WO2021182545A1 - パターニングされた有機膜の製造方法、パターニングされた有機膜の製造装置、それにより作製された有機半導体デバイス、及び有機半導体デバイスを含む集積回路 - Google Patents

パターニングされた有機膜の製造方法、パターニングされた有機膜の製造装置、それにより作製された有機半導体デバイス、及び有機半導体デバイスを含む集積回路 Download PDF

Info

Publication number
WO2021182545A1
WO2021182545A1 PCT/JP2021/009658 JP2021009658W WO2021182545A1 WO 2021182545 A1 WO2021182545 A1 WO 2021182545A1 JP 2021009658 W JP2021009658 W JP 2021009658W WO 2021182545 A1 WO2021182545 A1 WO 2021182545A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
organic film
organic
film
stamp
Prior art date
Application number
PCT/JP2021/009658
Other languages
English (en)
French (fr)
Inventor
純一 竹谷
峻一郎 渡邉
真理 佐々木
龍幸 牧田
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to CN202180020677.XA priority Critical patent/CN115244667A/zh
Priority to JP2022507265A priority patent/JPWO2021182545A1/ja
Priority to KR1020227033868A priority patent/KR20220150922A/ko
Priority to US17/905,941 priority patent/US20230165123A1/en
Priority to EP21768047.9A priority patent/EP4120325A4/en
Publication of WO2021182545A1 publication Critical patent/WO2021182545A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/18Deposition of organic active material using non-liquid printing techniques, e.g. thermal transfer printing from a donor sheet
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/474Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to a method and an apparatus for producing a patterned organic film, and an organic semiconductor device and an integrated circuit including the organic semiconductor device produced by the method.
  • organic semiconductors In recent years, interest in organic semiconductors has increased.
  • the characteristics of organic semiconductors are that they have excellent flexibility, unlike conventional inorganic semiconductors of amorphous silicon and polycrystalline silicon, and that the area can be increased inexpensively by the roll-to-roll process.
  • Organic semiconductors are being studied for application to next-generation electronic devices as post-silicon semiconductors.
  • organic semiconductors can be manufactured as devices by a low-cost solution process, and are attracting attention as basic elements of next-generation electronic devices that are important in the Internet of Things (IoT) society.
  • Patterning of an organic semiconductor film (hereinafter, also referred to as a semiconductor film) is indispensable in circuit applications for industrialization, particularly in logic circuit applications of organic field effect transistors.
  • Typical examples of the semiconductor film patterning methods reported so far include a method of forming a semiconductor film only in a necessary place, or a method of forming a film on the entire surface and then etching using a photolithography process or the like. ..
  • Examples of the semiconductor film patterning method include laser etching, photolithography (dry etching using plasma), and photolithography (wet etching).
  • Nanotransfer printing has been proposed as a patterning method for fine electrodes and the like (Non-Patent Document 1).
  • Laser etching which etches a semiconductor film with a laser, is expensive and easily damages the underlying insulating film, etc. by the laser.
  • Photolithography which performs dry etching using plasma, has high resolution and high reliability, but it is expensive and may cause damage such as scraping of the base by plasma.
  • Photolithography which performs wet etching using a solvent, has high resolution and relatively high reliability, but it is expensive, the substrate may swell, and the part that you want to leave after photolithography will flow. There is also. In addition, it is difficult to select an appropriate solvent according to the semiconductor material.
  • Au / Ti (Ti is on top) is vapor-deposited on the entire surface of the uneven stamp, and both the transfer destination glass substrate and Au / Ti are subjected to plasma treatment or the like to form hydroxyl groups on the surface to form hydroxyl groups. Adhere in a state. The hydroxyl groups are chemically bonded to each other, and the Au / Ti pattern of the convex portion of the stamp is transferred onto the glass substrate.
  • nTP With nTP, expensive photolithography equipment and resists are not required as long as the mold is manufactured. However, since the condensation reaction between hydroxyl groups is used, it is limited to materials in which hydroxyl groups are formed on the surface, and it is not versatile and cannot be used for transfer of organic semiconductors.
  • the present inventor transfers the organic film on the film onto the convex portion of the stamp in which the unevenness is patterned, and then presses the stamp onto the target substrate, so that only the organic film on the convex portion is transferred to the target substrate. , I found a way to do patterning.
  • the gist of the present invention is as follows. (1) Forming a hydrophobic organic film on a first hydrophilic and water-insoluble substrate using a coating method. Pressing the organic film formed on the first substrate against the convex portion of the stamp having the convex portion and the concave portion, Water or an aqueous solution is applied to the interface between the first substrate and the organic film to transfer the organic film to the convex portion, and the organic film transferred to the convex portion is pressed against the second substrate. Then, the organic film is transferred to the second substrate to obtain a patterned organic film. Including At least one of the organic film and the second substrate is an organic semiconductor. A method for producing a patterned organic film.
  • the patterned organic film contains 10 or more organic films, each of which has a thickness of 2 nm or more, a width of 500 nm or more, and a length of 500 nm or more, and adjacent organic films are adjacent to each other.
  • a stamp arranging portion configured to arrange a stamp having a convex portion and a concave portion,
  • a first substrate arranging portion configured so that a hydrophilic and water-insoluble first substrate having an organic film on its surface can be arranged.
  • a second board placement unit configured so that a second board can be placed, The organic film on the first substrate is pressed against the convex portion of the stamp so that the organic film is arranged on the convex portion and the first substrate is separated from the organic film arranged on the convex portion.
  • a first drive unit configured so that at least one of the first substrate and the stamp can be moved.
  • a first control unit configured to control a force that presses the organic film on the first substrate against the convex portion of the stamp.
  • a water or aqueous solution supply unit configured to supply water or an aqueous solution to the interface between the organic film and the first substrate.
  • the organic film arranged on the convex portion of the stamp was pressed against the second substrate, and the patterned organic film was arranged on the second substrate, and the patterned organic film was arranged on the second substrate.
  • a second driving unit configured to move at least one of the stamp and the second substrate so as to separate the stamp from the organic film, and an organic film arranged on the convex portion of the stamp.
  • a second control unit configured to control the force pressed against the second substrate,
  • the second control unit is configured to control the distribution of the pressing force in the plane of the organic film when the organic film is pressed against the second substrate (4).
  • the manufacturing apparatus includes a water or aqueous solution amount adjusting unit configured so that the amount of water or aqueous solution supplied by the water or aqueous solution supply unit can be adjusted.
  • the production apparatus includes a supply position adjusting unit that recognizes the position of the interface that supplies the water or the aqueous solution and can adjust the position of the water or the aqueous solution supplied by the water or aqueous solution supply unit.
  • the manufacturing apparatus according to any one of (4) to (7).
  • the patterned organic film contains 10 or more organic films, each of which has a thickness of 2 nm or more, a width of 500 nm or more, and a length of 500 nm or more, and adjacent organic films are adjacent to each other.
  • the organic film can be patterned at low cost without damaging the organic film and its base by an organic solvent, plasma, or the like. Further, since the method of the present disclosure is a physical patterning method using unevenness, it can be applied to a wide variety of organic materials, particularly organic semiconductor materials.
  • FIG. 1 is a schematic cross-sectional view showing a process of pressing an organic film on a first substrate against a convex portion of a stamp.
  • FIG. 2 is a schematic cross-sectional view showing a step of applying water or an aqueous solution to the interface between the first substrate and the organic film.
  • FIG. 3 is a schematic cross-sectional view of the organic film transferred onto the convex portion of the stamp.
  • FIG. 4 is a schematic cross-sectional view showing a step of pressing the organic film transferred to the convex portion against the second substrate.
  • FIG. 5 is a schematic cross-sectional view of the patterned organic film transferred to the second substrate.
  • FIG. 6 is a schematic cross-sectional view of a photoresist formed on a glass substrate and a self-assembling molecular film formed on the glass substrate and in the form of a photoresist in the molding process.
  • FIG. 7 is a schematic cross-sectional view of a stamp manufacturing process using a mold.
  • FIG. 8 is a schematic cross-sectional view of the stamp.
  • FIG. 9 is a polarizing microscope image of the semiconductor film transferred onto the PDMS stamp.
  • FIG. 10 is a scanning electron microscope (SEM) image of a semiconductor film transferred onto a PDMS stamp.
  • FIG. 11 is a polarizing microscope image of a patterned organic semiconductor film transferred onto the second substrate observed from above.
  • FIG. 12 is a schematic cross-sectional view of an organic semiconductor single crystal film and an Au electrode arranged on a parylene / SiO 2 / n-topped Si substrate.
  • FIG. 13 is a polarizing microscope image observed from the upper surface of the produced BGTC type OFET.
  • FIG. 14 is a graph of transmission characteristics showing the relationship between the gate voltage and the drain current in the saturation region.
  • FIG. 15 is a graph of transmission characteristics showing the relationship between the gate voltage and the drain current in the linear region.
  • FIG. 16 is a graph of output characteristics showing the relationship between the drain voltage and the drain current due to the gate voltage.
  • FIG. 14 is a graph of transmission characteristics showing the relationship between the gate voltage and the drain current in the saturation region.
  • FIG. 15 is a graph of transmission characteristics showing the relationship between the gate voltage and the drain current in the linear region.
  • FIG. 16 is a graph of output characteristics showing the relationship between the drain voltage and the drain current due to the gate voltage.
  • FIG. 17 is a schematic cross-sectional view of an organic semiconductor single crystal film and an Au electrode arranged on a CYTOP® / SiO 2 / n-topped Si substrate.
  • FIG. 18 is a polarizing microscope image observed from the upper surface of the produced BGTC type OFET.
  • FIG. 19 is a graph of transmission characteristics showing the relationship between the gate voltage and the drain current in the saturation region.
  • FIG. 20 is a graph of transmission characteristics showing the relationship between the gate voltage and the drain current in the linear region.
  • FIG. 21 is a graph of output characteristics showing the relationship between the drain voltage and the drain current due to the gate voltage.
  • FIG. 22 is a polarizing microscope image of the transferred organic semiconductor single crystal film observed from above.
  • FIG. 23 shows a polarizing microscope image of the transferred organic semiconductor single crystal film observed from above.
  • FIG. 24 is a schematic cross-sectional view of the organic semiconductor device of the present disclosure.
  • FIG. 25 is a schematic cross-sectional view of an organic semiconductor device having an electrode between a substrate and an organic film.
  • FIG. 26 is a schematic cross-sectional view of an organic semiconductor device having a space between a substrate, an organic film, and an electrode.
  • FIG. 27 is a schematic cross-sectional view of an organic semiconductor device provided with electrodes on the surface of the organic film on the opposite side of the substrate.
  • FIG. 28 is a schematic cross-sectional view when a stamp, a first substrate and an organic film arranged on the stamp, and a second substrate are arranged in the manufacturing apparatus of the present disclosure.
  • FIG. 29 is a schematic cross-sectional view of the top gate / top contact structure.
  • FIG. 30 is a schematic cross-sectional view of the top gate / bottom contact structure.
  • FIG. 31 is a schematic cross-sectional view of the bottom gate / top contact structure.
  • FIG. 32 is a schematic cross-sectional view of the bottom gate / bottom contact structure.
  • FIG. 33 is an external photograph of a 4-inch wafer having a patterned semiconductor organic film.
  • FIG. 34 is a laser confocal microscope image of an array of 8 ⁇ 8 organic semiconductor single crystal films of 700 ⁇ m ⁇ 500 ⁇ m transferred and patterned by the method of the present disclosure.
  • FIG. 35 is an in-plane X-ray diffraction measurement result of the portion surrounded by the broken line portion of FIG. 34.
  • FIG. 36 is an enlarged view of the 020 diffraction line of the C 9- DNBDT-NW organic semiconductor single crystal surrounded by the broken line portion of FIG. 35.
  • FIG. 37 is a schematic cross-sectional view of the BGTC type OFET including the n-type organic semiconductor produced in the examples.
  • FIG. 38 shows a graph of transmission characteristics showing the relationship between the gate voltage and the drain current in the saturation region of the produced BGTC type OFET, a graph of the transmission characteristics showing the relationship between the gate voltage and the drain current in the linear region, and the gate voltage. It is a graph of the output characteristic which shows the relationship between a drain voltage and a drain current.
  • FIG. 39 is an external photograph of an example of the manufacturing apparatus of the present disclosure.
  • FIG. 39 is an external photograph of an example of the manufacturing apparatus of the present disclosure.
  • FIG. 40 is a polarizing microscope image of the organic semiconductor single crystal film transferred onto the second substrate observed from above.
  • FIG. 41 is a polarizing microscope image of the organic semiconductor single crystal film transferred onto the second substrate observed from above.
  • FIG. 42 is a polarizing microscope image of the organic semiconductor single crystal film transferred onto the second substrate observed from above.
  • FIG. 43 is a polarizing microscope image of the organic semiconductor single crystal film transferred onto the second substrate observed from above.
  • FIG. 44 is a circuit diagram of the DFF circuit produced in the embodiment.
  • FIG. 45 is a truth table of the negative edge trigger type DFF.
  • FIG. 48 is a schematic cross-sectional view of the organic complementary semiconductor device provided with the p-type organic transistor and the n-type organic transistor produced in the examples.
  • FIG. 49 is a diagram showing NOT, NOR, NAND, and DFF circuits made on a flexible polyethylene naphthalate (PEN) substrate.
  • PEN polyethylene naphthalate
  • a hydrophobic organic film is formed on a hydrophilic and water-insoluble first substrate by using a coating method, and an organic film formed on the first substrate is formed into a convex portion. And pressing against the convex portion of the stamp having the concave portion, applying water or an aqueous solution to the interface between the first substrate and the organic film to transfer the organic film to the convex portion, and the convex portion.
  • the organic film transferred to the second substrate is pressed against the second substrate, and the organic film is transferred to the second substrate to obtain a patterned organic film. At least one of them is an organic semiconductor, and a method for producing a patterned organic film is targeted.
  • the manufacturing method of the present disclosure mainly has the following remarkable effects. If a mold is produced, photolithography is unnecessary and the cost is low. Since the organic film can be patterned at the same time as the transfer to the stamp, the patterning can be performed in a short time. Since the organic film is physically patterned by using the unevenness of the stamp, it is not necessary to use a solvent or a laser, and various organic materials can be patterned, which is highly versatile. Since the stamp is only pressed against the second substrate, the second substrate is not damaged by the solvent or the like. For example, a patterned organic film can be formed even when the second substrate is soluble in a solvent that dissolves the organic material.
  • the stamp Since the stamp is only exposed to water or aqueous solution and does not need to be contacted or heated by a solvent, there is virtually no swelling or shrinkage of the stamp due to solvent or heat.
  • a film that has been applied in advance to form a single crystal can be patterned. Unlike nTP, it does not require a hydroxyl group bond to the transfer destination substrate.
  • a mask is required on the material to be etched, and a patterned electrode is often used as a photolithography mask.
  • the electrode cannot be used as a mask, and it is necessary to separately prepare a mask that does not damage the semiconductor film. According to the method of the present disclosure, even when the patterned electrode is arranged under the semiconductor film, the patterned semiconductor film can be obtained on the electrode without requiring an additional step.
  • the manufacturing method of the present disclosure can be expected to have an effect of low cost and short working time.
  • the manufacturing method of the present disclosure is applicable to many semiconductor materials and underlayers while maintaining high-performance electrical properties of organic films such as organic semiconductor single crystals and organic semiconductor polymers, and is applicable in the printed electronics industry. , High utility value in mass production process.
  • a water-resistant organic film is formed on a hydrophilic and water-insoluble first substrate by using a coating method.
  • the coating method is a method in which an organic material is dissolved in an organic solvent to prepare an organic solution, the organic solution is coated on a substrate, and the organic solvent is evaporated to form a film.
  • the organic solvent the organic solvent conventionally used in the coating method can be used, and for example, toluene, dichlorobenzene and the like can be used.
  • the coating method conventionally used methods can be used, for example, an edge casting method, a continuous edge casting method, a drop casting method, a spin coating method, a printing method (inkjet method or gravure printing method), and a dispenser method.
  • a spray method a dip coating method, a die coater method, a roll coater method, a bar coater method, a blade coating method and the like can be used.
  • the first substrate is a hydrophilic substrate having a water contact angle of preferably 20 degrees or less, more preferably 10 degrees or less.
  • the first substrate can be a substrate having a hydrophilic surface or a substrate whose surface has been hydrophilized, and a glass substrate or mica is preferable, and a glass substrate is more preferable.
  • the glass substrate is preferably Eagle glass.
  • the hydrophilic treatment can be carried out by a UV / O 3 treatment on the glass substrate.
  • the first substrate is water insoluble and can be, for example, mica or glass. Since the first substrate is water-insoluble, when water or an aqueous solution is applied to the interface between the first substrate and the organic film, the components of the first substrate are eluted and adhere to or react with the organic film. A high-purity organic film can be obtained without any problem. Further, when water or an aqueous solution is applied to the interface between the first substrate and the organic film, the shape of the first substrate is maintained without being deformed, so that the shape of the organic film is not distorted. The organic film can be separated from the substrate. Water-insoluble means that it does not substantially dissolve, decompose, or swell in water or an aqueous solution.
  • the glass is preferably one whose surface is hydrophilized by UV / ozone treatment, a hydrophilic coating material or the like.
  • the first substrate may be flexible.
  • water or an aqueous solution is applied to the interface between the first substrate and the organic film to separate the organic film from the first substrate.
  • the organic film can be a desired organic film as long as it is a hydrophobic organic film.
  • Water or an aqueous solution can enter between the hydrophilic first substrate and the molecules of the hydrophobic organic membrane to separate the organic membrane from the first substrate.
  • Water or an aqueous solution is used, preferably an aqueous solution, to separate the organic film from the first substrate.
  • the aqueous solution is more likely to penetrate the interface between the first substrate and the organic film than water, and the separation between the organic film and the first substrate is further promoted.
  • the aqueous solution can be one that does not easily swell or shrink the stamp, and is a mixture of water and a polar solvent such as ethanol, methanol, or acetonitrile.
  • the concentration of the polar solvent such as ethanol, methanol, or acetonitrile in the aqueous solution is preferably 5 to 50%, more preferably 10 to 45%, and even more preferably 15 to 40%.
  • the water contact angle of the hydrophilic first substrate is smaller than the water contact angle of the hydrophobic organic film, and the difference in the water contact angle between the first substrate and the organic film is preferably 40 degrees or more. , More preferably 50 degrees or more, still more preferably 60 degrees or more, even more preferably 70 degrees or more, even more preferably 80 degrees or more, still more preferably 90 degrees or more.
  • the contact angle of the organic film is preferably 60 degrees or more, more preferably 70 degrees or more, still more preferably 80 degrees or more, and even more preferably 100 to 120 degrees.
  • the method of applying water or an aqueous solution to the interface between the first substrate and the organic film is not particularly limited, and water or an aqueous solution is dropped onto the interface between the first substrate and the organic film using a water supply device such as a dropper. That is, a method such as immersing the first substrate on which the organic film is formed in water can be used.
  • hydrophobic means preferably a contact angle of 50 degrees or more, more preferably a contact angle of 60 degrees or more, still more preferably a contact angle of 70 degrees or more, and even more preferably a contact angle of 80 degrees or more. It can have a contact angle of 90 degrees or more, more preferably 100 degrees or more, even more preferably 110 degrees or more, and even more preferably 150 degrees or more.
  • the area of the organic film formed on the first substrate is preferably 2 mm 2 or more, more preferably 10 mm 2 or more, still more preferably 100 mm 2 or more, still more preferably 1000 mm 2 or more, still more preferably 10000 mm 2 or more. be.
  • the upper limit of the area of the organic film is not particularly limited, and is limited by the size of the manufacturing equipment, and may be , for example, 10 m 2.
  • an organic film having the preferred area such as less than 0.000025 ⁇ 2.0 mm 2, less than 0.0001 ⁇ 1.5mm 2, 0.0004 ⁇ 1.0mm 2, 0.0009mm 2 It may be separated into an area of ⁇ 0.5 mm 2 , 0.0016 to 0.2 mm 2 , 0.0025 to 0.1 mm 2 , or 0.005 mm to 0.05 mm 2.
  • the distance between the uppermost portion of the convex portion and the lowest portion of the concave portion of the stamp is preferably 2 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, still more preferably 7 to 40 ⁇ m, and even more preferably 10 to 30 ⁇ m.
  • the concave portion is prevented from coming into contact with the organic film when the stamp and the organic film are pressed, and the convex portion is formed. It is possible to physically perform patterning while suppressing breakage.
  • the pressure per area of the convex portion when the organic film is pressed against the convex portion of the stamp may be appropriately adjusted within a range in which the concave portion does not come into contact with the organic film and the convex portion does not break. For example, 5 to 200 kPa, 10 to It can be 100 kPa, or 50-80 kPa.
  • the pressure per area of the convex portion when the organic film transferred to the convex portion of the stamp is pressed against the second substrate is appropriately adjusted within a range in which the organic film is transferred to the second substrate and the convex portion does not break. It is good, but it can be, for example, 5 to 200 kPa, 10 to 100 kPa, or 50 to 80 kPa.
  • the constituent material of the stamp is preferably a resin, preferably polydimethylsiloxane (PDMS) or polymethylmethacrylate (PMMA), and more preferably PDMS.
  • PDMS or PMMA may be the main component of the stamp component.
  • the stamp may be hydrophobic.
  • the stamp may include a glass or film support substrate.
  • the support substrate is preferably a glass substrate, a polyethylene terephthalate (PEN) substrate, or a polyethylene terephthalate (PET) substrate.
  • PEN polyethylene terephthalate
  • PET polyethylene terephthalate
  • the glass substrate, PEN substrate, or PET substrate (depending on the heat treatment temperature at the time of stamp production) can be selected based on the pressing of the stamp material before curing and the ease of peeling from the stamp production mold after heat curing. By using a flexible substrate as the base material of the stamp, peeling becomes easy.
  • a release layer may be formed on the surface of the stamp.
  • the release layer is preferably CYTOP or a self-assembled monolayer (SAM), more preferably CYTOP.
  • the self-assembled monolayer can be, for example, decyltrimethoxysilane (DTS), triethoxy-1H, 1H, 2H, 2H-heptadecafluorodecylsilane (F-SAM), or trimethoxy (2-phenylethyl) silane ( ⁇ ).
  • DTS decyltrimethoxysilane
  • F-SAM triethoxy-1H, 1H, 2H, 2H-heptadecafluorodecylsilane
  • trimethoxy (2-phenylethyl) silane
  • the patterned organic film preferably contains 10 or more organic films, each of which has a thickness of 2 nm or more, a width of 500 nm or more, and a length of 500 nm or more, and adjacent organic films are adjacent to each other.
  • the interval is 1 ⁇ m or more.
  • the number of organic films contained in the patterned organic film is more preferably 50 or more, still more preferably 100 or more.
  • the width and length of the organic film are more preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more, still more preferably 20 ⁇ m or more, still more preferably 30 ⁇ m or more, still more preferably 45 ⁇ m or more, still more preferably 50 ⁇ m or more.
  • the thickness of the organic film is more preferably 2 to 100 nm, still more preferably 7 to 20 nm.
  • the distance between adjacent organic films is more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more, even more preferably 20 ⁇ m or more, still more preferably 25 ⁇ m or more.
  • the upper limit of the width of the organic film is not particularly limited, but is, for example, 500 ⁇ m or less.
