WO2021179734A1 - 制冷装置、冰箱及其控制方法、食材处理方法、控制装置 - Google Patents

制冷装置、冰箱及其控制方法、食材处理方法、控制装置 Download PDF

Info

Publication number
WO2021179734A1
WO2021179734A1 PCT/CN2020/138704 CN2020138704W WO2021179734A1 WO 2021179734 A1 WO2021179734 A1 WO 2021179734A1 CN 2020138704 W CN2020138704 W CN 2020138704W WO 2021179734 A1 WO2021179734 A1 WO 2021179734A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heating zone
heating
valve device
preset
Prior art date
Application number
PCT/CN2020/138704
Other languages
English (en)
French (fr)
Inventor
刘华
唐云
唐学强
曾清清
Original Assignee
合肥美的电冰箱有限公司
合肥华凌股份有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥美的电冰箱有限公司, 合肥华凌股份有限公司, 美的集团股份有限公司 filed Critical 合肥美的电冰箱有限公司
Priority to EP20923781.7A priority Critical patent/EP4092363A4/en
Priority to US17/796,270 priority patent/US20230119128A1/en
Priority to JP2022544787A priority patent/JP7505008B2/ja
Publication of WO2021179734A1 publication Critical patent/WO2021179734A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/003Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with respect to movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/003Arrangement or mounting of control or safety devices for movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention belongs to the technical field of household appliances, and more specifically, relates to a refrigeration device, a refrigerator and a control method thereof, a food processing method, a control device and a storage medium thereof.
  • the main purpose of the present invention is to provide a refrigeration device, a refrigerator and a control method thereof, a food processing method, a control device and a computer storage medium that can process food materials.
  • a refrigeration device including a compressor, a condenser, a throttling device, and an evaporator, the compressor, the condenser, the throttling device, and the evaporator are connected in sequence to form The refrigerant circulation circuit, wherein the connecting pipeline between the exhaust port of the compressor and the refrigerant inlet of the throttling device in the refrigerant circulation circuit is a first connecting pipeline, and the condenser is arranged on the first connecting pipeline.
  • a connecting pipeline it also includes:
  • the auxiliary heat exchange branch includes a condensation heater for heating the heating zone, the auxiliary heat exchange branch is arranged in parallel on the first connecting pipeline, the auxiliary heat exchange branch A first valve device is also provided, and the first valve device controls the refrigerant flow of the auxiliary heat exchange branch according to the temperature requirement in the heating zone.
  • the auxiliary heat exchange branch is arranged in parallel on the first connecting pipeline, and the high-temperature refrigerant can be transferred to the first connecting pipeline.
  • the condensation heater is introduced into the auxiliary heat exchange branch to heat the heating zone.
  • the first valve device By controlling the refrigerant flow of the auxiliary heat exchange branch by the first valve device, independent control of the auxiliary heat exchange branch can be realized. Since the auxiliary heat exchange branch is arranged in parallel on the first connecting pipeline, the first valve device is adjusted The working state will not affect the normal operation of the refrigerant circulation loop.
  • the refrigerant flow of the auxiliary heat exchange branch is controlled by the first valve device, which can adjust the temperature in the heating zone to meet the different temperature requirements of the heating zone, thereby satisfying people’s concerns Different needs for food processing.
  • the first valve device is provided with a first working state and a second working state, wherein:
  • the first working state is that the opening degree of the first valve device is the first opening degree, so that the temperature in the heating zone rises;
  • the second working state is one of the following:
  • the first valve device is opened intermittently, so that the temperature in the heating zone fluctuates within a preset heating temperature range
  • the first valve device is closed, so that the temperature in the heating zone is slowly reduced within a preset heating temperature
  • the opening degree of the first valve device is the second opening degree, so that the temperature in the heating zone is maintained within the preset heating temperature interval.
  • the first valve device is provided with a first working state and a second working state, and the first valve device can be switched between the first working state, the second working state or other working states, and the first working state corresponds to the first working state.
  • the opening degree of the valve device is the first opening degree.
  • the refrigerant flowing through the condensing heater causes the temperature of the heating zone to rise.
  • the second working state of the first valve device is used to keep the temperature of the heating zone within the preset heating temperature range.
  • the second working state is that the first valve device is opened intermittently, so that the temperature in the heating zone fluctuates within a preset heating temperature interval.
  • the first valve device is opened intermittently, and the temperature of the heating zone is maintained within the preset heating temperature range by means of intermittently supplementing heat.
  • the control method of intermittent opening of the first valve device is simple. It only needs to link the temperature detection of the heating zone for control. There is no need for complex control algorithms, and there is no need to require the first valve device to adjust the opening degree. Low-cost valve devices and valve drives can be selected. Device.
  • the second working state is that the first valve device is closed, so that the temperature in the heating zone is slowly reduced within the preset heating temperature.
  • a heat preservation layer is provided on the outer wall of the heating zone, so that even if the first valve device is closed, the temperature of the heating zone will slowly decrease, and the heating zone will remain at the preset heating for a certain period of time. Temperature range to meet the needs of food processing.
  • the second working state is that the opening degree of the first valve device is the second opening degree, so that the temperature in the heating zone is maintained within the preset heating temperature range.
  • the refrigerant flow rate of the auxiliary heat exchange branch is controlled, so that the heating heat of the condensing heater and the heat dissipation of the heating zone are dynamically balanced, so that the heating zone The internal temperature is maintained within the preset heating temperature range.
  • This method has high control accuracy and can stabilize the temperature of the heating zone within a small range.
  • the second opening degree is smaller than the opening degree of the first opening degree.
  • the first valve device switches its working state to the first working state according to the temperature requirement in the heating zone, and opens to the first opening to make the temperature in the heating zone After rising to the preset heating temperature interval, the first valve device switches its working state to the second working state, so that the temperature in the heating zone is maintained within the preset heating temperature interval.
  • the preset heating interval corresponds to the current heating zone temperature requirements and is set according to the user's needs for food processing.
  • the first valve device switches between the first working state and the second working state to realize the heating of the heating zone And the process of temperature control meets the user's heating demand for food materials.
  • the first valve device is a three-way valve
  • the first end of the auxiliary heat exchange branch is connected to the exhaust port of the compressor through the three-way valve, so The second end of the auxiliary heat exchange branch is connected with the refrigerant inlet of the condenser.
  • the high-temperature refrigerant from the exhaust port of the compressor can be preferentially entered into the auxiliary heat exchange branch, so that the heating zone can quickly rise to a high enough temperature for the food
  • the condenser can make full use of the refrigerant flowing out of the auxiliary heat exchange branch to reduce the influence on the refrigeration effect of the refrigeration device itself.
  • a heat preservation box is further included, the heating zone is arranged in the heat preservation box, and the condensation heater is arranged on the heat preservation box.
  • the heating zone is arranged in the thermal insulation box, and the condensation heater heats the heating zone in the thermal insulation box, which can ensure that the temperature in the thermal insulation box is not easily lost, and effectively improve the heating effect.
  • the condensation heater includes a condensation heating tube, and the condensation heating tube is arranged on the incubator.
  • the heat of the high-temperature refrigerant in the auxiliary heat exchange branch can be quickly transferred to the incubator through the condensing heating tube, the heating effect is better, no complicated heat exchange device or other heat transfer medium is needed, and the cost is low.
  • the condensation heating tube is arranged at the bottom of the incubator. Due to the characteristics of hot air floating up and cold air falling, arranging the condensation heating tube at the bottom of the incubator can facilitate the transfer of heat from the condensation heating tube to the heating zone in the entire incubator, so that the heating zone The internal temperature is more uniform, which is conducive to the uniform heating of the food.
  • the present invention further includes an air passage control device for controlling the air passage between the heating zone and the refrigerator refrigeration zone.
  • the heating zone includes an air duct for communicating with the refrigeration zone of the refrigerator, and an air duct control device for controlling the circulation of the air duct is provided on the air duct.
  • the air duct control device When the air duct control device is turned on, the heating zone and The air circulation in the air ducts between the refrigerating areas of the refrigerator can introduce the cold air from the refrigerating areas of the refrigerator to the heating area, speeding up the cooling process of the ingredients.
  • the air channel control device can realize the air channel circulation between the heating zone and the refrigerator refrigeration zone, thereby being able to meet the complex processing requirements of heating and cooling food materials.
  • the air duct control device includes a fan and/or a damper that controls the opening of the air duct.
  • the fan can control the air flow speed between the heating zone and the refrigerator refrigeration zone, so that the cold air in the refrigerator refrigeration zone is introduced into the heating zone, so as to accelerate the temperature drop of the heating zone.
  • the air door can be opened, so that the cold air in the refrigerating zone of the refrigerator flows into the heating zone through the air duct to circulate, so as to realize the cooling of the heating zone.
  • the air door can be closed to ensure that no cold enters the heating zone and improve the heating effect of the heating zone.
  • a fan and a damper can be set on the air duct at the same time as required, or one can be set as required.
  • the first valve device is closed according to the temperature requirement in the heating zone, and the air duct control device is opened according to the temperature requirement in the heating zone, so that the heating zone The temperature inside drops.
  • the first valve device is closed and the air duct control device is opened to make the air duct between the heating zone and the refrigeration zone of the refrigerator be opened.
  • the air circulation of the refrigerator introduces the cold air from the refrigerating zone of the refrigerator into the heating zone. Because the first valve device is closed, the condensing heater no longer heats up.
  • the temperature of the heating zone can be quickly reduced , Can effectively meet the user's requirements for the efficiency of food processing and special cooling rate, and can also meet the needs of users for food processing in multiple temperature zones.
  • it further includes an air channel control device for controlling the air channel circulation between the heating zone and the refrigerator refrigeration zone, and the first valve device is in the second working state and reaches the preset state.
  • the first valve device is closed according to the temperature requirement in the heating zone, and the air duct control device is opened according to the temperature requirement in the heating zone, so that the temperature in the heating zone is lowered.
  • the first valve device is closed, and the air duct control device is opened, so that the air in the air duct between the heating zone and the refrigerating zone of the refrigerator is opened. Circulation.
  • the first valve device When the heating zone needs to be cooled and cooled, the first valve device is closed to stop the high-temperature refrigerant from continuing to enter the auxiliary heat exchange branch, and the air duct control device is opened to make the heating zone and the refrigerator refrigerating zone between The air circulation in the air duct enables thermal interaction between the refrigerating zone and the heating zone of the refrigerator through the air duct, so that the temperature of the heating zone is reduced. Since the first valve device is in the second working state and reaches the preset time period, the temperature of the heating zone is maintained at the preset heating temperature interval for the preset time period, which meets the user's demand for cooling the food after heating.
  • the preset heating temperature interval includes a heating temperature upper limit value and a heating temperature lower limit value
  • the first valve device switches its working state according to the temperature requirement in the heating area.
  • the second working state keeps the temperature in the heating zone between the upper limit of the heating temperature and the lower limit of the heating temperature, avoiding repeated switching of the first valve device in the first and second working states, increasing The reliability of the first valve device.
  • the two preset heating temperature intervals are included, and the first valve device controls the refrigerant flow of the auxiliary heat exchange branch according to the temperature requirement in the heating area, so that The temperature in the heating zone is switched between two or more preset heating temperature intervals.
  • the user can set two or more preset heating temperature zones according to the needs of the food materials that need to be processed, and control the refrigerant flow of the auxiliary heat exchange branch through the first valve device, so that the temperature in the heating zone is within the above two Switching between more than one preset heating temperature interval, including switching according to the user's manual control, switching according to a preset program or heating curve, or switching back and forth. Meet the different processing needs of users for heating food.
  • the present invention further includes a preset low temperature interval, and the first valve device controls the refrigerant flow of the auxiliary heat exchange branch according to the temperature requirement in the heating zone, so that the The temperature of is switched between the preset heating temperature interval and the preset low temperature interval.
  • the first valve device controls the refrigerant flow of the auxiliary heat exchange branch according to the temperature requirement in the heating zone, so that the The temperature of is switched between the preset heating temperature interval and the preset low temperature interval.
  • two preset heating temperature intervals are included, one of the preset heating temperature intervals is a first preset temperature interval, and the other preset heating temperature interval is a second preset temperature
  • the first valve device switches to the second working state State, the temperature in the heating zone is maintained in the first preset temperature interval, and after the first valve device is in the second working state and lasts for the first preset time, the first valve device is closed to make
  • the temperature in the heating zone is reduced to a preset low temperature interval
  • the first valve device is switched to the first working state to increase the temperature in the heating zone to a second preset temperature interval
  • the first valve device is switched
  • the lower limit of the heating temperature in the first predetermined temperature interval is greater than the upper limit of the heating temperature in the second predetermined temperature interval.
  • the mixture of rice and water is put into the heating zone.
  • the first valve device is the first valve.
  • a working state causes the temperature in the heating zone to rise to a first preset temperature interval, and the first valve device is switched to a second working state to keep the temperature in the heating zone within the first preset temperature interval
  • the first valve device is closed, and after the temperature in the heating zone drops to the preset low temperature range, the freezing and thawing treatment of the mixture of rice and water is realized.
  • the first valve After the device is switched to the first working state to increase the temperature in the heating zone to a second preset temperature interval, the first valve device is switched to the second working state to keep the temperature in the heating zone at the second preset temperature interval.
  • Set the temperature range to realize the regeneration of the mixture of rice and water.
  • it further includes an air passage control device for controlling the air passage between the heating zone and the refrigeration zone of the refrigerator, and the first valve device is switched according to the temperature requirement in the heating zone After the temperature in the heating zone is raised to the first preset temperature interval for the first working state, the air duct control device is turned on according to the temperature requirement in the heating zone, and the temperature in the heating zone is reduced to the preset temperature. After setting the low temperature zone, the air duct control device is closed.
  • the air duct between the heating zone and the refrigerator refrigeration zone is circulated, so that cold air in the refrigeration zone of the refrigerator flows into the heating zone through the air duct to circulate, so as to realize the cooling of the heating zone and enhance the cooling efficiency of the heating zone. Meet the timeliness needs of users for cooling of food ingredients.
  • the present invention further includes a preset preservation temperature interval.
  • the first valve device maintains the second working state according to the temperature requirement in the heating zone for a second preset period of time.
  • the first valve device is closed, and the air duct control device is opened according to the temperature requirement in the heating zone, so that the temperature in the heating zone is reduced to a preset preservation temperature range.
  • the first valve device is closed and the air duct control device is opened to reduce the temperature of the heating zone to the preset preservation temperature range.
  • the food is stored in the preset preservation temperature range, and the processed food can be directly in the heating zone It is fresh in the medium, and the user does not need to take it out for storage.
  • a refrigerator including the refrigeration device according to any one of the embodiments of the first aspect of the present invention.
  • a control method of a refrigeration device including a compressor, a condenser, a throttling device, and an evaporator, the compressor, the condenser, the throttling device, and The evaporators are sequentially connected to form a refrigerant circulation circuit, wherein the connecting pipeline between the exhaust port of the compressor and the refrigerant inlet of the throttling device in the refrigerant circulation circuit is a first connecting pipeline, and The condenser is arranged on the first connecting pipeline, the refrigeration device further includes a heating zone and an auxiliary heat exchange branch, and the auxiliary heat exchange branch includes a condensation heater for heating the temperature in the heating zone, so The auxiliary heat exchange branch is arranged in parallel on the first connecting pipeline, and the auxiliary heat exchange branch is also provided with a first valve device for controlling the refrigerant flow of the auxiliary heat exchange branch, and the control method includes the following step:
  • the working state of the first valve device is controlled according to the temperature requirement of the heating zone.
  • the auxiliary heat exchange branch is arranged in parallel on the first connecting pipeline, and the high-temperature refrigerant can be transferred to the first connecting pipeline. Introduced into the condensing heater on the auxiliary heat exchange branch to heat the heating zone. By controlling the refrigerant flow of the auxiliary heat exchange branch by the first valve device, independent control of the auxiliary heat exchange branch can be realized. Since the auxiliary heat exchange branch is arranged in parallel on the first connecting pipeline, the first valve device is adjusted The working state of the cooling medium does not affect the normal operation of the refrigerant circulation loop. By controlling the working state of the first valve device, the temperature in the heating zone can be adjusted to meet the different temperature requirements of the heating zone, so as to meet the different needs of people for food processing.
  • controlling the working state of the first valve device according to the temperature requirement of the heating zone includes:
  • the working state of the first valve device is controlled to be the second working state, so that the temperature in the heating zone is maintained within the preset heating temperature interval.
  • the flow of refrigerant flowing through the auxiliary heat exchange branch is adjusted to increase the temperature in the heating zone until it reaches a preset heating temperature range, and then the first valve is controlled to
  • the working state of a valve device is the second working state, adjusting the flow rate of the refrigerant flowing through the auxiliary heat exchange branch to keep the temperature in the heating zone within the preset heating temperature interval, wherein the preset heating interval Corresponding to the current heating zone temperature requirements, it is set according to the user's needs for food processing and processing.
  • the controlling the working state of the first valve device to be the second working state so that the temperature in the heating zone is maintained within the preset heating temperature interval includes one of the following steps:
  • the opening degree of the first valve device is controlled to keep the temperature in the heating zone within the preset heating temperature zone.
