WO2021181955A1 - 草本系バイオマスの前処理方法、糖化液の製造方法及び草本系バイオマス由来発酵生成物の製造方法 - Google Patents

草本系バイオマスの前処理方法、糖化液の製造方法及び草本系バイオマス由来発酵生成物の製造方法 Download PDF

Info

Publication number
WO2021181955A1
WO2021181955A1 PCT/JP2021/003923 JP2021003923W WO2021181955A1 WO 2021181955 A1 WO2021181955 A1 WO 2021181955A1 JP 2021003923 W JP2021003923 W JP 2021003923W WO 2021181955 A1 WO2021181955 A1 WO 2021181955A1
Authority
WO
WIPO (PCT)
Prior art keywords
herbaceous biomass
biomass
herbaceous
squeezing
catalyst
Prior art date
Application number
PCT/JP2021/003923
Other languages
English (en)
French (fr)
Inventor
肇太 土谷
吏 古賀
崇文 木内
Original Assignee
日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄エンジニアリング株式会社 filed Critical 日鉄エンジニアリング株式会社
Priority to BR112022016605A priority Critical patent/BR112022016605A2/pt
Publication of WO2021181955A1 publication Critical patent/WO2021181955A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B5/00Reducing the size of material from which sugar is to be extracted
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class

Definitions

  • the present invention relates to a method for pretreating herbaceous biomass, a method for producing a saccharified solution, and a method for producing a fermentation product derived from herbaceous biomass.
  • the present application claims priority based on Japanese Patent Application No. 2020-39876 filed in Japan on March 9, 2020, the contents of which are incorporated herein by reference.
  • Non-edible biomass includes cellulose, which is the most abundant on the earth, but most of it exists as lignocellulosic, which is a complex with aromatic polymers lignin and hemicellulose.
  • This lignocellulosic has a structure in which cellulose, hemicellulose, and lignin are tightly bound to each other, and it is not easy to decompose it into monosaccharides or oligosaccharides of pentacarbon sugar or hexacarbon sugar that can be used for fermentation.
  • a pretreatment process consisting of addition of a catalyst such as acid or alkali and steaming is required.
  • the purpose of the pretreatment step is to decompose polymers such as hemicellulose and lignin constituting lignocellulosic to improve the reactivity of cellulose in the posttreatment step.
  • screw-type continuous processing equipment is used for the pretreatment steaming equipment of paper manufacturing plants and ethanol plants that use lignocellulosic.
  • a plug screw in order to continuously input the raw material from the atmospheric pressure to the high pressure atmosphere while maintaining the high pressure atmosphere in the screw.
  • the plug screw is a device for continuously feeding raw materials while consolidating them, and is a device for sealing the internal pressure of the steaming device with the consolidated raw materials.
  • the raw material compacted by the plug screw is hydrolyzed in the steaming apparatus by appropriately adding a catalyst for hydrolysis.
  • Patent Document 1 a hydrolyzate is added to the stems and leaves of gramineous plants, juice is squeezed, the juice and solids are separated, and a catalyst composed of acid or alkali is added to the separated solids.
  • a method for producing a fermentation product derived from the foliage of a gramineous plant, which is pretreated for hydrolysis, is disclosed.
  • the decomposition strength can be increased by increasing the catalyst concentration and the treatment temperature, but under such conditions, the apparatus may be corroded and the treatment cost also increases. ..
  • the present invention has been made in view of the above circumstances, and uses a pretreatment method for herbaceous biomass having a good sugar recovery amount from herbaceous biomass while suppressing pretreatment costs, and the pretreatment method.
  • a method for producing a saccharified solution and a method for producing a herbaceous biomass-derived fermentation product.
  • the present invention includes the following aspects.
  • a press-fitting step of press-fitting and a hydrolysis step of hydrolyzing the herbaceous biomass after the press-fitting step are included in this order, after the juice squeezing step and before the catalyst addition step with respect to the dry mass of the herbaceous biomass.
  • the content of water in the herbaceous biomass is less than 100% by mass
  • the catalyst is acid or alkali
  • the herbaceous biomass is steamed for a time between 5 and 60 minutes before the squeezing step.
  • a pretreatment method for herbaceous biomass that does not include the process of heating.
  • Pretreatment method for system biomass is 3
  • the herbaceous biomass according to (1) or (2), wherein the herbaceous biomass in which the water content in the herbaceous biomass is more than 100% by mass with respect to the dry mass of the herbaceous biomass is the raw material. Pretreatment method.
  • the squeezing step is one of (4) to (6), which is a two-step squeezing step in which the squeezing is performed using a screw press and then the squeezing is performed using a plug screw.
  • the catalyst is one or more acids selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, or one or more alkalis selected from the group consisting of sodium hydroxide, potassium hydroxide and ammonia.
  • the amount of sugar recovered from the herbaceous biomass is good before the herbaceous biomass while suppressing the pretreatment cost by reducing the consumption of the catalyst as compared with the conventional method.
  • a processing method can be provided.
  • the method for producing the saccharified solution according to the above aspect uses the hydrolyzate of the herbaceous biomass obtained by the pretreatment method, and the saccharified solution can be efficiently produced.
  • the method for producing the herbaceous biomass-derived fermentation product according to the above embodiment uses the saccharified solution obtained by the method for producing the saccharified solution, and the herbaceous biomass-derived fermentation product can be efficiently produced.
  • pretreatment method for this embodiment a method for pretreating herbaceous biomass according to an embodiment of the present invention
  • a method for producing a saccharified solution a method for producing a saccharified solution
  • a fermentation product derived from herbaceous biomass a method for producing a saccharified solution
  • a fermentation product derived from herbaceous biomass a method for producing a saccharified solution
  • herbaceous biomass is used as a raw material.
  • a residue generated in the process of producing bioethanol, biobutanol, a biochemical product or the like from cellulose and hemicellulose in the herbaceous biomass may be used.
  • crushed biomass can be used, and any shape such as a block, a chip, or a powder may be used.
  • herbaceous biomass may be simply referred to as "biomass”.
  • Herbaceous biomass includes bamboo, palm tree trunks and bunches, palm palm fruit fibers and seeds; sorghum, bagasse (sorghum and high biomass sorghum), rice straw, straw, corn spikes, foliage and residues (sorghum and sorghum). Corn stover, corn cob, corn hull), sorghum (including sweet sorghum) residues, those obtained from grasses such as switchgrass, erianthus, napiergrass; residues generated in the process of squeezing vegetable oil such as energy crops. Be done.
  • the herbaceous biomass one obtained from a gramineous plant is preferable, and bagasse or napier grass is more preferable, from the viewpoint of availability and compatibility with the production method of the present embodiment.
  • raw materials such as napier glass are handled as they are cut, that is, in a state of high water content without being processed or the like, they can be preferably used in the pretreatment method of the present embodiment.
  • cellulose includes six carbon sugars having six carbons as constituent units. Therefore, when cellulose is hydrolyzed, it produces a hexasaccharide monosaccharide (glucose or the like) composed of 6 carbons or a hexacarbon sugar oligosaccharide (cellobiose or the like) in which a plurality of the monosaccharides are linked.
  • Hemicellulose includes pentasaccharides (C5 sugars) having five carbons such as xylose and six carbons such as mannose, arabinose, and 4-O-methylglucuronic acid (C5saccharides). It contains complex polysaccharides such as glucomannan and glucuronoxylan, which are composed of C6 sugar). Therefore, when hemicellulose is hydrolyzed, it is a monosaccharide of pentasaccharide consisting of 5 carbons, an oligosaccharide of pentasaccharide in which a plurality of monosaccharides are linked, a monosaccharide of hexasaccharide consisting of 6 carbons, and the like.
  • Hemicellulose oligosaccharides in which a plurality of the monosaccharides are linked, and oligosaccharides in which a plurality of hemicellulose monosaccharides and hemicellulose monosaccharides are linked are produced.
  • composition ratio and the amount of monosaccharide or oligosaccharide produced from hemicellulose or cellulose differ depending on the pretreatment method and the type of herbaceous biomass used as a raw material.
  • the pretreatment method of the present embodiment includes a juice squeezing step, a catalyst addition step, a press-fitting step, and a hydrolysis step in this order.
  • a juice squeezing process herbaceous biomass is squeezed.
  • the catalyst addition step the catalyst is added to the herbaceous biomass after the juice squeezing step.
  • the press-fitting step the herbaceous biomass after the catalyst addition step is press-fitted into the hydrolysis treatment apparatus.
  • the hydrolysis step the herbaceous biomass after the press-fitting step is hydrolyzed.
  • the content of water in the herbaceous biomass after the squeezing step is less than 100% by mass, preferably 95% by mass or less, more preferably 90% by mass or less, and 85% by mass or less, based on the dry mass of the herbaceous biomass. Is more preferable, and 82% by mass or less is particularly preferable.
  • the lower limit of the water content is not particularly limited, but can be, for example, 10% by mass, 15% by mass, or 20% by mass.
  • the pH of the water in the raw material is higher than the pH of the acid, so the pH in the raw material after the addition of the acid is higher than the pH of the added acid, and the decomposition strength Is concerned that
  • the pH in the raw material after the addition of the acid can be set to a low value close to the pH of the added acid, and the decomposition strength by the acid can be increased. Can be kept high.
  • hemicellulose in the herbaceous biomass can be decomposed to efficiently obtain xylose.
  • the water content in the herbaceous biomass after the squeezing process with respect to the dry mass of the herbaceous biomass referred to here is obtained by dividing the amount of water in the herbaceous biomass after the squeezing process by the dry mass of the herbaceous biomass. It is a percentage of the ratio, and is also referred to as "the moisture content of the thirst standard" below.
  • the moisture content based on thirst can be measured using, for example, a heat-drying moisture meter (manufactured by A & D Co., Ltd., model number: ML-50).
  • the pretreatment method of the present embodiment removes impurities contained in herbaceous biomass, buffers the impurities with hydrogen ions in the catalyst, and effectively suppresses a decrease in catalyst concentration. can do. Further, by having the above-mentioned juice squeezing step, the herbaceous biomass is crushed, the surface area is increased, the frequency of contact with the catalyst is increased in the subsequent hydrolysis step, and the biomass can be effectively decomposed by the catalyst. Further, since the water content of the herbaceous biomass as a thirst standard after the above juice squeezing step is less than 100% by mass4, as described above, the hydrogen ion concentration in the catalyst due to the influence of the water content in the herbaceous biomass.
  • the pretreatment method of the present embodiment can be applied to a raw material having a high water content such as a thirst-based water content of more than 100% by mass or a raw material containing a large amount of impurities. A wide range of raw materials can be efficiently pretreated. Next, each step of the pretreatment method of the present embodiment will be described in detail below.
  • the herbaceous biomass can be crushed more finely as shown in the implementation described later.
  • the specific surface area of the herbaceous biomass is increased, the chance of contact with the catalyst can be increased in the subsequent hydrolysis step, and the herbaceous biomass can be efficiently decomposed.
  • the juice squeezing step twice or more.
  • the treated water is added between the n (n is an integer of 1 or more) squeezing step and the n + 1th squeezing step for washing. Is preferable.
  • impurities such as free sugar and ash can be removed more efficiently when squeezing herbaceous biomass.
  • the number of squeezing steps is preferably 2 times or more and 5 times or less, more preferably 2 times or more and 4 times or less, further preferably 2 times or more and 3 times or less, and from the viewpoint of production efficiency. Therefore, twice is particularly preferable.
  • the squeezing step is performed two or more times, the water content of the herbaceous biomass thirst standard after the final squeezing step is the thirst of the herbaceous biomass after the squeezing step before the final squeezing step. It is preferable to squeeze the juice so that the water content is equal to or less than the standard water content.
  • the dilution of the hydrogen ion concentration in the catalyst due to the influence of water content in the herbaceous biomass can be further reduced, and the decomposition intensity by the catalyst can be kept higher.
  • the water content of the thirst standard in the first squeezing step can be less than 120% by mass
  • the water content of the thirst standard in the second squeezing step can be set to less than 120% by mass. Can be less than 100% by mass.
  • the juice squeezing step can be performed using, for example, a device having a juice squeezing mechanism such as a screw press, a filter press, a belt press, a roll juice squeezing machine, and a plug screw.
  • a device having a juice squeezing mechanism such as a screw press, a filter press, a belt press, a roll juice squeezing machine, and a plug screw.
  • a device having a juice squeezing mechanism such as a screw press, a filter press, a belt press, a roll juice squeezing machine, and a plug screw.
  • the plug screw may be squeezed so that the thirst standard moisture content of the herbaceous biomass that has passed through the plug screw is lower than the thirst standard moisture content of the herbaceous biomass that has passed through the screw press. Since it is a device that can be used, the water content of herbaceous biomass can be reduced more efficiently. In addition, more shearing force is applied to the herbaceous biomass, and it can be crushed more finely to increase the surface area of the herbaceous biomass.
  • Catalyst addition process In the catalyst addition step, the catalyst is added to the herbaceous biomass after the juice squeezing step.
  • a catalyst addition step of adding a catalyst is performed after the juice squeezing step and before the press-fitting step.
  • the added catalyst can be efficiently and uniformly distributed to the herbaceous biomass.
  • the recovered catalyst can be reused in the catalyst adding step, and the amount of the catalyst added can be reduced as compared with the conventional case. be able to.
  • the thirst standard moisture content of the herbaceous biomass after the juice squeezing step and before the catalyst addition step that is, the herbaceous biomass immediately before the addition of the catalyst is less than 100% by mass, as described above.
  • the dilution of the hydrogen ion concentration in the catalyst due to the influence of the water content in the herbaceous biomass can be reduced, and the decomposition strength by the catalyst can be kept high.
  • the catalyst is not particularly limited as long as it is for decomposing or softening lignin and decomposing cellulose and hemicellulose, but a catalyst composed of an acid or an alkali is preferably used.
  • the acid include sulfuric acid (including dilute sulfuric acid), hydrochloric acid, nitric acid, phosphoric acid and the like.
  • the alkali include sodium hydroxide, potassium hydroxide, ammonia and the like. Each of these acids or alkalis may be used alone or in combination of two or more. Of these, dilute sulfuric acid is particularly preferable because it is inexpensive and easily available for industrial use.
  • the catalyst added in the catalyst addition process can be efficiently and uniformly distributed to the herbaceous biomass. Further, by recovering the excess amount of the added catalyst, the recovered catalyst can be reused in the catalyst addition step, and the amount of the catalyst added can be reduced as compared with the conventional case.
  • the press-fitting step may be any device configured so that the herbaceous biomass after the catalyst addition step can be charged into the hydrolysis treatment device while applying pressure, and above all, the high-pressure atmosphere in the hydrolysis treatment device is maintained.
  • the device in order to continuously charge the raw material from the atmospheric pressure to the high pressure atmosphere, it is preferable that the device is configured to seal the internal pressure of the hydrolysis treatment device with the press-fitted raw material.
  • Examples of such a press-fitting device include devices similar to the devices exemplified in the above-mentioned "juice squeezing step", and among them, a plug screw is preferable.
  • the catalyst added in the catalyst addition step is herbs as described above by performing the catalyst addition step before performing the press-fitting step of press-fitting the herbaceous biomass into the hydrolysis treatment apparatus. It can be efficiently and uniformly distributed to the system biomass, whereby hemicellulose in the herbaceous biomass can be efficiently decomposed into xylose in the hydrolysis step. Further, in the past, since the catalyst was added after the herbaceous biomass was put into the hydrolysis treatment apparatus, it was necessary to add an excessive amount of the catalyst in order to keep the hydrolysis strength high.
