本発明のDNA」と表記することもある)は、例えば、野生型リパーゼのアミノ酸配列(配列番号1)をコードしているDNAに前記アミノ酸変異を導入することにより得ることができる。また、本発明のDNAは、遺伝子の全合成法によって人工合成することもできる。
 配列番号1に示すアミノ酸配列からなるポリペプチドをコードしているDNAは、例えば、配列番号2に示される塩基配列として知られており、バークホルデリア・セパシア(Burkholderia cepacia)のM-12-33株のゲノムDNAからPCRを用いた定法により単離することができる。
 塩基配列の特定の部位に特定の変異を導入する方法は公知であり、例えばDNAの部位特異的変異導入法等が利用できる。DNA中の塩基を変換する具体的な方法としては、例えば、市販のキット(QuickChange Lightning Site-Directed Mutagenesis kit:Stratagene製、KOD-Plus-Mutagenesis kit:東洋紡製など)の利用等が挙げられる。
 塩基配列に変異を導入したDNAは、DNAシーケンサーを用いて塩基配列を確認することができる。一旦、塩基配列が確定されると、その後は化学合成、クローニングされたプローブを鋳型としたPCR、又は当該塩基配列を有するDNA断片をプローブとするハイブリダイゼーションによって、前記ポリペプチドをコードするDNAを得ることができる。
 また、部位特異的突然変異誘発法等によって前記ペプチドをコードするDNAの変異型であって変異前と同等の機能を有するものを合成することができる。なお、前記ペプチドをコードするDNAに変異を導入するには、Kunkel法、Gapped duplex法、メガプライマーPCR法等の公知の手法によって行うことができる。
 本発明のDNAは、コドン利用頻度を宿主に最適化したものが好ましく、コドン利用頻度を大腸菌に最適化させたDNAがより好ましい。
 コドン利用頻度を表す指標として、各コドンの宿主最適コドン利用頻度の総計を採択すればよい。最適コドンとは、同じアミノ酸に対応するコドンのうち利用頻度が最も高いコドンと定義される。コドン利用頻度は、宿主に最適化したものであれば特に限定されないが、例えば、大腸菌の最適コドンの一例として以下のものが挙げられる。F:フェニルアラニン(ttt)、L:ロイシン(ctg)、I:イソロイシン(att)、M:メチオニン(atg)、V:バリン(gtg)、Y:チロシン(tat)、終止コドン(taa)、H:ヒスチジン(cat)、Q:グルタミン(cag)、N:アスパラギン(aat)、K:リジン(aaa)、D:アスパラギン酸(gat)、E:グルタミン酸(gaa)、S:セリン(agc)、P:プロリン(ccg)、T:スレオニン(acc)、A:アラニン(gcg)、C:システイン(tgc)、W:トリプトファン(tgg)、R:アルギニン(cgc)、G:グリシン(ggc)。
 本発明のDNAの例として、配列番号3、13~17に示す塩基配列を含むDNAが挙げられる。配列番号3に示される塩基配列からなるDNAは、前記(1)で述べた配列番号1に示すポリペプチドのアミノ酸配列の第120位がグリシン残基に置換されたポリペプチドをコードしている。配列番号13、14、15、16、及び17に示される塩基配列からなるDNAは、それぞれ、前記(4)で述べた配列番号1に示すポリペプチドのアミノ酸配列の第88位のアミノ酸残基が、アラニン残基、グリシン残基、アスパラギン酸残基、メチオニン残基、及びロイシン残基に置換されたポリペプチドをコードしている。
 本発明のDNAの他の例として、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチドをコードし、配列番号3、13~17それぞれに示す塩基配列からなるDNAと相補的な塩基配列を含むDNAと、ストリンジェントな条件下でハイブリダイズするDNAが挙げられる。
 ここで、「ストリンジェントな条件下」とは、0.5%SDS、5×デンハルツ〔Denhartz’s、0.1%ウシ血清アルブミン(BSA)、0.1%ポリビニルピロリドン、0.1%フィコール400〕および100μg/mlサケ精子DNAを含む6×SSC(1×SSCは、0.15M NaCl、0.015Mクエン酸ナトリウム、pH7.0)中で、50℃~65℃で4時間~一晩保温する条件をいう。
 ストリンジェントな条件下でのハイブリダイゼーションは、具体的には、以下の手法によって行われる。即ち、DNAライブラリー又はcDNAライブラリーを固定化したナイロン膜を作成し、6×SSC、0.5% SDS、5×デンハルツ、100μg/mlサケ精子DNAを含むプレハイブリダイゼーション溶液中、65℃でナイロン膜をブロッキングする。その後、32Pでラベルした各プローブを加えて、65℃で一晩保温する。このナイロン膜を6×SSC中、室温で10分間、0.1%SDSを含む2×SSC中、室温で10分間、0.1%SDSを含む0.2×SSC中、45℃で30分間洗浄した後、オートラジオグラフィーをとり、プローブと特異的にハイブリダイズしているDNAを検出することができる。
 本発明のDNAの更なる例として、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチドをコードし、且つ配列番号3、13~17それぞれに示す塩基配列からなるDNAに80%以上の相同性を有するDNAが挙げられる。当該相同性としては、好ましくは85%以上又は90%以上、更に好ましくは95%以上、96%以上、又は97%以上、特に好ましくは98%以上又は99%以上が挙げられる。
 ここで、DNAの「相同性」は、基準配列を照会配列として比較するアルゴリズムをもった公開又は市販されているソフトウェアを用いて計算される。具体的には、BLAST、FASTA、又はGENETYX(ソフトウエア開発株式会社製)等を用いることができ、これらはデフォルトパラメーターに設定して使用すればよい。
3.組換えベクター
 本発明のペプチドをコードするDNAを含む組換えベクター(以下、「本発明の組換えベクター」と表記することもある)は、発現ベクターに本発明のDNAを挿入することにより得ることができる。
 本発明の組換えベクターには、本発明のDNAに作動可能に連結されたプロモーター等の制御因子が含まれる。制御因子としては、代表的にはプロモーターが挙げられるが、更に必要に応じてエンハンサー、CCAATボックス、TATAボックス、SPI部位等の転写要素が含まれていてもよい。また、作動可能に連結とは、本発明のDNAを調節するプロモーター、エンハンサー等の種々の制御因子と本発明のDNAが、宿主細胞中で作動し得る状態で連結されることをいう。
 発現ベクターとしては、宿主内で自律的に増殖し得るファージ、プラスミド、又はウイルスから遺伝子組換え用として構築されたものが好適である。このような発現ベクターは公知であり、例えば、商業的に入手可能な発現ベクターとしては、pQE系ベクター(株式会社キアゲン)、pDR540、pRIT2T(GEヘルスケアバイオサイエンス株式会社)、pET系ベクター(メルク株式会社)等が挙げられる。発現ベクターは、宿主細胞との適切な組み合わせを選んで使用すればよく、例えば、大腸菌を宿主細胞とする場合には、pET系ベクターとDH5α大腸菌株の組み合わせ、pET系ベクターとBL21(DE3)大腸菌株の組み合わせ、又はpDR540ベクターとJM109大腸菌株の組み合わせ等が好ましく挙げられる。
4.形質転換体
 本発明の組換えベクターを用いて宿主を形質転換することによって形質転換体(以下、「本発明の形質転換体」と表記することもある)が得られる。
 形質転換体の製造に使用される宿主としては、組換えベクターが安定であり、且つ自律増殖可能で外来性遺伝子の形質を発現できるのであれば特に制限されないが、例えば、大腸菌(Escherichia coli)等のエッシェリヒア属、バチルス・ズブチリス(Bacillus subtilis)等のバチルス属、シュードモナス・プチダ(Pseudomonas putida)等のシュードモナス属等に属する細菌;酵母等が好適な例として挙げられるが、その他、動物細胞、昆虫細胞、植物等であってもよい。これらの中でも大腸菌が特に好ましい。
