WO2021182008A1 - ポリプロピレン系樹脂発泡粒子成形体、ポリプロピレン系樹脂発泡粒子及びその製造方法 - Google Patents

ポリプロピレン系樹脂発泡粒子成形体、ポリプロピレン系樹脂発泡粒子及びその製造方法 Download PDF

Info

Publication number
WO2021182008A1
WO2021182008A1 PCT/JP2021/005217 JP2021005217W WO2021182008A1 WO 2021182008 A1 WO2021182008 A1 WO 2021182008A1 JP 2021005217 W JP2021005217 W JP 2021005217W WO 2021182008 A1 WO2021182008 A1 WO 2021182008A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
based resin
foamed
particles
foamed particles
Prior art date
Application number
PCT/JP2021/005217
Other languages
English (en)
French (fr)
Inventor
貴史 大井
肇 太田
Original Assignee
株式会社ジェイエスピー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイエスピー filed Critical 株式会社ジェイエスピー
Priority to CN202180009566.9A priority Critical patent/CN114981347B/zh
Priority to EP21768157.6A priority patent/EP4098686A4/en
Priority to US17/905,890 priority patent/US11904579B2/en
Publication of WO2021182008A1 publication Critical patent/WO2021182008A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/034Post-expanding of foam beads or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene

Definitions

  • the present invention relates to a polypropylene-based resin foamed particle molded product, a polypropylene-based resin foamed particle, and a method for producing the same.
  • the foamed particle molded body formed by molding the foamed particles in the mold is suitably used as a cushioning material or a packaging material for protecting the object to be packaged.
  • a foamed particle molded product made of polypropylene-based resin foamed particles is used (for example, Patent Document 1).
  • a foamed particle molded product made of polyethylene-based resin foamed particles may be used as a foamed particle molded product having more excellent protection of the object to be packaged than the polypropylene-based resin foamed particle molded product.
  • the protection property may be insufficient depending on the type of the object to be packaged.
  • a polyethylene-based resin foamed particle molded body is used as a cushioning material or a packaging material for protecting the object to be packaged, the mass per unit volume tends to increase in order to realize the rigidity required for the cushioning material or the like. Further, in this case, there may be problems that the rigidity tends to be insufficient, the foamed particle molded body is easily bent due to its own weight, and the foamed particle molded body is easily deformed by the mass of the packaged object.
  • the present invention has been made in view of this background, and is capable of forming a polypropylene-based resin foamed particle molded product having excellent protection and rigidity of the object to be packaged and a small mass per unit volume, and the foamed particle molded product.
  • An object of the present invention is to provide polypropylene-based resin foam particles and a method for producing the same.
  • One aspect of the present invention is to mold polypropylene-based resin foam particles having a foamed core layer containing a polypropylene-based resin and a coating layer containing a polyethylene-based resin and covering the core layer. It is a polypropylene-based resin foam particle molded product that is molded.
  • the molded product magnification X [times] of the polypropylene-based resin foamed particle molded product is 55 times or more and 90 times or less.
  • the value of the product X ⁇ ⁇ 50 of the 50% compressive stress ⁇ 50 [kPa] of the polypropylene-based resin foamed particle molded product and the molded product magnification X is 6500 or more.
  • the polypropylene-based resin foamed particle molded body has a 5% compressive stress ⁇ 5 of 5 kPa or more and 25 kPa or less.
  • Another aspect of the present invention is a foamed core layer containing a polypropylene-based resin. It contains a polyethylene-based resin and has a coating layer that covers the core layer.
  • the bulk ratio is 55 times or more and 90 times or less,
  • the flexural modulus Mc of the polypropylene resin contained in the core layer is 800 MPa or more and 1200 MPa or less.
  • the polypropylene-based resin foamed particles have a flexural modulus Ms of 250 MPa or less of the polyethylene-based resin contained in the coating layer.
  • Yet another aspect of the present invention includes an unfoamed core layer containing a polypropylene resin having a flexural modulus Mc of 800 MPa or more and 1200 MPa or more, and a polyethylene resin having a flexural modulus Ms of 250 MPa or less.
  • the polypropylene-based resin particles dispersed in the dispersion medium in a closed container are impregnated with an inorganic physical foaming agent, and then the polypropylene-based resin particles and the dispersion medium are transferred from the closed container to a lower pressure than in the closed container.
  • One-stage foaming to obtain one-stage foamed particles having a foamed core layer containing the polypropylene-based resin and a coating layer containing the polyethylene-based resin and covering the core layer.
  • Polypropylene resin foaming comprising a two-stage foaming step of further foaming the one-stage foamed particles to obtain polypropylene-based resin foamed particles having a bulk ratio (II) of 55 times or more and 90 times or less by heating under low pressure. It is in the method of producing particles.
  • the polypropylene-based resin foamed particle molded product (hereinafter, may be abbreviated as “foamed particle molded product”) contains a polypropylene-based resin, and contains a core layer in a foamed state and a polyethylene-based resin. It is composed of polypropylene-based resin foamed particles (hereinafter, may be abbreviated as “foamed particles”) having a coating layer that coats the core layer. Since the foamed particle molded product includes the core layer containing the polypropylene-based resin, the molded product magnification X can be increased while ensuring rigidity. Therefore, the foamed particle molded product can easily have both high rigidity and light weight.
  • the product of the molded body magnification X and the 50% compressive stress ⁇ 50 satisfies the specific relationship, and the value of the 5% compressive stress ⁇ 5 is within the specific range.
  • the polypropylene-based resin foamed particle molded product having such physical properties has high rigidity and excellent protection of the object to be packaged.
  • FIG. 1 is an explanatory diagram showing a method of calculating the area of a high temperature peak.
  • FIG. 2 is an enlarged photograph of the cut surface of the foamed particles A.
  • FIG. 3 is an enlarged photograph of the cut surface of the foamed particles E.
  • FIG. 4 is an enlarged photograph of the cut surface of the foamed particles H.
  • the foamed particle molded product is composed of polypropylene-based resin foamed particles having a foamed core layer containing a polypropylene-based resin and a coating layer containing a polyethylene-based resin and covering the core layer. ing.
  • a to B representing a numerical range is synonymous with “A or more and B or less”, and represents a numerical range including A and B which are end points of the numerical range.
  • the polyethylene resin contained in the coating layer of the foamed particles preferably has a flexural modulus Ms of 250 MPa or less.
  • the 5% compressive stress ⁇ 5 of the foamed particle molded product can be made smaller, and the skin surface of the foamed particle molded product, that is, the inside of the mold during in-mold molding.
  • the surface that was in contact with the surface can be given a gentler texture to the object to be packaged.
  • the protective property of the foamed particle molded product can be further improved.
  • the polypropylene resin contained in the core layer of the foamed particles preferably has a flexural modulus Mc of 800 MPa or more and 1200 MPa or less.
  • the molded body magnification X [times] of the foamed particle molded body is 55 times or more and 90 times or less, and the value of the product X ⁇ ⁇ 50 of the 50% compressive stress ⁇ 50 [kPa] and the molded body magnification X is 6500 or more.
  • the 5% compressive stress ⁇ 5 is 5 kPa or more and 25 kPa or less.
  • the foamed particle molded product has excellent protection and high rigidity because the three physical property values of the molded product magnification X, 50% compressive stress ⁇ 50 and 5% compressive stress ⁇ 5 satisfy the above relationship. And lightweight.
  • the mass per unit volume of the foamed particle molded body tends to increase.
  • the weight of the foamed particle molded product may cause the foamed particle molded product to easily bend.
  • the molded product magnification X of the foamed particle molded product is preferably 58 times or more, more preferably 60 times or more, further preferably 62 times or more, and particularly preferably 65 times or more. In this case, it is possible to further improve the protection against the object to be packaged while ensuring the rigidity of the foamed particle molded product. In addition, the mass per unit volume of the foamed particle molded product can be further reduced. From the viewpoint of further improving the rigidity of the foamed particle molded product, the molded product magnification X of the foamed particle molded product is preferably 85 times or less, and more preferably 80 times or less.
  • the above-mentioned molded body magnification X [times] of the foamed particle molded body is such that the density [kg / m 3 ] of the polypropylene-based resin contained in the core layer is the molded body density ⁇ (D) [kg] of the foamed particle molded body. / M 3 ] divided by the value.
  • the density of the polypropylene-based resin contained in the core layer can be determined, for example, by the method described in JIS K7112: 1999.
  • the density of the polypropylene-based resin contained in the core layer is approximately 890 kg / m 3 or more and 910 kg / m 3 or less.
  • the molded body density ⁇ (D) of the foamed particle molded body is a value calculated by the following method. First, a measurement sample is collected from the vicinity of the center of the foamed particle molded product. The value obtained by dividing the mass of the measurement sample by the volume of the measurement sample calculated based on the dimensions is defined as the molded body density ⁇ (D) of the foamed particle molded body.
  • the central portion of the foamed particle molded product described above is the portion farthest from all the skin surfaces existing in the foamed particle molded product. In the in-mold molding of the foamed particle molded product, the secondary foaming of the foamed particles existing in the vicinity of the skin surface is regulated by the mold. By collecting the measurement sample from the vicinity of the central portion of the foamed particle molded product, it is possible to prevent the portion near the skin surface from affecting the measurement of the molded product magnification.
  • the value of the product X ⁇ ⁇ 50 of the 50% compressive stress ⁇ 50 and the compact magnification X is an index related to the balance between the light weight and the rigidity of the foamed particle compact.
  • the rigidity of the foamed particle molded product tends to increase as the 50% compressive stress ⁇ 50 increases. Further, the mass per unit volume of the foamed particle molded body becomes smaller as the molded body magnification X of the foamed particle molded body is larger.
  • the rigidity and lightness of the foamed particle molded body can be improved in a well-balanced manner. can. According to the foamed particle molded product, the bending due to its own weight can be reduced, and even when the mass of the packaged object is relatively large, the foamed particle molded product is deformed or damaged by the packaged object. It can be suppressed.
  • the value of the product X ⁇ ⁇ 50 of the 50% compressive stress ⁇ 50 and the compact magnification X is preferably 7000 or more, and more preferably 7500 or more. .. From the above viewpoint, there is no upper limit to the value of the product X ⁇ ⁇ 50 of the product of 50% compressive stress ⁇ 50 and the molded body magnification X, but due to the structure of the foamed particle molded body, molding is performed with 50% compressive stress ⁇ 50.
  • the value of the product X ⁇ ⁇ 50 with the body magnification X is usually 9000 or less.
  • the 5% compressive stress ⁇ 5 of the foamed particle molded product is 5 kPa or more and 25 kPa or less.
  • the 5% compressive stress ⁇ 5 is preferably 15 kPa or more and 24 kPa or less.
  • the protective property may be inferior depending on the application. Further, if the value of the 50% compressive stress ⁇ 5 is simply increased in an attempt to reduce the value of the 5% compressive stress ⁇ 5 , the value of the 50% compressive stress ⁇ 50 tends to be small, and the rigidity of the foamed particle molded body may not be maintained. there were.
  • the foamed particle molded body is a conventional polypropylene-based product while maintaining the rigidity of the foamed particle molded body by setting the value of the product X ⁇ ⁇ 50 of 50% compressive stress ⁇ 50 and the molded body magnification X to 6500 or more.
  • the value of 5% compressive stress ⁇ 5 can be made smaller than that of the resin foamed particle molded body. Therefore, although the foamed particle molded product is composed of foamed particles containing a polypropylene-based resin, the surface of the foamed particle molded product can be softened, and when an impact is applied to the packaged object, the foamed particle molded product is formed.
  • the surface of the package follows the object to be packaged and easily deforms. As a result, it is possible to realize excellent protection properties equal to or higher than those of the polyethylene-based resin foamed particle molded product.
  • the value of the ratio ⁇ 5 / ⁇ 50 of the 5% compressive stress ⁇ 5 [kPa] to the 50% compressive stress ⁇ 50 in the foamed particle compact is preferably 0.20 or less, and preferably 0.19 or less. More preferred.
  • the value of ⁇ 5 / ⁇ 50 which is the ratio of 5% compressive stress ⁇ 5 to 50% compressive stress ⁇ 50 , is an index related to the balance between the protection property and the rigidity of the packaged object.
  • the value of ⁇ 5 / ⁇ 50 of the foamed particle molded product can be made smaller than that of the conventional polypropylene-based resin foamed particle molded product.
  • the foamed particle molded product is composed of foamed particles containing a polypropylene resin
  • the surface can be made softer, and the foamed particle molded product is molded when an impact is applied to the packaged object.
  • the surface of the body follows the object to be packaged and easily deforms.
  • the foamed particle molded body can further increase the rigidity of the foamed particle molded body while making the surface more flexible. Therefore, the foamed particle molded product is excellent in rigidity and can more reliably realize excellent protection property equal to or higher than that of the polyethylene-based resin foamed particle molded product.
  • ⁇ 5 / ⁇ 50 which is the ratio of 5% compressive stress ⁇ 5 to 50% compressive stress ⁇ 50.
  • the value of the ratio ⁇ 5 / ⁇ 50 of 5% compressive stress ⁇ 5 to 50% compressive stress ⁇ 50 is usually 0.15 or more.
  • the 50% compressive stress ⁇ 50 of the foamed particle molded product is preferably 80 kPa or more and 150 kPa or less, and more preferably 100 kPa or more and 140 kPa or less. In this case, it is possible to more reliably realize the rigidity suitable for use as a cushioning material or a packaging material while ensuring the protection against the object to be packaged.
  • the values of 50% compressive stress ⁇ 50 and 5% compressive stress ⁇ 5 of the foamed particle compact can be measured by the method specified in JIS K6767: 1999.
  • the ratio ⁇ (E) / ⁇ (D) of the apparent density ⁇ (E) of the surface layer portion to the molded body density ⁇ (D) of the foamed particle molded body is preferably 1.1 or more and 1.6 or less. It is more preferably 1.2 or more and 1.5 or less. In this case, the protection against the object to be packaged when used as a cushioning material or a packaging material can be further improved.
  • the surface layer portion of the foamed particle molded product means a region between the skin surface of the foamed particle molded product and the surface having a depth of 3 mm from the skin surface.
  • the apparent density ⁇ (E) of the surface layer portion of the foamed particle molded product can be obtained by the following method. First, the foamed particle molded product is cut at a surface having a depth of 3 mm from the skin surface, and the surface layer portion is collected. Next, the surface layer portion is cut into an appropriate size, and small pieces whose one surface in the thickness direction is the skin surface are collected. The small pieces are allowed to stand in an environment of a temperature of 23 ° C.
  • the apparent density ⁇ (E) [kg / m 3 ] of the surface layer portion can be obtained by dividing the mass of the small piece by the volume calculated based on the outer diameter dimension of the small piece.
  • the foam average cell diameter d i of the interior of the particle shaped material is preferably not less than 80 ⁇ m or 170 ⁇ m or less.
  • the average cell diameter d i of the interior of the foamed bead molded article and the specified range it is possible to reduce the 5% compressive stress sigma 5 of the foamed bead molded article more easily.
  • the protective property of the foamed particle molded product can be further improved. Further, even when the foamed particle molded product is sliced and used, the desired physical properties can be more reliably exhibited.
  • the average cell diameter d i of the interior of the foamed bead molded article is particularly preferable.
  • Average cell diameter d i of the interior of the foamed bead molded article is a value calculated by the following method. First, a rectangular parallelepiped piece having no skin surface is cut out from the vicinity of the center of the foamed particle molded product.
  • the ratio d s / d i of the foam the average cell diameter d s of the surface layer portion of the foamed bead molded article with respect to the average cell diameter d i of the interior of the grain compact [[mu] m] is 0.80 to 1.20 Is preferable.
  • the ratio d s / d i of the average cell diameter d s of the surface layer portion to the average cell diameter d i of the interior of the foamed bead molded article [[mu] m] is less than 0.85 1 It is more preferably .18 or less, further preferably 0.90 or more and 1.15 or less, and particularly preferably 1.00 or more and 1.12 or less.
  • the average bubble diameter d s of the surface layer portion of the foamed particle molded product is a value calculated by the following method. First, a small piece of a substantially cube is collected from the surface layer portion of the foamed particle molded product. Using a scanning electron microscope, a magnified photograph of the surface of this small piece parallel to the thickness direction is obtained. At this time, an enlarged photograph is obtained so that 20 or more bubbles are present in the enlarged photograph. On the obtained enlarged photograph, a line segment parallel to the skin surface is drawn so that the depth from the skin surface (that is, the distance in the thickness direction) is 50 ⁇ m, and the number of bubbles intersecting the line segment is counted. Then, the value obtained by dividing the length of the line segment described above by the number of bubbles intersecting the line segment is defined as the average bubble diameter d s [ ⁇ m] in the surface layer portion of the foamed particle molded body.
  • Average cell diameter d s in the surface layer of the foamed bead molded article is preferably at 80 ⁇ m or 200 ⁇ m or less, more preferably less than 110 [mu] m 180 [mu] m, and more preferably less than 140 .mu.m 160 .mu.m.
  • the resilience of the shape when the surface of the foamed particle molded product is compressed can be further enhanced, and the protection against the object to be packaged can be further improved.
  • the foamed particle molded product is produced, for example, as follows. First, the foamed particles are filled in a mold having a cavity corresponding to the desired shape of the molded product, and a large number of foamed particles are heated in the mold by a heating medium such as steam. The foamed particles in the cavity are further foamed by heating and fused to each other. As a result, a large number of foamed particles are integrated, and a foamed particle molded product corresponding to the shape of the cavity can be obtained.
  • the flexural modulus Mc of the polypropylene resin contained in the core layer is 800 MPa or more and 1200 MPa or less.
  • the flexural modulus Ms of the polyethylene resin contained in the coating layer is 250 MPa or less.
  • the foamed particle molded product can be easily obtained by molding the foamed particles having the above structure in the mold.
  • the core layer of the foamed particles is composed of a foam containing a polypropylene resin.
  • the polypropylene-based resin refers to a homopolymer of a propylene monomer and a propylene-based copolymer containing 50% by mass or more of structural units derived from propylene.
  • the core layer may contain one kind of polypropylene-based resin selected from the group consisting of a homopolymer of a propylene monomer and a propylene-based copolymer, or may contain two or more kinds of polypropylene-based resins. It may be.
  • homopolymer of the propylene monomer for example, isotactic polypropylene, syndiotactic polypropylene, and atactic polypropylene can be used.
  • propylene-based copolymer examples include propylene, ethylene, 1-butene, isobutylene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3,4-dimethyl-1-butene, and 3-methyl.
  • a copolymer with ⁇ -olefin having 4 to 10 carbon atoms such as -1-hexene, a propylene-acrylic acid copolymer, a propylene-maleic anhydride copolymer and the like can be used.
  • These copolymers may be random copolymers or block copolymers. Further, the copolymer may be a binary copolymer or a ternary or higher multi-polymer copolymer.
  • the content of the structural unit other than the structural unit derived from propylene in the copolymer is preferably 25% by mass or less, more preferably 15% by mass or less, and preferably 10% by mass or less. More preferred.
  • the core layer may contain additives such as a bubble modifier, a catalyst neutralizer, a lubricant, a crystal nucleating agent, and an antistatic agent.
  • the content of the additive in the core layer is, for example, preferably 15% by mass or less, more preferably 10% by mass or less, and preferably 5% by mass or less, based on the total mass of the core layer. It is more preferably 1% by mass or less, and particularly preferably 1% by mass or less.
  • an antistatic effect can be imparted to the inside of the foamed particles. Therefore, according to such foamed particles, for example, even when the foamed particle molded product is cut and used after in-mold molding, it is possible to obtain a foamed particle molded product having an antistatic effect on the entire foamed particle molded product.
  • the core layer may contain a material other than the polypropylene-based resin such as other resins and elastomers as long as the object and action of the present invention are not impaired.
  • resins other than polypropylene-based resins include thermoplastic resins such as polyethylene-based resins, polystyrene-based resins, polybutene-based resins, polyamide-based resins, and polyester-based resins.
  • elastomers other than polypropylene-based resins include olefin-based thermoplastic elastomers and styrene-based thermoplastic elastomers. The content of the resin, elastomer, etc.
  • the core layer is preferably 20% by mass or less, more preferably 10% by mass or less, and 0% by mass, based on the total mass of the core layer. That is, it is particularly preferable that the core layer does not contain a resin other than the polypropylene resin, an elastomer, or the like.
  • the polypropylene resin contained in the core layer of the foamed particles has a flexural modulus Mc of 800 MPa or more and 1200 MPa or less.
  • Mc flexural modulus
  • the melting point of the polypropylene-based resin contained in the core layer is preferably 135 ° C. or higher and 150 ° C. or lower. In this case, the bulk density of the foamed particles can be lowered more easily. Further, in this case, the 5% compressive stress ⁇ 5 of the foamed particle molded product obtained by molding the foamed particles in the mold can be made smaller. From the same viewpoint, the melting point of the polypropylene resin contained in the core layer is more preferably 138 ° C. or higher and 148 ° C. or lower, and further preferably 140 ° C. or higher and 145 ° C. or lower.
  • the melting point of the polypropylene-based resin contained in the core layer can be measured by the heat flux differential scanning calorimetry method described in JIS K7121: 1987. Specifically, first, the state of the test piece made of polypropylene-based resin is adjusted. After that, the temperature is raised from 23 ° C. to 200 ° C. at a heating rate of 10 ° C./min, and then lowered to 23 ° C. at a cooling rate of 10 ° C./min. After that, the apex temperature of the endothermic peak determined by the DSC curve obtained when the temperature is raised again from 23 ° C. to 200 ° C.
  • the melting point of the polypropylene-based resin contained in the core layer can be used as the melting point of the polypropylene-based resin contained in the core layer. ..
  • the apex temperature of the endothermic peak having the largest area is set as the melting point.
  • the test piece may be collected directly from the core layer by removing the coating layer from the surface of the foamed particles to expose the core layer.
  • the melt flow rate of the polypropylene resin contained in the core layer is preferably 2 g / 10 minutes or more and 18 g / 10 minutes or less, and 4 g / 10 minutes or more and 12 g / 10 minutes or more. More preferably, it is more preferably 6 g / 10 minutes or more and 10 g / 10 minutes or less.
  • the foamability during the manufacturing process of the foamed particles and the in-mold molding can be further improved. Further, in this case, the bulk density of the foamed particles can be lowered more easily, and the bulk density can be more easily controlled in the process of manufacturing the foamed particles.