  • the temperature in the heating zone can be maintained within the preset heating temperature zone by the above three methods.
  • the first method is to control the intermittent opening of the first valve device, and maintain the temperature of the heating zone within the preset heating temperature range by intermittently supplementing heat.
  • the first valve does not need to be set to open intermittently.
  • the control method is simple, only needs to link the temperature detection of the heating zone for control, does not require complex control algorithms, and does not require the first valve device to adjust the opening degree, and low-cost valve devices can be selected And valve drive devices.
  • the second method is to close the first valve device so that the temperature in the heating zone is slowly reduced within the preset heating temperature.
  • a heat preservation layer is provided on the outer wall of the heating zone, so that even if the first valve device is closed, the temperature of the heating zone will slowly decrease, and the heating zone will remain at the preset heating for a certain period of time Temperature range to meet the needs of food processing.
  • the third method is to control the opening degree of the first valve device to the second opening degree, so that the temperature in the heating zone is maintained within the preset heating temperature zone.
  • the refrigerant flow rate of the auxiliary heat exchange branch is controlled, so that the heating heat of the condensing heater and the heat dissipation of the heating zone are dynamically balanced, so that the heating zone The internal temperature is maintained within the preset heating temperature range.
  • This method has high control accuracy and can stabilize the temperature of the heating zone within a small range.
  • the first valve device After the first valve device is maintained in the second working state for a preset period of time, the first valve device is controlled to close, so that the temperature in the heating zone drops to a preset low temperature interval.
  • the heating zone By closing the first valve device to stop the condensing heater to release heat, the heating zone will cool down at this time, and when the temperature reaches the preset low temperature range, the working state of the first valve device is controlled to keep it in the preset low temperature range , The heating zone can be switched between the preset heating temperature interval and the preset low temperature interval, so as to meet the user's needs for different temperature processing of food materials.
  • the heating zone includes an air duct for communicating with the refrigeration zone of the refrigerator, and an air duct control device for controlling the circulation of the air duct is provided on the air duct;
  • the temperature in the area drops to a preset low temperature range, including:
  • the air duct control device is controlled to be turned on, so that the air in the heating zone and the refrigeration zone of the refrigerator is circulated, and the temperature in the heating zone drops to a preset low temperature interval.
  • the air duct control device is controlled to open, so that the air in the heating zone and the refrigeration zone of the refrigerator circulates, and the refrigerator The cold air in the refrigeration zone is introduced into the heating zone. Because the cold capacity of the refrigeration zone of the refrigerator is used, the temperature of the heating zone can be quickly cooled, which can effectively meet the requirements of users for the efficiency of food processing and the special cooling rate.
  • a food processing method applied to a refrigeration device including a compressor, a condenser, a throttling device, and an evaporator, the compressor, the condenser, and the The throttling device and the evaporator are sequentially connected to form a refrigerant circulation circuit, wherein the connecting pipeline between the exhaust port of the compressor and the refrigerant inlet of the throttling device in the refrigerant circulation circuit is the first connection
  • the condenser is arranged on the first connecting pipeline
  • the refrigeration device further includes a heating zone and an auxiliary heat exchange branch
  • the auxiliary heat exchange branch includes a heater for heating the temperature in the heating zone.
  • the auxiliary heat exchange branch is arranged in parallel on the first connecting pipeline, and the auxiliary heat exchange branch is also provided with a first valve device for controlling the refrigerant flow of the auxiliary heat exchange branch, so
  • the heating zone includes an air duct for communicating with the refrigeration zone of the refrigerator, and an air duct control device for controlling the circulation of the air duct is provided on the air duct, and the food processing method further includes the following steps:
  • the first valve device is controlled to be in the first working state, so that the temperature in the heating zone is maintained in the second preset heating temperature interval for a second preset period of time.
  • the mixture of rice and water is put into the heating zone, and the first valve is controlled.
  • the device is in the first working state to increase the temperature in the heating zone to a first preset temperature interval, and the temperature in the heating zone is maintained at the first preset temperature by controlling the first valve device to be in the second working state
  • the temperature interval lasts for the first preset time to gelatinize the rice.
  • the first valve device is closed. After the temperature in the heating zone drops to the preset low temperature interval, the freezing and thawing treatment of the mixture of rice and water is realized.
  • the second preset temperature interval realizes the regeneration of the mixture of rice and water.
  • the amylose dissolved in water can be converted into resistant starch that is not easy to be digested by the human body, and the rice is physically modified, thereby significantly increasing the content of resistant starch in the rice and achieving the purpose of reducing sugar in rice. , So as to control the conversion of sugars in food in the human body, and meet people's needs for food processing.
  • the present invention further includes the following steps: controlling the first valve device to close, turning on the air duct control device, so as to circulate the air in the heating zone and the refrigerating zone of the refrigerator, so that the temperature in the heating zone is reduced to Preset the preservation temperature range.
  • the first valve device is closed, and the air duct control device is turned on to reduce the temperature of the heating zone to the preset preservation temperature interval.
  • the ingredients are stored in the preset preservation temperature interval, and the processed ingredients can be directly in the heating zone It is fresh in the medium, and the user does not need to take it out for storage.
  • a control device including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the computer program, the present invention is implemented
  • the control method of the refrigeration device according to any embodiment of the third aspect or the food processing method as implemented in any embodiment of the fourth aspect of the present invention.
  • a sixth aspect of the present invention provides a refrigerator, including the control device of any one of the embodiments of the fifth aspect of the present invention.
  • a computer storage medium storing computer-executable instructions, the computer-executable instructions being used to execute the control method of a refrigeration device according to any one of the embodiments of the third aspect of the present invention or to implement such The food processing method according to any embodiment of the fourth aspect of the present invention.
  • the auxiliary heat exchange branches arranged in parallel on the first connecting pipeline can introduce high-temperature refrigerant to the condensation heater on the auxiliary heat exchange branches, thereby heating the heating zone.
  • the refrigerant flow of the auxiliary heat exchange branch by the first valve device, independent control of the auxiliary heat exchange branch can be realized. Since the auxiliary heat exchange branch is arranged in parallel on the first connecting pipeline, the first valve device is adjusted The working state of the refrigerant circulation loop will not affect the normal operation of the refrigerant circulation loop.
  • the refrigerant flow rate of the auxiliary heat exchange branch is controlled by the first valve device, which can adjust the temperature in the heating zone to meet the different temperature requirements of the heating zone, thereby satisfying people’s expectations. Different needs for food processing.
  • Fig. 1 is a system principle diagram of the refrigeration device of the first embodiment and the second embodiment of the present invention
  • Figure 2 is a system schematic diagram of a refrigeration device according to a third embodiment of the present invention.
  • Figure 3 is a system schematic diagram of a refrigeration device according to a fourth embodiment of the present invention.
  • Figure 4 is a schematic diagram of the structure of an incubator in an embodiment of the present invention.
  • Figure 5 is a temperature control curve diagram of the refrigeration device in the fifth embodiment of the present invention.
  • Figure 6 is a block diagram of the circuit principle of the refrigeration device in the embodiment of the present invention.
  • Fig. 7 is a system principle diagram of a refrigerator in a sixth embodiment of the present invention.
  • FIG. 8 is a method flow chart of the control method of the refrigeration system according to the seventh embodiment of the present invention.
  • FIG. 9 is a method flowchart of an implementation manner of step 20 in FIG. 8;
  • FIG. 10 is a method flowchart of the control method of the refrigeration system according to the eighth embodiment of the present invention.
  • FIG. 11 is a method flowchart of a control method of a refrigeration system according to a ninth embodiment of the present invention.
  • FIG. 12 is a method flowchart of a method for controlling a refrigeration system according to a tenth embodiment of the present invention.
  • Figure 13 is a flow chart of the eleventh implementation method of the refrigeration system control method of the present invention.
  • 16 is a schematic diagram of the structure of the control device in the fifth aspect of the present invention.
  • Fig. 17 is a system principle diagram of a refrigerator in the sixth aspect of the present invention.
  • compressor 101 compressor 101; condenser 102; throttling device 103; evaporator 104; accumulator 105; return air heat exchange pipe 106; condensation heater 107; three-way valve 108; first connecting pipe 109; The second connecting pipeline 110; the incubator 201; the condensation heating pipe 202; and the air duct 203.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more features.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a movable connection, or a detachable connection or a non-detachable connection. , Or integrally connected; it can be mechanically connected, it can be electrical connection or can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components, indirect communication or the connection of two components Interaction relationship
  • first end and second end of each element in the refrigeration device or refrigerator of the present invention are only used to indicate the input or output of the element, and the naming rules are uniform
  • the input end of the refrigerant of the refrigeration device is the "first end” and the output end of the refrigerant is the "second end”, and it cannot be understood as a function of indicating or implying relative importance or implicitly indicating the indicated technical features.
  • the refrigeration device is the core component of the refrigerator equipment and is used to provide refrigeration for the refrigeration zone of the refrigerator.
  • the refrigeration zone of the refrigerator includes a refrigeration zone and a freezing zone.
  • the temperature of the refrigerating zone is 2°C to 8°C, and the temperature of the freezing zone is -18°C.
  • FIG. 1 shows a refrigeration device according to the first embodiment of the present invention, which includes a compressor 101, a condenser 102, a throttling device 103, and an evaporator 104.
  • the compressor 101, the condenser 102, the throttling device 103 and The evaporator 104 is connected in turn to form a refrigerant circulation circuit for providing refrigeration for the refrigeration zone of the refrigerator.
  • the arrow in Figure 1 indicates the flow direction of the refrigerant.
  • the connecting pipeline of is the first connecting pipeline 109, the condenser 102 is arranged on the first connecting pipeline 109, and the first connecting pipeline 109 is used to provide the condenser 102 with the high-temperature refrigerant provided by the compressor 101; wherein the refrigerant circulates
  • the connecting pipeline between the refrigerant outlet of the throttle device 103 and the air return port of the compressor 101 in the loop is the second connecting pipeline 110, the evaporator 104 is arranged on the second connecting pipeline 110, and the second connecting pipeline 110 is used for To provide low-temperature refrigerant for the evaporator 104.
  • the exhaust port of the compressor 101 outputs high-temperature gaseous refrigerant, and enters the condenser 102 through the first end of the condenser 102.
  • the high-temperature gaseous refrigerant emits heat and condenses into a high-temperature liquid refrigerant.
  • the above-mentioned throttling device 103 can adopt a capillary tube or an electronic expansion valve or a thermal expansion valve or a short throttling tube.
  • the capillary tube has a simple structure, is convenient to manufacture, is low in price, has no moving parts, is not prone to failure and leakage, and has automatic Compensation features to meet the flow requirements of refrigeration load changes; electronic expansion valves are highly adaptable to changes in refrigerant quantity, which enhances the comfort of the refrigeration device; thermal expansion valves have a wide temperature range and can quickly balance the high and low pressures of the system when shutting down.
  • a reservoir 105 is provided between the second end of the evaporator 104 and the air inlet of the compressor 101 for storing liquid refrigerant that has not yet vaporized.
  • the reservoir 105 can also be installed in the reservoir 105.
  • a return air heat exchange pipe 106 is arranged between the compressor 101 and the compressor 101 to absorb the heat released by the throttling device 103 to increase the temperature of the refrigerant entering the air inlet of the compressor 101.
  • the refrigeration device further includes:
  • the heating area is used to store the food to be processed.
  • the heating area can be an incubator or heating box set in the refrigerating chamber, or an independent compartment of the refrigerator;
  • the auxiliary heat exchange branch includes a condensation heater 107 for heating the temperature in the heating zone, the auxiliary heat exchange branch is arranged in parallel on the first connecting pipe 109, and the auxiliary heat exchange branch is also provided with a second A valve device, the first valve device controls the refrigerant flow of the auxiliary heat exchange branch according to the temperature requirement in the heating zone.
  • the first valve device is controlled by the controller of the refrigerator, and the controller sends a control instruction to the first valve device according to the temperature requirement in the heating zone to control the working state of the first valve device, so that the inflow of auxiliary heat exchange support can be controlled.
  • the condensing heater 107 releases more heat and the temperature of the heating zone rises.
  • the condensing heater 107 stops releasing heat.
  • the working state of the first valve device is the opening degree or the change of the opening degree of the first valve device.
  • the opening degree of the first valve device When the opening degree of the first valve device is maximum, it flows through the auxiliary heat exchange branch. When the opening of the first valve device is zero, the refrigerant flow through the auxiliary heat exchange branch is zero.
  • the opening degree of the first valve device can also be adjusted between zero and the maximum opening degree. For example, a valve device that can be adjusted in steps or steplessly is used as the first valve device.
  • the auxiliary heat exchange branch is arranged in parallel on the first connecting pipe 109, which can introduce the high-temperature refrigerant To the condensation heater 107 on the auxiliary heat exchange branch to heat the heating zone.
  • the first valve device controls the refrigerant flow of the auxiliary heat exchange branch, which can adjust the temperature in the heating zone to meet the different temperature requirements of the heating zone, so as to meet people's requirements for food processing. Different needs.
  • the first valve device In order to allow the refrigerant to flow through the auxiliary heat exchange branch, the first valve device needs to be opened while the refrigerant in the refrigerant circulation circuit circulates. At this time, the compressor 101 needs to work synchronously, that is, the first valve device is not closed. In other working conditions, the compressor 101 is required to operate at the same time.
  • the operating logic of the compressor 101 is as follows. When the heating zone requires heating, it is determined whether there is a refrigeration demand in the refrigeration zone of the current refrigerator. If there is a refrigeration demand in the refrigeration zone of the current refrigerator, the refrigerant circulation circuit is already in the refrigeration state, and the compressor 101 is maintained. run. If there is no cooling demand in the refrigeration zone of the current refrigerator, it means that the compressor 101 is in a stopped operation state, and the compressor 101 needs to be started to operate at this time.
  • a second valve device can be provided between the condenser 102 and the second end of the auxiliary heat exchange branch.
  • the refrigerant all enters the refrigerant circulation circuit through the auxiliary heat exchange branch. Since the condenser 102 does not flow through the refrigerant, the temperature of the refrigeration zone of the refrigerator will not be lowered. At the same time, since the refrigerant all flows through the condensing heater 107 on the auxiliary heat exchange branch, the heating effect on the heating zone is better.
  • Another embodiment is that there is no need to provide a second valve device. If the compressor 101 is started when there is no cooling demand in the refrigerating zone of the refrigerator, the temperature of the refrigerating zone of the refrigerator will be lowered at this time, but the heating zone will change to the refrigerating zone of the refrigerator. When the heat is released, the compressor 101 works with the first valve device, and cools the refrigeration zone of the refrigerator through the evaporator, and the entire refrigerator system is dynamically balanced. This requires setting the heat transfer efficiency between the heating zone and the refrigerator cooling zone.
  • the first valve device is provided with a first working state and a second working state, and the first valve device can be switched between the first working state, the second working state or other working states.
  • the first working state corresponds to the opening degree of the first valve device as the first opening degree.
  • the opening degree of the first valve device is the first opening degree
  • the refrigerant flowing through the condensing heater 107 causes the temperature of the heating zone to rise .
  • the first opening degree of the first valve device can be set according to the heat preservation performance of the heating zone, the heat conversion efficiency of the condensing heater 107, and the temperature of the refrigerant flowing through the condensing heater 107. In order to make the temperature of the heating zone reach the preset temperature as soon as possible. Assuming the heating temperature range, in one embodiment, the first opening degree is the maximum opening degree of the first valve device.
  • the second working state of the first valve device is used to keep the temperature of the heating zone within the preset heating temperature range.
  • the second working state is that the first valve device is opened intermittently, so that the temperature in the heating zone fluctuates within a preset heating temperature range, and the first valve device is opened intermittently, and the heat is supplemented intermittently.
  • the method keeps the temperature of the heating zone at the preset heating temperature interval.
  • the control method of the intermittent opening of the first valve device is simple. It only needs to link the temperature detection of the heating zone for control. There is no need for complex control algorithms, and there is no need to require the first valve device to adjust the opening degree. Low-cost valve devices and valve drives can be selected. Device.
  • the second working state is that the first valve device is closed, so that the temperature in the heating zone is slowly reduced within the preset heating temperature.
  • a heat preservation layer is provided on the outer wall of the heating zone, so that even if the first valve device is closed, the temperature of the heating zone will slowly decrease, and the heating zone will remain at the preset heating for a certain period of time Temperature range to meet the needs of food processing.
  • the second working state is that the opening degree of the first valve device is the second opening degree, so that the temperature in the heating zone is maintained within the preset heating temperature range.
  • the refrigerant flow of the auxiliary heat exchange branch is controlled, so that the heating heat of the condensing heater 107 and the heat dissipation of the heating zone are dynamically balanced, so that the heating The temperature in the zone is maintained within the preset heating temperature range.
  • This method has high control accuracy and can stabilize the temperature of the heating zone within a smaller range.
  • the second opening degree is smaller than the opening degree of the first opening degree.
  • the first opening degree is the maximum opening degree of the first valve device
  • the second opening degree can be 80% of the first opening degree.