 本発明の形質転換体は、宿主に本発明の組換えベクターを導入することによって得ることができ、宿主に組換えベクターを導入する条件は、宿主の種類等に応じて適宜設定すればよい。宿主が細菌の場合であれば、例えば、カルシウムイオン処理によるコンピテントセルを用いる方法及びエレクトロポレーション法等が挙げられる。宿主が酵母の場合であれば、例えば、電気穿孔法(エレクトロポレーション法)、スフェロプラスト法及び酢酸リチウム法等が挙げられる。宿主が動物細胞の場合であれば、例えば、エレクトロポレーション法、リン酸カルシウム法及びリポフェクション法等が挙げられる。宿主が昆虫細胞の場合であれば、例えば、リン酸カルシウム法、リポフェクション法及びエレクトロポレーション法等が挙げられる。宿主が植物胞の場合であれば、例えば、エレクトロポレーション法、アグロバクテリウム法、パーティクルガン法、及びPEG法等が挙げられる。
 本発明の組換えベクターが宿主に組み込まれたか否かの確認は、PCR法、サザンハイブリダイゼーション法、及びノーザンハイブリダイゼーション法等により行うことができる。
 PCR法によって本発明の組換えベクターが宿主に組み込まれたか否かを確認する場合、例えば、形質転換体から組換えベクターを分離・精製すればよい。
 組換えベクターの分離・精製は、例えば、宿主が細菌の場合、細菌を溶菌して得られる溶菌物に基づいて行われる。溶菌の方法としては、例えばリゾチームなどの溶菌酵素により処理が施され、必要に応じてプロテアーゼ、及び他の酵素並びにラウリル硫酸ナトリウム(SDS)等の界面活性剤が併用される。
 更に、凍結融解およびフレンチプレス処理のような物理的破砕方法を組み合わせてもよい。溶菌物からのDNAの分離・精製は、例えば、フェノール処理およびプロテアーゼ処理による除蛋白処理、リボヌクレアーゼ処理、アルコール沈殿処理並びに市販のキットを適宜組み合わせることにより行うことができる。
 DNAの切断は、常法に従い、例えば制限酵素処理を用いて行うことができる。制限酵素としては、例えば特定のヌクレオチド配列に作用するII型制限酵素を用いる。DNAと発現ベクターとの結合は、例えばDNAリガーゼを用いて行う。
 その後、分離・精製したDNAを鋳型として、本発明のDNAに特異的なプライマーを設計してPCRを行う。PCRにより得られた増幅産物についてアガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動、キャピラリー電気泳動等を行い、臭化エチジウムおよびSYBR Green液等により染色し、そして増幅産物をバンドとして検出することにより、形質転換されたことを確認することができる。
 また、予め蛍光色素等により標識したプライマーを用いてPCRを行い、増幅産物を検出することもできる。さらに、マイクロプレート等の固相に増幅産物を結合させ、蛍光および酵素反応等により増幅産物を確認する方法も採用してもよい。
5.ポリペプチドの製造方法
 本発明のポリペプチドは、本発明の形質転換体を培養する工程を含む製造方法によって得ることができる。
 形質転換体の培養条件は、宿主の栄養生理的性質を考慮して適宜設定すればよいが、好ましくは液体培養が挙げられる。また、工業的製造を行う場合であれば、通気攪拌培養が好ましい。
 培地の栄養源としては、形質転換体の生育に必要とされるものが使用され得る。炭素源としては、資化可能な炭素化合物であればよく、例えば、グルコース、スクロース、ラクトース、マルトース、糖蜜、ピルビン酸等が挙げられる。
 窒素源としては、資化可能な窒素化合物であればよく、例えば、ペプトン、肉エキス、酵母エキス、カゼイン加水分解物、大豆粕アルカリ抽出物が挙げられる。
 炭素源及び窒素源の他に、例えば、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガンおよび亜鉛などの塩類、特定のアミノ酸並びに特定のビタミンなどを必要に応じて使用してもよい。
 培養温度は、本発明の形質転換体が生育可能であり、且つ本発明の形質転換体が本発明のポリペプチドを産生する範囲で適宜設定し得るが、好ましくは15~37℃程度である。培養は、本発明のポリペプチドが最高収量に達する時期を見計らって適当時期に完了すればよく、通常は培養時間が12~48時間程度である。
 本発明の形質転換体を培養し、培養液を遠心分離などの方法により培養上清または菌体を回収し、菌体は超音波およびフレンチプレスといった機械的方法又はリゾチーム等の溶菌酵素により処理を施し、必要に応じてプロテアーゼ等の酵素やラウリル硫酸ナトリウム(SDS)等の界面活性剤を使用することにより可溶化し、本発明のポリペプチドを含む水溶性画分を得ることができる。
 また、適当な発現ベクターと宿主を選択することにより、発現した本発明のポリペプチドを培養液中に分泌させることもできる。
 上記のようにして得られた本発明のポリペプチドを含む水溶性画分は、そのまま精製処理に供してもよいが、該水溶性画分中の本発明のポリペプチドを濃縮した後に精製処理に供してもよい。
 濃縮は、例えば、減圧濃縮、膜濃縮、塩析処理、親水性有機溶媒(例えば、メタノール、エタノールおよびアセトン)による分別沈殿法等により行うことができる。
 本発明のポリペプチドの精製処理は、例えば、ゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー等の方法を適宜組み合わせることによって行うことができる。
 前記精製処理は既に公知であり、適当な文献、雑誌および教科書等を参照することで進めることができる。このようにして精製された本発明のポリペプチドは、必要に応じて、凍結乾燥、真空乾燥、スプレードライ等により粉末化して市場に流通させることができる。
6.酵素組成物
 本発明のポリペプチドは、例えば他の成分が共存する組成物の形態で提供されてもよい。酵素組成物の形態としては、本発明のポリペプチドの製造過程で得られる、当該ポリペプチドを含む培養液、当該培養液から取得した当該ポリペプチドを含む水溶性画分、又はその水溶性画分から当該ポリペプチドの精製度を任意のレベルまで高めた組成物;後述の「7.酵素剤」に示す酵素剤;本発明のポリペプチドをL-メントール及び/又はそのエステルの製造に用いて得られる、未反応の当該ポリペプチドを含む反応混合物等が挙げられる。
 酵素組成物に含まれる他の成分としては、酵素組成物の調製過程で添加、産生又は混入した任意の成分が挙げられ、例えば、本発明のポリペプチドの製造に用いた培地由来の、夾雑タンパク質成分及び/又はタンパク質以外の成分;後述の「7.酵素剤」に示す添加剤又は基剤;L-メントール及び/又はそのエステルの製造で得られる反応混合物に含まれる、未反応原料及び生成物等が挙げられる。
等が挙げられる。
 前記酵素組成物はまた、他の酵素を含んでいてもよい。他の酵素としては、例えば、アミラーゼ(α-アミラーゼ、β-アミラーゼ、グルコアミラーゼ)、グルコシダーゼ(α-グルコシダーゼ、β-グルコシダーゼ)、ガラクトシダーゼ(α-ガラクトシダーゼ、β-ガラクトシダーゼ)、プロテアーゼ(酸性プロテアーゼ、中性プロテアーゼ、アルカリプロテアーゼ)、ペプチダーゼ(ロイシンペプチダーゼ、アミノペプチダーゼ)、リパーゼ、エステラーゼ、セルラーゼ、ホスファターゼ(酸性ホスファターゼ、アルカリホスファターゼ)、ヌクレアーゼ、デアミナーゼ、オキシダーゼ、デヒドロゲナーゼ、グルタミナーゼ、ペクチナーゼ、カタラーゼ、デキストラナーゼ、トランスグルタミナーゼ、蛋白質脱アミド酵素、プルラナーゼ等が挙げられる。
 前記酵素組成物における本発明のポリペプチドの含有量としては、特に限定されないが、好ましくは前記酵素組成物の全タンパク質中10質量%以上、より好ましくは30質量%以上が挙げられる。前記酵素組成物の形態は、特に限定されないが、例えば、液体、粉末、顆粒等が挙げられる。前記酵素組成物は、一般的に公知の方法又は後述「8-3.L-メントールエステルの製造方法」に示す方法で調製することができる。
7.酵素剤