  • the above-mentioned polypropylene resin MFR is a value measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210-1: 2014.
  • the polydispersity Mw / Mn of the polypropylene resin contained in the core layer is preferably 4.0 or more and 25 or less, and more preferably 4.1 or more and 10 or less.
  • the foamability during the manufacturing process of the foamed particles and the in-mold molding can be further improved.
  • the bulk density of the foamed particles can be lowered more easily, and the bulk density can be more easily controlled in the process of manufacturing the foamed particles.
  • the moldability of the foamed particles can be further improved.
  • the polydispersity Mw / Mn of the polypropylene resin is a value obtained by dividing the weight average molecular weight Mw measured by the gel permeation chromatography (GPC) method using polystyrene as a standard substance by the number average molecular weight Mn.
  • the polypropylene-based resin contained in the core layer is preferably a polypropylene-based resin obtained by polymerization in the presence of a Ziegler-Natta-based polymerization catalyst.
  • Polypropylene resins produced using a Ziegler-Natta polymerization catalyst tend to have a wider molecular weight distribution than polypropylene resins produced using a metallocene catalyst. Therefore, the polydispersity Mw / Mn of the polypropylene-based resin produced by using the Ziegler-Natta-based polymerization catalyst tends to fall within the above range. Therefore, in this case, the foamability during the manufacturing process and in-mold molding of the foamed particles can be further improved.
  • the MFR of the polypropylene-based resin contained in the core layer is 6 g / 10 minutes or more and 10 g / 10 minutes or less, and is multi-dispersed. More preferably, the degree Mw / Mn is 4 or more and 25 or less.
  • the surface of the core layer is covered with a coating layer containing a polyethylene resin.
  • the coating layer may cover the entire core layer or a part of the core layer. Further, the coating layer may be in a foamed state or a non-foamed state. The coating layer is preferably in a non-foamed state from the viewpoint of more reliably improving the fusion property of the foamed particles.
  • the polyethylene-based resin contained in the coating layer a polyethylene-based resin polymerized using various polymerization catalysts can be used.
  • the polyethylene-based resin contained in the coating layer is preferably a polyethylene-based resin obtained by polymerization in the presence of a metallocene-based polymerization catalyst. Since such a polyethylene resin has a low melting point and is more excellent in fusion property, the fusion property of the foamed particles can be further improved.
  • the polyethylene-based resin refers to a homopolymer of an ethylene monomer and an ethylene-based copolymer containing 50% by mass or more of structural units derived from the ethylene monomer.
  • the coating layer may contain one type of polyethylene-based resin selected from the group consisting of a homopolymer of ethylene monomers and an ethylene-based copolymer, or may contain two or more types of polyethylene-based resins. It may be.
  • polyethylene-based resin examples include linear low-density polyethylene, branched low-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, and ethylene-acrylic acid alkyl ester copolymer.
  • Polyethylene-methacrylic acid copolymer, ethylene-methacrylic acid alkyl ester copolymer and the like can be used.
  • the coating layer preferably contains linear low-density polyethylene as a polyethylene-based resin.
  • linear low-density polyethylene as a polyethylene-based resin.
  • the ratio of the linear low-density polyethylene in the polyethylene-based resin is preferably 80% by mass or more, more preferably 90% by mass or more, that is, 100% by mass, that is, It is particularly preferable that the polyethylene-based resin is composed of linear low-density polyethylene.
  • linear low-density polyethylene refers to a copolymer of ethylene and ⁇ -olefin that exhibits linearity.
  • ethylene-butene copolymers, ethylene-hexene copolymers, ethylene-octene copolymers and the like are preferably exemplified.
  • the coating layer may contain additives such as a catalyst neutralizer, a lubricant, a crystal nucleating agent, and an antistatic agent.
  • the content of the additive in the coating layer is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less, based on the total mass of the coating layer. It is particularly preferable that it is 1% by mass or less.
  • the content of the polymer-type antistatic agent in the coating layer is preferably 5% by mass or less with respect to the total mass of the coating layer. ..
  • the coating layer may contain a material other than the polyethylene-based resin such as other resins and elastomers as long as the object and action of the present invention are not impaired.
  • resins other than polyethylene-based resins include thermoplastic resins such as polypropylene-based resins, polystyrene-based resins, polybutene-based resins, polyamide-based resins, and polyester-based resins.
  • elastomers other than polyethylene-based resins include olefin-based thermoplastic elastomers and styrene-based thermoplastic elastomers. The content of the resin, elastomer, etc.
  • the coating layer is preferably 20% by mass or less, more preferably 10% by mass or less, and 0% by mass, based on the total mass of the coating layer. That is, it is more preferable that the coating layer does not contain a resin other than the polyethylene resin, an elastomer or the like.
  • the flexural modulus Ms of the polyethylene resin contained in the coating layer is 250 MPa or less.
  • a foamed particle molded product in which the values of the product X ⁇ ⁇ 50 and 5% compressive stress ⁇ 5 of the molded product magnification X and 50% compressive stress ⁇ 50 are within the specific range.
  • Such foamed particles have a texture that is gentler to the object to be packaged on the skin surface of the obtained foamed particle molded product, despite the high flexural modulus Mc of the polypropylene resin contained in the core layer.
  • the flexural modulus Ms of the polyethylene resin contained in the coating layer is preferably 200 MPa or less, and more preferably 150 MPa or less.
  • the lower limit of the flexural modulus Ms of the polyethylene resin contained in the coating layer is not particularly limited, but is generally 80 MPa or more.
  • the flexural modulus of the polyethylene resin can be determined by measuring according to the measuring method described in JIS K7171: 2008.
  • the ratio Ms / Mc of the flexural modulus Ms of the polyethylene resin contained in the coating layer to the flexural modulus Mc of the polypropylene resin contained in the core layer is 0.05 or more and 0.20 or less. It is preferably 0.08 or more and 0.15 or less, more preferably. In this case, it is possible to more reliably improve the protection against the object to be packaged while sufficiently ensuring the rigidity of the foamed particle molded product.
  • the difference Mc-Ms between the flexural modulus Mc of the polypropylene-based resin contained in the core layer and the flexural modulus Ms of the polyethylene-based resin contained in the coating layer is 400 MPa or more. It is more preferably 600 MPa or more, and even more preferably 800 MPa or more. The upper limit of the difference Mc-Ms is 950 MPa.
  • the melting point of the polyethylene-based resin contained in the coating layer is preferably lower than the melting point of the polypropylene-based resin contained in the core layer. In this case, the in-mold moldability of the foamed particles can be further improved. From the viewpoint of more reliably achieving such an action and effect, the value obtained by subtracting the melting point of the polyethylene-based resin contained in the coating layer from the melting point of the polypropylene-based resin contained in the core layer is more preferably 10 ° C. or higher. , 20 ° C. or higher, more preferably 30 ° C. or higher, and most preferably 35 ° C. or higher.
  • the melting point of the polyethylene resin contained in the coating layer is preferably 120 ° C. or lower, more preferably 115 ° C. or lower, and even more preferably 110 ° C. or lower.
  • the melting point of the polyethylene resin is preferably 120 ° C. or lower, more preferably 115 ° C. or lower, and even more preferably 110 ° C. or lower.
  • the melting point of the polyethylene-based resin contained in the coating layer can be measured by the same method as that of the polypropylene-based resin contained in the core layer described above.
  • a small piece made of a polyethylene resin may be used, or a small piece mainly containing a coating layer collected from the surface of the foamed particles may be used.
  • the bending elastic modulus Ms of the polyethylene-based resin contained in the coating layer is 200 MPa or less and the melting point is It is preferably 120 ° C. or lower.
  • the melt flow rate (MFR) of the polyethylene resin contained in the coating layer is preferably 6 g / 10 minutes or more and 18 g / 10 minutes or less, and more preferably 8 g / 10 minutes or more and 15 g / 10 minutes or less.
  • MFR melt flow rate
  • the above-mentioned MFR of the polyethylene resin is a value measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg in accordance with JIS K7210-1: 2014.
  • the bulk ratio of the foamed particles is 55 times or more and 90 times or less.
  • the molded body magnification X of the foamed molded product obtained by molding the foamed particles in the mold can be easily set to a desired range.
  • the bulk ratio of the foamed particles is 58 times or more.
  • the bulk ratio of the foamed particles is preferably 85 times or less, and more preferably 80 times or less.
  • the molded product ratio X of the obtained foamed particle molded product tends to be small. Therefore, the lightness of the foamed particle molded product may be easily impaired. In addition, there is a risk of deteriorating the protection against the packaged object.
  • the bulk ratio of the foamed particles is larger than the above-mentioned specific range, the rigidity of the obtained foamed particle molded product may be lowered.
  • the bulk ratio of the foamed particles described above is a value calculated by the following method. First, the sufficiently dried foamed particles are filled up to the marked line so as to be naturally deposited in a volumetric flask having a volume of 1 L. The mass of the foamed particles in the volumetric flask is measured, and the bulk density [kg / m 3 ] of the foamed particles is obtained by converting the unit. Then, it is possible to determine the volume ratio of the foamed particles by dividing the density of the polypropylene resin contained in the core layer [kg / m 3] at a bulk density [kg / m 3] of the expanded beads.
  • the protective property of the foamed particle molded product can be improved.
  • the mass ratio of the coating layer is smaller than the specific range, the 5% compressive stress ⁇ 5 of the foamed particle compact tends to be high, and the protection against the packaged object may be lowered.
  • the average particle size of the foamed particles is preferably 2 mm or more and 8 mm or less, and the coefficient of variation of the particle size is preferably 3% or more and 15% or less.
  • the smaller the coefficient of variation of the particle size the narrower the particle size distribution of the foamed particle group.
  • the variation in the physical properties of the foamed particle molded product can be further reduced by performing the in-mold molding using the foamed particles having a narrow particle size distribution and a small variation in the particle size. As a result, the desired rigidity and protection can be more reliably exhibited in the entire foamed particle molded product.
  • the average particle size of the foamed particles is 3 mm or more and 6 mm or less, and the coefficient of variation of the particle size is 5% or more and 12% or less.
  • the coefficient of variation of the particle size of the foamed particles can be adjusted within the above range by using carbon dioxide as the inorganic physical foaming agent in the manufacturing process of the one-stage foamed particles described later, for example.
  • the average particle size of the foamed particles is a value of the median diameter (that is, the cumulative 50% particle size d50) calculated based on the volume-based particle size distribution of the foamed particles.
  • the coefficient of variation of the particle size is a value obtained by dividing the above-mentioned average particle size by the standard deviation calculated based on the volume-based particle size distribution.
  • the more the number of foamed particles used in the measurement the more accurate the value of the coefficient of variation of the average particle size and the particle size can be calculated.
  • the number of foamed particles used for the measurement may be, for example, 100 or more.
  • the particle size distribution of the foamed particles on a volume basis can be measured using a particle size distribution measuring device (for example, "Millitrack JPA" manufactured by Nikkiso Co., Ltd.).
  • the average mass of each of the foamed particles is preferably 0.05 mg or more and 10 mg or less from the viewpoint of improving the filling property into the mold and the fusion property between the foamed particles in the in-mold molding. It is more preferably 0.1 mg or more and 5 mg or less, and further preferably 0.5 mg or more and 3 mg or less.
  • the average mass of each of the foamed particles can be controlled by appropriately adjusting the mass of the resin particles in the granulation step described later.
  • the average bubble diameter D of the entire foamed particles is preferably 80 ⁇ m or more and 170 ⁇ m or less, more preferably 100 ⁇ m or more and 170 ⁇ m or less, further preferably 120 ⁇ m or more and 160 ⁇ m or less, and 130 ⁇ m or more and 150 ⁇ m or less. Is particularly preferable.
  • the average bubble diameter D of the entire foamed particles is a value calculated by the following method.
  • the foamed particles are divided into roughly two equal parts. Using a scanning electron microscope, a magnified photograph is taken so that all the cut surfaces exposed by division are within the field of view. On the obtained enlarged photograph, four line segments are drawn from the outermost surface of the foamed particles to the outermost surface on the opposite side through the central portion so that the angles formed by the adjacent line segments are equal. That is, the angle formed by the adjacent line segments is 45 °.
  • the bubble diameter of the entire foamed particle in each foamed particle is calculated.
  • the above operation is performed on 10 randomly selected foamed particles, and the value obtained by adding and averaging the bubble diameters of the entire foamed particles obtained for each foamed particle is defined as the average bubble diameter D of the foamed particles. ..
  • the ratio Ds / D of the average cell diameter Ds [ ⁇ m] of the surface layer portion of the foamed particles to the average cell diameter D of the entire foamed particles is preferably 0.80 or more and 1.20 or less.
  • the ratio Ds / D of the average cell diameter Ds [ ⁇ m] of the surface layer portion of the foamed particles to the average cell diameter D of the entire foamed particles is 0.87 or more and 1.10 or less. It is more preferably 0.85 or more and 1.18 or less, and particularly preferably 0.88 or more and 1.05 or less.
  • the average bubble diameter Ds in the surface layer portion of the foamed particles is preferably 80 ⁇ m or more and 180 ⁇ m or less, more preferably 110 ⁇ m or more and 170 ⁇ m or less, and further preferably 120 ⁇ m or more and 160 ⁇ m or less.
  • the average bubble diameter Ds on the surface layer of the foamed particles is a value calculated by the following method.
  • the foamed particles are divided into roughly two equal parts. Using a scanning electron microscope, a magnified photograph is taken so that all the cut surfaces exposed by division are within the field of view.
  • the peripheral length of the outermost surface of the foamed particles in the obtained enlarged photograph that is, the length of the outer peripheral edge of the foamed particles on the cut surface by the number of bubbles in contact with the outer peripheral edge of the foamed particles
  • each individual Calculate the bubble diameter of the surface layer of the foamed particles. This operation was performed on 10 randomly selected foamed particles, and the value obtained by adding and averaging the cell diameters of the surface layer obtained for each foamed particle was taken as the average cell diameter Ds in the surface layer of the foamed particles. do.
  • the closed cell ratio of the foamed particles is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more. In this case, the moldability of the foamed particles and the rigidity of the obtained foamed particle molded product can be further improved.
  • the closed cell ratio of the foamed particles can be measured using an air comparative hydrometer based on ASTM-D2856-70.
  • the foamed particles have one or more endothermic peaks on the higher temperature side than the apex of the endothermic peak (hereinafter, referred to as “inherent peak”) peculiar to the polypropylene resin contained in the core layer. It is preferable to have a crystal structure in which a peak (hereinafter, referred to as “high temperature peak”) appears.
  • the closed cell ratio of the foamed particles can be further increased, and the molding conditions for molding the foamed particle molded product can be selected from a wide range.
  • the rigidity of the obtained foamed particle molded product can be further increased. From this point of view, the amount of heat absorbed at the high temperature peak (hereinafter referred to as "high temperature peak heat amount”) is preferably 5 to 50 J / g, and more preferably 8 to 40 J / g.
  • the high temperature peak calorific value of the foamed particles can be calculated by, for example, the following method.
  • heat flux DSC is performed using 1 to 3 mg of foamed particles to obtain a DSC curve.
  • the measurement start temperature is 10 to 40 ° C.
  • the measurement end temperature is 220 ° C.
  • the temperature rise rate is 10 ° C./min.
  • the melting end temperature T is the end point on the high temperature side of the high temperature peak ⁇ H2, that is, the intersection of the high temperature peak ⁇ H2 on the DSC curve and the baseline on the high temperature side of the high temperature peak ⁇ H2.
  • the polypropylene-based resin particles dispersed in the dispersion medium in a closed container are impregnated with an inorganic physical foaming agent, and then the polypropylene-based resin particles and the dispersion medium are transferred from the closed container to a lower pressure than in the closed container.
  • One-stage foaming to obtain one-stage foamed particles having a foamed core layer containing the polypropylene-based resin and a coating layer containing the polyethylene-based resin and covering the core layer.
  • the pressure inside the bubbles of the one-stage foamed particles is increased, and then the one-stage foamed particles taken out from the pressure-resistant container are made higher than the pressure inside the bubbles. It is possible to have a two-stage foaming step of further foaming the one-stage foamed particles by heating under low pressure to obtain polypropylene-based resin foamed particles having a bulk ratio (II) of 55 times or more and 90 times or less. preferable.
  • the foamed particles produced by the two-stage foaming method including the above-mentioned steps can form a polypropylene-based resin foamed particle molded body having excellent protection and rigidity of the object to be packaged and having a small mass per unit volume. In addition, it is possible to more reliably suppress a decrease in the closed cell ratio of the foamed particles.
  • each step will be described in more detail.
  • the method for producing the polypropylene-based resin particles (hereinafter, abbreviated as “resin particles”) in the granulation step is not particularly limited.
  • the resin particles can be obtained by producing strands in which the periphery of the core layer is covered with a coating layer by extrusion molding, and then cutting the strands to a desired size with a pelletizer or the like.
  • the resin particles obtained by such a method have a multi-layer structure in which a band-shaped coating layer is formed around the core layer.
  • the average mass of each resin particle is preferably 0.05 mg to 10 mg, preferably 0.1 mg to 5 mg, from the viewpoint of improving the filling property and the fusion property of the foamed particles into the mold. Is more preferable, and 0.5 mg to 3 mg is further preferable.
  • One-step foaming process In the one-stage foaming step, first, the resin particles are placed in a closed container and dispersed in an aqueous dispersion medium such as water. At this time, if necessary, a dispersant for dispersing the resin particles may be added to the dispersion medium in the closed container.
  • the dispersant examples include inorganic fine particles such as aluminum oxide, aluminum sulfate, calcium tertiary phosphate, magnesium pyrophosphate, zinc oxide, kaolin and mica, and sodium alkylbenzene sulfonate, sodium dodecylbenzene sulfonate, sodium alkane sulfonate and the like.
  • Surfactants can be used.
  • one selected from these inorganic fine particles and a surfactant may be used alone, or two or more thereof may be used in combination.
  • an inorganic physical foaming agent is added into the container, and the resin particles are impregnated with the inorganic physical foaming agent.
  • the impregnation of the resin particles with the inorganic physical foaming agent can be promoted by heating the inside of the closed container while applying pressure. Then, after the resin particles are sufficiently impregnated with the foaming agent, the contents of the closed container are released under a pressure lower than the internal pressure of the container, so that the resin particles can be foamed into one-stage foamed particles.
  • an inorganic physical foaming agent for example, an inorganic gas such as carbon dioxide, nitrogen, or air, water, or the like can be used.
  • an inorganic gas such as carbon dioxide, nitrogen, or air, water, or the like can be used.
  • these substances may be used alone, or two or more kinds of substances may be used in combination.
  • the inorganic physical foaming agent in the one-stage foaming step it is preferable to use carbon dioxide from the viewpoint of more easily obtaining foamed particles having a high foaming ratio and a narrow particle size distribution.
  • the amount of the inorganic physical foaming agent added can be appropriately set according to the type of polypropylene-based resin contained in the core layer, the type of foaming agent, the mass ratio of the target foamed particles, and the like, but it can be set in the core layer.
  • 0.1 part by mass to 30 parts by mass, preferably 0.5 part by mass to 15 parts by mass, and more preferably 1 part by mass to 10 parts by mass is used with respect to 100 parts by mass of the contained polypropylene-based resin.
  • the one-step foaming step may include a step of generating the above-mentioned high temperature peak before foaming the resin particles.
  • a method for generating a high temperature peak for example, a method in which resin particles are held in a dispersion medium within a specific temperature range in a closed container and heat treatment is performed can be adopted.
  • the timing of the heat treatment is not particularly limited, and the heat treatment may be performed at any time before, during, or after the impregnation of the foaming agent, or spans two or more of the above-mentioned time points. It may be done.
  • the bulk ratio (I) of the one-stage foamed particles is a value lower than the bulk ratio of the foamed particles to be finally obtained, and is preferably 25 times or more and 38 times or less.
  • the bulk ratio in the one-stage foaming step is a value of the density of the polypropylene resin [kg / m 3] divided by the bulk density of the stage expanded particles [kg / m 3] contained in the core layer be.
  • ⁇ Two-stage foaming process> In the two-stage foaming step, first, the one-stage foamed particles are filled in the pressure-resistant container. Next, the inside of the pressure-resistant container is pressurized with an inorganic gas, and the one-stage foamed particles are impregnated with the inorganic gas. By impregnating the inorganic gas in this way, the pressure inside the bubbles of the one-stage foamed particles can be increased as compared with that before impregnation.
  • the one-stage foamed particles in the pressure-resistant container may be pressurized while being heated.
  • the impregnation of the one-stage foamed particles with the inorganic gas can be further promoted.
  • the heating temperature of the one-stage foamed particles is set from the melting point of the coating layer from the viewpoint of suppressing blocking, that is, the phenomenon that the one-stage foamed particles are fused to each other to form a lump. It is also preferable to lower the temperature.
  • Carbon dioxide, nitrogen, air, steam, etc. can be used as the inorganic gas used in the two-stage foaming process. These inorganic gases may be used alone or in combination of two or more.
  • the inorganic gas used in the two-stage foaming step is preferably a mixed gas of steam and air.
  • the one-stage foamed particles can be appropriately heated to further promote the impregnation of the inorganic gas, and the blocking of the one-stage foamed particles can be suppressed more effectively.
  • the pressure inside the bubble can be measured by, for example, the method described in JP-A-2003-201361.
  • the one-stage foamed particles are taken out from the pressure-resistant container.
  • the one-stage foamed particles can be heated with steam or the like at a pressure lower than the pressure inside the bubbles to expand the individual bubbles. As a result, the bulk ratio of the one-stage foamed particles can be increased, and foamed particles having a desired bulk ratio can be obtained.