  • the water content of the herbaceous biomass as a thirst standard is adjusted within the above range in the above juice squeezing step before being charged into the hydrolysis treatment apparatus, and the above catalyst addition.
  • the hydrogen ions in the catalyst are not diluted in the hydrolysis step, that is, the added catalyst concentration and the catalyst concentration in the herbaceous biomass can be kept at the same level. ..
  • free sugars in the herbaceous biomass and impurities such as ash are removed in the juice squeezing step before being put into the hydrolysis treatment apparatus, so that the sugar is excessive.
  • the formation of decomposition products is suppressed, and impurities such as ash are buffered by hydrogen ions, so that the reduction of the catalyst concentration can be effectively suppressed.
  • the herbaceous biomass is crushed in the juice squeezing step before being put into the hydrolysis treatment apparatus, and the surface area is increased, so that the herbaceous biomass is crushed in the hydrolysis step.
  • the frequency of contact with the catalyst is increased.
  • the amount of catalyst consumed can be reduced as compared with the conventional case, and hemicellulose in herbaceous biomass can be efficiently decomposed into xylose while suppressing the pretreatment cost.
  • the temperature in the hydrolysis step can be, for example, 100 ° C. or higher and 250 ° C. or lower, 120 ° C. or higher and 200 ° C. or lower, and 150 ° C. or higher and 180 ° C. or lower.
  • the time can be, for example, 3 minutes or more and 150 minutes or less, 5 minutes or more and 120 minutes or less, 7 minutes or more and 90 minutes or less, and 8 minutes or more and 40 minutes or less. ..
  • the hydrolysis step has, for example, a heating pressure device such as an autoclave having acid resistance or alkali resistance, or a heating pressure vessel having acid resistance or alkali resistance, and further, the above-mentioned press-fitting device such as a plug screw is integrated and continuous. It can be performed by using an apparatus or the like capable of performing the processing.
  • a heating pressure device such as an autoclave having acid resistance or alkali resistance
  • a heating pressure vessel having acid resistance or alkali resistance
  • the above-mentioned press-fitting device such as a plug screw is integrated and continuous. It can be performed by using an apparatus or the like capable of performing the processing.
  • the pretreatment method of the present embodiment may further include other steps, if necessary, in addition to the juice squeezing step, the catalyst addition step, the press-fitting step, and the hydrolysis step.
  • other steps include a cleaning step, a crushing step, and the like.
  • the washing step water is added to the herbaceous biomass and washed before the juice squeezing step. Since herbaceous biomass has adhesion of mud, sand, minute metal pieces, etc., these foreign substances can be removed by performing a cleaning step.
  • the washing step can be performed using a device such as a water-washing washer. Normally, the herbaceous biomass floats because the specific gravity of the herbaceous biomass is small and the specificity of foreign substances such as mud, sand, and minute metal pieces is large with respect to water. Since the biomass may not float, it is possible to recover the herbaceous biomass that slowly settles by creating a water stream as appropriate.
  • the time of the washing step can be appropriately adjusted depending on the degree of contamination and the specific gravity of the herbaceous biomass, but can be, for example, 5 seconds or more and 30 minutes or less.
  • the crushing step the herbaceous biomass is crushed to a size that is easy to squeeze before the squeezing step.
  • the crushing step can be performed using, for example, a mill, a cutter type crusher, or the like.
  • FIG. 1 is a schematic configuration diagram showing a herbaceous biomass pretreatment apparatus according to the first embodiment of the present invention.
  • the herbaceous biomass pretreatment device 10 includes a juice squeezing machine 1, a catalyst supply device 2, a press-fitting device 3, and a hydrolysis treatment device 4, and these are arranged via pipes.
  • the herbaceous biomass pretreatment apparatus 10 reduces the catalyst consumption as compared with the conventional one, thereby suppressing the pretreatment cost and improving the sugar recovery amount from the herbaceous biomass. be able to.
  • the juice squeezing machine 1 has a juice squeezing mechanism, and can separate free sugar and ash dissolved in the herbaceous biomass input through the pipe 5a together with water. It is configured as follows. Further, it is preferable that the herbaceous biomass is configured to be finely crushed. Examples of such a juice squeezing machine 1 include a device having a juice squeezing mechanism such as a screw press, a filter press, a belt press, a roll juice squeezing machine, and a plug screw.
  • the pretreatment device 10 has a juice squeezing machine 1 upstream (previous stage) of the catalyst supply device 2 to remove impurities contained in herbaceous biomass, and the impurities are buffered by hydrogen ions in the catalyst to obtain a catalyst concentration. Can be effectively suppressed. Further, the upper pretreatment device 10 has a juice squeezing machine 1 upstream (previous stage) of the catalyst supply device 2, so that the herbaceous biomass is crushed and the surface area is increased. The frequency of contact with is increased, and it can be effectively decomposed by a catalyst.
  • the pretreatment apparatus 10 since the water content of the herbaceous biomass after passing through the juice squeezing machine 1 is less than 100% by mass, the hydrogen ion concentration in the catalyst due to the influence of the water content in the herbaceous biomass is as described above. Dilution can be reduced and the decomposition strength by the catalyst can be kept high. From these facts, according to the pretreatment apparatus 10, the amount of sugar recovered from the herbaceous biomass can be improved while suppressing the pretreatment cost by reducing the amount of catalyst consumption as compared with the conventional case. Further, the pretreatment apparatus 10 can be applied to a raw material having a high water content such as a thirst-based water content of more than 100% by mass, and can efficiently pretreat a wide range of raw materials.
  • the solid content separated from the herbaceous biomass in the juice squeezing machine 1 is charged into the press-fitting device via the pipe 5c.
  • a catalyst supply device 2 is arranged in the middle of the pipe 5c, and the catalyst is added to the herbaceous biomass.
  • the catalyst supply device 2 preferably includes, for example, a catalyst storage tank and a pump. Further, the catalyst supply device 2 may include a control mechanism for mixing the catalyst solution and the treated water so as to obtain a desired catalyst concentration. Examples of the catalyst include those similar to those exemplified in the “catalyst addition step” of the above-mentioned “pretreatment method for herbaceous biomass”.
  • the catalyst storage tank and the pump are preferably made of a material having acid resistance or alkali resistance.
  • the pretreatment device 10 is downstream of the juice squeezing machine 1 (second stage), and includes a catalyst supply device 2 for adding a catalyst to the upstream (front stage) of the hydrolysis treatment device 4. ,
  • the added catalyst can be efficiently and uniformly distributed to the herbaceous biomass. Further, as described above, since the thirst standard water content of the herbaceous biomass after passing through the juice squeezing machine 1 and immediately before the catalyst is supplied by the catalyst supply device 2 is less than 100% by mass, the herbaceous system It is possible to reduce the dilution of the hydrogen ion concentration in the catalyst due to the influence of the water content in the biomass, and the decomposition strength by the catalyst can be kept high.
  • the press-fitting device 3 may be any device configured so that the herbaceous biomass after the catalyst addition step can be charged into the hydrolysis treatment device while applying pressure, and above all, the high-pressure atmosphere in the hydrolysis treatment device is maintained. At the same time, in order to continuously charge the raw material from the atmospheric pressure to the high pressure atmosphere, it is preferable that the device is configured to seal the internal pressure of the hydrolysis treatment device with the press-fitted raw material. Examples of such a press-fitting device include devices similar to those exemplified in the “juice squeezing step” of the above-mentioned pretreatment method for herbaceous biomass, and among them, a plug screw is preferable.
  • the pretreatment device 10 can efficiently and uniformly distribute the catalyst added by the catalyst supply device 2 to the herbaceous biomass.
  • the hydrolysis treatment device 4 is a device for hydrolyzing the solid content.
  • the hydrolysis treatment device 4 is not particularly limited, and examples thereof include a heating pressure device such as an autoclave having acid resistance or alkali resistance.
  • the hydrolyzate of the herbaceous biomass hydrolyzed in the hydrolysis treatment device 4 is put into, for example, a saccharification device or the like via the pipe 5f.
  • the juice squeezed liquid separated from the herbaceous biomass in the juice squeezing machine 1 is discharged to the outside of the system via the pipe 5b.
  • FIG. 2 is a schematic configuration diagram showing a herbaceous biomass pretreatment apparatus according to a second embodiment of the present invention.
  • the herbaceous biomass pretreatment device 20 is different from the herbaceous biomass pretreatment device 10 shown in FIG. 1 in that it includes two juice squeezing machines.
  • FIGS. 2 and 2 the same components as those shown in FIG. 1 will be described by using the same reference numerals.
  • the solid content separated from the herbaceous biomass in the first juice squeezing machine 1a is put into the second juice squeezing machine 1b via the pipe 5g.
  • the first juice squeezing machine 1a and the second juice squeezing machine 1b the same ones as those exemplified in the pretreatment device 10 can be used.
  • the first juicer 1a and the second juicer 1b may use devices having the same configuration or different configurations, but the second juicer 1b may use the second juicer.
  • the juice is squeezed so that the water content of the herbaceous biomass thirst standard after passing through the juice squeezing machine 1b is equal to or less than the water content of the herbaceous biomass thirst standard after passing through the first juice squeezing machine 1a.
  • the device is used.
  • a combination in which the first juice squeezing machine 1a is a screw press and the second juice squeezing machine is the same screw press can be used.
  • the first juice squeezing machine 1a is a screw press and the second juice squeezing machine is a plug screw
  • the first juice squeezing machine 1a is a screw press and the second juice squeezing machine is a plug screw
  • the plug screw may be squeezed so that the thirst standard moisture content of the herbaceous biomass passed through the plug screw is lower than the thirst standard moisture content of the herbaceous biomass passed through the screw press. Since it is a capable device, the water content of the herbaceous biomass thirst standard can be reduced more efficiently. In addition, more shearing force is applied to the herbaceous biomass, and it can be crushed more finely to increase the surface area of the herbaceous biomass.
  • the solid content further separated from the solid content separated by the first juice squeezing machine 1a in the second juice squeezing machine 1b is charged into the press-fitting device 3 after the catalyst is added by the catalyst supply device 2 in the pipe 5c.
  • the hydrolyzate of the herbaceous biomass hydrolyzed in the hydrolysis treatment device 4 is put into, for example, a saccharification device or the like via the pipe 5f.
  • the juice liquid further separated from the solid content separated by the first juicer 1a in the second juicer 1b is discharged to the outside of the system via the pipe 5h.
  • the herbaceous biomass pretreatment apparatus of the present embodiment is not limited to the pretreatment apparatus shown in FIGS. 1 and 2, and a part of the configurations shown in FIGS. It may be changed or deleted, or the one described above may be added with other configurations.
  • an apparatus in which the press-fitting apparatus 3 and the hydrolysis treatment apparatus 4 are integrated may be used.
  • the internal pressure of the hydrolysis treatment device can be efficiently sealed by the raw material press-fitted by the press-fitting device.
  • Examples of such a device include a device capable of continuously performing processing by integrating a press-fitting device such as a plug screw with a heating pressure device such as an autoclave having acid resistance or alkali resistance.
  • the solution containing the catalyst recovered from the press-fitting apparatus 3 via the pipe 5d may be circulated to the catalyst supply apparatus 2 for reuse. .. Thereby, the catalyst consumption can be further reduced.
  • a cleaning apparatus may be provided upstream (previous stage) of the juice squeezing machine 1.
  • the cleaning device is a device for cleaning herbaceous biomass as a raw material.
  • the apparatus is provided with a water flow generating means such as a water wheel for separating the herbaceous biomass and foreign substances such as mud, sand, and minute metal pieces.
  • a water flow generating means such as a water wheel for separating the herbaceous biomass and foreign substances such as mud, sand, and minute metal pieces.
  • treated water may be added between the first juice squeezing machine 1a and the second juice squeezing machine 2b for washing.
  • impurities such as free sugar and ash can be removed more efficiently when squeezing herbaceous biomass.
  • the method and apparatus for adding treated water between the first juicer 1a and the second juicer 2b are not limited, but for example, the first juicer 1a and the second juicer 2b Water may be sprayed on a transport conveyor for transporting herbaceous biomass, or a cleaning device may be provided between the first juicer 1a and the second juicer 2b. Herbaceous biomass may be washed.
  • the washing device may be the same as the washing device when the washing device is provided upstream (previous stage) of the juice squeezing machine 1.
  • a crushing apparatus may be provided upstream (previous stage) of the juice squeezing machine 1.
  • the crushing device is a device that crushes herbaceous biomass to a size that is easy to squeeze. Examples of the crusher include a mill and a cutter type crusher.
  • the method for producing the saccharified solution of the present embodiment includes a saccharification step of enzymatically saccharifying the hydrolyzate of the herbaceous biomass obtained by the above-mentioned pretreatment method for herbaceous biomass.
  • the method for producing the saccharified solution of the present embodiment has the above configuration, so that the saccharified solution can be efficiently produced.
  • saccharification process In the saccharification step, a saccharification reaction is carried out using an enzyme using cellulose and hemicellulose contained in the hydrolyzate of the herbaceous biomass obtained by the above-mentioned pretreatment method for herbaceous biomass as substrates.
  • the enzyme referred to here is mainly a saccharifying enzyme, and examples thereof include cellulase that decomposes cellulose, hemicellulose that decomposes hemicellulose, and amylase that decomposes starch.
  • the cellulase may be any cellulase that decomposes cellulose into monosaccharides such as glucose or oligosaccharides, for example, endoglucanase (EG), cellobiohydrolase (CBH), and ⁇ -glucosidase ( ⁇ ).
  • EG endoglucanase
  • CBH cellobiohydrolase
  • ⁇ -glucosidase
  • BGL has at least one activity of each activity, and an enzyme mixture having each of these activities is preferable from the viewpoint of enzyme activity.
  • the hemicellulase may be any one that decomposes hemicellulose into monosaccharides such as xylose or oligosaccharides, and for example, at least one activity of each activity of xylanase, xylosidase, mannanase, galactosidase, glucuronidase, and arabinofuranosidase. From the viewpoint of enzyme activity, it is preferable that the enzyme mixture has each of these activities.
  • saccharifying enzymes such as cellulase and hemicellulase is not limited, and for example, Trichoderma, Acremonium, Aspergillus, Bacillus, Pseudomonas.
  • Saccharifying enzymes such as cellulases and hemicellulase derived from microorganisms such as the genus Penicillium, Aeromonus, Irpex, Sporotichum, and Humicola can be used.
  • the saccharification temperature is preferably 45 ° C. or higher and 70 ° C. or lower, more preferably 45 ° C. or higher and 55 ° C. or lower, and particularly preferably 50 ° C.
  • the saccharification time is preferably 12 hours or more and 120 hours or less, more preferably 24 hours or more and 96 hours or less, and further preferably 24 hours or more and 72 hours or less.
  • the saccharification step is not particularly limited and can be carried out using a known saccharification apparatus. Specific examples thereof include saccharification devices such as a stirring type, an aeration stirring type, a bubble tower type, a fluidized bed type, and a packed bed type. Further, the saccharification device may be provided with a temperature control device such as a hot water circulation type jacket on the outside of the device in order to keep the temperature inside the device constant.
  • a temperature control device such as a hot water circulation type jacket on the outside of the device in order to keep the temperature inside the device constant.