 本発明のポリペプチド、又は本発明のポリペプチドを含む酵素組成物は、例えば酵素剤の形態で提供されてもよい。酵素剤は、本発明のポリペプチドを後述の「8.用途」で用いることを目的として調製された酵素組成物であり、本発明のポリペプチドを有効成分として含む。酵素剤は、本発明のポリペプチドの他、賦形剤、緩衝剤、懸濁剤、安定剤、保存剤、防腐剤、生理食塩水、溶剤などの添加剤又は基剤を含有していてもよい。賦形剤としてはデンプン、デキストリン、マルトース、トレハロース、乳糖、D-グルコース、ソルビトール、D-マンニトール、白糖、グリセロール等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としてはエタノール、塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等を用いることができる。さらに、酵素剤には、本発明の効果に影響を与えない程度に、他の成分(例えば、有効成分であるポリペプチドの産生過程で添加、産生又は混入した任意の成分等)を含んでいてもよい。前記酵素剤における前記ポリペプチドの含有量としては、前記ポリペプチドの効果が発揮される範囲で適宜設定される。
8.用途
 本発明のポリペプチドは、L-メントールに対するエステル化処理、及びL-メントールエステルに対する加水分解処理が要求される用途に利用することができる。L-メントールに対するエステル化処理が要求される用途としては、L-メントールエステルの製造が挙げられ、L-メントールエステルに対する加水分解処理が要求される用途としては、L-メントールの製造が挙げられる。これらの用途のより具体的な例としては、香料化合物の製造;飲食品、化粧品、医薬品、又は医薬部外品の添加剤の製造;化粧品、医薬品、又は医薬部外品の有効成分の製造;化粧品、医薬品、又は医薬部外品の有効成分の中間体の製造等が挙げられる。
8-1.基質
 本発明のポリペプチドの基質となるL-メントール及び/又はL-メントールエステルは、香料化合物;飲食品、化粧品、医薬品、又は医薬部外品の添加剤;化粧品、医薬品、又は医薬部外品の有効成分;化粧品、医薬品、又は医薬部外品の有効成分の中間体等として公知である。
 L-メントールは、(1R,2S,5R)-5-メチルl-2-(1-エチルエチル)シクロヘキサノールである。L-メントールエステルは、L-メントールとカルボン酸とのエステルであれば特に限定されず、具体的には、下記式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R1は、直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~6のアルキル基、炭素数3~8のシクロアルキル基、炭素数6~14のアリール基、炭素数7~15のアラルキル基、炭素数1~20のアルコキシ基、又は炭素数1~20のアルキルアミノ基を表す。上記アルキル基、上記シクロアルキル基、上記アリール基、上記アラルキル基、上記アルコキシ基のアルキル基、上記アルキルアミノ基のアルキル基は、無置換であっても置換されていてもよく、置換されている場合の置換基としては、ヒドロキシル基、ホルミル基、炭素数1~6のアルコキシ基、カルボキシル基、メルカプト基、スルホ基、アミノ基、炭素数1~6のアルキルアミノ基、ニトロ基、ハロゲン基が挙げられる。
 L-メントールエステルの好ましい例としては、酢酸-L-メンチル、安息香酸-L-メンチル、イソ吉草酸-L-メンチル、乳酸-L-メンチル、コハク酸-L-メンチル、プロピオン酸-L-メンチル、酪酸-L-メンチル等が挙げられ、好ましくは酢酸-L-メンチルが挙げられる。
8-2.ポリペプチドの使用態様
 本発明のポリペプチドの使用形態としては特に限定されず、遊離ポリペプチドの形態、及び固定化ポリペプチドの形態が挙げられる。固定化ポリペプチドは、本発明のポリペプチドが、常法に従って担体(例えば、イオン交換樹脂、多孔性樹脂、セラミックス、炭酸カルシウム等)に固定化されたものであってよい。
 また、本発明のポリペプチドとしては、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
8-3.L-メントールエステルの製造方法
 本発明のL-メントールエステルの製造方法は、上記本発明のポリペプチド、上記本発明の酵素組成物、又は上記本発明の酵素剤(以下において、「本発明のポリペプチド等」と記載する。)を、L-メントール及びD-メントールを含む混合物に作用させてL-メントールをエステル化する工程を含む。
 本発明のL-メントールエステルの製造方法において、本発明のポリペプチド等は、好ましくはポリペプチドが担体に固定された固定化ポリペプチドの形態で用いられる。
 なお、本発明のポリペプチド等は、L-メントールに対する基質特異性を向上させるだけでなく、そのエステル交換活性値の割に、優れたL-メントールのエステル変換率を奏することができる。このため、L-メントールエステルの製造方法に用いられる本発明のポリペプチド等は、そのエステル交換活性値が、配列番号1の野生型リパーゼのエステル交換活値未満であっても、効果的に高いL-メントールのエステル変換率を奏する。このような観点から、本発明のポリペプチド等のエステル交換活性値は、同質量の配列番号1の野生型リパーゼのエステル交換活値に対する比率(エステル交換活性値の比率)として、例えば0.3~0.8倍、好ましくは0.45~0.7倍、より好ましくは0.55~0.6倍であってもよい。
(エステル交換活性値の比率の導出方法)
 フェニルエチルアルコール(20重量部)と酢酸ビニル(80重量部)とを基質とし、配列番号1の野生型リパーゼ又は本発明の改変型リパーゼを、30℃で20分間作用させて、エステル交換反応を行う。得られたフェニルエチルアルコールアセチルエステルをHPLC分析により定量する。野生型リパーゼによって得られたフェニルエチルアルコールアセチルエステルの量(野生型リパーゼのエステル交換活性値)を1とした場合の本発明の改変型リパーゼによって得られたフェニルエチルアルコールアセチルエステルの量(本発明の改変型リパーゼによるエステル活性値)を、エステル交換活性値の比率とする。
 本発明のポリペプチド等は、L-メントール1gに対して、例えば0.01~200mg、好ましくは0.03~20mg、より好ましくは0.05~1mgを用いることができる。
 アシル化剤としては、例えば、一般式R2COOHで表されるカルボン酸及びそのエステルが挙げられ、当該エステルとしては、一般式R2COOR3で表されるカルボン酸アルキルエステル、一般式R2COOCH=CH2で表わされるカルボン酸ビニルエステル等が挙げられる。
 上記一般式中、R2は、直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~6のアルキル基、炭素数3~8のシクロアルキル基、炭素数6~14のアリール基、炭素数7~15のアラルキル基、炭素数1~20のアルコキシ基、又は炭素数1~20のアルキルアミノ基を表し、R3は、直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~6のアルキル基を表す。上記アルキル基、上記シクロアルキル基、上記アリール基、上記アラルキル基、上記アルコキシ基のアルキル基、上記アルキルアミノ基のアルキル基は、無置換であっても置換されていてもよく、置換されている場合の置換基としては、ヒドロキシル基、ホルミル基、炭素数1~6のアルコキシ基、カルボキシル基、メルカプト基、スルホ基、アミノ基、炭素数1~6のアルキルアミノ基、ニトロ基、ハロゲン基が挙げられる。これらのアシル化剤は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 本発明のL-メントールエステルの製造方法においては、本発明のポリペプチド等を、アシル化剤と共に、L-メントール及びD-メントールを含む混合物に作用させることができる。アシル化剤の好ましい例としては、カルボン酸のエステルが挙げられ、より好ましくはカルボン酸ビニルエステルが挙げられ、さらに好ましくは、酢酸ビニル、プロピオン酸ビニル、ブタン酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、オクチル酸ビニル、安息香酸ビニル、イソ吉草酸ビニル、無水酢酸、酪酸ビニル、クロロ酢酸ビニル、プロピオン酸無水物等が挙げられ、一層好ましくは酢酸ビニルが挙げられる。
 アシル化剤は、L-メントール1モルに対して、例えば0.5~3モル、好ましくは0.8~2モル、より好ましくは1~1.5モル、さらに好ましくは1.1~1.3モルを用いることができる。