  • the pressure inside the bubbles of the one-stage foamed particles is gauged by impregnating the mixed gas of air and steam as an inorganic gas in the two-stage foaming step.
  • the pressure is 0.40 MPa (G) or more and 0.60 MPa (G), and then the one-stage foamed particles taken out from the pressure-resistant container are steamed at 0.05 MPa (G) or more and 0.25 MPa (G) or less in gauge pressure. It is preferable to heat it.
  • the ratio (II) / (I) of the bulk ratio (II) of the one-stage foamed particles to the bulk ratio (I) of the foamed particles is 1.8 or more and 3.0. It is preferably 2.0 or more and 2.8 or less.
  • the one-stage foamed particles having a bulk ratio (I) of 25 times or more and 38 times or less are produced in the one-stage foaming step, and the polypropylene-based particles are produced in the two-stage foaming step.
  • the one-stage foamed particles are foamed so that the ratio (II) / (I) of the bulk ratio (II) to the bulk ratio (I) of the resin foamed particles is 1.8 or more and 3.0 or less to foam the bulk ratio. It is preferable to obtain foamed particles having (II) 55 times or more and 90 times or less.
  • the container used in the one-stage foaming process is referred to as a "sealed container", and the container used in the two-stage foaming process is referred to as a "pressure resistant container”.
  • the same container may be used.
  • foamed particle molded product examples of the foamed particle molded product and the foamed particles will be described.
  • the foamed particle molded body, the foamed particles, and the mode of the production method thereof according to the present invention are not limited to the following examples, and the configuration can be appropriately changed as long as the gist of the present invention is not impaired. ..
  • each resin was heat-pressed at 230 ° C. to prepare a sheet having a thickness of 4 mm.
  • a test piece having dimensions of 80 mm in length ⁇ 10 mm in width ⁇ 4 mm in thickness was cut out from this sheet.
  • the flexural modulus of the resin was measured according to JIS K 7171: 2008.
  • the radius R1 of the indenter and the radius R2 of the support were both 5 mm, the distance between the fulcrums was 64 mm, and the test speed was 2 mm / min.
  • the melting point of the resin was measured based on the heat flux differential scanning calorimetry method described in JIS K7121: 1987.
  • the test piece was allowed to stand in an environment of a temperature of 23 ° C. and a relative humidity of 50% RH for 1 day or more to adjust the state. After adjusting the state, the test piece is heated from 23 ° C. to 200 ° C. at a heating rate of 10 ° C./min, then lowered to 23 ° C. at a cooling rate of 10 ° C./min, and again at a heating rate of 10 ° C./min. The temperature was raised from 23 ° C to 200 ° C.
  • the apex temperature of the endothermic peak determined by the DSC curve obtained at the time of the second temperature rise was defined as the melting point of the resin.
  • the apex temperature of the endothermic peak having the largest area is defined as the melting point.
  • a heat flux differential scanning calorimetry device (“DSC Q1000” manufactured by TA Instruments) was used to acquire the DSC curve.
  • the MFR of the resin was measured according to JIS K7210-1: 2014.
  • the MFR of the polypropylene resin is a value measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kg
  • the MFR of the polyethylene resin is a value measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg.
  • the polydispersity Mw / Mn of the polypropylene-based resin contained in the core layer was measured by the following method. First, a resin chromatogram was obtained by a gel permeation chromatography (GPC) method using polystyrene as a standard substance.
  • GPC gel permeation chromatography
  • the retention time in the chromatogram obtained by the calibration curve prepared using standard polystyrene was converted into the molecular weight to obtain the differential molecular weight distribution curve.
  • the number average molecular weight Mn and the weight average molecular weight Mw of the resin were calculated, and then the polydispersity Mw / Mn was calculated.
  • the polydispersity Mw / Mn of the polypropylene-based resin was as shown in Table 1. In this example, the polydispersity Mw / Mn of the resin used as the coating layer is not measured. Therefore, in the column of the polydispersity Mw / Mn of PP3, PE1 and PE2, a symbol "-" indicating that the measurement is not performed is described.
  • melt-kneaded product was co-extruded from each extruder so that the mass ratio of the core layer and the coating layer had the values shown in Table 2.
  • the melt-kneaded products extruded from each extruder are merged in the die and extruded from the pores of the mouthpiece attached to the tip of the extruder into a multi-layered strand shape in which the outer circumference of the core layer is covered with a coating layer.
  • the coextruded product was water-cooled to obtain a multi-layered strand.
  • the obtained strand was cut using a pelletizer so as to have the mass shown in Table 2.
  • resin particles having a core layer in an unfoamed state and a coating layer covering the side peripheral surface of the core layer were obtained.
  • ⁇ One-step foaming process> In a closed container having an internal volume of 3 m 3 , 400 kg of resin particles, 2000 L of water as a dispersion medium, 7000 g of kaolin as a dispersant, a surfactant, and 150 g of aluminum sulfate were sealed. Specifically, sodium alkylbenzene sulfonate (“Neogen S-20F” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was used as the surfactant. Further, the surfactant was added so that the amount of the active ingredient was 800 g.
  • carbon dioxide as a foaming agent is supplied into the closed container so that the pressure inside the container becomes the value (gauge pressure) shown in the column of "pressure inside the closed container” in Table 2, and the inside of the container is added. Pressed. In this state, the inside of the container was heated with stirring to raise the temperature inside the container to the foaming temperature shown in Table 2. After holding this foaming temperature for 10 minutes, the closed container is placed in a state where the pressure inside the closed container is maintained at the value (gauge pressure) shown in the "pressure inside the closed container” column of Table 2 by pressurizing with carbon dioxide. The resin particles were foamed by opening and releasing the contents under atmospheric pressure.
  • one-stage foamed particles having a multi-layer structure including a core layer in a foamed state and a coating layer covering the core layer were obtained. Since the one-stage foamed particles immediately after being released from the closed container contain water, they were cured at a temperature of 23 ° C. for 24 hours.
  • ⁇ Bulk density ⁇ (A) of one-stage foamed particles immediately after foaming In the one-stage foaming step, the one-stage foamed particles immediately after being released from the closed container were collected and the moisture adhering to the surface was wiped off. The one-stage foamed particles were filled up to the marked line so as to be naturally deposited in a volumetric flask having a volume of 1 L. Then, the mass [g / L] of the one-stage foamed particles in the volumetric flask was measured, and the unit was converted to obtain the bulk density ⁇ (A) [kg / m 3 ] of the one-stage foamed particles immediately after foaming.
  • ⁇ Bulk density ⁇ (B) of one-stage foamed particles after curing In the one-stage foaming step, the volumetric flask was filled with the one-stage foamed particles in the same manner as described above, except that the one-stage foamed particles were discharged from the closed container and then cured. Then, the mass [g / L] of the one-stage foamed particles in the volumetric flask was measured, and the unit was converted to obtain the bulk density ⁇ (B) [kg / m 3 ] of the one-stage foamed particles after curing.
  • ⁇ Volume ratio (I) of one-stage foamed particles The value obtained by dividing the density of the polypropylene-based resin contained in the core layer by the bulk density ⁇ (B) of the one-stage foamed particles after curing was defined as the bulk ratio (I) of the one-stage foamed particles.
  • ⁇ Volume density of foamed particles ⁇ (C)> The volumetric flask was filled with the foamed particles in the same manner as in the method for measuring the bulk density of the one-stage foamed particles after curing, except that the foamed particles were used instead of the one-stage foamed particles. Then, the mass [g / L] of the foamed particles in the volumetric flask was measured, and the unit was converted to obtain the bulk density ⁇ (C) [kg / m 3 ] of the foamed particles.
  • ⁇ Volume ratio of foamed particles (II)> The value obtained by dividing the density of the polypropylene-based resin contained in the core layer by the bulk density ⁇ (C) of the foamed particles was taken as the bulk ratio (II) of the foamed particles.
  • ⁇ Average particle size and coefficient of variation of particle size> Using about 200 foamed particles, the particle size distribution based on the volume of the foamed particles was measured by a particle size distribution measuring device (“Millitrack JPA” manufactured by Nikkiso Co., Ltd.). The median diameter in the obtained particle size distribution, that is, the cumulative 50% particle size was defined as the average particle size of the foamed particles. Further, the value obtained by dividing the average particle size of the foamed particles by the standard deviation of the particle size calculated based on the above-mentioned particle size distribution was used as the coefficient of variation of the particle size.
  • the value of the closed cell ratio is a value obtained by the following method. First, according to procedure C described in ASTM-D2856-70, the true volume of the foamed particles (the sum of the volume of the resin constituting the foamed particles and the total volume of the closed cells in the foamed particles). The value Vx of was measured. An air comparison hydrometer "930" manufactured by Toshiba Beckman Co., Ltd. was used for the measurement of this true volume Vx. Next, the closed cell ratio (unit:%) was calculated by the following formula (1), and the arithmetic mean value of the measurement results of the five foamed particles was obtained.
  • Vx-W / ⁇ True volume of foamed particles measured by the above method (unit: cm 3 )
  • Va Apparent volume of foamed particles calculated based on external dimensions (unit: cm 3 )
  • W Mass of foamed particles used for measurement (unit: g)
  • Density of resin constituting foamed particles (unit: g / cm 3 )
  • the high temperature peak calorific value of the foamed particles was measured by the method described above. That is, heat flux DSC was performed using about 3 mg of foamed particles, and the peak area of the high temperature peak in the obtained DSC curve was defined as the high temperature peak calorimetry of the foamed particles.
  • the measurement start temperature in the heat flux DSC was 23 ° C.
  • the measurement end temperature was 200 ° C.
  • the temperature rise rate was 10 ° C./min.
  • a heat flux differential scanning calorimetry device (“DSC Q1000” manufactured by TA Instruments) was used to acquire the DSC curve.
  • FIG. 2 shows an enlarged photograph of the foamed particle A
  • FIG. 3 shows an enlarged photograph of the foamed particle E
  • FIG. 4 shows an enlarged photograph of the cut surface of the foamed particle H.
  • the outermost surface 2 of the foamed particles appearing on the cut surface 1 of the foamed particles, that is, the contour of the cut surface 1 is substantially circular. Further, a large number of bubbles 4 partitioned by the resin film 3 appear on the cut surface 1 of the foamed particles.
  • ⁇ Average cell diameter Ds on the surface layer of foamed particles> First, the foamed particles were divided into roughly two equal parts, and then an enlarged photograph of the cut surface exposed by the division was obtained using a scanning electron microscope. By dividing the circumference of the outermost surface 2 of the foamed particles appearing on the cut surface 1 in the obtained enlarged photograph, that is, the length of the contour of the cut surface 1, by the number of bubbles in contact with the outermost surface 2, each of them The bubble diameter of the surface layer portion of the foamed particles was calculated. This operation was performed on 10 randomly selected foamed particles, and the value obtained by adding and averaging the cell diameters of the surface layer obtained for each foamed particle was taken as the average cell diameter Ds in the surface layer of the foamed particles. bottom.
  • a flat plate-shaped foamed particle molded product having dimensions of 300 mm in length ⁇ 250 mm in width ⁇ 60 mm in thickness was produced by the following method.
  • a mold capable of forming a flat plate-shaped foamed particle molded body was prepared, and the cavity of the mold was filled with foamed particles by a cracking filling method.
  • the cracking filling method the foamed particles are mechanically expanded by expanding the molding space by a predetermined cracking gap before filling the mold with the foamed particles, and closing the mold after filling to narrow the molding space. It is a method of compression.
  • the foamed particles were filled in a state where the molding space was expanded by 6 mm in the thickness direction of the foamed particle molded body so that the volume of the cracking gap was 10% of the volume of the foamed particle molded body to be obtained. .. Then, after closing the mold, the molding space was narrowed in the thickness direction of the foamed particle molded body to obtain a desired size. In this state, steam of the gauge pressure shown in the "molding pressure" column of Tables 3 and 4 is supplied into the mold, and the main heating is performed for the time described in the "main heating time” column of Tables 3 and 4. As a result, it was molded in the mold.
  • the pressure (gauge pressure) received by the mold during in-mold molding was the value shown in the "surface pressure" column of Tables 3 and 4.
  • flat-plate foam particle molded products (Examples 1 to 3, Comparative Examples 1 to 4, and Reference Example 1) were obtained.
  • the obtained foamed particle molded product was allowed to stand at 30 ° C. for 12 hours, and the following physical properties were measured using the foamed particle molded product after standing.
  • ⁇ Molded body density ⁇ (D)> A measurement sample having a length of 50 mm, a width of 50 mm, and a thickness of 10 mm having no surface layer was collected from the vicinity of the center of the foamed particle molded product. The value obtained by dividing the mass of this measurement sample by the volume of the measurement sample calculated based on the dimensions was defined as the molded body density ⁇ (D) [kg / m 3 ] of the foamed particle compact.
  • ⁇ Molded body magnification X> The value obtained by dividing the density of the polypropylene-based resin contained in the core layer by the molded body density ⁇ (D) of the foamed particle molded body was defined as the molded body magnification X [times].
  • ⁇ Apparent density ⁇ (E) of the surface layer The foamed particle molded product was cut at a surface having a depth of 3 mm in the thickness direction from the skin surface, and the surface layer portion of the foamed particle molded product was cut out. This surface layer portion was cut into a square having a length of 50 mm and a width of 50 mm, and a small piece having dimensions of 50 mm in length, 50 mm in width, and 3 mm in thickness, and one surface in the thickness direction was a skin surface was collected. The small pieces were allowed to stand in an environment of a temperature of 23 ° C. and a relative humidity of 50% RH for 1 day, and then the mass of the small pieces was measured. Then, the value obtained by dividing the mass of the small piece by the volume calculated based on the size of the small piece was taken as the apparent density ⁇ (E) [kg / m 3 ] of the surface layer portion.
  • ⁇ Average cell diameter inside the foamed particle molded product di a small piece having a cube shape with a side of 10 mm and no skin surface was collected from the vicinity of the central portion of the foamed particle molded product. Small pieces were observed using a scanning electron microscope, and an enlarged photograph of the surface parallel to the thickness direction of the foamed particle compact was obtained. A line segment passing through the center in the thickness direction was drawn on the obtained enlarged photograph, and the number of bubbles intersecting the line segment was counted. Then, a value obtained by dividing the number of bubbles intersecting the segment a length of a line described above, and the average cell diameter d i in the interior of the foamed bead molded article [[mu] m].
  • ⁇ Average cell diameter d s on the surface layer of the foamed particle molded product First, a straight line L3, which is parallel to the vertical direction and divides the horizontal direction of the molded product into two equal parts, was drawn on a surface of the foamed particle molded product having a length of 300 mm and a width of 250 mm. Next, three straight lines L4 parallel to each other in the lateral direction were drawn so as to divide the straight line L3 into four equal parts. Then, three small pieces having a cube shape with a side of 3 mm were collected so that the intersection of the straight line L3 and the straight line L4 was at the center of the surface, and one surface was the skin surface.
  • Each small piece was observed using a scanning electron microscope, and an enlarged photograph of the surface parallel to the thickness direction of the foamed particle compact was obtained.
  • a line segment parallel to the skin surface was drawn so that the depth from the skin surface (that is, the distance in the thickness direction) was 50 ⁇ m, and the number of bubbles intersecting the line segment was counted. ..
  • the value obtained by dividing the length of the line segment by the number of bubbles intersecting the line segment is defined as the bubble diameter in the surface layer portion of each small piece, and the arithmetic mean value of the bubble diameter in the surface layer portion of the three small pieces is foamed.
  • the average cell diameter in the surface layer of the particle compact was defined as d s .
  • the foamed particle molded body was broken so as to be substantially equally divided in the longitudinal direction.
  • 100 or more foamed particles randomly selected were visually observed, and the foamed particles were broken inside the particles (that is, the foamed particles whose material was broken), or the foamed particles were separated from each other. It was determined whether the particles were foamed particles broken at the interface. Then, the ratio of the number of the foamed particles broken inside the particles to the total number of the observed foamed particles expressed as a percentage is shown in Tables 3 and 4 as the internal fusion rate of the foamed particle molded body.
  • the internal fusion rate when the internal fusion rate is 90% or more, it is passed because it has excellent fusion property, and when it is less than 90%, it is rejected because the fusion property is insufficient. And said.
  • the thickness of the foamed particle molded body was measured at a position 10 mm away from four corners in a plan view of the foamed particle molded body toward the center of the skin surface. Then, the largest value among these thicknesses was taken as the thickness of the corner portion of the foamed particle molded product. Separately from this, the thickness of the foamed particle molded body is measured at a position centered in both the vertical direction and the horizontal direction in the plan view of the foamed particle molded body from the thickness direction, and this value is used as the foamed particle molded body. The thickness of the central part of. Then, the ratio (%) of the thickness of the central portion to the thickness of the corner portion of the foamed particle molded product was calculated.
  • ⁇ Surface hardness> A rectangular parallelepiped test piece having a thickness of 60 mm collected from the foamed particle molded product was allowed to stand in an environment having a temperature of 23 ° C. and a relative humidity of 50% RH for 1 day or more.
  • a universal testing machine (“Tencilon RTF-1350” manufactured by A & D Co., Ltd.) was used for the compression test.
  • the compressive stress when the strain was 5% was defined as 5% compressive stress ⁇ 5
  • the compressive stress when the strain was 50% was defined as 50% compressive stress ⁇ 50 .
  • the texture was evaluated by a sensory test. Specifically, 10 people skilled in the art were used as a panel, and by touching the skin surface of the foamed particle molded product with their hands in a blindfolded state, it was evaluated whether or not the skin surface had a moist texture. When it is evaluated that 8 or more of the 10 members constituting the panel have a moist texture, the skin surface of the foamed particle molded product has a gentle texture to the packaged object. The symbol “Good” was entered in the "evaluation” column. Further, when it is evaluated that 2 or less of the 10 members constituting the panel have a moist touch, the skin surface of the foamed particle molded product does not have a gentle texture to the packaged object.
  • the foamed particle molded product was molded in the same manner as in the above-described method for producing the foamed particle molded product, except that the steam pressure was changed between 0.18 and 0.40 MPa (G) at 0.02 MPa (G) intervals. Using the obtained molded product, the internal fusion rate, secondary foamability and recoverability were evaluated in the same manner as in the above-mentioned method. Then, it was judged that the foamed particle molded product could be molded with the steam pressure that passed all three items. In the "Moldable range" column of Table 2, the range of steam pressure at which the foamed particle molded product can be molded is shown.
  • the foamed particle compacts of Examples 1 to 4 have a compact magnification X, a product of 50% compressive stress ⁇ 50 and a product magnification X X ⁇ ⁇ 50 , and 5% compressive stress.
  • ⁇ 5 is within the specific range. Therefore, these foamed particle molded products have excellent rigidity and protection, and can reduce the mass per unit volume.
  • the skin surface of these foamed particle molded products has a texture that is gentle on the object to be packaged, such as a polyethylene-based resin foamed particle molded product.
  • the value of the surface hardness of the foamed particle molded product on the skin surface is small, and the protective property is excellent.
  • the foamed particle molded product of Comparative Example 1 is molded in the mold using foamed particles D having a lower bulk ratio (II) than that of Examples 1 to 4. Therefore, the foamed particle molded product of Comparative Example 1 has a lower molded product magnification X than that of Examples 1 to 4, and is inferior in lightness and protection against the object to be packaged.
  • the foamed particle molded product of Comparative Example 2 is in-mold molded using foamed particles E in which both the core layer and the coating layer are made of polypropylene-based resin. Therefore, the foamed particle molded product of Comparative Example 2 has a larger 5% compressive stress ⁇ 5 than that of Examples 1 to 4, and is inferior in protection. Further, the foamed particle molded product of Comparative Example 2 is inferior in texture.
  • the foamed particle compact of Comparative Example 2 had a particularly large 5% compressive stress ⁇ 5 even though the compact magnification X was higher than that of Examples 1 to 4, Comparative Examples 3 to 4, and Reference Example 1.
  • This, in addition to the coating layer comprises a polypropylene resin, larger average cell diameter d i of the interior of the foamed bead molded article has an average of the surface layer portion of the foamed bead molded article with respect to the average cell diameter d i it is believed to cause the ratio d s / d i of the bubble diameter d s [ ⁇ m] is large.
  • the reason why the foamed particle molded body of Comparative Example 2 has such a bubble structure is that the average cell diameter D of the entire particles of the foamed particles E is large, and the ratio Ds / of the average cell diameter Ds of the surface layer portion to the average cell diameter D. Since D is small, it is considered that the bubbles located on the surface layer portion are crushed and flattened by the secondary foaming of the bubbles inside during the in-mold molding.
  • the foamed particle molded product of Comparative Example 3 is molded in the mold using foamed particles F provided with a coating layer made of a polyethylene resin having a bending elastic modulus Ms higher than that of Examples 1 to 4. Therefore, the foamed particle molded product of Comparative Example 3 has a larger 5% compressive stress ⁇ 5 as compared with Examples 1 to 4, and is inferior in protection. Further, the foamed particle molded product of Comparative Example 3 is inferior in texture.
  • the foamed particle molded product of Comparative Example 4 is molded in the mold using the foamed particles G having a smaller ratio of the coating layer than those of Examples 1 to 4, the effect of the coating layer cannot be sufficiently obtained. Therefore, the foamed particle molded product of Comparative Example 4 has a larger 5% compressive stress ⁇ 5 than that of Examples 1 to 4, and is inferior in protection. Further, the foamed particle molded product of Comparative Example 4 is inferior in texture.
  • Reference Example 1 is a foamed particle molded product obtained by in-mold molding of polyethylene-based resin foamed particles H.
  • the foamed particle compact of Reference Example 1 has a small value of 5% compressive stress ⁇ 5 and is excellent in protection, but the value of the product X ⁇ ⁇ 50 of the product of 50% compressive stress ⁇ 50 [kPa] and the compact magnification X.
  • the rigidity required for packaging materials and cushioning materials cannot be satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