  • the upper limit of the distance between the organic films in the organic film is not particularly limited.
  • FIG. 22 shows a top photograph of five sets of organic films, which is an example of patterned organic films.
  • FIG. 23 shows a top photograph of five sets of organic films, which is another example of the patterned organic films.
  • FIG. 33 shows an external photograph of a 4-inch silicon wafer having a patterned semiconductor organic film.
  • At least a part of the surface of the second substrate in contact with the patterned organic film may have hydrophobic, solvent-soluble, non-heat resistant, or a combination thereof.
  • the entire surface of the second substrate in contact with the organic membrane has hydrophobic, solvent-soluble, non-heat resistant, or a combination thereof, and more preferably, the entire second substrate is hydrophobic. , Solvent-soluble, non-heat resistant, or a combination thereof.
  • the material of the second substrate is not particularly limited as long as it is solid.
  • the second substrate may include a plurality of layers such as a support substrate, electrodes, and an insulating film.
  • the second substrate may be a flexible substrate. Examples of the flexible substrate include a polyethylene naphthalate (PEN) substrate, a polyimide substrate, a polyphenylene sulfide substrate, a silicone substrate and the like.
  • At least a part of the surface of the second substrate in contact with the organic film preferably the entire surface of the second substrate in contact with the organic film, more preferably the entire surface of the second substrate may exhibit the above-mentioned preferred range of hydrophobicity. ..
  • the water content (adsorbed molecules) that can adhere to the substrate is reduced. Alternatively, it can be eliminated, and a device having good properties that is not affected by moisture can be produced.
  • hydrophobic material examples include parylene (contact angle of about 80 to 90 degrees), CYTOP (registered trademark) of a fluorine-based polymer (contact angle of 110 degrees), and the like.
  • At least a part of the surface of the second substrate in contact with the organic film preferably the entire surface of the second substrate in contact with the organic film, more preferably the entire surface of the second substrate may be solvent-soluble. Therefore, at least a part of the surface of the second substrate in contact with the organic film, preferably the entire surface of the second substrate in contact with the organic film, more preferably the entire surface of the second substrate is a p-type organic semiconductor film or n-type. It may be an organic semiconductor film, or may be a laminate containing a p-type organic semiconductor film and an n-type organic semiconductor film. Therefore, the second substrate can include a pn junction structure, a pnp junction structure, or an npn junction structure made of an organic semiconductor film.
  • solvent-soluble means substantially dissolving, decomposing, or swelling in an organic solvent, and substantially dissolving or decomposing in an organic solvent conventionally used in a coating method such as toluene and dichlorobenzene. , Or swelling.
  • At least a part of the surface of the second substrate in contact with the organic film preferably the entire surface of the second substrate in contact with the organic film, more preferably the entire surface of the second substrate may be non-heat resistant. Therefore, at least a part of the surface of the second substrate in contact with the organic membrane, preferably the entire surface of the second substrate in contact with the organic membrane, more preferably the entire second substrate, is, for example, pentafluorobenzenethiol (PFBT).
  • PFBT pentafluorobenzenethiol
  • a substrate having an electrode film such as Au modified with a self-assembled monolayer (SAM: self-assembled monolayer) such as SAM may be used.
  • the organic film can be arranged on such a modifying material having low heat resistance such as PFBT.
  • non-heat resistance preferably means that the glass transition point is 90 ° C. or lower, or sublimation, melting, or decomposition is performed at 90 ° C. or lower, and more preferably, the glass transition point is 120 ° C. or lower. It means sublimation, melting, or decomposition at 120 ° C or lower.
  • a hydrophobic organic film is coated on the first hydrophilic and water-insoluble substrate.
  • the organic film 20 on the first substrate 10 is pressed against the convex portion 31 of the stamp 30.
  • the stamp 30 has a convex portion 31 and a concave portion 32.
  • FIG. 2 shows an embodiment in which water or an aqueous solution is applied to the interface between the first substrate 10 and the organic film 20 by using a water or aqueous solution feeder 80 such as a dropper.
  • the organic film 21 transferred to the convex portion is pressed against the second substrate 40, and as shown in FIG. 5, the organic film 21 is transferred to the second substrate 40 and patterned. An organic film is obtained.
  • the second substrate 40 may have a hydrophobic membrane 42.
  • the stamp used in the manufacturing method of the present disclosure can be manufactured by using a mold.
  • the mold for making the stamp can be made by a conventional method. An example of a mold manufacturing method is shown below.
  • the substrate can be a substrate whose surface has been hydrophilized, and a glass substrate is preferable. Since the surface is hydrophilic, the adhesion of the photoresist can be improved.
  • the glass substrate is preferably Eagle glass.
  • the hydrophilic treatment can be carried out by a UV / O 3 treatment or plasma treatment to the glass substrate.
  • a photoresist solution is spin-coated on a glass substrate 52 having a hydrophilic surface, then heat-treated, and a predetermined pattern of mask is applied for exposure.
  • the photoresist is preferably SU-8.
  • SU-8 can form photoresists with heights of 10 ⁇ m and above and intervals of 1 ⁇ m and below or 100 nm and below.
  • the release layer may be formed by performing F-SAM treatment or the like by the vapor phase method, and the mold 50 of the glass substrate 52 on which the photoresist 54 provided with the release layer 56 is formed can be produced.
  • stamp making The stamp used in the production method of the present disclosure can be produced as follows using the produced mold 50. An example of a stamp manufacturing method is shown below.
  • a liquid stamp material 33 is dropped onto the mold 50, sandwiched between support substrates 57, a weight 58 is placed on the mold 50, and the weight 58 is placed on the mold 50.
  • the stamp 30 as shown can be produced.
  • the stamp material may be agitated and defoamed before being dropped onto the mold.
  • a peeling layer 34 such as CYTOP may be formed on the surface of the produced stamp.
  • the release layer is formed by spin-coating a solution containing the material of the release layer and then performing heat treatment.
  • the organic film can be, for example, an organic film such as PMMA, an organic semiconductor film, an organic semiconductor single crystal film, or an organic semiconductor polymer film.
  • the organic film is preferably an organic semiconductor film, more preferably an organic semiconductor single crystal film or an organic semiconductor polymer film, and further preferably an organic semiconductor single crystal film.
  • Organic semiconductors include p-type organic semiconductors, n-type organic semiconductors, or combinations thereof.
  • the average film thickness of the organic semiconductor single crystal film is 2 to 100 nm, preferably 4 to 20 nm. When the average film thickness of the organic semiconductor single crystal film is within the above range, good device characteristics can be obtained.
  • the average film thickness of the organic semiconductor single crystal film can be measured using a stylus type surface shape measuring instrument or an atomic force microscope.
  • the organic semiconductor single crystal film has preferably 1 to 50 molecular layers, more preferably 1 to 10 molecular layers, and further preferably 1 to 5 molecular layers in the thickness direction.
  • the organic semiconductor single crystal film preferably has one molecular layer, but may have two or more molecular layers in the thickness direction.
  • the number of molecular layers of the organic semiconductor single crystal film can be measured by an atomic force microscope.
  • the thickness of the single molecule layer of the organic semiconductor single crystal film is preferably 2 to 6 nm, more preferably 2 to 4 nm.
  • the thickness of the single molecule layer of the organic semiconductor single crystal film can be measured by combining single crystal X-ray structure analysis and atomic force microscope observation.
  • the organic semiconductor single crystal film is composed of a single domain or a multi-domain, preferably a single domain.
  • the domain of the organic semiconductor single crystal film can be measured by single crystal X-ray diffraction.
  • the organic semiconductor single-crystal film is preferably 0.0001 mm 2 or more, more preferably 0.0004 mm 2 or more, even more preferably 0.0009Mm 2 or more, even more preferably 0.0016Mm 2 or more, even more preferably 0.
  • the organic semiconductor single crystal film having the preferable area has a single domain can be confirmed by in-plane X-ray diffraction measurement in which the entire organic semiconductor single crystal film having the preferable area is irradiated with X-rays.
  • the area of the organic semiconductor single crystal layer may be the same as the area of the single domain.
  • a single domain is a continuous region in which the crystal orientations are aligned. It is preferable that the number of molecular layers is uniform in the single domain, but regions of different molecular layers may be included as long as the crystal orientations are uniform. For example, when a region of the three-molecule layer in which the layer having the same crystal orientation grows like a tree is included on a part of the region of the two-molecule layer having the same crystal orientation, the continuous region of the two-molecule layer and the three-molecule layer is included. Becomes a single domain.
  • the organic semiconductor single crystal film may incorporate a separated organic semiconductor single crystal film having the above-mentioned preferable continuous area single domain.
  • the organic semiconductor single crystal film having the above-mentioned preferable continuous area single domain may be separated into a plurality of pieces of the organic semiconductor single crystal film and incorporated into the organic semiconductor device. Since each organic semiconductor single crystal film is separated in the organic semiconductor device, it can be electrically isolated from other elements. It is confirmed by measuring by single crystal X-ray diffraction and electron beam diffraction and by observing with a polarizing microscope that each separated organic semiconductor single crystal film is obtained from a single crystal film in which the directions of crystal axes are aligned. can.
  • FIG. 34 shows a laser confocal microscope image of an array of 8 ⁇ 8 organic semiconductor single crystal films of 700 ⁇ m ⁇ 500 ⁇ m transferred and patterned by this method.
  • the portion surrounded by the square frame is one 700 ⁇ m ⁇ 500 ⁇ m organic semiconductor single crystal film, and the organic semiconductor single crystal film is arranged in 8 ⁇ 8 over the entire microscope image.
  • the distance between the organic semiconductor single crystal films is 500 ⁇ m in the horizontal direction and 300 ⁇ m in the vertical direction.
  • the in-plane X-ray diffraction measurement can be performed, for example, by irradiating the portion surrounded by the broken line portion with X-rays while rotating the substrate holding the organic semiconductor single crystal film shown in FIG. 34 by 360 degrees. As shown as an example in FIG.
  • each organic semiconductor single crystal film located in the portion surrounded by the broken line portion irradiated with X-rays will be formed. It is determined that the single crystal films are substantially all oriented in the same direction. If there is significant variation in crystal orientation, the diffraction peaks will not be one and multiple peaks will be observed.
  • the half width of the diffraction peak is preferably within ⁇ 1 degree, more preferably within ⁇ 0.5 degree.
  • the organic semiconductor single crystal film is preferably 0.1 cm 2 / V ⁇ s or more, more preferably 0.5 cm 2 / V ⁇ s or more, still more preferably 1.0 cm 2 / V ⁇ s or more, still more preferably 3 0.0 cm 2 / V ⁇ s or more, even more preferably 2.0 cm 2 / V ⁇ s or more, even more preferably 5.0 cm 2 / V ⁇ s or more, even more preferably 7.5 cm 2 / V ⁇ s or more. , Even more preferably , it exhibits a mobility of 10 cm 2 / V ⁇ s or more.
  • the mobility of the organic semiconductor single crystal film can be calculated from the measurement result of the organic field effect transistor.
  • the type of the organic semiconductor constituting the organic semiconductor single crystal film is not particularly limited, and for example, a polycyclic aromatic compound having four or more rings, one or more unsaturated five-membered heterocyclic compounds and a plurality of compounds.
  • a polycyclic compound having four or more rings with a benzene ring can be used.
  • the organic semiconductor constituting the organic semiconductor single crystal film is preferably a material having a high self-condensing function.
  • the p-type organic semiconductor Cn-DNBDT-NW of the following formula (1) showing high mobility is used. Can be mentioned.
  • n can be 1-14.
  • the self-condensing function means that when a molecule precipitates from a solvent, it spontaneously aggregates and tends to crystallize easily.
  • Organic semiconductors Other examples of organic semiconductors constituting the single crystal film are shown in the following equations (2) to (6).
  • R1 and R2 are independently hydrogen atoms or alkyl groups having 4 to 10 carbon atoms. Alkyl groups may contain heteroatoms (typically selected from oxygen and sulfur atoms). R1 and R2 can also be combined to form a ring.
  • R1 and R2 are preferably hydrogen atoms or alkyl groups having 5 to 8 carbon atoms, respectively. More preferably, R1 and R2 are independently hydrogen atoms or hexyl groups, respectively.
  • N represents an integer from 5 to 100.
  • n indicates the average number of thiophene monomer units in the polythiophene semiconductor, that is, the length of the polythiophene chain. From the viewpoint of forming a single crystal film, n is preferably 50 or less.
  • R3, R4, R5 and R6 are independently hydrogen atoms or alkyl groups having 1 to 14 carbon atoms.
  • the alkyl group may contain a hetero atom (typically selected from an oxygen atom and a sulfur atom), and the hydrogen atom in the alkyl group may be substituted with a substituent such as a halogen atom.
  • R4 R5 is preferable
  • R3 R6 is preferable.
  • R4 and R5 are hydrogen atoms and R3 and R6 are independently alkyl groups having 1 to 14 carbon atoms, or R3 and R6 are hydrogen atoms and R4.
  • R5 are independently alkyl groups having 1 to 14 carbon atoms. More preferably, R3 and R6 are hydrogen atoms, and R4 and R5 are independently alkyl groups having 1 to 14 carbon atoms. For reasons of self-aggregating ability, the alkyl group preferably has 4 to 12 carbon atoms, more preferably 6 to 10 carbon atoms.
  • R7, R8, R9 and R10 are independently hydrogen atoms or alkyl groups having 1 to 14 carbon atoms.
  • the alkyl group may contain a hetero atom (typically selected from an oxygen atom and a sulfur atom), and the hydrogen atom in the alkyl group may be substituted with a substituent such as a halogen atom.
  • R7 and R9 are hydrogen atoms and R8 and R10 are independently alkyl groups having 1 to 14 carbon atoms, or R8 and R10 are hydrogen atoms and R7.
  • R9 are independently alkyl groups having 1 to 14 carbon atoms. More preferably, R8 and R10 are hydrogen atoms, and R7 and R9 are independently alkyl groups having 1 to 14 carbon atoms. For reasons of self-aggregating ability, the alkyl group preferably has 6 to 13 carbon atoms, more preferably 8 to 10 carbon atoms.
  • R11, R12, R13 and R14 are independently hydrogen atoms or alkyl groups having 1 to 14 carbon atoms.
  • the alkyl group may contain a hetero atom (typically selected from an oxygen atom and a sulfur atom), and the hydrogen atom in the alkyl group may be substituted with a substituent such as a halogen atom.
  • R11 and R13 are hydrogen atoms and R12 and R14 are independently alkyl groups having 1 to 14 carbon atoms, or R12 and R14 are hydrogen atoms and R11.
  • R13 are independently alkyl groups having 1 to 14 carbon atoms. More preferably, R12 and R14 are hydrogen atoms, and R11 and R13 are independently alkyl groups having 1 to 14 carbon atoms. For reasons of self-aggregating ability, the alkyl group preferably has 5 to 12 carbon atoms, more preferably 8 to 10 carbon atoms.
  • R15, R16, R17 and R18 are independently hydrogen atoms or alkyl groups having 1 to 14 carbon atoms.
  • the alkyl group may contain a hetero atom (typically selected from an oxygen atom and a sulfur atom), and the hydrogen atom in the alkyl group may be substituted with a substituent such as a halogen atom.
  • R15 R17 is preferable
  • R16 R18 is preferable.
  • R16 and R18 are hydrogen atoms and R15 and R17 are independently alkyl groups having 1 to 14 carbon atoms, or R15 and R17 are hydrogen atoms and R16.
  • R18 are independently alkyl groups having 1 to 14 carbon atoms. More preferably, R16 and R18 are hydrogen atoms, and R15 and R17 are independently alkyl groups having 1 to 14 carbon atoms. For reasons of self-aggregating ability, the alkyl group preferably has 5 to 12 carbon atoms, more preferably 8 to 10 carbon atoms.
  • R may be linear alkyl, branched alkyl, fluorinated linear / branched alkyl, triisopropylsilylethynyl, phenyl or the like.
  • n-type organic semiconductors of NDI, PDI, BTDI, and BQQDI represented by the formulas (16) to (19) are aligned in the long axis direction of the main chain, but have a twisted laminated structure for each molecular layer.
  • R linear alkyl, branched alkyl, fluorinated linear / branched alkyl, triisopropylsilylethynyl, phenyl and the like can be used.
  • Equations (20) to (26) show another example of the side chain.
  • the main chain is BQQDI, which is an n-type organic semiconductor, but the main chain may be other than BQQDI, for example, NDI or PDI, and the formulas (7) to (15). It may be the described main chain.
  • Formula (20) is an example of a phenylethyl group in the side chain
  • formula (21) is an example of an aliphatic alkyl group in the side chain
  • formula (22) is an example of an aliphatic cyclic alkyl group in the side chain.
  • Formula (23) is an example of an aliphatic chain + cyclic alkyl group in the side chain
  • formula (24) is an example of an aromatic group in the side chain
  • formula (26) is an example of an alkyl + aromatic side chain. It is an example of a (+ halogen) group
  • the formula (26) is an example in which the side chain is an alkyl + halogen group and a functional group is also added to the BQQDI core.
  • the average film thickness of the organic semiconductor polymer film is 1 nm to 1 ⁇ m, preferably 3 to 200 nm. When the average film thickness of the organic semiconductor polymer film is within the above range, good device characteristics can be obtained.
  • the average film thickness of the organic semiconductor polymer film can be measured using a stylus type surface shape measuring instrument or an atomic force microscope.
  • the organic semiconductor polymer film is preferably 0.005cm 2 / V ⁇ s or more, more preferably 0.05cm 2 / V ⁇ s or more, more preferably 0.5cm 2 / V ⁇ s or more, even more preferably 5 cm 2 It exhibits mobility of / V ⁇ s or more, and even more preferably 10 cm 2 / V ⁇ s or more.
  • the mobility of the organic semiconductor polymer film can be calculated from the measurement result of the organic field effect transistor.
  • the organic semiconductor polymer film is a P-type semiconductor
  • the P-type polymer semiconductor is dissolved in a solvent
  • the organic semiconductor polymer film is an N-type semiconductor
  • the N-type polymer semiconductor is dissolved in the solvent. do.
  • the P-type polymer semiconductor those obtained by polymerizing or copolymerizing thiophene, thiadiazole, diketopyrrolopyrrole, or the like can be used.
  • the N-type polymer semiconductor those obtained by polymerizing or copolymerizing naphthalene diimide, perylene diimide, thiophene and the like can be used.
  • the solvent dichlorobenzene, toluene, acetonitrile, butyl acetate, fluoroalcohol and the like can be used.
  • the present disclosure also includes a stamp arranging portion configured to arrange a stamp having a convex portion and a concave portion, and a first structure capable of arranging a hydrophilic and water-insoluble first substrate having an organic film on the surface.
  • the substrate arranging portion of the above, the second substrate arranging portion configured so that the second substrate can be arranged, and the organic film on the first substrate are pressed against the convex portion of the stamp, and the organic film is pressed onto the convex portion.
  • a first drive unit configured so that at least one of the first substrate and the stamp can be moved so as to separate the first substrate from the organic film arranged on the convex portion and the convex portion.
  • a first control unit configured to control the force of pressing the organic film on the first substrate against the convex portion of the stamp, water or an aqueous solution at the interface between the organic film and the first substrate.
  • a water or aqueous solution supply unit configured to supply, an organic film arranged on the convex portion of the stamp is pressed against the second substrate, and a patterned organic film is arranged on the second substrate.
  • a second drive unit configured to move at least one of the stamp and the second substrate so as to separate the stamp from the patterned organic film disposed on the second substrate.
  • a device for producing a patterned organic film which comprises a second control unit configured to control a force for pressing an organic film arranged on a convex portion of the stamp against the second substrate is targeted. ..
  • FIG. 28 shows a schematic cross-sectional view when the stamp 30, the first substrate 10, the organic film 20 arranged on the stamp 30, and the second substrate 40 are arranged in the manufacturing apparatus 100 of the present disclosure.
  • the stamp 30 is arranged in the stamp arranging portion 90
  • the first substrate 10 is arranged in the first substrate arranging portion 91
  • the second substrate 40 is arranged in the second substrate arranging portion 92.
  • the first substrate arrangement portion 91 and the second substrate arrangement portion 92 may be separate or integrated.
  • the first substrate arranging portion 91 may be integrated with the manufacturing apparatus 100 or may be separated from the manufacturing apparatus 100.
  • the second substrate arranging portion 92 may be integrated with the manufacturing apparatus 100 or may be separated from the manufacturing apparatus 100.
  • the manufacturing apparatus 100 includes a first drive unit 93.
  • the first driving unit 93 presses the organic film 20 on the first substrate 10 against the convex portion of the stamp 30, arranges the organic film 20 on the convex portion, and is the first from the organic film arranged on the convex portion.
  • At least one of the first substrate 10 and the stamp 30 is configured to be movable so as to separate the substrates 10.
  • FIG. 28 is an example in which the first drive unit 93 can move both the first substrate 10 and the stamp 30.
  • the manufacturing apparatus 100 includes a first control unit 94 configured such that the first drive unit 93 controls the force of pressing the organic film 20 on the first substrate 10 against the convex portion of the stamp 30.
  • the manufacturing apparatus 100 includes a water or aqueous solution supply unit 80 configured to supply water or an aqueous solution to the interface between the organic film 20 and the first substrate 10.
  • the manufacturing apparatus 100 includes a second drive unit 95.
  • the organic film on the convex portion of the stamp 30 is pressed against the second substrate 40, and the patterned organic film is arranged on the second substrate 40 and arranged on the second substrate 40.
  • At least one of the stamp 30 and the second substrate 40 is configured to be movable so as to separate the stamp from the patterned organic film.
  • FIG. 28 is an example in which the second drive unit 95 can move both the stamp 30 and the second substrate 40.
  • the manufacturing apparatus 100 includes a second control unit 96 configured to control the force with which the second drive unit 95 presses the organic film on the convex portion of the stamp 30 against the second substrate 40.
  • At least one of the stamp arranging portion 90, the first substrate arranging portion 91, and the second substrate arranging portion 92 can move in the direction perpendicular to the pressing direction.
  • At least one of the first drive unit 93 and the second drive unit 95 is a drive unit that moves at least one of the stamp arrangement unit 90, the first board arrangement unit 91, and the second board arrangement unit 92.
  • the manufacturing apparatus 100 may have, apart from the first drive unit 93 and the second drive unit 95, the stamp arrangement unit 90, the first substrate arrangement unit 91, and the second substrate arrangement unit 92.
  • a drive unit for moving at least one of them may be provided.
  • the first drive unit 93 and the second drive unit 95 may be integrated or separate.
  • the first control unit 94 and the second control unit 96 may be integrated or separate.
  • the first control unit is configured to control the distribution of the pressing force in the plane of the organic film when the organic film on the first substrate is pressed against the convex portion.
  • the second control unit is configured to control the distribution of the pressing force in the plane of the organic film when the organic film arranged on the convex portion of the stamp is pressed against the second substrate. ..
  • the manufacturing apparatus 100 includes a water or aqueous solution amount adjusting unit configured so that the amount of water or aqueous solution supplied by the water or aqueous solution supply unit can be adjusted.
  • the amount adjusting unit of water or an aqueous solution may automatically adjust the valve opening degree according to the flow rate set value.
  • the manufacturing apparatus 100 recognizes the position of the interface between the organic film that supplies water or the aqueous solution and the first substrate, and can adjust the position of the water or aqueous solution supplied by the water or aqueous solution supply unit. It is equipped with an adjustment unit.
  • the position of the interface between the organic film and the first substrate may be recognized by image processing such as binarization processing by a camera.
  • the manufacturing apparatus 100 includes a first alignment unit that controls a position where the organic film on the first substrate is pressed against the convex portion of the stamp.
  • the alignment in the first alignment portion is based on the edge of the first substrate or the edge of the organic film and the edge of the stamp, and the marking on the first substrate or the organic film and the marking on the stamp. It can be an alignment, a combination thereof, or the like.
  • the detection of the reference position can be detection by image processing such as binarization, mechanical contact detection, or the like.
  • the manufacturing apparatus 100 includes a second alignment unit that controls a position where the organic film on the convex portion of the stamp is pressed against the second substrate.
  • the alignment in the second alignment portion is based on the edge of the stamp or the edge of the organic film and the edge of the second substrate, the marking on the stamp or the organic film, and the marking on the second substrate. It can be an alignment, a combination thereof, or the like.
