WO2021181951A1 - バッテリーパック用断熱材およびバッテリーパック - Google Patents

バッテリーパック用断熱材およびバッテリーパック Download PDF

Info

Publication number
WO2021181951A1
WO2021181951A1 PCT/JP2021/003867 JP2021003867W WO2021181951A1 WO 2021181951 A1 WO2021181951 A1 WO 2021181951A1 JP 2021003867 W JP2021003867 W JP 2021003867W WO 2021181951 A1 WO2021181951 A1 WO 2021181951A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
base material
insulating layer
battery pack
insulating material
Prior art date
Application number
PCT/JP2021/003867
Other languages
English (en)
French (fr)
Inventor
片山 直樹
信志 熊谷
翔太 林
祐太朗 田口
新宅 裕二
Original Assignee
住友理工株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社, トヨタ自動車株式会社 filed Critical 住友理工株式会社
Priority to US17/599,799 priority Critical patent/US20220181716A1/en
Priority to CN202180004422.4A priority patent/CN114080719B/zh
Publication of WO2021181951A1 publication Critical patent/WO2021181951A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a heat insulating material arranged between battery cells in a battery pack containing a plurality of battery cells.
  • Hybrid vehicles and electric vehicles are equipped with a battery pack that houses multiple battery cells.
  • a battery module in which a plurality of battery cells are laminated is housed in a housing in a state of being fixed by fastening members from both sides in the stacking direction.
  • Patent Document 1 describes a composite sheet interposed between adjacent battery cells.
  • the composite sheet has a heat insulating layer and suppresses heat transfer to adjacent battery cells when the temperature of one battery cell rises.
  • the heat insulating layer is formed by carrying silica xerogel on the non-woven fabric.
  • Silica xerogel and silica airgel are porous materials in which silica fine particles are linked to form a skeleton and have a pore structure having a size of about 10 to 50 nm.
  • the thermal conductivity of this type of porous material is less than the thermal conductivity of air. Therefore, this kind of porous material is widely used as a material for a heat insulating material.
  • Patent Document 2 describes an article containing silica airgel bonded with water-dispersible polyurethane and having a thermal conductivity of 0.025 W / m ⁇ K or less.
  • a binder such as urethane resin is used to fix it and prevent it from falling off.
  • the urethane binder which is an organic component, may be decomposed and deteriorated to generate gas or cracks so that the shape cannot be maintained. There is. Further, since the urethane binder is relatively soft, there is a problem that it is difficult to maintain the heat insulating structure because the heat insulating material is crushed when compressed.
  • Patent Documents 3 to 6 propose composite materials using an inorganic compound such as a silicate as a binder. That is, Patent Document 3 describes a composite material having a silica airgel, an organic binder or an inorganic binder, and glass fiber, and water glass (sodium silicate) is described as the inorganic binder.
  • Patent Document 4 describes a heat insulating material obtained by solidifying airgel with a water-soluble binder and an inorganic binder such as powdered sodium silicate.
  • Patent Document 5 describes a flexible insulating structure in which a layer having an inorganic binder such as airgel and sodium silicate is formed on a non-woven fabric (batting).
  • Patent Document 6 describes a heat insulating material composition having a silica airgel, a ceramic raw material liquid capable of forming crystals by a hydrothermal reaction, a surfactant, and reinforcing fibers.
  • the plurality of battery cells housed in the battery pack are pressurized from both sides in the stacking direction by the fastening member. For this reason, the heat insulating material interposed between the battery cells is required to be resistant to crushing even when compressed and to maintain heat insulating properties.
  • the heat insulating layer can retain its shape even when used in a high temperature atmosphere (heat resistance), and is crushed or cracked even when compressed. Both are required to be difficult to maintain heat insulation (compression resistance).
  • heat resistance high temperature atmosphere
  • compression resistance heat insulation
  • an inorganic compound is used as the binder, the problem due to decomposition and deterioration of the binder is improved, but the molded product becomes hard and brittle. Since the above-mentioned Patent Documents 3 to 5 only describe the use of an inorganic binder, it is difficult to improve the heat resistance and the compression resistance by this alone.
  • Patent Document 6 a ceramic raw material liquid capable of forming crystals by a hydrothermal reaction is used, and a heat insulating material composition containing the same is dehydrated, heated and pressurized to form ceramic crystals on the surfaces of silica airgel and reinforcing fibers. The synthesis is in progress. The formed ceramic crystals serve as a binder that binds the silica airgels to each other. According to the production method described in Patent Document 6, the steps of preparing the heat insulating material composition, injecting and dehydrating the heat insulating material composition into the mold, and heating and pressurizing the obtained primary molded body are required. Therefore, it requires a lot of man-hours, is complicated, and is costly.
  • the formed ceramic crystal is a bulk crystal having a needle-like or fibrous shape and a particle size of about 1 to 50 ⁇ m (paragraphs [0028] and [0057] of Patent Document 6). Therefore, the obtained heat insulating material does not satisfy the desired heat resistance and compression resistance.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a heat insulating material for a battery pack having a heat insulating layer excellent not only in heat insulating properties but also in heat resistance and compression resistance. Another object of the present invention is to provide a battery pack having a heat insulating material for the battery pack.
  • the heat insulating material for a battery pack of the present invention includes a heat insulating layer and a first base material and a second base material arranged so as to sandwich the heat insulating layer, and the heat insulating layer is provided.
  • a porous structure in which a plurality of particles are connected to form a skeleton, has pores inside, and has a hydrophobic site on the surface and at least on the surface, reinforcing fibers, and a metal oxide as a binder.
  • the mass loss rate of the heat insulating layer in thermogravimetric analysis having nanoparticles and holding at 500 ° C.
  • the rate of change in the thickness after the compression test with respect to the thickness before the compression test is 70%. It is characterized by being smaller.
  • the battery pack of the present invention is arranged between a plurality of battery cells made of lithium ion batteries and the adjacent battery cells, and has the configuration of (1) above. It is characterized by having a material and.
  • the heat insulating material for a battery pack of the present invention (hereinafter, may be simply referred to as "the heat insulating material of the present invention"), a heat insulating layer having a porous structure is sandwiched between two base materials. As a result, shedding (powder falling) of the porous structure is suppressed. Further, when the heat insulating material of the present invention is subjected to a compression test in which a load of 15 MPa is applied in the thickness direction to compress the heat insulating material, the rate of change in the thickness after the compression test is 70% with respect to the thickness before the compression test. Smaller. That is, the heat insulating material of the present invention is not easily crushed even when compressed, and can maintain the desired heat insulating property.
  • the porous structure constituting the heat insulating layer has a skeleton in which a plurality of particles are connected to form a skeleton, has pores inside, and has a hydrophobic portion on the surface and at least the surface of the inside.
  • the size of the pores formed between the skeleton of the porous structure is about 10 to 50 nm, and most of the pores are so-called mesopores of 50 nm or less. Since the mesopores are smaller than the mean free path of air, heat transfer is hindered. Therefore, the heat insulating material of the present invention having the heat insulating layer exhibits an excellent heat insulating effect.
  • the heat insulating layer has nanoparticles of metal oxide as a binder for binding the constituent components. Since no organic material is used as the binder, gas and cracks do not occur due to decomposition and deterioration of the binder even when used in a high temperature atmosphere. Therefore, the heat insulating layer can maintain its shape even at a high temperature, and its mass is unlikely to decrease. That is, when the heat insulating layer is held at 500 ° C. for 30 minutes, the mass weight loss rate calculated from the mass before and after that is 10% or less.
  • the heat insulating layer can be made harder than when an organic material such as urethane resin is used. Therefore, the heat insulating layer is not easily crushed even when compressed, and the heat insulating structure can be maintained. Further, by using nanoparticles (particles on the order of nanometers) instead of the bulk crystals described in Patent Document 6, the defects of hardness and brittleness due to having an inorganic compound are improved.
  • the heat insulating layer has reinforcing fibers. Due to the action of both the metal oxide nanoparticles and the reinforcing fibers, the shape retention (heat resistance) at high temperatures is improved, and even when compressed, it is less likely to be crushed or cracked (that is, the compression resistance is improved). .. Thereby, the heat insulating layer can maintain the heat insulating property even when compressed. Further, by having the reinforcing fibers, the stability and film forming property of the coating material for forming the heat insulating layer are improved, so that the strength and heat resistance of the heat insulating layer are improved. From the above, the heat insulating material for a battery pack of the present invention is excellent in heat insulating property, heat resistance and compression resistance.
  • the heat insulating material of the present invention is interposed between adjacent battery cells.
  • the heat insulating material of the present invention is not easily crushed even when compressed. Therefore, according to the battery pack of the present invention, even if a plurality of battery cells are pressurized from both sides in the stacking direction, the heat insulating property of the heat insulating material is unlikely to deteriorate.
  • the heat insulating layer constituting the heat insulating material of the present invention is excellent not only in heat insulating property but also in shape retention (heat resistance) at high temperature. In addition, it is not easily crushed or cracked even when compressed (that is, it has excellent compression resistance).
  • the heat insulating material of the present invention is interposed between the battery cell and the adjacent battery cell, so that the adjacent battery cells are separated from each other.
  • the heat transfer in the battery is suppressed, and the chain of temperature rise can be suppressed.
  • FIG. 1 shows a schematic cross-sectional view for explaining the configuration of the battery pack of the present embodiment.
  • FIG. 2 shows a cross-sectional view of the heat insulating material contained in the battery pack.
  • FIG. 3 shows a front view of the heat insulating material. In FIG. 3, for convenience of explanation, it is shown by a dotted line through the heat insulating layer.
  • the battery pack 1 includes a housing 10, a plurality of battery cells 2, and a heat insulating material 3.
  • the housing 10 is made of metal and has a box shape.
  • the plurality of battery cells 2 are made of lithium ion batteries. Each of the plurality of battery cells 2 has a rectangular thin plate shape, and is laminated in the thickness direction.
  • the heat insulating material 3 is arranged between the adjacent battery cells 2.
  • the heat insulating material 3 has a heat insulating layer 30, a first base material 31, and a second base material 32.
  • the heat insulating layer 30 has silica airgel, glass fibers, and silica particles.
  • the silica particles are nanoparticles having an average particle diameter of 12 nm.
  • Silica airgel and glass fiber are bonded via silica particles.
  • the heat insulating layer 30 has a rectangular sheet shape with a thickness of 2 mm. The mass weight loss rate when the heat insulating layer 30 is held at 500 ° C. for 30 minutes is 10%.
  • the first base material 31 is arranged on one side of the heat insulating layer 30 in the thickness direction.
  • the first base material 31 is made of glass cloth.
  • the thickness of the first base material 31 is 0.1 mm, and the size in the plane direction is one size larger than that of the heat insulating layer 30.
  • the heat insulating layer 30 is impregnated with the mesh of the first base material 31.
  • the second base material 32 is arranged on the side opposite to the first base material 31 with the heat insulating layer 30 interposed therebetween.
  • the second base material 32 is also made of the same glass cloth as the first base material 31.
  • the thickness of the second base material 32 is 0.1 mm, and the size in the plane direction is one size larger than that of the heat insulating layer 30.
  • the heat insulating layer 30 is impregnated with the mesh of the second base material 32. As a result, the heat insulating layer 30 and the second base material 32 are adhered to each other.
  • the materials, shapes and sizes of the first base material 31 and the second base material 32 are all the same.
  • the first base material 31 and the second base material 32 are fused. That is, as shown in FIG. 3, the heat insulating material 3 has a main body portion 33, a peripheral edge portion, and 34.