  • the above value is just an example. The specific value needs to be based on the heat dissipation of the heating zone and the condensing heater
  • the heating amount of 107 is set, and the temperature in the heating zone is maintained within the preset heating temperature zone by setting the size of the second opening degree.
  • the controller controls the first valve device to be in the first working state according to the temperature requirement in the heating zone, and opens to the first opening degree, so that the temperature in the heating zone rises to the preset heating temperature After the interval, the controller controls the working state of the first valve device to switch to the second working state, so that the temperature in the heating zone is maintained in the preset heating temperature interval.
  • the preset heating interval corresponds to the current heating zone temperature requirements, and is set according to the user's needs for food processing.
  • the first valve device switches between the first working state and the second working state to realize the heating and heating of the heating zone.
  • the temperature control process satisfies the user's heating requirements for food materials.
  • the controller controls the working state of the first valve device according to the temperature requirements in the heating zone, so that the temperature in the heating zone is at more than two preset heating temperatures Switch between intervals. For example, switching from the first preset heating temperature interval to the second preset heating temperature interval.
  • the preset heating temperature interval can be set according to the heating curve of the food to be processed. For example, if the food heating curve has three heating processes with different temperature ranges, then three preset heating temperature intervals are set.
  • the number and range of the preset heating temperature range can be set by the user's input, or can be automatically adapted according to the weight of the food and the processing method. It can also switch back and forth between different preset heating temperature intervals. By setting different preset heating temperature ranges, different processing requirements of users for different ingredients can be met.
  • the present invention further includes a preset low temperature interval.
  • the controller controls the working state of the first valve device according to the temperature requirement in the heating area, so that the temperature in the heating area is within the preset heating temperature interval and the preset heating temperature interval. Switch between low temperature zones. By closing the first valve device to stop the condensing heater from releasing heat, the heating zone will cool down. When the temperature reaches the preset low temperature range, the controller controls the working state of the first valve device to keep it in the preset low temperature range , The heating zone can be switched between the preset heating temperature interval and the preset low temperature interval to meet the needs of users for different temperature processing of food materials.
  • the working state of the first valve device is the first working state.
  • the first opening degree is the first valve device to the maximum opening degree, which can maximize the refrigerant flow of the auxiliary heat exchange branch and make the condensation heating
  • the heat released by the device 107 is the highest, which can make the heating zone rise to the preset heating temperature range more quickly, saving the time for heating the food.
  • the first opening degree can raise the temperature of the heating zone. In other words, the heat released by the condensation heater 107 is greater than the heat dissipation of the heating zone at this time. This can also make the heating zone gradually heat up, although this will cause The heating efficiency of the heating zone is reduced, but the impact on the refrigerant circulation circuit is small.
  • the opening of the first valve device can also be adjusted according to the state of the refrigerator refrigeration zone, so that it can meet the heating demand of the heating zone while reducing the need for refrigeration in the refrigerator. The impact of the district.
  • the second working state of the first valve device to keep the temperature in the heating zone within the preset heating temperature range may include one of the following three methods:
  • the first method is that the first valve device is opened intermittently, and the temperature of the heating zone is maintained within the preset heating temperature range by intermittently supplementing heat.
  • the control method of intermittent opening of the first valve device is simple. It only needs to link the temperature detection of the heating zone for control. There is no need for complex control algorithms, and there is no need to require the first valve device to adjust the opening degree. Low-cost valve devices and valve drives can be selected. Device.
  • the second way is to close the first valve device to slowly reduce the temperature in the heating zone within the preset heating temperature.
  • a heat preservation layer can be arranged on the outer wall of the heating zone to ensure the heat preservation effect of the heating zone.
  • the third way is to control the opening of the first valve device to keep the temperature in the heating zone within the preset heating temperature range.
  • the refrigerant flow of the auxiliary heat exchange branch is controlled, so that the heating heat of the condensing heater and the heat dissipation of the heating zone are dynamically balanced, and the temperature in the heating zone is maintained at the preset heating temperature
  • This method has high control accuracy and can stabilize the temperature of the heating zone in a small range.
  • the refrigeration device of the second embodiment of the present invention is a further improvement of the first embodiment of the present invention.
  • the first valve device is a three-way valve 108, and the first end of the auxiliary heat exchange branch passes through the three-way valve 108 is connected to the exhaust port of the compressor 101, and the second end of the auxiliary heat exchange branch is connected to the refrigerant inlet of the condenser 102.
  • the three-way valve 108 is connected to the exhaust port of the compressor 101, which allows the high-temperature refrigerant from the compressor exhaust port to enter the auxiliary heat exchange branch, so that the heating zone can quickly rise to a high enough temperature to process the food.
  • the condenser can make full use of the refrigerant flowing out of the auxiliary heat exchange branch to reduce the influence of the cooling effect on the refrigeration device itself.
  • the first valve device is a three-way valve 108
  • the first end of the auxiliary heat exchange branch passes through the three-way
  • the valve 108 is connected to the refrigerant outlet of the condenser 102
  • the second end of the auxiliary heat exchange branch is connected to the refrigerant circulation circuit between the three-way valve 108 and the throttling device 103.
  • the three-way valve 108 is opened, the refrigerant flows to the throttling device 103 after passing through the auxiliary heat exchange branch.
  • the three-way valve 108 is connected to the refrigerant outlet of the condenser 102, the waste heat of the condenser 102 can be used to provide heat to the condensing heater 107 without using additional heating components, which not only helps to save costs, but also the refrigerant passes through the condensing heater 107
  • the heat release can reduce the temperature of the refrigerant entering the throttling device 103, can reduce the load of the evaporator 104, and make the evaporator 104 better refrigerate. Since all the refrigerant passes through the condenser 102 and then the condensation heater 107, it will not affect the refrigeration effect of the refrigeration zone of the refrigerator. Compared with the refrigeration device of the second embodiment described above, the effect on the overall operation of the refrigerator is less.
  • FIG. 3 it is a refrigeration device according to the fourth embodiment of the present invention.
  • the auxiliary heat exchange branch is connected in parallel to both ends of the condenser 102, that is, the second branch of the auxiliary heat exchange branch.
  • One end is connected to the compressor exhaust port and the first end of the condenser through a three-way valve 108, and the second end of the auxiliary heat exchange branch is connected to the refrigerant input end of the throttling device 103, because the auxiliary heat exchange branch is connected in parallel
  • part of the high-temperature refrigerant discharged from the exhaust port of the compressor 101 enters the auxiliary heat exchange branch, and the other part flows through the condenser 102.
  • the temperature of the refrigerant flowing through the condenser 102 and the condensing heater 107 is the same, which takes into account the heating effect and has a small impact on the overall operation of the refrigerator.
  • the first valve device in addition to the three-way valve 108, can also use other on-off valves.
  • a two-way valve can be set in the auxiliary heat exchange branch to independently control the auxiliary valve. The flow rate of the refrigerant in the heat exchange branch.
  • auxiliary heat exchange branches can be provided at the same time, and one of the auxiliary heat exchange branches is arranged at the exhaust port of the compressor 101 as in the second embodiment. And the refrigerant inlet of the condensing heater 107 to introduce the high-temperature refrigerant into the compressor exhaust port, which has a higher heating temperature.
  • Another auxiliary heat exchange branch is arranged at the refrigerant outlet of the condensing heater 107 as in the third embodiment. Between the refrigerant inlets of the throttling device 103, the refrigerant output from the condensing heater 107 is introduced, which has a lower heating temperature.
  • a suitable condensing heater 107 can be selected to work according to needs. For example, two condensing heaters 107 corresponding to two heating zones can be set, and the user can select a suitable heating zone to use, or two condensing heaters 107 corresponding to one heating zone can be set, and the user can select a suitable heating mode to use.
  • the preset heating temperature range includes the upper limit of the heating temperature and the lower limit of the heating temperature.
  • the controller controls the working state of the first valve device to the second working state according to the temperature requirements in the heating zone, so that the temperature in the heating zone is kept at heating Between the upper limit of the temperature and the lower limit of the heating temperature, the first valve device is prevented from repeatedly switching between the first and second working states, and its reliability is increased.
  • the second working state of the first valve device is the intermittent opening mode
  • the temperature and the fluctuation range of the heating temperature range can be conveniently controlled.
  • the heating zone is provided in an incubator 201.
  • the incubator 201 can be an independent compartment in the refrigerator, or an incubator 201 built into the refrigeration zone of the refrigerator.
  • the condensing heater is installed on the incubator 201.
  • the heating zone is arranged in the incubator, and the condensing heater heats the heating zone in the incubator, which can ensure that the temperature in the incubator is not easy to lose and effectively improve the heating effect.
  • the condensation heater 107 includes a condensation heating tube 202, and the condensation heating tube 202 is arranged at the bottom of the incubator 201.
  • the heat of the high-temperature refrigerant in the auxiliary heat exchange branch can be quickly transferred to the incubator through the condensing heating tube, the heating effect is better, no complicated heat exchange device or other heat transfer medium is needed, and the cost is low. Due to the characteristics of hot air rising and cold air falling, arranging the condensing heating pipe 202 at the bottom of the incubator 201 can facilitate the transfer of heat to the incubator space, thereby making the temperature in the heating zone more uniform, which is conducive to uniform heating of the food. deal with.
  • those skilled in the art can also set the arrangement position of the condensation heating pipe 202 as required, for example, condensation heating pipes 202 arranged at the bottom and top of the incubator 201, or condensation heating pipes arranged on the side wall of the incubator 201 202.
  • the heating zone includes an air duct 203 for communicating with the refrigeration zone of the refrigerator.
  • the air duct 203 communicates with the heating zone and the refrigerator refrigeration zone, and the cold air from the refrigerator refrigeration zone can be introduced into the heating zone through the air duct 203 to realize the cooling and cooling processing of food materials, thereby being able to meet the complex processing requirements of heating and cooling food materials.
  • an air duct control device for controlling the circulation of the air duct 203 is provided on the air duct.
  • the air in the air duct between the heating zone and the refrigerator refrigeration zone can be circulated, and cold air from the refrigeration zone of the refrigerator can be introduced into the heating zone to speed up the cooling process of the ingredients.
  • the air duct control device is turned off, the air in the air duct between the heating zone and the refrigeration zone of the refrigerator is not circulated or easy to circulate, thereby reducing the degree of thermal interaction between the refrigeration zone and the heating zone of the refrigerator.
  • the air duct control device can make the refrigerator The cold air in the refrigeration zone flows into the heating zone through the air duct and circulates to realize the cooling of the heating zone, thereby being able to meet the complex processing needs of heating and cooling food materials.
  • an implementation of the air duct control device is that a fan is installed opposite the air duct, and the blowing direction of the fan is toward the entrance of the air duct 203.
  • the cold air in the refrigerating zone of the refrigerator can be introduced into the heating zone to cool the refrigerator.
  • Zone cold air flows into the heating zone through the air duct and circulates to realize the cooling operation of the heating zone, and the cooling efficiency of the heating zone can be improved by using a fan to introduce the cold air from the refrigeration zone of the refrigerator into the heating zone.
  • a damper for controlling the opening of the air duct is provided on the air duct 203.
  • the damper is opened to connect the air duct between the heating zone and the refrigeration zone of the refrigerator.
  • the air in the air duct between the heating zone and the refrigeration zone of the refrigerator circulates, so that the cold air in the refrigeration zone of the refrigerator enters the heating zone to cool the heating zone.
  • the air door is closed by the controller to prevent the cold from entering the heating zone and improve the heating effect of the heating zone.
  • a damper and a fan may be provided on the air duct at the same time, that is, when the heating zone is heated, the controller controls the damper to close to achieve the best heating effect.
  • the damper When the heating zone needs to cool down, open the damper at the same time Turn on the fan to accelerate the cold air in the refrigerating zone of the refrigerator into the heating zone.
  • the air duct may not be provided at all, and the heat is dissipated to the refrigerating area of the refrigerator through the outer shell of the incubator 201.
  • the incubator 201 is provided with a condensing heating pipe 202 and an air duct control device.
  • the high-temperature refrigerant on the first connecting pipeline 109 is introduced through the condensing heating pipe 202 to realize heating and heat preservation of the heating zone in the incubator 201.
  • the air duct control device enables The air duct between the heating zone in the incubator 201 and the refrigerating zone of the refrigerator circulates, so that the cold air in the refrigerating zone of the refrigerator enters the incubator 201 to achieve cooling of the heating zone in the incubator 201.
  • the first valve device when the temperature requirement of the heating zone is cooling, the first valve device is closed according to the temperature requirement in the heating zone, and the air duct control device is opened according to the temperature requirement in the heating zone, so that the heating The air circulation in the air duct between the refrigerator zone and the refrigerator refrigeration zone can introduce the cold air in the refrigerator refrigeration zone to the heating zone. Because the first valve device is closed, the condensing heater no longer heats, the temperature in the heating zone drops, and the heating zone quickly Cooling meets the needs of users for heat dissipation of heated food materials or cooling processing of food materials.
  • the temperature of the heating zone can be cooled quickly without the need to install additional heat sinks, and it can also effectively meet the user's requirements for the efficiency of food processing and the special cooling rate.
  • the food can be heated first and then frozen, that is, the food at room temperature or frozen is put into the heating zone, and the controller controls the first valve device to be in the first working state so that the high temperature refrigerant enters the condensation heating 107, after waiting for the temperature in the heating zone to be heated to the preset heating temperature range, the controller controls the first valve device to be in the second working state so that the temperature in the heating zone is maintained at the preset heating temperature range, and the food is heated for a certain period of time. After heating, the controller controls the first valve device to close to stop the high-temperature refrigerant from continuing to enter the auxiliary heat exchange branch.
  • the refrigeration zone and the heating zone of the refrigerator conduct thermal interaction through the air duct 203, so that the temperature of the heating zone is reduced, so as to realize the The treatment of heating first and then cooling down.
  • the refrigeration device includes two preset heating temperature intervals, one of the preset heating temperature intervals is the first preset temperature interval ⁇ T1, and the other is preset heating temperature interval ⁇ T1.
  • the heating temperature interval is the second preset temperature interval ⁇ T2; when the refrigerant circulation circuit is in the refrigeration state, the compressor 101 continues to run, and the controller controls the first valve device to be in the first working state so that the temperature in the heating zone rises to the first A preset temperature interval ⁇ T1, the controller controls the first valve device to be in the second working state, and the first valve device is opened intermittently, that is, when the temperature of the heating zone rises to the first heating temperature upper limit T2, the first valve device is closed.
  • the temperature of the heating zone drops. When it drops to the first heating temperature lower limit value T1, the first valve device opens. By analogy, the temperature in the heating zone is controlled to fluctuate within the first preset temperature interval ⁇ T1. In the heat preservation state, the compressor 101 is opened following the opening of the first valve device. When the refrigerant circulation circuit is in a cooling state, the compressor 101 is kept on.
  • the first preset time period ⁇ t1 during which the temperature of the heating zone fluctuates within the first preset temperature interval ⁇ T1 can be set according to the actual situation. After the fluctuation is maintained to the first preset time period ⁇ t1, the first valve device is closed, and the compressor 101 It is decided whether to close the refrigerator according to the situation of the refrigerating zone of the refrigerator.
  • the temperature in the heating zone drops, which can be natural cooling or cooling by blowing cold air to the heating zone through a fan.
  • the first valve device is opened to increase the temperature in the heating zone to the second preset temperature interval ⁇ T2, and the first valve device is opened intermittently to make the temperature in the heating zone It fluctuates within the second preset temperature interval ⁇ T2 (that is, between T4 to T5 in Figure 4) and continues for the second preset duration ⁇ t2; the heating temperature lower limit T1 of the first preset temperature interval ⁇ T1 is greater than the second preset temperature interval ⁇ T1
  • food materials can be processed further.
  • it can be used to process starchy food materials.
  • the mixture of rice and water is put into the heating zone.
  • the opening of the first valve device causes the temperature in the heating zone to rise to the first preset temperature interval ⁇ T1, and the first valve device is opened intermittently, so that the temperature in the heating zone fluctuates within the first preset temperature interval ⁇ T1 and continues for the first time.
  • the preset time ⁇ t1 is used to gelatinize the rice.
  • the first valve device is closed. After the temperature in the heating zone drops to the preset low temperature range, T3 is used to realize the freezing and thawing treatment of the mixture of rice and water.
  • the first valve device is opened so that After the temperature in the heating zone rises to the second preset temperature interval ⁇ T2, the first valve device is opened intermittently, so that the temperature in the heating zone fluctuates within the second preset temperature ⁇ T2 interval and lasts for the second preset duration ⁇ t2 ,
  • the amylose dissolved in water can be converted into resistant starch that is not easy to be digested by the human body, and the rice is physically modified, thereby significantly increasing the content of resistant starch in the rice and achieving the purpose of reducing sugar in rice.
  • So as to control the conversion of sugar in the food in the human body the processed food is healthier, and meet people's needs for food processing.
  • the first valve device is closed, and the air duct control device is opened to make the heating zone
  • the temperature inside is reduced to the preset preservation temperature interval T6.
  • the food materials are stored in the preset preservation temperature range, and the processed food materials can be kept fresh in the heating zone directly, and the user does not need to take it out for storage.