  • the saccharification step it is preferable to mix the juice discharged in the juice squeezing step of the above-mentioned pretreatment method for herbaceous biomass with the hydrolyzate of herbaceous biomass and saccharify with an enzyme.
  • the juice for saccharification the amount of sugar recovered from herbaceous biomass can be further improved.
  • the method for producing the saccharified liquid of the present embodiment can further include other steps in addition to the above saccharified step.
  • steps include a solid-liquid separation step and the like.
  • Solid-liquid separation process In the solid-liquid separation step, after the saccharification step, the saccharification product obtained in the saccharification step is solid-liquid separated and separated into a saccharification solution which is a liquid content and a saccharification residue which is a solid content to obtain a saccharification solution. ..
  • a method for solid-liquid separation a known method capable of separating solid content and liquid content can be used. These are, but are not limited to.
  • the saccharified solution obtained by the production method of the present embodiment may be refined by removing impurities and sold as molasses, or the saccharified solution may be used as a useful component (fermented product derived from herbaceous biomass) produced by microbial fermentation. It can be used to manufacture things). Details of the useful ingredient will be described later.
  • FIG. 3 is a schematic configuration diagram showing an apparatus for producing a saccharified liquid according to a third embodiment of the present invention.
  • the saccharification liquid production apparatus 30 is different from the herbaceous biomass pretreatment apparatus 20 shown in FIG. 2 in that the saccharification apparatus 11 and the pipe 5i are further provided.
  • the saccharification liquid production apparatus 30 can efficiently produce the saccharification liquid by using the hydrolyzate of the herbaceous biomass obtained by the herbaceous biomass pretreatment apparatus as the saccharification raw material.
  • the saccharification device 11 is not particularly limited, and a known saccharification device can be used. Specific examples thereof include saccharification devices such as a stirring type, an aeration stirring type, a bubble tower type, a fluidized bed type, and a packed bed type. Further, the saccharification device may be provided with a temperature control device such as a hot water circulation type jacket on the outside of the device in order to keep the temperature inside the device constant.
  • a temperature control device such as a hot water circulation type jacket on the outside of the device in order to keep the temperature inside the device constant.
  • Cellulose and hemicellulose contained in the hydrolyzate of herbaceous biomass charged into the saccharification device 11 via the pipe 5f are saccharified by an enzyme previously charged into the saccharification device 11 or charged together with the hydrolyzate.
  • Examples of the enzyme and the saccharification reaction conditions include those exemplified in the above-mentioned "method for producing a saccharified solution".
  • the saccharified liquid obtained in the saccharification apparatus 11 is put into, for example, a fermentation apparatus or the like, depending on the purpose, via the pipe 5i.
  • FIG. 4 is a schematic configuration diagram showing an apparatus for producing a saccharified liquid according to a fourth embodiment of the present invention.
  • the saccharification liquid production apparatus 40 is different from the saccharification liquid production apparatus 30 shown in FIG. 3 in that it further includes a pipe 5j connecting the first juice squeezing machine 1a and the second juice squeezing machine 1b and the saccharification apparatus 11. ..
  • the saccharified liquid manufacturing apparatus 40 is further provided with a pipe 5j to provide monosaccharides such as xylose and glucose contained in the squeezed liquid discharged by the first squeezing machine 1a and the second squeezing machine 1b, and these. Free sugars such as oligosaccharides composed of monosaccharides can be recovered by the saccharification apparatus 11 and used. As a result, the amount of sugar recovered from the herbaceous biomass can be further improved.
  • the saccharified liquid manufacturing apparatus of the present embodiment is not limited to the manufacturing apparatus shown in FIGS. 3 to 4, and a part of the configurations shown in FIGS. It may be the one described above or the one described above with other configurations added.
  • a solid-liquid separation apparatus may be provided downstream (later stage) of the saccharification apparatus.
  • the solid-liquid separation device is a device that separates a saccharified liquid, which is a liquid component, and a saccharified residue, which is a solid content, from a saccharified product produced in the saccharification device.
  • the solid-liquid separator is not particularly limited, and examples thereof include a filter, a vibrating sieve, a centrifuge, and a screw press.
  • the saccharified solution separated by the solid-liquid separator may be refined by removing impurities and sold as molasses, or a useful component (herbaceous biomass-derived fermentation product) produced by microbial fermentation of the saccharified solution. Can be used to manufacture.
  • the saccharified residue separated by the solid-liquid separation device contains unsaccharified components such as cellulose and hemicellulose, it can be used as a saccharification raw material by putting it into the saccharification device.
  • the method for producing a herbaceous biomass-derived fermentation product of the present embodiment includes a fermentation step of fermenting the saccharified solution obtained by the above-mentioned method for producing a saccharified solution with a microorganism.
  • the method for producing a herbaceous biomass-derived fermentation product of the present embodiment has the above configuration, so that the herbaceous biomass-derived fermentation product can be efficiently produced.
  • microorganisms are added to the saccharified solution obtained by the above-mentioned method for producing a saccharified solution, and the fermentation reaction is carried out while stirring.
  • microorganisms ingest monosaccharides such as glucose and xylose and oligosaccharides in the saccharified solution to produce a herbaceous biomass-derived fermentation product.
  • the microorganism used in the fermentation process is not particularly limited as long as it can produce the desired herbaceous biomass-derived fermentation product.
  • specific examples thereof include yeast and bacteria, and genetically modified microorganisms are also preferably used.
  • Genetically modified microorganisms are microorganisms that do not have the enzyme genes necessary for conversion to the desired herbaceous biomass-derived fermentation products such as alcohol, and these genes are introduced by genetic engineering technology to the purpose of alcohol and the like. It enables the production of herbaceous biomass-derived fermentation products.
  • Examples of the genetically modified microorganism include recombinant Escherichia coli having alcohol fermentability. Among them, yeast is preferable as the microorganism used in the method for producing the herbaceous biomass-derived fermentation product of the present embodiment.
  • the culture solution containing the microorganism may be used as it is, or the culture solution containing the microorganism may be concentrated by centrifugation, or may be appropriately used.
  • the amount of microorganisms used may be calculated based on the growth rate of microorganisms, the size of the fermentation apparatus, the amount of saccharified solution used for fermentation, and the like.
  • the fermentation step it is preferable to ferment the saccharified solution using yeast as a microorganism to produce alcohol such as ethanol as a fermentation product derived from herbaceous biomass.
  • the fermentation step may be appropriately performed based on the prior art.
  • the fermentation temperature is preferably 25 ° C. or higher and 50 ° C. or lower, more preferably 28 ° C. or higher and 35 ° C. or lower, and particularly preferably 32 ° C.
  • the fermentation time is preferably 24 hours or more and 120 hours or less, more preferably 24 hours or more and 96 hours or less, and further preferably 24 hours or more and 72 hours or less.
  • the fermentation step is not particularly limited and can be carried out using a known fermentation apparatus. Specific examples thereof include, but are not limited to, a stirring type, an aeration stirring type, a bubble tower type, a fluidized bed type, a packed bed type and the like. Further, the fermentation apparatus may be provided with a temperature control device such as a hot water circulation type jacket on the outside of the apparatus in order to keep the temperature inside the apparatus constant.
  • a temperature control device such as a hot water circulation type jacket on the outside of the apparatus in order to keep the temperature inside the apparatus constant.
  • the method for producing a herbaceous biomass-derived fermentation product of the present embodiment may further include other steps in addition to the above fermentation step. Examples of other steps include a purification step and the like.
  • the herbaceous biomass-derived fermentation product is extracted from the fermentation product obtained in the fermentation step.
  • the herbaceous biomass-derived fermentation product means a compound produced by ingesting monosaccharides and oligosaccharides obtained by decomposing herbaceous biomass by microorganisms such as yeast.
  • Specific examples of herbaceous biomass-derived fermentation products include alcohols such as ethanol, butanol, 1,3-propanediol, 1,4-butanediol, and glycerol; pyruvate, succinic acid, malic acid, and itaconic acid. Examples thereof include organic acids such as citric acid and lactic acid; nucleosides such as inosin and guanosine; nucleotides such as inosic acid and guanylate; and diamine compounds such as cadaberin.
  • the compound obtained by fermentation is a monomer such as lactic acid, it may be converted into a polymer by polymerization. Of these, ethanol is preferable as the herbaceous biomass-derived fermentation product.
  • the purification method includes, for example, a method of distilling the fermentation product (distillation method).
  • the herbaceous biomass compound is an amino acid
  • an ion exchange method a method for adsorbing and removing foreign substances using activated carbon, and the like can be mentioned.
  • yeast is used as a microorganism to ferment the saccharified solution to produce alcohol such as ethanol as a herbaceous biomass-derived fermentation product, and then in the purification step, ethanol is used from the fermentation product by a distillation method. It is preferable to take out alcohol such as.
  • FIG. 5 is a schematic configuration diagram showing an apparatus for producing a herbaceous biomass-derived fermentation product according to a fifth embodiment of the present invention.
  • the herbaceous biomass-derived fermentation product production apparatus 100 is different from the saccharification liquid production apparatus 30 in that the fermentation apparatus 12 and the pipe 5k are further provided.
  • the herbaceous biomass-derived fermentation product production apparatus 100 can efficiently produce a herbaceous biomass-derived fermentation product by using the saccharified liquid obtained by the saccharification liquid production apparatus as a fermentation raw material.
  • the fermentation apparatus 12 is not particularly limited, and a known fermentation apparatus can be used. Specific examples thereof include, but are not limited to, a stirring type, an aeration stirring type, a bubble tower type, a fluidized bed type, a packed bed type and the like. Further, the fermentation apparatus 12 may be provided with a temperature control device such as a hot water circulation type jacket on the outside of the apparatus in order to keep the temperature inside the apparatus constant.
  • a temperature control device such as a hot water circulation type jacket on the outside of the apparatus in order to keep the temperature inside the apparatus constant.
  • the fermentation product obtained in the fermentation apparatus 12 is put into, for example, a purification apparatus or the like, depending on the purpose, via the pipe 5k.
  • the apparatus for producing the herbaceous biomass-derived fermentation product of the present embodiment is not limited to the apparatus shown in FIG. 5, and a part of the apparatus shown in FIG. It may be deleted, or it may be the one described so far with other configurations added.
  • a purification apparatus may be provided downstream of the fermentation apparatus 12.
  • the purification apparatus extracts useful components exemplified as the herbaceous biomass-derived fermentation product from the fermentation product in the above-mentioned "Method for producing herbaceous biomass-derived fermentation product".
  • the herbaceous biomass compound is an alcohol
  • a distillation apparatus including a distillation column
  • the fermentation apparatus 4 ferments the saccharified solution using yeast as a microorganism to produce alcohol such as ethanol as a useful component, and then extracts alcohol such as ethanol from the fermentation product by a distillation column. ..
  • Example 1 (Crushing process and cleaning process) A 3 m long napier glass, which is a herbaceous biomass, was crushed with a cutter type crusher. Then, in order to remove the foreign matter in the obtained crushed pieces, the crushed pieces were washed with a water-washing type washer and used as a raw material.
  • the bulk density is such that a container having a volume of 20.0 L is filled with biomass while freely dropping from a height of about 1.0 m from the container socket, and the raw material at a height higher than the container socket is filled in the container socket. A straight plate was used to drop the surface so that the surface was horizontal, and the mass was measured. Then, the measured mass was divided by the volume (20.0 L) to calculate the mass per unit volume.
  • the wetness standard indicates the bulk density measured by using the raw material as it is, and the thirst standard indicates the bulk density calculated based on the separately measured value of the water content in the raw material.
  • the water content was calculated as a ratio obtained by dividing the mass of water in the raw material by the dry mass of the raw material (that is, the mass of the solid content in the raw material) on the basis of thirst.
  • the mass of moisture in the raw material was measured using a heat-drying moisture meter (manufactured by A & D Co., Ltd., model number: ML-50).
  • Ash content After drying an appropriate amount of the raw material at 105 ° C. to a constant weight, the mixture was heated strongly at 600 ° C. and the residue was used as the ash content, and the ash content per dry mass was measured from the mass reduction.
  • Example 2 Cenchrus purpureus that had been crushed and washed using the same method as in Example 1 were used as a raw material.
  • saccharification process Next, water was added so that each raw material after the hydrolysis reaction was 10 dry-wt% to prepare a dispersed diluted solution. Next, saccharifying enzymes (cellulase and hemicellulase) were added to each of the diluted raw materials, and the saccharification reaction was carried out in a constant temperature shaker for 48 hours. The amounts of xylose and glucose in the saccharified solution were measured by HPLC (manufactured by Shimadzu Corporation, detector: FLD, column oven: CTO-20A). The measurement results of glucose concentration, xylose concentration and sugar concentration (total concentration of glucose and xylose) are shown in FIGS. 7A, 7B and 7C, respectively.
  • the sugar concentration (total concentration of glucose and xylose) of the raw material having a water content of less than 100% by mass based on the thirst of the raw material is more than 40 g / L, and the sugar recovery amount is good. Became clear.
  • the main reason for this improvement in sugar recovery is that the water content of the raw material, which is the standard for thirst, is less than 100% by mass, so that the pH buffer in the raw material after the addition of dilute sulfuric acid can be reduced. Since the ash containing impurities was removed by the juice squeezing step, the purity of cellulose and hemicellulose in the raw material was increased, and as shown in FIG. 6, the raw material was finely crushed by the juice squeezing to have a specific surface area. It was presumed that this was due to the increase in contact with the catalyst.
  • the pretreatment method of the present embodiment it is possible to provide a pretreatment method for herbaceous biomass having a good amount of sugar recovered from herbaceous biomass.
  • the method for producing the saccharified solution of the present embodiment uses the hydrolyzate of the herbaceous biomass obtained by the pretreatment method, and the saccharified solution can be efficiently produced.
  • the method for producing the herbaceous biomass-derived fermentation product of the present embodiment uses the saccharified solution obtained by the method for producing the saccharified solution, and the herbaceous biomass-derived fermentation product can be efficiently produced.
  • 1 Juicer, 1a: 1st juicer, 1b: 2nd juicer, 2: Catalyst supply device, 3: press-fitting device, 4: hydrolysis treatment device, 11: saccharification device, 12: fermentation Equipment, 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i, 5j, 5k ... Piping, 10, 20 ... Herbaceous biomass pretreatment equipment, 30, 40 ... Saccharification liquid production equipment, 100 ... Equipment for producing herbaceous biomass-derived fermentation products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Emergency Medicine (AREA)
  • Mycology (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