  • the main body 33 is a portion where the heat insulating layer 30, the first base material 31 and the second base material 32 overlap in the thickness direction.
  • the peripheral edge portion 34 is a portion where the first base material 31 and the second base material 32 overlap each other around the heat insulating layer 30.
  • a fused portion 35 formed by fusing the first base material 31 and the second base material 32 is arranged on the peripheral edge portion 34.
  • the heat insulating layer 30 is housed in a bag-shaped closed space formed from the first base material 31 and the second base material 32.
  • the battery pack 1 further has a fastening member (not shown).
  • the fastening member fixes a battery module in which a plurality of battery cells 2 are laminated via a heat insulating material 3 by tightening them in the stacking direction.
  • the heat insulating material 3 has a heat insulating layer 30 containing silica airgel (porous structure). Therefore, the heat insulating material 3 exhibits an excellent heat insulating effect.
  • the heat insulating layer 30 is housed in a bag-shaped closed space formed of two glass cloths (first base material 31 and second base material 32). As a result, the silica airgel is suppressed from falling off (powder falling off).
  • the binder that binds constituents such as silica airgel is silica particles. Since no organic material is used as the binder, gas and cracks do not occur due to decomposition and deterioration of the binder even when used in a high temperature atmosphere. Therefore, the heat insulating layer 30 can retain its shape even at a high temperature, and its mass is unlikely to decrease. Further, when silica particles are used as the binder, the heat insulating layer 30 becomes harder than when an organic material such as urethane resin is used. Therefore, the heat insulating layer 30 is not easily crushed even when compressed, and the heat insulating structure can be maintained. Further, since the silica particles are nanoparticles rather than bulk crystals, the heat insulating layer 30 does not become too hard and does not become brittle even if it has an inorganic compound.
  • the heat insulating layer 30 has glass fibers (reinforcing fibers). Due to the action of both silica particles and glass fibers, shape retention (heat resistance) at high temperatures is improved, and even when compressed, it is less likely to be crushed or cracked (improved compression resistance). Specifically, the rate of change in the thickness of the heat insulating material 3 when a predetermined compression test is performed is less than 70%. Therefore, the heat insulating material 3 is not easily crushed even when compressed, and can maintain the desired heat insulating property. Further, by having the glass fiber, the stability and film forming property of the coating material for forming the heat insulating layer 30 are improved. This also contributes to the improvement of the strength and heat resistance of the heat insulating layer 30.
  • the heat insulating material 3 is interposed between the adjacent battery cells 2.
  • the heat insulating material 3 is not easily crushed even when compressed. Therefore, according to the battery pack 1, even if the plurality of battery cells 2 are pressurized from both sides in the stacking direction, the heat insulating property of the heat insulating material 3 is unlikely to deteriorate. Further, the heat insulating layer 30 is excellent not only in heat insulating property and compression resistance but also in shape retention (heat resistance) at high temperature. Therefore, according to the battery pack 1, even if the temperature of one battery cell 2 rises, the heat insulating material 3 is interposed between the battery cell 2 and the adjacent battery cell 2, so that the adjacent battery cells 2 are separated from each other. The heat transfer in the battery is suppressed, and the chain of temperature rise is suppressed.
  • FIG. 4 shows a cross-sectional view of the heat insulating material of the present embodiment.
  • FIG. 4 corresponds to FIG. 2 above, and the same parts as those in FIG. 2 are indicated by the same reference numerals.
  • the heat insulating material 3 has a heat insulating layer 30, a first base material 31, and a second base material 32.
  • the heat insulating layer 30 is sandwiched between the first base material 31 and the second base material 32 made of glass cloth.
  • the heat insulating material 3 has a main body portion 33 and a peripheral edge portion 34.
  • a fixing member 36 is arranged between the first base material 31 and the second base material 32 around the peripheral edge portion 34, that is, the heat insulating layer 30.
  • the fixing member 36 is made of an adhesive made of a thermoplastic elastomer.
  • the thickness of the fixing member 36 is substantially the same as the thickness of the heat insulating layer 30.
  • the first base material 31 and the second base material 32 are adhered to each other by the fixing member 36.
  • the heat insulating material and the battery pack of the present embodiment and that of the first embodiment have the same effects with respect to the parts having a common configuration.
  • the fixing member 36 is arranged on the peripheral edge portion 34. Since the fixing member 36 is made of a thermoplastic elastomer, it has elasticity. In addition, the thickness of the fixing member 36 is substantially the same as the thickness of the heat insulating layer 30. As a result, the heat insulating material 3 can absorb the load in the stacking direction of the battery cells 2. Therefore, the heat insulating material 3 has high followability to the springback that occurs after the battery module is tightened.
  • the heat insulating material for a battery pack of the present invention includes a heat insulating layer and a first base material and a second base material arranged so as to sandwich the heat insulating layer.
  • the insulation layer has a porous structure, reinforcing fibers, and nanoparticles of a metal oxide as a binder.
  • the porous structure has a skeleton in which a plurality of particles are connected to form a skeleton, has pores inside, and has a hydrophobic portion on the surface and at least on the surface of the inside.
  • the structure, shape, size, etc. of the porous structure are not particularly limited. For example, it is desirable that the diameter of the particles forming the skeleton (primary particles) is about 2 to 5 nm, and the size of the pores formed between the skeletons is about 10 to 50 nm.
  • the average particle size of the porous structure is preferably about 1 to 200 ⁇ m.
  • those having an average particle size of 10 ⁇ m or more are suitable.
  • those having an average particle size of 100 ⁇ m or less are preferable.
  • the small-diameter porous structure enters the gap between the large-diameter porous structures, so that the filling amount can be increased and the effect of improving the heat insulating property is large. Become.
  • the type of porous structure is not particularly limited.
  • the primary particles include silica, alumina, zirconia, titania and the like.
  • a porous structure in which the primary particles are silica is desirable from the viewpoint of excellent chemical stability.
  • a silica airgel in which a plurality of silica particles are connected to form a skeleton can be mentioned.
  • the one dried at normal pressure may be called “xerogel”
  • the one dried at supercritical may be called “airgel”. Both are collectively referred to as "airgel”.
  • the porous structure has a hydrophobic part on the surface and at least the surface of the inside.
  • the surface has a hydrophobic portion, it is possible to suppress the infiltration of water and the like, so that the pore structure is maintained and the heat insulating property is not easily impaired.
  • a silica airgel having at least a hydrophobic portion on its surface can be produced by subjecting it to a hydrophobic treatment such as imparting a hydrophobic group in the production process.
  • the content of the porous structure may be appropriately determined in consideration of the thermal conductivity, hardness, compression resistance, etc. of the heat insulating layer.
  • the content of the porous structure is 25 parts by mass or more with respect to 100 parts by mass of the components excluding the porous structure and the reinforcing fibers. Is desirable. It is more preferable that the amount is 50 parts by mass or more.
  • the content of the porous structure is 280 parts by mass or less with respect to 100 parts by mass of the components excluding the porous structure and the reinforcing fibers.
  • Reinforcing fibers are physically entangled around the porous structure, suppress the detachment of the porous structure, and improve the film forming property and heat resistance.
  • the type of reinforcing fiber is not particularly limited, but an inorganic fiber material is desirable from the viewpoint of suppressing decomposition and deterioration of organic components when used at a high temperature.
  • ceramic fibers such as glass fiber and alumina fiber are suitable.
  • the size of the reinforcing fiber may be appropriately determined in consideration of the heat insulating property and heat resistance of the heat insulating layer, the film forming property when forming the heat insulating layer, and the like. For example, if the reinforcing fibers are too thin, they tend to aggregate, which may lead to an increase in the viscosity of the coating material for forming the heat insulating layer and a decrease in film forming property.
  • the diameter of a suitable reinforcing fiber is 6.5 ⁇ m or more.
  • the reinforcing fiber is too thick, the reinforcing effect is reduced, so that the film forming property and heat resistance are lowered, and the heat transfer path is easily formed, so that the thermal conductivity is increased and the heat insulating property is lowered.
  • the diameter of a suitable reinforcing fiber is 18 ⁇ m or less. Further, if the reinforcing fiber is too short, the reinforcing effect is reduced, so that the film forming property and the heat resistance may be lowered.
  • a suitable length is 3 mm or more.
  • the reinforcing fibers are too long, they tend to aggregate, which may increase the viscosity of the coating material for forming the heat insulating layer and reduce the film forming property. In addition, since the heat transfer path is easily formed, the thermal conductivity may be increased and the heat insulating property may be deteriorated.
  • a suitable reinforcing fiber length is 25 mm or less.
  • the content of the reinforcing fiber may be appropriately determined in consideration of the film forming property and heat resistance of the heat insulating layer.
  • the content of the reinforcing fiber is 5 parts by mass or more with respect to 100 parts by mass of the components excluding the porous structure and the reinforcing fiber. Is desirable.
  • the content of the reinforcing fibers may aggregate to increase the viscosity of the coating material for forming the heat insulating layer, resulting in a decrease in film forming property.
  • the thermal conductivity may be increased and the heat insulating property may be deteriorated. Therefore, it is desirable that the content of the reinforcing fibers is 200 parts by mass or less, more preferably 130 parts by mass or less, with respect to 100 parts by mass of the components excluding the porous structure and the reinforcing fibers.
  • Metal oxide nanoparticles are binders that bind constituents of heat insulating layers such as porous structures and reinforcing fibers.
  • the type of metal oxide is not particularly limited, and examples thereof include silica, titania, zinc oxide, and zirconia. Of these, silica is preferable because it is easily compatible with porous structures and reinforcing fibers, and is inexpensive and easily available. That is, it is desirable that the nanoparticles of the metal oxide are silica particles.
  • the heat insulating layer has a mass weight loss rate of 10% or less in thermogravimetric analysis held at 500 ° C. for 30 minutes.
  • TGA thermogravimetric analysis
  • a sample of a heat insulating layer is held in an air atmosphere at 500 ° C. for 30 minutes, and the mass before and after heating is measured.
  • the mass weight loss rate is calculated by the following formula (I).
  • Weight loss rate (%) (W 0- W 1 ) / W 0 x 100 ... (I) [W 0 : sample mass before heating, W 1 : sample mass after heating]
  • the heat insulating layer may contain other components in addition to the porous structure, reinforcing fibers, and nanoparticles of the metal oxide.
  • a thickener, a dispersant, a surfactant and the like added to improve the dispersibility of the porous structure when preparing a coating material for forming a heat insulating layer can be mentioned.
  • the first base material is arranged on one side of the heat insulating layer, and the second base material is arranged on the opposite side of the heat insulating layer from the first base material.
  • the first base material and the second base material may be the same or different in terms of material, shape, size, and the like.
  • a cloth, a non-woven fabric, a sheet material or the like may be used, and among them, those having a relatively low thermal conductivity are preferable. Further, it is desirable that the shape retainability is high even at a high temperature and the flame retardancy is obtained. Examples thereof include fabrics and non-woven fabrics manufactured from inorganic fibers such as glass fibers and metal fibers. In particular, glass cloth is suitable.
  • the first base material and the second base material may be composed of one layer or may be a laminated body having two or more layers.
  • the heat insulating material of the present invention includes a main body portion in which the first base material and the second base material are laminated with the heat insulating layer interposed therebetween, and a peripheral portion in which the first base material and the second base material overlap around the heat insulating layer.