  • T1 is 60°C
  • T2 is 75°C
  • T3 is 0 to 8°C
  • T4 is 30°C
  • T5 is 30°C
  • T6 is 2°C to 8°C.
  • the treatment of rice is only an example.
  • the refrigeration device of the embodiment of the present invention can also be used for processing other food materials, for example, it can be used for processing meat food or dairy products.
  • the first valve device adopts the intermittent opening method of the first valve device, so that the temperature in the heating zone is maintained in the preset heating temperature interval for a preset period of time.
  • the device for closing the first valve or controlling the opening of the first valve can also be used to keep the temperature in the heating zone within the preset heating temperature interval for a preset period of time.
  • FIG. 6 is a block diagram of the circuit principle of the refrigeration device of the first aspect of the present invention, which includes a controller, a compressor, a three-way valve, a fan, a first temperature sensor and a second temperature sensor, wherein the first temperature sensor is arranged at The heating zone, such as an incubator, is used to detect the temperature in the heating zone so as to control the operation of the three-way valve or the compressor according to the temperature in the heating zone.
  • the second temperature sensor is arranged in the refrigeration zone of the refrigerator to detect refrigeration in the refrigerator. Zone temperature in order to control the operation of the compressor according to the temperature in the refrigeration zone of the refrigerator.
  • the controller is electrically connected with the controller, the compressor, the three-way valve, the fan, the first temperature sensor, and the second temperature sensor. Control to realize the control process of the above-mentioned embodiment.
  • this embodiment includes the refrigeration device of any one of the above-mentioned Embodiments 1 to 5. Since the refrigeration device according to the embodiment of the present invention has the technical effect of any one of the above-mentioned embodiments 1 to 4, the refrigerator according to this embodiment also has the above-mentioned technical effect.
  • the auxiliary heat exchange branch is arranged in parallel between the compressor 101 exhaust port and the throttle device 103, which can reduce the high temperature
  • the refrigerant is introduced to the condensing heater on the auxiliary heat exchange branch to heat the heating zone.
  • the opening and closing of the auxiliary heat exchange branch is controlled by the first valve device to realize independent control of the auxiliary heat exchange branch.
  • the opening and closing of the first valve device does not affect the normal operation of the refrigerant circulation circuit.
  • the refrigerant flow rate of the auxiliary heat exchange branch is controlled by the first valve device, and the temperature in the heating zone can be adjusted to meet the different temperature requirements of the heating zone, thereby meeting people's different needs for food processing.
  • the control method of the refrigeration device of the seventh embodiment of the present invention is applied to control the refrigeration device as shown in FIGS. 1 to 6.
  • the control method of the refrigeration device in this embodiment may be the control device of the refrigeration device proposed by the embodiment of the present invention Execution, the control device of the refrigeration device can be configured in the refrigeration device for realizing the control of the refrigeration device.
  • the control method includes the following steps:
  • Step 10 Obtain the temperature requirement of the heating zone
  • Step 20 Control the working state of the first valve device according to the temperature requirement of the heating zone.
  • the auxiliary heat exchange branch is arranged in parallel on the first connecting pipeline, and the high-temperature refrigerant can be introduced into the auxiliary exchange. Condensation heater on the hot branch to heat the heating zone.
  • the working state of the first valve device is not adjusted. It will affect the normal operation of the refrigerant circulation loop. By controlling the working state of the first valve device, the temperature in the heating zone can be adjusted to meet the different temperature requirements of the heating zone, thereby meeting people's different needs for food processing.
  • the step 20 includes:
  • Step 201 Control the working state of the first valve device to be the first working state, so that the temperature in the heating zone rises to a preset heating temperature interval.
  • the flow rate of the refrigerant flowing through the auxiliary heat exchange branch is adjusted to increase the temperature in the heating zone until it reaches the preset heating temperature range.
  • Step 202 Control the working state of the first valve device to the second working state, so that the temperature in the heating zone is maintained within the preset heating temperature interval.
  • the preset heating interval corresponds to the current heating zone temperature requirements, and is set according to the user's needs for food processing.
  • the first valve device is switched between the first working state and the second working state to realize the heating and control of the heating zone.
  • the warming process satisfies the user's heating demand for food materials.
  • a second valve device can be provided between the condenser 102 and the second end of the auxiliary heat exchange branch. When there is a heating requirement in the zone, the first valve device is opened and the second valve device is closed. All the refrigerant enters the refrigerant circulation circuit through the auxiliary heat exchange branch.
  • the condenser 102 Since the condenser 102 does not flow through the refrigerant, it will not lower the temperature of the refrigeration zone of the refrigerator. Since all the refrigerant flows through the condensation heater 107 on the auxiliary heat exchange branch, the heating effect on the heating zone is better.
  • Another embodiment is that there is no need to provide a second valve device. If there is no cooling demand in the refrigerating zone of the refrigerator, the compressor 101 is started to work. At this time, the temperature of the refrigerating zone of the refrigerator will be lowered, but the heating zone will be released to the refrigerating zone of the refrigerator. With heat, the compressor 101 works with the first valve device, and cools the refrigeration zone of the refrigerator through the evaporator, and the entire refrigerator system is dynamically balanced. This requires setting the heat transfer efficiency between the heating zone and the refrigerator cooling zone.
  • the first working state of the first valve device is to open the first valve device to the first degree of opening to increase the temperature in the heating zone.
  • the first degree of opening is the maximum degree of opening of the first valve device. In this way, the refrigerant flow of the auxiliary heat exchange branch can be maximized, the heat released by the condensing heater 107 can be maximized, and the heating zone can be raised to the preset heating temperature range faster, saving the time for heating the food.
  • the first opening degree is an opening degree that can raise the temperature of the heating zone. In other words, the heat released by the condensation heater 107 at this time is greater than the heat dissipation heat of the heating zone, so that the heating zone can also be gradually raised.
  • the opening degree of the first valve device can also be adjusted according to the state of the refrigerator refrigeration zone to meet the heating demand of the heating zone At the same time, it reduces the impact on the refrigerated area of the refrigerator.
  • the preset heating temperature interval includes an upper limit of heating temperature and a lower limit of heating temperature
  • the above step 202 includes:
  • Step 2021 waiting for the temperature in the heating zone to be heated to the upper limit of the heating temperature
  • Step 2022 controlling the intermittent opening of the first valve device so that the temperature in the heating zone fluctuates between the upper limit of the heating temperature and the lower limit of the heating temperature.
  • the temperature and the fluctuation range of the heating temperature range can be controlled.
  • the temperature in the heating zone is maintained between the upper limit of the heating temperature and the lower limit of the heating temperature, which prevents the first valve device from repeatedly switching between the first and second working states and increases its reliability.
  • the control method of intermittent opening of the first valve device is simple, only the temperature detection of the heating zone is required for control, no complicated control algorithm is required, and the first valve device does not need to adjust the opening degree, and low-cost valve devices and valves can be selected. Drive the device.
  • the preset heating temperature interval includes the upper limit of the heating temperature and the lower limit of the heating temperature
  • the above step 202 includes:
  • Step 2023 After the temperature in the heating zone is heated to the preset heating temperature range, the first valve device is closed, so that the temperature in the heating zone is slowly lowered within the preset heating temperature.
  • a heat preservation layer is provided on the outer wall of the heating zone, so that even if the first valve device is closed, the temperature of the heating zone will slowly decrease, and the heating zone will remain in the preset heating temperature range for a certain period of time , To meet the demand for food processing.
  • the preset heating temperature interval includes the upper limit of the heating temperature and the lower limit of the heating temperature.
  • the above step 202 includes:
  • Step 2024 After the temperature in the heating zone is heated to the preset heating temperature interval, the opening degree of the first valve device is controlled to keep the temperature in the heating zone within the preset heating temperature interval.
  • the controlling the opening degree of the first valve device specifically includes controlling the opening degree of the first valve device to the second opening degree, by adjusting the opening degree of the first valve device to the second opening degree.
  • the opening degree controls the refrigerant flow of the auxiliary heat exchange branch, so that the heating heat of the condensing heater and the heat dissipation of the heating zone are dynamically balanced, and the temperature in the heating zone is maintained within the preset heating temperature range. This method is controlled accurately The temperature is high, and the temperature of the heating zone can be stabilized in a small range.
  • the second opening degree is smaller than the opening degree of the first opening degree.
  • the first opening degree is the maximum opening degree of the first valve device
  • the second opening degree can be 80% of the first opening degree.
  • the above value is just an example. The specific value needs to be based on the heat dissipation of the heating zone and the condensing heater By setting the second opening degree, the temperature in the heating zone is maintained within the preset heating temperature zone.
  • step 20 further includes the following steps:
  • Step 203 Control the first valve device to close, so that the temperature in the heating zone drops to a preset low temperature interval.
  • the above step 203 includes: controlling the air duct control device to turn on, so that the air in the heating zone and the refrigerating zone of the refrigerator circulates, and the temperature in the heating zone drops to a preset low temperature interval.
  • the air duct control device can circulate the air in the air duct between the heating zone and the refrigeration zone of the refrigerator.
  • the first valve device is controlled to close and the air duct control device is opened to allow cold air in the refrigeration zone of the refrigerator to pass
  • the air duct flows into the heating zone and circulates to realize the cooling of the heating zone. Because the first valve device is closed, the condensing heater does not heat up.
  • the temperature of the heating zone can be quickly cooled down, which can be effective It satisfies the user's requirements for the efficiency of food processing and the special cooling rate, and can also meet the user's demand for food processing in multiple temperature zones, so as to meet the complex processing needs of heating and cooling foods.
  • the fourth aspect of the present invention provides a food processing method, which is applied to control the refrigeration device as shown in Figs. 1 to 4 and Fig. 6.
  • the control method of the refrigeration device in this embodiment can be proposed by the embodiment of the present invention.
  • the control device of the refrigeration device is executed, and the control device of the refrigeration device can be configured in the refrigeration device to realize the control of the refrigeration device.
  • the structure shown in FIG. 1 to FIG. 7 refers to the description in the first embodiment to the fifth embodiment, and will not be repeated here.
  • the food processing method of this embodiment includes the following steps:
  • Step 301 controlling the first valve device to be in a first working state, and the temperature in the heating zone rises to a first preset temperature interval ⁇ T1;
  • Step 302 controlling the first valve device to be in a second working state, so that the temperature in the heating zone is maintained within the first preset temperature interval ⁇ T1 for a first preset time period ⁇ t1;
  • Step 303 controlling the first valve device to close, and controlling the air duct control device to open;
  • Step 304 after the temperature in the heating zone drops to a preset low temperature interval T3, turn off the air duct control device;
  • Step 305 controlling the first valve to be in the first working state, so that the temperature in the heating zone rises to a second preset temperature interval ⁇ T2;
  • Step 306 Control the first valve device to be in the second working state, so that the temperature in the heating zone is maintained in the second preset temperature interval ⁇ T2 for a second preset time period ⁇ t2.
  • food materials can be processed further.
  • it can be used to process starchy food materials.
  • the mixture of rice and water is put into the heating zone.
  • Control the first valve device to the first working state to increase the temperature in the heating zone to the first preset temperature interval ⁇ T1
  • control the first valve device to the second working state to keep the temperature in the heating zone at the first preset temperature
  • the rice is gelatinized, the first valve device is closed, and the temperature in the heating zone is reduced to the preset low temperature range after T3, to realize the freezing of the rice and water mixture Melting process
  • control the first valve device to the first working state to increase the temperature in the heating zone to the second preset temperature interval ⁇ T2
  • control the first valve device to the second working state to keep the temperature in the heating zone at Within the second preset temperature ⁇ T2 interval and continue for the second preset time ⁇ t2
  • the amylose dissolved in water can be converted into resistant starch that is not easy to be digested by the human body, and the rice is physically modified, thereby significantly increasing the content of resistant starch in the rice and achieving the purpose of reducing sugar in rice.
  • the processed food is healthier, and meet people's needs for food processing.
  • the food processing method of the thirteenth embodiment of the present invention further includes the following steps:
  • Step 307 Control the first valve device to close and turn on the air duct control device to circulate the air in the heating zone and the refrigeration zone of the refrigerator, so that the temperature in the heating zone is reduced to the preset preservation temperature interval T6.
  • the food materials are stored in the preset preservation temperature range, and the processed food materials can be kept fresh in the heating zone directly, and the user does not need to take it out for storage.
  • the working state of the first valve device is controlled to be the first working state, which can be the same as in the above-mentioned embodiment, which is to open the first valve device to the maximum opening degree, Or the opening degree of the first valve device can increase the temperature of the heating zone.
  • the intermittent opening method of the first valve device can be adopted as in the above-mentioned embodiment, so that the temperature in the heating zone is maintained in the preset heating temperature interval for a preset time.
  • the control device can be any type of control module, such as a control board, a control box, and a control chip.
  • control device includes: one or more processors and memories, and one processor and memory are taken as an example in FIG. 16.
  • the processor and the memory may be connected through a bus or in other ways. In FIG. 16, the connection through a bus is taken as an example.
  • the memory can be used to store non-transitory software programs and non-transitory computer-executable programs, such as the control method of the refrigeration device in the embodiment of the third aspect of the present invention or the third aspect of the present invention.
  • non-transitory software programs and non-transitory computer-executable programs such as the control method of the refrigeration device in the embodiment of the third aspect of the present invention or the third aspect of the present invention.
  • the processor implements the control method of the refrigeration device in the embodiment of the third aspect of the present invention or the food processing method of the fourth aspect of the present invention by running the non-transitory software program and instructions stored in the memory.
  • the memory may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; Required data, etc.
  • the memory may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory may optionally include a memory remotely provided with respect to the processor, and these remote memories may be connected to the terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transitory software programs and instructions required to implement the control method of the refrigeration device in the embodiment of the third aspect of the present invention or the food processing method of the fourth aspect of the present invention are stored in the memory, and when executed by one or more processors At the time, execute the control method of the refrigeration device in the embodiment of the third aspect of the present invention or the food processing method of the fourth aspect of the present invention, for example, execute the method steps 10 to 20 of FIG. 8 described above, and the method steps of FIG. 9 201 to step 202, method step 2021 to step 2022 of FIG. 10, method step 2023 of FIG. 11, method step 2024 of FIG. 12, method step 201 to step 203 of FIG. 13, method step 301 to step 306 of FIG. Step 301 to step 307 of the method of 15.
  • FIG. 16 it is a refrigerator according to the sixth aspect of the present invention, which includes the control device according to the fifth aspect of the present invention.
  • a computer-readable storage medium stores computer-executable instructions that are executed by one or more control processors, for example, by one of Execution by the processor can cause the one or more processors to execute the control method of the refrigeration device in the embodiment of the third aspect of the present invention or the food processing method of the fourth aspect of the present invention, for example, execute the method of FIG. 8 described above Step 10 to step 20, method step 201 to step 202 of FIG. 9, method step 2021 to step 2022 of FIG. 10, method step 2023 of FIG. 11, method step 2024 of FIG. 12, method step 201 to step 203 of FIG. 13, Step 301 to step 306 of the method in FIG. 14, and step 301 to step 307 of the method in FIG. 15.