草本系バイオマスの前処理方法は、草本系バイオマスを搾汁する搾汁工程と、前記搾汁工程後の草本系バイオマスに、触媒を添加する触媒添加工程と、前記触媒添加工程後の草本系バイオマスを加水分解処理装置に圧入する圧入工程と、前記圧入工程後の草本系バイオマスを加水分解する加水分解工程と、をこの順に含み、前記草本系バイオマスの乾燥質量に対する、前記搾汁工程後であって、触媒添加工程前の草本系バイオマス中の水分の含有量が100質量%未満であり、前記触媒が酸又はアルカリであり、前記搾汁工程前に、5分~60分の間の時間、蒸気で前記草本系バイオマスを加熱する工程を含まない。

Description

草本系バイオマスの前処理方法、糖化液の製造方法及び草本系バイオマス由来発酵生成物の製造方法
 本発明は、草本系バイオマスの前処理方法、糖化液の製造方法及び草本系バイオマス由来発酵生成物の製造方法に関する。
 本願は、2020年3月9日に、日本に出願された特願2020-39876号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球温暖化対策や、廃棄物の有効活用の観点から、植物資源を原料とするバイオマスの利用が注目されている。一般に、バイオマスからエタノール等の化合物を製造するための原料としては、サトウキビ等の糖質やトウモロコシ等のデンプン質が多く用いられている。しかしながら、これらの原料はもともと食料又は飼料として用いられており、長期的に工業用利用資源として活用することは、食料又は飼料用途との競合を引き起こし、原料価格の高騰を招く危険性がある。
 従って、非食用バイオマスをエネルギー資源として活用する技術開発が進められている。非食用バイオマスとしては、地球上に最も多く存在するセルロースが挙げられるが、その大部分は芳香族ポリマーのリグニンやヘミセルロースとの複合体であるリグノセルロースとして存在する。このリグノセルロースは、セルロース、ヘミセルロース、リグニンが強固に結合した構造をしており、発酵に使用可能である五炭糖若しくは六炭糖の単糖やオリゴ糖に分解するのは容易ではない。
 従って、酸やアルカリ等の触媒添加と蒸煮からなる前処理工程が必要となる。前処理工程の目的は、リグノセルロースを構成するヘミセルロースやリグニンといったポリマーを分解し、後工程におけるセルロースの反応性を向上させることである。
 リグノセルロースを用いた製紙プラントやエタノールプラントの前処理蒸煮装置は、多くの場合スクリュー型の連続処理設備が採用されている。これらの装置では、スクリュー内の高圧雰囲気を維持しながら大気圧から高圧雰囲気へ原料を連続投入するために、プラグスクリューと呼ばれる装置を用いることが一般的である。プラグスクリューとは、原料を圧密しながら連続的に投入する装置で、圧密した原料によって蒸煮装置の内圧をシールする装置である。プラグスクリューにより圧密した原料は、蒸煮装置内において、加水分解のための触媒が適宜添加されて、加水分解処理が行われる。
 一方、特許文献1には、イネ科植物の茎葉に加水液を添加し、搾汁を行い、搾汁液と固形分を分離し、分離された前記固形分に酸又はアルカリからなる触媒を添加し、加水分解する前処理を行う、イネ科植物の茎葉由来発酵生成物の製造方法が開示されている。
日本国特許第5857149号公報
 しかしながら、従来のリグノセルロースを用いた製紙プラントやエタノールプラントの前処理蒸煮装置では、蒸煮装置内で触媒が添加されることから、添加した触媒を原料に均一に作用されることが難しく、さらに、分解強度を高くするために、触媒消費量が多くなり、また装置の腐食リスク等の問題が起こることがある。
 また、特許文献1に記載の方法では、触媒添加前のイネ科植物の茎葉等のバイオマスにおける含水率が制御されていないことから、触媒添加前のバイオマス中の含水率が高いと、触媒添加後のバイオマス中の触媒濃度が添加した触媒濃度よりも低く、分解強度が低くなる。そのため、バイオマスに含まれる構成糖から回収する糖量を最大化できておらず、改善の余地がある。また、バイオマスからの糖回収量を向上させるために、触媒濃度や処理温度を上げることで分解強度を高めることができるが、このような条件では装置が腐食する虞があり、また処理コストも上がる。
 本発明は、上記事情に鑑みてなされたものであって、前処理コストを抑えながら、草本系バイオマスからの糖回収量が良好な草本系バイオマスの前処理方法、並びに、前記前処理方法を用いた糖化液の製造方法及び草本系バイオマス由来発酵生成物の製造方法を提供する。
 すなわち、本発明は、以下の態様を含む。
(1) 草本系バイオマスを搾汁する搾汁工程と、前記搾汁工程後の草本系バイオマスに、触媒を添加する触媒添加工程と、前記触媒添加工程後の草本系バイオマスを加水分解処理装置に圧入する圧入工程と、前記圧入工程後の草本系バイオマスを加水分解する加水分解工程と、をこの順に含み、前記草本系バイオマスの乾燥質量に対する、前記搾汁工程後であって、触媒添加工程前の草本系バイオマス中の水分の含有量が100質量%未満であり、前記触媒が酸又はアルカリであり、前記搾汁工程前に、5分~60分の間の時間、蒸気で前記草本系バイオマスを加熱する工程を含まない、草本系バイオマスの前処理方法。
(2) 前記草本系バイオマスの乾燥質量に対する、前記搾汁工程後であって、触媒添加工程前の草本系バイオマス中の水分の含有量が82質量%以下である、(1)に記載の草本系バイオマスの前処理方法。
(3) 前記草本系バイオマスの乾燥質量に対する、草本系バイオマス中の水分の含有量が100質量%超である草本系バイオマスが原料である、(1)又は(2)に記載の草本系バイオマスの前処理方法。
(4) 前記搾汁工程を2回以上行う、(1)~(3)のいずれか一つに記載の草本系バイオマスの前処理方法。
(5) 前記草本系バイオマスの乾燥質量に対する、最終回の前記搾汁工程後の草本系バイオマス中の水分の含有量が、前記草本系バイオマスの乾燥質量に対する、最終回より前の前記搾汁工程後の草本系バイオマス中の水分の含有量以下である、(4)に記載の草本系バイオマスの前処理方法。
(6) 前記搾汁工程において、搾汁機構を有する装置により草本系バイオマスを搾汁し、前記装置によって前記草本系バイオマスに加えられる剪断力により前記草本系バイオマスを破砕する、(4)又は(5)に記載の草本系バイオマスの前処理方法。
(7) 前記搾汁工程は、スクリュープレスを用いて搾汁を行なった後、プラグスクリューを用いて搾汁を行う2段階の搾汁である、(4)~(6)のいずれか一つに記載の草本系バイオマスの前処理方法。
(8) 前記搾汁工程の前に、前記草本系バイオマスに水を添加し、洗浄する洗浄工程を更に含む、(1)~(7)のいずれか一つに記載の草本系バイオマスの前処理方法。
(9) 前記触媒が、硫酸、塩酸、硝酸及びリン酸からなる群より選ばれる1種以上の酸、又は、水酸化ナトリウム、水酸化カリウム及びアンモニアからなる群より選ばれる1種以上のアルカリである、(1)~(8)のいずれか一つに記載の草本系バイオマスの前処理方法。
(10) (1)~(9)のいずれか一つに記載の草本系バイオマスの前処理方法で得られた草本系バイオマスの加水分解物を酵素で糖化する糖化工程を含む、糖化液の製造方法。
(11) 前記糖化工程において、前記搾汁工程で排出される搾汁液を前記加水分解物に混合して、酵素で糖化する、(10)に記載の糖化液の製造方法。
(12) (10)又は(11)に記載の糖化液の製造方法で得られた糖化液を微生物で発酵する発酵工程を含む、草本系バイオマス由来発酵生成物の製造方法。
 上記態様の草本系バイオマスの前処理方法によれば、触媒の消費量が従来よりも低減されることで前処理コストを抑えながら、草本系バイオマスからの糖回収量が良好な草本系バイオマスの前処理方法を提供することができる。上記態様の糖化液の製造方法は、前記前処理方法で得られた草本系バイオマスの加水分解物を用いており、糖化液を効率よく製造することができる。上記態様の草本系バイオマス由来発酵生成物の製造方法は、前記糖化液の製造方法で得られた糖化液を用いており、草本系バイオマス由来発酵生成物を効率よく製造することができる。
本発明の第1実施形態に係る草本系バイオマスの前処理装置を示す概略構成図である。 本発明の第2実施形態に係る草本系バイオマスの前処理装置を示す概略構成図である。 本発明の第3実施形態に係る糖化液の製造装置を示す概略構成図である。 本発明の第4実施形態に係る糖化液の製造装置を示す概略構成図である。 本発明の第5実施形態に係る草本系バイオマス由来発酵生成物の製造装置を示す概略構成図である。 実施例1における搾汁前原料、スクリュープレスによる搾汁後の原料(搾汁原料1)、及びプラグスクリューによる搾汁後の原料(搾汁原料2)の画像である。 実施例2における加水分解工程前の原料の渇き基準含水率と糖化液中のグルコース濃度の関係を示すグラフである。 実施例2における加水分解工程前の原料の渇き基準含水率と糖化液中のキシロース濃度の関係を示すグラフである。 実施例2における加水分解工程前の原料の含水率(渇き基準及び湿潤基準)と糖化液中の糖濃度(グルコース及びキシロースの合計濃度)の関係を示すグラフである。
 以下、本発明の実施形態に係る草本系バイオマスの前処理方法(以下、「本実施形態の前処理方法」と略記する場合がある)、糖化液の製造方法、及び草本系バイオマス由来発酵生成物の製造方法について、詳細に説明する。なお、本明細書及び請求の範囲において、各種用語の意味を以下のとおり定義する。
<草本系バイオマス>
 本実施形態の製造方法では、原料として草本系バイオマスを用いる。また草本系バイオマスの代わりに、草本系バイオマス中のセルロース及びヘミセルロースからバイオエタノール、バイオブタノール又はバイオ化学品等を製造する過程で発生した残渣を用いてもよい。原料として用いられる草本系バイオマスは、粉砕されたものを用いることができ、また、ブロック、チップ、粉末等、いずれの形状でもよい。なお、以降において草本系バイオマスを単に「バイオマス」と称する場合がある。
 草本系バイオマスとしては、タケ、パームヤシの樹幹及び空房、パームヤシ果実の繊維及び種子;さとうきび、バガス(さとうきび及び高バイオマス量さとうきびの搾り滓)、稲わら、麦わら、トウモロコシの穂軸、茎葉及び残渣(コーンストーバー、コーンコブ、コーンハル)、ソルガム(スイートソルガムを含む)残渣、スイッチグラス、エリアンサス、ネピアグラス等のイネ科植物から得られるもの;エネルギー作物等の植物油搾取過程で発生する残渣物等が挙げられる。中でも、草本系バイオマスとしては、入手容易性や本実施形態の製造方法との適合性の観点から、イネ科植物から得られるものが好ましく、バガス又はネピアグラスがより好ましい。特に、ネピアグラス等の原料は、加工等されず、刈り取られたまま、すなわち、含水率が高い状態で取り扱われることから、本実施形態の前処理方法において、好ましく用いることができる。
<セルロース及びヘミセルロース>
 本明細書において、「セルロース」には、6つの炭素を構成単位とする六炭糖が含まれる。よって、セルロースは加水分解を受けると、炭素6つからなる六炭糖の単糖(グルコース等)やその単糖が複数個連結された六炭糖のオリゴ糖(セロビオース等)を生ずる。
 「ヘミセルロース」には、キシロース等の5つの炭素を構成単位とする五炭糖(C5糖)やマンノース、アラビノース、4-O-メチルグルクロン酸等の6つの炭素を構成単位とする六炭糖(C6糖)から構成される、グルコマンナンやグルクロノキシラン等の複合多糖等が含まれる。よって、ヘミセルロースは加水分解を受けると、炭素5つからなる五炭糖の単糖やその単糖が複数個連結された五炭糖のオリゴ糖、炭素6つからなる六炭糖の単糖やその単糖が複数個連結された六炭糖のオリゴ糖、五炭糖の単糖と六炭糖の単糖が複数個連結されたオリゴ糖を生ずる。
 一般に、ヘミセルロース又はセルロースから生ずる単糖又はオリゴ糖の構成比率や生成量は、前処理方法や原料として用いた草本系バイオマスの種類によって異なる。
 以下、図面を参照しながら、本発明の実施形態について詳細に説明する。なお、各図において、説明に関連しない部分は図示を省略する場合がある。
<草本系バイオマスの前処理方法>
 本実施形態の前処理方法は、搾汁工程と、触媒添加工程と、圧入工程と、加水分解工程と、をこの順に含む。搾汁工程では、草本系バイオマスを搾汁する。触媒添加工程では、搾汁工程後の草本系バイオマスに、触媒を添加する。圧入工程では、触媒添加工程後の草本系バイオマスを加水分解処理装置に圧入する。加水分解工程では、前記圧入工程後の草本系バイオマスを加水分解する。
 草本系バイオマスの乾燥質量に対する、前記搾汁工程後の草本系バイオマス中の水分の含有量が100質量%未満であり、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下がさらに好ましく、82質量%以下が特に好ましい。水分の含有量の下限値は、特に限定されないが、例えば、10質量%とすることができ、15質量%とすることができ、20質量%とすることができる。含水率が100質量%未満であることで、触媒液中の水素イオン濃度に対する草本系バイオマス中の水分の水素イオン濃度の影響による水素イオン濃度の希釈を低減することができ、触媒による分解強度を高く保つことができる。例えば、酸を触媒として用いる場合には、酸のpHに対して、原料中の水分のpHは高いことから、酸添加後の原料中のpHは添加した酸のpHよりも高くなり、分解強度が低下することが懸念される。しかしながら、草本系バイオマス中の含水率を100質量%未満とすることで、酸添加後の原料中のpHを、添加した酸のpHに近似した低い値とすることができ、酸による分解強度を高く保つことができる。これにより、加水分解工程において、草本系バイオマス中の特にヘミセルロースを分解して、効率よくキシロースを得ることができる。
 ここでいう草本系バイオマスの乾燥質量に対する、搾汁工程後の草本系バイオマス中の水分の含有量は、搾汁工程後の草本系バイオマス中の水分の質量を草本系バイオマスの乾燥質量で除した割合の百分率であり、以下、「渇き基準の含水率」ともいう。渇き基準の含水率は、例えば、加熱乾燥式水分計(A&D社製、型番:ML-50)を用いて、測定することができる。