  • the heat insulating layer can be accommodated in the bag-shaped space formed by the two base materials.
  • the peripheral portion to be fixed may be a part or the whole. When the entire peripheral edge is fixed, the heat insulating layer can be accommodated in a closed space, which is effective in suppressing powder falling off of the porous structure.
  • the fixing method is not particularly limited, but for example, the first base material and the second base material may be fused using a laser or the like.
  • a fixing member such as an adhesive, a clip member, a caulking member, or a leaf spring member may be used.
  • a member made of a thermoplastic elastomer, an elastomer such as rubber, a resin, or a metal may be fixed with an adhesive to form a fixing member.
  • the adhesive include organic adhesives using elastomers or resins. For example, if the adhesive has elasticity, it can absorb the load when the heat insulating material is compressed in the stacking direction (thickness direction). It can also follow the springback that occurs after tightening the battery module.
  • setting the thickness of the adhesive to be equal to or greater than the thickness of the heat insulating layer is effective in suppressing cracking of the heat insulating layer. Further, from the viewpoint of enhancing flame retardancy, it is desirable to use an organic adhesive having flame retardancy such as fluororubber or an inorganic adhesive.
  • the heat insulating material for battery pack of the present invention has a load of 15 MPa in the thickness direction with the stacking direction of the heat insulating layer, the first base material and the second base material as the thickness direction.
  • the rate of change of the thickness after the compression test with respect to the thickness before the compression test is less than 70%.
  • the heat insulating material of the present invention solidifies a composition having a porous structure, reinforcing fibers, and nanoparticles of metal oxide, and uses the same as the first base material. And can be manufactured by sandwiching it between a second base material.
  • a paint preparation for preparing a paint for a heat insulating layer having a porous structure, reinforcing fibers, and a dispersion liquid in which metal oxide nanoparticles are dispersed in a liquid A step, a coating step of applying the heat insulating layer paint to the first base material, a curing step of superimposing the second base material on the formed coating film to form a laminate, and then curing the coating film.
  • the heat insulating layer paint is agitated by adding a porous structure, reinforcing fibers, and components added as necessary to a dispersion liquid in which nanoparticles of metal oxide are dispersed in a liquid. It may be prepared.
  • the liquid (dispersion medium) constituting the dispersion is not particularly limited, but includes water (pure water, tap water, etc.) instead of a hydrophobic liquid from the viewpoint of suppressing the infiltration of the porous structure into the pores. ), Etc., it is desirable to use a hydrophilic liquid.
  • the nanoparticles of the metal oxide are silica particles
  • an aqueous solution of sodium silicate, colloidal silica using water as a dispersion medium, and the like can be mentioned.
  • an aqueous dispersion of titania may be mentioned.
  • the stirring may be blade stirring, but shearing force may be positively applied or ultrasonic waves may be applied.
  • a rotation / revolution stirring device or a media type stirring device may be used.
  • a coating machine such as a bar coater, a die coater, a comma coater (registered trademark), a roll coater, or a spray may be used.
  • the first base material may be dipped in the heat insulating layer paint and then dried.
  • the coating method or the dipping method when the first base material is made of a porous material such as a cloth, a part of the heat insulating layer coating material may be impregnated inside the first base material.
  • the surface of the first base material may be subjected to a pretreatment such as a coupling treatment, and then the heat insulating layer paint may be applied.
  • the coating film is cured after forming a laminate composed of [first base material / coating film of paint for heat insulating layer / second base material].
  • the laminate may be dried to cure the coating film. Drying may be appropriately performed depending on the dispersion medium of the heat insulating layer coating material. For example, in the case of water, it may be maintained at a temperature of about room temperature to 150 ° C. for a predetermined time.
  • a battery pack can be formed by laminating a plurality of battery cells and the heat insulating material of the present invention.
  • the type of battery cell is not particularly limited, and examples thereof include a lithium ion battery.
  • the battery pack of the present invention comprises a plurality of battery cells made of lithium ion batteries and the heat insulating material of the present invention arranged between adjacent battery cells. Have. Other configurations in the battery pack of the present invention are not limited.
  • the battery pack of the present invention may have a fastening member for tightening a battery module in which a plurality of battery cells and the heat insulating material of the present invention are laminated from both sides in the stacking direction, a housing for accommodating the battery module, and the like. ..
  • the first glass cloth is included in the concept of the first base material in the present invention
  • the second glass cloth is included in the concept of the second base material in the present invention.
  • the method for preparing the coating material for the heat insulating layer in each sample will be described in detail.
  • colloidal silica (water dispersion of silica particles; "LUDOX (registered trademark) LS” manufactured by Sigma-Aldrich) and polyethylene oxide as a thickener ("PEO (registered trademark) -29” manufactured by Sumitomo Seika Chemical Co., Ltd.) was added and stirred. Subsequently, a pulverized product of silica airgel was added and stirred, and then glass fibers were further added and stirred to prepare a coating material for a heat insulating layer. When it was necessary to adjust the viscosity of the heat insulating layer paint, colloidal silica was diluted with water before use.
  • the pulverized product of silica airgel is a pulverized silica airgel (“P200” manufactured by Cabot Corporation) having hydrophobic portions on the surface and inside using a household mixer, and the average particle size thereof is 100 ⁇ m.
  • P200 pulverized silica airgel
  • glass fibers five types (A to E) having different aspect ratios (length / diameter) were selected and used from "chopped strands" manufactured by Nippon Electric Glass Co., Ltd.
  • Example 16 A coating material for a heat insulating layer was prepared in the same manner as in Example 2 except that a non-crushed silica airgel (“P200” manufactured by Cabot Corporation) was used instead of the pulverized silica airgel product.
  • the heat insulating layer coating materials of Examples 1 to 17 are included in the concept of the heat insulating layer coating material of the present invention.
  • Comparative Example 1 A conventional organic binder was used as the binder instead of an inorganic binder, and a coating material for a heat insulating layer was prepared without adding glass fibers. That is, urethane resin emulsion as a binder (“Permarin (registered trademark) UA-368” manufactured by Sanyo Chemical Industries, Ltd., solid content 50% by mass) as a binder and polyethylene oxide (same as above) as a thickener are added to water. After stirring, a pulverized product of silica airgel was added and stirred to prepare a coating material for a heat insulating layer of Comparative Example 1.
  • urethane resin emulsion as a binder (“Permarin (registered trademark) UA-368” manufactured by Sanyo Chemical Industries, Ltd., solid content 50% by mass) as a binder and polyethylene oxide (same as above) as a thickener are added to water. After stirring, a pulverized product of silica airgel was added and stir
  • Comparative Example 2 The coating material for the heat insulating layer of Comparative Example 2 was prepared in the same manner as in Examples 1 to 5 except that silica airgel was not added.
  • Comparative Example 3 The coating material for the heat insulating layer of Comparative Example 3 was prepared in the same manner as in Examples 2 and 6 to 15 and 17 except that the glass fiber was not added.
  • Comparative Example 4 The coating material for the heat insulating layer of Comparative Example 4 was prepared in the same manner as in Example 16 (using silica airgel not pulverized) except that glass fibers were not added.
  • the sample of the heat insulating material of this example includes two glass cloths in addition to the heat insulating layer. Therefore, only the heat insulating layer was cut out from the sample of the heat insulating material by a mass of 3 to 5 mg, and the mass weight loss rate of the heat insulating layer was calculated as follows using it as a sample for measuring the mass weight loss rate. First, a sample for measuring the mass loss rate was placed in a thermogravimetric analyzer (“Q500” manufactured by TA Instruments) and heated from room temperature to 500 ° C. at a heating rate of 80 ° C./min in an air atmosphere.
  • Q500 thermogravimetric analyzer
  • the thermal conductivity of the heat insulating material sample was measured using a thermal conductivity measuring device "Quick Lambda" manufactured by Hideko Seiki Co., Ltd. This thermal conductivity measuring instrument calculates the relative thermal conductivity using a test curve calibrated using a substance having a known thermal conductivity as a standard sample for test. Therefore, first, as a standard sample, three types of heat insulating material samples having different amounts of silica airgel were produced by the same method as the sample production method of Comparative Example 1. The blending amount of silica airgel in each sample was 153 parts by mass, 230 parts by mass, and 307 parts by mass.
  • thermal conductivity of each sample was measured with a heat flux meter "HC-074" manufactured by Eiko Seiki Co., Ltd., which conformed to the heat flow metering method of JIS A1412-2 (1999), and this heat was measured.
  • the thermal conductivity measuring instrument was calibrated using the conductivity value.
  • Tables 1 and 2 above as an evaluation result, a case where the thermal conductivity is 0.045 W / m ⁇ K or less is indicated by a ⁇ mark, and a case where the thermal conductivity is greater than 0.045 W / m ⁇ K is indicated by a cross mark.
  • compression resistance A disk-shaped sample having a diameter of 60 mm was cut out from the sample of the heat insulating material and used as a sample for a compression test.
  • the sample for the compression test was placed in a compression tester and compressed at a rate of 3 mm / min until the compression pressure reached 15 MPa. When the compression pressure reached 15 MPa, it was held for 1 minute, and then returned to a state where the compression pressure became 0 MPa (no load) at the same speed.
  • thermal conductivity of the sample for the compression test after compression was measured using the above-mentioned thermal conductivity measuring device.
  • Tables 1 and 2 above as an evaluation result, a case where the thermal conductivity is 0.045 W / m ⁇ K or less is indicated by a ⁇ mark, and a case where the thermal conductivity is greater than 0.045 W / m ⁇ K is indicated by a cross mark.
  • the thickness of the sample for the compression test before and after compression was measured, and the thickness change rate was calculated by the above-mentioned formula (II).
  • Tables 1 and 2 above as an evaluation result, a case where the thickness change rate is smaller than 70% is indicated by a circle, and a case where the thickness change rate is 70% or more is indicated by a cross.
  • the mass weight loss rate of the heat insulating layer was larger than 10%, and although the film forming property and the heat insulating property were good, they were crushed by compression and heat conduction. The rate could not be measured, resulting in poor compression resistance. In addition, if it is held at a high temperature, cracks will occur, resulting in inferior heat resistance. Further, in the sample of Comparative Example 2 having no silica airgel, the desired heat insulating property could not be obtained. In the samples of Comparative Examples 3 and 4 having no reinforcing fibers, in addition to the deterioration of the film forming property, the shape could not be maintained at a high temperature.
  • the mass weight loss rate of the heat insulating layer was 10% or less, and the film forming property, heat insulating property, compressive resistance, and heat resistance were good. there were. Comparing the samples of Examples 6 to 11 in which the blending amount of the reinforcing fibers was changed, when the blending amount of the reinforcing fibers was increased, the thickness change due to compression tended to be small, and the compression resistance could be improved. confirmed. In the sample of Example 17 in which the amount of the reinforcing fiber blended was the largest, the viscosity of the heat insulating layer coating material increased and the processability decreased.
  • the types (aspect ratios) of the reinforcing fibers were different, but all had good film forming property, heat insulating property, compression resistance, and heat resistance.
  • the sample of Example 16 differs from the sample of Example 2 in the presence or absence of pulverization treatment of silica airgel.
  • the viscosity of the heat insulating layer coating material became low.
  • the mixing and dispersing time at the time of preparing the paint can be shortened, and improvement in workability can be expected.
  • the silica airgel has an effect of suppressing powder falling and an improvement in shape retention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Insulation (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)