ポリプロピレン系樹脂発泡粒子成形体は、ポリプロピレン系樹脂が含まれている発泡状態の芯層と、ポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層と、を有するポリプロピレン系樹脂発泡粒子を型内成形してなる。発泡粒子成形体の成形体倍率X[倍]は55倍以上90倍以下であり、発泡粒子成形体の50%圧縮応力σ50[kPa]と成形体倍率Xとの積X・σ50の値は6500以上であり、発泡粒子成形体の5%圧縮応力σ5が5kPa以上25kPa以下である。

Description

ポリプロピレン系樹脂発泡粒子成形体、ポリプロピレン系樹脂発泡粒子及びその製造方法
 本発明はポリプロピレン系樹脂発泡粒子成形体、ポリプロピレン系樹脂発泡粒子及びその製造方法に関する。
 発泡粒子を型内成形してなる発泡粒子成形体は、被包装物を保護するための緩衝材や包装材として好適に使用されている。この種の発泡粒子成形体には、例えば、ポリプロピレン系樹脂発泡粒子からなる発泡粒子成形体が用いられている(例えば、特許文献1)。また、ポリプロピレン系樹脂発泡粒子成形体よりもさらに被包装物の保護性に優れた発泡粒子成形体として、ポリエチレン系樹脂発泡粒子からなる発泡粒子成形体が用いられることがある。
特開2011-16914号公報
 しかし、被包装物を保護するための緩衝材や包装材としてポリプロピレン系樹脂発泡粒子成形体を使用する場合、被包装物の種類によっては保護性が不十分となる場合があった。一方、被包装物を保護するための緩衝材や包装材としてポリエチレン系樹脂発泡粒子成形体を使用する場合、緩衝材等に求められる剛性を実現しようとすると単位体積当たりの質量が大きくなりやすい。また、この場合、剛性が不十分となりやすく、発泡粒子成形体が自重により撓みやすい、被包装物の質量によって発泡粒子成形体が変形しやすいなどの問題が生じることがあった。
 本発明は、かかる背景に鑑みてなされたものであり、被包装物の保護性及び剛性に優れ、単位体積当たりの質量が小さいポリプロピレン系樹脂発泡粒子成形体、この発泡粒子成形体を形成可能なポリプロピレン系樹脂発泡粒子及びその製造方法を提供しようとするものである。
 本発明の一態様は、ポリプロピレン系樹脂が含まれている発泡状態の芯層と、ポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層と、を有するポリプロピレン系樹脂発泡粒子を型内成形してなるポリプロピレン系樹脂発泡粒子成形体であって、
 前記ポリプロピレン系樹脂発泡粒子成形体の成形体倍率X[倍]が55倍以上90倍以下であり、
 前記ポリプロピレン系樹脂発泡粒子成形体の50%圧縮応力σ50[kPa]と前記成形体倍率Xとの積X・σ50の値が6500以上であり、
 前記ポリプロピレン系樹脂発泡粒子成形体の5%圧縮応力σ5が5kPa以上25kPa以下である、ポリプロピレン系樹脂発泡粒子成形体にある。
 本発明の他の態様は、ポリプロピレン系樹脂が含まれている発泡状態の芯層と、
 ポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層と、を有し、
 嵩倍率が55倍以上90倍以下であり、
 前記芯層と前記被覆層との質量比が、前記芯層:前記被覆層=95:5~88:12であり、
 前記芯層に含まれているポリプロピレン系樹脂の曲げ弾性率Mcが800MPa以上1200MPa以下であり、
 前記被覆層に含まれているポリエチレン系樹脂の曲げ弾性率Msが250MPa以下である、ポリプロピレン系樹脂発泡粒子にある。
 本発明のさらに他の態様は、曲げ弾性率Mcが800MPa以上1200MPa以上のポリプロピレン系樹脂が含まれている未発泡状態の芯層と、曲げ弾性率Msが250MPa以下のポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層と、を備え、前記芯層と前記被覆層との質量比が、芯層:被覆層=95:5~88:12であるポリプロピレン系樹脂粒子を造粒する造粒工程と、
 密閉容器中において分散媒に分散させた前記ポリプロピレン系樹脂粒子に無機系物理発泡剤を含浸させ、次いで、前記ポリプロピレン系樹脂粒子と前記分散媒とを前記密閉容器から前記密閉容器内よりも低圧下に放出することにより、前記ポリプロピレン系樹脂が含まれている発泡状態の芯層と、前記ポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層とを備えた一段発泡粒子を得る一段発泡工程と、
 耐圧容器内において前記一段発泡粒子に無機系ガスを含浸させることにより前記一段発泡粒子の気泡内の圧力を上昇させ、次いで、前記耐圧容器から取り出した前記一段発泡粒子を前記気泡内の圧力よりも低圧下で加熱することにより、前記一段発泡粒子をさらに発泡させて嵩倍率(II)が55倍以上90倍以下のポリプロピレン系樹脂発泡粒子を得る二段発泡工程と、を有する、ポリプロピレン系樹脂発泡粒子の製造方法にある。
 前記ポリプロピレン系樹脂発泡粒子成形体(以下、「発泡粒子成形体」と省略することがある。)は、ポリプロピレン系樹脂が含まれており発泡状態の芯層と、ポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層と、を有するポリプロピレン系樹脂発泡粒子(以下、「発泡粒子」と省略することがある。)から構成されている。前記発泡粒子成形体は、ポリプロピレン系樹脂を含む前記芯層を備えているため、剛性を確保しつつ成形体倍率Xを高くすることができる。それ故、前記発泡粒子成形体は、高い剛性と、軽量性とを容易に兼ね備えることができる。
 また、前記発泡粒子成形体は、成形体倍率Xと、50%圧縮応力σ50との積が前記特定の関係を満たすとともに、5%圧縮応力σ5の値が前記特定の範囲内にある。かかる物性を備えたポリプロピレン系樹脂発泡粒子成形体は、高い剛性を備え、かつ、被包装物の保護性に優れている。
 以上のように、前記の態様によれば、被包装物の保護性及び剛性に優れ、単位体積当たりの質量が小さいポリプロピレン系樹脂発泡粒子成形体を得ることができる。
図1は、高温ピークの面積の算出方法を示す説明図である。 図2は、発泡粒子Aの切断面の拡大写真である。 図3は、発泡粒子Eの切断面の拡大写真である。 図4は、発泡粒子Hの切断面の拡大写真である。
(発泡粒子成形体)
 前記発泡粒子成形体は、ポリプロピレン系樹脂が含まれている発泡状態の芯層と、ポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層と、を有するポリプロピレン系樹脂発泡粒子から構成されている。なお、本明細書において、数値範囲を表す「A~B」は、「A以上B以下」と同義であり、数値範囲の端点であるA及びBを含む数値範囲を表す。
<発泡粒子>
 発泡粒子の被覆層に含まれるポリエチレン系樹脂は、250MPa以下の曲げ弾性率Msを有していることが好ましい。かかるポリエチレン系樹脂を被覆層に採用することにより、発泡粒子成形体の5%圧縮応力σ5をより小さくするとともに、発泡粒子成形体のスキン面、つまり、型内成形の際に金型の内表面に接触していた面に、被包装物に対してより優しい質感を付与することができる。その結果、前記発泡粒子成形体の保護性をより向上させることができる。
 発泡粒子の芯層に含まれるポリプロピレン系樹脂は、800MPa以上1200MPa以下の曲げ弾性率Mcを有していることが好ましい。かかるポリプロピレン系樹脂を芯層に採用することにより、発泡粒子成形体の剛性を維持しつつ、成形体倍率Xを大きくすることができる。
 なお、発泡粒子成形体に用いられる発泡粒子のより具体的な構成については、後述する。
<成形体倍率、50%圧縮応力及び5%圧縮応力>
 前記発泡粒子成形体の成形体倍率X[倍]は55倍以上90倍以下であり、50%圧縮応力σ50[kPa]と成形体倍率Xとの積X・σ50の値は6500以上であり、5%圧縮応力σ5は5kPa以上25kPa以下である。前記発泡粒子成形体は、成形体倍率X、50%圧縮応力σ50及び5%圧縮応力σ5の3つの物性値が前記の関係を満たしていることにより、優れた保護性を備え、高い剛性と軽量性とを兼ね備えることができる。
 発泡粒子成形体の成形体倍率Xが小さすぎる場合には、発泡粒子成形体の単位体積当たりの質量が大きくなりやすい。この場合には、発泡粒子成形体の自重によって、発泡粒子成形体が撓みやすくなるおそれがある。また、被包装物に対する保護性の悪化を招くおそれがある。
 発泡粒子成形体の成形体倍率Xは、58倍以上であることが好ましく、60倍以上であることがより好ましく、62倍以上であることがさらに好ましく、65倍以上であることが特に好ましい。この場合には、発泡粒子成形体の剛性を確保しつつ、被包装物に対する保護性をより向上させることができる。また、発泡粒子成形体の単位体積当たりの質量をより低減することができる。発泡粒子成形体の剛性をより向上させる観点からは、発泡粒子成形体の成形体倍率Xは85倍以下であることが好ましく、80倍以下であることがより好ましい。
 なお、前述した発泡粒子成形体の成形体倍率X[倍]は、前記芯層に含まれるポリプロピレン系樹脂の密度[kg/m3]を発泡粒子成形体の成形体密度ρ(D)[kg/m3]で除した値である。前記芯層に含まれるポリプロピレン系樹脂の密度は、例えば、JIS K7112:1999に記載された方法により求めることができる。なお、芯層に含まれるポリプロピレン系樹脂の密度は、概ね890kg/m3以上910kg/m3以下である。
 発泡粒子成形体の成形体密度ρ(D)は、以下の方法により算出される値である。まず、発泡粒子成形体の中心部付近から測定試料を採取する。この測定試料の質量を、寸法に基づいて算出される測定試料の体積で除した値を発泡粒子成形体の成形体密度ρ(D)とする。なお、前述した発泡粒子成形体の中心部とは、発泡粒子成形体に存在するすべてのスキン面から最も離れている部分をいう。発泡粒子成形体の型内成形においては、スキン面の近傍に存在する発泡粒子の二次発泡が金型によって規制される。発泡粒子成形体の中心部付近から測定試料を採取することにより、スキン面の近傍部分が成形体倍率の測定に影響を及ぼすことを回避することができる。
 50%圧縮応力σ50と成形体倍率Xとの積X・σ50の値は、発泡粒子成形体の軽量性と剛性とのバランスに関連する指標である。発泡粒子成形体の剛性は、50%圧縮応力σ50が大きいほど高くなる傾向がある。また、発泡粒子成形体の単位体積当たりの質量は、発泡粒子成形体の成形体倍率Xが大きいほど小さくなる。発泡粒子成形体の50%圧縮応力σ50と成形体倍率Xとの積X・σ50の値が6500以上であることにより、発泡粒子成形体の剛性と軽量性とをバランスよく向上させることができる。そして、かかる発泡粒子成形体によれば、自重による撓みを小さくすることができるとともに、被包装物の質量が比較的大きい場合であっても、被包装物による発泡粒子成形体の変形や破損を抑制することができる。
 50%圧縮応力σ50と成形体倍率Xとの積X・σ50の値が小さい発泡粒子成形体においては、50%圧縮応力σ50及び成形体倍率Xの少なくとも一方が小さくなる。従って、この場合には、発泡粒子成形体の単位体積当たりの質量が大きくなる、あるいは、発泡粒子成形体の剛性が低くなるなどの問題が生じやすくなるおそれがある。
 剛性及び軽量性をより向上させる観点からは、50%圧縮応力σ50と成形体倍率Xとの積X・σ50の値は、7000以上であることが好ましく、7500以上であることがより好ましい。なお、上記の観点からは50%圧縮応力σ50と成形体倍率Xとの積X・σ50の値に上限はないが、前記発泡粒子成形体の構成上、50%圧縮応力σ50と成形体倍率Xとの積X・σ50の値は、通常、9000以下となる。
 発泡粒子成形体の5%圧縮応力σ5は、5kPa以上25kPa以下である。5%圧縮応力σ5を前記特定の範囲とすることにより、被包装物に対する保護性を高めることができる。また、この場合には、発泡粒子成形体の復元性を高め、表面が圧縮された場合に、発泡粒子成形体の表面の形状を圧縮前の形状に復元しやすくすることができる。5%圧縮応力σ5が高すぎると、被包装物に対する保護性が損なわれるおそれがある。また、5%圧縮応力σ5が低すぎると、発泡粒子成形体の表面が柔らかくなりすぎ、破れ等が生じやすくなるおそれがある。これらの問題をより確実に回避するとともに、発泡粒子成形体の保護性及び復元性をより高める観点から、5%圧縮応力σ5は15kPa以上24kPa以下であることが好ましい。
 従来のポリプロピレン系樹脂発泡粒子成形体は5%圧縮応力σ5の値が大きくなりやすいため、用途によっては保護性に劣る場合があった。また、5%圧縮応力σ5の値を小さくしようとして単に成形体倍率Xを高めた場合には、50%圧縮応力σ50の値が小さくなりやすく、発泡粒子成形体の剛性を維持できないおそれがあった。
 これに対し、前記発泡粒子成形体は、50%圧縮応力σ50と成形体倍率Xとの積X・σ50の値を6500以上として発泡粒子成形体の剛性を維持しつつ、従来のポリプロピレン系樹脂発泡粒子成形体に比べて5%圧縮応力σ5の値を小さくすることができる。そのため、前記発泡粒子成形体は、ポリプロピレン系樹脂を含む発泡粒子から構成されているにもかかわらず、表面を軟らかくすることができ、被包装物に衝撃が加わった場合などに、発泡粒子成形体の表面が被包装物に追従して変形しやすくなる。その結果、ポリエチレン系樹脂発泡粒子成形体と同等以上の優れた保護性を実現することができる。
 前記発泡粒子成形体における50%圧縮応力σ50に対する5%圧縮応力σ5[kPa]の比σ5/σ50の値は0.20以下であることが好ましく、0.19以下であることがより好ましい。50%圧縮応力σ50に対する5%圧縮応力σ5の比σ5/σ50の値は、被包装物の保護性と剛性とのバランスに関連する指標である。前記発泡粒子成形体は、従来のポリプロピレン系樹脂発泡粒子成形体に比べてσ5/σ50の値を小さくすることができる。そのため、前記発泡粒子成形体は、ポリプロピレン系樹脂を含む発泡粒子から構成されているにもかかわらず、表面をより軟らかくすることができ、被包装物に衝撃が加わった場合などに、発泡粒子成形体の表面が被包装物に追従して変形しやすくなる。
 さらに、前記発泡粒子成形体は、5%圧縮応力σ5に比べて50%圧縮応力σ50が十分に大きいため、表面をより柔軟にしつつ、発泡粒子成形体の剛性をより高めることができる。従って、前記発泡粒子成形体は、剛性に優れるとともに、ポリエチレン系樹脂発泡粒子成形体と同等以上の優れた保護性をより確実に実現することができる。
 高い剛性と優れた保護性とを両立させる観点からは50%圧縮応力σ50に対する5%圧縮応力σ5の比σ5/σ50の値に下限はないが、前記発泡粒子成形体の構成上、50%圧縮応力σ50に対する5%圧縮応力σ5の比σ5/σ50の値は、通常、0.15以上となる。
 発泡粒子成形体の50%圧縮応力σ50は、80kPa以上150kPa以下であることが好ましく、100kPa以上140kPa以下であることがより好ましい。この場合には、被包装物に対する保護性を確保しつつ、緩衝材や包装材として使用する際に好適な剛性をより確実に実現することができる。
 なお、発泡粒子成形体の50%圧縮応力σ50及び5%圧縮応力σ5の値は、JIS K6767:1999に規定された方法により測定することができる。
 また、発泡粒子成形体の成形体密度ρ(D)に対する表層部の見掛け密度ρ(E)の比ρ(E)/ρ(D)は1.1以上1.6以下であることが好ましく、1.2以上1.5以下であることがより好ましい。この場合には、緩衝材や包装材として使用する際の被包装物に対する保護性をより向上させることができる。
 本明細書において、発泡粒子成形体の表層部とは、発泡粒子成形体のスキン面と、スキン面からの深さが3mmとなる面との間の領域をいう。発泡粒子成形体の表層部の見掛け密度ρ(E)は、次の方法により求めることができる。まず、発泡粒子成形体を、スキン面からの深さが3mmとなる面で切断し、表層部を採取する。次に、表層部を適当な大きさに切り分け、厚み方向における一方面がスキン面である小片を採取する。この小片を温度23℃、相対湿度50%RHの環境下に1日静置した後、小片の質量を測定する。この小片の質量を、小片の外径寸法に基づいて算出した体積で除すことにより表層部の見掛け密度ρ(E)[kg/m3]を求めることができる。
 前記発泡粒子成形体の内部の平均気泡径diは、80μm以上170μm以下であることが好ましい。発泡粒子成形体の内部の平均気泡径diを前記特定の範囲とすることにより、発泡粒子成形体の5%圧縮応力σ5をより容易に小さくすることができる。その結果、発泡粒子成形体の保護性をより向上させることができる。また、発泡粒子成形体をスライスして使用する場合にも、所望の物性をより確実に発揮させることができる。発泡粒子成形体の保護性をより向上させる観点からは、発泡粒子成形体の内部の平均気泡径diは、100μm以上165μm以下であることがより好ましく、120μm以上160μm以下であることがさらに好ましく、130μm以上150μm以下であることが特に好ましい。
 発泡粒子成形体の内部の平均気泡径diは、以下の方法により算出される値である。まず、発泡粒子成形体の中心部付近から、スキン面を有さない直方体小片を切り出す。
 走査型電子顕微鏡を用い、この小片における厚み方向に平行な表面の拡大写真を取得する。この際、拡大写真中に気泡が20個以上存在するように拡大写真を得る。得られた拡大写真上に厚み方向の中央を通る線分を引き、線分と交差する気泡の数を数える。そして、前述した線分の長さを線分と交差する気泡の数で除した値を、発泡粒子成形体の内部における平均気泡径di[μm]とする。
 前記発泡粒子成形体の内部の平均気泡径diに対する前記発泡粒子成形体の表層部の平均気泡径ds[μm]の比ds/diは、0.80以上1.20以下であることが好ましい。このように、発泡粒子成形体の表層部の平均気泡径dsと発泡粒子成形体の内部の平均気泡径diとの差を小さくすることにより、発泡粒子成形体が圧縮されたときに、発泡粒子成形体の表層部における気泡の潰れ方を内部における気泡の潰れ方により近づけることができる。これにより、発泡粒子成形体の物性のバラつきをより低減し、ひいては発泡粒子成形体の保護性をより向上させることができる。
 前述の作用効果をより確実に奏する観点からは、発泡粒子成形体の内部の平均気泡径diに対する表層部の平均気泡径ds[μm]の比ds/diは0.85以上1.18以下であることがより好ましく、0.90以上1.15以下であることがさらに好ましく、1.00以上1.12以下であることが特に好ましい。
 発泡粒子成形体の表層部の平均気泡径dsは、以下の方法により算出される値である。まず、発泡粒子成形体の表層部から、略立方体の小片を採取する。走査型電子顕微鏡を用い、この小片における、厚み方向に平行な表面の拡大写真を取得する。この際、拡大写真中に気泡が20個以上存在するように拡大写真を得る。得られた拡大写真上に、スキン面からの深さ(つまり、厚み方向における距離)が50μmとなるようにしてスキン面と平行な線分を引き、線分と交差する気泡の数を数える。そして、前述した線分の長さを線分と交差する気泡の数で除した値を、発泡粒子成形体の表層部における平均気泡径ds[μm]とする。
 発泡粒子成形体の表層部における平均気泡径dsは、80μm以上200μm以下であることが好ましく、110μm以上180μm以下であることがより好ましく、140μm以上160μm以下であることがさらに好ましい。この場合には、発泡粒子成形体の表面が圧縮された際の形状の復元性をより高くすることができ、被包装物に対する保護性をより向上させることができる。
(発泡粒子成形体の製造方法)
 前記発泡粒子成形体は、例えば次のようにして製造される。まず、所望する成形体の形状に対応したキャビティを有する金型内に発泡粒子を充填し、スチームなどの加熱媒体により金型内で多数の発泡粒子を加熱する。キャビティ内の発泡粒子は、加熱によってさらに発泡すると共に、相互に融着する。これにより、多数の発泡粒子が一体化し、キャビティの形状に応じた発泡粒子成形体が得られる。
(発泡粒子)
 前記発泡粒子成形体を形成するために用いられるポリプロピレン系樹脂発泡粒子は、以下の構成を有していてもよい。すなわち、前記発泡粒子は、