 本実施形態の前処理方法は、上記搾汁工程を有することで、草本系バイオマスに含まれる不純物を取り除き、当該不純物が触媒中の水素イオンに緩衝し、触媒濃度を下げることを効果的に抑制することができる。また、上記搾汁工程を有することで、草本系バイオマスを破砕し、表面積が大きくなり、続く加水分解工程において、触媒との接触頻度が高められ、効果的に触媒により分解することができる。さらに、上記搾汁工程を経た後の草本系バイオマスの渇き基準の含水率が100質量%未満で4あることで、上述したように、草本系バイオマス中の水分の影響による触媒中の水素イオン濃度の希釈を低減することができ、触媒による分解強度を高く保つことができる。
 これらのことから、本実施形態の前処理方法によれば、触媒消費量が従来よりも低減されることで前処理コストを抑えながら、草本系バイオマスからの糖回収量を良好なものとすることができる。また、本実施形態の前処理方法は、バガス等と異なり、渇き基準の含水率が100質量%超等の含水率が高い原料や不純物が多く含まれるような原料についても適用することができ、幅広い原料を効率的に前処理することができる。
 次いで、本実施形態の前処理方法の各工程について、以下に詳細を説明する。
[搾汁工程]
 搾汁工程では、草本系バイオマスを搾汁する。
 草本系バイオマスの含水率は乾燥によっても制御することは可能であるが、その場合、草本系バイオマス中の遊離糖や、灰分等の不純物は取り除かれず残存する。残存した遊離糖は、続く加水分解工程に持ち込まれた場合に、過分解してキシロースの過分解物であるフルフラール、グルコースの過分解物である5-ヒドロキシメチルフルフラール(5-HMF)等の糖の過分解物が生成される。本実施形態の前処理方法で得られた草本系バイオマスの加水分解物を糖化させた後、発酵原料として用いる場合に、この過分解物は、酵素による糖化反応や微生物による発酵反応を阻害する。そのため、遊離糖をできる限り、続く加水分解工程に持ち込まないことが好ましい。これに対して、搾汁工程では、草本系バイオマスの含水率を低減させるだけでなく、原料中の水分中に溶解して存在しているこの遊離糖を搾汁液とともに取り除くことができ、続く加水分解工程への遊離糖の持ち込みを低減することができる。
 また、残存した灰分等の不純物に含まれる成分の一部は、続く加水分解工程で酸又はアルカリからなる触媒を添加する際に、水素イオンに緩衝することで、触媒による草本系バイオマス原料の分解強度を低減させる。そのため、灰分等の不純物をできる限り、続く加水分解工程に持ち込まないことが好ましい。これに対して、搾汁工程では、草本系バイオマスの含水率を低減させるだけでなく、原料中の水分中に溶解して存在しているこの灰分等の不純物を搾汁液とともに取り除くことができ、続く加水分解工程への灰分等の不純物の持ち込みを低減することができる。
 さらに、搾汁工程では、草本系バイオマスに圧力をかけながら搾汁を行うことで、後述する実施に示すように、草本系バイオマスをより細かく砕くことができる。これにより、草本系バイオマスの比表面積が大きくなり、続く加水分解工程において、触媒との接触機会を増加させることができ、効率よく草本系バイオマスを分解させることができる。
 草本系バイオマス原料の含水率や形状、大きさ等にもよるが、搾汁工程を2回以上行うことが好ましい。搾汁工程を2回以上の複数回を行うことで、草本系バイオマスにより多くの剪断力が加わり、より細かく破砕されて、草本系バイオマスの表面積をより大きくすることができる。
 また、搾汁工程を2回以上の複数回行う場合に、n(nは1以上の整数)回目の搾汁工程とn+1回目の搾汁工程との間で処理水を添加して洗浄することが好ましい。処理水の添加により、草本系バイオマスの搾汁時に遊離糖や、灰分等の不純物をより効率的に取り除くことができる。
 搾汁工程を複数回行う場合における搾汁工程の回数としては、2回以上5回以下が好ましく、2回以上4回以下がより好ましく、2回以上3回以下がさらに好ましく、製造効率の観点から、2回が特に好ましい。搾汁工程を2回以上の複数回行う場合に、最終回の搾汁工程後の前記草本系バイオマスの渇き基準の含水率が、最終回より前の搾汁工程後の前記草本系バイオマスの渇き基準の含水率以下となるように搾汁することが好ましい。最終回の搾汁工程後の前記草本系バイオマスの渇き基準の含水率が、最終回より前の搾汁工程後の前記草本系バイオマスの渇き基準の含水率以下となるように搾汁することで、続く加水分解工程で、草本系バイオマス中の水分の影響による触媒中の水素イオン濃度の希釈をより低減することができ、触媒による分解強度をより高く保つことができる。例えば、搾汁工程を2回行う場合に、1回目の搾汁工程での渇き基準の含水率を120%質量%未満とすることができ、2回目の搾汁工程での渇き基準の含水率を100質量%未満とすることができる。
 搾汁工程は、例えば、スクリュープレス、フィルタープレス、ベルトプレス、ロール搾汁機、プラグスクリュー等の搾汁機構を有する装置を用いて行うことができる。中でも、スクリュープレスを用いて2回搾汁を行うことが好ましい。スクリュープレスを用いて2回搾汁を行うことで、草本系バイオマス中の遊離糖や、灰分等の不純物をより効率的に取り除くことができ、また、バイオマスの渇き基準の含水率をより効率的に低減することができる。
 或いは、スクリュープレスを用いて搾汁を行なった後、プラグスクリューを用いて搾汁を行う2段階での搾汁が好ましい。後述する実施例に示すように、プラグスクリューは、当該プラグスクリューを経た草本系バイオマスの渇き基準含水率がスクリュープレスを経た草本系バイオマスの渇き基準含水率よりも低くなるように搾汁することができる装置であることから、草本系バイオマスの含水率をより効率的に低減させることができる。また、草本系バイオマスにより多くの剪断力が加わり、より細かく破砕されて、草本系バイオマスの表面積をより大きくすることができる。
[触媒添加工程]
 触媒添加工程では、搾汁工程後の草本系バイオマスに触媒を添加する。
 本実施形態の前処理工程では、搾汁工程の後であって、圧入工程の前に、触媒を添加する触媒添加工程を行なう。これにより、続く圧入工程において、添加した触媒を草本系バイオマスに効率よく均一に行き渡らせることができる。また、続く圧入工程において、添加された触媒の内、過剰分の触媒を回収することで、当該回収された触媒を触媒添加工程で再利用することができ、触媒添加量を従来よりも低減させることができる。さらに、搾汁工程の後であって、触媒添加工程の前の草本系バイオマス、すなわち、触媒が添加される直前の草本系バイオマスの渇き基準含水率が100質量%未満であることで、上述したように、草本系バイオマス中の水分の影響による触媒中の水素イオン濃度の希釈を低減することができ、触媒による分解強度を高く保つことができる。
 触媒は、リグニンを分解又は軟化させ、セルロース及びヘミセルロースを分解するためのものであれば、特別な限定はないが、酸又はアルカリからなるものが好ましく用いられる。酸としては、例えば、硫酸(希硫酸を含む)、塩酸、硝酸、リン酸等が挙げられる。アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア等が挙げられる。これら酸又はアルカリはそれぞれ1種単独で用いてもよく、2種以上組み合わせて用いてもよい。中でも、工業利用には安価で手に入りやすいことから、希硫酸が特に好ましい。
[圧入工程]
 圧入工程では、触媒添加工程後の草本系バイオマスを加水分解処理装置に圧入する。
 圧入工程を行なうことで、触媒添加工程で添加された触媒を草本系バイオマスに効率よく均一に行き渡らせることができる。また、添加された触媒の内、過剰分の触媒を回収することで、当該回収された触媒を触媒添加工程で再利用することができ、触媒添加量を従来よりも低減させることができる。
 圧入工程は、圧力をかけながら、加水分解処理装置内に触媒添加工程後の草本系バイオマスを投入できるように構成された装置であればよく、中でも、加水分解処理装置内の高圧雰囲気を維持しながら大気圧から高圧雰囲気へ原料を連続投入するために、圧入した原料によって加水分解処理装置の内圧をシールするように構成された装置であることが好ましい。このような圧入装置としては、上記「搾汁工程」において例示された装置と同様の装置が挙げられ、中でも、プラグスクリューが好ましい。
[加水分解工程]
 加水分解工程では、圧入工程後の草本系バイオマスを加水分解する。加水分解工程では、特に、草本系バイオマス中のヘミセルロースがキシロースに分解される。
 本実施形態の前処理方法では、加水分解処理装置へ草本系バイオマスを圧入する圧入工程を行なう前に、触媒添加工程を行なうことで、上述したように、触媒添加工程で添加された触媒を草本系バイオマスに効率よく均一に行き渡らせることができ、これにより、加水分解工程において、効率よく草本系バイオマス中のヘミセルロースをキシロースに分解することができる。また、従来では加水分解処理装置内に草本系バイオマスを投入した後に、触媒を添加していたため、加水分解強度を高く保つために、過剰量の触媒の添加が必要であった。
 これに対して、本実施形態の前処理方法では、加水分解処理装置に投入する前に、上記搾汁工程において草本系バイオマスの渇き基準の含水率が上記範囲に調整されており、上記触媒添加工程において、必要量の触媒を添加されていることで、加水分解工程において触媒中の水素イオンが希釈されない、すなわち、添加した触媒濃度と草本系バイオマス中の触媒濃度を同程度に保つことができる。また、本実施形態の前処理方法では、加水分解処理装置に投入する前に、上記搾汁工程において草本系バイオマス中の遊離糖や、灰分等の不純物が取り除かれていることで、糖の過分解物の生成が抑制され、また、灰分等の不純物が水素イオンに緩衝し、触媒濃度を下げることを効果的に抑制することができる。さらに、本実施形態の前処理方法では、加水分解処理装置に投入する前に、上記搾汁工程において、草本系バイオマスを破砕し、表面積が大きくなることで、加水分解工程において、草本系バイオマスの触媒との接触頻度が高められる。これらにより、触媒消費量を従来よりも低減することができ、前処理コストを抑えながら、効率よく草本系バイオマス中のヘミセルロースをキシロースに分解することができる。
 加水分解工程における温度は例えば100℃以上250℃以下とすることができ、120℃以上200℃位以下とすることができ、150℃以上180℃以下とすることができる。
 時間は例えば3分間以上150分間以下とすることができ、5分間以上120分間以下とすることができ、7分間以上90分間以下とすることができ、8分間以上40分間以下とすることができる。
 加水分解工程は、例えば、耐酸性若しくは耐アルカリ性を有するオートクレーブのような加熱圧力装置、又は耐酸性若しくは耐アルカリ性を有する加熱圧力容器を有し、さらにプラグスクリュー等の上述した圧入装置が一体となり連続的に処理を行なえる装置等を用いて行うことができる。
 本実施形態の前処理方法は、搾汁工程、触媒添加工程、圧入工程、及び加水分解工程に加えて、必要に応じて、その他の工程を更に含むことができる。その他の工程としては、例えば、洗浄工程、破砕工程等が挙げられる。
[洗浄工程]
 洗浄工程では、前記搾汁工程の前に、草本系バイオマスに水を添加して、洗浄する。草本系バイオマスには、泥、砂、微小な金属片等の付着があるため、洗浄工程を行うことでそれらの異物を除去することができる。
 洗浄工程は、水洗式のウォッシャー等の装置を用いて行うことができる。通常、水に対して、草本系バイオマスの比重が小さく、泥、砂、微小な金属片等の異物の比重が大きいため草本系バイオマスが浮いてくるが、草本系バイオマスの比重によっては、草本系バイオマスが浮いてこないこともあるため、適宜水流を作ることで、ゆっくりと沈降する草本系バイオマスも回収することができる。洗浄工程の時間は、草本系バイオマスの汚れ具合、比重により適宜調整可能だが、例えば5秒間以上30分間以下とすることができる。
[破砕工程]
 破砕工程では、前記搾汁工程の前に、搾汁しやすい大きさに草本系バイオマスを破砕する。破砕工程は、例えば、ミルやカッター式破砕機等を用いて行うことができる。
<草本系バイオマスの前処理装置>
[第1実施形態]
 図1は、本発明の第1実施形態に係る草本系バイオマスの前処理装置を示す概略構成図である。草本系バイオマスの前処理装置10は、搾汁機1と、触媒供給装置2と、圧入装置3と、加水分解処理装置4と、を備え、それらが配管を介して配設されている。
 草本系バイオマスの前処理装置10は、上記構成を有することで、触媒消費量が従来よりも低減されることで前処理コストを抑えながら、草本系バイオマスからの糖回収量を良好なものとすることができる。
 搾汁機1は、搾汁機構を有するものであって、配管5aを介して投入された草本系バイオマス中に可溶している遊離糖及び灰分を水分と一緒に出して分離することができるように構成されている。さらに、草本系バイオマスを細かく砕くように構成されていることが好ましい。このような搾汁機1としては、例えば、スクリュープレス、フィルタープレス、ベルトプレス、ロール搾汁機、プラグスクリュー等の搾汁機構を有する装置等が挙げられる。
 前処理装置10は、触媒供給装置2の上流(前段)に、搾汁機1を有することで、草本系バイオマスに含まれる不純物を取り除き、当該不純物が触媒中の水素イオンに緩衝し、触媒濃度を下げることを効果的に抑制することができる。また、上前処理装置10は、触媒供給装置2の上流(前段)に、搾汁機1を有することで、草本系バイオマスを破砕し、表面積が大きくなり、続く加水分解処理装置4において、触媒との接触頻度が高められ、効果的に触媒により分解することができる。さらに、搾汁機1を経た後の草本系バイオマスの渇き基準の含水率が100質量%未満であることで、上述したように、草本系バイオマス中の水分の影響による触媒中の水素イオン濃度の希釈を低減することができ、触媒による分解強度を高く保つことができる。