Abstract

バッテリーパック用断熱材(3)は、断熱層(30)と、断熱層(30)を挟んで配置される第一基材(31)および第二基材(32)と、を備える。断熱層(30)は、複数の粒子が連結して骨格をなし、内部に細孔を有し、表面および内部のうち少なくとも表面に疎水部位を有する多孔質構造体と、補強繊維と、バインダーとしての金属酸化物のナノ粒子と、を有し、500℃下で30分間保持する熱重量分析における質量減量率は10%以下である。バッテリーパック用断熱材(3)は、断熱層(30)、第一基材(31)および第二基材(32)の積層方向を厚さ方向として、該厚さ方向に15MPaの荷重を加えて圧縮する圧縮試験を行った場合に、圧縮試験前の厚さに対する圧縮試験後の厚さの変化率が70%より小さい。

Description

バッテリーパック用断熱材およびバッテリーパック
 本発明は、複数のバッテリーセルが収容されるバッテリーパックにおいて、バッテリーセル間に配置される断熱材に関する。
 ハイブリッド自動車や電気自動車には、複数のバッテリーセルを収容したバッテリーパックが搭載される。バッテリーパックにおいては、複数のバッテリーセルが積層されてなるバッテリーモジュールが、積層方向の両側から締結部材により固定された状態で筐体内に収容される。例えば特許文献1には、隣り合うバッテリーセルの間に介装される複合シートが記載されている。当該複合シートは、断熱層を有し、一つのバッテリーセルの温度が上昇した際、隣接するバッテリーセルへの熱の伝達を抑制する。断熱層は、不織布にシリカキセロゲルを担時して形成されている。
 シリカキセロゲルやシリカエアロゲルは、シリカ微粒子が連結して骨格をなし10~50nm程度の大きさの細孔構造を有する多孔質材料である。この種の多孔質材料の熱伝導率は、空気の熱伝導率よりも小さい。よって、この種の多孔質材料は、断熱材の材料として広く使用されている。例えば特許文献2には、水分散性ポリウレタンによって結合されたシリカエアロゲルを含み、熱伝導率が0.025W/m・K以下の物品が記載されている。当該物品のようにシリカエアロゲルを用いる場合には、それを固定して脱落を抑制するために、ウレタン樹脂などのバインダーが使用される。しかしながら、ウレタンバインダーを使用した従来の断熱材を500℃程度の高温雰囲気で使用すると、有機成分であるウレタンバインダーが分解、劣化して、ガスが発生したり、クラックが生じて形状が保持できないおそれがある。また、ウレタンバインダーは比較的軟質であるため、圧縮されると断熱材が潰れてしまい、断熱構造を維持することが難しいという問題があった。
 他方、例えば特許文献3~6には、ケイ酸塩などの無機化合物をバインダーとして使用した複合材料が提案されている。すなわち、特許文献3には、シリカエアロゲルと、有機バインダーまたは無機バインダーと、ガラス繊維と、を有する複合材料が記載されており、無機バインダーとしては水ガラス(ケイ酸ナトリウム)が記載されている。特許文献4には、エアロゲルを、水溶性バインダーおよび粉末ケイ酸ナトリウムなどの無機バインダーを用いて固形化した断熱材が記載されている。特許文献5には、不織布(バッティング)の上に、エアロゲルおよびケイ酸ナトリウムなどの無機バインダーを有する層が形成された可撓性絶縁構造体が記載されている。特許文献6には、シリカエアロゲル、水熱反応により結晶を形成できるセラミックス原料液、界面活性剤、および補強繊維を有する断熱材組成物が記載されている。
国際公開第2017/159527号 特表2013-534958号公報 特表平11-513349号公報 特開2004-10423号公報 特開2017-155402号公報 国際公開第2013/141189号
 前述したように、バッテリーパックに収容される複数のバッテリーセルは、締結部材により積層方向両側から加圧される。このため、バッテリーセル間に介装される断熱材には、圧縮されても潰れにくく断熱性を維持できることが要求される。
 また、断熱材を構成する断熱層の材料として多孔質材料を用いる場合、断熱層には、高温雰囲気で使用しても形状を保持できること(耐熱性)、および圧縮されても潰れや割れが生じにくく断熱性を維持できること(耐圧縮性)の両方が要求される。しかしながら、バインダーとして無機化合物を使用すると、バインダーの分解、劣化による問題は改善されるが、成形体が硬く、脆くなる。上記特許文献3~5には、単に無機バインダーを使用することしか記載されていないため、これだけでは、耐熱性および耐圧縮性を向上させることは難しい。上記特許文献6においては、水熱反応により結晶を形成できるセラミックス原料液を使用し、それを含む断熱材組成物を脱水、加熱および加圧することにより、シリカエアロゲルおよび補強繊維の表面でセラミックス結晶の合成を進行させている。形成されたセラミックス結晶は、シリカエアロゲル同士を結合するバインダーとしての役割を果たす。特許文献6に記載された製造方法によると、断熱材組成物の調製、金型内への注入および脱水、得られた一次成形体の加熱および加圧という工程が必要である。よって、工数が多く煩雑でコストがかかる。加えて、金型を用いて成形するため、薄膜化が難しい。また、形成されたセラミックス結晶は、針状、繊維状などの形状を有し、粒径が1~50μm程度のバルク結晶である(特許文献6の段落[0028]、[0057])。このため、得られる断熱材は、所望の耐熱性および耐圧縮性を満足するものではない。
 本発明は、このような実情に鑑みてなされたものであり、断熱性だけでなく耐熱性および耐圧縮性にも優れた断熱層を有するバッテリーパック用断熱材を提供することを課題とする。また、当該バッテリーパック用断熱材を有するバッテリーパックを提供することを課題とする。
 (1)上記課題を解決するため、本発明のバッテリーパック用断熱材は、断熱層と、該断熱層を挟んで配置される第一基材および第二基材と、を備え、該断熱層は、複数の粒子が連結して骨格をなし、内部に細孔を有し、表面および内部のうち少なくとも表面に疎水部位を有する多孔質構造体と、補強繊維と、バインダーとしての金属酸化物のナノ粒子と、を有し、500℃下で30分間保持する熱重量分析における該断熱層の質量減量率は10%以下であり、該断熱層、該第一基材および該第二基材の積層方向を厚さ方向として、該厚さ方向に15MPaの荷重を加えて圧縮する圧縮試験を行った場合に、該圧縮試験前の厚さに対する該圧縮試験後の厚さの変化率は70%より小さいことを特徴とする。
 (2)上記課題を解決するため、本発明のバッテリーパックは、リチウムイオン電池からなる複数のバッテリーセルと、隣り合う該バッテリーセル間に配置され、上記(1)の構成を有するバッテリーパック用断熱材と、を有することを特徴とする。
 (1)本発明のバッテリーパック用断熱材(以下、単に「本発明の断熱材」と称す場合がある)によると、多孔質構造体を有する断熱層が二つの基材間に挟持される。これにより、多孔質構造体の脱落(粉落ち)が抑制される。また、本発明の断熱材について、厚さ方向に15MPaの荷重を加えて圧縮する圧縮試験を行った場合に、該圧縮試験前の厚さに対する該圧縮試験後の厚さの変化率は70%より小さい。すなわち、本発明の断熱材は、圧縮されても潰れにくく、所望の断熱性を維持することができる。
 断熱層を構成する多孔質構造体は、複数の粒子が連結して骨格をなし、内部に細孔を有し、表面および内部のうち少なくとも表面に疎水部位を有する。多孔質構造体の骨格と骨格との間に形成される細孔の大きさは10~50nm程度であり、細孔の多くは、50nm以下のいわゆるメソ孔である。メソ孔は、空気の平均自由行程よりも小さいため、熱の移動が阻害される。よって、当該断熱層を有する本発明の断熱材は、優れた断熱効果を発揮する。
 断熱層は、構成成分を結合させるバインダーとして、金属酸化物のナノ粒子を有する。バインダーとして有機材料を使用しないため、高温雰囲気で使用しても、バインダーの分解、劣化によるガスの発生やクラックの発生が生じない。よって、断熱層は、高温下においても形状を保持することができ、質量が減少しにくい。すなわち、断熱層を500℃下で30分間保持した場合、その前後の質量から算出される質量減量率は10%以下である。
 バインダーとして金属酸化物のナノ粒子を使用すると、ウレタン樹脂などの有機材料を使用した場合と比較して、断熱層を硬質にすることができる。このため、圧縮されても断熱層が潰れにくく、断熱構造を維持することができる。また、バインダーを、上記特許文献6に記載されているバルク結晶ではなく、ナノ粒子(ナノメートルオーダーの粒子)にすることにより、無機化合物を有することによる硬さや脆さの欠点が改善される。
 加えて、断熱層は、補強繊維を有する。金属酸化物のナノ粒子と補強繊維との両方の作用により、高温下での形状保持性(耐熱性)が向上し、圧縮されても潰れにくく割れにくくなる(つまり、耐圧縮性が向上する)。これにより、断熱層は、圧縮されても断熱性を維持することができる。また、補強繊維を有することにより断熱層を形成するための塗料の安定性、成膜性が向上するため、断熱層の強度および耐熱性が向上する。以上より、本発明のバッテリーパック用断熱材は、断熱性、耐熱性および耐圧縮性に優れる。
 (2)本発明のバッテリーパックによると、隣り合うバッテリーセル間に、本発明の断熱材が介装される。前述したように、本発明の断熱材は、圧縮されても潰れにくい。したがって、本発明のバッテリーパックによると、複数のバッテリーセルが積層方向両側から加圧されていても、断熱材の断熱性が低下しにくい。また、本発明の断熱材を構成する断熱層は、断熱性だけでなく、高温下での形状保持性(耐熱性)に優れる。加えて、圧縮されても潰れにくく割れにくい(つまり、耐圧縮性に優れる)。したがって、本発明のバッテリーパックによると、一つのバッテリーセルの温度が上昇したとしても、そのバッテリーセルと隣接するバッテリーセルとの間に本発明の断熱材が介在することにより、隣接するバッテリーセル間における熱の伝達が抑制され、温度上昇の連鎖を抑制することができる。