  • the detection of the reference position can be detection by image processing such as binarization, mechanical contact detection, or the like.
  • the first alignment unit and the second alignment unit may be common.
  • the first alignment unit and the second alignment unit may include a configuration of a conventionally used alignment device such as a camera, a processing unit, a storage unit, and a communication unit capable of transmitting and receiving data.
  • FIG. 39 shows an external photograph of an example of the manufacturing apparatus of the present disclosure.
  • the manufacturing apparatus includes a stamp arranging unit 90, a first substrate arranging unit 91, a second substrate arranging unit 92, and an alignment camera.
  • the four alignment cameras provided in the manufacturing apparatus of FIG. 39 function as cameras of the first alignment unit and the second alignment unit.
  • the content relating to the organic film in the method for manufacturing the patterned organic film can be applied.
  • the contents relating to the stamp, the first substrate, and the second substrate in the method for producing the patterned organic film are applied, respectively. can do.
  • the present disclosure also relates to an organic semiconductor device comprising a substrate and a patterned organic film on the substrate, wherein the organic film is hydrophobic and at least one of the organic film and the substrate is an organic semiconductor. And.
  • the substrate in the organic semiconductor device is preferably not damaged by the patterning of the organic film.
  • FIG. 24 shows a schematic cross-sectional view of the substrate 40 included in the organic semiconductor device of the present disclosure and the patterned organic film 21 on the substrate.
  • a field effect transistor for example, a bottom gate / top contact type field effect transistor illustrated in FIGS. 12 and 17 can be manufactured. Can be done.
  • No damage due to patterning of the organic film means that there is no damage due to patterning of the organic film on the substrate, which has been conventionally performed.
  • patterning is performed on the substrate, but the surface of the substrate is altered or decomposed by plasma treatment, laser etching, etching solvent treatment, etc. when etching the organic film. obtain.
  • the patterned organic film is transferred onto the substrate. Substantially no alteration or decomposition occurs due to patterning of the organic film.
  • Substantially no alteration or decomposition means that the substrate is not substantially dissolved or swollen by the photoresist, developer, etching solution, stripping solution, etc. used in the photolithography process of the organic film in the prior art.
  • the surface of the substrate is not deteriorated or decomposed by plasma treatment during etching of the organic film, and that the substrate is not expanded or contracted by heat treatment during the photolithography process of the organic film in the prior art.
  • the patterned organic film is also not damaged by the patterning of the organic film. That is, preferably, the above-mentioned alteration or decomposition associated with the patterning of the organic film does not substantially occur even in the patterned organic film.
  • the organic semiconductor device of the present disclosure preferably includes electrodes on at least a part between the substrate and the organic film, at least a part on the opposite side of the organic film from the substrate, or both of them.
  • FIG. 25 shows a schematic cross-sectional view of an organic semiconductor device provided with an electrode 60 between the substrate 40 and the organic film 21.
  • FIG. 27 shows a schematic cross-sectional view of an organic semiconductor device provided with an electrode 60 on the side opposite to the substrate 40 with respect to the organic film 21.
  • the thickness of the electrode is preferably 10 to 50 nm.
  • FIGS. 29 to 32 show typical transistor structures that can be taken by the organic semiconductor device of the present disclosure.
  • FIG. 29 is a schematic cross-sectional view of the top gate / top contact structure.
  • FIG. 30 is a schematic cross-sectional view of the top gate / bottom contact structure.
  • FIG. 31 is a schematic cross-sectional view of the bottom gate / top contact structure.
  • FIG. 32 is a schematic cross-sectional view of the bottom gate / bottom contact structure.
  • the structure that the organic semiconductor device of the present disclosure can have is not limited to the configuration shown in FIGS. 29 to 32, and for example, even if a layer such as a sealing film is further present on the uppermost layer of the structure shown in FIGS. 29 to 32. good.
  • the organic semiconductor device of the present disclosure preferably includes a space between the substrate, the organic film, and the electrode.
  • FIG. 26 shows a schematic cross-sectional view of an organic semiconductor device provided with a space 70 between the substrate 40, the organic film 21, and the electrode 60. By forming the bridging structure as shown in FIG. 26, it can function as an insulating layer of the transistor.
  • the width of the space is preferably 500 nm to 5 ⁇ m.
  • the organic semiconductor device of the present disclosure is an organic complementary type including an organic EL (electroluminescence) element, an organic solar cell element, an organic photoelectric conversion element, an organic transistor element, an organic field effect transistor element, a p-type organic transistor and an n-type organic transistor. It can be a semiconductor device (organic CMOS or organic CMOS logic circuit), an inorganic-organic hybrid complementary semiconductor device including an organic transistor and an inorganic transistor, and the like.
  • the content relating to the organic film in the method for producing the patterned organic film can be applied.
  • the configuration of the substrate in the organic semiconductor device of the present disclosure the content relating to the second substrate in the method for producing a patterned organic film can be applied.
  • the integrated circuit can be obtained using the organic semiconductor device of the present disclosure.
  • the integrated circuit may include preferably 10 or more transistors, more preferably 100 or more, still more preferably 1000 or more, and even more preferably 10000 or more.
  • Integrated circuits include AND, OR, NOT, NAND, NOR, XOR, and XNOR logic gates.
  • An example of an integrated circuit is a D flip-flop (DFF) circuit, which is a type of sequential circuit that stores past inputs and determines outputs.
  • DFF D flip-flop
  • Example 1 (Molding) It was hydrophilized by a UV / O 3 treatment Eagle glass substrate for 10 minutes. Next, SU-8, a photoresist, was spin-coated on the hydrophilized glass substrate.
  • a glass substrate spin-coated with SU-8 was heat-treated at 95 ° C for 6 minutes, masked with a predetermined pattern, UV-exposed, and further heat-treated at 95 ° C for 3 minutes.
  • SU-8 was then developed with propylene glycol monomethyl acetate (PGMEA) for 3 minutes and heat treated at 170 ° C. for 30 minutes.
  • PGMEA propylene glycol monomethyl acetate
  • a self-assembled monolayer is formed on a glass substrate obtained by developing and heat-treating SU-8 by performing F-SAM treatment for 3.5 hours by the vapor phase method, and a photoresist having a self-assembled monolayer on its surface.
  • a glass mold having the above was produced.
  • the PDMS (main agent: SIM-360, curing agent: CAT-360, manufactured by Shin-Etsu Chemical Co., Ltd.) liquid was stirred and defoamed using Awatori Rentaro.
  • the PDMS solution that was stirred and defoamed was dropped onto the prepared mold, an Eagle glass substrate was placed on the PDMS, a weight was placed on the Eagle glass substrate, and the mixture was allowed to stand, and the PDMS was heat-cured at 150 ° C. for 30 minutes. rice field.
  • the mold was peeled off from PDMS to prepare a stamp.
  • the produced stamp has 100 convex parts, the width of the convex part is 500 ⁇ m, the length of the convex part is 700 ⁇ m, the distance between adjacent convex parts is 500 ⁇ m, and the uppermost part of the convex part and the minimum of the concave part. The distance between the parts was 7 ⁇ m.
  • the surface of the UV / O 3 treatment Eagle glass substrate hydrophilic by (hereinafter, also referred to as a glass substrate) was prepared.
  • the prepared organic semiconductor solution is applied by a continuous edge casting method on a glass substrate heated to 90 ° C. to form an organic semiconductor single crystal film having an average thickness of 12 nm, an area of 80 cm 2 , and a single domain area of 1000 mm 2. bottom.
  • the contact angle of water on the surface of the organic semiconductor single crystal film was 108 degrees.
  • a parylene / SiO 2 / n-topped Si substrate on which parylene (diX-SR (registered trademark)) was formed was prepared.
  • a patterned organic semiconductor single crystal film was produced using the manufacturing apparatus schematically shown in FIG. 28.
  • a stamp is arranged in the stamp arrangement portion, a first substrate formed by forming an organic semiconductor single crystal film (hereinafter, also referred to as a semiconductor film) is arranged in the first substrate arrangement portion, and a second substrate is arranged in the second substrate arrangement portion. 2 substrates were placed.
  • a first substrate formed by forming an organic semiconductor single crystal film hereinafter, also referred to as a semiconductor film
  • FIG. 1 shows a polarizing microscope image of the semiconductor film transferred on the PDMS stamp.
  • FIG. 10 shows a scanning electron microscope (SEM) image in which the semiconductor film transferred onto the convex and concave portions of the PDMS stamp is observed from diagonally above.
  • the stamp is pressed against the second substrate at a pressure of 100 kPa per convex portion of the stamp so that the semiconductor film transferred onto the convex portion of the stamp and the parylene on the second substrate are in contact with each other.
  • the patterned semiconductor film is arranged on the second substrate, and the stamp is separated from the semiconductor film arranged on the second substrate to obtain the patterned organic semiconductor single crystal film 21 schematically shown in FIG. rice field.
  • FIG. 11 shows a polarizing microscope image of the transferred organic semiconductor film 21 observed from above.
  • the obtained organic semiconductor single crystal film was formed by being finely patterned, and had 100 patterns having a thickness of 8 nm, a width of 500 ⁇ m, and an interval of 500 ⁇ m between the semiconductor films.
  • an S / D electrode (source / drain electrode) (source / drain electrode) is used on an organic semiconductor single crystal film of C 9- DNBDT-NW arranged on a parylene / SiO 2 / n-topped Si substrate using a metal mask.
  • An Au electrode having a length of 0.4 mm, a width of 2 mm, and a height of 40 nm was formed by vacuum vapor deposition to prepare a bottom gate top contact (BGTC) type organic field effect transistor (OFET).
  • the channel length L was 100 ⁇ m and the channel width W was 500 ⁇ m.
  • the channel length is the distance between two electrodes (S / D electrodes).
  • FIG. 13 shows a polarizing microscope image observed from the upper surface of the produced BGTC type OFET.
  • FIG. 14 is a graph of transmission characteristics showing the relationship between the gate voltage and the drain current in the saturation region of the produced BGTC type OFET
  • FIG. 15 is a graph of the transmission characteristics showing the relationship between the gate voltage and the drain current in the linear region.
  • FIG. 16 shows a graph of output characteristics showing the relationship between the drain voltage and the drain current due to the gate voltage.
  • the mobility in the saturated region was 10.7 cm 2 / V ⁇ s
  • the mobility in the linear region was 9.92 cm 2 / V ⁇ s, showing a very large mobility.
  • Example 2 Patterning was performed in the same manner as in Example 1 except that a CYTOP (registered trademark) / SiO 2 / n-doped Si substrate was used as the second substrate instead of the parylene / SiO 2 / n-topped Si substrate. An organic semiconductor single crystal film was obtained.
  • CYTOP registered trademark
  • the obtained organic semiconductor single crystal film 21 was formed by being neatly patterned, and had 100 patterns having a thickness of 8 nm, a width of 500 ⁇ m, and a distance between semiconductor films of 500 ⁇ m.
  • an S / D electrode (S / D electrode (registered trademark) / SiO 2 / n-topped Si substrate placed on a C 9- DNBDT-NW organic semiconductor single crystal film using a metal mask is used.
  • An Au electrode having a length of 0.4 mm, a width of 2 mm, and a height of 40 nm was formed as a source / drain electrode by vacuum vapor deposition to prepare a bottom gate top contact (BGTC) type organic field effect transistor (OFET).
  • the channel length L was 100 ⁇ m and the channel width W was 500 ⁇ m.
  • FIG. 18 shows a polarizing microscope image observed from the upper surface of the produced BGTC type OFET.
  • FIG. 19 shows a graph of transmission characteristics showing the relationship between the gate voltage and the drain current in the saturation region of the produced BGTC type OFET
  • FIG. 20 shows a graph of the transmission characteristics showing the relationship between the gate voltage and the drain current in the linear region.
  • FIG. 21 shows a graph of output characteristics showing the relationship between the drain voltage and the drain current due to the gate voltage. Mobility in the saturated region 7.18cm 2 / V ⁇ s, the mobility in the linear region indicates 16.8cm 2 / V ⁇ s, showed a very large mobility.
  • Example 3 As the second substrate, a trimethoxy (2-phenylethyl) silane ( ⁇ -PTS) / SiO 2 / n-doped Si substrate was used instead of the parylene / SiO 2 / n-topped Si substrate, and the convex portion An organic semiconductor single crystal film patterned by the same method as in Example 1 was obtained except that stamps having widths of 20 ⁇ m, 40 ⁇ m, 50 ⁇ m, 100 ⁇ m, and 150 ⁇ m were used.
  • stamps having widths of 20 ⁇ m, 40 ⁇ m, 50 ⁇ m, 100 ⁇ m, and 150 ⁇ m were used.
  • FIG. 22 shows a polarizing microscope image of the organic semiconductor single crystal film 21 transferred onto the second substrate observed from above.
  • the obtained organic semiconductor single crystal film is formed by being finely patterned, has a thickness of 8 nm, a width of 15 ⁇ m, 35 ⁇ m, 45 ⁇ m, 95 ⁇ m, and 145 ⁇ m, a length of 800 ⁇ m, and a distance between semiconductor films of 100 ⁇ m. It was a pattern.
  • Example 4 As the second substrate, a ⁇ -PTS / SiO 2 / n-topped Si substrate was used instead of the parylene / SiO 2 / n-topped Si substrate, and the distance between the convex portions was 5 ⁇ m and 10 ⁇ m.
  • An organic semiconductor single crystal film patterned by the same method as in Example 1 was obtained except that the stamps of 20 ⁇ m and 30 ⁇ m were used.
  • FIG. 23 shows a polarizing microscope image of the organic semiconductor single crystal film 21 transferred onto the second substrate observed from above.
  • the obtained organic semiconductor single crystal film is formed by finely patterning, and has a thickness of 8 nm, a width of 200 ⁇ m, a length of 800 ⁇ m, and a pattern in which the distance between the semiconductor films is 10 ⁇ m, 15 ⁇ m, 25 ⁇ m, and 35 ⁇ m. there were.
  • Example 5 As the second substrate, a 4-inch diameter parylene / SiO 2 / n-topped Si substrate is used, the thickness is 4 to 20 nm, the width is 50 to 9000 ⁇ m, the length is 10 to 1300 ⁇ m, and the distance between the semiconductor films is large.
  • a patterned organic semiconductor single crystal film was obtained in the same manner as in Example 1 except that 4700 patterned organic semiconductor single crystal films of 2 to 10000 ⁇ m were formed.
  • FIG. 33 shows an external photograph of the obtained 4-inch wafer having the patterned semiconductor organic film.
  • Example 6 A Si substrate is used as the second substrate, and a 700 ⁇ m ⁇ 500 ⁇ m organic semiconductor single crystal film is patterned on the Si substrate as an 8 ⁇ 8 array at intervals of 500 ⁇ m in the horizontal direction and 300 ⁇ m in the vertical direction.
  • a patterned organic semiconductor single crystal film was obtained in the same manner as in Example 1 except that 64 crystal films were formed.
  • FIG. 34 shows a laser confocal microscope image of the obtained 8 ⁇ 8 organic semiconductor single crystal film array.
  • the portion surrounded by the square frame is one 700 ⁇ m ⁇ 500 ⁇ m organic semiconductor single crystal film, and the organic semiconductor single crystal film is arranged in 8 ⁇ 8 over the entire microscope image.
  • FIG. 35 shows in-plane X-ray diffraction (SmartLab, Rigaku Co., Ltd.) measured by rotating the substrate holding the organic semiconductor single crystal film 360 degrees while irradiating the portion surrounded by the broken line in FIG. 34 with X-rays.
  • One diffraction peak was observed with a period of 180 degrees, and it was found that the organic semiconductor single crystal films in the broken line portion were substantially all single crystal films oriented in the same direction. It was suggested that the orientation of the crystals of the organic semiconductor single crystal film located in the portion surrounded by the broken line in FIG. 34 was included within ⁇ 1 degree.
  • FIG. 35 shows in-plane X-ray diffraction (SmartLab, Rigaku Co., Ltd.) measured by rotating the substrate holding the organic semiconductor single crystal film 360 degrees while irradiating the portion surrounded by the broken line in FIG. 34 with X-rays.
  • FIG. 36 shows an enlarged view of the 020 diffraction line of the C 9- DNBDT-NW organic semiconductor single crystal surrounded by the broken line portion of FIG. 35.
  • the full width at half maximum of the peak in FIG. 36 was calculated, it was 0.535 degrees, and a very sharp peak was obtained.
  • Example 7 Manufacturing of n-type TFT
  • An Al film having a thickness of 30 nm was formed by electron beam deposition on the entire surface of the heat-treated and washed PEN substrate.
  • the gate electrode was patterned on the formed Al film by a photolithography process.
  • the photolithography process was carried out in the following procedure.
  • AZ 5214E (MicroChemicals), which is a positive photoresist, was spin-coated on the Al film under the conditions of slope 1 second, 500 rpm for 5 seconds, 3000 rpm for 40 seconds, and 5000 rpm for 2 seconds, and spin-coated PEN.
  • the substrate was heat treated on a hot plate at 105 ° C. for 70 seconds.
  • the PEN substrate having the developed resist was immersed in a mixed acid Al etching solution (Kanto Chemical Co., Inc.) to perform wet etching of the Al film, and the resist was peeled off using AZ (registered trademark) 100 Remover.
  • the resist residue was removed by UV / O 3 treatment for 5 minutes, and a 120 nm-thick parylene (diX-SR®) was formed by a CVD method to form a gate insulating film.
  • a 10 cm square PDMS stamp having a pattern for an n-type semiconductor was produced by the same method as in Example 1.
  • organic semiconductor prepared n-type organic semiconductor PhC 2 -BQQDI powder of the above formula (20), in the same manner as in Example 1, to prepare an organic semiconductor solution, the average thickness of the first substrate An organic semiconductor single crystal film having an area of 10 nm, an area of 15 cm 2 , and a single domain area of 10 mm 2 was formed.
  • a patterned organic semiconductor single crystal film was produced using the manufacturing apparatus shown in FIG. 39.
  • the PDMS stamp produced is arranged in the stamp arrangement portion, the first substrate formed by forming an organic semiconductor single crystal film (hereinafter, also referred to as a semiconductor film) is arranged in the first substrate arrangement portion, and the second substrate arrangement is performed.
  • a second substrate was placed in the section.
  • the first substrate was pressed against the produced stamp at a pressure of 10 kPa per area of the convex portion of the stamp so that the convex portion of the stamp was in contact with the semiconductor film.
  • a 30 wt% ethanol aqueous solution is dropped on the interface between the first substrate and the semiconductor film, and the semiconductor film is placed on the convex portion of the stamp and placed on the convex portion.
  • the first substrate was separated from the semiconductor film.
  • a PEN substrate on which a gate electrode and a gate insulating film were formed was placed in the second substrate placement portion of FIG. 39, and a PDMS stamp with a semiconductor film transferred was placed in the stamp placement portion.
  • the position of the second substrate was moved to an appropriate position while observing the alignment marks placed on each of the gate electrode layer and the PDMS stamp with the cameras installed at the four corners of the stamp adsorption stage.
  • the semiconductor film transferred onto the convex portion of the PDMS stamp and the parylene on the second substrate are brought into contact with the second substrate.
  • the stamp was pressed for 30 seconds to dispose the patterned semiconductor film on the second substrate, and the stamp was separated from the semiconductor film arranged on the second substrate to obtain a patterned organic semiconductor single crystal film 21. .. Drying was performed in a vacuum oven at 80 ° C. for 10 hours.
  • the obtained organic semiconductor single crystal film is formed by being finely patterned, and has 264 patterns having a thickness of 6 to 20 nm, a width of 250 ⁇ m, a length of 120 to 200 ⁇ m, and a distance between semiconductor films of 20 to 200 ⁇ m. Met.
  • FIG. 37 shows a schematic cross-sectional view of the obtained BGTC type OFET.
  • FIG. 38 shows a graph of transmission characteristics showing the relationship between the gate voltage and the drain current in the saturation region of the produced BGTC type OFET, a graph of the transmission characteristics showing the relationship between the gate voltage and the drain current in the linear region, and the gate voltage.
  • a graph of output characteristics showing the relationship between the drain voltage and the drain current is shown. Mobility in the saturated region 0.18cm 2 / V ⁇ s, the mobility in the linear region showed 0.22cm 2 / V ⁇ s.
  • Example 8 Using stamps with convex widths of 20 ⁇ m, 40 ⁇ m, 50 ⁇ m, 100 ⁇ m, 150 ⁇ m, and 200 ⁇ m, the pressing pressure of the stamp on the first substrate is 10 kPa per convex area of the stamp, and the stamp on the second substrate.
  • An organic semiconductor single crystal film patterned by the same method as in Example 3 was obtained except that the pressing pressure was 50 kPa per convex portion of the stamp.
  • FIG. 40 shows a polarizing microscope image of the organic semiconductor single crystal film 21 transferred onto the second substrate observed from above.
  • the obtained organic semiconductor single crystal film is formed by being finely patterned, and has a thickness of 12 nm, a width of 20 ⁇ m, 40 ⁇ m, 50 ⁇ m, 100 ⁇ m, 150 ⁇ m, and 200 ⁇ m, a length of 800 ⁇ m, and a distance between the semiconductor films.
  • the pattern was 100 ⁇ m.
  • Example 9 Using stamps with a protrusion-to-convex spacing of 1 ⁇ m, 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, and 20 ⁇ m, the stamp pressing pressure on the first substrate is 10 kPa per area of the convex portion of the stamp, onto the second substrate.
  • An organic semiconductor single crystal film patterned by the same method as in Example 4 was obtained except that the pressing pressure of the stamp was set to 50 kPa per the area of the convex portion of the stamp.
  • FIG. 41 shows a polarizing microscope image of the organic semiconductor single crystal film 21 transferred onto the second substrate observed from above.
  • the obtained organic semiconductor single crystal film is formed by being finely patterned, and has a thickness of 12 nm, a width of 800 ⁇ m, a length of 200 ⁇ m, and a distance between the semiconductor films of 1 ⁇ m, 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, and 20 ⁇ m. It was a pattern.
  • Example 10 Using stamps with protrusions of 60 ⁇ m square, 80 ⁇ m square, 100 ⁇ m square, 300 ⁇ m square, and 500 ⁇ m square, the pressing pressure of the stamp on the first substrate is 10 kPa per area of the convex portion of the stamp, on the second substrate.
  • An organic semiconductor single crystal film patterned by the same method as in Example 4 was obtained except that the pressing pressure of the stamp was set to 50 kPa per the area of the convex portion of the stamp.
  • FIG. 42 shows a polarizing microscope image of the organic semiconductor single crystal film 21 transferred onto the second substrate observed from above.
  • the obtained organic semiconductor single crystal film was formed by being finely patterned, and had a thickness of 8 to 12 nm and had patterns of 60 ⁇ m square, 80 ⁇ m square, 100 ⁇ m square, 300 ⁇ m square, and 500 ⁇ m square.
  • Example 11 Using stamps with 30 ⁇ m square, 40 ⁇ m square, and 50 ⁇ m square, the convex portion stamps the stamp pressing pressure on the first substrate at 10 kPa per area of the stamp convex portion, and the stamp pressing pressure on the second substrate.
  • FIG. 43 shows a polarizing microscope image of the organic semiconductor single crystal film 21 transferred onto the second substrate observed from above.
  • the obtained organic semiconductor single crystal film was formed by being finely patterned, and had a thickness of 8 to 12 nm and a pattern of 30 ⁇ m square, 40 ⁇ m square, and 50 ⁇ m square.
  • Example 12 CMOS logic circuit: fabrication of NOT, NOR, NAND, and DFF circuits
  • An Al gate electrode having a thickness of 30 nm and a gate insulating film of parylene (diX-SR®) having a thickness of 120 nm were formed on the PEN substrate in the same manner as in Example 7.
  • n-type organic semiconductor PhC 2 -BQQDI film was transferred with an n-type stamp.
  • the obtained p-type organic semiconductor single crystal film was formed by being finely patterned, and had a thickness of 8 to 12 nm, a width of 80 ⁇ m, and a length of 124 to 200 ⁇ m.
  • the obtained n-type organic semiconductor single crystal film was also formed by being finely patterned, and had a thickness of 10 to 12 nm, a width of 250 ⁇ m, and a length of 120 to 200 ⁇ m.
  • FIG. 48 shows a schematic cross-sectional view of the manufactured device.
  • FIG. 49 a D flip-flop using a NOT, NOR, NAND, and a 2to1 selector composed of the organic complementary semiconductor device shown in FIG. 48 within an area of 3 mm ⁇ 5 mm on a flexible PEN substrate ( DFF) circuit was made.
  • FIG. 44 shows a circuit diagram of the manufactured DFF circuit.
  • FIG. 45 shows a truth table of the negative edge trigger type DFF.
  • the Data signal is read into the output Q only when the Clock signal changes from H to L, and the Data signal is not reflected in the output Q when switching from L to H or at any other timing. I was able to confirm the retained operation. Further, as the output QB, a signal obtained by inverting the output Q was obtained. Therefore, it can be said that the negative edge trigger type DFF has been successfully manufactured on the PEN substrate which is a flexible substrate.
  • First substrate 20 Organic film 21 Patterned organic film 22 Organic film on recess 30 Stamp 31 Convex part of stamp 32 Concave part of stamp 33 Liquid stamp material 40 Second substrate 42 Hydrophobic film 50 Mold 52 Mold preparation Substrate 54 Photoresist 56 Peeling layer 57 Support substrate 58 Weight 60 Electrode 70 Space 80 Water or aqueous solution feeder, or water or aqueous solution supplier 82 Water or aqueous solution 90 Stamp placement part 91 First board placement part 92 Second Board arrangement unit 93 First drive unit 94 Control unit 95 Second drive unit 96 Second control unit 100 Manufacturing equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)