 これらのことから、前処理装置10によれば、触媒消費量が従来よりも低減されることで前処理コストを抑えながら、草本系バイオマスからの糖回収量を良好なものとすることができる。また、前処理装置10は、渇き基準の含水率が100質量超等の含水率が高い原料についても適用することができ、幅広い原料を効率的に前処理することができる。
 搾汁機1において草本系バイオマスから分離された固形分は、配管5cを介して圧入装置へ投入される。この配管5cの途中には触媒供給装置2が配設されており、触媒が草本系バイオマスに添加される。触媒供給装置2は、例えば、触媒貯蔵槽とポンプとを含むことが好ましい。また、触媒供給装置2は、所望の触媒濃度となるように、触媒溶液と処理水とを混合する制御機構を含んでいてもよい。触媒としては、上記「草本系バイオマスの前処理方法」の「触媒添加工程」において例示されたものと同様のものが挙げられる。触媒貯蔵槽及びポンプは、耐酸性又は耐アルカリ性を有する材料から構成されたものであることが好ましい。
 前処理装置10は、搾汁機1の下流(後段)であって、加水分解処理装置4の上流(前段)に触媒を添加するための触媒供給装置2を含むことで、続く圧入装置3において、添加した触媒を草本系バイオマスに効率よく均一に行き渡らせることができる。また、搾汁機1を経た後であって、触媒供給装置2によって触媒が供給される直前の草本系バイオマスの渇き基準含水率が100質量%未満であることで、上述したように、草本系バイオマス中の水分の影響による触媒中の水素イオン濃度の希釈を低減することができ、触媒による分解強度を高く保つことができる。
 配管5cを通りながら、触媒供給装置2によって触媒が添加された固形分は、圧入装置3に投入される。圧入装置3は、圧力をかけながら、加水分解処理装置内に触媒添加工程後の草本系バイオマスを投入できるように構成された装置であればよく、中でも、加水分解処理装置内の高圧雰囲気を維持しながら大気圧から高圧雰囲気へ原料を連続投入するために、圧入した原料によって加水分解処理装置の内圧をシールするように構成された装置であることが好ましい。このような圧入装置としては、上記草本系バイオマスの前処理方法」の「搾汁工程」において例示された装置と同様の装置が挙げられ、中でも、プラグスクリューが好ましい。
 前処理装置10は、圧入装置3を含むことで、触媒供給装置2により添加された触媒を草本系バイオマスに効率よく均一に行き渡らせることができる。
 次いで、圧入装置3により、触媒が添加された固形分は加水分解処理装置4内に投入される。加水分解処理装置4は、前記固形分を加水分解するための装置である。加水分解処理装置4としては、特別な限定はないが、耐酸性又は耐アルカリ性を有するオートクレーブのような加熱圧力装置等が挙げられる。加水分解処理装置4において加水分解処理された草本系バイオマスの加水分解物は、配管5fを介して、例えば、糖化装置等に投入される。
 一方、搾汁機1において草本系バイオマスから分離された搾汁液は、配管5bを介して系外に排出される。
[第2実施形態]
 図2は、本発明の第2実施形態に係る草本系バイオマスの前処理装置を示す概略構成図である。草本系バイオマスの前処理装置20は、2台の搾汁機を備える点で、図1に示す草本系バイオマスの前処理装置10と異なる。なお、図2以降の図面において、図1に示す構成要素と同一のものについては、同じ符号を用いて説明を省略する。
 第1の搾汁機1aにおいて草本系バイオマスから分離された固形分は、配管5gを介して第2の搾汁機1bに投入される。
 第1の搾汁機1a及び第2の搾汁機1bとしては、上記前処理装置10で例示されたものと同様のものを用いることができる。第1の搾汁機1a及び第2の搾汁機1bは同じ構成の装置を用いてもよく、異なる構成の装置を用いてもよいが、第2の搾汁機1bは、当該第2の搾汁機1bを経た後の草本系バイオマスの渇き基準の含水率が第1の搾汁機1aを経た後の草本系バイオマスの渇き基準の含水率以下となるように、搾汁するように構成されている装置であることが好ましい。例えば、第1の搾汁機1aがスクリュープレスであって、第2の搾汁機が同じスクリュープレスである組み合わせとすることができる。スクリュープレスを用いて2回搾汁を行うことで、草本系バイオマス中の遊離糖や、灰分等の不純物をより効率的に取り除くことができ、また、バイオマスの渇き基準の含水率をより効率的に低減することができる。
 或いは、第1の搾汁機1aがスクリュープレスであって、第2の搾汁機がプラグスクリューである組み合わせとすることができる。後述する実施例に示すように、プラグスクリューは、当該プラグスクリューを経た草本系バイオマスの渇き基準含水率がスクリュープレスを経た草本系バイオマスの渇き基準含水率よりも低くなるように搾汁することができる装置であることから、草本系バイオマスの渇き基準の含水率をより効率的に低減させることができる。また、草本系バイオマスにより多くの剪断力が加わり、より細かく破砕されて、草本系バイオマスの表面積をより大きくすることができる。
 第2の搾汁機1bにおいて第1の搾汁機1aで分離された固形分からさらに分離された固形分は、配管5cにおいて触媒供給装置2により触媒が添加され、圧入装置3に投入された後、圧入装置3から加水分解処理装置4に投入される。加水分解処理装置4において加水分解処理された草本系バイオマスの加水分解物は、配管5fを介して、例えば、糖化装置等に投入される。
 一方、第2の搾汁機1bにおいて第1の搾汁機1aで分離された固形分からさらに分離された搾汁液は、配管5hを介して系外に排出される。
 本実施形態の草本系バイオマスの前処理装置は、図1~2に示す前処理装置に限定されず、本発明の効果を損なわない範囲内において、図1~2に示すものの一部の構成が変更又は削除されたものや、これまでに説明したものにさらに他の構成が追加されたものであってもよい。
 例えば、図1~2に示す前処理装置において、圧入装置3と加水分解処理装置4とが一体化された装置を用いてもよい。これにより、圧入装置によって圧入された原料によって加水分解処理装置の内圧を効率よくシールすることができる。このような装置としては、例えば、耐酸性又は耐アルカリ性を有するオートクレーブのような加熱圧力装置にプラグスクリュー等の圧入装置が一体となり連続的に処理を行なえる装置等が挙げられる。
 例えば、図1~2に示す前処理装置において、圧入装置3から配管5dを介して回収された触媒を含む溶液が、触媒供給装置2に循環されて再利用するように構成されていてもよい。これにより、触媒消費量をより低減することができる。
 例えば、図1~2に示す前処理装置において、搾汁機1の上流(前段)に洗浄装置を備えていてもよい。洗浄装置は、原料である草本系バイオマスを洗浄するための装置である。特に限定はないが、装置内部に草本系バイオマスと、泥、砂、微小な金属片等の異物とを分離するための、水車等の水流発生手段が備えられていることが好ましい。
 洗浄装置を用いて草本系バイオマスの洗浄方法として具体的には、まず、洗浄装置の入口部から、草本系バイオマスを投入する。装置内部には水が満たされており、比重の小さい草本系バイオマスは水車の作る水流に乗って出口方向に運ばれる。一方、比重の大きい泥、砂、微小な金属片等の異物は沈み、バルブより定期的に排出することで取り除くことができる。
 次に、草本系バイオマスは、ベルトコンベアの回転と共に、スクレーパーによりかき上げられ、出口へと運ばれる。
 また、洗浄に使用した水はウェッジワイヤースクリーン等の分離機、及び、各種配管を通って、ポンプにより循環することで再利用することができる。
 また、例えば、図2に示す前処理装置において、第1の搾汁機1aと第2の搾汁機2bとの間で処理水を添加して洗浄してもよい。処理水の添加により、草本系バイオマスの搾汁時に遊離糖や、灰分等の不純物をより効率的に取り除くことができる。第1の搾汁機1aと第2の搾汁機2bとの間で処理水を添加する方法及び装置に限定はないが、例えば、第1の搾汁機1aと第2の搾汁機2bとの間で、草本系バイオマスを搬送する搬送コンベア上で水を散布してもよく、或いは、第1の搾汁機1aと第2の搾汁機2bとの間に洗浄装置を設けて、草本系バイオマスを洗浄してもよい。洗浄装置を設ける場合は、搾汁機1の上流(前段)に洗浄装置を設ける場合の洗浄装置と同様の洗浄装置であってもよい。
 例えば、図1~2に示す前処理装置において、搾汁機1の上流(前段)に破砕装置を備えてもよい。破砕装置は、搾汁しやすい大きさに草本系バイオマスを破砕する装置である。破砕装置としては、例えば、ミルやカッター式破砕機等が挙げられる。
<糖化液の製造方法>
 本実施形態の糖化液の製造方法は、上述した草本系バイオマスの前処理方法で得られた草本系バイオマスの加水分解物を酵素で糖化する糖化工程を含む。
 本実施形態の糖化液の製造方法は、上記構成を有することで、糖化液を効率よく製造することができる。
[糖化工程]
 糖化工程では、上述した草本系バイオマスの前処理方法で得られた草本系バイオマスの加水分解物に含まれるセルロース及びヘミセルロースを基質として、酵素を用いて、糖化反応を行う。
 ここでいう酵素とは、主に糖化酵素であり、セルロースを分解するセルラーゼ、ヘミセルロースを分解するヘミセルラーゼ、デンプンを分解するアミラーゼ等が挙げられる。
 前記セルラーゼとしては、セルロースをグルコース等の単糖又はオリゴ糖に分解するものであればよく、例えば、エンドグルカナーゼ(endoglucanase;EG)、セロビオハイドロラーゼ(cellobiohydrolase;CBH)、及びβ-グルコシダーゼ(β-glucosidase;BGL)の各活性の少なくとも1つの活性を有するものが挙げられ、これらの各活性を有する酵素混合物であることが、酵素活性の観点から好ましい。
 前記ヘミセルラーゼとしては、ヘミセルロースをキシロース等の単糖又はオリゴ糖に分解するものであればよく、例えば、キシラナーゼ、キシロシダーゼ、マンナナーゼ、ガラクトシダーゼ、グルクロニダーゼ、及びアラビノフラノシダーゼの各活性の少なくとも1つの活性を有するものが挙げられ、これらの各活性を有する酵素混合物であることが、酵素活性の観点から好ましい。
 これらセルラーゼ及びヘミセルラーゼ等の糖化酵素の由来は限定されることはなく、例えば、トリコデルマ(Trichoderma)属、アクレモニウム(Acremonium)属、アスペルギルス(Aspergillus)属、バチルス(Bacillus)属、シュードモナス(Pseudomonas)属、ペニシリウム(Penicillium)属、アエロモナス(Aeromonus)属、イルペックス(Irpex)属、スポロトリクム(Sporotrichum)属、フミコーラ(Humicola)属等の微生物由来のセルラーゼ及びヘミセルラーゼ等の糖化酵素を用いることができる。
 糖化温度は、45℃以上70℃以下が好ましく、45℃以上55℃以下がより好ましく、50℃が特に好ましい。また、糖化時間は12時間以上120時間以下が好ましく、24時間以上96時間以下がより好ましく、24時間以上72時間以下がさらに好ましい。
 糖化工程は、特別な限定はなく、公知の糖化装置を用いて行なうことができる。具体的には、撹拌型、通気撹拌型、気泡塔型、流動層型、充填層型等の糖化装置が挙げられる。
 また、糖化装置は、装置内の温度を一定に保つために、装置の外側に温水循環式のジャケット等の温度調節装置を備えてもよい。
 糖化工程において、上述した草本系バイオマスの前処理方法の搾汁工程において排出される搾汁液を草本系バイオマスの加水分解物に混合して、酵素で糖化することが好ましい。当該搾汁液も糖化に利用することで、草本系バイオマスからの糖回収量をより向上させることができる。
 本実施形態の糖化液の製造方法は、上記糖化工程に加えて、その他の工程を更に含むことができる。その他の工程としては、例えば、固液分離工程等が挙げられる。
[固液分離工程]
 固液分離工程では、糖化工程の後に、糖化工程で得られた糖化生成物を固液分離して、液体分である糖化液と固形分である糖化残渣とに分離して、糖化液を得る。
 固液分離する方法としては、固形分と液体分を分けられる公知の方法を用いることができ、例えば、フィルター、振動篩等によりろ過する方法、遠心分離法、スクリュープレスを用いた分離法等が挙げられ、これらに限定されない。
 本実施形態の製造方法で得られた糖化液は、不純物を取り除き精製して、精糖蜜として販売してもよく、又は、糖化液を微生物発酵により生成される有用成分(草本系バイオマス由来発酵生成物)を製造するために用いることができる。該有用成分の詳細については、後述する。
<糖化液の製造装置>
[第3実施形態]
 図3は、本発明の第3実施形態に係る糖化液の製造装置を示す概略構成図である。糖化液の製造装置30は、糖化装置11及び配管5iを更に備える点で図2に示す草本系バイオマスの前処理装置20と異なる。糖化液の製造装置30は、草本系バイオマスの前処理装置で得られた草本系バイオマスの加水分解物を糖化原料として用いることで、糖化液を効率よく製造することができる。
 糖化装置11としては、特別な限定はなく、公知の糖化装置を用いることができる。具体的には、撹拌型、通気撹拌型、気泡塔型、流動層型、充填層型等の糖化装置が挙げられる。
 また、糖化装置は、装置内の温度を一定に保つために、装置の外側に温水循環式のジャケット等の温度調節装置を備えてもよい。
 配管5fを介して糖化装置11に投入された草本系バイオマスの加水分解物に含まれるセルロース及びヘミセルロースは、糖化装置11に予め投入されていた、或いは、加水分解物と共に投入された酵素により糖化される。酵素及び糖化反応条件としては、上述した「糖化液の製造方法」において例示されたものが挙げられる。
 糖化装置11で得られた糖化液は配管5iを介して、目的に応じて、例えば、発酵装置等に投入される。
[第4実施形態]
 図4は、本発明の第4実施形態に係る糖化液の製造装置を示す概略構成図である。糖化液の製造装置40は、第1の搾汁機1a及び第2の搾汁機1bと、糖化装置11とをつなぐ配管5jを更に備える点で図3に示す糖化液の製造装置30と異なる。糖化液の製造装置40は、配管5jを更に備えることで、第1の搾汁機1a及び第2の搾汁機1bで排出された搾汁液に含まれるキシロースやグルコース等の単糖や、これら単糖から構成されるオリゴ糖等の遊離糖を糖化装置11で回収し、利用することができる。これにより、草本系バイオマスからの糖回収量をより向上させることができる。