 本発明のL-メントールエステルの製造方法において、L-メントール及びD-メントールを含む混合物に用いられる溶媒は、非水溶媒である。非水溶媒は、水を実質的に含まない有機溶媒であり、このような有機溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン等の炭化水素系溶媒;ジエチルエーテル、メチル-t-ブチルエーテル、ジブチルエーテル、テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、ベンゼン等の
芳香族系溶媒;ジクロルメタン、クロロホルム等のハロゲン系溶媒が挙げられる。これらの有機溶媒の中でも、好ましくは炭化水素系溶媒が挙げられ、より好ましくはヘプタンが挙げられる。これらの有機溶媒は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。なお、水を実質的に含まないとは、水を全く含まない場合の他、エステル化反応に影響を与えない程度の微量の水を含む場合を許容する意味であり、微量の水の具体的な量としては、例えば溶媒の保存環境等の湿気により混入し得る程度の微量の水分の量、具体例として、1000ppm以下、好ましくは500ppm以下が挙げられる。
 これらの溶媒の使用量としては、L-メントール及びD-メントールを含む混合物を完全に溶解させる量であればよく、例えば、L-メントール及びD-メントールの総重量1g当たり、例えば0.3~3ml、好ましくは0.5~2ml、より好ましくは0.8~1.5mlが挙げられる。
 本発明のL-メントールエステルの製造方法における具体的な操作としては、L-メントール及びD-メントールを含む混合物とアシル化剤と本発明のポリペプチド等とが共存したエステル交換系を構築できる限りにおいて特に限定されないが、例えば、上記溶媒にL-メントール及びD-メントール(DL-メントール(ラセミ体))を溶解し、これにアシル化剤を加えて混合し、更に、本発明のポリペプチド等を混合することができる。エステル交換系では、L-メントール及びD-メントールのうち、L-メントールが特異的にエステル交換される。
 本発明のポリペプチドがL-メントールに対する基質特異性に優れているため、本発明のL-メントールエステルの製造方法では、L-メントールのエステル化交換率が比較的高くても(つまり、エステル交換系中にD-メントールが大量に存在していても)、光学純度の高いL-メントールエステルを得ることができる。この観点から、本発明のL-メントールエステルの製造方法においては、上記エステル交換系における反応を終了させるタイミングとして、L-メントールのエステル化交換率が80%以上、85%以上、90%以上、93%以上、又は95%以上となるタイミングとすることができる。また、L-メントールのエステル化交換率の範囲の上限としては特に限定されないが、高い光学純度を得る観点から、例えば99%以下、好ましくは97%以下、より好ましくは又は96%以下となるタイミングとすることができる。
 得られたL-メントールエステルは、分別抽出、分別蒸留、カラムクロマト等により精製することができる。
 このようにして得られたL-メントールエステルは、L-メントールエステルとして、香料化合物;飲食品、化粧品、医薬品、又は医薬部外品の添加剤;化粧品、医薬品、又は医薬部外品の有効成分;化粧品、医薬品、又は医薬部外品の有効成分の中間体等として用いられてもよいし、更に、L-メントールの原料として用いてもよい。本発明のL-メントールエステルで得られたL-メントールエステルをL-メントールの原料として用いる場合、L-メントールは、酸又はアルカリにより化学的に加水分解することによって製造することができる。
8-4.L-メントールの製造方法
 本発明のL-メントールの製造方法は、上記本発明のポリペプチド、上記本発明の酵素組成物、又は上記本発明の酵素剤(本発明のポリペプチド等)を、L-メントールエステル及びD-メントールエステルを含む混合物に作用させてL-メントールエステルを加水分解する工程を含む。
 本発明のL-メントールの製造方法において、本発明のポリペプチド等は、好ましくは遊離ポリペプチドの形態で用いられる。
 なお、本発明のポリペプチド等は、L-メントールエステルに対する基質特異性を向上させるだけでなく、そのリパーゼ活性値の割に、優れたL-メントール変換率を奏することができる。このため、L-メントールの製造方法に用いられる本発明のポリペプチド等は、そのリパーゼ活性値が、配列番号1の野生型リパーゼのリパーゼ活性値未満であっても、効果的に高いL-メントール変換率を奏する。このような観点から、本発明のポリペプチド等のリパーゼ活性値は、同質量の配列番号1の野生型リパーゼのリパーゼ活性値に対する比率(リパーゼ活性値の比率)として、例えば0.1~0.95倍、好ましくは0.2~0.9倍、より好ましくは0.3~0.8倍、更に好ましくは0.4~0.7倍、一層好ましくは0.5~0.6倍であってもよい。
(リパーゼ活性値の比率の導出方法)
 リパーゼ活性値は、リパーゼキットS(DSファーマバイオメディカル株式会社)を使用して、以下の手順で測定する。キット付属の発色液1mL、キット付属のエステラーゼ阻害液20μL、キット付属の緩衝液1mL、キット付属の基質液100μL、及び水8mLを混和して活性測定溶液を調製する。活性測定溶液100μLに配列番号1の野生型リパーゼ又は本発明のポリペプチドを20mMリン酸カリウム緩衝液(pH7.0)で適当な濃度に希釈した酵素溶液10μLを加え、37℃で15分反応後の吸光度412nmを測定する。ブランクは酵素溶液の代わりに20mMリン酸カリウム緩衝液(pH7.0)を用いる。野生型リパーゼ又は本発明のポリペプチドとブランクの吸光度差に係数1.3と希釈倍数をかけた値をリパーゼ活性値(U/mL)として算出し、野生型リパーゼによって得られた値を1とした場合の本発明の改変型リパーゼによって得られた値の比率を算出する。
 本発明のポリペプチド等は、L-メントールエステル1gに対して、例えば0.1~1000mg、好ましくは1~100mgを用いることができる。また、本発明のポリペプチドは、L-メントールエステル1gに対して、リパーゼ活性として、例えば500~50000U、好ましくは1000~30000Uとなるように用いることができる。
 本発明のL-メントールの製造方法において、L-メントールエステル及びD-メントールエステルを含む混合物に用いられる溶媒は、少なくとも水を含む。さらに、当該溶媒には、水に加えて有機溶媒が混合されていてよく、このような有機溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン等の炭化水素系溶媒;ジエチルエーテル、メチル-t-ブチルエーテル、ジブチルエーテル、テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、ベンゼン等の芳香族系溶媒;ジクロルメタン、クロロホルム等のハロゲン系溶媒;メタノール、エタノール、プロパノール、イソプロパノール等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒が挙げられる。これらの有機溶媒は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 また、反応温度としては、例えば10~50℃、好ましくは20~45℃、より好ましくは30~40℃、さらに好ましくは33~38℃が挙げられる。
 本発明のL-メントールの製造方法における具体的な操作としては、L-メントールエステル及びD-メントールエステルを水と共に含む混合物と本発明のポリペプチド等とが共存した加水分解系を構築できる限りにおいて特に限定されないが、例えば、上記溶媒にL-メントールエステル及びD-メントールエステル(DL-メントールエステル(ラセミ体))を混合し、更に、本発明のポリペプチド等を混合することができる。加水分解系では、L-メントールエステル及びD-メントールエステルのうち、L-メントールエステルが特異的に加水分解される。
 本発明のポリペプチドがL-メントールエステルに対する基質特異性に優れているため、本発明のL-メントールの製造方法では、L-メントールへの交換率が比較的高くても、光学純度の高いL-メントールを得ることができる。
 得られたL-メントールは、分別抽出、分別蒸留、カラムクロマト等により未反応物を除去することで精製することができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明は以下の実施例に限定して解釈されるものではない。