 ポリプロピレン系樹脂が含まれている発泡状態の芯層と、
 ポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層と、を有し、
 嵩倍率が55倍以上90倍以下であり、
 前記芯層と前記被覆層との質量比が、前記芯層:前記被覆層=95:5~88:12であり、
 前記芯層に含まれるポリプロピレン系樹脂の曲げ弾性率Mcが800MPa以上1200MPa以下であり、
 前記被覆層に含まれるポリエチレン系樹脂の曲げ弾性率Msが250MPa以下である。
 前記の構成を備えた発泡粒子を型内成形することにより、前記発泡粒子成形体を容易に得ることができる。
<芯層>
 前記発泡粒子の芯層は、ポリプロピレン系樹脂を含む発泡体から構成されている。本明細書において、ポリプロピレン系樹脂とは、プロピレン単量体の単独重合体及びプロピレンに由来する構造単位を50質量%以上含むプロピレン系共重合体をいう。芯層には、プロピレン単量体の単独重合体及びプロピレン系共重合体からなる群より選択される1種のポリプロピレン系樹脂が含まれていてもよいし、2種以上のポリプロピレン系樹脂が含まれていてもよい。
 プロピレン単量体の単独重合体としては、例えば、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、アタクチックポリプロピレンを使用することができる。
 プロピレン系共重合体としては、例えば、プロピレンと、エチレン、1-ブテン、イソブチレン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、3,4-ジメチル-1-ブテン、3-メチル-1-ヘキセンなどの炭素数4~10のα-オレフィンとの共重合体や、プロピレン-アクリル酸共重合体、プロピレン-無水マレイン酸共重合体等を使用することができる。これらの共重合体は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。また、共重合体は、二元系共重合体であってもよいし、三元系あるいはそれ以上の多元系共重合体であってもよい。前記共重合体中におけるプロピレンに由来する構造単位以外の構造単位の含有量は、25質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。
 芯層には、気泡調整剤、触媒中和剤、滑剤、結晶核剤、帯電防止剤等の添加剤が含まれていてもよい。芯層中の添加剤の含有量は、例えば、芯層の全質量に対して15質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、1質量%以下であることが特に好ましい。
 芯層中に帯電防止剤を添加することにより、発泡粒子の内部に帯電防止効果を付与することができる。そのため、かかる発泡粒子によれば、例えば、型内成形後に切断して使用する場合にも、発泡粒子成形体全体が帯電防止効果を備えた発泡粒子成形体を得ることができる。
 また、芯層には、ポリプロピレン系樹脂の他に、本発明の目的及び作用効果を損なわない範囲で他の樹脂やエラストマー等のポリプロピレン系樹脂以外の材料が含まれていてもよい。ポリプロピレン系樹脂以外の樹脂としては、例えば、ポリエチレン系樹脂、ポリスチレン系樹脂、ポリブテン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂等の熱可塑性樹脂が例示される。また、ポリプロピレン系樹脂以外のエラストマーとしては、オレフィン系熱可塑エラストマー、スチレン系熱可塑性エラストマー等が例示される。芯層中におけるポリプロピレン系樹脂以外の樹脂やエラストマー等の含有量は、芯層の全質量に対して20質量%以下であることが好ましく、10質量%以下であることがより好ましく、0質量%、つまり、芯層がポリプロピレン系樹脂以外の樹脂やエラストマー等を含有しないことが特に好ましい。
 発泡粒子の芯層に含まれるポリプロピレン系樹脂は、800MPa以上1200MPa以下の曲げ弾性率Mcを有している。かかる発泡粒子を型内成形することにより、発泡粒子成形体の剛性を確保しつつ成形体倍率をより高くすることができ、軽量かつ剛性に優れた発泡粒子成形体を容易に得ることができる。なお、ポリプロピレン系樹脂の曲げ弾性率は、JIS K7171:2008に記載の測定法に準拠して測定することにより求めることができる。
 前記芯層に含まれるポリプロピレン系樹脂の融点は135℃以上150℃以下であることが好ましい。この場合には、前記発泡粒子の嵩密度をより容易に低くすることができる。また、この場合には、前記発泡粒子を型内成形して得られる発泡粒子成形体の5%圧縮応力σ5をより小さくすることができる。同様の観点から、前記芯層に含まれるポリプロピレン系樹脂の融点は138℃以上148℃以下であることがより好ましく、140℃以上145℃以下であることがさらに好ましい。
 前記芯層に含まれるポリプロピレン系樹脂の融点は、JIS K7121:1987に記載された熱流束示差走査熱量測定法により測定することができる。具体的には、まず、ポリプロピレン系樹脂からなる試験片の状態調節を行う。その後、10℃/分の昇温速度で23℃から200℃まで昇温し、次いで10℃/分の冷却速度で23℃まで降温する。その後、再び10℃/分の昇温速度で23℃から200℃まで昇温した際に得られるDSC曲線により定まる吸熱ピークの頂点温度を芯層に含まれるポリプロピレン系樹脂の融点とすることができる。なお、DSC曲線に複数の吸熱ピークが現れている場合には、最も面積の大きな吸熱ピークの頂点温度を融点とする。試験片は、発泡粒子の表面から被覆層を除去することにより芯層を露出させ、芯層から直接採取してもよい。
 前記芯層に含まれるポリプロピレン系樹脂のメルトフローレイト(以下、「MFR」という。)は2g/10分以上18g/10分以下であることが好ましく、4g/10分以上12g/10分以上であることがより好ましく、6g/10分以上10g/10分以下であることがさらに好ましい。この場合には、前記発泡粒子の製造過程及び型内成形時における発泡性をより向上させることができる。また、この場合には、発泡粒子の嵩密度をより容易に低くするとともに、発泡粒子の製造過程において、嵩密度の制御をより容易に行うことができる。
 前述したポリプロピレン系樹脂のMFRは、JIS K7210-1:2014に準拠して、温度230℃、荷重2.16kgの条件で測定される値である。
 また、前記芯層に含まれるポリプロピレン系樹脂の多分散度Mw/Mnは4.0以上25以下であることが好ましく、4.1以上10以下であることがより好ましい。この場合には、前記発泡粒子の製造過程及び型内成形時における発泡性をより向上させることができる。また、この場合には、発泡粒子の嵩密度をより容易に低くするとともに、発泡粒子の製造過程において、嵩密度の制御をより容易に行うことができる。さらに、発泡粒子の成形性をより向上させることができる。
 ポリプロピレン系樹脂の多分散度Mw/Mnは、ポリスチレンを標準物質とするゲルパーミエーションクロマトグラフィ(GPC)法により測定された重量平均分子量Mwを数平均分子量Mnで除した値である。
 前記芯層に含まれるポリプロピレン系樹脂は、チーグラー・ナッタ系重合触媒の存在下で重合して得られたポリプロピレン系樹脂であることが好ましい。チーグラー・ナッタ系重合触媒を用いて製造されたポリプロピレン系樹脂は、メタロセン触媒を用いて製造されたポリプロピレン系樹脂と比較して分子量分布が広くなる傾向がある。そのため、チーグラー・ナッタ系重合触媒を用いて製造されたポリプロピレン系樹脂の多分散度Mw/Mnは前記範囲内に入りやすい。それ故、この場合には、前記発泡粒子の製造過程及び型内成形時における発泡性をより向上させることができる。
 前記発泡粒子の製造過程及び型内成形時における発泡性をより向上させる観点からは、芯層に含まれるポリプロピレン系樹脂のMFRは6g/10分以上10g/10分以下であり、かつ、多分散度Mw/Mnは4以上25以下であることがより好ましい。
<被覆層>
 前記芯層の表面は、ポリエチレン系樹脂を含む被覆層により覆われている。被覆層は、芯層全体を被覆していてもよいし、芯層の一部を被覆していてもよい。また、被覆層は発泡状態であってもよいし、非発泡状態であってもよい。発泡粒子の融着性をより確実に向上させる観点からは被覆層は非発泡状態であることが好ましい。
 被覆層に含まれるポリエチレン系樹脂としては、種々の重合触媒を用いて重合したポリエチレン系樹脂を用いることができる。被覆層に含まれるポリエチレン系樹脂は、メタロセン系重合触媒の存在下で重合して得られたポリエチレン系樹脂であることが好ましい。かかるポリエチレン系樹脂は、融点が低く、融着性により優れているため、発泡粒子の融着性をより向上させることができる。
 本明細書において、ポリエチレン系樹脂とは、エチレン単量体の単独重合体及びエチレン単量体に由来する構造単位を50質量%以上含むエチレン系共重合体をいう。被覆層には、エチレン単量体の単独重合体及びエチレン系共重合体からなる群より選択される1種のポリエチレン系樹脂が含まれていてもよいし、2種以上のポリエチレン系樹脂が含まれていてもよい。
 ポリエチレン系樹脂としては、例えば、直鎖状低密度ポリエチレン、分岐状低密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸アルキルエステル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸アルキルエステル共重合体等を使用することができる。
 被覆層には、ポリエチレン系樹脂としての直鎖状低密度ポリエチレンが含まれていることが好ましい。この場合には、発泡粒子成形体のスキン面に被包装物に対してより優しい質感を付与することができる。その結果、前記発泡粒子成形体の保護性をより向上させることができる。かかる作用効果をより高める観点から、ポリエチレン系樹脂中の直鎖状低密度ポリエチレンの比率は80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%、つまり、ポリエチレン系樹脂が直鎖状低密度ポリエチレンから構成されていることが特に好ましい。
 なお、前述した直鎖状低密度ポリエチレンとは、直鎖状を呈する、エチレンとα-オレフィンとの共重合体をいう。具体的には、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、エチレン-オクテン共重合体等が好ましく例示される。
 被覆層には、触媒中和剤、滑剤、結晶核剤、帯電防止剤等の添加剤が含まれていてもよい。被覆層中の添加剤の含有量は、被覆層の全質量に対して15質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、1質量%以下であることが特に好ましい。特に、被包装物に対してより優しい質感を付与する観点からは、被覆層中の高分子型帯電防止剤の含有量は、被覆層の全質量に対して5質量%以下であることが好ましい。
 また、被覆層には、ポリエチレン系樹脂の他に、本発明の目的及び作用効果を損なわない範囲で他の樹脂やエラストマー等のポリエチレン系樹脂以外の材料が含まれていてもよい。ポリエチレン系樹脂以外の樹脂としては、例えば、ポリプロピレン系樹脂、ポリスチレン系樹脂、ポリブテン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂等の熱可塑性樹脂が例示される。また、ポリエチレン系樹脂以外のエラストマーとしては、オレフィン系熱可塑エラストマー、スチレン系熱可塑性エラストマー等が例示される。被覆層中におけるポリエチレン系樹脂以外の樹脂やエラストマー等の含有量は、被覆層の全質量に対して20質量%以下であることが好ましく、10質量%以下であることがより好ましく、0質量%、つまり、被覆層がポリエチレン系樹脂以外の樹脂やエラストマー等を含有しないことがさらに好ましい。
 前記被覆層に含まれるポリエチレン系樹脂の曲げ弾性率Msは、250MPa以下である。かかる発泡粒子を型内成形することにより、成形体倍率Xと50%圧縮応力σ50との積X・σ50及び5%圧縮応力σ5の値が前記特定の範囲内である発泡粒子成形体を容易に得ることができる。また、このような発泡粒子は、前記芯層に含まれるポリプロピレン系樹脂の曲げ弾性率Mcが高いにも関わらず、得られる発泡粒子成形体のスキン面に、被包装物に対してより優しい質感を付与し、発泡粒子成形体の保護性をより高めることができる。
 これらの作用効果をより確実に奏する観点から、前記被覆層に含まれるポリエチレン系樹脂の曲げ弾性率Msは、200MPa以下であることが好ましく、150MPa以下であることがさらに好ましい。被覆層に含まれるポリエチレン系樹脂の曲げ弾性率Msの下限は特に制限はないが、概ね80MPa以上である。なお、ポリエチレン系樹脂の曲げ弾性率は、JIS K7171:2008に記載の測定法に準拠して測定することにより求めることができる。
 また、前記芯層に含まれるポリプロピレン系樹脂の曲げ弾性率Mcに対する前記被覆層に含まれるポリエチレン系樹脂の曲げ弾性率Msの比Ms/Mcは、0.05以上0.20以下であることが好ましく、0.08以上0.15以下であることがより好ましい。この場合には、発泡粒子成形体の剛性を十分に確保しつつ、被包装物に対する保護性をより確実に向上させることができる。また、同様の理由から、前記芯層に含まれるポリプロピレン系樹脂の曲げ弾性率Mcと前記被覆層に含まれるポリエチレン系樹脂の曲げ弾性率Msとの差Mc-Msは、400MPa以上であることが好ましく、600MPa以上であることがより好ましく、800MPa以上であることが更に好ましい。前記差Mc-Msの上限は、950MPaである。
 前記被覆層に含まれるポリエチレン系樹脂の融点は前記芯層に含まれるポリプロピレン系樹脂の融点よりも低いことが好ましい。この場合には、発泡粒子の型内成形性をより向上させることができる。かかる作用効果をより確実に奏する観点からは、前記芯層に含まれるポリプロピレン系樹脂の融点から前記被覆層に含まれるポリエチレン系樹脂の融点を差し引いた値は、10℃以上であることがより好ましく、20℃以上であることがさらに好ましく、30℃以上であることが特に好ましく、35℃以上であることが最も好ましい。
 前記被覆層に含まれるポリエチレン系樹脂の融点は120℃以下であることが好ましく、115℃以下であることがより好ましく、110℃以下であることがさらに好ましい。ポリエチレン系樹脂の融点を120℃以下とすることにより、発泡粒子の型内成形性をより向上させることができる。そして、かかる発泡粒子を用いて型内成形を行うことにより、型内成形時の成形圧をより低くすることができる。その結果、発泡粒子成形体の表面に存在する気泡がつぶれることをより効果的に抑制し、被包装物に対する保護性をより向上させることができる。また、被包装物に対してより優しい質感を有する発泡粒子成形体をより容易に得ることができる。
 前記被覆層に含まれるポリエチレン系樹脂の融点は、前述した芯層に含まれるポリプロピレン系樹脂と同様の方法により測定することができる。なお、試験片としては、ポリエチレン系樹脂からなる小片を用いてもよいし、発泡粒子の表面から採取した、主として被覆層を含む小片を用いてもよい。
 発泡粒子の成形性、及び得られる発泡粒子成形体の保護性をより向上させる観点からは、前記被覆層に含まれているポリエチレン系樹脂の曲げ弾性率Msが200MPa以下であり、かつ、融点が120℃以下であることが好ましい。
 前記被覆層に含まれるポリエチレン系樹脂のメルトフローレイト(MFR)は6g/10分以上18g/10分以下であることが好ましく、8g/10分以上15g/10分以下であることがより好ましい。被覆層に含まれるポリエチレン系樹脂のMFRが上記範囲内であると、被覆層によって芯層をより均一に被覆することができる。その結果、得られる発泡粒子成形体の全面において、保護性をより確実に向上させることができる。
 前述したポリエチレン系樹脂のMFRは、JIS K7210-1:2014に準拠して、温度190℃、荷重2.16kgの条件で測定される値である。
<発泡粒子の嵩倍率>
 前記発泡粒子の嵩倍率は、55倍以上90倍以下である。発泡粒子の嵩倍率を前記特定の範囲とすることにより、発泡粒子を型内成形してなる発泡成形体の成形体倍率Xを容易に所望の範囲とすることができる。その結果、剛性及び保護性に優れ、単位体積当たりの質量が小さい発泡粒子成形体を容易に得ることができる。優れた剛性を確保しつつ、被包装物に対する保護性をより向上させるとともに発泡粒子成形体の単位体積当たりの質量をより低減する観点からは、発泡粒子の嵩倍率は58倍以上であることが好ましく、60倍以上であることがより好ましく、62倍以上であることがさらに好ましく、65倍以上であることが特に好ましい。発泡粒子成形体の剛性をより向上させる観点からは、発泡粒子の嵩倍率は85倍以下であることが好ましく、80倍以下であることがより好ましい。
 発泡粒子の嵩倍率が前記特定の範囲よりも小さい場合には、得られる発泡粒子成形体の成形体倍率Xが小さくなりやすい。そのため、発泡粒子成形体の軽量性が損なわれやすくなるおそれがある。また、被包装物に対する保護性の悪化を招くおそれがある。発泡粒子の嵩倍率が前記特定の範囲よりも大きい場合には、得られる発泡粒子成形体の剛性の低下を招くおそれがある。
 前述した発泡粒子の嵩倍率は、以下の方法により算出される値である。まず、十分に乾燥させた発泡粒子を、容積1Lのメスフラスコ内に自然に堆積するようにして標線まで充填する。このメスフラスコ内の発泡粒子の質量を測定し、単位換算して発泡粒子の嵩密度[kg/m3]を求める。次に、前記芯層に含まれるポリプロピレン系樹脂の密度[kg/m3]を前記発泡粒子の嵩密度[kg/m3]で除すことにより発泡粒子の嵩倍率を求めることができる。
<芯層と被覆層との比率>
 発泡粒子における芯層と被覆層との質量比は、芯層:被覆層=95:5~88:12の範囲内である。芯層と被覆層との質量比を前記特定の範囲とすることにより、発泡粒子成形体の保護性を向上させることができる。被覆層の質量比が前記特定の範囲よりも小さい場合には、発泡粒子成形体の5%圧縮応力σ5が高くなりやすく、被包装物に対する保護性が低下するおそれがある。被覆層の質量比が前記特定の範囲よりも大きい場合には、発泡粒子の嵩倍率を高くすることが難しくなり、軽量性が損なわれるとともに、発泡粒子成形体の5%圧縮応力σ5の上昇を招くおそれがある。前述した作用効果をより確実に奏する観点からは、芯層と被覆層との質量比は、芯層:被覆層=93:7~89:11であることがより好ましい。
<発泡粒子の平均粒径及び粒径の変動係数>
 前記発泡粒子の平均粒径は2mm以上8mm以下であり、粒径の変動係数は3%以上15%以下であることが好ましい。粒径の変動係数は、その値が小さいほど発泡粒子群の粒度分布が狭いことを意味する。前述したように、粒度分布が狭く、粒径のバラつきの小さい発泡粒子を用いて型内成形を行うことにより、発泡粒子成形体の物性のバラつきをより低減することができる。その結果、発泡粒子成形体全体において、より確実に所望の剛性と保護性とを発揮させることができる。同様の観点からは、発泡粒子の平均粒径は3mm以上6mm以下であり、粒径の変動係数は5%以上12%以下であることがより好ましい。なお、発泡粒子の粒径の変動係数は、たとえば、後述する一段発泡粒子の製造工程において、無機系物理発泡剤として二酸化炭素を使用することにより上記範囲内に調整することができる。
 発泡粒子の平均粒径は、発泡粒子の体積基準の粒度分布に基づいて算出されるメジアン径(つまり、累積50%粒径d50)の値である。また、粒径の変動係数は、前述した平均粒径を、体積基準の粒度分布に基づいて算出した標準偏差で除した値である。
 平均粒径及び粒径の変動係数を算出するにあたっては、測定に用いる発泡粒子の数を多くするほど、より正確な平均粒径及び粒径の変動係数の値を算出することができる。測定に用いる発泡粒子の数は、例えば、100個以上であればよい。また、体積基準における発泡粒子の粒度分布は、粒度分布測定装置(例えば、日機装株式会社製「ミリトラック JPA」)などを用いて測定することができる。