第一実施形態のバッテリーパックの断面模式図である。 同バッテリーパックに収容されている断熱材の断面図である。 同断熱材の正面図である。 第二実施形態の断熱材の断面図である。
 以下、本発明のバッテリーパック用断熱材およびバッテリーパックの実施の形態について説明する。
 <第一実施形態>
 まず、第一実施形態のバッテリーパック用断熱材(以下、実施の形態の説明においては、単に「断熱材」と称す場合がある。)およびバッテリーパックの構成を説明する。図1に、本実施形態のバッテリーパックの構成を説明するための断面模式図を示す。図2に、同バッテリーパックに収容されている断熱材の断面図を示す。図3に、同断熱材の正面図を示す。図3においては、説明の便宜上、断熱層を透過して点線で示す。図1、図2に示すように、バッテリーパック1は、筐体10と、複数のバッテリーセル2と、断熱材3と、を有している。
 筐体10は、金属製であり箱状を呈している。複数のバッテリーセル2は、リチウムイオン電池からなる。複数のバッテリーセル2は、各々、矩形薄板状を呈しており、厚さ方向に積層されている。断熱材3は、隣り合うバッテリーセル2の間に配置されている。断熱材3は、断熱層30と第一基材31と第二基材32とを有している。
 断熱層30は、シリカエアロゲルとガラス繊維とシリカ粒子とを有している。シリカ粒子は、平均粒子径が12nmのナノ粒子である。シリカエアロゲルおよびガラス繊維は、シリカ粒子を介して結合されている。断熱層30は、厚さ2mmの矩形シート状を呈している。断熱層30を500℃下で30分間保持した場合の質量減量率は10%である。
 第一基材31は、断熱層30の厚さ方向の片側に配置されている。第一基材31は、ガラスクロスからなる。第一基材31の厚さは0.1mmであり、面方向の大きさは断熱層30のそれよりも一回り大きい。断熱層30と第一基材31との接触面において、断熱層30は第一基材31の網目に含浸されている。これにより、断熱層30と第一基材31とは接着されている。第二基材32は、断熱層30を挟んで第一基材31とは反対側に配置されている。第二基材32も第一基材31と同じガラスクロスからなる。第二基材32の厚さは0.1mmであり、面方向の大きさは断熱層30のそれよりも一回り大きい。断熱層30と第二基材32との接触面において、断熱層30は第二基材32の網目に含浸されている。これにより、断熱層30と第二基材32とは接着されている。
 第一基材31および第二基材32の材質、形状および大きさは、全て同じである。断熱層30の周囲において、第一基材31および第二基材32は融着されている。すなわち、図3に示すように、断熱材3は、本体部33と周縁部と34とを有している。本体部33は、断熱層30、第一基材31および第二基材32が厚さ方向に重なっている部分である。周縁部34は、断熱層30の周囲において、第一基材31および第二基材32が重なっている部分である。周縁部34には、第一基材31と第二基材32との融着により形成された融着部35が配置されている。このように、断熱層30は、第一基材31および第二基材32から形成される袋状の閉空間に収容されている。
 断熱層30、第一基材31および第二基材32の積層方向を厚さ方向として、断熱材3について厚さ方向に15MPaの荷重を加えて圧縮する圧縮試験を行った場合に、断熱材3の圧縮試験前の厚さに対する圧縮試験後の厚さの変化率は59%である。
 バッテリーパック1は、さらに図示しない締結部材を有している。締結部材は、複数のバッテリーセル2が断熱材3を介して積層されてなるバッテリーモジュールを、積層方向に締め付けて固定している。
 次に、本実施形態の断熱材およびバッテリーパックの作用効果を説明する。断熱材3は、シリカエアロゲル(多孔質構造体)を含む断熱層30を有する。このため、断熱材3は、優れた断熱効果を発揮する。断熱層30は、二枚のガラスクロス(第一基材31および第二基材32)から形成される袋状の閉空間に収容される。これにより、シリカエアロゲルの脱落(粉落ち)が抑制される。
 断熱層30において、シリカエアロゲルなどの構成成分を結合するバインダーは、シリカ粒子である。バインダーとして有機材料を使用しないため、高温雰囲気で使用しても、バインダーの分解、劣化によるガスの発生やクラックの発生が生じない。よって、断熱層30は、高温下においても形状を保持することができ、質量が減少しにくい。また、バインダーとしてシリカ粒子を使用すると、ウレタン樹脂などの有機材料を使用した場合と比較して、断熱層30が硬質になる。このため、圧縮されても断熱層30が潰れにくく、断熱構造を維持することができる。また、シリカ粒子はバルク結晶ではなく、ナノ粒子であるため、無機化合物を有していても断熱層30は硬くなりすぎず、脆くなりにくい。
 断熱層30は、ガラス繊維(補強繊維)を有する。シリカ粒子とガラス繊維との両方の作用により、高温下での形状保持性(耐熱性)が向上し、圧縮されても潰れにくく割れにくくなる(耐圧縮性が向上する)。具体的には、所定の圧縮試験を行った場合の断熱材3の厚さの変化率は、70%より小さい。したがって、断熱材3は、圧縮されても潰れにくく、所望の断熱性を維持することができる。また、ガラス繊維を有することにより、断熱層30を形成するための塗料の安定性、成膜性が向上する。このことも、断熱層30の強度および耐熱性の向上に寄与する。
 バッテリーパック1においては、隣り合うバッテリーセル2間に、断熱材3が介装される。断熱材3は、圧縮されても潰れにくい。したがって、バッテリーパック1によると、複数のバッテリーセル2が積層方向両側から加圧されていても、断熱材3の断熱性が低下しにくい。また、断熱層30は、断熱性および耐圧縮性だけでなく、高温下での形状保持性(耐熱性)に優れる。したがって、バッテリーパック1によると、一つのバッテリーセル2の温度が上昇したとしても、そのバッテリーセル2と隣接するバッテリーセル2との間に断熱材3が介在することにより、隣接するバッテリーセル2間における熱の伝達が抑制され、温度上昇の連鎖が抑制される。
 <第二実施形態>
 本実施形態の断熱材およびバッテリーパックと第一実施形態のそれとの相違点は、断熱材の周縁部に融着部ではなく固定部材が配置されている点である。ここでは、主に相違点を説明する。図4に、本実施形態の断熱材の断面図を示す。図4は、前出図2に対応しており、図2と同じ部位については同じ符号で示す。
 図4に示すように、断熱材3は、断熱層30と第一基材31と第二基材32とを有している。断熱層30は、ガラスクロスからなる第一基材31と第二基材32との間に挟持されている。断熱材3は、本体部33と周縁部34とを有している。周縁部34、すなわち断熱層30の周囲における、第一基材31と第二基材32との間には、固定部材36が配置されている。固定部材36は、熱可塑性エラストマー製の接着剤からなる。固定部材36の厚さは、断熱層30の厚さとほぼ同じである。固定部材36により、第一基材31と第二基材32とは接着されている。
 本実施形態の断熱材およびバッテリーパックと第一実施形態のそれとは、構成が共通する部分に関しては、同様の作用効果を有する。本実施形態の断熱材3によると、周縁部34に固定部材36が配置される。固定部材36は、熱可塑性エラストマー製であるため、弾性を有する。加えて、固定部材36の厚さは、断熱層30の厚さとほぼ同じである。これにより、断熱材3は、バッテリーセル2の積層方向における荷重を吸収することができる。よって、断熱材3は、バッテリーモジュールの締め付け後に生じるスプリングバックに対する追従性が高い。
 <その他の実施形態>
 以上、本発明の断熱材およびバッテリーパックを実施する二つの形態について説明した。しかしながら、実施の形態は上記形態に限定されるものではない。本発明の断熱材およびバッテリーパックは、当業者が行い得る変更、改良などを施した種々の形態にて実施することができる。
 [バッテリーパック用断熱材]
 本発明のバッテリーパック用断熱材は、断熱層と、該断熱層を挟んで配置される第一基材および第二基材と、を備える。
 (1)断熱層
 断熱層は、多孔質構造体と、補強繊維と、バインダーとしての金属酸化物のナノ粒子と、を有する。多孔質構造体は、複数の粒子が連結して骨格をなし、内部に細孔を有し、表面および内部のうち少なくとも表面に疎水部位を有する。多孔質構造体の構造、形状、大きさなどは、特に限定されない。例えば、骨格をなす粒子(一次粒子)の直径は2~5nm程度、骨格と骨格との間に形成される細孔の大きさは10~50nm程度であることが望ましい。
 多孔質構造体の最大長さを粒子径とした場合、多孔質構造体の平均粒子径は1~200μm程度が望ましい。多孔質構造体の粒子径が大きいほど、表面積が小さくなり細孔(空隙)容積が大きくなるため、断熱性を高める効果は大きくなる。例えば、平均粒子径が10μm以上のものが好適である。一方、断熱層を形成するための塗料の安定性や塗工のしやすさを考慮すると、平均粒子径が100μm以下のものが好適である。また、粒子径が異なる二種類以上を併用すると、小径の多孔質構造体が大径の多孔質構造体間の隙間に入りこむため、充填量を多くすることができ、断熱性を高める効果が大きくなる。
 多孔質構造体の種類は特に限定されない。一次粒子として、例えば、シリカ、アルミナ、ジルコニア、チタニアなどが挙げられる。なかでも化学的安定性に優れるという観点から、一次粒子がシリカである多孔質構造体が望ましい。例えば、複数のシリカ粒子が連結して骨格をなすシリカエアロゲルが挙げられる。なお、エアロゲルを製造する際の乾燥方法の違いにより、常圧で乾燥したものを「キセロゲル」、超臨界で乾燥したものを「エアロゲル」と呼び分けることがあるが、本明細書においては、その両方を含めて「エアロゲル」と称す。