Abstract

本開示は、有機半導体膜にダメージを与えずにパターニングできること、下地の基板や絶縁膜等にダメージを与えないこと、幅広い種類の有機材料、特に有機半導体材料に適用可能であること、及び低コストであることが可能なパターニング手法を提供する。本開示は、塗布法を用いて、親水性且つ非水溶性の第1の基板上に、疎水性の有機膜を形成すること、前記第1の基板上に形成された有機膜を、凸部及び凹部を有するスタンプの前記凸部に押し付けること、前記第1の基板と前記有機膜との界面に水または水溶液を適用して、前記凸部に前記有機膜を転写すること、並びに前記凸部に転写された有機膜を第2の基板に押し付けて、前記第2の基板に前記有機膜を転写してパターニングされた有機膜を得ること、を含み、前記有機膜及び前記第2の基板のうち少なくとも一方は有機半導体である、パターニングされた有機膜の製造方法に関する。

Description

パターニングされた有機膜の製造方法、パターニングされた有機膜の製造装置、それにより作製された有機半導体デバイス、及び有機半導体デバイスを含む集積回路
 本開示は、パターニングされた有機膜の製造方法及び製造装置、並びにそれにより作製された有機半導体デバイス及び有機半導体デバイスを含む集積回路に関する。
 近年、有機半導体ヘの関心が高まっている。有機半導体の特徴としては、従来のアモルファスシリコンや多結晶シリコンの無機半導体とは異なり、柔軟性に優れていることや、roll to roll プロセスで安価に大面積化が可能であること等が挙げられ、有機半導体はポストシリコン半導体として次世代型の電子デバイスへの応用が検討されている。
 また、有機半導体は低コストな溶液プロセスでのデバイス作製が可能であり、Internet of Things(IoT)社会において重要な次世代電子デバイスの基本素子として注目されている。産業化に向けた回路応用、特に有機電界効果トランジスタの論理回路応用においては、有機半導体膜(以下、半導体膜ともいう)のパターニングが必須である。
 これまでに報告されている半導体膜パターニング手法の代表例としては、必要な場所にのみ半導体膜を製膜する手法、または全面に製膜した後にフォトリソグラフィプロセス等を用いてエッチングする手法が挙げられる。
 半導体膜のパターニング手法として、レーザーエッチング、フォトリソグラフィ(プラズマを用いたドライエッチング)、及びフォトリソグラフィ(ウェットエッチング)が挙げられる。
 また、微細な電極等のパターニング手法として、Nanotransfer printing (nTP)が提案されている(非特許文献1)。
J.A.Rogers et al.,Appl.Phys.Lett.81,562(2002).
 半導体膜をレーザーでエッチングするレーザーエッチングは、高コストであり、レーザーによって下地の絶縁膜等にダメージを与えやすい。
 プラズマを用いたドライエッチングを行うフォトリソグラフィは、高い解像度が得られ信頼性も高いが、高コストであり、プラズマにより下地に下地が削れる等のダメージを与える可能性がある。
 溶剤を用いたウェットエッチングを行うフォトリソグラフィは、高い解像度が得られ信頼性も比較的高いが、高コストであり、下地が膨潤する可能性があり、フォトリソグラフィ後に残したい箇所が流れてしまうこともある。また、半導体の材料に応じて適切な溶剤を選定することが難しい。
 nTPでは、凹凸のあるスタンプ全面にAu/Ti(Tiが上)を蒸着し、転写先のガラス基板とAu/Tiの両方にプラズマ処理等をして表面に水酸基を形成し、水酸基を形成した状態で密着させる。水酸基同士が化学結合し、スタンプの凸部のAu/Tiパターンがガラス基板上に転写される。
 nTPでは、モールドさえ作製すれば、高価なフォトリソ用装置やレジストが不要となる。しかしながら、水酸基同士の縮合反応を利用しているため表面に水酸基が形成される材料に限られ、汎用性はなく、有機半導体の転写に使うことはできない。
 必要な場所にのみ製膜する場合には、高性能な電気特性を得るために重要な結晶成長方向の制御が困難であるという問題がある。
 全面に製膜した後にエッチングする場合には、高性能な半導体膜を用いた回路作製が可能であるものの、エッチング手法としてプラズマや有機溶媒を用いるため、半導体膜より下層へのダメージの懸念や、有機半導体材料ごとの有機溶媒の選定が必要となる。
 これらに鑑みて、パターニング手法として、有機半導体膜にダメージを与えずにパターニングできること、下地の基板や絶縁膜等にダメージを与えないこと、幅広い種類の有機材料、特に有機半導体材料に適用可能であること、及び低コストであることが求められている。
 本発明者は、凹凸がパターンされたスタンプの凸部上にフィルム上の有機膜を転写した後、目的の基板上にスタンプを押し付けることで、凸部の有機膜のみが目的の基板に転写され、パターニングを行う方法を見いだした。
 本発明の要旨は以下のとおりである。
 (1)塗布法を用いて、親水性且つ非水溶性の第1の基板上に、疎水性の有機膜を形成すること、
 前記第1の基板上に形成された有機膜を、凸部及び凹部を有するスタンプの前記凸部に押し付けること、
 前記第1の基板と前記有機膜との界面に水または水溶液を適用して、前記凸部に前記有機膜を転写すること、並びに
 前記凸部に転写された有機膜を第2の基板に押し付けて、前記第2の基板に前記有機膜を転写してパターニングされた有機膜を得ること、
 を含み、
 前記有機膜及び前記第2の基板のうち少なくとも一方は有機半導体である、
 パターニングされた有機膜の製造方法。
 (2)前記凸部の最上部及び前記凹部の最低部の間の距離が2~100μmである、上記(1)に記載の製造方法。
 (3)前記パターニングされた有機膜は10個以上の有機膜を含み、それぞれの有機膜が、厚みが2nm以上、幅が500nm以上、及び長さが500nm以上を有し、隣り合う有機膜同士の間隔が1μm以上である、上記(1)または(2)に記載の製造方法。
 (4)凸部及び凹部を有するスタンプを配置するように構成されたスタンプ配置部、
 有機膜を表面に有する親水性且つ非水溶性の第1の基板を配置可能に構成された第1の基板配置部、
 第2の基板を配置可能に構成された第2の基板配置部、
 前記第1の基板上の有機膜を前記スタンプの前記凸部に押し付けて前記有機膜を前記凸部上に配置及び前記凸部上に配置された有機膜から前記第1の基板を離間させるように、前記第1の基板及び前記スタンプのうち少なくとも一方を移動可能に構成された第1の駆動部、
 前記第1の基板上の有機膜を前記スタンプの前記凸部に押し付ける力を制御するように構成された第1の制御部、
 前記有機膜と前記第1の基板との界面に水または水溶液を供給するように構成された水または水溶液の供給部、
 前記スタンプの凸部上に配置された有機膜を前記第2の基板に押し付けてパターニングされた有機膜を前記第2の基板上に配置、及び前記第2の基板上に配置されたパターニングされた有機膜から前記スタンプを離間させるように、前記スタンプ及び前記第2の基板のうち少なくとも一方を移動可能に構成された第2の駆動部、並びに
 前記スタンプの凸部上に配置された有機膜を前記第2の基板に押し付ける力を制御するように構成された第2の制御部、
 を含む、パターニングされた有機膜の製造装置。
 (5)前記第1の制御部が、前記有機膜を前記凸部に押し付ける際の、前記有機膜の面内の押し付ける力の分布を制御するように構成されている、上記(4)に記載の製造装置。
 (6)前記第2の制御部が、前記有機膜を前記第2の基板に押し付ける際の、前記有機膜の面内の押し付ける力の分布を制御するように構成されている、上記(4)または(5)に記載の製造装置。
 (7)前記製造装置が、前記水または水溶液の供給部が供給する水または水溶液の量を調節可能に構成された水または水溶液の量調整部を備える、上記(4)~(6)のいずれかに記載の製造装置。
 (8)前記製造装置が、前記水または水溶液を供給する前記界面の位置を認識し、前記水または水溶液の供給部が供給する水または水溶液の位置を調整可能な供給位置調整部を備える、上記(4)~(7)のいずれかに記載の製造装置。
 (9)前記製造装置が、前記有機膜を前記凸部に押し付ける位置を制御する第1のアライメント部を備える、上記(4)~(8)のいずれかに記載の製造装置。
 (10)前記製造装置が、前記スタンプの凸部上の有機膜を前記第2の基板に押し付ける位置を制御する第2のアライメント部を備える、上記(4)~(9)のいずれかに記載の製造装置。
 (11)基板、及び
 前記基板上のパターニングされた有機膜
 を含み、
 前記有機膜が疎水性であり、
 前記有機膜及び前記基板のうち少なくとも一方は有機半導体であり、
 前記基板は、前記有機膜のパターニングにともなうダメージがない、
 有機半導体デバイス。
 (12)前記パターニングされた有機膜は10個以上の有機膜を含み、それぞれの有機膜が、厚みが2nm以上、幅が500nm以上、及び長さが500nm以上を有し、隣り合う有機膜同士の間隔が1μm以上である、上記(11)に記載の有機半導体デバイス。
 (13)前記パターニングされた有機膜が0.0001mm以上のシングルドメインを有する有機半導体単結晶膜である、上記(11)または(12)に記載の有機半導体デバイス。
 (14)前記基板と前記有機膜との間の少なくとも一部、前記有機膜に対して前記基板とは反対側の少なくとも一部、またはそれらの両方に電極を含む、上記(11)~(13)のいずれかに記載の有機半導体デバイス。
 (15)前記基板と前記有機膜と前記電極との間に空間を含む、上記(14)に記載の有機半導体デバイス。
 (16)請求項11~15のいずれかに記載の有機半導体デバイスを含む集積回路。
 本開示の方法によれば、低コストで、有機膜及びその下地に有機溶媒やプラズマ等によるダメージを与えることなく、有機膜のパターニングを行うことができる。また、本開示の方法は、凹凸を利用した物理的なパターニング手法であるため、幅広い種類の有機材料、特に有機半導体材料に対して適用可能である。
図1は、第1の基板上の有機膜をスタンプの凸部に押し付ける工程を表す断面模式図である。 図2は、第1の基板と有機膜との界面に水または水溶液を適用する工程を表す断面模式図である。 図3は、スタンプの凸部上に転写された有機膜の断面模式図である。 図4は、凸部に転写された有機膜を第2の基板に押し付ける工程を表す断面模式図である。 図5は、第2の基板に転写されたパターニングされた有機膜の断面模式図である。 図6は、モールドを作製工程における、ガラス基板上に形成されたフォトレジスト、及びガラス基板上及びフォトレジスト状に形成された自己組織化願分子膜の断面模式図である。 図7は、モールドを用いたスタンプ作製工程の断面模式図である。 図8は、スタンプの断面模式図である。 図9は、PDMSスタンプ上に転写された半導体膜の偏光顕微鏡像である。 図10は、PDMSスタンプ上に転写された半導体膜の走査型電子顕微鏡(SEM)像である。 図11は、第2の基板上に転写されたパターニングされた有機半導体膜を上面から観察した偏光顕微鏡像である。 図12は、パリレン/SiO2/n-doped Si基板上に配置した有機半導体単結晶膜及びAu電極の断面模式図である。 図13は、作製したBGTC型OFETの上面から観察した偏光顕微鏡像である。 図14は、飽和領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフである。 図15に、線形領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフである。 図16に、ゲート電圧によるドレイン電圧とドレイン電流との関係を表す出力特性のグラフである。 図17は、CYTOP(登録商標)/SiO2/n-doped Si基板上に配置した有機半導体単結晶膜及びAu電極の断面模式図である。 図18は、作製したBGTC型OFETの上面から観察した偏光顕微鏡像である。 図19に、飽和領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフである。 図20に、線形領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフである。 図21に、ゲート電圧によるドレイン電圧とドレイン電流との関係を表す出力特性のグラフである。 図22は、転写された有機半導体単結晶膜を上面から観察した偏光顕微鏡像である。 図23は、転写された有機半導体単結晶膜を上面から観察した偏光顕微鏡像を示す。 図24は、本開示の有機半導体デバイスの断面模式図である。 図25は、基板と有機膜との間に電極を備える有機半導体デバイスの断面模式図である。 図26は、基板と有機膜と電極との間に空間を備える有機半導体デバイスの断面模式図である。 図27は、基板とは反対側の有機膜の面上に電極を備える有機半導体デバイスの断面模式図である。 図28は、本開示の製造装置に、スタンプ、第1の基板及びその上に配置された有機膜、並びに第2の基板を配置したときの断面模式図である。 図29は、トップゲート/トップコンタクト構造の断面模式図である。 図30は、トップゲート/ボトムコンタクト構造の断面模式図である。 図31は、ボトムゲート/トップコンタクト構造の断面模式図である。 図32は、ボトムゲート/ボトムコンタクト構造の断面模式図である。 図33は、パターニングされた半導体有機膜を有する4インチウエハの外観写真である。 図34は、本開示の方法で転写及びパターニングされた700μm×500μmの有機半導体単結晶膜が8×8で並んだアレイのレーザー共焦点顕微鏡像である。 図35は、図34の破線部で囲んだ部分のin-planeX線回折測定結果である。 図36は、図35の破線部で囲んだC9-DNBDT-NW有機半導体単結晶の020回折線の拡大図である。 図37は、実施例で作製したn型有機半導体を含むBGTC型OFETの断面模式図である。 図38は、作製したBGTC型OFETの飽和領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、線形領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、及びゲート電圧によるドレイン電圧とドレイン電流との関係を表す出力特性のグラフである。 図39は、本開示の製造装置の一例の外観写真である。 図40は、第2の基板上に転写された有機半導体単結晶膜を上面から観察した偏光顕微鏡像である。 図41は、第2の基板上に転写された有機半導体単結晶膜を上面から観察した偏光顕微鏡像である。 図42は、第2の基板上に転写された有機半導体単結晶膜を上面から観察した偏光顕微鏡像である。 図43は、第2の基板上に転写された有機半導体単結晶膜を上面から観察した偏光顕微鏡像である。 図44は、実施例で作製したDFF回路の回路図である。 図45は、ネガティブエッジトリガ型DFFの真理値表である。 図46は、VDD=10Vでの動作確認結果である。 図47は、VDD=5Vでの動作確認結果である。 図48は、実施例で作製した、p型有機トランジスタ及びn型有機トランジスタを備える有機相補型半導体デバイスの断面模式図である。 図49は、フレキシブルなポリエチレンナフタレート(PEN)基板上に作製したNOT、NOR、NAND、及びDFF回路を表す図である。
 本開示は、塗布法を用いて、親水性且つ非水溶性の第1の基板上に、疎水性の有機膜を形成すること、前記第1の基板上に形成された有機膜を、凸部及び凹部を有するスタンプの前記凸部に押し付けること、前記第1の基板と前記有機膜との界面に水または水溶液を適用して、前記凸部に前記有機膜を転写すること、並びに前記凸部に転写された有機膜を第2の基板に押し付けて、前記第2の基板に前記有機膜を転写してパターニングされた有機膜を得ること、を含み、前記有機膜及び前記第2の基板のうち少なくとも一方は有機半導体である、パターニングされた有機膜の製造方法を対象とする。
 本開示の製造方法は、主に以下の顕著な効果を有する。モールドを作製しておけばフォトリソグラフィが不要で低コストである。スタンプへの転写と同時に有機膜のパターニングを行うことができるため、パターニングを短時間で行うことができる。スタンプの凹凸を利用して有機膜のパターニングを物理的に行うので、溶剤やレーザーを用いる必要がなく、様々な有機材料のパターニングを行うことができ、汎用性が高い。第2の基板にはスタンプを押し付けるだけであるため、第2の基板に溶媒等のダメージを与えることがない。例えば、第2の基板が有機材料を溶解させる溶剤に溶解性である場合でも、パターニングされた有機膜を形成することができる。スタンプには水または水溶液しか触れず、溶媒の接触や加熱される必要がないため、溶媒や熱によるスタンプの膨潤または収縮が実質的にない。例えば、あらかじめ塗布して単結晶となった膜をパターニングできる。nTPと異なり、転写先基板との水酸基による結合を必要としない。
 また、従来、半導体膜をフォトリソグラフィで形成する場合には、エッチングする材料の上にマスクが必要であり、パターニングされた電極をフォトリソグラフィのマスクとして用いることが多い。しかしながら、パターニングされた電極が半導体膜の下側に配置される場合、電極をマスクとして用いることができず、半導体膜にダメージを与えないマスクを別途用意する必要がある。本開示の方法によれば、パターニングされた電極が半導体膜の下側に配置される場合でも、追加の工程を必要とせず、電極上にパターニングされた半導体膜を得ることができる。
 また、従来の必要な部分にのみ半導体膜を製膜する手法と比較して、本開示の製造方法によれば、結晶成長方向のそろった単結晶性ドメインを用いることが可能であるため、高いキャリア伝導特性を示すことが期待できる。さらに、フォトリソグラフィプロセス等を用いた場合と比較して、本開示の製造方法は低コストで作業時間も短いという効果が期待できる。
 本開示の製造方法は、有機半導体単結晶や有機半導体ポリマー等の有機膜の高性能な電気的特性を維持しつつ、多くの半導体材料および下地層上に適用可能であり、プリンテッドエレクトロニクス産業において、量産プロセスでの利用価値の高いものである。
 本開示の製造方法においては、塗布法を用いて、親水性且つ非水溶性の第1の基板上に、耐水性の有機膜を形成する。塗布法は、有機材料を有機溶媒に溶解させて有機溶液を調製し、基板上に有機体溶液を塗布し、有機溶媒を蒸発させて膜を形成する方法である。有機溶媒としては、従来、塗布法に用いられている有機溶媒を用いることができ、例えばトルエン、ジクロロベンゼン等を用いることができる。
 塗布法としては、従来から用いられている方法を用いることができ、例えば、エッジキャスト法、連続エッジキャスト法、ドロップキャスト法、スピンコーティング法、印刷法(インクジェット法やグラビア印刷法)、ディスペンサー法、及びスプレー法、ディップコート法、ダイコーター法、ロールコーター法、バーコーター法、ブレードコーティング法等を用いることができる。
 第1の基板は、水の接触角が好ましくは20度以下、より好ましくは10度以下の親水性基板である。第1の基板は、表面が親水性の基板または表面を親水化処理した基板であることができ、ガラス基板またはマイカが好ましく、より好ましくはガラス基板である。ガラス基板は、好ましくはEagleガラスである。親水化処理は、ガラス基板にUV/O処理をすることで行うことができる。
 第1の基板は非水溶性であり、例えば雲母またはガラスであることができる。第1の基板が非水溶性であるため、第1の基板と有機膜との界面に水または水溶液を適用する際に、第1の基板の成分が溶出して有機膜に付着したり反応することがなく、高純度な有機膜を得ることができる。また、第1の基板と有機膜との界面に水または水溶液を適用する際に、第1の基板の形状が崩れることなく維持されるために、有機膜の形状を歪ませることなく第1の基板から有機膜を分離させることができる。非水溶性とは、水または水溶液に実質的に溶解、分解、または膨潤しないことをいう。ガラスは、好ましくは、表面にUV・オゾン処理または親水性コーティング材料等により親水化処理されたものである。第1の基板は柔軟性を有してもよい。