  • the device embodiments described above are merely illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • computer storage medium includes volatile and non-volatile data implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Information such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种制冷装置、冰箱及其控制方法、食材处理方法、控制装置。该制冷装置包括压缩机(101)、冷凝器(102)、节流装置(103)和蒸发器(104),压缩机(101)、冷凝器(102)、节流装置(103)和蒸发器(104)依次连接形成冷媒循环回路,其中冷媒循环回路中压缩机(101)的排气口与节流装置(103)的冷媒入口之间的连接管路为第一连接管路(109),冷凝器(102)设置于第一连接管路(109)上。该制冷装置还包括辅助换热支路,此辅助换热支路包括用于为加热区加热的冷凝加热器(107),辅助换热支路并联设置于第一连接管路(109)上,辅助换热支路上还设置有第一阀门装置,此第一阀门装置根据加热区内的温度要求控制辅助换热支路的冷媒流量。

Description

制冷装置、冰箱及其控制方法、食材处理方法、控制装置
相关申请的交叉引用
本申请要求于2020年3月12日提交的申请号为202010172075.3、名称为“制冷装置、冰箱及其控制方法、食材处理方法、控制装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于家用电器技术领域,更具体而言,涉及制冷装置、冰箱及其控制方法、食材处理方法、控制装置及其存储介质。
背景技术
目前,人们对生活品质要求越来越高,而现有的冰箱一般只具有冷藏的功能,例如冷藏室、冷冻室等将箱内温度保持在特定温度的各个间室,各个间室只是作储藏食材保鲜的作用。例如,一些冰箱中设置有解冻室,以便实现食材的解冻,然而,上述的解冻室只是提供了一个高于冷藏室或冷冻室温度的间室,并不能满足人们在居家生活中对食材加工处理的需求。
发明内容
本发明的主要目的在于提供一种能够对食材进行加工处理的制冷装置、冰箱及其控制方法、食材处理方法、控制装置及其计算机存储介质。
根据本发明的第一方面,提供了制冷装置,包括压缩机、冷凝器、节流装置和蒸发器,所述压缩机、所述冷凝器、所述节流装置和所述蒸发器依次连接形成冷媒循环回路,其中所述冷媒循环回路中所述压缩机的排气口与所述节流装置的冷媒入口之间的连接管路为第一连接管路,所述冷凝器设置于所述第一连接管路上,还包括:
辅助换热支路,所述辅助换热支路包括用于为加热区加热的冷凝加热器,所述辅助换热支路并联设置于所述第一连接管路上,所述辅助换热支路上还设置有第一阀门装置,所述第一阀门装置根据所述加热区内的温度要求控制所述辅助换热支路的冷媒流量。
由于压缩机的排气口至节流装置的冷媒入口之间的第一连接管路流通的是高温冷媒,所述辅助换热支路并联设置于所述第一连接管路上,能够将高温冷媒引入至辅助换热支路上的冷凝加热器,从而对所述加热区进行加热。通过第一阀门装置控制所述辅助换热支路的冷媒流量,可实现辅助换热支路的独立控制,由于辅助换热支路并联设置于所述第一连管路上,调节第一阀门装置的工作状态不会影响冷媒循环回路的正常运行.通过第一阀门装置控制所述辅助换热支路的冷媒流量,能调节加热区内的温度,满足加热区不同的温度要求,从而满足人们对食材加工处理的不同需求。
本发明的一个特定的实施例中,所述第一阀门装置设有第一工作状态和第二工作状态,其中,
所述第一工作状态为,所述第一阀门装置的开度为第一开度,使加热区内的温度上升;
所述第二工作状态为以下之一:
所述第一阀门装置间歇开启,使所述加热区内的温度在预设加热温度区间内波动;
所述第一阀门装置关闭,使所述加热区内的温度在预设加热温度内缓慢降低;
所述第一阀门装置的开度为第二开度,使所述加热区内的温度保持在预设加热温度区间。
所述第一阀门装置设置有第一工作状态和第二工作状态,并且第一阀门装置可以在第一工作状态、第二工作状态或其他工作状态中切换,所述第一工作状态对应第一阀门装置的开度为第一开度,当第一阀门装置的开度为第一开度时,流经冷凝加热器的冷媒使加热区的温度上升。所述第一阀门装置的第二工作状态,用于使加热区的温度保持在预设加热温度区间。
其中一种实施方式是,所述第二工作状态为第一阀门装置间歇开启,使所述加热区内的温度在预设加热温度区间内波动。第一阀门装置间歇开启,通过间歇补充热量的方式使加热区的温度维持在预设加热温度区间。第一阀门装置间歇开启的控制方式简单,只需要联动加热区的温度检测进行控制,无需复杂的控制算法,而且无需要求第一阀门装置进行开度调节,可以选用低成本的阀门器件和阀门驱动器件。
另一种实施方式是,所述第二工作状态为所述第一阀门装置关闭,使所述加热区内的温度在所述预设加热温度内缓慢降低。通过保证加热区的保温效果,例如在加热区的外壁设置有保温层,这样即使关闭所述第一阀门装置, 由于加热区的温度会缓慢降低,加热区会在一定时间内保持在预设加热温度区间,以满足对食材加工处理的需求。
另一种实施方式是,所述第二工作状态为,所述第一阀门装置的开度为第二开度,使所述加热区内的温度保持在所述预设加热温度区间。通过调节第一阀门装置的开度为第二开度,控制所述辅助换热支路的冷媒流量,从而使冷凝加热器的加热热量与加热区的散热热量取得动态平衡,使所述加热区内的温度保持在所述预设加热温度区间,该种方式控制精确度高,能够将加热区的温度稳定在较小的范围内。其中,在一实施例中,所述第二开度比第一开度的开度小。
本发明的一个特定的实施例中,所述第一阀门装置根据所述加热区内的温度要求切换其工作状态为第一工作状态,打开至第一开度,使所述加热区内的温度上升至预设加热温度区间后,第一阀门装置切换其工作状态为第二工作状态,使所述加热区内的温度保持在所述的预设加热温度区间。其中所述预设加热区间对应当前的加热区温度要求,根据用户对食材加工处理的需要而设定,第一阀门装置在第一工作状态和第二工作状态之间切换,实现了加热区升温和控温的过程,满足用户对食材的加热需求。
本发明的一个特定的实施例中,所述第一阀门装置为三通阀,所述辅助换热支路的第一端通过所述三通阀连接至所述压缩机的排气口,所述辅助换热支路的第二端与所述冷凝器的冷媒入口连接。通过三通阀连接至压缩机的排气口,可以使压缩机的排气口出来的高温冷媒优先进入所述的辅助换热支路,使加热区能迅速升温至足够高的温度以对食材进行加工处理,另外,由于经过辅助换热支路冷媒会再次经过所述的冷凝器,冷凝器能充分利用辅助换热支路流出的冷媒,降低对制冷装置本身制冷效果的影响。
本发明的一个特定的实施例中,还包括保温箱,所述保温箱内设置有所述的加热区,所述冷凝加热器设置于所述保温箱上。所述加热区设置于保温箱内,冷凝加热器对保温箱内的加热区进行加热,能保证保温箱内的温度不易散失,有效提高加热效果。
本发明的一个特定的实施例中,所述冷凝加热器包括冷凝加热管,所述冷凝加热管设置于所述保温箱上。通过冷凝加热管能将辅助换热支路中的高温冷媒热量迅速传递到保温箱中,加热效果较好,无需复杂的换热装置或其他导热介质,成本低廉。
本发明的一个特定的实施例中,所述冷凝加热管排布于所述保温箱的底部。由于热空气上浮、冷空气下降的特性,将所述冷凝加热管排布于所述保温箱的底部,能够有利于将冷凝加热管的热量传递至整个保温箱内的加热区,从而使加热区内温度更加均匀,有利于对食材的均匀加热处理。
本发明的一个特定的实施例中,还包括用于控制所述加热区和冰箱制冷区之间风道流通的风道控制装置。所述加热区包括用于连通冰箱制冷区的风道,所述风道上设置有用于控制所述风道流通的风道控制装置,当所述风道控制装置开启后,使所述加热区和冰箱制冷区之间风道内的空气流通,可以将冰箱制冷区的冷空气引入至加热区,加快食材的降温处理。通过所述风道控制装置能够实现加热区和冰箱制冷区之间的风道流通,从而能够满足需要升温和降温处理食材的复杂加工需求。
本发明的一个特定的实施例中,所述风道控制装置包括风机和/或控制所述风道打开的风门。通过风机能够控制加热区和冰箱制冷区之间的空气流动速度,使冰箱制冷区的冷空气引入加热区,以便加快加热区的温度降低。通过设置风门,在加热区需要降温时,可以打开风门,使冰箱制冷区冷空气通过风道流入加热区进行循环,实现加热区的降温。另外,加热区在加热时,可以让风门关闭,保证无冷量进入加热区,提高加热区的加热效果。可以根据需要在风道上同时设置风机和风门,也可以根据需要择一设置。
本发明的一个特定的实施例中,所述第一阀门装置根据加热区内的温度要求而关闭,以及所述风道控制装置根据所述加热区内的温度要求而开启,使所述加热区内的温度下降。为了满足加热区迅速降温,对加热后食材散热或降温处理的需求,当加热区需要进行降温处理时,第一阀门装置关闭,风道控制装置开启,使加热区和冰箱制冷区之间风道内的空气流通,从而将冰箱制冷区的冷空气引入至加热区,由于第一阀门装置关闭,冷凝加热器不再加热,同时由于利用了冰箱制冷区的冷量,因此加热区的温度能够迅速降低,能有效满足用户对食材加工的效率及特殊降温速率的要求,也能满足用户对食材多温区处理的需求。
本发明的一个特定的实施例中,还包括用于控制所述加热区和冰箱制冷区之间风道流通的风道控制装置,所述第一阀门装置处于所述第二工作状态并到达预设时长后,第一阀门装置根据所述加热区内的温度要求而关闭,以及所述风道控制装置根据所述加热区内的温度要求而开启,使所述加热区内的温度下降。所述加热区内的温度保持在所述预设加热温度区间到达预设时长后,第一阀门装置关闭,以及风道控制装置开启,使所述加热区与冰箱制冷区之间风道内的空气流通。当需要对所述加热区进行制冷降温时,所述第一阀门装置关闭,停止高温冷媒继续进入辅 助换热支路,所述风道控制装置开启,使所述加热区和冰箱制冷区之间风道内的空气流通,能让冰箱制冷区与加热区之间通过风道进行热交互,使所述加热区的温度降低。由于第一阀门装置处于所述第二工作状态并到达预设时长,这同时使加热区的温度保持在预设加热温度区间到达预设时长,满足用户对食材加热后降温的需求。
本发明的一个特定的实施例中,所述预设加热温度区间包括加热温度上限值和加热温度下限值,所述第一阀门装置根据所述加热区内的温度要求切换其工作状态为第二工作状态,使所述加热区内的温度保持在所述加热温度上限值和所述加热温度下限值之间,避免第一阀门装置在第一和第二工作状态反复切换,增加第一阀门装置的可靠性。
本发明的一个特定的实施例中,包括两个所述的预设加热温度区间,所述第一阀门装置根据所述加热区内的温度要求控制所述辅助换热支路的冷媒流量,使所述加热区内的温度在两个以上的所述预设加热温度区间之间切换。用户可以根据所需要处理食材的需求,设置两个以上的预设加热温度区间,通过第一阀门装置控制所述辅助换热支路的冷媒流量,使所述加热区内的温度在上述的两个以上预设加热温度区间之间切换,包括根据用户的手动控制切换、根据预设程序或加热曲线进行切换,或者来回切换。满足用户对于加热食材的不同处理需求。
本发明的一个特定的实施例中,还包括预设低温区间,所述第一阀门装置根据所述加热区内的温度要求控制所述辅助换热支路的冷媒流量,使所述加热区内的温度在所述预设加热温度区间和所述预设低温区间之间切换。通过关闭所述第一阀门装置,停止冷凝加热器释放热量,这时所述加热区会降温,当所述加热区降温到达预设低温区间后,通过第一阀门装置控制所述辅助换热支路的冷媒流量,使其保持在预设低温区间,实现加热区在预设加热温度区间和所述预设低温区间之间切换,满足用户对于食材的不同温度处理的需求。
本发明的一个特定的实施例中,包括两个所述的预设加热温度区间,其中一个预设加热温度区间为第一预设温度区间,另一个预设加热温度区间为第二预设温度区间,根据所述加热区内的温度要求,所述第一阀门装置为第一工作状态使加热区内的温度上升到第一预设温度区间后,所述第一阀门装置切换为第二工作状态,使所述加热区内的温度保持在所述第一预设温度区间,所述第一阀门装置为第二工作状态并持续第一预设时长后,所述第一阀门装置关闭,使所述加热区内的温度降低到预设低温区间,所述第一阀门装置切换为第一工作状态使所述加热区内的温度上升到第二预设温度区间,所述第一阀门装置切换为第二工作状态并持续第二预设时长,所述第一预设温度区间的加热温度下限值大于第二预设温度区间的加热温度上限值。
通过设置两个预设加热温度区间,能够对食材更进一步的处理,可以用于处理淀粉类食材,以处理大米为例,将大米和水的混合物放入加热区中,第一阀门装置为第一工作状态使所述加热区内的温度上升到第一预设温度区间,所述第一阀门装置切换为第二工作状态使所述加热区内的温度保持在所述第一预设温度区间并持续第一预设时长,使大米糊化,所述第一阀门装置关闭,待加热区内的温度降低到预设低温区间后,实现对大米和水的混合物的冻融处理,第一阀门装置切换为第一工作状态使加热区内的温度上升到第二预设温度区间后,所述第一阀门装置切换为第二工作状态使所述加热区内的温度保持在所述第二预设温度区间,实现对大米和水的混合物的回生。通过上述的处理,能够使溶解于水中的直链淀粉转化为不易于被人体消化的抗性淀粉,使大米发生物理改性,从而显著提高了大米中抗性淀粉含量,实现大米降糖的目的,从而控制食物中的糖类在人体内的转化,满足人们对于食材加工处理的需求。
本发明的一个特定的实施例中,还包括用于控制所述加热区和冰箱制冷区之间风道流通的风道控制装置,所述第一阀门装置根据所述加热区内的温度要求切换为第一工作状态使加热区内的温度上升到第一预设温度区间后,所述风道控制装置根据所述加热区内的温度要求而开启,待所述加热区内的温度降低到预设低温区间后,所述风道控制装置关闭。通过风道控制装置使加热区与冰箱制冷区之间的风道流通,使冰箱制冷区冷空气通过风道流入加热区进行循环,实现加热区的降温,能够增强所述加热区的降温效率,满足用户对食材降温的时效性需求。
本发明的一个特定的实施例中,还包括预设保鲜温度区间,所述第一阀门装置根据所述加热区内的温度要求而保持第二工作状态并持续第二预设时长后,所述第一阀门装置关闭,以及所述风道控制装置根据所述加热区内的温度要求而开启,使加热区内的温度降低到预设保鲜温度区间。食材处理完成后,第一阀门装置关闭,风道控制装置开启,使加热区的温度降至预设保鲜温度区间,食材在该预设保鲜温度区间内保存,处理后的食材能够直接在加热区中保鲜,用户无需额外取出保存。
根据本发明的第二方面,提供了一种冰箱,包括本发明第一方面任一种实施方式的制冷装置。
根据本发明的第三方面,提供了制冷装置的控制方法,所述制冷装置包括压缩机、冷凝器、节流装置和蒸发器,所述压缩机、所述冷凝器、所述节流装置和所述蒸发器依次连接形成冷媒循环回路,其中所述冷媒循环回路中所述压缩机的排气口与所述节流装置的冷媒入口之间的连接管路为第一连接管路,所述冷凝器设置于所述第一连接管路 上,所述制冷装置还包括加热区和辅助换热支路,所述辅助换热支路包括用于加热所述加热区内温度的冷凝加热器,所述辅助换热支路并联设置于所述第一连接管路上,所述辅助换热支路上还设置有用于控制所述辅助换热支路冷媒流量的第一阀门装置,所述控制方法包括如下步骤:
获取所述加热区的温度要求;
根据所述加热区的温度要求控制所述第一阀门装置的工作状态。
由于压缩机的排气口至节流装置的冷媒入口之间的第一连接管路流通的是高温冷媒,所述辅助换热支路并联设置于所述第一连接管路上,能够将高温冷媒引入至辅助换热支路上的冷凝加热器,从而对加热区进行加热。通过第一阀门装置控制所述辅助换热支路的冷媒流量,可实现辅助换热支路的独立控制,由于辅助换热支路并联设置于所述第一连接管路上,调节第一阀门装置的工作状态不会影响冷媒循环回路的正常运行,通过控制第一阀门装置的工作状态,能调节加热区内的温度,满足加热区不同的温度要求,从而满足人们对食材加工处理的不同需求。
本发明的一个特定的实施例中,所述根据所述加热区的温度要求控制所述第一阀门装置的工作状态,包括:
控制所述第一阀门装置的工作状态为第一工作状态,使加热区内的温度上升至预设加热温度区间;
控制所述第一阀门装置的工作状态为第二工作状态,使所述加热区内的温度保持在所述的预设加热温度区间。
通过控制所述第一阀门装置为第一工作状态,调节流经所述辅助换热支路的冷媒流量,使加热区内的温度上升,直至达到预设加热温度区间,然后,控制所述第一阀门装置的工作状态为第二工作状态,调节流经所述辅助换热支路的冷媒流量,使加热区内的温度保持在所述的预设加热温度区间,其中所述预设加热区间对应当前的加热区温度要求,根据用户对食材加工处理的需要而设定,通过第一阀门装置在第一工作状态和第二工作状态的切换,实现了加热区升温和控温的过程,满足用户对食材的加热需求。