 発泡粒子の1個当たりの平均質量は、型内成形における金型への充填性と発泡粒子間の融着性等をより良好にする観点から、0.05mg以上10mg以下であることが好ましく、0.1mg以上5mg以下であることがより好ましく、0.5mg以上3mg以下であることがさらに好ましい。発泡粒子の1個当たりの平均質量は、後述の造粒工程において、樹脂粒子の質量を適宜調整することにより制御することができる。
<発泡粒子全体の平均気泡径>
 前記発泡粒子全体の平均気泡径Dは、80μm以上170μm以下であることが好ましく、100μm以上170μm以下であることがより好ましく、120μm以上160μm以下であることがさらに好ましく、130μm以上150μm以下であることが特に好ましい。発泡粒子全体の平均気泡径Dを前記特定の範囲とすることにより、発泡粒子成形体の剛性を高めることができる。また、5%圧縮応力σ5をより容易に小さくすることができ、発泡粒子成形体の保護性をより向上させることができる。
 発泡粒子全体の平均気泡径Dは、以下の方法により算出される値である。まず、発泡粒子を概ね2等分となるように分割する。走査型電子顕微鏡を用い、分割により露出した切断面が視野内に全て納まるように拡大写真を取得する。得られた拡大写真上に、発泡粒子の最表面から中央部を通って反対側の最表面まで、4本の線分を隣り合う線分同士のなす角度が等しくなるように引く。すなわち、隣り合う線分同士のなす角度は45°となる。
 このようにして得られた4本の線分の長さの合計を、線分と交差する気泡の総数で除することにより、個々の発泡粒子における発泡粒子全体の気泡径を算出する。以上の操作を無作為に抽出した10個の発泡粒子に対して行い、それぞれの発泡粒子について得られた発泡粒子全体の気泡径を相加平均した値を、発泡粒子の平均気泡径Dとする。
<発泡粒子の表層部の平均気泡径>
 前記発泡粒子全体の平均気泡径Dに対する前記発泡粒子の表層部の平均気泡径Ds[μm]の比Ds/Dは、0.80以上1.20以下であることが好ましい。このように、発泡粒子の表層部の平均気泡径Dsと発泡粒子全体の平均気泡径Dとの差を小さくすることにより、型内成形時の二次発泡に伴う気泡の成長がより均一となり、発泡粒子成形体の内部の平均気泡径diに対する表層部の平均気泡径dsの比ds/diが前述した好ましい範囲内である発泡粒子成形体をより容易に得ることができる。その結果、発泡粒子成形体の物性のバラつきをより低減し、ひいては発泡粒子成形体の保護性をより向上させることができる。
 前述の作用効果をより確実に奏する観点からは、発泡粒子全体の平均気泡径Dに対する発泡粒子の表層部の平均気泡径Ds[μm]の比Ds/Dは、0.87以上1.10以下であることがより好ましく、0.85以上1.18以下であることがさらに好ましく、0.88以上1.05以下であることが特に好ましい。
 発泡粒子の表層部における平均気泡径Dsは、80μm以上180μm以下であることが好ましく、110μm以上170μm以下であることがより好ましく、120μm以上160μm以下であることがさらに好ましい。かかる発泡粒子を型内成形することにより、発泡粒子成形体の被包装物に対する保護性をより向上させることができる。
 発泡粒子の表層部の平均気泡径Dsは、以下の方法により算出される値である。まず、発泡粒子を概ね2等分となるように分割する。走査型電子顕微鏡を用い、分割により露出した切断面が視野内に全て納まるように拡大写真を取得する。得られた拡大写真における発泡粒子の最表面の周長、つまり、切断面における発泡粒子の外周端縁の長さを、発泡粒子の外周端縁に接する気泡の数で除することにより、個々の発泡粒子における表層部の気泡径を算出する。この操作を無作為に抽出した10個の発泡粒子に対して行い、それぞれの発泡粒子について得られた表層部の気泡径を相加平均した値を、発泡粒子の表層部における平均気泡径Dsとする。
<独立気泡率>
 前記発泡粒子の独立気泡率は85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましい。この場合には、発泡粒子の成形性や得られる発泡粒子成形体の剛性等をより向上させることができる。発泡粒子の独立気泡率は、ASTM-D2856-70に基づき空気比較式比重計を用いて測定することができる。
<高温ピーク>
 前記発泡粒子は、熱流束DSCにより得られるDSC曲線において、芯層に含まれるポリプロピレン系樹脂固有の吸熱ピーク(以下、「固有ピーク」という。)の頂点よりも高温側に、1つ以上の吸熱ピーク(以下、「高温ピーク」という。)が現れる結晶構造を有していることが好ましい。この場合には、発泡粒子の独立気泡率をより高めることができるとともに、発泡粒子成形体を成形する際の成形条件を広い範囲から選択することができる。また、得られる発泡粒子成形体の剛性をより高めることができる。かかる観点からは、高温ピークにおける吸熱量(以下、「高温ピーク熱量」という。)は、5~50J/gであることが好ましく、8~40J/gであることがより好ましい。
 発泡粒子の高温ピーク熱量は、例えば以下の方法により算出することができる。まず、1~3mgの発泡粒子を用いて熱流束DSCを行い、DSC曲線を取得する。このときの測定開始温度は10~40℃、測定終了温度は220℃、昇温速度は10℃/分とする。発泡粒子が高温ピークを有する場合、DSC曲線には、図1に示すように、固有ピークΔH1と、固有ピークΔH1の頂点よりも高温側に頂点を有する高温ピークΔH2とが現れる。
 次に、DSC曲線上における80℃に相当する点αと、発泡粒子の融解終了温度Tに相当する点βとを結ぶ直線L1を引く。なお、融解終了温度Tは、高温ピークΔH2における高温側の端点、つまり、DSC曲線における、高温ピークΔH2と、高温ピークΔH2よりも高温側のベースラインとの交点である。
 直線L1を引いた後、固有ピークΔH1と高温ピークΔH2との間に存在する極大点γを通り、グラフの縦軸に平行な直線L2を引く。この直線L2により固有ピークΔH1と高温ピークΔH2とが分割される。高温ピークΔH2の吸熱量は、DSC曲線における高温ピークΔH2を構成する部分と、直線L1と、直線L2とによって囲まれた部分の面積に基づいて算出することができる。
 なお、前述の方法によってDSC曲線を取得した後、発泡粒子を一旦冷却し、再度DSC曲線を取得した場合、DSC曲線には固有ピークΔH1のみが現れ、高温ピークΔH2はDSC曲線から消失する。
(発泡粒子の製造方法)
 前記発泡粒子は、例えば、以下の工程を備える二段発泡方法により作製することができる。すなわち、前記発泡粒子の製造方法は、
 曲げ弾性率Mcが800MPa以上1200MPa以上のポリプロピレン系樹脂が含まれている未発泡状態の芯層と、曲げ弾性率Msが250MPa以下のポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層と、を備え、前記芯層と前記被覆層との質量比が、芯層:被覆層=95:5~88:12であるポリプロピレン系樹脂粒子を造粒する造粒工程と、
 密閉容器中において分散媒に分散させた前記ポリプロピレン系樹脂粒子に無機系物理発泡剤を含浸させ、次いで、前記ポリプロピレン系樹脂粒子と前記分散媒とを前記密閉容器から前記密閉容器内よりも低圧下に放出することにより、前記ポリプロピレン系樹脂が含まれている発泡状態の芯層と、前記ポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層とを備えた一段発泡粒子を得る一段発泡工程と、
 耐圧容器内において前記一段発泡粒子に無機系ガスを含浸させることにより前記一段発泡粒子の気泡内の圧力を上昇させ、次いで、前記耐圧容器から取り出した前記一段発泡粒子を前記気泡内の圧力よりも低圧下で加熱することにより、前記一段発泡粒子をさらに発泡させて嵩倍率(II)が55倍以上90倍以下のポリプロピレン系樹脂発泡粒子を得る二段発泡工程と、を有していることが好ましい。
 前述した工程を備える二段発泡方法により製造された発泡粒子は、被包装物の保護性及び剛性に優れ、単位体積当たりの質量が小さいポリプロピレン系樹脂発泡粒子成形体を形成することができる。また、発泡粒子の独立気泡率の低下をより確実に抑制することができる。以下、各工程についてより詳細に説明する。
<造粒工程>
 造粒工程における前記ポリプロピレン系樹脂粒子(以下、「樹脂粒子」と省略する。)の作製方法は、特に限定されることはない。例えば、押出成形によって芯層の周囲が被覆層によって覆われたストランドを作製し、次いで、ペレタイザー等によりストランドを所望の寸法に切断することにより、前記樹脂粒子を得ることができる。かかる方法により得られる樹脂粒子は、芯層の周囲に帯状の被覆層が形成された、複層構造を有している。
 樹脂粒子の1個当たりの平均質量は、前記発泡粒子の金型への充填性と融着性等をより良好にする観点から、0.05mg~10mgであることが好ましく、0.1mg~5mgであることがより好ましく、0.5mg~3mgであることがさらに好ましい。
<一段発泡工程>
 一段発泡工程においては、まず、樹脂粒子を密閉容器内に入れ、水などの水性の分散媒中に分散させる。この際、必要に応じて、密閉容器内の分散媒に樹脂粒子を分散させるための分散剤を添加してもよい。
 分散剤としては、例えば、酸化アルミニウム、硫酸アルミニウム、第三リン酸カルシウム、ピロリン酸マグネシウム、酸化亜鉛、カオリン、マイカ等の無機微粒子や、アルキルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウム等の界面活性剤を使用することができる。分散剤としては、これらの無機微粒子及び界面活性剤から選択された1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 密閉容器を密封した後、容器内に無機系物理発泡剤を加え、無機系物理発泡剤を樹脂粒子に含浸させる。この際、密閉容器内を加圧しつつ加温することにより、樹脂粒子への無機系物理発泡剤の含浸を促進することができる。そして、発泡剤が十分に樹脂粒子に含浸した後に、密閉容器の内容物を容器の内圧よりも低い圧力下に放出することにより、樹脂粒子を発泡させて一段発泡粒子とすることができる。
 一段発泡工程において、無機系物理発泡剤を用いて樹脂粒子を発泡させることにより、最終的に、発泡倍率が高く、粒度分布の狭い発泡粒子を容易に得ることができる。無機系物理発泡剤としては、例えば、二酸化炭素、窒素、空気等の無機系ガス及び水等を使用することができる。無機系物理発泡剤としては、これらの物質を単独で使用してもよいし、2種以上の物質を併用してもよい。一段発泡工程における無機系物理発泡剤としては、発泡倍率が高く、粒度分布の狭い発泡粒子をより容易に得る観点から二酸化炭素を使用することが好ましい。
 前記無機系物理発泡剤の添加量は、芯層に含まれるポリプロピレン系樹脂の種類や発泡剤の種類、目的とする発泡粒子の嵩倍率等に応じて適宜設定することができるが、芯層に含まれるポリプロピレン系樹脂100質量部に対して0.1質量部~30質量部、好ましくは0.5質量部~15質量部、より好ましくは1質量部~10質量部が使用される。
 前記一段発泡工程は、樹脂粒子を発泡させる前に、前述した高温ピークを生成させる工程を含んでいてもよい。高温ピークを生成させる方法としては、例えば、密閉容器内で樹脂粒子を分散媒内で特定温度範囲内に保持して熱処理を行う方法を採用することができる。熱処理を行うタイミングは特に限定されることはなく、発泡剤の含浸前、含浸中及び含浸後のいずれかの時点で熱処理を行ってもよいし、前述した時点のうち2以上の時点にまたがって行われてもよい。この熱処理により、ポリプロピレン系樹脂固有の結晶に由来する融解ピーク(固有ピーク)と、該固有ピークよりも高温側に位置する融解ピーク(高温ピーク)を示す結晶構造を有する発泡粒子を得ることができる。
 一段発泡粒子の嵩倍率(I)は、最終的に得ようとする発泡粒子の嵩倍率よりも低い値であり、25倍以上38倍以下とすることが好ましい。一段発泡工程における嵩倍率を前記特定の範囲とすることにより、一段発泡粒子における、粒子全体の気泡径を小さくするとともに、粒子全体の気泡径と粒子の表層部の気泡径との差をより小さくすることができる。なお、一段発泡粒子の嵩倍率(I)[倍]は、芯層に含まれるポリプロピレン系樹脂の密度[kg/m3]を一段発泡粒子の嵩密度[kg/m3]で除した値である。
<二段発泡工程>
 二段発泡工程においては、まず、耐圧容器内に一段発泡粒子を充填する。次いで、耐圧容器内を無機系ガスで加圧し、一段発泡粒子に無機系ガスを含浸させる。このようにして無機系ガスを含浸させることにより、一段発泡粒子の気泡内の圧力を含浸前よりも上昇させることができる。
 二段発泡工程においては、耐圧容器内の一段発泡粒子を加温しながら加圧してもよい。この場合には、一段発泡粒子への無機系ガスの含浸をより促進することができる。二段発泡工程において一段発泡粒子を加温する場合、ブロッキング、つまり、一段発泡粒子同士が融着して塊を形成する現象を抑制する観点から、一段発泡粒子の加熱温度を被覆層の融点よりも低くすることが好ましい。
 二段発泡工程において使用する無機系ガスとしては、二酸化炭素、窒素、空気、スチーム等を使用することができる。これらの無機系ガスは、単独で使用してもよいし、2種以上を併用してもよい。二段発泡工程において使用する無機系ガスは、スチームと空気との混合ガスであることが好ましい。この場合には、一段発泡粒子を適度に加温して無機系ガスの含浸をより促進するとともに、一段発泡粒子のブロッキングをより効果的に抑制することができる。
 なお、気泡内の圧力(内圧)は、例えば特開2003-201361号公報に記載された方法により測定することができる。
 一段発泡粒子への無機系ガスの含浸が完了した後、一段発泡粒子を耐圧容器から取り出す。この一段発泡粒子を気泡の内部の圧力よりも低圧下でスチーム等を用いて加熱して、個々の気泡を膨張させることができる。その結果、一段発泡粒子の嵩倍率を上昇させ、所望の嵩倍率を備えた発泡粒子を得ることができる。
 一段発泡粒子のブロッキングをより効果的に抑制する観点からは、二段発泡工程において無機系ガスとしての空気とスチームとの混合ガスを含浸させることにより、前記一段発泡粒子の気泡内の圧力をゲージ圧において0.40MPa(G)以上0.60MPa(G)とし、次いで、前記耐圧容器から取り出した前記一段発泡粒子をゲージ圧において0.05MPa(G)以上0.25MPa(G)以下のスチームで加熱することが好ましい。
 前記発泡粒子の嵩倍率(I)に対する一段発泡粒子の嵩倍率(II)の比(II)/(I)、つまり、二段発泡工程における嵩倍率の上昇率は、1.8以上3.0以下とすることが好ましく、2.0以上2.8以下とすることがより好ましい。二段発泡工程における嵩倍率の上昇率を前記特定の範囲とすることにより、発泡粒子の気泡の過度の膨張を抑制することができる。これにより、発泡粒子全体の平均気泡径をより小さくするとともに、発泡粒子の内部における気泡径と表層部における気泡径との差をより小さくすることができる。そして、かかる発泡粒子を型内成形することにより、所望の物性を備えた発泡粒子成形体をより容易に得ることができる。
 前述した作用効果をより確実に奏する観点からは、前記一段発泡工程において、嵩倍率(I)が25倍以上38倍以下の前記一段発泡粒子を作製し、前記二段発泡工程において、前記ポリプロピレン系樹脂発泡粒子の嵩倍率(I)に対する前記嵩倍率(II)の比(II)/(I)の値が1.8以上3.0以下となるように前記一段発泡粒子を発泡させて嵩倍率(II)が55倍以上90倍以下の発泡粒子を得ることが好ましい。
 本明細書において、一段発泡工程において使用する容器を「密閉容器」、二段発泡工程において使用する容器を「耐圧容器」と称したが、いずれも密閉可能であり、圧力を付与できる容器であればよく、同一の容器を使用してもよい。
 前記発泡粒子成形体及び発泡粒子の実施例を説明する。なお、本発明に係る発泡粒子成形体、発泡粒子及びその製造方法の態様は、以下の実施例に限定されるものではなく、本発明の趣旨を損なわない範囲で適宜構成を変更することができる。
(樹脂)
 本例において使用した樹脂は、表1に示した通りである。なお、表1の「材質」欄における記号「r-PP」はポリプロピレンランダム共重合体、「PP」はポリプロピレン、「LLDPE」は直鎖状低密度ポリエチレンの略である。
 表1に示した樹脂の物性は、以下のようにして測定される。
<曲げ弾性率>
 まず、各樹脂を230℃でヒートプレスすることにより厚み4mmのシートを作製した。このシートから長さ80mm×幅10mm×厚さ4mmの寸法を有する試験片を切り出した。この試験片を用い、JIS K 7171:2008に準拠して樹脂の曲げ弾性率を測定した。なお、圧子の半径R1及び支持台の半径R2は共に5mm、支点間距離は64mmとし、試験速度は2mm/minとした。
<融点>
 樹脂の融点は、JIS K7121:1987に記載されている熱流束示差走査熱量測定法に基づいて測定した。まず、試験片を温度23℃、相対湿度50%RHの環境下に1日以上静置して状態調節した。状態調節後の試験片を10℃/分の昇温速度で23℃から200℃まで昇温した後に、10℃/分の冷却速度で23℃まで降温し、再度10℃/分の昇温速度で23℃から200℃まで昇温した。そして、2回目の昇温時に得られるDSC曲線により定まる吸熱ピークの頂点温度を樹脂の融点とした。なお、上記2回目のDSC曲線に複数の吸熱ピークが表れる場合は、最も面積の大きな吸熱ピークの頂点温度を融点とした。DSC曲線の取得には、熱流束示差走査熱量測定装置(TAインスツルメント社製「DSC Q1000」)を用いた。
<メルトフローレイト>
 樹脂のMFRは、JIS K7210-1:2014に準拠して測定した。ポリプロピレン系樹脂のMFRは温度230℃、荷重2.16kgの条件で測定された値であり、ポリエチレン系樹脂のMFRは温度190℃、荷重2.16kgの条件で測定された値である。
<多分散度Mw/Mn>
 芯層に含まれるポリプロピレン系樹脂の多分散度Mw/Mnは、以下の方法により測定した。まず、ポリスチレンを標準物質としたゲルパーミエーションクロマトグラフィ(GPC)法により樹脂のクロマトグラムを取得した。
 クロマトグラムの取得にはWATERS社製の150Cを使用した。測定試料としての樹脂を1,2,4-トリクロロベンゼンに溶解させて濃度2.2mg/mlの試料溶液を調製した後、TSKgel(登録商標) GMHHR-H(S)HTをカラムとし、溶離液:1,2,4-トリクロロベンゼン、流量:1.0ml/分、温度:145℃という分離条件で、ゲルパーミエーションクロマトグラフィ(GPC)により測定試料を分子量の違いによって分離し、クロマトグラムを得た。
 そして、標準ポリスチレンを用いて作成した較正曲線によって得られたクロマトグラムにおける保持時間を分子量に換算し、微分分子量分布曲線を得た。この微分分子量分布曲線から樹脂の数平均分子量Mnおよび重量平均分子量Mwを算出し、次いで多分散度Mw/Mnを算出した。ポリプロピレン系樹脂の多分散度Mw/Mnは表1に示す通りであった。なお、本例においては、被覆層として使用した樹脂の多分散度Mw/Mnの測定は行っていない。そのため、PP3、PE1及びPE2の多分散度Mw/Mnの欄には、測定を行っていないことを示す記号「-」を記載した。
(発泡粒子の作製)
<造粒工程>
 表2に示す発泡粒子A~発泡粒子Gの作製に当たっては、内径65mmの芯層形成用押出機および内径30mmの被覆層形成用押出機が併設され、多数本の複層ストランド状の共押出が可能なダイが出口側に付設された共押出機を使用してストランドを作製した。芯層形成用押出機には、表2の「芯層」欄に示した樹脂を供給した。また、被覆層形成用押出機には、表2の「被覆層」欄に示した樹脂を供給した。
 その後、各押出機から、芯層と被覆層との質量比が表2に示す値となるように溶融混練物を共押出した。各押出機から押し出された溶融混練物は、ダイ内で合流し、押出機先端に取り付けた口金の細孔から、芯層の外周が被覆層により覆われた複層のストランド状に押し出される。この共押出物を水冷することにより、複層のストランドを得た。
 得られたストランドを、ペレタイザーを用いて表2に示す質量となるように切断した。これにより、未発泡状態の芯層と、芯層の側周面を覆う被覆層とを備えた樹脂粒子を得た。