 本開示の製造方法においては、第1の基板と有機膜との界面に水または水溶液を適用して、有機膜を第1の基板から分離させる。有機膜は、疎水性の有機膜であれば、所望の有機膜であることができる。親水性の第1の基板と疎水性の有機膜の分子との間に水または水溶液が入り、有機膜を第1の基板から分離させることができる。
 有機膜を第1の基板から分離させるために、水または水溶液が用いられ、好ましくは水溶液が用いられる。水溶液は、第1の基板と有機膜との界面に水よりも浸入しやすく、有機膜と第1の基板との分離がより促進される。水溶液は、スタンプを膨潤または収縮させにくいものであることができ、水と、好ましくは、エタノール、メタノール、またはアセトニトリル等の極性溶媒との混合液である。水溶液中のエタノール、メタノール、またはアセトニトリル等の極性溶媒の濃度は、好ましくは5~50%、より好ましくは10~45%、さらに好ましくは15~40%である。
 親水性の第1の基板の水の接触角は、疎水性の有機膜の水の接触角よりも小さく、第1の基板と有機膜との水の接触角の差は、好ましくは40度以上、より好ましくは50度以上、さらに好ましくは60度以上、さらにより好ましくは70度以上、さらにより好ましくは80度以上、さらにより好ましくは90度以上である。有機膜の接触角は、好ましくは60度以上、より好ましくは70度以上、さらに好ましくは80度以上、さらにより好ましくは100~120度である。親水性の第1の基板と疎水性の有機膜との接触角の差が、前記好ましい範囲であることにより、より安定して第1の基板から有機膜を剥離させることができる。
 第1の基板と有機膜との界面に水または水溶液を適用する方法は特に限定されず、第1の基板と有機膜との界面にスポイト等の水供給器を用いて水または水溶液を滴下すること、有機膜を形成した第1の基板を水中に浸漬すること等の方法であることができる。
 本明細書において、疎水性とは、好ましくは50度以上の接触角、より好ましくは60度以上の接触角、さらに好ましくは70度以上の接触角、さらにより好ましくは80度以上の接触角、より好ましくは90度以上の接触角、さらに好ましくは100度以上、さらにより好ましくは110度以上、さらにより好ましくは150度以上の接触角を有し得る。
 第1の基板上に形成する有機膜の面積は、好ましくは2mm2以上、より好ましくは10mm2以上、さらに好ましくは100mm2以上、さらにより好ましくは1000mm2以上、さらにより好ましくは10000mm2以上である。有機膜の面積の上限は、特に限定されず、製造設備の大きさによって制限され、例えば10m2としてもよい。半導体デバイスに用いる場合は、上記好ましい面積を有する有機膜を、例えば0.000025~2.0mm未満、0.0001~1.5mm未満、0.0004~1.0mm、0.0009mm~0.5mm、0.0016~0.2mm、0.0025~0.1mm、または0.005mm~0.05mmの面積に分離して用いてもよい。
 スタンプの凸部の最上部と凹部の最低部との間の距離は、好ましくは2~100μm、より好ましくは5~50μm、さらに好ましくは7~40μm、さらにより好ましくは10~30μmである。スタンプの凸部の最上部と凹部の最低部との間の距離が上記好ましい範囲であることにより、スタンプと有機膜とを押し付ける際に凹部が有機膜に接触することを抑制し且つ凸部が折れることを抑制しながら、物理的にパターニングを行うことができる。
 有機膜をスタンプの凸部に押し付ける際の凸部の面積あたりの圧力は、凹部が有機膜に接触せず且つ凸部が折れない範囲に適宜調整すればよいが、例えば5~200kPa、10~100kPa、または50~80kPaであることができる。
 スタンプの凸部に転写された有機膜を第2の基板に押し付ける際の凸部の面積あたりの圧力は、有機膜が第2の基板に転写され且つ凸部が折れない範囲に適宜調整すればよいが、例えば5~200kPa、10~100kPa、または50~80kPaであることができる。
 スタンプの構成材料は、好ましくは樹脂、好ましくはポリジメチルシロキサン(PDMS)またはポリメチルメタクリレート(PMMA)、さらに好ましくはPDMSである。スタンプの構成材料は、PDMSまたはPMMAを主要な構成要素としてもよい。このような材料で構成されたスタンプを用いることにより、有機膜をスタンプの凸部に転写すること、及びスタンプの凸部から第2の基板に有機膜を転写することを良好に行うことができる。スタンプは疎水性であってもよい。スタンプは、ガラスまたはフィルムの支持基板を備えてもよい。
 支持基板は、好ましくは、ガラス基板、ポリエチレンナフタレート(PEN)基板、またはポリエチレンテレフタレート(PET)基板である。
 ガラス基板、PEN基板、またはPET基板(スタンプ作製時の熱処理温度による)は、硬化前のスタンプ材料の押さえつけ及び熱硬化後にスタンプ作製用モールドからの剥離しやすさに基づいて選択することができる。スタンプの基材にフレキシブル基板を用いることで、剥離が容易になる。
 スタンプの表面には剥離層を形成してもよい。剥離層は、好ましくはCYTOPまたは自己組織化単分子膜(SAM)であり、より好ましくはCYTOPである。自己組織化単分子膜は、例えば、デシルトリメトキシシラン(DTS)、トリエトキシ-1H,1H,2H,2H-ヘプタデカフルオロデシルシラン(F-SAM)、またはトリメトキシ(2-フェニルエチル)シラン(β-PTS)である。DTSは約101度の接触角を有し、F-SAMは約110度の接触角を有し、β-PTSは約80度の接触角を有するので、第2の基板に有機膜を転写する際に、有機膜をスタンプからより容易に剥離して転写しやすくなる。SAM処理は、気相法または液相法で行うことができる。
 パターニングされた有機膜は、好ましくは、10個以上の有機膜を含み、それぞれの有機膜が、厚みが2nm以上、幅が500nm以上、及び長さが500nm以上を有し、隣り合う有機膜同士の間隔は1μm以上である。
 パターニングされた有機膜に含まれる有機膜の個数は、より好ましくは50個以上、さらに好ましくは100個以上である。有機膜の幅及び長さはそれぞれ、より好ましくは10μm以上、さらに好ましくは15μm以上、さらにより好ましくは20μm以上、さらにより好ましくは30μm以上、さらにより好ましくは45μm以上、さらにより好ましくは50μm以上であることができる。有機膜の厚みは、より好ましくは2~100nm、さらに好ましくは7~20nmである。隣り合う有機膜同士の間隔は、より好ましくは5μm以上、さらに好ましくは10μm以上、さらにより好ましくは20μm以上、さらにより好ましくは25μm以上である。
 有機膜の幅の上限は特に制限されないが、例えば500μm以下である。有機膜における有機膜同士の間隔の上限は特に制限されない。
 図22に、パターニングされた有機膜の一例であって5組の有機膜の上面写真を示す。図23に、パターニングされた有機膜の他の例であって5組の有機膜の上面写真を示す。図33に、パターニングされた半導体有機膜を有する4インチシリコンウエハの外観写真を示す。
 パターニングされた有機膜と接する第2の基板の面の少なくとも一部は、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせの特性を有してもよい。好ましくは、有機膜と接する第2の基板の面の全体が、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせの特性を有し、より好ましくは、第2の基板全体が、疎水性、溶剤可溶性、非耐熱性、またはそれらの組み合わせの特性を有する。
 第2の基板の材料は、固体であれば特に限定されない。第2の基板は、支持基板、電極、絶縁膜等の複数の層を含んでもよい。第2の基板は、フレキシブル基板でもよい。フレキシブル基板としては、ポリエチレンナフタレート(PEN)基板、ポリイミド基板、ポリフェニレンスルファイド基板、シリコーン基板等が挙げられる。
 有機膜と接する第2の基板の面の少なくとも一部、好ましくは有機膜と接する第2の基板の面の全体、より好ましくは第2の基板全体が前記好ましい範囲の疎水性を示してもよい。第2の基板がこのような疎水性を示すことにより、疎水性基板上に配置したパターニングされた有機膜を用いてデバイスを作製する場合に、基板上に付着し得る水分(吸着分子)を低減または無くすことができ、水分の影響がない良好な特性を有するデバイスを作製することができる。
 疎水性を示す材料としては、例えば、パリレン(接触角80~90度程度)、フッ素系ポリマーのCYTOP(登録商標)(接触角110度)等が挙げられる。
 有機膜と接する第2の基板の面の少なくとも一部、好ましくは有機膜と接する第2の基板の面の全体、より好ましくは第2の基板全体は、溶剤可溶性でもよい。そのため、有機膜と接する第2の基板の面の少なくとも一部、好ましくは第2の基板の有機膜と接する面の全体、より好ましくは第2の基板全体は、p型有機半導体膜若しくはn型有機半導体膜であってもよく、またはp型有機半導体膜及びn型有機半導体膜を含む積層体であってもよい。したがって、第2の基板は、有機半導体膜によるpn接合構造、pnp接合構造、またはnpn接合構造を含むことができる。
 本願において溶剤可溶性とは、有機溶媒に実質的に溶解、分解、または膨潤することをいい、例えばトルエン、ジクロロベンゼン等の、塗布法で従来用いられる有機溶媒に対して、実質的に溶解、分解、または膨潤することをいう。
 有機膜と接する第2の基板の面の少なくとも一部、好ましくは有機膜と接する第2の基板の面の全体、より好ましくは第2の基板全体は、非耐熱性であってもよい。そのため、有機膜と接する第2の基板の面の少なくとも一部、好ましくは有機膜と接する第2の基板の面の全体、より好ましくは第2の基板全体は、例えばペンタフルオロベンゼンチオール(PFBT)等の自己組織化単分子層(SAM:self-assembled monolayer)で修飾したAu等の電極膜を有する基板であってもよい。このようなPFBT等の耐熱性が低い修飾材料の上に、有機膜を配置することができる。
 本願において非耐熱性とは、好ましくは、ガラス転移点が90℃以下であるか、または90℃以下で昇華、融解、若しくは分解することをいい、より好ましくは、ガラス転移点が120℃以下であるか、または120℃以下で昇華、融解、若しくは分解することをいう。
 本開示の製造方法を、図面を参照しながら説明する。
 塗布法を用いて、親水性且つ非水溶性の第1の基板上に、疎水性の有機膜の塗布を行う。次いで、図1に示すように、第1の基板10上の有機膜20をスタンプ30の凸部31に押し付ける。スタンプ30は、凸部31及び凹部32を有する。
 図2に示すように、第1の基板10上の有機膜20をスタンプ30の凸部に密着させながら、第1の基板10と有機膜20との界面に水または水溶液を適用する。図2は、スポイト等の水または水溶液の供給器80を用いて、第1の基板10と有機膜20との界面に水または水溶液を適用する態様を表している。
 これにより、親水性のガラス基板と高撥水性の有機膜との間に水または水溶液が浸入して、有機膜が基板から剥離し、図3に示すようにスタンプ30の凸部上に有機膜21が転写される。スタンプの凸部上に有機膜を転写する際、図3に例示するように凹部に有機膜22が転写されてもよい。
 次いで、図4に示すように、凸部に転写された有機膜21を第2の基板40に押し付けて、図5に示すように、第2の基板40に有機膜21を転写してパターニングされた有機膜が得られる。第2の基板40は、疎水性膜42を有してもよい。
 (モールド作製)
 本開示の製造方法において用いるスタンプは、モールドを用いて作製することができる。スタンプを作製するためのモールドは、従来の方法で作製することができる。モールドの作製方法の一例を以下に示す。
 基板を用意する。基板は、表面を親水化処理された基板であることができ、ガラス基板が好ましい。表面が親水性であることにより、フォトレジストの付着性を向上することができる。ガラス基板は、好ましくはEagleガラスである。親水化処理は、ガラス基板にUV/O処理またはプラズマ処理をすることで行うことができる。
 図6に示すように、表面が親水性のガラス基板52上に、フォトレジスト溶液をスピンコートした後、熱処理し、所定のパターンのマスクをして露光する。フォトレジストは、好ましくはSU-8である。SU-8は、10μm以上の高さ及び1μm以下または100nm以下の間隔のフォトレジストを形成することができる。
 露光後に、低温で熱処理を行い、現像し、高温で熱処理を行う。次いで、気相法によるF-SAM処理等を行って剥離層を形成してもよく、剥離層56を備えたフォトレジスト54を形成したガラス基板52のモールド50を作製することができる。
 (スタンプ作製)
 本開示の製造方法において用いるスタンプは、作製したモールド50を用いて次のように作製することができる。以下に、スタンプの作製方法の一例を以下に示す。
 図7に示すように、液状のスタンプ材料33をモールド50上に滴下し、支持基板57で挟んでおもり58を乗せ、静置し、熱硬化させた後、モールドを剥離して、図8に示すようなスタンプ30を作製することができる。スタンプ材料は、モールドに滴下する前に、攪拌・脱泡してもよい。
 有機膜の剥離性を向上するために、図8に示すように、作製したスタンプの表面にCYTOP等の剥離層34を形成してもよい。剥離層の形成は、剥離層の材料を含む溶液をスピンコートし、次いで熱処理を行うことにより行われる。
 有機膜は、例えばPMMA等の有機膜、有機半導体膜、有機半導体単結晶膜、または有機半導体ポリマー膜であることができる。有機膜は、好ましくは有機半導体膜であり、より好ましくは有機半導体単結晶膜または有機半導体ポリマー膜であり、さらに好ましくは有機半導体単結晶膜である。有機半導体は、p型有機半導体、n型有機半導体、またはそれらの組み合わせが含まれる。
 有機膜が有機半導体単結晶膜である場合、有機半導体単結晶膜の平均膜厚は、2~100nmであり、好ましくは4~20nmである。有機半導体単結晶膜の平均膜厚が前記範囲にあることにより、良好なデバイス特性を得ることができる。有機半導体単結晶膜の平均膜厚の測定は、触針式表面形状測定器または原子間力顕微鏡を用いて行うことができる。
 有機半導体単結晶膜は厚み方向に、好ましくは1分子層~50分子層、より好ましくは1分子層~10分子層、さらに好ましくは1分子層~5分子層を有する。有機半導体単結晶膜は、1分子層を有することが最も好ましいが、厚み方向に2分子層以上を有してもよい。有機半導体単結晶膜の分子層数は原子間力顕微鏡で測定することができる。
 有機半導体単結晶膜の1分子層の厚みは、好ましくは2~6nm、より好ましくは2~4nmである。有機半導体単結晶膜の1分子層の厚みは単結晶X線構造解析と原子間力顕微鏡観察と組み合わせることで測定することができる。
 有機半導体単結晶膜は、シングルドメインまたはマルチドメインからなり、好ましくはシングルドメインからなる。有機半導体単結晶膜のドメインは、単結晶X線回折で測定することができる。有機半導体単結晶膜は、好ましくは0.0001mm以上、より好ましくは0.0004mm以上、さらにより好ましくは0.0009mm以上、さらにより好ましくは0.0016mm以上、さらにより好ましくは0.0025mm以上、さらにより好ましくは0.005mm以上、さらにより好ましくは0.5mm以上、さらにより好ましくは2.0mm以上、さらにより好ましくは4.0mm以上、さらにより好ましくは100mm以上、さらにより好ましくは1000mm以上、さらにより好ましくは10000mm以上の連続面積のシングルドメインを有する。上記好ましい面積を有する有機半導体単結晶膜がシングルドメインを有することは、上記好ましい面積を有する有機半導体単結晶膜の全体にX線を照射するin-planeX線回折測定で確認することができる。有機半導体単結晶層の面積は、上記シングルドメインの面積と同じでもよい。シングルドメインとは、結晶方位が揃った連続した領域である。シングルドメイン中において分子層数が揃っていることが好ましいが、結晶方位が揃っていれば異なる分子層の領域が含まれていてもよい。例えば、結晶方位が揃った2分子層の領域の一部上に結晶方位が揃った層が樹状に成長した3分子層の領域が含まれる場合、上記2分子層及び3分子層の連続領域がシングルドメインになる。
 当然理解されるべきことであるが、有機半導体単結晶膜には、上記好ましい連続面積のシングルドメインを有する有機半導体単結晶膜が分離されたものが組み込まれていてもよい。例えば、上記好ましい連続面積のシングルドメインを有する有機半導体単結晶膜が、複数片の有機半導体単結晶膜に分離されて有機半導体デバイスに組み込まれたものでもよい。有機半導体デバイス内で各有機半導体単結晶膜が分離されていることで、他の素子と電気的に孤立させることができる。分離された各有機半導体単結晶膜が、結晶軸の方向が揃った単結晶膜から得られていることは、単結晶X線回折、電子線回折で測定することや偏光顕微鏡での観察によって確認できる。
 図34に、本方法で転写及びパターニングされた700μm×500μmの有機半導体単結晶膜が8×8で並んだアレイのレーザー共焦点顕微鏡像を示す。四角の枠で囲んだ部分が700μm×500μmの有機半導体単結晶膜一つであり、顕微鏡像の全体に有機半導体単結晶膜が8×8で整列している。有機半導体単結晶膜の間隔は横方向に500μm、縦方向に300μmである。in-planeX線回折測定は、例えば、図34に示す有機半導体単結晶膜を保持する基板を360度回転させながら破線部で囲んだ部分にX線を照射して、行うことができる。図35に一例として示すように、in-planeX線回折測定により180度周期でピークが観測されれば、X線を照射した破線部で囲まれた部分に位置する各有機半導体単結晶膜が、実質的にすべて同じ方向を向いた単結晶膜である、と判定される。結晶の向きに有意なばらつきが存在する場合は、回折ピークは一つにならず、複数のピークが観測される。本方法を用いて転写及びパターニングされた有機単結晶膜を、上記方法で測定したとき、回折ピークの半値幅は、好ましくは±1度以内、より好ましくは±0.5度以内である。
 有機半導体単結晶膜は、好ましくは0.1cm2/V・s以上、より好ましくは0.5cm2/V・s以上、さらに好ましくは1.0cm2/V・s以上、さらにより好ましくは3.0cm2/V・s以上、さらにより好ましくは2.0cm2/V・s以上、さらにより好ましくは5.0cm2/V・s以上、さらにより好ましくは7.5cm2/V・s以上、さらにより好ましくは10cm2/V・s以上の移動度を示す。有機半導体単結晶膜の移動度は、有機電界効果トランジスタの測定結果から算出することができる。
 有機半導体単結晶膜を構成する有機半導体の種類については特に制限は無いが、例えば、4環以上の多環芳香族化合物や、1つまたは複数の不飽和の五員複素環式化合物と複数のベンゼン環とによる4環以上の多環化合物を用いることができる。
 また、有機半導体単結晶膜を構成する有機半導体は、自己凝縮機能の高い材料であることが好ましく、例えば、高移動度を示す次式(1)のp型有機半導体Cn-DNBDT-NW等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(1)において、nは1~14であることができる。自己凝縮機能とは、分子が溶媒から析出する際に、自発的に凝集して、結晶化しやすい傾向を意味する。
 有機半導体単結晶膜を構成する有機半導体の他の例を、次式(2)~次式(6)に示す。
Figure JPOXMLDOC01-appb-C000002
 式(2)で示されるポリチオフェン半導体において、R1及びR2はそれぞれ独立に水素原子又は炭素数が4~10のアルキル基である。アルキル基はヘテロ原子(典型的には酸素原子及び硫黄原子から選択される。)を含んでもよい。また、R1及びR2は一緒になって環を形成することもできる。自己凝集能の理由により、好ましくは、R1及びR2はそれぞれ独立に水素原子又は炭素数が5~8のアルキル基である。より好ましくはR1及びR2はそれぞれ独立に水素原子又はヘキシル基である。