所述控制所述第一阀门装置的工作状态为第二工作状态,使所述加热区内的温度保持在所述的预设加热温度区间,包括以下之一的步骤:
控制所述第一阀门装置间歇开启,使所述加热区内的温度在所述预设加热温度区间内波动;
关闭所述第一阀门装置,使所述加热区内的温度在所述预设加热温度内缓慢降低;
控制所述第一阀门装置的开度,使所述加热区内的温度保持在所述预设加热温度区间。
本发明的一个特定的实施例中,可以通过上述三种方法使所述加热区内的温度保持在所述预设加热温度区间。
第一种方法是,控制所述第一阀门装置间歇开启,通过间歇补充热量的方式使加热区的温度维持在预设加热温度区间。所述第一阀无须置间歇开启的控制方式简单,只需要联动加热区的温度检测进行控制,无需复杂的控制算法,而且无需要求第一阀门装置进行开度调节,可以选用低成本的阀门器件和阀门驱动器件。
第二种方法是,关闭所述第一阀门装置,使所述加热区内的温度在所述预设加热温度内缓慢降低。通过保证加热区的保温效果,例如在加热区的外壁设置有保温层,这样即使关闭所述第一阀门装置,由于加热区的温度会缓慢降低,加热区会在一定时间内保持在预设加热温度区间,以满足对食材加工处理的需求。
第三种方法是,控制所述第一阀门装置的开度为第二开度,使所述加热区内的温度保持在所述预设加热温度区间。通过调节第一阀门装置的开度为第二开度,控制所述辅助换热支路的冷媒流量,从而使冷凝加热器的加热热量与加热区的散热热量取得动态平衡,使所述加热区内的温度保持在所述预设加热温度区间,该种方式控制精确度高,能够将加热区的温度稳定在较小的范围内。
本发明的一个特定的实施例中,还包括以下步骤:
所述第一阀门装置保持在所述第二工作状态到达预设时长后,控制所述第一阀门装置关闭,使所述加热区内的温度下降至预设低温区间。
通过关闭所述第一阀门装置,停止冷凝加热器释放热量,这时加热区会降温,当降温到达预设低温区间后,通过控制第一阀门装置的工作状态,使其保持在预设低温区间,实现加热区在预设加热温度区间和所述预设低温区间之间切换,满足用户对于食材的不同温度处理的需求。
本发明的一个特定的实施例中,所述加热区包括用于连通冰箱制冷区的风道,所述风道上设置有用于控制所述风道流通的风道控制装置;所述使所述加热区内的温度下降至预设低温区间,包括:
控制所述风道控制装置开启,使加热区与冰箱制冷区内的空气流通,加热区内的温度下降至预设低温区间。
为了满足加热区迅速降温,对加热后食材散热或降温处理的需求,当加热区需要进行降温处理时,控制风道控制装置开启,使所述加热区与冰箱制冷区内的空气流通,将冰箱制冷区的冷空气引入至加热区,由于利用了冰箱制冷区的冷量,因此加热区的温度能够迅速降温,能有效满足用户对食材加工的效率及特殊降温速率的要求,也能满 足用户对食材多温区处理的需求。
根据本发明的第四方面,提供了一种食材处理方法,应用于制冷装置,所述制冷装置包括压缩机、冷凝器、节流装置和蒸发器,所述压缩机、所述冷凝器、所述节流装置和所述蒸发器依次连接形成冷媒循环回路,其中所述冷媒循环回路中所述压缩机的排气口与所述节流装置的冷媒入口之间的连接管路为第一连接管路,所述冷凝器设置于所述第一连接管路上,所述制冷装置还包括加热区和辅助换热支路,所述辅助换热支路包括用于加热所述加热区内温度的冷凝加热器,所述辅助换热支路并联设置于所述第一连接管路上,所述辅助换热支路上还设置有用于控制所述辅助换热支路冷媒流量的第一阀门装置,所述加热区包括用于连通冰箱制冷区的风道,所述风道上设置有用于控制所述风道流通的风道控制装置,所述食材处理方法还包括以下步骤:
控制所述第一阀门装置为第一工作状态,使所述加热区内的温度上升到第一预设温度区间;
控制所述第一阀门装置为第二工作状态,使所述加热区内的温度保持在所述第一预设加热温度区间并持续第一预设时长;
控制所述第一阀门装置关闭,控制所述风道控制装置开启;
所述加热区内的温度降低到预设低温区间后,关闭所述风道控制装置;
控制所述第一阀门为第一工作状态,使加热区内的温度上升到第二预设温度区间;
控制所述第一阀门装置为第一工作状态,使所述加热区内的温度保持在所述第二预设加热温度区间并持续第二预设时长。
通过设置两个预设加热温度区间,能够对食材更进一步的处理,可以用于处理淀粉类食材,以处理大米为例,将大米和水的混合物放入的加热区中,通过控制第一阀门装置为第一工作状态使加热区内的温度上升到第一预设温度区间,通过控制所述第一阀门装置为第二工作状态使所述加热区内的温度保持在所述第一预设温度区间并持续第一预设时长,使大米糊化,所述第一阀门装置关闭,待加热区内的温度降低到预设低温区间后,实现对大米和水的混合物的冻融处理,再次控制第一阀门装置为第一工作状态使加热区内的温度上升到第二预设温度区间后,通过控制所述第一阀门装置为第二工作状态使所述加热区内的温度保持在所述第二预设温度区间,实现对大米和水的混合物的回生。通过上述的处理,能够使溶解于水中的直链淀粉转化为不易于被人体消化的抗性淀粉,使大米发生物理改性,从而显著提高了大米中抗性淀粉含量,实现大米降糖的目的,从而控制食物中的糖糖类在人体内的转化,满足人们对于食材加工处理的需求。
本发明的一个特定的实施例中,还包括以下步骤:控制第一阀门装置关闭,开启所述风道控制装置,使加热区与冰箱制冷区内的空气流通,使加热区内的温度降低到预设保鲜温度区间。食材处理完成后,关闭第一阀门装置,风道控制装置开启,使加热区的温度降至预设保鲜温度区间,食材在该预设保鲜温度区间内保存,处理后的食材能够直接在加热区中保鲜,用户无需额外取出保存。
本发明的第五方面,提供了一种控制装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如本发明第三方面任一种实施方式的制冷装置的控制方法或者实现如本发明第四方面任一种实施方式的食材处理方法。
本发明的第六方面,提供了一种冰箱,包括本发明第五方面任一种实施方式的控制装置。
本发明的第七方面,提供一种计算机存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如本发明第三方面任一种实施方式的制冷装置的控制方法或者实现如本发明第四方面任一种实施方式的食材处理方法。
本发明上述技术方案中的一个技术方案至少具有如下优点或有益效果之一:
并联设置于所述第一连接管路上的辅助换热支路能够将高温冷媒引入至辅助换热支路上的冷凝加热器,从而对加热区进行加热。通过第一阀门装置控制所述辅助换热支路的冷媒流量,可实现辅助换热支路的独立控制,由于辅助换热支路并联设置于所述第一连接管路上,调节第一阀门装置的工作状态不会影响冷媒循环回路的正常运行,通过第一阀门装置控制所述辅助换热支路的冷媒流量,能调节加热区内的温度,满足加热区不同的温度要求,从而满足人们对食材加工处理的不同需求。
附图说明
图1是本发明第一实施例及第二实施例的制冷装置的系统原理图;
图2是本发明第三实施例的制冷装置的系统原理图;
图3是本发明第四实施例的制冷装置的系统原理图;
图4是本发明一个实施例中保温箱的结构示意图;
图5是本发明第五实施例中制冷装置的温度控制曲线图;
图6是本发明实施例中制冷装置的电路原理框图;
图7是本发明第六实施例中冰箱的系统原理图;
图8是本发明第七实施例制冷系统的控制方法的方法流程图;
图9是图8中步骤20的一种实施方式的方法流程图;
图10是本发明第八实施例制冷系统的控制方法的方法流程图;
图11是本发明第九实施例制冷系统的控制方法的方法流程图;
图12是本发明第十实施例制冷系统的控制方法的方法流程图;
图13是本发明第十一实施制冷系统的控制方法的方法流程图;
图14是本发明第十二实施例食材处理方法的方法流程图;
图15是本发明第十三实施例食材处理方法的方法流程图;
图16是本发明第五方面控制装置结构原理图;以及
图17是本发明第六方面冰箱的系统原理图。
附图标记:压缩机101;冷凝器102;节流装置103;蒸发器104;储液器105;回气换热管106;冷凝加热器107;三通阀108;第一连接管路109;第二连接管路110;保温箱201;冷凝加热管202;以及风道203。
具体实施方式
下面详细描述本发明的实施方式,实施方式的示例在附图中示出,其中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”以及“第二”的特征可以明示或者隐含地包括一个或者更多个特征。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,可以是固定连接或活动连接,也可以是可拆卸连接或不可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通、间接连通或两个元件的相互作用关系;
在本发明的描述中,需要说明的是,本发明制冷装置或冰箱中的各个元件的“第一端”、“第二端”仅仅用于表示元件的输入端或输出端,而且命名统一规则是以制冷装置冷媒的输入端为“第一端”,冷媒的输出端为“第二端”,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的功能。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同方案。
参照图1至图5所示,为本发明第一方面的制冷装置,所述制冷装置为冰箱设备的核心部件,用于为冰箱制冷区提供制冷,冰箱制冷区包括冷藏区和冷冻区,其中所述冷藏区的温度为2℃至8℃,冷冻区的温度为-18℃。
参照图1所示,为本发明第一实施例的制冷装置,包括压缩机101、冷凝器102、节流装置103和蒸发器104,所述压缩机101、冷凝器102、节流装置103和蒸发器104依次连接形成用于为冰箱制冷区提供制冷的冷媒循环回路,图1中的箭头为指示冷媒的流向,其中冷媒循环回路中压缩机101排气口与节流装置103冷媒入口之间的连接管路为第一连接管路109,冷凝器102设置于第一连接管路109上,第一连接管路109用于为冷凝器102提供由压缩机101提供的高温冷媒;其中冷媒循环回路中节流装置103的冷媒出口与压缩机101的回气口之间的连接管路为第二连接管路110,蒸发器104设置于第二连接管路110上,第二连接管路110用于为蒸发器104提供低温冷媒。具体地,压缩机101的排气口输出高温的气态冷媒,经冷凝器102的第一端进入冷凝器102,在冷凝器102内,高温的气态冷媒放热冷凝为高温液态冷媒,所述冷媒从冷凝器102的第二端排出,经过冷媒循环回路进入节流装置103的第一端,在节流装置103中降温形成低温液态冷媒,所述冷媒从节流装置103的第二端输出,从蒸发器104的第一端进入,蒸发器104内的冷媒吸收冰箱制冷区的热量形成低温气态冷媒,再次进入压缩机101的进气口中。其中,上述的节流装置103可采用毛细管或者电子膨胀阀或者热力膨胀阀或者节流短管,毛细管的结构简单,制造方便,价格低廉,没有运动部件,本身不易产生故障和泄漏,而且具有自动补偿特点以适应制冷负荷变化对流量的要求;电子膨胀阀对制冷剂量变化的适应性强,使制冷装置舒适性增强;热力膨胀阀适用温度范围大,停机时可快速平衡系统高低压力。
参照图1所示,蒸发器104的第二端和压缩机101的进气口之间设置有储液器105,用于存储还未气化的液态冷媒,另外,还可以在储液器105与压缩机101之间设置回气换热管106,将节流装置103释出的热量吸收,提高进入压缩机101进气口的冷媒温度。
参照图1所示,制冷装置还包括:
加热区,用于存放待处理的食材,其中加热区可以是设置于冷藏室内的一个保温箱或加热盒,也可以是冰箱一个独立的间室;
辅助换热支路,辅助换热支路包括用于加热加热区内温度的冷凝加热器107,辅助换热支路并联设置于第一连接管路109上,辅助换热支路上还设置有第一阀门装置,第一阀门装置根据加热区内的温度要求控制所述辅助换热支路的冷媒流量。
所述第一阀门装置受控于冰箱的控制器,控制器根据加热区内的温度要求向第一阀门装置发送控制指令,以控制第一阀门装置的工作状态,这样可控制流入辅助换热支路的冷媒流量,当流入辅助换热支路的冷媒流量较高时,冷凝加热器107释放的热量较多,加热区的温度上升,当关闭第一阀门装置,则冷凝加热器107停止释放热量,若加热区的保温效果好(例如加热区的外壁设置有保温层),加热区的温度缓慢下降,若加热区散热良好(没有做保温措施或者设置有如下文所述的风道和风道控制装置),则加热区的温度会迅速下降,第一阀门装置的工作状态为第一阀门装置的开度或开度的变化,当第一阀门装置开度最大时,流经辅助换热支路的冷媒流量最高,当第一阀门装置开度为零时,流经辅助换热支路的冷媒流量为零。第一阀门装置的开度还可以在零和最大开度之间调节,例如采用可有级调节或无级调节的阀门装置作为第一阀门装置。
由于压缩机101排气口至节流装置103冷媒入口之间的第一连接管路109流通的是高温冷媒,辅助换热支路并联设置于第一连接管路109上,能够将高温冷媒引入至辅助换热支路上的冷凝加热器107,从而对加热区进行加热。通过第一阀门装置控制辅助换热支路的冷媒流量,可实现辅助换热支路的独立控制,由于辅助换热支路并联设置于第一连接管路上,调节第一阀门装置的工作状态不会影响冷媒循环回路的正常运行,通过第一阀门装置控制所述辅助换热支路的冷媒流量,能调节加热区内的温度,满足加热区不同的温度要求,从而满足人们对食材加工处理的不同需求。
为了能让冷媒流经辅助换热支路,打开第一阀门装置的同时需要让冷媒循环回路中的冷媒循环流动,这时则需要压缩机101同步工作,即第一阀门装置在除关闭以外的其他工作状态,均需要压缩机101同时运行。
所述压缩机101的运行逻辑如下,当加热区要求加热时,判断当前冰箱制冷区是否存在制冷需求,若当前冰箱制冷区存在制冷需求时,冷媒循环回路已经处于制冷状态,则保持压缩机101运行。若当前冰箱制冷区没有制冷需求时,表示压缩机101处于停止运行状态,这时需要启动压缩机101运行。
由于压缩机101运行时冷媒会流经冷凝器102,这样会使冰箱制冷区的温度下降,若冰箱制冷区没有制冷需求时,会使冰箱制冷区的温度低于冰箱制冷区的设定温度,为了避免影响使冰箱制冷区的正常温度,本发明的一种实施方式,在冷凝器102和辅助换热支路的第二端之间可以设置第二阀门装置,当冰箱制冷区没有制冷要求但加热区有加热要求时,第一阀门装置打开,第二阀门装置关闭,冷媒全部经过辅助换热支路进入冷媒循环回路,由于冷凝器102没有冷媒流经,不会降低冰箱制冷区的温度,同时由于冷媒全部流经辅助换热支路上的冷凝加热器107,因此对加热区的加热效果更好。
另一种实施方式是,无需设置第二阀门装置,若当冰箱制冷区没有制冷需求时,启动压缩机101工作,这时会使冰箱制冷区的温度降低,但由于加热区会向冰箱制冷区释放热量,压缩机101跟随第一阀门装置工作,通过蒸发器对冰箱制冷区进行降温,整个冰箱系统会动态保持平衡。这需要设置加热区与冰箱制冷区的热传递效率。
本发明的一个实施例中,所述第一阀门装置设有第一工作状态和第二工作状态,并且第一阀门装置可以在第一工作状态、第二工作状态或其他工作状态中切换。
其中所述第一工作状态对应第一阀门装置的开度为第一开度,当第一阀门装置的开度为第一开度时,流经冷凝加热器107的冷媒使加热区的温度上升。其中第一阀门装置的第一开度可以根据加热区的保温性能、冷凝加热器107的热转换效率和流经冷凝加热器107冷媒的温度而设定,为了能够使加热区的温度尽快达到预设加热温度区间,在一实施例中,第一开度为第一阀门装置的最大开度。
所述第一阀门装置的第二工作状态,用于使加热区的温度保持在预设加热温度区间。其中一种实施方式是,所述第二工作状态为第一阀门装置间歇开启,使所述加热区内的温度在预设加热温度区间内波动,第一阀门装置间歇开启,通过间歇补充热量的方式使加热区的温度维持在预设加热温度区间。第一阀门装置间歇开启的控制方式简单, 只需要联动加热区的温度检测进行控制,无需复杂的控制算法,而且无需要求第一阀门装置进行开度调节,可以选用低成本的阀门器件和阀门驱动器件。
另一种实施方式是,所述第二工作状态为所述第一阀门装置关闭,使所述加热区内的温度在所述预设加热温度内缓慢降低。通过保证加热区的保温效果,例如在加热区的外壁设置有保温层,这样即使关闭所述第一阀门装置,由于加热区的温度会缓慢降低,加热区会在一定时间内保持在预设加热温度区间,以满足对食材加工处理的需求。