 本実施形態の糖化液の製造装置は、図3~4に示す製造装置に限定されず、本発明の効果を損なわない範囲内において、図3~4に示すものの一部の構成が変更又は削除されたものや、これまでに説明したものにさらに他の構成が追加されたものであってもよい。
 例えば、図3~4に示す製造装置において、糖化装置の下流(後段)に、固液分離装置を備えていてもよい。固液分離装置は、糖化装置において生成された糖化生成物から液体分である糖化液と固形分である糖化残渣を分離する装置である。固液分離装置としては、特に限定されず、例えば、フィルター、振動篩、遠心分離装置、スクリュープレス等が挙げられる。固液分離装置で分離された糖化液は、不純物を取り除き精製して、精糖蜜として販売してもよく、又は、糖化液を微生物発酵により生成される有用成分(草本系バイオマス由来発酵生成物)を製造するために用いることができる。一方、固液分離装置で分離された糖化残渣は、セルロースやヘミセルロース等の未糖化成分を含むことから、糖化装置に投入することで、糖化原料として利用することができる。
<草本系バイオマス由来発酵生成物の製造方法>
 本実施形態の草本系バイオマス由来発酵生成物の製造方法は、上述した糖化液の製造方法で得られた糖化液を微生物で発酵する発酵工程を含む。
 本実施形態の草本系バイオマス由来発酵生成物の製造方法は、上記構成を有することで、草本系バイオマス由来発酵生成物を効率よく製造することができる。
[発酵工程]
 発酵工程では、上述した糖化液の製造方法で得られた糖化液に微生物を添加し、攪拌しながら発酵反応を行う。発酵反応において、微生物が糖化液中のグルコースやキシロース等の単糖やオリゴ糖を摂取することで、草本系バイオマス由来発酵生成物が生成される。
 発酵工程で用いられる微生物としては、目的の草本系バイオマス由来発酵生成物を生成できるものであれば、特別な限定はない。具体的には、酵母や細菌等が挙げられ、遺伝子組換え微生物も好ましく用いられる。遺伝子組換え微生物とは、アルコール等の目的の草本系バイオマス由来発酵生成物への変換に必要な酵素遺伝子を有していない微生物に、遺伝子工学技術によりこれら遺伝子を導入し、アルコール等の目的の草本系バイオマス由来発酵生成物の生成を可能にしたものである。遺伝子組換え微生物としては、例えば、アルコール発酵性を有する遺伝子組換え大腸菌等が挙げられる。中でも、本実施形態の草本系バイオマス由来発酵生成物の製造方法で用いられる微生物としては、酵母が好ましい。
 また、微生物は微生物を含む培養液をそのまま使用してもよく、又は、微生物を含む培養液を遠心分離により濃縮したもの、乾燥状態のもの等を適宜使用してよい。
 使用する微生物の量は、微生物の増殖速度、発酵装置の大きさ、及び発酵に用いる糖化液の量等を元に算出すればよい。
 中でも、発酵工程では、微生物として酵母を用いて、糖化液を発酵して、草本系バイオマス由来発酵生成物としてエタノール等のアルコールを生成させることが好ましい。
 発酵工程は従来技術に基づき適宜行えばよく、例えば、発酵温度は、25℃以上50℃以下が好ましく、28℃以上35℃以下がより好ましく、32℃が特に好ましい。また、発酵時間は、24時間以上120時間以下が好ましく、24時間以上96時間以下がより好ましく、24時間以上72時間以下がさらに好ましい。
 発酵工程は、特別な限定はなく、公知の発酵装置を用いて行なうことができる。具体的には、撹拌型、通気撹拌型、気泡塔型、流動層型、充填層型等の発酵装置が挙げられ、これらに限定されない。
 また、発酵装置は装置内の温度を一定に保つために、装置の外側に温水循環式のジャケット等の温度調節装置を備えていてもよい。
 本実施形態の草本系バイオマス由来発酵生成物の製造方法は、上記発酵工程に加えて、その他の工程を更に含むことができる。その他の工程としては、例えば、精製工程等が挙げられる。
[精製工程]
 精製工程では、発酵工程で得られた発酵生成物から草本系バイオマス由来発酵生成物を取り出す。
 草本系バイオマス由来発酵生成物とは、草本系バイオマスを分解して得られた単糖及びオリゴ糖を、酵母等の微生物が摂取することにより生成された化合物を意味する。草本系バイオマス由来発酵生成物として具体的には、例えば、エタノール、ブタノール、1,3-プロパンジオール、1,4-ブタンジオール、グリセロール等のアルコール;ピルビン酸、コハク酸、リンゴ酸、イタコン酸、クエン酸、乳酸等の有機酸;イノシン、グアノシン等のヌクレオシド;イノシン酸、グアニル酸等のヌクレオチド;カダベリン等のジアミン化合物等が挙げられる。発酵によって得られた化合物が乳酸等のモノマーである場合は、重合によりポリマーに変換することもある。中でも、草本系バイオマス由来発酵生成物としては、エタノールが好ましい。
 精製方法としては、草本系バイオマス化合物がアルコール類である場合は、例えば、前記発酵生成物を蒸留する方法(蒸留法)等が挙げられる。また、草本系バイオマス化合物がアミノ酸類である場合は、例えば、イオン交換法、活性炭を用いた異物の吸着除去法等が挙げられる。中でも、発酵工程で、微生物として酵母を用いて、糖化液を発酵して、草本系バイオマス由来発酵生成物としてエタノール等のアルコールを生成させた後、精製工程で、蒸留法により発酵生成物からエタノール等のアルコールを取り出すことが好ましい。
<草本系バイオマス由来発酵生成物の製造装置>
 図5は、本発明の第5実施形態に係る草本系バイオマス由来発酵生成物の製造装置を示す概略構成図である。草本系バイオマス由来発酵生成物の製造装置100は、発酵装置12及び配管5kを更に備える点で、糖化液の製造装置30と異なる。草本系バイオマス由来発酵生成物の製造装置100は、糖化液の製造装置で得られた糖化液を発酵原料として用いることで、草本系バイオマス由来発酵生成物を効率よく製造することができる。
 発酵装置12としては、特別な限定はなく、公知の発酵装置を用いることができる。具体的には、撹拌型、通気撹拌型、気泡塔型、流動層型、充填層型等の発酵装置が挙げられ、これらに限定されない。
 また、発酵装置12は装置内の温度を一定に保つために、装置の外側に温水循環式のジャケット等の温度調節装置を備えていてもよい。
 配管5iを介して発酵装置12に投入された糖化液に含まれるグルコースやキシロース等の単糖や、これら単糖から構成されるオリゴ糖は、発酵装置12に予め投入されていた、或いは、糖化液と共に投入された微生物により発酵される。微生物及び発酵条件としては、上述した「草本系バイオマス由来発酵生成物の製造方法」において例示されたものが挙げられる。
 発酵装置12で得られた発酵生成物は配管5kを介して、目的に応じて、例えば、精製装置等に投入される。
 本実施形態の草本系バイオマス由来発酵生成物の製造装置は、図5に示す製造装置に限定されず、本発明の効果を損なわない範囲内において、図5に示すものの一部の構成が変更又は削除されたものや、これまでに説明したものにさらに他の構成が追加されたものであってもよい。
 例えば、図5に示す製造装置において、発酵装置12の下流に精製装置を備えていてもよい。精製装置は、発酵生成物から、上述した「草本系バイオマス由来発酵生成物の製造方法」において草本系バイオマス由来発酵生成物として例示された有用成分を取り出す。草本系バイオマス化合物がアルコール類である場合は、例えば、蒸留装置(蒸留塔を含む)等が挙げられる。また、草本系バイオマス化合物がアミノ酸類である場合は、例えば、イオン交換装置、活性炭を用いた異物の吸着除去装置等が挙げられる。中でも、発酵装置4で、微生物として酵母を用いて、糖化液を発酵して、有用成分としてエタノール等のアルコールを生成させた後、蒸留塔により発酵生成物からエタノール等のアルコールを取り出すことが好ましい。
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
(破砕工程及び洗浄工程)
 草本系バイオマスである3m長のネピアグラスをカッター式破砕機で破砕した。次いで、得られた破砕片中の異物を除去するために、水洗式のウォッシャーで破砕片を洗浄し、原料として用いた。
(搾汁工程:1回目)
 洗浄後の原料をスクリュープレス(富国工業社製、型番:SHX-300X2000L、動力3.75kW)で搾汁した。
(搾汁工程:2回目)
  スクリュープレスによる搾汁後の原料をさらに、プラグスクリュー(動力5.5kW)で搾汁した。
(物性の測定)
(1)嵩密度
 嵩密度は、20.0L容積の容器にバイオマスを容器受け口から約1.0mの高さから自由落下させながら充填し、容器受け口よりも上の高さにある原料を容器受け口面が水平になるように直線の板を使用し落とし、質量を測定した。次いで、測定された質量を容積(20.0L)で除することで、単位容積当たりの質量を算出した。湿潤基準では、原料をそのまま用いて測定した嵩密度を示し、渇き基準では、別途測定した原料中含水率の値を元に計算した嵩密度を示す。
(2)含水率
 含水率は、渇き基準で、原料中の水分の質量を原料の乾燥質量(すなわち、原料中の固形分の質量)で除した割合として算出した。原料中の水分の質量は、加熱乾燥式水分計(A&D社製、型番:ML-50)を用いて測定した。
(3)灰分
 適量の原料を105℃で恒量になるまで乾燥した後に、600℃で強熱し残存物を灰分としてその質量減から乾燥質量当たりの灰分量を測定した。
(4)原料中の遊離糖の含有量
 各原料を搾汁した際に得られる搾汁液中に含まれる遊離糖(キシロース及びグルコース)の含有量は、HPLC(島津製作所製、検出器:FLD、カラムオーブン:CTO-20A)を用いて測定した。原料を搾汁した際の遊離糖の挙動は、遊離糖は原料中の水分中に可溶して存在していることから水の挙動に従う為、搾汁後の原料に残る水分中の遊離糖濃度は、搾汁液中に含まれる遊離糖濃度と同じである。上記より搾汁前原料に含まれている糖濃度を計算して求めた。
(5)pH1.0の希硫酸添加後の原料中のpH
 洗浄後の原料(以下、「搾汁前原料」と称する場合がある)、スクリュープレスによる搾汁後の原料(以下、「搾汁原料1」と称する場合がある)、及び、プラグスクリューによる搾汁後の原料(以下、「搾汁原料2」と称する場合がある)に、pH1.0の希硫酸溶液を添加し、希硫酸蒸解法により加水分解反応を行った。加水分解反応後の原料をジューサーで破砕し、破砕液のpHを測定した。
 各原料の物性を以下の表1に示す。また、各原料の画像を図6に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、渇き基準含水率が68.4質量%である搾汁原料2では、搾汁前原料と比較して、灰分及び遊離糖の含有量が低減されており、pH1.0の希硫酸添加後の原料中のpHが1.09と低く、加水分解反応において十分な分解強度が発現できることが示唆された。一方、渇き基準含水率が156.4質量%である搾汁原料1では、搾汁前原料と比較して、灰分の含有量は低減されているが、遊離糖の含有量が4.5wt%-dryと半量程度残っており、さらに、pH1.0の希硫酸添加後の原料中のpHが1.16と高かった。
[実施例2]
 実施例1と同様の方法を用いて、破砕及び洗浄を行ったネピアグラスを原料として用いた。
(搾汁工程)
 実施例1と同様のスクリュープレス及びプラグスクリューを用いて、スクリュープレスを用いて搾汁工程を1回行った試料、スクリュープレス及びプラグスクリューを用いて搾汁工程を2回行った試料をそれぞれ複数サンプル調製し、搾汁前の原料も含めて、含水率が異なるサンプル(渇き基準含水率:43質量%以上300質量%以下の範囲内)を得た。
(加水分解工程)
 搾汁前原料、搾汁原料1、及び、搾汁原料1に、pH1.0の希硫酸溶液を添加し、希硫酸蒸解法により加水分解反応を行った。
(糖化工程)
 次いで、加水分解反応後の各原料を10dry-wt%となるように水を添加して、分散させた希釈溶液を調製した。次いで、希釈後の各原料に糖化酵素(セルラーゼ及びヘミセルラーゼ)を加えて、恒温シェイカーで48時間糖化反応させた。糖化後の溶液中のキシロース及びグルコースの量をHPLC(島津製作所製、検出器:FLD、カラムオーブン:CTO-20A)を用いて測定した。グルコース濃度、キシロース濃度及び糖濃度(グルコース及びキシロースの合計濃度)の測定結果をそれぞれ図7A、図7B及び図7Cに示す。
 図7A~図7Cから、原料の渇き基準の含水率が100質量%未満である原料では、糖濃度(グルコース及びキシロースの合計濃度)が40g/L超であり、糖回収量が良好であることが明らかとなった。この糖回収量の向上は、原料の渇き基準の含水率が100質量%未満であることで希硫酸添加後の原料中のpHの緩衝を低減できることが主な要因であるが、当該要因に加えて、搾汁工程により不純物を含む灰分が取り除かれたことで原料中のセルロース及びヘミセルロースの純度が高められたこと、さらに、図6に示すように、搾汁により原料が細かく砕かれて比表面積が大きくなり、触媒との接触機会が増加したことによるものであると推察された。
 本実施形態の前処理方法によれば、草本系バイオマスからの糖回収量が良好な草本系バイオマスの前処理方法を提供することができる。本実施形態の糖化液の製造方法は、前記前処理方法で得られた草本系バイオマスの加水分解物を用いており、糖化液を効率よく製造することができる。本実施形態の草本系バイオマス由来発酵生成物の製造方法は、前記糖化液の製造方法で得られた糖化液を用いており、草本系バイオマス由来発酵生成物を効率よく製造することができる。
 1:搾汁機、1a:第1の搾汁機、1b:第2の搾汁機、2:触媒供給装置、3:圧入装置、4:加水分解処理装置、11:糖化装置、12:発酵装置、5a,5b,5c,5d,5e,5f,5g,5h,5i,5j,5k…配管、10,20…草本系バイオマスの前処理装置、30,40…糖化液の製造装置、100…草本系バイオマス由来発酵生成物の製造装置