[試験例1:加水分解におけるL-メントールエステルに対する基質特異性-1]
[1-1.酢酸-D-メンチル及び酢酸-L-メンチルをそれぞれ基質に用いた場合]
 本試験例では、基質として、酢酸-D-メンチル(純度98%以上、東京化成工業株式会社製、オイル状、d=0.9250~0.9280)と、酢酸L-メンチル(純度98%以上、東京化成工業株式会社製、オイル状、d=0.9250~0.9280)とを、それぞれ別々に、バークホルデリア・セパシア由来リパーゼ(PSリパーゼ)又はその各種変異体(遊離酵素)と反応させ、得られた各反応生成物をガスクロマトグラフィーで分析することで、加水分解におけるL-メントールエステルに対する基質特異性を調べた。
 バークホルデリア・セパシア由来リパーゼの変異体としては、表1に記載のものを調製した。具体的には、次の方法で各変異体を含む酵素抽出液を調製した。
(E.coli発現用プラスミドの構築)
 E.coli発現系を構築するにあたり、B.cepacia M12-33の各遺伝子(LipA;リパーゼLipA遺伝子(E.coliコドン最適化):配列番号4、LipX;シャペロン遺伝子(LipX)野生型:配列番号5)をE.coli発現用にコドン最適化した遺伝子を全合成した。
 全合成した構造遺伝子(LipA;配列番号4)を鋳型としたPCR増幅(PrimeSTAR GXL DNA Polymerase(TaKaRa))、プライマー(フォワードプライマー:5'-TTTTCCATGGCTCGTTCTATGCGTTCTCG-3':配列番号6、リバースプライマー:5'-AAAAAAGCTTAAACACCCGCCAGTTTCAGACGG-3':配列番号7))にてリンカー配列(Nco I, Hind III)を付加した後、精製(NucleoSpin Gel and PCR Clean-up (MACHEREY-NAGEL))して遺伝子断片(BCL-LipA)を取得した。
 遺伝子断片(BCL-LipA)及びpETDuet-1(Novagen)を、制限酵素(Nco I(TaKaRa),Hind III(TaKaRa))で処理した後、ライゲーション(DNA Ligation Kit <Mighty Mix>(TaKaRa))して、E.coli DH5α(TaKaRa)に形質転換することで、E.coli BCL-LipAを取得した。E.coli BCL-LipAからのプラスミド抽出は、LB Broth Base(invitrogen)+Amp:100μg/mL:5mLに植菌して振とう培養(37℃、16h、140rpm)した後、NucleoSpin Plasmid EasyPure(MACHEREY-NAGEL)を用いて行い、これによって、プラスミド(pETBCL-LipA)を取得した。
 シャペロン遺伝子(LipX)についても、同様の操作を行った。すなわち、全合成したシャペロン遺伝子(LipX;シャペロン遺伝子LipX(E.coliコドン最適化:配列番号8)を鋳型としてPCR増幅(プライマー(フォワードプライマー:5'-TTTTCATATGACCGCACGTGAAGGTCGCGC-3':配列番号9、リバースプライマー:5'-AAAACTCGAGTTACTGTGCAGAACCCGCACCG-3':配列番号10)にてリンカー配列(Nde I,Xho I)を付加した後、精製(NucleoSpin Gel and PCR Clean-up(MACHEREY-NAGEL))して遺伝子断片(BCL-LipX)を取得した。
 遺伝子断片(BCL-LipX)及びpETBCL-LipAを制限酵素(NdeI(TaKaRa),Xho I(TaKaRa))で処理した後、ライゲーションしてE.coli DH5αに形質転換することで、E.coli BCL-LipAXを取得した。E.coli BCL-LipAXからのプラスミド抽出は、LB Broth Base + Amp : 100μg/mL:5mLに植菌して振とう培養(37℃、16h、140rpm)した後、NucleoSpin Plasmid EasyPure(MACHEREY-NAGEL)を用いて行い、これによって、E.coli発現プラスミド(pETBCL-LipAX)を取得した。
(E.coli発現系の構築)
 取得したE.coli発現プラスミド(pETBCL-LipAX)をE.coli BL21(DE3)(Nippongene)に形質転換して、E.coli発現菌株:E.coli BL21(BCL-LipAX)を取得した。
(ランダム変異株の作製)
 変異導入点について飽和変異ライブラリーを作製するため、プライマーを設計した。
・A120Xプライマー:
(フォワードプライマー:5'-NNKGATTTCGTTCAGGGCGTTCTGGC-3':配列番号11、リバースプライマー:5'-GAATTCAGAACCGCGATGCGGAGTG-3':配列番号12)
 変異点への変異導入は、プラスミド(pETBCL-LipAX)を鋳型として、Primerを用いたPCR増幅(PrimeSTAR GXL DNA Polymerase (TaKaRa))にて行った。PCR増幅後、Dpn I(TaKaRa)を用いた鋳型プラスミドの処理(37℃、16h)、及びT4 polymerase(Toyobo)、Ligation High(Toyobo)を用いたライゲーション反応(16℃、o/n)をした後、E.coli BL21(DE3)に形質転換して、変異点にランダム変異導入されたランダム変異株(E.coli BL21(BCL-A120X))を取得した。
(Teriffic Broth(Amp:100μg/mL)を用いた変異ライブラリーの作製)
 変異点について変異株ライブラリーを作製するため、上記で選抜した変異株をTeriffic Broth(invitrogen)(Amp:100μg/mL):1mLに植菌後、振とう培養機(Taitec)にて振とう培養(33℃、48h)した。酵素発現の誘導は、培養:24h時点で終濃度0.1mMとなるようにIPTGを培養液に添加して行った。培養後、遠心分離(3,300g×15min、4℃)にて菌体を回収した後、B-PER(ThermoFisher)を用いた溶菌処理(25℃、1,000rpm)後、遠心分離(3,300g×15min、4℃)し、上清を回収して、改変型リパーゼを含む酵素抽出液を取得した。
 得られた改変型リパーゼを含む酵素抽出液200μL(リパーゼ活性として10~200Uの範囲内となるように用いた。溶媒は水である。また、タンパク質濃度は約20mg/mLである。)と基質12μLとを反応容器(96ウェルプレート)に入れて混合し、プレート振トウ機を用いて、35℃、1,000rpm、72時間の条件で加水分解を行った。なお、野生型のリパーゼについては、タンパク質濃度が約20mg/mLと基質12μLとを反応容器(96ウェルプレート)に入れて混合し、プレート振トウ機を用いて、35℃、1,000rpm、72時間の条件で加水分解を行った。
(リパーゼ活性値の比率の測定方法)
 リパーゼ活性値は、リパーゼキットS(DSファーマバイオメディカル株式会社)を使用して、以下の手順で測定した。キット付属の発色液1mL、キット付属のエステラーゼ阻害液20μL、キット付属の緩衝液1mL、キット付属の基質液100μL、及び水8mLを混和して活性測定溶液を調製した。活性測定溶液100μLに配列番号1の野生型リパーゼ又は本発明のポリペプチドを20mMリン酸カリウム緩衝液(pH7.0)で適当な濃度に希釈した酵素溶液10μLを加え、37℃で15分反応後の吸光度412nmを測定した。ブランクは酵素溶液の代わりに20mMリン酸カリウム緩衝液(pH7.0)を用いた。野生型リパーゼ又は本発明のポリペプチドとブランクの吸光度差に係数1.3と希釈倍数をかけた値をリパーゼ活性値(U/mL)として算出し、野生型リパーゼによって得られた値を1とした場合の本発明の改変型リパーゼによって得られた値の比率を算出した。
 反応混合液を1.5mLエッペンチューブに移し、6Mの塩酸溶液12μL及びヘプタン200μLを添加してボルテックスにて混和した後、遠心分離(15,000rpm、10min、25℃)し、ヘプタン層(上層)150μLを機器分析用のバイアル瓶に回収することで、反応生成物の抽出を行った。得られたヘプタン層に更にヘプタン150μLを添加して希釈することで、分析サンプル300μLを調製した。