另一种实施方式是,所述第二工作状态为所述第一阀门装置的开度为第二开度,使所述加热区内的温度保持在所述预设加热温度区间。通过调节第一阀门装置的开度为第二开度,控制所述辅助换热支路的冷媒流量,从而使冷凝加热器107的加热热量与加热区的散热热量取得动态平衡,使所述加热区内的温度保持在所述预设加热温度区间,该种方式控制精确度高,能够将加热区的温度稳定在较小的范围内。其中,所述第二开度比第一开度的开度小。例如第一开度为第一阀门装置的最大开度,则第二开度可以是第一开度的80%,上述数值只是一个举例,具体的数值需要根据加热区的散热情况和冷凝加热器107的加热热量而设定,通过设置第二开度的大小,使所述加热区内的温度保持在所述预设加热温度区间。
本发明的一个特定的实施例中,控制器根据加热区内的温度要求控制第一阀门装置为第一工作状态,,打开至第一开度,使加热区内的温度上升至预设加热温度区间后,控制器控制第一阀门装置的工作状态切换为第二工作状态,使加热区内的温度保持在的预设加热温度区间。其中预设加热区间对应当前的加热区温度要求,根据用户对食材加工处理的需要而设定,通过第一阀门装置在第一工作状态和第二工作状态之间切换,实现了加热区升温和控温的过程,满足用户对食材的加热需求。
本发明的一个实施例中,包括两个以上预设加热温度区间,控制器根据加热区内的温度要求控制第一阀门装置的工作状态,使加热区内的温度在两个以上预设加热温度区间之间切换。例如从第一预设加热温度区间切换至第二预设加热温度区间。预设加热温度区间可根据所需处理食材加热曲线设置,例如食材加热曲线存在三个不同温度范围的加热工序,则设置三个预设加热温度区间。另外预设加热温度区间的数量和范围可以由用户输入设置,也可以根据食材的重量、处理方法自动适配。也可以在不同预设加热温度区间来回切换。通过设置不同的预设加热温度区间,能够满足用户对不同食材的不同处理要求。
本发明的一个特定的实施例中,还包括预设低温区间,控制器根据加热区内的温度要求控制第一阀门装置的工作状态,使加热区内的温度在预设加热温度区间和预设低温区间之间切换。通过关闭第一阀门装置,停止冷凝加热器释放热量,这时加热区会降温,当降温到达预设低温区间后,通过控制器控制第一阀门装置的工作状态,使其保持在预设低温区间,实现加热区在预设加热温度区间和预设低温区间之间切换,满足用户对于食材的不同温度处理的需求。
第一阀门装置的工作状态为第一工作状态,其中一种实施方式是,第一开度为第一阀门装置至最大开度,这样能够让辅助换热支路的冷媒流量最大,使冷凝加热器107释放的热量最高,能让加热区更快上升到预设加热温度区间,节省加热食材的时间。另外的实施方式是,第一开度能够使加热区升温,换而言之,这时冷凝加热器107释放的热量大于加热区的散热热量,这样也能够使加热区逐渐升温,虽然这样会导致加热区的升温效率降低,但是对冷媒循环回路的影响较小,另外,也可以根据冰箱制冷区的状态调整第一阀门装置的开度,使其能满足加热区的加热需求同时降低对冰箱冷藏区的影响。
第一阀门装置的第二工作状态,使述加热区内的温度保持在预设加热温度区间,可以包括以下三种方式之一,
第一种方式是,第一阀门装置间歇开启,通过间歇补充热量的方式使加热区的温度维持在预设加热温度区间。第一阀门装置间歇开启的控制方式简单,只需要联动加热区的温度检测进行控制,无需复杂的控制算法,而且无需要求第一阀门装置进行开度调节,可以选用低成本的阀门器件和阀门驱动器件。
第二种方式是,关闭第一阀门装置,使加热区内的温度在预设加热温度内缓慢降低,通过保证加热区的保温效果,即使关闭第一阀门装置,由于加热区的温度会缓慢降低,加热区会在一定时间内保持在预设加热温度区间,以满足对食材加工处理的需求。其中,可以在加热区的外壁设置有保温层的方式保证加热区的保温效果。
第三种方式是,控制第一阀门装置的开度,使加热区内的温度保持在预设加热温度区间。通过调节第一阀门装置的开度,控制辅助换热支路的冷媒流量,从而使冷凝加热器的加热热量与加热区的散热热量取得动态平衡,使加热区内的温度保持在预设加热温度区间,该种方式控制精确度高,能够将加热区的温度稳定在较小的范围内。
参照图1所示,本发明第二实施例的制冷装置,为本发明第一实施例的进一步改进,第一阀门装置为三通阀108,辅助换热支路的第一端通过三通阀108连接至压缩机101的排气口,辅助换热支路的第二端与冷凝器102的冷媒入 口连接。通过三通阀108连接至压缩机101的排气口,可以使压缩机排气口出来的高温冷媒进入的辅助换热支路,使加热区能迅速升温至足够高的温度以对食材进行加工处理,另外,由于经过辅助换热支路冷媒会再次经过的冷凝器,冷凝器能充分利用辅助换热支路流出的冷媒,降低由对制冷装置本身制冷效果的影响。
参照图2所示,为本发明第三实施例的制冷装置,与上述第二实施例不同的地方是,第一阀门装置为三通阀108,辅助换热支路的第一端通过三通阀108连接至冷凝器102的冷媒出口,辅助换热支路的第二端连接在三通阀108和节流装置103之间的冷媒循环回路上。当三通阀108打开时,冷媒经过辅助换热支路后流向节流装置103。通过三通阀108连接至冷凝器102的冷媒出口,可以利用冷凝器102的余热为冷凝加热器107提供热量,而无需使用额外的加热部件,不仅有助节省成本,而且冷媒通过冷凝加热器107放热,能降低进入节流装置103的冷媒的温度,能降低蒸发器104的负荷,使蒸发器104更好地制冷。由于冷媒先全部经过冷凝器102后再经过冷凝加热器107,不会影响冰箱制冷区的制冷效果,相对于上述第二实施例的制冷装置对冰箱的整体运行影响较小。
参照图3所示,为本发明第四实施例的制冷装置,与上述第三实施例不同的地方是,辅助换热支路并联于冷凝器102的两端,即辅助换热支路的第一端通过三通阀108连接于压缩机排气口于冷凝器第一端之间,辅助换热支路的第二端与节流装置103的冷媒输入端连接,由于辅助换热支路并联于冷凝器102的两端,压缩机101的排气口排出的高温冷媒一部分进入辅助换热支路,另一部分流经冷凝器102,与上述第二实施例和第三实施例相比,由于流经冷凝器102和冷凝加热器107冷媒的温度相同,兼顾了加热的效果同时对冰箱的整体运行影响较小。
上述第二实施例至第四实施例中,第一阀门装置除了可以使用三通阀108外,还可以使用其他的开关阀,例如可以在辅助换热支路中设置二通阀,单独控制辅助换热支路冷媒的流量。
另外,还可以将第二至第四实施例的技术方案进行组合,例如可以同时设置两个辅助换热支路,其中一个辅助换热支路如第二实施例设置于压缩机101排气口和冷凝加热器107冷媒入口之间,以引入压缩机排气口的高温冷媒,具有较高的加热温度,另一个辅助换热支路如第三实施例设置于冷凝加热器107的冷媒出口与节流装置103的冷媒入口之间,以引入冷凝加热器107输出的冷媒,具有较低的加热温度。这样可以根据需要选择合适的冷凝加热器107工作。例如可以设置两个加热区分别对应的冷凝加热器107,用户可以选择合适的加热区使用,或者设置一个加热区对应的两个冷凝加热器107,用户可以选择合适的加热模式使用。
预设加热温度区间包括加热温度上限值和加热温度下限值,控制器根据加热区内的温度要求控制第一阀门装置的工作状态为第二工作状态,使加热区内的温度保持在加热温度上限值和加热温度下限值之间,避免第一阀门装置在第一和第二工作状态反复切换,增加其可靠性。
另外,当第一阀门装置的第二工作状态为间歇开启方式时,通过设置加热温度上限值和加热温度下限值,可以方便控制加热温度区间的温度和波动的幅度。
参照图4所示,本发明的一个实施例中,加热区设置于保温箱201中,保温箱201可以是冰箱中独立的间室,也可以是内置与冰箱制冷区中的一个保温箱201,冷凝加热器设置于保温箱201上。加热区设置于保温箱内,冷凝加热器对保温箱内的加热区进行加热,能保证保温箱内的温度不易散失,有效提高加热效果。
参照图4所示,冷凝加热器107包括冷凝加热管202,冷凝加热管202排布于保温箱201的底部。通过冷凝加热管能将辅助换热支路中的高温冷媒热量迅速传递到保温箱中,加热效果较好,无需复杂的换热装置或其他导热介质,成本低廉。由于热空气上浮、冷空气下降的特性,将冷凝加热管202排布于保温箱201的底部能够有利于热量完保温箱空间传递,从而使加热区内温度更加均匀,有利于对食材的均匀加热处理。当然,本领域技术人员也可以根据需要设置冷凝加热管202的排布位置,例如在保温箱201的底部和顶部均设置的冷凝加热管202,或者在保温箱201的侧壁设置的冷凝加热管202。
参照图4所示,本发明的一个实施例中,加热区包括用于连通冰箱制冷区的风道203。风道203连通加热区和冰箱制冷区,通过该风道203可以将冰箱制冷区的冷空气引入至加热区,实现食材的制冷降温处理,从而能够满足需要升温和降温处理食材的复杂加工需求。
为了实现风道203的控制,本发明的一个实施例中在风道上设置有用于控制风道203流通的风道控制装置。通过开启风道控制装置能够使加热区和冰箱制冷区之间风道内的空气流通,可以将冰箱制冷区的冷空气引入至加热区,加快食材的降温处理。当关闭风道控制装置后,加热区和冰箱制冷区之间风道内的空气不流通或不容易流通,从而降低冰箱制冷区与加热区之间的热交互程度,通过风道控制装置能够使冰箱制冷区冷空气通过风道流入加热区进行循环,实现加热区的降温,从而能够满足需要升温和降温处理食材的复杂加工需求。
其中,风道控制装置的一种实施方式是正对风道设置有风机,风机的吹风方向朝向风道203的入口,通过启动 风机动作,可以将冰箱制冷区中的冷风引入加热区,使冰箱制冷区冷空气通过风道流入加热区进行循环,实现加热区的降温操作,而且通过使用风机将冰箱制冷区冷空气引入加热区,能够提高加热区的降温效率。
风道控制装置的另一种实施方式是,在风道203上设置有用于控制风道打开的风门,在加热区需要降温时通过打开风门连通加热区和冰箱制冷区之间的风道,使加热区和冰箱制冷区之间风道内的空气流通,从而使冰箱制冷区的冷空气进入加热区中使加热区降温。在加热区需要加热时通过控制器控制风门关闭,阻止冷量进入加热区,提高加热区的加热效果。
当然,在一些实施例中,可以同时在风道上设置风门和风机,即加热区在加热时,控制器控制风门关闭,以达到最好的加热效果,当加热区需要降温时,打开风门的同时开启风机,将冰箱冷藏区中的冷空气加速引入加热区中。
另外,在一些实施例中,也可以完全不设置风道,而通过保温箱201的外壳向冰箱冷藏区散热。
保温箱201设置有冷凝加热管202和风道控制装置,通过冷凝加热管202引入第一连接管路109上的高温冷媒,实现对保温箱201内加热区的加热和保温,通过风道控制装置使保温箱201内的加热区与冰箱冷藏区之间的风道流通,从而使冰箱冷藏区的冷风进入保温箱201,实现对温箱201内加热区的降温。
基于此,当加热区的温度要求为降温时,所述第一阀门装置根据加热区内的温度要求而关闭,以及所述风道控制装置根据所述加热区内的温度要求而开启,使加热区和冰箱制冷区之间风道内的空气流通,可以将冰箱制冷区的冷空气引入至加热区,由于第一阀门装置关闭,冷凝加热器不再加热,加热区内的温度下降,加热区迅速降温,满足用户对加热后食的材散热或对食材降温处理的需求。同时由于利用了冰箱制冷区的冷量,无需设置额外的散热装置即可让加热区的温度够迅速降温,也能有效满足用户对食材加工的效率及特殊降温速率的要求,也能满足用户对食材多温区处理的需求。
本发明的一个实施例中,可以对食材进行先加热后冷冻的处理,即将常温或冷冻的食材放入到加热区中,控制器控制第一阀门装置为第一工作状态使高温冷媒进入冷凝加热器107,等待加热区内的温度加热至预设加热温度区间后,控制器控制第一阀门装置为第二工作状态使加热区内的温度保持在预设加热温度区间,对食材持续一定时间的加热后,控制器控制第一阀门装置关闭,停止高温冷媒继续进入辅助换热支路,冰箱制冷区与加热区之间通过风道203进行热交互,使加热区的温度降低,从而实现对食材先加热后降温的处理。
除了可以对食材进行先加热后降温的处理外,还可以设置多个不同的预设加热温度区间对食材进行分段分时的加热及降温处理。
参照图1、图5所示,为本发明第五实施例的制冷装置,包括两个的预设加热温度区间,其中一个预设加热温度区间为第一预设温度区间△T1,另一个预设加热温度区间为第二预设温度区间△T2;当冷媒循环回路处于制冷状态时,压缩机101持续运行,控制器控制第一阀门装置为第一工作状态使加热区内的温度上升到第一预设温度区间△T1,控制器控制第一阀门装置为第二工作状态,第一阀门装置间歇开启,即加热区温度上升到第一加热温度上限值T2时,第一阀门装置关闭,加热区温度下降,当下降到第一加热温度下限值T1时,第一阀门装置开启,如此类推,控制加热区内的温度在第一预设温度区间△T1内波动,当冷媒循环回路处于保温状态时,压缩机101跟随第一阀门装置的开启而开启。当冷媒循环回路处于制冷状态时,保持压缩机101开启。加热区温度在第一预设温度区间△T1内波动的第一预设时长△t1可以根据实际情况设定,维持波动到第一预设时长△t1后,第一阀门装置关闭,压缩机101则根据冰箱制冷区的情况决定是否关闭,第一阀门装置关闭后加热区内温度下降,其中可以为自然降温或者通过风机向加热区吹送冷风实现降温。待加热区内的温度降低到预设低温区间T3后,第一阀门装置开启使加热区内的温度上升到第二预设温度区间△T2,第一阀门装置间歇开启,使加热区内的温度在第二预设温度区间△T2(即图4的T4至T5之间)内波动并持续第二预设时长△t2;第一预设温度区间△T1的加热温度下限值T1大于第二预设温度区间△T2的加热温度上限值T5。
通过设置两个预设加热温度区间,能够对食材更进一步的处理,例如上述实施例中,可以用于处理淀粉类食材,以处理大米为例,将大米和水的混合物放入加热区中,第一阀门装置开启使加热区内的温度上升到第一预设温度区间△T1,第一阀门装置间歇开启,使加热区内的温度在第一预设温度区间△T1内波动并持续第一预设时长△t1,使大米糊化,第一阀门装置关闭,待加热区内的温度降低到预设低温区间后T3,实现对大米和水的混合物的冻融处理,第一阀门装置开启使加热区内的温度上升到第二预设温度区间△T2后,第一阀门装置间歇开启,使加热区内的温度在第二预设温度△T2区间内波动并持续第二预设时长△t2,实现对大米和水的混合物的回生。通过上述的处理,能够使溶解于水中的直链淀粉转化为不易于被人体消化的抗性淀粉,使大米发生物理改性,从而显著提高了大米中抗性淀粉含量,实现大米降糖的目的,从而控制食物中的糖在人体内的转化,经过处理后的食材更加健康,满足人们 对于食材加工处理的需求。
本发明的一个实施例中,加热区内的温度在第二预设温度区间△T2内波动并持续第二预设时长△t2后,第一阀门装置关闭,风道控制装置开启,使加热区内的温度降低到预设保鲜温度区间T6。食材在该预设保鲜温度区间内保存,处理后的食材能够直接在加热区中保鲜,用户无需额外取出保存。
其中,上述T1、T2、T3、T4、T5、T6的值可以根据需要设定,本实施例中,T1为60℃,T2为75℃,T3为0℃至8℃,T4为30℃,T5为30℃,T6为2℃至8℃。上述实施例中对大米的处理仅作举例说明,本发明实施例的制冷装置也可以用于处理其他食材,例如可以用于处理肉类食物或奶制品。
上述实施例中,第一阀门装置采用第一阀门装置间歇开启的方式,以使加热区内的温度保持在预设加热温度区间并持续预设时长。另外,也可以使用关闭第一阀门装置或者控制第一阀门的开度使加热区内的温度保持在预设加热温度区间并持续预设时长,具体的实现方法和原理上述实施例中已经进行详述,在此不再赘述。
参照图6所示,为本发明第一方面制冷装置的电路原理框图,包括控制器、压缩机、三通阀、风机、第一温度传感器和第二温度传感器,其中,第一温度传感器设置于加热区例如保温箱内,用于检测加热区中的温度,以便根据加热区中的温度控制三通阀或者压缩机的运行,第二温度传感器设置于冰箱制冷区内,用于检测于冰箱制冷区内温度,以便根据冰箱制冷区内温度控制压缩机的运行。控制器分别与控制器、压缩机、三通阀、风机、第一温度传感器和第二温度传感器电连接,控制器对压缩机、三通阀、风机、第一温度传感器和第二温度传感器进行控制,实现上述实施例的控制过程。
参照图7所示,为本发明第二方面的冰箱,作为本发明的第六实施例,本实施例中,包括上述实施例一至五中任一实施例的制冷装置。由于根据本发明实施例的制冷装置具有上述实施例一至四中任一实施例的技术效果,因此,根据本实施例的冰箱也具有上述技术效果。由于压缩机101排气口至节流装置103之间的冷媒循环回路流通的是高温冷媒,辅助换热支路并联设置于压缩机101的排气口与节流装置103之间,能够将高温冷媒引入至辅助换热支路上的冷凝加热器,从而对加热区进行加热。通过第一阀门装置控制辅助换热支路的开闭,实现辅助换热支路的独立控制,第一阀门装置的开闭不影响冷媒循环回路的正常运行。通过第一阀门装置控制所述辅助换热支路的冷媒流量,能调节加热区内的温度,满足加热区不同的温度要求,从而满足人们对食材加工处理的不同需求。
以下为本发明第三方面的制冷装置的控制方法,值得理解的是,下述描述仅是示例性说明,而不是对发明的具体限制。