 表2に示す発泡粒子Hの作製に当たっては、共押出機に替えて、単一の押出機を使用してストランドを作製した以外は、前述の方法と同様にして樹脂粒子を得た。
<一段発泡工程>
 内容積3m3の密閉容器内に、400kgの樹脂粒子と、分散媒としての水2000Lと、分散剤としてのカオリン7000gと、界面活性剤と、硫酸アルミニウム150gとを封入した。界面活性剤としては、具体的には、アルキルベンゼンスルホン酸ナトリウム(第一工業製薬株式会社製「ネオゲンS-20F」)を使用した。また、界面活性剤は、有効成分量が800gとなるように添加した。
 次いで、密閉容器内に、発泡剤としての二酸化炭素を、容器内の圧力が表2の「密閉容器内の圧力」の欄に示した値(ゲージ圧)となるよう供給して容器内を加圧した。この状態で容器内を攪拌しながら加熱し、表2に示す発泡温度まで容器内を昇温させた。この発泡温度を10分間保持した後、二酸化炭素で加圧することにより密閉容器内の圧力を表2の「密閉容器内の圧力」欄に示した値(ゲージ圧)に維持した状態で密閉容器を開放し、内容物を大気圧下に放出することにより樹脂粒子を発泡させた。以上により、発泡状態の芯層と、芯層を覆う被覆層とを備えた複層構造の一段発泡粒子を得た。なお、密閉容器から放出した直後の一段発泡粒子は水分を含んでいるため、23℃の温度で24時間養生させた。
<二段発泡工程>
 耐圧容器内に一段発泡粒子を充填した後、耐圧容器内に無機系ガスとしての空気を注入することにより、無機系ガスを気泡内に含浸させた。次いで、耐圧容器から取り出した一段発泡粒子にスチームと空気とを供給し、大気圧下で加熱した。耐圧容器から取り出した一段発泡粒子における気泡内の圧力(ゲージ圧)は表2に示す値であった。また、加熱時に供給した空気の圧力(ゲージ圧)は0.20MPa(G)とし、スチームの圧力(ゲージ圧)は表2に示す通りとした。以上により、一段発泡粒子の嵩倍率を上昇させ、発泡粒子(二段発泡粒子)を得た。
(一段発泡粒子及び発泡粒子)
 表2に示した一段発泡粒子及び発泡粒子の物性は、以下のようにして測定される。
<発泡直後の一段発泡粒子の嵩密度ρ(A)>
 一段発泡工程において、密閉容器から放出した直後の一段発泡粒子を採取し、表面に付着した水分を拭き取った。この一段発泡粒子を、容積1Lのメスフラスコ内に自然に堆積するようにして標線まで充填した。そして、メスフラスコ内の一段発泡粒子の質量[g/L]を測定し、単位を換算することにより発泡直後の一段発泡粒子の嵩密度ρ(A)[kg/m3]とした。
<養生後の一段発泡粒子の嵩密度ρ(B)>
 一段発泡工程において、密閉容器から放出し、次いで養生した後の一段発泡粒子を用いた以外は、前述の方法と同様にしてメスフラスコ内に一段発泡粒子を充填した。そして、メスフラスコ内の一段発泡粒子の質量[g/L]を測定し、単位を換算することにより養生後の一段発泡粒子の嵩密度ρ(B)[kg/m3]とした。
<一段発泡粒子の嵩倍率(I)>
 芯層に含まれるポリプロピレン系樹脂の密度を養生後の一段発泡粒子の嵩密度ρ(B)で除した値を一段発泡粒子の嵩倍率(I)とした。
<発泡粒子の嵩密度ρ(C)>
 一段発泡粒子に替えて発泡粒子を用いた以外は、前述した養生後の一段発泡粒子の嵩密度の測定方法と同様にしてメスフラスコ内に発泡粒子を充填した。そして、メスフラスコ内の発泡粒子の質量[g/L]を測定し、単位を換算することにより発泡粒子の嵩密度ρ(C)[kg/m3]とした。
<発泡粒子の嵩倍率(II)>
 芯層に含まれるポリプロピレン系樹脂の密度を発泡粒子の嵩密度ρ(C)で除した値を発泡粒子の嵩倍率(II)とした。
<平均粒径及び粒径の変動係数>
 約200個の発泡粒子を用いて、粒度分布測定装置(日機装株式会社製「ミリトラック JPA」)により発泡粒子の体積基準における粒度分布を測定した。得られた粒度分布におけるメジアン径、つまり、累積50%粒径を発泡粒子の平均粒径とした。また、発泡粒子の平均粒径を、前述した粒度分布に基づいて算出した粒径の標準偏差で除した値を粒径の変動係数とした。
<独立気泡率>
 独立気泡率の値は、以下の方法により求めた値である。まず、ASTM-D2856-70に記載されている手順Cに準じて、発泡粒子の真の体積(発泡粒子を構成する樹脂の容積と、発泡粒子内の独立気泡部分の気泡全容積との和)の値Vxを測定した。この真の体積Vxの測定には、東芝・ベックマン(株)製の空気比較式比重計「930」を用いた。次いで、下記の式(1)により独立気泡率(単位:%)を算出し、5個の発泡粒子の測定結果の算術平均値を求めた。
   独立気泡率=(Vx-W/ρ)×100/(Va-W/ρ) ・・・(1)
 なお、前記式(1)に用いた記号の意味は以下の通りである。
 Vx:上記方法で測定される発泡粒子の真の体積(単位:cm
 Va:外形寸法に基づいて算出した発泡粒子の見掛けの体積(単位:cm
 W:測定に用いた発泡粒子の質量(単位:g)
 ρ:発泡粒子を構成する樹脂の密度(単位:g/cm
<高温ピーク熱量>
 前述した方法により発泡粒子の高温ピーク熱量を測定した。即ち、約3mgの発泡粒子を用いて熱流束DSCを行い、得られたDSC曲線における高温ピークのピーク面積を発泡粒子の高温ピーク熱量とした。熱流束DSCにおける測定開始温度は23℃、測定終了温度は200℃、昇温速度は10℃/分とした。DSC曲線の取得には、熱流束示差走査熱量測定装置(TAインスツルメント社製「DSC Q1000」)を用いた。
<発泡粒子全体の平均気泡径D>
 発泡粒子を概ね2等分となるように分割した後、走査型電子顕微鏡を用い、分割により露出した切断面が視野内に全て納まるように拡大写真を取得した。拡大写真の一例として、図2に発泡粒子A、図3に発泡粒子E、図4に発泡粒子Hの切断面の拡大写真を示す。発泡粒子の切断面1に現れた発泡粒子の最表面2、つまり、切断面1の輪郭は、概ね円形を呈している。また、発泡粒子の切断面1には、樹脂膜3によって区画された多数の気泡4が現れている。
 これらの拡大写真上に、発泡粒子の最表面2から中央部を通って反対側の最表面2まで、4本の線分5を隣り合う線分5同士のなす角度が等しくなるように引いた。すなわち、隣り合う線分5同士のなす角度が45°となるように4本の線分5を引いた。このようにして得られた4本の線分5の長さの合計を、線分5と交差する気泡4の総数で除することにより、個々の発泡粒子における発泡粒子全体の気泡径を算出した。以上の操作を無作為に抽出した10個の発泡粒子に対して行い、それぞれの発泡粒子について得られた発泡粒子全体の気泡径を相加平均した値を、発泡粒子の平均気泡径Dとした。
<発泡粒子の表層部の平均気泡径Ds>
 まず、発泡粒子を概ね2等分となるように分割したのち、走査型電子顕微鏡を用い、分割により露出した切断面の拡大写真を取得した。得られた拡大写真における切断面1に現れた発泡粒子の最表面2の周長、つまり、切断面1の輪郭の長さを、最表面2に接する気泡の数で除することにより、個々の発泡粒子における表層部の気泡径を算出した。この操作を無作為に抽出した10個の発泡粒子に対して行い、それぞれの発泡粒子について得られた表層部の気泡径を相加平均した値を、発泡粒子の表層部における平均気泡径Dsとした。
(発泡粒子成形体の作製)
 本例では、以下の方法により縦300mm×横250mm×厚み60mmの寸法を有する平板状の発泡粒子成形体を作製した。まず、平板状の発泡粒子成形体を形成可能な金型を準備し、金型のキャビティに、クラッキング充填法により発泡粒子を充填した。クラッキング充填法は、発泡粒子を金型内に充填する前に、所定のクラッキング隙間分だけ成形空間を広げておき、充填後に金型を閉じて成形空間を狭くすることで発泡粒子を機械的に圧縮する方法である。
 本例においては、クラッキング隙間の容積が、得ようとする発泡粒子成形体の体積の10%となるように、発泡粒子成形体の厚み方向に成形空間を6mm広げた状態で発泡粒子を充填した。そして、金型を閉じた後、成形空間を発泡粒子成形体の厚み方向に狭くし、所望の寸法とした。この状態で、金型内に表3及び表4の「成形圧」欄に示すゲージ圧のスチームを供給し、表3及び表4の「本加熱時間」欄に記載された時間本加熱を行うことにより型内成形した。なお、型内成形中の金型の受ける圧力(ゲージ圧)は、表3及び表4の「面圧」欄に示す値であった。以上により、平板状の発泡粒子成形体(実施例1~実施例3、比較例1~比較例4、参考例1)を得た。得られた発泡粒子成形体を30℃、12時間静置し、静置後の発泡粒子成形体を用いて以下の物性を測定した。
(発泡粒子成形体の物性)
 表3及び表4に示した発泡粒子成形体の物性は、以下のようにして測定される。
<成形体密度ρ(D)>
 発泡粒子成形体の中心部付近から、縦50mm×横50mm×厚み10mmの表層部を有さない測定試料を採取した。この測定試料の質量を、寸法に基づいて算出される測定試料の体積で除した値を発泡粒子成形体の成形体密度ρ(D)[kg/m3]とした。
<成形体倍率X>
 芯層に含まれるポリプロピレン系樹脂の密度を発泡粒子成形体の成形体密度ρ(D)で除した値を成形体倍率X[倍]とした。
<表層部の見掛け密度ρ(E)>
 発泡粒子成形体をスキン面からの厚み方向における深さが3mmとなる面で切断し、発泡粒子成形体の表層部を切り出した。この表層部を縦50mm×横50mmの正方形に切り分け、縦50mm、横50mm、厚み3mmの寸法を有し、厚み方向における一方の面がスキン面である小片を採取した。小片を温度23℃、相対湿度50%RHの環境下に1日静置した後、小片の質量を測定した。そして、小片の質量を、小片の寸法に基づいて算出した体積で除した値を表層部の見掛け密度ρ(E)[kg/m3]とした。
<発泡粒子成形体の内部の平均気泡径di
 まず、発泡粒子成形体の中心部付近から、一辺が10mmの立方体状を呈し、スキン面を有さない小片を採取した。走査型電子顕微鏡を用いて小片を観察し、発泡粒子成形体の厚み方向に平行な表面の拡大写真を取得した。得られた拡大写真上に厚み方向の中央を通る線分を引き、線分と交差する気泡の数を数えた。そして、前述した線分の長さを線分と交差する気泡の数で除した値を、発泡粒子成形体の内部における平均気泡径di[μm]とした。
<発泡粒子成形体の表層部の平均気泡径ds
 まず、発泡粒子成形体の縦300mm×横250mmの面上に、縦方向に平行であり、成形体の横方向を2等分する直線L3を引いた。次いで、この直線L3を4等分するように横方向に平行な3本の直線L4を引いた。そして、直線L3と直線L4との3か所の交点が面の中央となるようにして、いずれか1の面がスキン面であり、一辺3mmの立方体状を呈する3個の小片を採取した。
 走査型電子顕微鏡を用いて各小片を観察し、発泡粒子成形体の厚み方向に平行な表面の拡大写真を取得した。得られた拡大写真上に、スキン面からの深さ(つまり、厚み方向における距離)が50μmとなるようにしてスキン面と平行な線分を引き、線分と交差する気泡の数を数えた。そして、前述した線分の長さを線分と交差する気泡の数で除した値を、各小片の表層部における気泡径とし、3個の小片における表層部における気泡径の算術平均値を発泡粒子成形体の表層部における平均気泡径dsとした。
<内部融着率>
 発泡粒子成形体から厚み方向の両側に存在する表層部を除去した後、発泡粒子成形体を長手方向に概ね等分となるように破断させた。破断面に露出した発泡粒子のうち無作為に選択した100個以上の発泡粒子を目視により観察し、粒子内部で破断した発泡粒子(つまり、材料破壊した発泡粒子)であるか、発泡粒子同士の界面で破断した発泡粒子であるかを判別した。そして、観察した発泡粒子の総数に対する粒子内部で破断した発泡粒子の数の比率を百分率で表した値を、発泡粒子成形体の内部融着率として表3及び表4に示した。
 内部融着率の評価においては、内部融着率が90%以上である場合を融着性に優れているため合格とし、90%未満である場合を融着性が不十分であるため不合格とした。
<二次発泡性>
 発泡粒子成形体の厚み方向における一方のスキン面の中央部に100mm×100mmの正方形を描き、次いでこの正方形のいずれか1の角から対角線を引いた。そして、対角線上に存在するボイド、つまり、発泡粒子同士の間に形成される隙間のうち、1mm×1mm以上の大きさを有するボイドの数を数えた。表3及び表4の「二次発泡性」欄には、ボイドの数が2個以下の場合には記号「A」、3個以上の場合には記号「B」を記載した。二次発泡性の評価においては、ボイドの数が2個以下である記号「A」の場合を型内成形時に発泡粒子が十分に二次発泡したため合格とし、3個以上である記号「B」の場合を二次発泡性が不十分であるため不合格とした。
<回復性>
 発泡粒子成形体を厚み方向から見た平面視における4か所の角からスキン面の中央に向かって10mm離れた位置で発泡粒子成形体の厚みを測定した。そして、これらの厚みのうち、最も大きい値を発泡粒子成形体の角部の厚みとした。これとは別に、発泡粒子成形体を厚み方向から見た平面視における、縦方向及び横方向のいずれにおいても中央となる位置で発泡粒子成形体の厚みを測定し、この値を発泡粒子成形体の中央部の厚みとした。そして、発泡粒子成形体の角部の厚みに対する中央部の厚みの比(%)を算出した。
 表3及び表4の「回復性」欄には、角部の厚みに対する中央部の厚みの比が95%以上の場合に記号「A」、95%未満の場合に記号「B」を記載した。回復性の評価においては、角部の厚みに対する中央部の厚みの比が95%以上である記号「A」の場合を成形後の中央部の収縮量が小さく回復性に優れているため合格とし、95%未満である記号「B」の場合を成形後の中央部の収縮量が大きく回復性に劣るため不合格とした。
<表面硬度>
 発泡粒子成形体から採取した厚み60mmの直方体状の試験片を温度23℃、相対湿度50%RHの環境下に1日以上静置した。この試験片のスキン面に、JIS K7312:1996に準拠したタイプCデュロメータ(アスカーゴム硬度計C型)を接触させ、接触した時点から3秒経過後の目盛りの値を記録した。この操作を、スキン面上で無作為に選択した5点について行い、得られた目盛りの値の相加平均を発泡粒子成形体の表面硬度とした。
<軽量性の評価>
 軽量性の評価においては、成形体倍率Xが55倍以上の場合を単位体積当たりの質量が小さく、軽量性に優れているため合格と判定し、「評価」欄に記号「Good」を記載した。また、成形体倍率Xが55倍未満の場合を単位体積当たりの質量が大きく、軽量性に劣るため不合格と判定し、「評価」欄に記号「Poor」を記載した。
<5%圧縮応力σ5及び50%圧縮応力σ50
 JIS K6767:1999の規定に従って5%圧縮応力σ5及び50%圧縮応力σ50を測定した。まず、発泡粒子成形体の中心部付近から縦50mm、横50mm、厚み25mmのスキン面を有さない試験片を採取した。この試験片を温度23℃、相対湿度50%RHの環境下に24時間静置して状態調節を行い、状態調節後の試験片を用いて10mm/分の圧縮速度で圧縮試験を行った。なお、圧縮試験には、万能試験機(株式会社エー・アンド・デイ製「テンシロン RTF-1350」)を使用した。得られた圧縮応力-ひずみ曲線における、ひずみが5%の時の圧縮応力を5%圧縮応力σ5とし、ひずみが50%の時の圧縮応力を50%圧縮応力σ50とした。
<保護性の評価>
 保護性の評価においては、5%圧縮応力σ5の値が25kPa以下である場合を保護性に優れているため合格と判定し、「評価」欄に記号「Good」を記載した。また、σ5の値が25kPaよりも大きい場合を保護性に劣るため不合格と判定し、「評価」欄に記号「Poor」を記載した。
<質感>
 質感の評価は、官能試験により行った。具体的には、当業者10人をパネルとし、目隠しをした状態で発泡粒子成形体のスキン面を手で触れることにより、スキン面がしっとりした質感を有しているか否かを評価した。そして、パネルを構成する10人のうち8人以上がしっとりした触感を有していると評価した場合には、発泡粒子成形体のスキン面が被包装物に対して優しい質感を有していると判定し、「評価」欄に記号「Good」を記載した。また、パネルを構成する10人のうち2人以下がしっとりした触感を有していると評価した場合には、発泡粒子成形体のスキン面が被包装物に対して優しい質感を有していないと判定し、「評価」欄に記号「Poor」を記載した。なお、質感の官能試験においては、温度23℃、相対湿度50%RHの環境下に24時間静置後の発泡粒子成形体を使用した。
<剛性の評価>
 剛性の評価においては、50%圧縮応力σ50と成形体倍率Xとの積X・σ50の値が6500以上の場合を、剛性と軽量性とのバランスに優れているため合格と判定し、「評価」欄に記号「Good」を記載した。また、50%圧縮応力σ50と成形体倍率Xとの積X・σ50の値が6500未満の場合を、剛性と軽量性とのバランスに劣るため不合格と判定し、「評価」欄に記号「Poor」を記載した。
(成形可能範囲の評価)
 スチーム圧を0.18~0.40MPa(G)の間で0.02MPa(G)間隔で変化させた以外は前述した発泡粒子成形体の作製方法と同様にして発泡粒子成形体を成形した。得られた成形体を用い、前述した方法と同様にして内部融着率、二次発泡性及び回復性の評価を行った。そして、3項目すべてにおいて合格となったスチーム圧を、発泡粒子成形体を成形することが可能と判断した。表2の「成形可能範囲」欄には、発泡粒子成形体を成形可能なスチーム圧の範囲を示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3に示したように、実施例1~4の発泡粒子成形体は、成形体倍率X、50%圧縮応力σ50と成形体倍率Xとの積X・σ50の値及び5%圧縮応力σ5が前記特定の範囲内にある。そのため、これらの発泡粒子成形体は、優れた剛性と保護性とを備え、単位体積当たりの質量を低減することができる。これらの発泡粒子成形体のスキン面は、ポリエチレン系樹脂発泡粒子成形体のような、被包装物に対して優しい質感を有している。また、発泡粒子成形体のスキン面における表面硬度の値が小さく、保護性に優れている。
 表4に示したように、比較例1の発泡粒子成形体は、実施例1~4に比べて嵩倍率(II)の低い発泡粒子Dを用いて型内成形されている。そのため、比較例1の発泡粒子成形体は、実施例1~4に比べて成形体倍率Xが低く、軽量性及び被包装物に対する保護性に劣っている。
 比較例2の発泡粒子成形体は、芯層と被覆層との両方がポリプロピレン系樹脂から構成された発泡粒子Eを用いて型内成形されている。そのため、比較例2の発泡粒子成形体は、実施例1~4に比べて5%圧縮応力σ5が大きくなり、保護性に劣っている。また、比較例2の発泡粒子成形体は、質感に劣っている。
 比較例2の発泡粒子成形体は、実施例1~4、比較例3~4及び参考例1に比べて成形体倍率Xが高いにもかかわらず、5%圧縮応力σ5が特に大きかった。これは、被覆層がポリプロピレン系樹脂で構成されていることに加え、発泡粒子成形体の内部の平均気泡径diが大きく、前記平均気泡径diに対する前記発泡粒子成形体の表層部の平均気泡径ds[μm]の比ds/diが大きいことが原因と考えられる。比較例2の発泡粒子成形体がこのような気泡構造となる理由は、発泡粒子Eの粒子全体の平均気泡径Dが大きく、前記平均気泡径Dに対する表層部の平均気泡径Dsの比Ds/Dが小さいため、表層部に位置する気泡が、型内成形の際に内部の気泡の二次発泡により押しつぶされて扁平化したためであると考えられる。
 比較例3の発泡粒子成形体は、実施例1~4に比べて曲げ弾性率Msの高いポリエチレン系樹脂からなる被覆層を備えた発泡粒子Fを用いて型内成形されている。そのため、比較例3の発泡粒子成形体は、実施例1~4に比べて5%圧縮応力σ5が大きくなり、保護性に劣っている。また、比較例3の発泡粒子成形体は、質感に劣っている。
 比較例4の発泡粒子成形体は、実施例1~4に比べて被覆層の比率が小さい発泡粒子Gを用いて型内成形されているため、被覆層による効果を十分に得ることができない。そのため、比較例4の発泡粒子成形体は、実施例1~4に比べて5%圧縮応力σ5が大きくなり、保護性に劣っている。また、比較例4の発泡粒子成形体は、質感に劣っている。
 参考例1は、ポリエチレン系樹脂発泡粒子Hを型内成形してなる発泡粒子成形体である。参考例1の発泡粒子成形体は、5%圧縮応力σ5の値が小さく、保護性に優れる反面、50%圧縮応力σ50[kPa]と成形体倍率Xとの積X・σ50の値が小さく、用途によっては包装材や緩衝材に要求される剛性を満足できない。