 nは5~100の整数を表す。nはポリチオフェン半導体中のチオフェンモノマー単位の平均数、すなわちポリチオフェン鎖の長さを示す。単結晶膜を形成する観点からは、nは50以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(3)中、R3、R4、R5及びR6はそれぞれ独立に、水素原子又は炭素数が1~14のアルキル基である。アルキル基はヘテロ原子(典型的には酸素原子及び硫黄原子から選択される。)を含んでもよく、アルキル基中の水素原子はハロゲン原子等の置換基で置換されていてもよい。自己凝集能の理由により、R4=R5であることが好ましく、R3=R6であることが好ましい。溶解性の観点から、好ましくは、R4及びR5が水素原子であり、R3及びR6がそれぞれ独立に炭素数が1~14のアルキル基であるか、又は、R3及びR6が水素原子であり、R4及びR5がそれぞれ独立に炭素数が1~14のアルキル基である。より好ましくは、R3及びR6が水素原子であり、R4及びR5がそれぞれ独立に炭素数が1~14のアルキル基である。自己凝集能の理由により、アルキル基の好ましい炭素数は4~12であり、より好ましくは6~10である。
Figure JPOXMLDOC01-appb-C000004
 式(4)中、R7、R8、R9及びR10はそれぞれ独立に、水素原子又は炭素数が1~14のアルキル基である。アルキル基はヘテロ原子(典型的には酸素原子及び硫黄原子から選択される。)を含んでもよく、アルキル基中の水素原子はハロゲン原子等の置換基で置換されていてもよい。自己凝集能の理由により、R7=R9であることが好ましく、R8=R10であることが好ましい。溶解性の観点から、好ましくは、R7及びR9が水素原子であり、R8及びR10がそれぞれ独立に炭素数が1~14のアルキル基であるか、又は、R8及びR10が水素原子であり、R7及びR9がそれぞれ独立に炭素数が1~14のアルキル基である。より好ましくは、R8及びR10が水素原子であり、R7及びR9がそれぞれ独立に炭素数が1~14のアルキル基である。自己凝集能の理由により、アルキル基の好ましい炭素数は6~13であり、より好ましくは8~10である。
Figure JPOXMLDOC01-appb-C000005
 式(5)中、R11、R12、R13及びR14はそれぞれ独立に、水素原子又は炭素数が1~14のアルキル基である。アルキル基はヘテロ原子(典型的には酸素原子及び硫黄原子から選択される。)を含んでもよく、アルキル基中の水素原子はハロゲン原子等の置換基で置換されていてもよい。自己凝集能の理由により、R11=R13であることが好ましく、R12=R14であることが好ましい。溶解性の観点から、好ましくは、R11及びR13が水素原子であり、R12及びR14がそれぞれ独立に炭素数が1~14のアルキル基であるか、又は、R12及びR14が水素原子であり、R11及びR13がそれぞれ独立に炭素数が1~14のアルキル基である。より好ましくは、R12及びR14が水素原子であり、R11及びR13がそれぞれ独立に炭素数が1~14のアルキル基である。自己凝集能の理由により、アルキル基の好ましい炭素数は5~12であり、より好ましくは8~10である。
Figure JPOXMLDOC01-appb-C000006
 式(6)中、R15、R16、R17及びR18はそれぞれ独立に、水素原子又は炭素数が1~14のアルキル基である。アルキル基はヘテロ原子(典型的には酸素原子及び硫黄原子から選択される。)を含んでもよく、アルキル基中の水素原子はハロゲン原子等の置換基で置換されていてもよい。自己凝集能の理由により、R15=R17であることが好ましく、R16=R18であることが好ましい。溶解性の観点から、好ましくは、R16及びR18が水素原子であり、R15及びR17がそれぞれ独立に炭素数が1~14のアルキル基であるか、又は、R15及びR17が水素原子であり、R16及びR18がそれぞれ独立に炭素数が1~14のアルキル基である。より好ましくは、R16及びR18が水素原子であり、R15及びR17がそれぞれ独立に炭素数が1~14のアルキル基である。自己凝集能の理由により、アルキル基の好ましい炭素数は5~12であり、より好ましくは8~10である。
 有機半導体単結晶膜を構成する有機半導体のさらに他の例を、次式(7)~次式(15)に示す。式(7)~式(15)中、Rは、直鎖アルキル、分岐アルキル、フッ素化直鎖・分岐アルキル、トリイソプロピルシリルエチニル、フェニルなどを用いることができる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 有機半導体のさらに他の例を、次式(16)~式(19)に示す。式(16)~(19)に示すNDI、PDI、BTDI、及びBQQDIのn型有機半導体は、主鎖の長軸方向は揃っているが、分子層ごとに捻れた積層構造を有する。Rは、直鎖アルキル、分岐アルキル、フッ素化直鎖・分岐アルキル、トリイソプロピルシリルエチニル、フェニルなどを用いることができる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 式(20)~(26)に、側鎖の別の例を示す。式(20)~(26)においては、主鎖はn型有機半導体であるBQQDIであるが、主鎖はBQQDI以外でもよく、例えばNDIやPDIなどでもよく、式(7)~(15)に記載の主鎖でもよい。式(20)は側鎖がフェニルエチル基の例であり、式(21)は側鎖が脂肪族アルキル基の例であり、式(22)は側鎖が脂肪族環状アルキル基の例であり、式(23)は側鎖が脂肪族鎖状+環状アルキル基の例であり、式(24)は側鎖が芳香族基の例であり、式(26)は側鎖がアルキル+芳香族(+ハロゲン)基の例であり、式(26)は側鎖がアルキル+ハロゲン基であり且つBQQDIコアにも官能基が付加された例である。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 有機半導体単結晶膜は、透過型電子顕微鏡(TEM)で観察することにより、単結晶であるかどうかを確認することができる。
 有機膜が有機半導体ポリマー膜である場合、有機半導体ポリマー膜の平均膜厚は、1nm~1μmであり、好ましくは3~200nmである。有機半導体ポリマー膜の平均膜厚が前記範囲にあることにより、良好なデバイス特性を得ることができる。有機半導体ポリマー膜の平均膜厚の測定は、触針式表面形状測定器または原子間力顕微鏡を用いて行うことができる。
 有機半導体ポリマー膜は、好ましくは0.005cm2/V・s以上、より好ましくは0.05cm2/V・s以上、さらに好ましくは0.5cm2/V・s以上、さらにより好ましくは5cm2/V・s以上、さらにより好ましくは10cm2/V・s以上の移動度を示す。有機半導体ポリマー膜の移動度は、有機電界効果トランジスタの測定結果から算出することができる。
 有機半導体ポリマー膜をP型の半導体とする場合には、P型の高分子半導体を溶媒に溶解し、N型の半導体とする場合には、N型の高分子半導体を溶媒に溶解して作製する。P型の高分子半導体としては、チオフェン、チアジアゾール、ジケトピロロピロール等が重合または共重合したものを用いることができる。また、N型の高分子半導体としては、ナフタレンジイミド、ペリレンジイミド、チオフェン等が重合または共重合したものを用いることができる。溶媒としては、ジクロロベンゼン、トルエン、アセトニトリル、酢酸ブチル、フルオロアルコール等を用いることができる。
 本開示はまた、凸部及び凹部を有するスタンプを配置するように構成されたスタンプ配置部、有機膜を表面に有する親水性且つ非水溶性の第1の基板を配置可能に構成された第1の基板配置部、第2の基板を配置可能に構成された第2の基板配置部、前記第1の基板上の有機膜を前記スタンプの前記凸部に押し付けて前記有機膜を前記凸部上に配置及び前記凸部上に配置された有機膜から前記第1の基板を離間させるように、前記第1の基板及び前記スタンプのうち少なくとも一方を移動可能に構成された第1の駆動部、前記第1の基板上の有機膜を前記スタンプの前記凸部に押し付ける力を制御するように構成された第1の制御部、前記有機膜と前記第1の基板との界面に水または水溶液を供給するように構成された水または水溶液の供給部、前記スタンプの凸部上に配置された有機膜を前記第2の基板に押し付けてパターニングされた有機膜を前記第2の基板上に配置、及び前記第2の基板上に配置されたパターニングされた有機膜から前記スタンプを離間させるように、前記スタンプ及び前記第2の基板のうち少なくとも一方を移動可能に構成された第2の駆動部、並びに前記スタンプの凸部上に配置された有機膜を前記第2の基板に押し付ける力を制御するように構成された第2の制御部を含む、パターニングされた有機膜の製造装置を対象とする。
 図28に、本開示の製造装置100に、スタンプ30、第1の基板10及びその上に配置された有機膜20、並びに第2の基板40を配置したときの断面模式図を示す。スタンプ30は、スタンプ配置部90に配置され、第1の基板10は、第1の基板配置部91に配置され、第2の基板40は、第2の基板配置部92に配置されている。第1の基板配置部91及び第2の基板配置部92は、別個でもよく一体であってもよい。第1の基板配置部91は、製造装置100と一体でもよく、または製造装置100から分離されていてもよい。第2の基板配置部92は、製造装置100と一体でもよく、または製造装置100から分離されていてもよい。
 製造装置100は、第1の駆動部93を備える。第1の駆動部93は、第1の基板10上の有機膜20をスタンプ30の凸部に押し付けて有機膜20を凸部上に配置及び凸部上に配置された有機膜から第1の基板10を離間させるように、第1の基板10及びスタンプ30のうち少なくとも一方を移動可能に構成されている。図28は、第1の駆動部93が、第1の基板10及びスタンプ30の両方を移動可能である一例である。
 製造装置100は、第1の駆動部93が第1の基板10上の有機膜20をスタンプ30の凸部に押し付ける力を制御するように構成された第1の制御部94を備える。
 製造装置100は、有機膜20と第1の基板10との界面に水または水溶液を供給するように構成された水または水溶液の供給部80を備える。
 製造装置100は、第2の駆動部95を備える。第2の駆動部95は、スタンプ30の凸部上の有機膜を第2の基板40に押し付けてパターニングされた有機膜を第2の基板40上に配置、及び第2の基板40上に配置されたパターニングされた有機膜からスタンプを離間させるように、スタンプ30及び第2の基板40のうち少なくとも一方を移動可能に構成されている。図28は、第2の駆動部95が、スタンプ30及び第2の基板40の両方を移動可能である一例である。
 製造装置100は、第2の駆動部95がスタンプ30の凸部上の有機膜を第2の基板40に押し付ける力を制御するように構成された第2の制御部96を備える。
 スタンプ配置部90と、第1の基板配置部91及び第2の基板配置部92とは、少なくとも一方が、前記押し付け方向に対して垂直方向に移動可能である。第1の駆動部93及び第2の駆動部95のうち少なくとも一方が、スタンプ配置部90と第1の基板配置部91及び第2の基板配置部92とのうち少なくとも一方を移動させる駆動部であってもよく、あるいは、製造装置100が、第1の駆動部93及び第2の駆動部95とは別に、スタンプ配置部90と第1の基板配置部91及び第2の基板配置部92とのうち少なくとも一方を移動させる駆動部を備えてもよい。第1の駆動部93及び第2の駆動部95は一体でも別個でもよい。第1の制御部94及び第2の制御部96は一体でも別個でもよい。
 好ましくは、第1の制御部が、第1の基板上の有機膜を凸部に押し付ける際の、有機膜の面内の押し付ける力の分布を制御するように構成されている。好ましくは、第2の制御部が、スタンプの凸部上に配置された有機膜を第2の基板に押し付ける際の、有機膜の面内の押し付ける力の分布を制御するように構成されている。
 好ましくは、製造装置100は、水または水溶液の供給部が供給する水または水溶液の量を調節可能に構成された水または水溶液の量調整部を備える。水または水溶液の量調整部は、流量設定値に合わせてバルブ開度を自動調節してもよい。
 好ましくは、製造装置100は、水または水溶液を供給する有機膜と第1の基板との界面の位置を認識し、水または水溶液の供給部が供給する水または水溶液の位置を調整可能な供給位置調整部を備える。有機膜と第1の基板との界面の位置の認識は、カメラによる二値化処理等の画像処理により行ってもよい。
 好ましくは、製造装置100は、第1の基板上の有機膜をスタンプの凸部に押し付ける位置を制御する第1のアライメント部を備える。第1のアライメント部におけるアライメントは、第1の基板の縁または有機膜の縁とスタンプの縁とを基準とするアライメント、第1の基板上または有機膜上のマーキングとスタンプ上のマーキングとを基準とするアライメント、それらの組み合わせ等であることができる。基準位置の検出は、二値化等の画像処理による検知、機械的な接触検知等であることができる。
 好ましくは、製造装置100は、スタンプの凸部上の有機膜を第2の基板に押し付ける位置を制御する第2のアライメント部を備える。第2のアライメント部におけるアライメントは、スタンプの縁または有機膜の縁と第2の基板の縁とを基準とするアライメント、スタンプ上または有機膜上のマーキングと第2の基板上のマーキングとを基準とするアライメント、それらの組み合わせ等であることができる。基準位置の検出は、二値化等の画像処理による検知、機械的な接触検知等であることができる。第1のアライメント部及び第2のアライメント部は共通でもよい。第1のアライメント部及び第2のアライメント部は、カメラ、処理部、記憶部、データの送受信が可能な通信部等、従来用いられているアライメント装置の構成を備え得る。
 図39に、本開示の製造装置の一例の外観写真を示す。製造装置は、スタンプ配置部90、第1の基板配置部91、第2の基板配置部92、及びアライメント用カメラを備える。図39の製造装置に備えられている4つのアライメント用カメラは、第1のアライメント部及び第2のアライメント部のカメラとして機能する。
 本開示の製造装置における有機膜の構成については、上記パターニングされた有機膜の製造方法における有機膜に関する内容を適用することができる。本開示の製造装置におけるスタンプ、第1の基板、及び第2の基板の構成についてはそれぞれ、上記パターニングされた有機膜の製造方法におけるスタンプ、第1の基板、及び第2の基板に関する内容を適用することができる。
 本開示はまた、基板、及び前記基板上のパターニングされた有機膜を含み、前記有機膜が疎水性であり、前記有機膜及び前記基板のうち少なくとも一方は有機半導体である、有機半導体デバイスを対象とする。
 有機半導体デバイスにおける基板は、好ましくは、有機膜のパターニングにともなうダメージがない。
 図24に、本開示の有機半導体デバイスに含まれる基板40及び基板上のパターニングされた有機膜21の断面模式図を示す。本開示の有機半導体デバイスに含まれる基板及び基板上のパターニングされた有機膜を用いて、電界効果トランジスタ、例えば図12及び図17に例示するボトムゲート/トップコンタクト型の電界効果トランジスタを作製することができる。
 有機膜のパターニングにともなうダメージがないとは、従来行われている基板上における有機膜のパターニングにともなうダメージがないことを意味する。従来技術において有機膜のパターニングを行おうとする場合は基板上でパターニングを行うことになるが、有機膜をエッチングする際のプラズマ処理、レーザーエッチング、エッチング溶媒処理等により、基板表面が変質または分解し得る。一方で、本開示の有機半導体デバイスにおいては、上記パターニングされた有機膜の製造方法に関して説明したように、パターニングされた有機膜を基板上に転写するため、本開示の有機半導体デバイスにおける基板は、有機膜のパターニングにともなう変質または分解が実質的に発生しない。
 変質または分解が実質的に発生しないとは、従来技術における有機膜のフォトリソグラフィプロセス時に用いるフォトレジスト、現像液、エッチング液、剥離液等により基板が実質的に溶解または膨潤しないこと、従来技術における有機膜のエッチング時のプラズマ処理等により、基板表面が変質または分解しないこと、従来技術における有機膜のフォトリソグラフィプロセス時の熱処理等によって基板が膨張または収縮しないこと等が挙げられる。好ましくは、パターニングされた有機膜も、有機膜のパターニングにともなうダメージがない。すなわち、好ましくは、パターニングされた有機膜についても、有機膜のパターニングにともなう上記変質または分解が実質的に発生しない。
 本開示の有機半導体デバイスは、好ましくは、基板と有機膜との間の少なくとも一部、有機膜に対して基板とは反対側の少なくとも一部、またはそれらの両方に電極を含む。図25に、基板40と有機膜21との間に電極60を備える有機半導体デバイスの断面模式図を示す。図27に、有機膜21に対して基板40とは反対側に電極60を備える有機半導体デバイスの断面模式図を示す。電極の厚みは好ましくは10~50nmである。図29~32に、本開示の有機半導体デバイスがとり得る代表的なトランジスタ構造を示す。図29は、トップゲート/トップコンタクト構造の断面模式図である。図30は、トップゲート/ボトムコンタクト構造の断面模式図である。図31は、ボトムゲート/トップコンタクト構造の断面模式図である。図32は、ボトムゲート/ボトムコンタクト構造の断面模式図である。本開示の有機半導体デバイスがとり得る構造は、図29~32に示す構成に限られず、例えば、図29~32に示す構造の最上層の上に封止膜等の層がさらに存在してもよい。
 本開示の有機半導体デバイスは、好ましくは、基板と有機膜と電極との間に空間を含む。図26に、基板40と有機膜21と電極60との間に空間70を備える有機半導体デバイスの断面模式図を示す。図26に示すような橋かけ構造をすることで、トランジスタの絶縁層として機能させることができる。
 空間の幅は、好ましくは500nm~5μmである。
 本開示の有機半導体デバイスは、有機EL(エレクトロルミネッセンス)素子、有機太陽電池素子、有機光電変換素子、有機トランジスタ素子、有機電界効果トランジスタ素子、p型有機トランジスタ及びn型有機トランジスタを備える有機相補型半導体デバイス(有機CMOSまたは有機CMOS論理回路)、有機トランジスタ及び無機トランジスタを備える無機有機ハイブリッド相補型半導体デバイス等であることができる。
 本開示の有機半導体デバイスにおける有機膜の構成については、上記パターニングされた有機膜の製造方法における有機膜に関する内容を適用することができる。本開示の有機半導体デバイスにおける基板の構成については、上記パターニングされた有機膜の製造方法における第2の基板に関する内容を適用することができる。
 本開示の有機半導体デバイスを用いて集積回路を得ることができる。集積回路には、トランジスタが好ましくは10個以上、より好ましくは100個以上、さらに好ましくは1000個以上、さらにより好ましくは10000個以上含まれ得る。集積回路には、AND、OR、NOT、NAND、NOR、XOR、及びXNORの論理ゲートが含まれる。集積回路の一例として、過去の入力を記憶して出力を決定する順序回路の一種であるDフリップフロップ(DFF)回路が挙げられる。
 (実施例1)
 (モールド作製)
 Eagleガラス基板に10分間のUV/O処理をして親水化処理を行った。次いで、親水化処理したガラス基板上に、フォトレジストであるSU-8をスピンコートした。
 SU-8をスピンコートしたガラス基板を、95°Cで6分間熱処理して、所定のパターンのマスクをしてUV露光し、さらに95°Cで、3分間熱処理を行った。次いで、プロピレングリコールモノメチルアセテート(PGMEA)を用いてSU-8を3分間現像し、170°Cで30分間、熱処理を行った。
 SU-8を現像及び熱処理したガラス基板に、気相法でF-SAM処理を3.5時間行って自己組織化単分子膜を形成し、表面に自己組織化単分子膜を備えたフォトレジストを有するガラスのモールドを作製した。
 (PDMSスタンプ作製)
 PDMS(主剤:SIM-360、硬化剤:CAT-360、信越化学工業株式会社製)液を、泡とり錬太郎を用いて攪拌・脱泡した。作製したモールド上に攪拌・脱泡したPDMS液を滴下し、PDMS上にEagleガラス基板を配置して、Eagleガラス基板上におもりを乗せ、静置し、PDMSを150℃で30分間熱硬化させた。