 分析サンプル300μLを以下の条件でガスクロマトグラフィーに供することで、残存原料及び反応生成物の量を、クロマトグラフィーピーク面積に基づいて分析した。
(ガスクロマトグラフィー分析条件)
 カラム:CP-Chiral-DEX CB(0.25mmID×25m,J&W)
 注入量:1μL
 注入口温度:200℃
 注入法:スプリット1:100
 キャリアガス:He
 フローレート:1.3mL/分
 オーブン:130℃,8分
 検出器:FID,300℃(H2:40mL/分,O2:400mL/分)
 下記式に基づいて、酢酸-L-メンチルを基質に用いた場合のL-メントール変換率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-M000002
 酢酸-D-メンチルを基質に用いた場合についても上記式と同様にしてD-メントール変換率(%)を算出し、下記式に基づいて、L/D変換率比率(L-体に対する基質特異性)を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
 表1から明らかなとおり、PSリパーゼ(野生型;比較例1)の第120位変異体のうち、A120G変異体(実施例1)のみ、野生型よりもL-体に対する各段高い基質特異性が認められた。また、A120G変異体によると、L-メントールの変換率にも優れていたことが分かった。
[1-2.酢酸-DL-メンチルを基質に用いた場合]
 酵素として、野生型リパーゼ(比較例1)又は本発明の改変型リパーゼ(実施例1)を用い、基質を、酢酸-DL-メンチル(純度98%以上、東京化成工業株式会社製、オイル状、d=0.9250~0.9280)に変更したことを除いて上記項目1-1と同様に加水分解分解を行った。
 また、同質量の野生型リパーゼ(比較例1)及び本発明の改変型リパーゼ(実施例1)のリパーゼ活性値を測定し、その比率を導出した。結果を表2に示す。
に示す。
Figure JPOXMLDOC01-appb-T000005
 酢酸-DL-メンチルを基質として用いた場合のL-メントール光学純度は、下記式に基づいて算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-T000007
 表3から明らかなとおり、本発明の改変型リパーゼ(実施例1)によると、野生型リパーゼ(比較例1)に比べて、L体変換率が高いにも関わらず、光学純度の向上が認められた。また、表2に示すように、本発明の改変型リパーゼ(実施例1)は野生型リパーゼ(比較例1)に比べてリパーゼ活性自体は大幅に低下しているにも関わらず、表3に示すようなL体変換率の向上が認められた。
[試験例2:エステル交換反応におけるL-メントールに対する基質特異性]
 本試験例では、基質として、DL-メントール(純度98%以上、東京化成工業株式会社製、ラセミ体、固体状)を、バークホルデリア・セパシア由来リパーゼ(PSリパーゼ)の第120位のAをGに変換した変異体(固定型酵素)と反応させ、得られた反応生成物をガスクロマトグラフィーで分析することで、エステル交換反応におけるL-メントールに対する基質特異性を調べた。
 バークホルデリア・セパシア由来リパーゼ(PSリパーゼ)の第120位のAをGに変換した改変型リパーゼは、常法に従い、担体(シリカ粒子)に固定化し、固定化酵素(実施例2)を得た。また、野生型リパーゼについても同様に固定化を行い、固定化酵素(比較例20)を得た。なお、得られた固定化酵素の0.2~2重量%程度を野生型リパーゼ又は改変型リパーゼが占める。
 同質量の野生型リパーゼの固定化酵素(比較例20)と改変型リパーゼの固定化酵素(実施例2)とのエステル交換活性値の比率を、以下の方法で測定した。結果を表4に示す。
(エステル交換活性値比率の測定方法)
 フェニルエチルアルコール(20重量部)と酢酸ビニル(80重量部)とを基質とし、各固定化酵素を、30℃で20分間作用させて、エステル交換反応を行った。得られたフェニルエチルアルコールアセチルエステルをHPLC分析により定量した。野生型リパーゼによって得られたフェニルエチルアルコールアセチルエステルの量(野生型リパーゼのエステル交換活性値)を1とした場合の本発明の改変型リパーゼによって得られたフェニルエチルアルコールアセチルエステルの量(本発明の改変型リパーゼによるエステル活性値)を、エステル交換活性値の比率とした。
Figure JPOXMLDOC01-appb-T000008
 ヘプタン52.5mlに対してDL-メントールを50g溶解し、更にアシル化剤として15.4gの酢酸ビニルを添加して混合した(酵素反応前)。2gの固定化酵素を添加し、25℃で撹拌して反応をスタートさせた。18時間反応後にろ紙でろ過を行うことで固定化酵素を除去し、反応ろ液を得た。反応ろ液100μlに対して内部標準液20μl添加し、その25μlをヘプタン1mlで希釈することで、分析サンプルを調製した。
 分析サンプルを以下の条件でガスクロマトグラフィーに供することで、反応生成物の分析を行った。
(ガスクロマトグラフィー分析条件)
 カラム:CP-Chiral-DEX CB(0.25mmID×25m,J&W)
 注入量:1μL
 注入口温度:25℃
 注入法:スプリット1:100
 キャリアガス:
 フローレート:1.3mL/分
 オーブン:110℃,25分
 検出器:FID,300℃
 下記式に基づいて、反応生成物における酢酸-L-メンチル変換率(L体変換率)を算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-M000009
 下記式に基づいて、反応生成物の光学純度を算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-T000011
 表5から明らかなとおり、本発明の改変型リパーゼ(実施例2)によると、野生型リパーゼ(比較例20)と同等のL体変換率であるにも関わらず、光学純度の向上が認められた。また、表4に示すように、本発明の改変型リパーゼ(実施例2)は野生型リパーゼ(比較例20))に比べてエステル活性値自体は大幅に低下しているにも関わらず、表5に示すようにL体変換率の低下はほとんど認められなかった。
[試験例3:加水分解におけるL-メントールエステルに対する基質特異性-2]
 バークホルデリア・セパシア由来リパーゼの変異体として、表6に記載のポリペプチドを、適宜設計したプライマーを用いて調製したことを除いて、試験例1と同様の操作を行い、当該変異体の、加水分解におけるL-メントールエステルに対する基質特異性を調べた。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000012
 表6から明らかなとおり、PSリパーゼ(野生型;比較例21)の第88位変異体のうち、Q88A変異体(実施例3)、Q88G変異体(実施例4)、Q88D変異体(実施例5)、Q88M変異体(実施例6)、及びQ88L変異体(実施例7)のみ、野生型よりもL-体に対する高い基質特異性が認められた。また、Q88A変異体、Q88G変異体、Q88D変異体、Q88M変異体、及びQ88L変異体によると、L-メントールの変換率にも各段優れていたことが分かった。
配列番号3は、バークホルデリア・セパシア由来リパーゼのA120G変異体をコードするDNAである。
配列番号6は、LipAのフォワードプライマーである。
配列番号7は、LipAのリバースプライマーである。
配列番号9は、LipXのフォワードプライマーである。
配列番号10は、LipXのリバースプライマーである。
配列番号11は、A120Xのフォワードプライマーである。
配列番号12は、A120Xのリバースプライマーである。
配列番号13は、バークホルデリア・セパシア由来リパーゼのQ88A変異体をコードするDNAである。
配列番号14は、バークホルデリア・セパシア由来リパーゼのQ88G変異体をコードするDNAである。
配列番号15は、バークホルデリア・セパシア由来リパーゼのQ88D変異体をコードするDNAである。
配列番号16は、バークホルデリア・セパシア由来リパーゼのQ88M変異体をコードするDNAである。
配列番号17は、バークホルデリア・セパシア由来リパーゼのQ88L変異体をコードするDNAである。