Claims (15)

  1.  ポリプロピレン系樹脂が含まれている発泡状態の芯層と、ポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層と、を有するポリプロピレン系樹脂発泡粒子を型内成形してなるポリプロピレン系樹脂発泡粒子成形体であって、
     前記ポリプロピレン系樹脂発泡粒子成形体の成形体倍率X[倍]が55倍以上90倍以下であり、
     前記ポリプロピレン系樹脂発泡粒子成形体の50%圧縮応力σ50[kPa]と前記成形体倍率Xとの積X・σ50の値が6500以上であり、
     前記ポリプロピレン系樹脂発泡粒子成形体の5%圧縮応力σ5が5kPa以上25kPa以下である、ポリプロピレン系樹脂発泡粒子成形体。
  2.  前記50%圧縮応力σ50に対する前記ポリプロピレン系樹脂発泡粒子成形体の5%圧縮応力σ5の比σ5/σ50の値が0.20以下である、請求項1に記載のポリプロピレン系樹脂発泡粒子成形体。
  3.  前記被覆層に含まれているポリエチレン系樹脂の曲げ弾性率Msが250MPa以下である、請求項1または2に記載のポリプロピレン系樹脂発泡粒子成形体。
  4.  前記ポリプロピレン系樹脂発泡粒子成形体の内部の平均気泡径diが80μm以上170μm以下であるとともに、前記平均気泡径diに対する前記ポリプロピレン系樹脂発泡粒子成形体の表層部の平均気泡径ds[μm]の比ds/diが0.8以上1.2以下である、請求項1~3のいずれか1項に記載のポリプロピレン系樹脂発泡粒子成形体。
  5.  ポリプロピレン系樹脂が含まれている発泡状態の芯層と、
     ポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層と、を有し、
     嵩倍率が55倍以上90倍以下であり、
     前記芯層と前記被覆層との質量比が、前記芯層:前記被覆層=95:5~88:12であり、
     前記芯層に含まれているポリプロピレン系樹脂の曲げ弾性率Mcが800MPa以上1200MPa以下であり、
     前記被覆層に含まれているポリエチレン系樹脂の曲げ弾性率Msが250MPa以下である、ポリプロピレン系樹脂発泡粒子。
  6.  前記ポリプロピレン系樹脂発泡粒子全体の平均気泡径Dが80μm以上170μm以下であるとともに、前記ポリプロピレン系樹脂発泡粒子全体の平均気泡径Dに対する前記ポリプロピレン系樹脂発泡粒子の表層部の平均気泡径Ds[μm]の比Ds/Dが0.80以上1.20以下である、請求項5に記載のポリプロピレン系樹脂発泡粒子。
  7.  前記ポリプロピレン系樹脂発泡粒子の独立気泡率が85%以上である、請求項5または6に記載のポリプロピレン系樹脂発泡粒子。
  8.  前記ポリプロピレン系樹脂発泡粒子の平均粒径が2mm以上8mm以下であり、粒径の変動係数が3%以上15%以下である、請求項5~7のいずれか1項に記載のポリプロピレン系樹脂発泡粒子。
  9.  前記芯層に含まれているポリプロピレン系樹脂の曲げ弾性率Mcに対する前記被覆層に含まれているポリエチレン系樹脂の曲げ弾性率Msの比Ms/Mcが0.05以上0.20以下である、請求項5~8のいずれか1項に記載のポリプロピレン系樹脂発泡粒子。
  10.  前記被覆層に含まれているポリエチレン系樹脂の曲げ弾性率Msが200MPa以下であり、かつ、融点が120℃以下である、請求項5~9のいずれか1項に記載のポリプロピレン系樹脂発泡粒子。
  11.  前記被覆層に含まれているポリエチレン系樹脂の温度190℃、荷重2.16kgにおけるメルトフローレイトが6g/10分以上18g/10分以下である、請求項5~10のいずれか1項に記載のポリプロピレン系樹脂発泡粒子。
  12.  前記芯層に含まれているポリプロピレン系樹脂の融点が135℃以上150℃以下である、請求項5~11のいずれか1項に記載のポリプロピレン系樹脂発泡粒子。
  13.  曲げ弾性率Mcが800MPa以上1200MPa以上のポリプロピレン系樹脂が含まれている未発泡状態の芯層と、曲げ弾性率Msが250MPa以下のポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層と、を備え、前記芯層と前記被覆層との質量比が、芯層:被覆層=95:5~88:12であるポリプロピレン系樹脂粒子を造粒する造粒工程と、
     密閉容器中において分散媒に分散させた前記ポリプロピレン系樹脂粒子に無機系物理発泡剤を含浸させ、次いで、前記ポリプロピレン系樹脂粒子と前記分散媒とを前記密閉容器から前記密閉容器内よりも低圧下に放出することにより、前記ポリプロピレン系樹脂が含まれている発泡状態の芯層と、前記ポリエチレン系樹脂が含まれており前記芯層を被覆する被覆層とを備えた一段発泡粒子を得る一段発泡工程と、
     耐圧容器内において前記一段発泡粒子に無機系ガスを含浸させることにより前記一段発泡粒子の気泡内の圧力を上昇させ、次いで、前記耐圧容器から取り出した前記一段発泡粒子を前記気泡内の圧力よりも低圧下で加熱することにより、前記一段発泡粒子をさらに発泡させて嵩倍率(II)が55倍以上90倍以下のポリプロピレン系樹脂発泡粒子を得る二段発泡工程と、を有する、ポリプロピレン系樹脂発泡粒子の製造方法。
  14.  前記一段発泡工程において、前記ポリプロピレン系樹脂粒子に前記無機系物理発泡剤としての二酸化炭素を含浸させる、請求項13に記載のポリプロピレン系樹脂発泡粒子の製造方法。
  15.  前記一段発泡工程において、嵩倍率(I)が25倍以上38倍以下の前記一段発泡粒子を作製し、前記二段発泡工程において、前記ポリプロピレン系樹脂発泡粒子の嵩倍率(I)に対する前記嵩倍率(II)の比(II)/(I)の値が1.8以上3.0以下となるように前記一段発泡粒子を発泡させる、請求項13または14に記載のポリプロピレン系樹脂発泡粒子の製造方法。
PCT/JP2021/005217 2020-03-11 2021-02-12 ポリプロピレン系樹脂発泡粒子成形体、ポリプロピレン系樹脂発泡粒子及びその製造方法 WO2021182008A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180009566.9A CN114981347B (zh) 2020-03-11 2021-02-12 聚丙烯系树脂发泡颗粒成形体、聚丙烯系树脂发泡颗粒及其制造方法
EP21768157.6A EP4098686A4 (en) 2020-03-11 2021-02-12 POLYPROPYLENE-BASED RESIN FOAM, POLYPROPYLENE-BASED FOAM PARTICLES AND PROCESS FOR THEIR PRODUCTION
US17/905,890 US11904579B2 (en) 2020-03-11 2021-02-12 Molded article of polypropylene-based resin foamed particle molded body, polypropylene-based resin foamed particle, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-041447 2020-03-11
JP2020041447A JP7014979B2 (ja) 2020-03-11 2020-03-11 ポリプロピレン系樹脂発泡粒子成形体、ポリプロピレン系樹脂発泡粒子及びその製造方法

Publications (1)

Publication Number Publication Date
WO2021182008A1 true WO2021182008A1 (ja) 2021-09-16

Family

ID=77672237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005217 WO2021182008A1 (ja) 2020-03-11 2021-02-12 ポリプロピレン系樹脂発泡粒子成形体、ポリプロピレン系樹脂発泡粒子及びその製造方法

Country Status (5)

Country Link
US (1) US11904579B2 (ja)
EP (1) EP4098686A4 (ja)
JP (1) JP7014979B2 (ja)
CN (1) CN114981347B (ja)
WO (1) WO2021182008A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7329639B1 (ja) * 2022-02-07 2023-08-18 株式会社ジェイエスピー ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂発泡粒子の製造方法及び物流用緩衝材

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201361A (ja) 2001-11-01 2003-07-18 Jsp Corp ポリプロピレン系樹脂発泡粒子の型内発泡成形体の製造方法
JP2004115785A (ja) * 2002-09-02 2004-04-15 Jsp Corp ポリプロピレン系樹脂発泡粒子およびこれを用いた型内成形体
JP2011016914A (ja) 2009-07-08 2011-01-27 Jsp Corp ポリプロピレン系樹脂発泡粒子および該発泡粒子からなる発泡粒子成形体
JP2012126816A (ja) * 2010-12-15 2012-07-05 Jsp Corp ポリオレフィン系樹脂発泡粒子成形体の製造方法、及びポリオレフィン系樹脂発泡粒子成形体
JP2015137061A (ja) * 2014-01-24 2015-07-30 株式会社ジェイエスピー ポリオレフィン系樹脂発泡粒子成形体製車両用内装材
WO2016060162A1 (ja) * 2014-10-15 2016-04-21 株式会社カネカ ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂型内発泡成形体およびその製造方法
WO2016111017A1 (ja) * 2015-01-09 2016-07-14 株式会社ジェイエスピー プロピレン系樹脂発泡粒子及び発泡粒子成形体
JP2017019980A (ja) * 2015-07-15 2017-01-26 株式会社ジェイエスピー プロピレン系樹脂発泡粒子及び発泡粒子成形体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090169895A1 (en) * 2007-12-27 2009-07-02 Jsp Corporation Foamed polyolefin resin beads
JP6568801B2 (ja) 2013-12-27 2019-08-28 株式会社カネカ ポリオレフィン系樹脂発泡粒子およびポリオレフィン系樹脂型内発泡成形体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201361A (ja) 2001-11-01 2003-07-18 Jsp Corp ポリプロピレン系樹脂発泡粒子の型内発泡成形体の製造方法
JP2004115785A (ja) * 2002-09-02 2004-04-15 Jsp Corp ポリプロピレン系樹脂発泡粒子およびこれを用いた型内成形体
JP2011016914A (ja) 2009-07-08 2011-01-27 Jsp Corp ポリプロピレン系樹脂発泡粒子および該発泡粒子からなる発泡粒子成形体
JP2012126816A (ja) * 2010-12-15 2012-07-05 Jsp Corp ポリオレフィン系樹脂発泡粒子成形体の製造方法、及びポリオレフィン系樹脂発泡粒子成形体
JP2015137061A (ja) * 2014-01-24 2015-07-30 株式会社ジェイエスピー ポリオレフィン系樹脂発泡粒子成形体製車両用内装材
WO2016060162A1 (ja) * 2014-10-15 2016-04-21 株式会社カネカ ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂型内発泡成形体およびその製造方法
WO2016111017A1 (ja) * 2015-01-09 2016-07-14 株式会社ジェイエスピー プロピレン系樹脂発泡粒子及び発泡粒子成形体
JP2017019980A (ja) * 2015-07-15 2017-01-26 株式会社ジェイエスピー プロピレン系樹脂発泡粒子及び発泡粒子成形体

Also Published As

Publication number Publication date
JP7014979B2 (ja) 2022-02-02
JP2021143238A (ja) 2021-09-24
EP4098686A4 (en) 2023-07-19
CN114981347B (zh) 2023-09-05
CN114981347A (zh) 2022-08-30
US20230119472A1 (en) 2023-04-20
US11904579B2 (en) 2024-02-20
EP4098686A1 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
EP3970959B1 (en) Thermoplastic elastomer foam particles and molded body of same
US10336880B2 (en) Propylene resin foam particles and foam particle molded article
WO2018066505A1 (ja) 発泡粒子成形体
WO2021182008A1 (ja) ポリプロピレン系樹脂発泡粒子成形体、ポリプロピレン系樹脂発泡粒子及びその製造方法
JP7116315B2 (ja) ポリエチレン系樹脂発泡粒子及びポリエチレン系樹脂発泡粒子成形体
JP6836866B2 (ja) 架橋発泡粒子とその成形体
JP7191117B2 (ja) 発泡粒子
EP4101628A1 (en) Polypropylene resin foam particles and polypropylene resin foam particle molded article
JP6836881B2 (ja) 発泡粒子及び発泡粒子成形体の製造方法
JP6898725B2 (ja) 発泡粒子成形体及び靴底用クッション
JP7369066B2 (ja) オレフィン系熱可塑性エラストマー発泡粒子、及びオレフィン系熱可塑性エラストマー発泡粒子成形体
WO2023153310A1 (ja) 結晶性熱可塑性樹脂発泡粒子、結晶性熱可塑性樹脂発泡粒子成形体及びその製造方法
CN113767139B (zh) 改性发泡颗粒以及发泡颗粒成形体
JP7329639B1 (ja) ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂発泡粒子の製造方法及び物流用緩衝材
WO2022270425A1 (ja) ポリプロピレン系樹脂発泡粒子成形体及びその製造方法
WO2022220258A1 (ja) 射出発泡成形体
JP2023118117A (ja) 結晶性熱可塑性樹脂発泡粒子成形体及びその製造方法
JP2023118116A (ja) 結晶性熱可塑性樹脂発泡粒子、結晶性熱可塑性樹脂発泡粒子成形体及びその製造方法
JP2023019516A (ja) ポリプロピレン系樹脂発泡粒子およびその製造方法
JP2022146483A (ja) 発泡粒子成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021768157

Country of ref document: EP

Effective date: 20220902

NENP Non-entry into the national phase

Ref country code: DE