 多孔質構造体は、表面および内部のうち少なくとも表面に疎水部位を有する。表面に疎水部位を有すると、水分などの染み込みを抑制することができるため、細孔構造が維持され、断熱性が損なわれにくい。例えば、少なくとも表面に疎水部位を有するシリカエアロゲルは、製造過程において、疎水基を付与するなどの疎水化処理を施して製造することができる。
 多孔質構造体の含有量は、断熱層の熱伝導率、硬さ、耐圧縮性などを考慮して適宜決定すればよい。例えば、熱伝導率を小さくし所望の耐圧縮性を実現するという観点では、多孔質構造体の含有量は、多孔質構造体および補強繊維を除く成分の100質量部に対して25質量部以上であることが望ましい。50質量部以上であるとより好適である。一方、多孔質構造体が多すぎると成膜性が低下したり粉落ちしやすくなる。よって、多孔質構造体の含有量は、多孔質構造体および補強繊維を除く成分の100質量部に対して280質量部以下であることが望ましい。
 補強繊維は、多孔質構造体の周りに物理的に絡み合って存在し、多孔質構造体の脱落を抑制すると共に、成膜性および耐熱性を向上させる。補強繊維の種類は特に限定されないが、高温下で使用した際に有機成分の分解、劣化を抑制するという観点から、無機系の繊維材料が望ましい。例えば、ガラス繊維、アルミナ繊維などのセラミック繊維が好適である。
 補強繊維の大きさは、断熱層の断熱性、耐熱性、断熱層を形成する際の成膜性などを考慮して適宜決定すればよい。例えば、補強繊維が細すぎると、凝集しやすくなるため、断熱層を形成するための塗料の粘度上昇を招いて成膜性が低下するおそれがある。好適な補強繊維の直径は、6.5μm以上である。反対に、補強繊維が太すぎると、補強効果が小さくなるため、成膜性や耐熱性が低下したり、熱の伝達経路が形成されやすくなるため熱伝導率が大きくなり断熱性が低下するおそれがある。好適な補強繊維の直径は、18μm以下である。また、補強繊維が短すぎると、補強効果が小さくなるため、成膜性や耐熱性が低下するおそれがある。好適な長さは、3mm以上である。反対に、補強繊維が長すぎると、凝集しやすくなるため、断熱層を形成するための塗料の粘度上昇を招いて成膜性が低下するおそれがある。また、熱の伝達経路が形成されやすくなるため熱伝導率が大きくなり断熱性が低下するおそれがある。好適な補強繊維の長さは、25mm以下である。
 補強繊維の含有量は、断熱層の成膜性、耐熱性などを考慮して適宜決定すればよい。例えば、成膜性を確保し、所望の耐熱性を実現するという観点では、補強繊維の含有量は、多孔質構造体および補強繊維を除く成分の100質量部に対して5質量部以上であることが望ましい。一方、補強繊維が多すぎると凝集し、断熱層を形成するための塗料の粘度上昇を招いて成膜性が低下するおそれがある。また、熱の伝達経路が形成されやすくなるため熱伝導率が大きくなり断熱性が低下するおそれがある。よって、補強繊維の含有量は、多孔質構造体および補強繊維を除く成分の100質量部に対して200質量部以下、さらには130質量部以下であることが望ましい。
 金属酸化物のナノ粒子は、多孔質構造体、補強繊維などの断熱層の構成成分を結合させるバインダーである。金属酸化物の種類は特に限定されず、シリカ、チタニア、酸化亜鉛、ジルコニアなどが挙げられる。なかでも、多孔質構造体や補強繊維と相溶しやすく、安価で入手しやすいという理由から、シリカが好適である。すなわち、金属酸化物のナノ粒子はシリカ粒子であることが望ましい。
 断熱層は、500℃下で30分間保持する熱重量分析における質量減量率が10%以下である。熱重量分析(TGA)は、断熱層のサンプルを、500℃下の空気雰囲気で30分間保持して加熱前後の質量を測定する。質量減量率は、次式(I)により算出する。
質量減量率(%)=(W-W)/W×100 ・・・(I)
[W:加熱前のサンプル質量、W:加熱後のサンプル質量]
 断熱層は、多孔質構造体、補強繊維、金属酸化物のナノ粒子に加えて、他の成分を有してもよい。例えば、断熱層を形成するための塗料を調製する際に、多孔質構造体の分散性を向上させるために添加される増粘剤、分散剤、界面活性剤などが挙げられる。
 (2)第一基材および第二基材
 第一基材は断熱層の片側に配置され、第二基材は断熱層を挟んで第一基材とは反対側に配置される。材質、形状、大きさなどの点において、第一基材と第二基材とは同じでも異なっていてもよい。第一基材および第二基材としては、布帛、不織布、シート材などを使用すればよく、なかでも熱伝導率が比較的小さいものがよい。また、高温下においても形状保持性が高く、難燃性を有するものが望ましい。例えば、ガラス繊維や金属繊維などの無機繊維から製造される布帛、不織布が挙げられる。特に、ガラスクロスが好適である。第一基材および第二基材は、一層から構成されるものでも、二層以上の積層体でもよい。
 本発明の断熱材は、断熱層を挟んで第一基材および第二基材が積層される本体部と、断熱層の周囲に第一基材と第二基材とが重なる周縁部と、を有するよう構成することができる。この場合、周縁部において第一基材と第二基材とを固定することにより、二つの基材から形成される袋状の空間に断熱層を収容することができる。固定される周縁部は、一部でも全部でもよい。周縁部の全部を固定すると、断熱層を閉空間に収容できるため、多孔質構造体の粉落ち抑制に効果的である。固定方法は、特に限定されないが、例えば、レーザーなどを用いて第一基材と第二基材とを融着すればよい。あるいは、接着剤、クリップ部材、かしめ部材、板ばね部材などの固定部材を用いてもよい。また、熱可塑性エラストマーおよびゴムなどのエラストマー、樹脂、金属からなる部材を接着剤で固定して、固定部材としてもよい。接着剤としては、エラストマーまたは樹脂を用いた有機系の接着剤が挙げられる。例えば、接着剤が弾性を有すると、断熱材が積層方向(厚さ方向)に圧縮された場合に、その荷重を吸収することができる。また、バッテリーモジュールの締め付け後に生じるスプリングバックにも、追従することができる。この場合、接着剤の厚さを断熱層の厚さ以上にすると、断熱層の割れの抑制に効果的である。また、難燃性を高めるという観点から、有機系の接着剤であればフッ素ゴムなどの難燃性を有するものや、無機系の接着剤を用いることが望ましい。
 (3)バッテリーパック用断熱材の耐圧縮性
 本発明のバッテリーパック用断熱材は、断熱層、第一基材および第二基材の積層方向を厚さ方向として、厚さ方向に15MPaの荷重を加えて圧縮する圧縮試験を行った場合に、圧縮試験前の厚さに対する圧縮試験後の厚さの変化率は70%より小さい。
 圧縮試験は、次のようにして行うものとする。まず、予め厚さを測定した断熱材を、速度3mm/minにて圧縮圧が15MPaになるまで圧縮し、圧縮圧が15MPaに到達したらそのまま1分間保持する。その後、同様の速度で圧縮圧が0MPa(無負荷)になる状態まで戻す。そして、断熱材の厚さを測定し、厚さ変化率を次式(II)により算出する。厚さ変化率は、65%以下、さらには60%以下であるとより好適である。
厚さ変化率(%)=(T-T)/T×100 ・・・(II)
[T:圧縮前の断熱層の厚さ、T:圧縮後の断熱層の厚さ]
 (4)バッテリーパック用断熱材の製造方法
 本発明の断熱材は、多孔質構造体と、補強繊維と、金属酸化物のナノ粒子と、を有する組成物を固形化し、それを第一基材および第二基材で挟んで製造することができる。本発明の断熱材の製造方法の一例として、多孔質構造体と、補強繊維と、金属酸化物のナノ粒子が液体に分散している分散液と、を有する断熱層用塗料を調製する塗料調製工程と、該断熱層用塗料を第一基材に塗布する塗布工程と、形成された塗膜に第二基材を重ねて積層体を形成した後、該塗膜を硬化させる硬化工程と、を有する方法を挙げることができる。
 この製造方法においては、上記特許文献6に記載されているように、断熱層の製造過程において水熱反応を進行させてバルク結晶を合成する必要はなく、金型を使用する必要もない。よって、断熱層を比較的簡単に製造することができると共に、断熱層用塗料を塗布する方法を採用するため、断熱層の薄膜化が容易である。また、断熱層用塗料は、補強繊維を有するため、安定性、成膜性に優れる。よって、強度および耐熱性に優れた断熱層を製造することができる。
 塗料調製工程において、断熱層用塗料は、金属酸化物のナノ粒子が液体に分散している分散液に、多孔質構造体、補強繊維、および必要に応じて添加される成分を加えて撹拌して調製すればよい。分散液を構成する液体(分散媒)は、特に限定されないが、多孔質構造体の細孔への浸入を抑制するという観点から、疎水性の液体ではなく水(純水、水道水などを含む)などの親水性の液体を用いることが望ましい。例えば、金属酸化物のナノ粒子がシリカ粒子の場合、ケイ酸ナトリウム水溶液、水を分散媒とするコロイダルシリカなどが挙げられる。金属酸化物のナノ粒子がチタニア粒子の場合、チタニアの水分散液などが挙げられる。撹拌は、羽根撹拌でもよいが、積極的にせん断力を加えたり、超音波を加えたりしてもよい。自転公転撹拌装置や、メディア型撹拌装置を用いてもよい。
 塗布工程において、断熱層用塗料を塗布するには、バーコーター、ダイコーター、コンマコーター(登録商標)、ロールコーターなどの塗工機や、スプレーなどを使用すればよい。あるいは、断熱層用塗料に第一基材を浸漬した後、乾燥させてもよい。塗布、浸漬のいずれの方法においても、第一基材が布帛などの多孔質な材料からなる場合には、断熱層用塗料の一部を第一基材の内部に含浸させてもよい。また、第一基材と断熱層との接着性を向上させるため、第一基材の表面にカップリング処理を施すなどの下処理をしてから、断熱層用塗料を塗布してもよい。
 硬化工程においては、[第一基材/断熱層用塗料の塗膜/第二基材]からなる積層体を形成してから、塗膜を硬化させる。例えば、積層体を乾燥させて塗膜を硬化させればよい。乾燥は、断熱層用塗料の分散媒に応じて適宜行えばよく、例えば水の場合には、室温~150℃程度の温度下で所定時間保持すればよい。
 [バッテリーパック]