Claims (10)

  1.  以下の(1)から(3)のいずれかに示すポリペプチド:
    (1)配列番号1に示すアミノ酸配列において、第120位のアミノ酸残基がグリシン残基に置換されているアミノ酸配列からなるポリペプチド、
    (2)配列番号1に示すアミノ酸配列における第120位のアミノ酸残基がグリシン残基に置換されているアミノ酸配列において、前記置換が導入されたアミノ酸残基以外の1個又は数個のアミノ酸残基が置換、付加、挿入又は欠失されてなり、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド、
    (3)配列番号1に示すアミノ酸配列における第120位のアミノ酸残基がグリシン残基に置換されているアミノ酸配列において、配列番号1に示すアミノ酸配列に対する前記置換が導入されたアミノ酸残基を除いた配列同一性が80%以上であり、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド。
  2.  以下の(4)から(6)のいずれかに示すポリペプチド:
    (4)配列番号1に示すアミノ酸配列において、第88位のアミノ酸残基が、アラニン残基、グリシン残基、アスパラギン酸残基、メチオニン残基、又はロイシン残基に置換されているアミノ酸配列からなるポリペプチド、
    (5)配列番号1に示すアミノ酸配列における第88位のアミノ酸残基が、アラニン残基、グリシン残基、アスパラギン酸残基、メチオニン残基、又はロイシン残基に置換されているアミノ酸配列において、前記置換が導入されたアミノ酸残基以外の1個又は数個のアミノ酸残基が置換、付加、挿入又は欠失されてなり、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド、
    (6)配列番号1に示すアミノ酸配列における第88位のアミノ酸残基が、アラニン残基、グリシン残基、アスパラギン酸残基、メチオニン残基、又はロイシン残基に置換されているアミノ酸配列において、配列番号1に示すアミノ酸配列に対する前記置換が導入されたアミノ酸残基を除いた配列同一性が80%以上であり、L-メントールに対するエステル化活性及び/又はL-メントールエステルに対する加水分解活性を有し、且つ、配列番号1に示すアミノ酸配列からなるポリペプチドに比してL-メントール及び/又はL-メントールエステルに対する基質特異性が向上しているポリペプチド。
  3.  請求項1又は2に記載のポリペプチドをコードしているDNA。
  4.  請求項3に記載のDNAを含む組換えベクター。
  5.  請求項4に記載の組換えベクターにより宿主を形質転換して得られる形質転換体。
  6.  請求項5に記載の形質転換体を培養する工程を含む、請求項1又は2に記載のポリペプチドの製造方法。
  7.  請求項1又は2に記載のポリペプチドを含む酵素組成物。
  8.  請求項1又は2に記載のポリペプチド、又は請求項7に記載の酵素組成物を含む酵素剤。
  9.  請求項1又は2に記載のポリペプチド、請求項7に記載の酵素組成物、又は請求項8に記載の酵素剤を、L-メントール及びD-メントールを含む混合物に作用させてL-メントールをエステル化する工程を含む、L-メントールエステルの製造方法。
  10.  請求項1又は2に記載のポリペプチド、請求項7に記載の酵素組成物、又は請求項8に記載の酵素剤を、L-メントールエステル及びD-メントールエステルを含む混合物に作用させてL-メントールエステルを加水分解する工程を含む、L-メントールの製造方法。
PCT/JP2021/010072 2020-03-13 2021-03-12 L-メントールに対するエステル化活性及び/又はl-メントールエステルに対する加水分解活性を有するポリペプチド WO2021182611A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180020621.4A CN115279908A (zh) 2020-03-13 2021-03-12 具有对l-薄荷醇的酯化活性和/或对l-薄荷醇酯的水解活性的多肽
US17/906,217 US20240301463A1 (en) 2020-03-13 2021-03-12 Polypeptide having esterification activity for l-menthol and/or hydrolyzing activity for l-menthol ester
JP2022507303A JPWO2021182611A1 (ja) 2020-03-13 2021-03-12
EP21768659.1A EP4119673A4 (en) 2020-03-13 2021-03-12 POLYPEPTIDE WITH ESTERIFICATION ACTIVITY FOR L-MENTHOL AND/OR HYDROLYZING ACTIVITY FOR L-MENTHOL ESTER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-044455 2020-03-13
JP2020044455 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021182611A1 true WO2021182611A1 (ja) 2021-09-16