 次いで、PDMSからモールドを剥離して、スタンプを作製した。作製したスタンプは100個の凸部を有しており、凸部の幅は500μm、凸部の長さは700μm、隣り合う凸部間の距離は500μm、及び凸部の最上部及び凹部の最低部の間の距離が7μmであった。
 (パターニングされた有機半導体膜の作製)
 有機半導体として、高移動度を示す下記式(27):
Figure JPOXMLDOC01-appb-C000027
 のp型有機半導体C9-DNBDT-NWの粉末を用意した。溶剤として3-クロロチオフェンを用い、溶剤中に有機半導体粉末を溶解させ、有機半導体溶液を調製した。
 第1の基板として、表面をUV/O処理により親水化したEagleガラス基板(以下、ガラス基板ともいう)を用意した。90℃に加熱したガラス基板上に、調製した有機半導体溶液を連続エッジキャスト法で塗布し、平均厚みが12nm、面積が80cm2、シングルドメインの面積が1000mm2の有機半導体単結晶膜を製膜した。有機半導体単結晶膜表面の水の接触角は108度であった。
 第2の基板として、パリレン(diX-SR(登録商標))を製膜したパリレン/SiO2/n-doped Si基板を用意した。
 図28に模式的に示す製造装置を用いて、パターニングされた有機半導体単結晶膜を作製した。スタンプ配置部にスタンプを配置し、第1の基板配置部に、有機半導体単結晶膜(以下、半導体膜ともいう)を製膜した第1の基板を配置し、第2の基板配置部に第2の基板を配置した。
 図1に示すように、スタンプの凸部と半導体膜が接するように、作製したスタンプに第1の基板を押し付けた。図2に示すように、スタンプに第1の基板をスタンプの凸部の面積当たり50kPaの圧力で押し付けた後、第1の基板と半導体膜との界面に水を滴下し、図3に示すように、半導体膜をスタンプの凸部上に配置し、凸部上に配置した半導体膜から第1の基板を離間させた。図9に、PDMSスタンプ上に転写された半導体膜の偏光顕微鏡像を示す。図9では、PDMSスタンプの凸部上及び凹部上に半導体膜が転写されている。図10に、PDMSスタンプの凸部上及び凹部上に転写された半導体膜を斜め上方から観察した走査型電子顕微鏡(SEM)像を示す。
 スタンプの凸部上に転写された半導体膜と第2の基板上のパリレンとが接するように、図4に示すように第2の基板にスタンプをスタンプの凸部の面積当たり100kPaの圧力で押し付けてパターニングされた半導体膜を第2の基板上に配置し、第2の基板上に配置した半導体膜からスタンプを離間させ、図5に模式的に示すパターニングされた有機半導体単結晶膜21を得た。
 図11に、転写された有機半導体膜21を上面から観察した偏光顕微鏡像を示す。得られた有機半導体単結晶膜はきれいにパターニングされて形成されており、厚みが8nmで、幅が500μm及び半導体膜同士の間隔は500μmの100個のパターンであった。
 図12に示すように、パリレン/SiO2/n-doped Si基板上に配置したC9-DNBDT-NWの有機半導体単結晶膜上に、メタルマスクを用いてS/D電極(ソース/ドレイン電極)として縦0.4mm、横2mm、及び高さ40nmのAu電極を真空蒸着により形成し、ボトムゲートトップコンタクト(BGTC)型有機電界効果トランジスタ(OFET)を作製した。チャネル長Lは100μm、チャネル幅Wは500μmであった。チャネル長とは2つの電極(S/D電極)の間の距離である。図13に、作製したBGTC型OFETの上面から観察した偏光顕微鏡像を示す。
 図14に、作製したBGTC型OFETの飽和領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、図15に、線形領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、図16に、ゲート電圧によるドレイン電圧とドレイン電流との関係を表す出力特性のグラフを示す。飽和領域における移動度は10.7cm2/V・s、線形領域における移動度は9.92cm2/V・sを示し、非常に大きな移動度を示した。
 (実施例2)
 第2の基板として、パリレン/SiO2/n-doped Si基板に代えて、CYTOP(登録商標)/SiO2/n-doped Si基板を用いたこと以外は、実施例1と同じ方法でパターニングされた有機半導体単結晶膜を得た。
 得られた有機半導体単結晶膜21はきれいにパターニングされて形成されており、厚みが8nmで、幅が500μm及び半導体膜同士の間隔が500μmの100個のパターンであった。
 図17に示すように、CYTOP(登録商標)/SiO2/n-doped Si基板上に配置したC9-DNBDT-NWの有機半導体単結晶膜上に、メタルマスクを用いてS/D電極(ソース/ドレイン電極)として縦0.4mm、横2mm、及び高さ40nmのAu電極を真空蒸着により形成し、ボトムゲートトップコンタクト(BGTC)型有機電界効果トランジスタ(OFET)を作製した。チャネル長Lは100μm、チャネル幅Wは500μmであった。図18に、作製したBGTC型OFETの上面から観察した偏光顕微鏡像を示す。
 図19に、作製したBGTC型OFETの飽和領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、図20に、線形領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、図21に、ゲート電圧によるドレイン電圧とドレイン電流との関係を表す出力特性のグラフを示す。飽和領域における移動度は7.18cm2/V・s、線形領域における移動度は16.8cm2/V・sを示し、非常に大きな移動度を示した。
 (実施例3)
 第2の基板として、パリレン/SiO2/n-doped Si基板に代えてトリメトキシ(2-フェニルエチル)シラン(β-PTS)/SiO2/n-doped Si基板を用いたこと、並びに凸部の幅が20μm、40μm、50μm、100μm、及び150μmのスタンプを用いたこと以外は、実施例1と同じ方法でパターニングされた有機半導体単結晶膜を得た。
 図22に、第2の基板上に転写された有機半導体単結晶膜21を上面から観察した偏光顕微鏡像を示す。得られた有機半導体単結晶膜はきれいにパターニングされて形成されており、厚みが8nmで、幅が15μm、35μm、45μm、95μm、及び145μm、長さが800μm、並びに半導体膜同士の間隔は100μmのパターンであった。
 (実施例4)
 第2の基板として、パリレン/SiO2/n-doped Si基板に代えてβ-PTS/SiO2/n-doped Si基板を用いたこと、並びに凸部と凸部との間隔が5μm、10μm、20μm、及び30μmのスタンプを用いたこと以外は、実施例1と同じ方法でパターニングされた有機半導体単結晶膜を得た。
 図23に、第2の基板上に転写された有機半導体単結晶膜21を上面から観察した偏光顕微鏡像を示す。得られた有機半導体単結晶膜はきれいにパターニングされて形成されており、厚みが8nmで、幅が200μm、長さが800μm、並びに半導体膜同士の間隔が10μm、15μm、25μm、及び35μmのパターンであった。
 (実施例5)
 第2の基板として、直径が4インチのパリレン/SiO2/n-doped Si基板を用い、厚みが4~20nm、幅が50~9000μm、長さが10~1300μm、及び半導体膜同士の間隔が2~10000μmのパターニングされた有機半導体単結晶膜を4700個形成したこと以外は、実施例1と同様の方法で、パターニングされた有機半導体単結晶膜を得た。図33に、得られたパターニングされた半導体有機膜を有する4インチウエハの外観写真を示す。
 (実施例6)
 第2の基板としてSi基板を用い、Si基板上に、700μm×500μmの有機半導体単結晶膜を、横方向に500μm、縦方向に300μmの間隔で8×8のアレイとしてパターニングされた有機半導体単結晶膜を64個形成したこと以外は、実施例1と同様の方法で、パターニングされた有機半導体単結晶膜を得た。
 図34に、得られた8×8で並んだ有機半導体単結晶膜アレイのレーザー共焦点顕微鏡像を示す。四角の枠で囲んだ部分が700μm×500μmの有機半導体単結晶膜一つであり、顕微鏡像の全体に有機半導体単結晶膜が8×8で整列している。
 図35に、図34の破線部で囲んだ部分にX線を照射しながら、有機半導体単結晶膜を保持する基板を360度回転させて測定したin-planeX線回折(SmartLab、株式会社リガク、線源CuKα(波長λ=1.54056Å))測定結果を示す。180度周期で1つの回折ピークがみられ、破線部内の有機半導体単結晶膜は、実質的にすべて同じ方向を向いた単結晶膜であることが分かった。図34の破線部で囲んだ部分に位置する有機半導体単結晶膜の結晶の向きが、±1度以内に含まれていることが示唆された。図36に、図35の破線部で囲んだC9-DNBDT-NW有機半導体単結晶の020回折線の拡大図を示す。図36のピークの半値幅を算出したところ、0.535度であり、非常にシャープなピークが得られていた。
 (実施例7)
 (n型TFTの作製)
 基板として、厚さ125μmのポリエチレンナフタレート(poly(ethylene 2,6-naphthalate):PEN)基板(テオネックスQ65HA,テイジンデュポンフィルム株式会社)を用いた。PEN基板から保護フィルムを剥離した後、前処理として150℃のホットプレート上で3時間加熱し、アセトン及び2-プロパノールでそれぞれ10分間ずつ超音波洗浄を行った。
 熱処理及び洗浄を行ったPEN基板の全面に、厚みが30nmのAl膜を電子線蒸着によって形成した。形成したAl膜に対して、フォトリソグラフィプロセスによってゲート電極のパターニングを行った。フォトリソグラフィプロセスは、以下の手順で行った。
 Al膜上に、ポジ型フォトレジストであるAZ 5214 E(MicroChemicals)を、スロープ1秒間、500rpmで5秒間、3000rpmで40秒間、及び5000rpmで2秒間の条件でスピンコートして、スピンコートしたPEN基板を105℃のホットプレート上で70秒間熱処理した。
 AZ 5214 EをスピンコートしたPEN基板に、マスクレス露光機(MLA 150 Maskless Aligner、Heidelberg Instruments)で紫外光(λ=375nm)を照射した後、現像液(NMD-3、2.38%、東京応化工業株式会社)及び超純水に順に浸漬して現像を行った。
 現像したレジストを有するPEN基板を、混酸Alエッチング液(関東化学株式会社)に浸漬してAl膜のウェットエッチングを行い、AZ(登録商標)100 Removerを用いてレジストを剥離した。5分間のUV/O処理によってレジスト残渣を取り除き、CVD法によって厚さ120nmのパリレン(diX-SR(登録商標))を製膜してゲート絶縁膜を形成した。
 実施例1と同様の方法で、n型半導体用のパターンを有する10cm角のPDMSスタンプを作製した。
 有機半導体として、上記式(20)のn型有機半導体PhC-BQQDIの粉末を用意し、実施例1と同様の方法で、有機半導体溶液を調製して、第1の基板上に平均厚みが10nm、面積が15cm2、及びシングルドメインの面積が10mm2の有機半導体単結晶膜を製膜した。
 図39に示す製造装置を用いて、パターニングされた有機半導体単結晶膜を作製した。スタンプ配置部に作製したPDMSスタンプを配置し、第1の基板配置部に、有機半導体単結晶膜(以下、半導体膜ともいう)を製膜した第1の基板を配置し、第2の基板配置部に第2の基板を配置した。
 スタンプの凸部と半導体膜が接するように、作製したスタンプに第1の基板をスタンプの凸部の面積当たり10kPaの圧力で押し付けた。次いで、スタンプに第1の基板を押し付けた後、第1の基板と半導体膜との界面に30wt%のエタノール水溶液を滴下し、半導体膜をスタンプの凸部上に配置し、凸部上に配置した半導体膜から第1の基板を離間させた。
 図39の第2の基板配置部に、ゲート電極及びゲート絶縁膜を形成したPEN基板を配置し、スタンプ配置部に半導体膜を転写したPDMSスタンプを配置した。
 スタンプ吸着ステージの四隅に設置されたカメラによって、ゲート電極層及びPDMSスタンプのそれぞれに配したアライメント用のマークを観察しながら、第2の基板の位置を適切な位置に移動させた。次いで、ロードセルを用いてスタンプの凸部の面積あたり50kPaの荷重を加えながら、PDMSスタンプの凸部上に転写された半導体膜と第2の基板上のパリレンとが接するように第2の基板にスタンプを30秒間押し付けて、パターニングされた半導体膜を第2の基板上に配置し、第2の基板上に配置した半導体膜からスタンプを離間させ、パターニングされた有機半導体単結晶膜21を得た。80°Cの真空オーブンで10時間乾燥を行った。得られた有機半導体単結晶膜はきれいにパターニングされて形成されており、厚みが6~20nmで、幅が250μm、長さが120~200μm及び半導体膜同士の間隔は20~200μmの264個のパターンであった。
 次いで、全面にAuを50nm真空蒸着し、フォトリソグラフィプロセスによってS/D電極のパターニングを行い、ボトムゲートトップコンタクト(BGTC)型有機電界効果トランジスタ(OFET)を作製した。図37に、得られたBGTC型OFETの断面模式図を示す。
 図38に、作製したBGTC型OFETの飽和領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、線形領域におけるゲート電圧とドレイン電流との関係を表す伝達特性のグラフ、及びゲート電圧によるドレイン電圧とドレイン電流との関係を表す出力特性のグラフを示す。飽和領域における移動度は0.18cm2/V・s、線形領域における移動度は0.22cm2/V・sを示した。
 (実施例8)
 凸部の幅が20μm、40μm、50μm、100μm、150μm、及び200μmのスタンプを用い、第1の基板へのスタンプの押し付け圧力をスタンプの凸部の面積当たり10kPa、第2の基板へのスタンプの押し付け圧力をスタンプの凸部の面積当たり50kPaにしたこと以外は、実施例3と同じ方法でパターニングされた有機半導体単結晶膜を得た。
 図40に、第2の基板上に転写された有機半導体単結晶膜21を上面から観察した偏光顕微鏡像を示す。得られた有機半導体単結晶膜はきれいにパターニングされて形成されており、厚みが12nmで、幅が20μm、40μm、50μm、100μm、150μm、及び200μm、長さが800μm、並びに半導体膜同士の間隔は100μmのパターンであった。
 (実施例9)
 凸部と凸部との間隔が1μm、2μm、5μm、10μm、及び20μmのスタンプを用い、第1の基板へのスタンプの押し付け圧力をスタンプの凸部の面積当たり10kPa、第2の基板へのスタンプの押し付け圧力をスタンプの凸部の面積当たり50kPaにしたこと以外は、実施例4と同じ方法でパターニングされた有機半導体単結晶膜を得た。
 図41に、第2の基板上に転写された有機半導体単結晶膜21を上面から観察した偏光顕微鏡像を示す。得られた有機半導体単結晶膜はきれいにパターニングされて形成されており、厚みが12nmで、幅が800μm、長さが200μm、並びに半導体膜同士の間隔が1μm、2μm、5μm、10μm、及び20μmのパターンであった。
 (実施例10)
 凸部が、60μm角、80μm角、100μm角、300μm角、及び500μm角のスタンプを用い、第1の基板へのスタンプの押し付け圧力をスタンプの凸部の面積当たり10kPa、第2の基板へのスタンプの押し付け圧力をスタンプの凸部の面積当たり50kPaにしたこと以外は、実施例4と同じ方法でパターニングされた有機半導体単結晶膜を得た。
 図42に、第2の基板上に転写された有機半導体単結晶膜21を上面から観察した偏光顕微鏡像を示す。得られた有機半導体単結晶膜はきれいにパターニングされて形成されており、厚みが8~12nmで、60μm角、80μm角、100μm角、300μm角、及び500μm角のパターンであった。
 (実施例11)
 凸部が、30μm角、40μm角、及び50μm角のスタンプを用い、第1の基板へのスタンプの押し付け圧力をスタンプの凸部の面積当たり10kPa、第2の基板へのスタンプの押し付け圧力をスタンプの凸部の面積当たり50kPaにしたこと以外は、実施例4と同じ方法でパターニングされた有機半導体単結晶膜を得た。
 図43に、第2の基板上に転写された有機半導体単結晶膜21を上面から観察した偏光顕微鏡像を示す。得られた有機半導体単結晶膜はきれいにパターニングされて形成されており、厚みが8~12nmで、30μm角、40μm角、及び50μm角のパターンであった。
 (実施例12)
 (CMOS論理回路:NOT、NOR、NAND、及びDFF回路の作製)
 実施例7と同様の方法で、PEN基板上に、厚さが30nmのAlゲート電極及び厚さ120nmのパリレン(diX-SR(登録商標))のゲート絶縁膜を形成した。
 ゲート絶縁膜上に、実施例7と同様の方法で、p型有機半導体C-DNBDT-NW膜をp型のスタンプで転写し、次いで、同一レイヤーに、n型有機半導体PhC-BQQDI膜をn型のスタンプで転写した。得られたp型有機半導体単結晶膜はきれいにパターニングされて形成されており、厚みが8~12nm、幅が80μm、及び長さが124~200μmであった。得られたn型有機半導体単結晶膜もきれいにパターニングされて形成されており、厚みが10~12nm、幅が250μm、及び長さが120~200μmであった。
 YAGレーザーを用いてゲート絶縁膜をエッチングし、一部のゲート電極を露出させた(Via(Vertical Interconnect Access)開口)後、全面にAuを50nm蒸着して、露出させたゲート電極とソース/ドレイン電極層とを電気的に接続した。次いで、実施例7と同様の方法で、p型有機半導体C-DNBDT-NW膜上及びn型有機半導体PhC-BQQDI膜上にAuのソース・ドレイン電極をパターニングして、p型有機トランジスタ(p-TFT)及びn型有機トランジスタ(n-TFT)を備える有機相補型半導体デバイスを作製した。p-TFTのL/Wは12μm/80μmであり、n-TFTのL/Wは8μm/500μmであった。図48に、作製したデバイスの断面模式図を示す。
 図49に示すように、フレキシブルPEN基板上の3mm×5mmの面積内に、図48に示す有機相補型半導体デバイスで構成されたNOT、NOR、NAND、及び2to1のセレクタを用いたDフリップフロップ(DFF)回路を作製した。図44に、作製したDFF回路の回路図を示す。
 図45にネガティブエッジトリガ型DFFの真理値表を示す。図46にVDD=10Vでの動作確認結果を示す。図46に示すように、Clock信号がHからLに変わるタイミングでのみData信号が出力Qに読み込まれ、LからHへの切り替わり時やそれ以外のタイミングでは出力QにData信号が反映されずに保持されている動作が確認できた。また、出力QBは出力Qを反転した信号が得られた。したがって、フレキシブル基板であるPEN基板上でのネガティブエッジトリガ型DFFの作製に成功したといえる。
 さらに、同素子をVDD=5Vで動作させたところ、図47に示すように、図46と同様の波形でHのときの電圧が5Vとなる出力が得られ、低電圧で駆動させることができた。
 10 第1の基板
 20 有機膜
 21 パターニングされた有機膜
 22 凹部上の有機膜
 30 スタンプ
 31 スタンプの凸部
 32 スタンプの凹部
 33 液状のスタンプ材料
 40 第2の基板
 42 疎水性膜
 50 モールド
 52 モールド作製用基板
 54 フォトレジスト
 56 剥離層
 57 支持基板
 58 おもり
 60 電極
 70 空間
 80 水もしくは水溶液の供給器、または水もしくは水溶液の供給部
 82 水または水溶液
 90 スタンプ配置部
 91 第1の基板配置部
 92 第2の基板配置部
 93 第1の駆動部
 94 制御部
 95 第2の駆動部
 96 第2の制御部
 100 製造装置