 複数のバッテリーセルと、本発明の断熱材と、を積層させて、バッテリーパックを構成することができる。バッテリーセルの種類は特に限定されないが、例えばリチウムイオン電池などが挙げられる。本発明の断熱材を使用したバッテリーパックの一例として、本発明のバッテリーパックは、リチウムイオン電池からなる複数のバッテリーセルと、隣り合う該バッテリーセル間に配置される本発明の断熱材と、を有する。本発明のバッテリーパックにおける他の構成は限定されない。本発明のバッテリーパックは、複数のバッテリーセルと本発明の断熱材とが積層されてなるバッテリーモジュールを、積層方向の両側から締め付ける締結部材、バッテリーモジュールを収容する筐体などを有してもよい。
 次に、実施例を挙げて本発明をより具体的に説明する。
 (1)バッテリーパック用断熱材の製造
 まず、後出の表1、表2に示す配合量(単位は質量部)にて、種々の断熱層用塗料を調製した。次に、調製した断熱層用塗料を、第一のガラスクロスの表面に塗膜厚さ2mm狙いで塗布した。そして、塗膜の上に第二のガラスクロスを重ねて積層体を形成し、それを熱風オーブンに入れて80℃で1時間保持した後、100℃に昇温して質量減少が無くなる状態まで乾燥した。このようにして、[第一のガラスクロス/断熱層/第二のガラスクロス]からなるシート状の断熱材のサンプルを製造した。第一のガラスクロスは本発明における第一基材、第二のガラスクロスは本発明における第二基材の概念に含まれる。以下、各サンプルにおける断熱層用塗料の調製方法を詳しく説明する。
 [実施例1~15、17]
 コロイダルシリカ(シリカ粒子の水分散液;シグマアルドリッチ社製「LUDOX(登録商標) LS」)に、増粘剤としてのポリエチレンオキサイド(住友精化(株)製「PEO(登録商標)-29」)を添加して撹拌した。続いて、シリカエアロゲルの粉砕処理品を添加して攪拌し、その後さらにガラス繊維を添加して撹拌して断熱層用塗料を調製した。なお、断熱層用塗料の粘度調整が必要な場合は、コロイダルシリカを水で希釈して使用した。シリカエアロゲルの粉砕処理品は、表面および内部に疎水部位を有するシリカエアロゲル(キャボットコーポレーション製「P200」)を家庭用ミキサーを用いて粉砕処理したものであり、その平均粒子径は100μmである。ガラス繊維については、日本電気硝子(株)製「チョップドストランド」の中から、アスペクト比(長さ/直径)が異なる五種類(A~E)を選んで使用した。
 [実施例16]
 シリカエアロゲルの粉砕処理品に代えて、粉砕処理をしていないシリカエアロゲル(キャボットコーポレーション製「P200」)を使用した以外は、実施例2と同様にして断熱層用塗料を調製した。実施例1~17の断熱層用塗料は、本発明の断熱層用塗料の概念に含まれる。
 [比較例1]
 バインダーとして無機バインダーではなく従来の有機バインダーを使用し、ガラス繊維を添加せずに断熱層用塗料を調製した。すなわち、水に、バインダーとしてのウレタン樹脂エマルジョン(三洋化成工業(株)製「パーマリン(登録商標)UA-368」、固形分50質量%)、および増粘剤としてのポリエチレンオキサイド(同上)を添加して撹拌した後、シリカエアロゲルの粉砕処理品を添加して撹拌して、比較例1の断熱層用塗料を調製した。
 [比較例2]
 シリカエアロゲルを添加しない点以外は実施例1~5と同様にして、比較例2の断熱層用塗料を調製した。
 [比較例3]
 ガラス繊維を添加しない点以外は実施例2、実施例6~15、17と同様にして、比較例3の断熱層用塗料を調製した。
 [比較例4]
 ガラス繊維を添加しない点以外は実施例16(粉砕処理をしていないシリカエアロゲルを使用)と同様にして、比較例4の断熱層用塗料を調製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (2)断熱層の質量減量率
 本実施例の断熱材のサンプルには、断熱層以外に二枚のガラスクロスが含まれる。このため、断熱材のサンプルから断熱層のみを質量3~5mg分切り出し、それを質量減量率測定用サンプルとして、次のようにして断熱層の質量減量率を算出した。まず、質量減量率測定用サンプルを熱重量分析装置(TAインスツルメント社製「Q500」)に入れ、空気雰囲気で室温から500℃まで昇温速度80℃/分で加熱した。500℃に到達したらそのまま30分間保持し、それから質量減量率測定用サンプルを取り出して質量を測定した。そして、質量減量率測定用サンプルの初期質量をW、500℃下、30分間保持後の質量をWとして、前述した式(I)により断熱層の質量減量率を算出した。このようにして得られた断熱層の質量減量率を、前出の表1、表2にまとめて示す。
 (3)断熱材の評価方法
 製造した断熱材のサンプルについて、成膜性、断熱性、耐圧縮性、および耐熱性を次の方法により評価した。
 [成膜性]
 断熱材のサンプルの外観を目視観察し、クラックの有無を調べた。前出の表1、表2中、評価結果として、クラックが確認されなかった場合を〇印で、クラックが確認された場合を×印で示す。
 [断熱性]
 断熱材のサンプルの熱伝導率を、英弘精機(株)製の熱伝導率測定器「クイックラムダ」を用いて測定した。この熱伝導率測定器は、熱伝導率の既知物質を検定用標準試料としてキャリブレーションした検定曲線を用いて相対的に熱伝導率を算出する。よって、まず標準試料として、比較例1のサンプルの製造方法と同じ方法で、シリカエアロゲルの配合量が異なる三種類の断熱材のサンプルを製造した。各サンプルにおけるシリカエアロゲルの配合量は、153質量部、230質量部、307質量部とした。次に、各サンプル(標準試料)の熱伝導率を、JIS A1412-2(1999)の熱流計法に準拠した英弘精機(株)製の熱流束計「HC-074」で測定し、この熱伝導率の値を使用して熱伝導率測定器のキャリブレーションを行った。前出の表1、表2中、評価結果として、熱伝導率が0.045W/m・K以下の場合を〇印で、0.045W/m・Kより大きい場合を×印で示す。
 [耐圧縮性]
 断熱材のサンプルから直径60mmの円板状のサンプルを切り出して、圧縮試験用サンプルとした。圧縮試験用サンプルを圧縮試験機に設置して、3mm/minの速度で圧縮圧が15MPaになるまで圧縮した。圧縮圧が15MPaに到達したら1分間保持し、その後、同様の速度で圧縮圧が0MPa(無負荷)になる状態まで戻した。
 圧縮後の圧縮試験用サンプルの熱伝導率を、前述した熱伝導率測定器を用いて測定した。前出の表1、表2中、評価結果として、熱伝導率が0.045W/m・K以下の場合を〇印で、0.045W/m・Kより大きい場合を×印で示す。
 圧縮前と圧縮後の圧縮試験用サンプルの厚さを測定し、前述した式(II)により厚さ変化率を算出した。前出の表1、表2中、評価結果として、厚さ変化率が70%より小さい場合を○印で、厚さ変化率が70%以上の場合を×印で示す。
 [耐熱性]
 断熱材のサンプルを製造する時に調製した断熱層用塗料を、体積1cmの直方体状の型に流し込み、熱風オーブンに入れて80℃で1時間保持した後、100℃に昇温して質量減少が無くなる状態まで乾燥し脱型した。得られた成形体を、さらに600℃で10分間保持し、割れの有無を調べた。前出の表1、表2中、評価結果として、割れが確認されなかった場合を〇印で、割れが確認された場合を×印で示す。
 (4)断熱材の評価結果
 断熱材の評価結果を、前出の表1、表2にまとめて示す。まず、表1に示すように、無機バインダー(シリカ粒子)を使用し、補強繊維(ガラス繊維)を有する実施例1~5のサンプルにおいては、いずれも断熱層の質量減量率は10%以下であり、成膜性、断熱性、耐圧縮性、および耐熱性は良好であった。すなわち、実施例1~5のサンプルにおいては、クラックが無い薄膜状の断熱層が形成されており、熱伝導率は比較的小さく、圧縮しても潰れにくく断熱性を維持することができた。また、高温下で保持しても割れることなく形状を保持することができた。そして、シリカエアロゲルの配合量が多くなると、熱伝導率は小さくなる(断熱性は向上する)傾向が見られたが、圧縮による厚さ変化は大きくなる傾向が見られた。
 これに対して、有機バインダーを使用した比較例1のサンプルにおいては、断熱層の質量減量率は10%より大きく、成膜性および断熱性は良好であったものの、圧縮により潰れてしまい熱伝導率を測定することができず、耐圧縮性に劣る結果になった。また、高温下で保持すると割れが生じてしまい耐熱性も劣る結果になった。また、シリカエアロゲルを有しない比較例2のサンプルにおいては、所望の断熱性を得ることはできなかった。補強繊維を有しない比較例3、4のサンプルにおいては、成膜性が低下したことに加え、高温下で形状を保持することもできなかった。
 次に、表2に示すように、実施例6~17のサンプルにおいても、断熱層の質量減量率は10%以下であり、成膜性、断熱性、耐圧縮性、および耐熱性は良好であった。補強繊維の配合量を変化させた実施例6~11のサンプルを比較すると、補強繊維の配合量が多くなると、圧縮による厚さ変化は小さくなる傾向が見られ、耐圧縮性が向上することが確認された。なお、補強繊維の配合量が最も多い実施例17のサンプルにおいては、断熱層用塗料の粘度が上昇して加工性の低下がみられた。実施例12~15のサンプルにおいては、補強繊維の種類(アスペクト比)が異なるが、いずれも成膜性、断熱性、耐圧縮性、および耐熱性は良好であった。実施例16のサンプルは、実施例2のサンプルに対して、シリカエアロゲルの粉砕処理の有無が異なる。実施例2のように粉砕処理品を用いると、断熱層用塗料の粘度が低くなった。これにより、塗料調製時の混合分散時間を短縮することができ、加工性の向上が期待できる。また、シリカエアロゲルの粉落ち抑制効果や、形状保持性の向上も確認することができた。
1:バッテリーパック、10:筐体、2:バッテリーセル、3:断熱材、30:断熱層、31:第一基材、32:第二基材、33:本体部、34:周縁部、35:融着部、36:固定部材。