Family

ID=77671827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010072 WO2021182611A1 (ja) 2020-03-13 2021-03-12 L-メントールに対するエステル化活性及び/又はl-メントールエステルに対する加水分解活性を有するポリペプチド

Country Status (5)

Country Link
US (1) US20240301463A1 (ja)
EP (1) EP4119673A4 (ja)
JP (1) JPWO2021182611A1 (ja)
CN (1) CN115279908A (ja)
WO (1) WO2021182611A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100913A1 (de) * 2001-01-11 2002-07-25 Haarmann & Reimer Gmbh Verfahren zur Herstellung von L-Menthol
US7314739B2 (en) * 2001-10-22 2008-01-01 Basf Aktiengesellschaft Lipase variants
WO2018021324A1 (ja) * 2016-07-25 2018-02-01 天野エンザイム株式会社 安定性に優れたリパーゼ活性を有するポリペプチド
CN109722422A (zh) * 2018-12-31 2019-05-07 苏州埃斯腾特生物科技有限公司 耐高温脂肪酶及其用途

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 43, 1995, pages 639 - 643
EMA, TADASHI ET AL.: "Rational control of enantioselectivity ox lipase by site-directed mutagenesis based on the mechanism", CHEM. COMMUN., vol. 37, 2005, pages 4650, XP055856688 *
ENZYME AND MICROBIAL TECHNOLOGY, vol. 18, 1996, pages 536 - 539
See also references of EP4119673A4
TATIANA A. TATSUSOVATHOMAS L. MADDEN, FEMS MICROBIOL. LETT., vol. 174, 1999, pages 247 - 250
TETRAHEDRON LETTERS, vol. 27, no. 1, 1986, pages 29 - 32
WU, W. H. ET AL.: "Lipase-catalyzed stereoselective esterification of DL-menthol in organic solvents using acid anhydrides as acylating agents", ENZYME AND MICROBIAL TECHNOLOGY, vol. 18, no. 7, May 1996 (1996-05-01), pages 536 - 539, XP055856689 *

Also Published As

Publication number Publication date
CN115279908A (zh) 2022-11-01
EP4119673A4 (en) 2024-05-29
EP4119673A1 (en) 2023-01-18
US20240301463A1 (en) 2024-09-12
JPWO2021182611A1 (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
US7049122B2 (en) Mutant-type lipases and applications thereof
JP2008061642A (ja) D−アミノ酸の製造方法
AU2003221082B2 (en) Novel carbonyl reductase, gene encoding it and process for producing optically active alcohols using the same
JP6048850B2 (ja) D−サクシニラーゼ、およびこれを用いたd−アミノ酸の製造方法
EP3907289A1 (en) Modified chrysanthemic acid esterase
JPH11155570A (ja) 酵素の基質特異性の改変法
JPWO2018180187A1 (ja) カルバミン酸エチルの分解
JP7063807B2 (ja) 安定性に優れたリパーゼ活性を有するポリペプチド
JP2008307006A (ja) L−アミノ酸の製造方法
WO2021182611A1 (ja) L-メントールに対するエステル化活性及び/又はl-メントールエステルに対する加水分解活性を有するポリペプチド
JP4307826B2 (ja) Variovorax由来のD−アミダーゼ、それをコードする遺伝子、そのような核酸を含有するプラスミド、ベクターおよび微生物、ハイブリダイズする核酸、核酸を製造するためのプライマー、改良されたrec−アミダーゼ、コードrec−アミダーゼおよび核酸の製法、D−アミダーゼおよび核酸の使用、ならびに全細胞触媒
US7229817B2 (en) Recombinant porcine liver esterases, their use and a method for the production thereof
KR20040064238A (ko) 옥시도리덕타제
JP2005006552A (ja) 新規カルボニル還元酵素及びこれをコードするdna、ならびにこれらを利用した光学活性アルコールの製造方法
CN112055751B (zh) 修饰型酯酶和其用途
Dröge et al. Comparison and functional characterisation of three homologous intracellular carboxylesterases of Bacillus subtilis
JP4270918B2 (ja) 新規カルボニル還元酵素及びこれをコードする遺伝子、ならびにこれらを利用した光学活性アルコールの製造方法
CN109943618A (zh) 一种重组脂肪酶在拆分(R,S)-α-乙基-2-氧-1-吡咯烷乙酸甲酯中的应用
WO2005123921A1 (ja) 新規グリセロール脱水素酵素、その遺伝子、及びその利用法
EP2876156A1 (en) New enzymes and method for preparing hydroxylated L-lysine or L-ornithine and analogs thereof
Yamamura et al. A novel method of producing the key intermediate ASI-2 of ranirestat using a porcine liver esterase (PLE) substitute enzyme
WO2020090734A1 (ja) マルトトリオース生成アミラーゼ
US6916641B2 (en) (R)-2-hydroxy-3-phenylpropionate (d-phenyllactate) dehydrogenase and gene encoding the same
JP4652915B2 (ja) ノルボルナン誘導体の加水分解に関与するdna
EP3748008A1 (en) Enantioselective acetylation of r/s-pantolactone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507303

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217052709

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021768659

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021768659

Country of ref document: EP

Effective date: 20221013

NENP Non-entry into the national phase

Ref country code: DE