Claims (16)

  1.  塗布法を用いて、親水性且つ非水溶性の第1の基板上に、疎水性の有機膜を形成すること、
     前記第1の基板上に形成された有機膜を、凸部及び凹部を有するスタンプの前記凸部に押し付けること、
     前記第1の基板と前記有機膜との界面に水または水溶液を適用して、前記凸部に前記有機膜を転写すること、並びに
     前記凸部に転写された有機膜を第2の基板に押し付けて、前記第2の基板に前記有機膜を転写してパターニングされた有機膜を得ること、
     を含み、
     前記有機膜及び前記第2の基板のうち少なくとも一方は有機半導体である、
     パターニングされた有機膜の製造方法。
  2.  前記凸部の最上部及び前記凹部の最低部の間の距離が2~100μmである、請求項1に記載の製造方法。
  3.  前記パターニングされた有機膜は10個以上の有機膜を含み、それぞれの有機膜が、厚みが2nm以上、幅が500nm以上、及び長さが500nm以上を有し、隣り合う有機膜同士の間隔が1μm以上である、請求項1または2に記載の製造方法。
  4.  凸部及び凹部を有するスタンプを配置するように構成されたスタンプ配置部、
     有機膜を表面に有する親水性且つ非水溶性の第1の基板を配置可能に構成された第1の基板配置部、
     第2の基板を配置可能に構成された第2の基板配置部、
     前記第1の基板上の有機膜を前記スタンプの前記凸部に押し付けて前記有機膜を前記凸部上に配置及び前記凸部上に配置された有機膜から前記第1の基板を離間させるように、前記第1の基板及び前記スタンプのうち少なくとも一方を移動可能に構成された第1の駆動部、
     前記第1の基板上の有機膜を前記スタンプの前記凸部に押し付ける力を制御するように構成された第1の制御部、
     前記有機膜と前記第1の基板との界面に水または水溶液を供給するように構成された水または水溶液の供給部、
     前記スタンプの凸部上に配置された有機膜を前記第2の基板に押し付けてパターニングされた有機膜を前記第2の基板上に配置、及び前記第2の基板上に配置されたパターニングされた有機膜から前記スタンプを離間させるように、前記スタンプ及び前記第2の基板のうち少なくとも一方を移動可能に構成された第2の駆動部、並びに
     前記スタンプの凸部上に配置された有機膜を前記第2の基板に押し付ける力を制御するように構成された第2の制御部
     を含む、パターニングされた有機膜の製造装置。
  5.  前記第1の制御部が、前記有機膜を前記凸部に押し付ける際の、前記有機膜の面内の押し付ける力の分布を制御するように構成されている、請求項4に記載の製造装置。
  6.  前記第2の制御部が、前記有機膜を前記第2の基板に押し付ける際の、前記有機膜の面内の押し付ける力の分布を制御するように構成されている、請求項4または5に記載の製造装置。
  7.  前記製造装置が、前記水または水溶液の供給部が供給する水または水溶液の量を調節可能に構成された水または水溶液の量調整部を備える、請求項4~6のいずれか一項に記載の製造装置。
  8.  前記製造装置が、前記水または水溶液を供給する前記界面の位置を認識し、前記水または水溶液の供給部が供給する水または水溶液の位置を調整可能な供給位置調整部を備える、請求項4~7のいずれか一項に記載の製造装置。
  9.  前記製造装置が、前記第1の基板上の有機膜を前記スタンプの前記凸部に押し付ける位置を制御する第1のアライメント部を備える、請求項4~8のいずれか一項に記載の製造装置。
  10.  前記製造装置が、前記スタンプの凸部上の有機膜を前記第2の基板に押し付ける位置を制御する第2のアライメント部を備える、請求項4~9のいずれか一項に記載の製造装置。
  11.  基板、及び
     前記基板上のパターニングされた有機膜
     を含み、
     前記有機膜が疎水性であり、
     前記有機膜及び前記基板のうち少なくとも一方は有機半導体であり、
     前記基板は、前記有機膜のパターニングにともなうダメージがない、
     有機半導体デバイス。
  12.  前記パターニングされた有機膜は10個以上の有機膜を含み、それぞれの有機膜が、厚みが2nm以上、幅が500nm以上、及び長さが500nm以上を有し、隣り合う有機膜同士の間隔が1μm以上である、請求項11に記載の有機半導体デバイス。
  13.  前記パターニングされた有機膜が0.0001mm以上のシングルドメインを有する有機半導体単結晶膜である、請求項11または12に記載の有機半導体デバイス。
  14.  前記基板と前記有機膜との間の少なくとも一部、前記有機膜に対して前記基板とは反対側の少なくとも一部、またはそれらの両方に電極を含む、請求項11~13のいずれか一項に記載の有機半導体デバイス。
  15.  前記基板と前記有機膜と前記電極との間に空間を含む、請求項14に記載の有機半導体デバイス。
  16.  請求項11~15のいずれか一項に記載の有機半導体デバイスを含む集積回路。
PCT/JP2021/009658 2020-03-10 2021-03-10 パターニングされた有機膜の製造方法、パターニングされた有機膜の製造装置、それにより作製された有機半導体デバイス、及び有機半導体デバイスを含む集積回路 WO2021182545A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180020677.XA CN115244667A (zh) 2020-03-10 2021-03-10 经图案化的有机膜的制造方法、经图案化的有机膜的制造装置、利用其制作出的有机半导体器件以及包含有机半导体器件的集成电路
JP2022507265A JPWO2021182545A1 (ja) 2020-03-10 2021-03-10
KR1020227033868A KR20220150922A (ko) 2020-03-10 2021-03-10 패터닝된 유기막의 제조 방법, 패터닝된 유기막의 제조 장치, 그것에 의해 제작된 유기 반도체 디바이스, 및 유기 반도체 디바이스를 포함하는 집적 회로
US17/905,941 US20230165123A1 (en) 2020-03-10 2021-03-10 Production method for patterned organic film, production apparatus for patterned organic film, organic semiconductor device produced by same, and integrated circuit including organic semiconductor device
EP21768047.9A EP4120325A4 (en) 2020-03-10 2021-03-10 PRODUCTION METHOD FOR STRUCTURED ORGANIC FILM, PRODUCTION DEVICE FOR STRUCTURED ORGANIC FILM, ORGANIC SEMICONDUCTOR COMPONENT PRODUCED THEREFROM, AND INTEGRATED CIRCUIT WITH ORGANIC SEMICONDUCTOR COMPONENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-040647 2020-03-10
JP2020040647 2020-03-10

Publications (1)

Publication Number Publication Date
WO2021182545A1 true WO2021182545A1 (ja) 2021-09-16

Family

ID=77670682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009658 WO2021182545A1 (ja) 2020-03-10 2021-03-10 パターニングされた有機膜の製造方法、パターニングされた有機膜の製造装置、それにより作製された有機半導体デバイス、及び有機半導体デバイスを含む集積回路

Country Status (7)

Country Link
US (1) US20230165123A1 (ja)
EP (1) EP4120325A4 (ja)
JP (1) JPWO2021182545A1 (ja)
KR (1) KR20220150922A (ja)
CN (1) CN115244667A (ja)
TW (1) TW202141179A (ja)
WO (1) WO2021182545A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181707A1 (ja) * 2021-02-25 2022-09-01 国立大学法人 東京大学 無機/有機ハイブリッド相補型半導体デバイス及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117257390A (zh) * 2023-07-28 2023-12-22 青岛理工大学 一种亲疏水复合织构微磨头加工方法及骨微磨削装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067390A (ja) * 2005-08-05 2007-03-15 Sony Corp 半導体装置の製造方法および半導体装置の製造装置
JP2013021190A (ja) * 2011-07-12 2013-01-31 Dainippon Printing Co Ltd 有機半導体素子の製造方法および有機半導体素子
JP2013038127A (ja) * 2011-08-04 2013-02-21 Osaka Univ 有機トランジスタ及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003217184A1 (en) * 2002-01-11 2003-09-02 Massachusetts Institute Of Technology Microcontact printing
TW201535814A (zh) * 2013-10-25 2015-09-16 Univ Michigan 具有使用模板移轉印刷所達成的分級主動區域之光伏打電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067390A (ja) * 2005-08-05 2007-03-15 Sony Corp 半導体装置の製造方法および半導体装置の製造装置
JP2013021190A (ja) * 2011-07-12 2013-01-31 Dainippon Printing Co Ltd 有機半導体素子の製造方法および有機半導体素子
JP2013038127A (ja) * 2011-08-04 2013-02-21 Osaka Univ 有機トランジスタ及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. ROGERS ET AL., APPL. PHYS. LETT., vol. 81, 2002, pages 562
See also references of EP4120325A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181707A1 (ja) * 2021-02-25 2022-09-01 国立大学法人 東京大学 無機/有機ハイブリッド相補型半導体デバイス及びその製造方法

Also Published As

Publication number Publication date
CN115244667A (zh) 2022-10-25
US20230165123A1 (en) 2023-05-25
JPWO2021182545A1 (ja) 2021-09-16
EP4120325A4 (en) 2023-10-04
EP4120325A1 (en) 2023-01-18
KR20220150922A (ko) 2022-11-11
TW202141179A (zh) 2021-11-01

Similar Documents

Publication Publication Date Title
Dickey et al. Improving organic thin‐film transistor performance through solvent‐vapor annealing of solution‐processable triethylsilylethynyl anthradithiophene
JP6274203B2 (ja) 有機半導体薄膜の作製方法
Liu et al. Self‐Assembled Monolayers of Phosphonic Acids with Enhanced Surface Energy for High‐Performance Solution‐Processed N‐Channel Organic Thin‐Film Transistors
Chen et al. A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics
WO2021182545A1 (ja) パターニングされた有機膜の製造方法、パターニングされた有機膜の製造装置、それにより作製された有機半導体デバイス、及び有機半導体デバイスを含む集積回路
Chen et al. Organic semiconductor crystal engineering for high‐resolution layer‐controlled 2D Crystal Arrays
KR20100070652A (ko) 유기반도체/절연성 고분자 블렌드의 상분리를 이용한 다층 박막 제조방법 및 이를 이용한 유기박막 트랜지스터
EP2377178B1 (en) Method of manufacturing organic semiconductor nanofibrillar network dispersed in insulating polymer using a blend of organic semiconductor/insulating polymer and organic thin film transistor using the same
JP2015029020A (ja) 有機半導体層形成用溶液、有機半導体層および有機薄膜トランジスタ
US9070881B2 (en) Method of manufacturing an organic semiconductor thin film
WO2007125950A1 (ja) 有機半導体薄膜および有機半導体デバイス
Kim et al. Unified film patterning and annealing of an organic semiconductor with micro-grooved wet stamps
US7115900B2 (en) Devices having patterned regions of polycrystalline organic semiconductors, and methods of making the same
US9263686B2 (en) Method of manufacturing organic thin film transistor having organic polymer insulating layer
Nguyen et al. Simultaneous control of molecular orientation and patterning of small-molecule organic semiconductors for organic transistors
JP2008226959A (ja) 有機電界効果トランジスタの製造方法、及び、有機電界効果トランジスタ
KR101172187B1 (ko) 스프레이 방식을 이용한 박막트랜지스터 및 전자회로를 제조하는 방법
CN113454800A (zh) 有机半导体器件、有机半导体单晶膜的制造方法、以及有机半导体器件的制造方法
WO2022181707A1 (ja) 無機/有機ハイブリッド相補型半導体デバイス及びその製造方法
JP2017098489A (ja) 有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ
Zhao et al. Self‐Encapsulated N‐Type Semiconducting Photoresist Toward Complementary Organic Electronics
JP2017098491A (ja) 有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ
Watanabe et al. Scalable High-Speed Hybrid Complementary Integrated Circuits based on Solution-Processed Organic and Amorphous Metal Oxide Semiconductors
Paulus N-heteroacenes in Organic Field-effect Transistors
JP2016063025A (ja) 有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507265

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227033868

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021768047

Country of ref document: EP

Effective date: 20221010