Claims (12)

  1.  草本系バイオマスを搾汁する搾汁工程と、
     前記搾汁工程後の草本系バイオマスに、触媒を添加する触媒添加工程と、
     前記触媒添加工程後の草本系バイオマスを加水分解処理装置に圧入する圧入工程と、
     前記圧入工程後の草本系バイオマスを加水分解する加水分解工程と、
    をこの順に含み、
     前記草本系バイオマスの乾燥質量に対する、前記搾汁工程後であって、触媒添加工程前の草本系バイオマス中の水分の含有量が100質量%未満であり、
     前記触媒が酸又はアルカリであり、
     前記搾汁工程前に、5分~60分の間の時間、蒸気で前記草本系バイオマスを加熱する工程を含まない、草本系バイオマスの前処理方法。
  2.  前記草本系バイオマスの乾燥質量に対する、前記搾汁工程後であって、触媒添加工程前の草本系バイオマス中の水分の含有量が82質量%以下である、請求項1に記載の草本系バイオマスの前処理方法。
  3.  前記草本系バイオマスの乾燥質量に対する、草本系バイオマス中の水分の含有量が100質量%超である草本系バイオマスが原料である、請求項1又は2に記載の草本系バイオマスの前処理方法。
  4.  前記搾汁工程を2回以上行う、請求項1~3のいずれか一項に記載の草本系バイオマスの前処理方法。
  5.  前記草本系バイオマスの乾燥質量に対する、最終回の前記搾汁工程後の草本系バイオマス中の水分の含有量が、前記草本系バイオマスの乾燥質量に対する、最終回より前の前記搾汁工程後の草本系バイオマス中の水分の含有量以下である、請求項4に記載の草本系バイオマスの前処理方法。
  6.  前記搾汁工程において、搾汁機構を有する装置により草本系バイオマスを搾汁し、前記装置によって前記草本系バイオマスに加えられる剪断力により前記草本系バイオマスを破砕する、請求項4又は5に記載の草本系バイオマスの前処理方法。
  7.  前記搾汁工程は、スクリュープレスを用いて搾汁を行なった後、プラグスクリューを用いて搾汁を行う2段階の搾汁である、請求項4~6のいずれか一項に記載の草本系バイオマスの前処理方法。
  8.  前記搾汁工程の前に、前記草本系バイオマスに水を添加し、洗浄する洗浄工程を更に含む、請求項1~7のいずれか一項に記載の草本系バイオマスの前処理方法。
  9.  前記触媒が、硫酸、塩酸、硝酸及びリン酸からなる群より選ばれる1種以上の酸、又は、水酸化ナトリウム、水酸化カリウム及びアンモニアからなる群より選ばれる1種以上のアルカリである、請求項1~8のいずれか一項に記載の草本系バイオマスの前処理方法。
  10.  請求項1~9のいずれか一項に記載の草本系バイオマスの前処理方法で得られた草本系バイオマスの加水分解物を酵素で糖化する糖化工程を含む、糖化液の製造方法。
  11.  前記糖化工程において、前記搾汁工程で排出される搾汁液を前記加水分解物に混合して、酵素で糖化する、請求項10に記載の糖化液の製造方法。
  12.  請求項10又は11に記載の糖化液の製造方法で得られた糖化液を微生物で発酵する発酵工程を含む、草本系バイオマス由来発酵生成物の製造方法。
PCT/JP2021/003923 2020-03-09 2021-02-03 草本系バイオマスの前処理方法、糖化液の製造方法及び草本系バイオマス由来発酵生成物の製造方法 WO2021181955A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112022016605A BR112022016605A2 (pt) 2020-03-09 2021-02-03 Métodos para pré-tratar biomassa herbácea, para produzir solução sacarificada e para produzir um produto de fermentação derivado de biomassa herbácea

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-039876 2020-03-09
JP2020039876A JP6820444B1 (ja) 2020-03-09 2020-03-09 草本系バイオマスの前処理方法、糖化液の製造方法及び草本系バイオマス由来発酵生成物の製造方法

Publications (1)

Publication Number Publication Date
WO2021181955A1 true WO2021181955A1 (ja) 2021-09-16

Family

ID=74200217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003923 WO2021181955A1 (ja) 2020-03-09 2021-02-03 草本系バイオマスの前処理方法、糖化液の製造方法及び草本系バイオマス由来発酵生成物の製造方法

Country Status (3)

Country Link
JP (1) JP6820444B1 (ja)
BR (1) BR112022016605A2 (ja)
WO (1) WO2021181955A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010141A1 (ja) * 2015-07-16 2017-01-19 新日鉄住金エンジニアリング株式会社 イネ科植物の茎葉由来発酵生成物の製造方法及び製造装置
WO2019120996A1 (fr) * 2017-12-20 2019-06-27 IFP Energies Nouvelles Procede de traitement de biomasse ligno-cellulosique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2421911T3 (pl) * 2009-04-23 2015-04-30 Greenfield Ethanol Inc Oddzielanie reaktywnej celulozy od biomasy lignocelulozowej o dużej zawartości linigny
JP5951181B2 (ja) * 2011-02-07 2016-07-13 株式会社北川鉄工所 リグノセルロース系バイオマスの糖化方法
CA2838560A1 (en) * 2011-07-15 2013-01-24 Frank A. Dottori Conditioning of biomass for improved c5/c6 sugar release prior to fermentation
WO2014019589A1 (en) * 2012-08-01 2014-02-06 Inbicon A/S Methods of processing lignocellulosic biomass using single-stage autohydrolysis and enzymatic hydrolysis with c5 bypass and post-hydrolysis.
SE538262C2 (sv) * 2014-06-26 2016-04-19 Valmet Oy Arrangemang för matning och tvättning av lignocellulosahaltigt material och system för tvåstegsanalys innefattandearrangemanget
EP3438269A4 (en) * 2016-03-29 2019-12-11 Toray Industries, Inc. PROCESS FOR PRODUCTION OF SUGAR LIQUOR

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010141A1 (ja) * 2015-07-16 2017-01-19 新日鉄住金エンジニアリング株式会社 イネ科植物の茎葉由来発酵生成物の製造方法及び製造装置
WO2019120996A1 (fr) * 2017-12-20 2019-06-27 IFP Energies Nouvelles Procede de traitement de biomasse ligno-cellulosique

Also Published As

Publication number Publication date
JP6820444B1 (ja) 2021-01-27
JP2021136966A (ja) 2021-09-16
BR112022016605A2 (pt) 2022-10-11

Similar Documents

Publication Publication Date Title
CN101815788B (zh) 用于从预处理过的木质纤维素原料产生醇和葡萄糖的基于纤维素酶的方法
CN103210090B (zh) 改进纤维素在高稠度系统中的水解的方法
US9574212B2 (en) Process comprising sulfur dioxide and/or sulfurous acid pretreatment and enzymatic hydrolysis
US20230212471A1 (en) Cellulosic biofuel
US20140004571A1 (en) Compositions and methods for biomass liquefaction
JP2008523788A (ja) セルロースの酵素加水分解のための上向流沈殿反応器
CN103898780B (zh) 生物质处理方法
CN102089435A (zh) 产生发酵产物的方法
CN106574440A (zh) 用于水解木质纤维素材料的方法
JP2023535512A (ja) 残存リグノセルロース系バイオマスから糖シロップを製造する方法
JP5581244B2 (ja) エタノール製造方法
JP5824074B2 (ja) バイオエタノールの製造方法及び製造システム
WO2021181955A1 (ja) 草本系バイオマスの前処理方法、糖化液の製造方法及び草本系バイオマス由来発酵生成物の製造方法
JP6255119B1 (ja) リグノセルロース系バイオマスを糖化するための糖化酵素の製造方法及び製造装置、並びにそれらの使用
WO2012016180A2 (en) Liquefaction biomass processing with heat recovery
JP5976185B1 (ja) リグノセルロース系バイオマス由来化合物の製造装置及び製造方法
JP5857149B1 (ja) イネ科植物の茎葉由来発酵生成物の製造方法及び製造装置
JP2014090707A (ja) リグノセルロース含有バイオマスの酵素糖化処理方法及びリグノセルロース含有バイオマスからのエタノール製造方法
JP6101855B1 (ja) リグノセルロース系バイオマス由来化合物の製造方法及び製造装置
JP2012085544A (ja) 草本系バイオマスの糖化方法
JP6492724B2 (ja) リグノセルロース含有バイオマスの破砕方法
WO2012016189A1 (en) Biomass liquefaction processes, and uses of same
Kumar et al. Separation of Hemi cellulose from Corn cobs by Alkali Pretreatment Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768339

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 202217048047

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016605

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022016605

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220819

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768339

Country of ref document: EP

Kind code of ref document: A1