Claims (13)

  1.  断熱層と、該断熱層を挟んで配置される第一基材および第二基材と、を備え、
     該断熱層は、複数の粒子が連結して骨格をなし、内部に細孔を有し、表面および内部のうち少なくとも表面に疎水部位を有する多孔質構造体と、補強繊維と、バインダーとしての金属酸化物のナノ粒子と、を有し、500℃下で30分間保持する熱重量分析における該断熱層の質量減量率は10%以下であり、
     該断熱層、該第一基材および該第二基材の積層方向を厚さ方向として、該厚さ方向に15MPaの荷重を加えて圧縮する圧縮試験を行った場合に、該圧縮試験前の厚さに対する該圧縮試験後の厚さの変化率は70%より小さいことを特徴とするバッテリーパック用断熱材。
  2.  前記ナノ粒子は、シリカ粒子である請求項1に記載のバッテリーパック用断熱材。
  3.  前記多孔質構造体は、複数のシリカ粒子が連結して骨格をなすシリカエアロゲルである請求項1または請求項2に記載のバッテリーパック用断熱材。 
  4.  前記断熱層における前記多孔質構造体の含有量は、該多孔質構造体および前記補強繊維を除く成分の100質量部に対して50質量部以上280質量部以下である請求項1ないし請求項3のいずれかに記載のバッテリーパック用断熱材。
  5.  前記補強繊維は、ガラス繊維およびアルミナ繊維から選ばれる一種以上である請求項1ないし請求項4のいずれかに記載のバッテリーパック用断熱材。
  6.  前記断熱層における前記補強繊維の含有量は、前記多孔質構造体および該補強繊維を除く成分の100質量部に対して5質量部以上200質量部以下である請求項1ないし請求項5のいずれかに記載のバッテリーパック用断熱材。
  7.  前記補強繊維の直径は、6.5μm以上18μm以下、長さは3mm以上25mm以下である請求項1ないし請求項6のいずれかに記載のバッテリーパック用断熱材。
  8.  前記第一基材および前記第二基材の少なくとも一方は、ガラスクロスである請求項1ないし請求項7のいずれかに記載のバッテリーパック用断熱材。
  9.  前記断熱層を挟んで前記第一基材および前記第二基材が積層される本体部と、該断熱層の周囲に該第一基材と該第二基材とが重なる周縁部と、を有する請求項1ないし請求項8のいずれかに記載のバッテリーパック用断熱材。
  10.  前記周縁部において、前記第一基材と前記第二基材とは融着されている請求項9に記載のバッテリーパック用断熱材。
  11.  前記周縁部には、前記第一基材と前記第二基材とを固定する固定部材が配置される請求項9または請求項10に記載のバッテリーパック用断熱材。
  12.  前記固定部材は、弾性を有する請求項11に記載のバッテリーパック用断熱材。
  13.  リチウムイオン電池からなる複数のバッテリーセルと、
     隣り合う該バッテリーセル間に配置され、請求項1ないし請求項12のいずれかに記載のバッテリーパック用断熱材と、を有することを特徴とするバッテリーパック。
PCT/JP2021/003867 2020-03-12 2021-02-03 バッテリーパック用断熱材およびバッテリーパック WO2021181951A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/599,799 US20220181716A1 (en) 2020-03-12 2021-02-03 Thermal insulation material for battery pack and battery pack
CN202180004422.4A CN114080719B (zh) 2020-03-12 2021-02-03 电池组用绝热材料以及电池组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-043369 2020-03-12
JP2020043369A JP7009534B2 (ja) 2020-03-12 2020-03-12 バッテリーパック用断熱材およびバッテリーパック

Publications (1)

Publication Number Publication Date
WO2021181951A1 true WO2021181951A1 (ja) 2021-09-16

Family

ID=77671343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003867 WO2021181951A1 (ja) 2020-03-12 2021-02-03 バッテリーパック用断熱材およびバッテリーパック

Country Status (4)

Country Link
US (1) US20220181716A1 (ja)
JP (1) JP7009534B2 (ja)
CN (1) CN114080719B (ja)
WO (1) WO2021181951A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101455A1 (ja) * 2022-11-11 2024-05-16 イビデン株式会社 熱伝達抑制シート及び組電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021143733A (ja) * 2020-03-12 2021-09-24 住友理工株式会社 断熱材およびその製造方法
KR20230094366A (ko) * 2021-12-21 2023-06-28 주식회사 엘지에너지솔루션 냉각유체의 유입부와 배출부가 형성된 열전달부재를 포함하는 전지팩
KR102577201B1 (ko) * 2022-01-14 2023-09-14 에스케이온 주식회사 배터리 모듈 및 배터리 팩
WO2024053211A1 (ja) * 2022-09-05 2024-03-14 星和電機株式会社 難燃性断熱材
JP2024036240A (ja) * 2022-09-05 2024-03-15 星和電機株式会社 耐熱性断熱材
JP2024095153A (ja) * 2022-12-28 2024-07-10 イビデン株式会社 熱伝達抑制シート及び組電池
WO2024172127A1 (ja) * 2023-02-15 2024-08-22 三菱ケミカル株式会社 仕切り部材及び組電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267092A (ja) * 2001-03-08 2002-09-18 Matsushita Electric Ind Co Ltd 断熱材
WO2012050035A1 (ja) * 2010-10-14 2012-04-19 ニチアス株式会社 断熱材および断熱材の製造方法
JP2012145204A (ja) * 2011-01-14 2012-08-02 Nichias Corp 断熱体及びヒータ
WO2013141189A1 (ja) * 2012-03-23 2013-09-26 井前工業株式会社 断熱材組成物、これを用いた断熱材、及び断熱材の製造方法
WO2019107560A1 (ja) * 2017-11-30 2019-06-06 三菱ケミカル株式会社 仕切り部材及び組電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1029658A4 (en) * 1997-11-07 2004-09-08 Ube Nitto Kasei Co HOLLOW FIBER REINFORCED COMPOSITE STRUCTURE, PROCESS FOR PRODUCING THE SAME, AND APPARATUS THEREFOR
JP2001262067A (ja) * 2000-03-23 2001-09-26 Dokai Chemical Industries Co Ltd 鱗片状シリカ粒子を含有する断熱性コーティング材用硬化性組成物及び断熱性硬化体
JP2007230858A (ja) * 2006-02-02 2007-09-13 Nichias Corp 断熱材及びその製造方法
JP4860005B1 (ja) * 2010-12-22 2012-01-25 ニチアス株式会社 断熱材及びその製造方法
JP6506942B2 (ja) * 2014-10-23 2019-04-24 日東電工株式会社 断熱材およびバッテリーカバー
KR101917002B1 (ko) * 2016-10-12 2018-11-08 주식회사 엘지화학 저분진 고단열 에어로겔 블랭킷 및 이의 제조방법
JP7050810B2 (ja) * 2017-01-18 2022-04-08 エボニック オペレーションズ ゲーエムベーハー 造粒体状断熱材およびその製造方法
JP6602827B2 (ja) * 2017-10-25 2019-11-06 イソライト工業株式会社 断熱材及びその製造方法
JP7343189B2 (ja) * 2018-07-09 2023-09-12 井前工業株式会社 高温用断熱材及びその三次元成形体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267092A (ja) * 2001-03-08 2002-09-18 Matsushita Electric Ind Co Ltd 断熱材
WO2012050035A1 (ja) * 2010-10-14 2012-04-19 ニチアス株式会社 断熱材および断熱材の製造方法
JP2012145204A (ja) * 2011-01-14 2012-08-02 Nichias Corp 断熱体及びヒータ
WO2013141189A1 (ja) * 2012-03-23 2013-09-26 井前工業株式会社 断熱材組成物、これを用いた断熱材、及び断熱材の製造方法
WO2019107560A1 (ja) * 2017-11-30 2019-06-06 三菱ケミカル株式会社 仕切り部材及び組電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101455A1 (ja) * 2022-11-11 2024-05-16 イビデン株式会社 熱伝達抑制シート及び組電池
JP7495468B2 (ja) 2022-11-11 2024-06-04 イビデン株式会社 熱伝達抑制シート及び組電池

Also Published As

Publication number Publication date
JP7009534B2 (ja) 2022-01-25
US20220181716A1 (en) 2022-06-09
CN114080719A (zh) 2022-02-22
CN114080719B (zh) 2023-04-28
JP2021144879A (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2021181951A1 (ja) バッテリーパック用断熱材およびバッテリーパック
WO2021181932A1 (ja) 断熱材およびその製造方法
Luo et al. Anisotropic, multifunctional and lightweight CNTs@ CoFe2O4/polyimide aerogels for high efficient electromagnetic wave absorption and thermal insulation
CN113875082B (zh) 用于高安全性包设计的导热性各向异性的多层复合材料
Zeng et al. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties
EP2829527A1 (en) Heat insulator composition, heat insulator using same, and method for manufacturing heat insulator
EP2883850A1 (en) Low density inorganic powder insulator using expanded perlite, method for manufacturing same and mold machine for manufacturing same
JPH057354B2 (ja)
CN110641101A (zh) 隔热复合材料
WO2018131566A1 (ja) 燃料電池用セパレータおよびその製造方法
EP2948511A1 (en) Conductive bonded composites
CN111890754B (zh) 复合云母片隔热层
Shao et al. Characterization of nanocellulose–graphene electric heating membranes prepared via ultrasonic dispersion
US20220367937A1 (en) Heat insulation sheet for battery pack, and battery pack
WO2020009226A1 (ja) 断熱充填材、断熱材、断熱構造
JP2012036283A (ja) セラミックシール材料、及びその使用方法
WO2007004588A1 (ja) プロトン伝導性膜用補強材およびそれを用いたプロトン伝導性膜、並びに燃料電池
JPS61120880A (ja) 耐熱性シ−ル材料
CN114730935A (zh) 用于电动车辆电池应用的阻燃材料
Zhang et al. Study on structural and functional properties of porous SiO2 core‐shell construction/polyethylene nanocomposites with enhanced interfacial interaction
KR20200107415A (ko) 단열성 및 차열성이 우수한 방화문용 단열재 및 그 제조방법 및 이를 이용한 방화문
JP7466856B2 (ja) 断熱充填材、断熱材、断熱構造
EP4400757A1 (en) Thermal insulation material
KR102446714B1 (ko) 전자기파 차폐시트용 조성물 및 전자기파 차폐시트
EP4357124A1 (en) Fire spread prevention material, method for producing same, laminate, assembled battery, and automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767139

Country of ref document: EP

Kind code of ref document: A1