本发明第七实施例的制冷装置的控制方法,应用于控制如图1至图6所示的制冷装置,本实施例中制冷装置的控制方法,可以由本发明实施例提出的制冷装置的控制装置执行,该制冷装置的控制装置可以配置在制冷装置中,用于实现制冷装置的控制。
其中,所述图1至图4、图6中所示的结构参见第一实施例至第五实施例中描述,在此不再重复赘述,参照图8所示,本实施例的制冷系统的控制方法包括如下步骤:
步骤10,获取所述加热区的温度要求;
步骤20,根据所述加热区的温度要求控制所述第一阀门装置的工作状态。
由于压缩机的排气口至节流装置的冷媒入口之间的第一连接管路流通的是高温冷媒,辅助换热支路并联设置于第一连接管路上,能够将高温冷媒引入至辅助换热支路上的冷凝加热器,从而对加热区进行加热。通过第一阀门装置控制辅助换热支路的冷媒流量,可实现辅助换热支路的独立控制,由于辅助换热支路并联设置于第一连接管路上,调节第一阀门装置的工作状态不会影响冷媒循环回路的正常运行,通过控制第一阀门装置的工作状态,能调节加热区内的温度,满足加热区不同的温度要求,从而满足人们对食材加工处理的不同需求。
参照图9所示,所述步骤20包括:
步骤201,控制所述第一阀门装置的工作状态为第一工作状态,使加热区内的温度上升至预设加热温度区间。
通过控制第一阀门装置为第一工作状态,调节流经辅助换热支路的冷媒流量,使加热区内的温度上升,直至达到预设加热温度区间。
步骤202,控制所述第一阀门装置的工作状态为第二工作状态,使所述加热区内的温度保持在所述的预设加热温度区间。
其中预设加热区间对应当前的加热区温度要求,根据用户对食材加工处理的需要而设定,通过第一阀门装置在第一工作状态和第二工作状态的切换,实现了加热区升温和控温的过程,满足用户对食材的加热需求。
由于压缩机101运行时冷媒会流经冷凝器102,这样会使冰箱制冷区的温度下降,若冰箱制冷区没有制冷需求 时,会使冰箱制冷区的温度低于冰箱制冷区的设定温度,为了避免影响冰箱制冷区的正常温度,本发明的一种实施方式,在冷凝器102和辅助换热支路的第二端之间可以设置第二阀门装置,当冰箱制冷区没有制冷要求但加热区有加热要求时,第一阀门装置打开,第二阀门装置关闭,冷媒全部经过辅助换热支路进入冷媒循环回路,由于冷凝器102没有冷媒流经,不会降低冰箱制冷区的温度,同时由于冷媒全部流经辅助换热支路上的冷凝加热器107,因此对加热区的加热效果更好。
另一种实施方式是,无需设置第二阀门装置,若冰箱制冷区没有制冷需求时,启动压缩机101工作,这时会使冰箱制冷区的温度降低,但由于加热区会向冰箱制冷区释放热量,压缩机101跟随第一阀门装置工作,通过蒸发器对冰箱制冷区进行降温,整个冰箱系统会动态保持平衡。这需要设置加热区与冰箱制冷区的热传递效率。
第一阀门装置的第一工作状态,为打开第一阀门装置至第一开度,使加热区内的温度上升,其中一种实施方式是,第一开度为第一阀门装置的最大开度,这样能够让辅助换热支路的冷媒流量最大,使冷凝加热器107释放的热量最高,能让加热区更快上升到预设加热温度区间,节省加热食材的时间。另外的实施方式是,第一开度为能够使加热区升温的开度,换而言之,这时冷凝加热器107释放的热量大于加热区的散热热量,这样也能够使加热区逐渐升温,虽然这样会导致加热区的升温效率降低,但是对冷媒循环回路的影响较小,另外,也可以根据冰箱制冷区的状态调整第一阀门装置开启的开度,使其能满足加热区的加热需求同时降低对冰箱冷藏区的影响。
参照图10所示,本发明第八实施例的制冷装置的控制方法,所述预设加热温度区间包括加热温度上限值和加热温度下限值,上述步骤202包括:
步骤2021,等待所述加热区内的温度加热至加热温度上限值;
步骤2022,控制所述第一阀门装置间歇开启,使所述加热区内的温度在所述加热温度上限值和加热温度下限值之间波动。
通过设置加热温度上限值和加热温度下限值,可以控制加热温度区间的温度和波动的幅度。加热区内的温度保持在加热温度上限值和加热温度下限值之间,避免第一阀门装置在第一和第二工作状态反复切换,增加其可靠性。另外第一阀门装置间歇开启的控制方式简单,只需要联动加热区的温度检测进行控制,无需复杂的控制算法,而且无需要求第一阀门装置进行开度调节,可以选用低成本的阀门器件和阀门驱动器件。
参照图11所示,本发明第九实施例的制冷装置的控制方法,预设加热温度区间包括加热温度上限值和加热温度下限值,上述步骤202包括:
步骤2023,待加热区内的温度加热至预设加热温度区间后,关闭所述第一阀门装置,使所述加热区内的温度在所述预设加热温度内缓慢降低。
通过保证加热区的保温效果,例如在加热区的外壁设置有保温层,这样即使关闭第一阀门装置,由于加热区的温度会缓慢降低,加热区会在一定时间内保持在预设加热温度区间,满足对食材加工处理的需求。
参照图12所示,本发明第十实施例的制冷装置的控制方法,预设加热温度区间包括加热温度上限值和加热温度下限值,上述步骤202包括:
步骤2024,待加热区内的温度加热至预设加热温度区间后,控制所述第一阀门装置的开度,使所述加热区内的温度保持在所述预设加热温度区间。
其中,步骤2024中,所述控制所述第一阀门装置的开度,具体包括,控制所述第一阀门装置的开度为第二开度,通过调节第一阀门装置的开度为第二开度,控制辅助换热支路的冷媒流量,从而使冷凝加热器的加热热量与加热区的散热热量取得动态平衡,使加热区内的温度保持在预设加热温度区间,该种方式控制精确度高,能够将加热区的温度稳定在较小的范围内。其中,所述第二开度比第一开度的开度小。例如第一开度为第一阀门装置的最大开度,则第二开度可以是第一开度的80%,上述数值只是一个举例,具体的数值需要根据加热区的散热情况和冷凝加热器的加热热量而设定,通过设置第二开度的大小,使所述加热区内的温度保持在所述预设加热温度区间。
参照图13所示,本发明第十一实施例的制冷装置的控制方法,步骤20还包括以下步骤:
步骤203,控制所述第一阀门装置关闭,使所述加热区内的温度下降至预设低温区间。
具体地,上述步骤203包括:控制风道控制装置开启,使加热区与冰箱制冷区内的空气流通,加热区内的温度下降至预设低温区间。
通过风道控制装置能够使加热区和冰箱制冷区之间风道内的空气流通,当加热区需要进行降温处理时,控制第一阀门装置关闭,风道控制装置开启,使冰箱制冷区冷空气通过风道流入加热区进行循环,实现加热区的降温,由于第一阀门装置关闭,冷凝加热器不再加热,同时由于利用了冰箱制冷区的冷量,因此加热区的温度能够迅速降温, 能有效满足用户对食材加工的效率及特殊降温速率的要求,也能满足用户对食材多温区处理的需求,从而能够满足需要升温和降温处理食材的复杂加工需求。
本发明的第四方面,提供了一种食材处理方法,应用于控制如图1至图4、图6所示的制冷装置,本实施例中制冷装置的控制方法,可以由本发明实施例提出的制冷装置的控制装置执行,该制冷装置的控制装置可以配置在制冷装置中,用于实现制冷装置的控制。其中,所述图1至图7中所示的结构参见第一实施例至第五实施例中描述,在此不再重复赘述,参照图5和图14所示,作为本发明的第十二实施例,本实施例的食材处理方法包括如下步骤:
步骤301,控制所述第一阀门装置为第一工作状态,加热区内的温度上升到第一预设温度区间△T1;
步骤302,控制所述第一阀门装置为第二工作状态,使所述加热区内的温度保持在所述第一预设温度区间△T1内并持续第一预设时长△t1;
步骤303,控制所述第一阀门装置关闭,控制所述风道控制装置开启;
步骤304,所述加热区内的温度降低到预设低温区间T3后,关闭所述风道控制装置;
步骤305,控制所述第一阀门为第一工作状态,使加热区内的温度上升到第二预设温度区间△T2;
步骤306,控制所述第一阀门装置为第二工作状态,使所示加热区内的温度保持所述第二预设温度区间△T2并持续第二预设时长△t2。
通过设置两个预设加热温度区间,能够对食材更进一步的处理,例如上述实施例中,可以用于处理淀粉类食材,以处理大米为例,将大米和水的混合物放入加热区中,控制第一阀门装置为第一工作状态使加热区内的温度上升到第一预设温度区间△T1,控制第一阀门装置为第二工作状态,使加热区内的温度保持在第一预设温度区间△T1内并持续第一预设时长△t1,使大米糊化,第一阀门装置关闭,待加热区内的温度降低到预设低温区间后T3,实现对大米和水的混合物的冻融处理,控制第一阀门装置为第一工作状态使加热区内的温度上升到第二预设温度区间△T2后,控制第一阀门装置为第二工作状态,使加热区内的温度保持在第二预设温度△T2区间内并持续第二预设时长△t2,实现对大米和水的混合物的回生。通过上述的处理,能够使溶解于水中的直链淀粉转化为不易于被人体消化的抗性淀粉,使大米发生物理改性,从而显著提高了大米中抗性淀粉含量,实现大米降糖的目的,从而控制食物中的糖在人体内的转化,经过处理后的食材更加健康,满足人们对于食材加工处理的需求。
参照图15所示,本发明第十三实施例的食材处理方法,还包括以下步骤:
步骤307,控制第一阀门装置关闭,开启所述风道控制装置,使加热区与冰箱制冷区内的空气流通,使加热区内的温度降低到预设保鲜温度区间T6。食材在该预设保鲜温度区间内保存,处理后的食材能够直接在加热区中保鲜,用户无需额外取出保存。
其中,上述的本发明第十二实施例和第十三实施例中,控制第一阀门装置的工作状态为第一工作状态,可以如上述实施例,为打开第一阀门装置至最大开度,或者第一阀门装置开启的开度能够使加热区升温。控制第一阀门装置的工作状态为第二工作状态,可以如上述实施例,采用第一阀门装置间歇开启的方式,以使加热区内的温度保持在预设加热温度区间并持续预设时长。也可以使用关闭第一阀门装置或者控制第一阀门的开度使加热区内的温度保持在预设加热温度区间并持续预设时长,具体的实现方法和原理上述实施例中已经进行详述,在此不再赘述。
参照图16所示,为本发明第五方面的控制装置,该控制装置可以是任意类型的控制模块,例如控制板、控制盒、控制芯片等。
具体地,该控制装置包括:一个或多个处理器和存储器,图16中以一个处理器及存储器为例。处理器和存储器可以通过总线或者其他方式连接,图16中以通过总线连接为例。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本发明第三方面实施例中的制冷装置的控制方法或本发明第四方面的食材处理方法。处理器通过运行存储在存储器中的非暂态软件程序以及指令,从而实现上述本发明第三方面实施例中的制冷装置的控制方法或本发明第四方面的食材处理方法。
存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述第三方面实施例中的制冷装置的控制方法所需的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件或其他非暂态固态存储器件。在一些实施方式中,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述本发明第三方面实施例中的制冷装置的控制方法或本发明第四方面的食材处理方法所需的非暂态软 件程序以及指令存储在存储器中,当被一个或者多个处理器执行时,执行上述本发明第三方面实施例中的制冷装置的控制方法或本发明第四方面的食材处理方法,例如,执行以上描述的图8的方法步骤10至步骤20,图9的方法步骤201至步骤202,图10的方法步骤2021至步骤2022,图11的方法步骤2023,图12的方法步骤2024,图13的方法步骤201至步骤203,图14的方法步骤301至步骤306,图15的方法步骤301至步骤307。
参照图16所示,为本发明第六方面的冰箱,包括本发明第五方面的控制装置。
本发明第七方面,提供了计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,被图16中的一个处理器执行,可使得上述一个或多个处理器执行上述本发明第三方面实施例中的制冷装置的控制方法或本发明第四方面的食材处理方法,例如,执行以上描述的图8的方法步骤10至步骤20,图9的方法步骤201至步骤202,图10的方法步骤2021至步骤2022,图11的方法步骤2023,图12的方法步骤2024,图13的方法步骤201至步骤203,图14的方法步骤301至步骤306,图15的方法步骤301至步骤307。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置,或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (21)

  1. 制冷装置,包括压缩机、冷凝器、节流装置和蒸发器,所述压缩机、所述冷凝器、所述节流装置和所述蒸发器依次连接形成冷媒循环回路,其中所述冷媒循环回路中所述压缩机的排气口与所述节流装置的冷媒入口之间的连接管路为第一连接管路,所述冷凝器设置于所述第一连接管路上,所述制冷装置还包括:
    辅助换热支路,所述辅助换热支路包括用于为加热区加热的冷凝加热器,所述辅助换热支路并联设置于所述第一连接管路上,所述辅助换热支路上还设置有第一阀门装置,所述第一阀门装置根据所述加热区内的温度要求控制所述辅助换热支路的冷媒流量。
  2. 根据权利要求1所述的制冷装置,其中,所述第一阀门装置设有第一工作状态和第二工作状态,其中,
    所述第一工作状态为,所述第一阀门装置的开度为第一开度,使加热区内的温度上升;以及
    所述第二工作状态为以下之一:
    所述第一阀门装置间歇开启,使所述加热区内的温度在预设加热温度区间内波动;
    所述第一阀门装置关闭,使所述加热区内的温度在预设加热温度内缓慢降低;以及
    所述第一阀门装置的开度为第二开度,使所述加热区内的温度保持在预设加热温度区间。
  3. 根据权利要求1所述的制冷装置,其中,所述第一阀门装置为三通阀,所述辅助换热支路的第一端通过所述三通阀连接至所述压缩机的排气口,所述辅助换热支路的第二端与所述冷凝器的冷媒入口连接。
  4. 根据权利要求1或2所述的制冷装置,还包括保温箱,所述保温箱内设置有所述的加热区,所述冷凝加热器设置于所述保温箱上。
  5. 根据权利要求4所述的制冷装置,其中,所述冷凝加热器包括冷凝加热管,所述冷凝加热管设置于所述保温箱上。
  6. 根据权利要求5所述的制冷装置,其中,所述冷凝加热管排布于所述保温箱的底部。
  7. 根据权利要求1所述的制冷装置,还包括用于控制所述加热区和冰箱制冷区之间风道流通的风道控制装置。
  8. 根据权利要求7所述的制冷装置,其中,所述风道控制装置包括风机和/或控制所述风道打开的风门。
  9. 根据权利要求7或8所述的制冷装置,其中,所述第一阀门装置根据所述加热区内的温度要求而关闭,以及所述风道控制装置根据所述加热区内的温度要求而开启,使所述加热区内的温度下降。
  10. 根据权利要求2所述的制冷装置,还包括用于控制所述加热区和冰箱制冷区之间风道流通的风道控制装置,所述第一阀门装置处于所述第二工作状态并到达预设时长后,所述第一阀门装置根据所述加热区内的温度要求而关闭,以及所述风道控制装置根据所述加热区内的温度要求而开启,使所述加热区内的温度下降。
  11. 一种冰箱,包括权利要求1至10任意一项所述的制冷装置。
  12. 制冷装置的控制方法,所述制冷装置包括压缩机、冷凝器、节流装置和蒸发器,所述压缩机、所述冷凝器、所述节流装置和所述蒸发器依次连接形成冷媒循环回路,其中所述冷媒循环回路中所述压缩机的排气口与所述节流装置的冷媒入口之间的连接管路为第一连接管路,所述冷凝器设置于所述第一连接管路上,所述制冷装置还包括加热区和辅助换热支路,所述辅助换热支路包括用于加热所述加热区内温度的冷凝加热器,所述辅助换热支路并联设置于所述第一连接管路上,所述辅助换热支路上还设置有用于控制所述辅助换热支路冷媒流量的第一阀门装置,所述控制方法包括如下步骤:
    获取所述加热区的温度要求;以及
    根据所述加热区的温度要求控制所述第一阀门装置的工作状态。
  13. 根据权利要求12所述的制冷装置的控制方法,其中,所述根据所述加热区的温度要求控制所述第一阀门装置的工作状态,包括:
    控制所述第一阀门装置的工作状态为第一工作状态,使加热区内的温度上升至预设加热温度区间;以及
    控制所述第一阀门装置的工作状态为第二工作状态,使所述加热区内的温度保持在所述的预设加热温度区间。
  14. 根据权利要求13所述的制冷装置的控制方法,其中,所述控制所述第一阀门装置的工作状态为第二工作状态,使所述加热区内的温度保持在所述的预设加热温度区间,包括以下之一的步骤:
    控制所述第一阀门装置间歇开启,使所述加热区内的温度在所述预设加热温度区间内波动;
    关闭所述第一阀门装置,使所述加热区内的温度在所述预设加热温度内缓慢降低;以及
    控制所述第一阀门装置的开度,使所述加热区内的温度保持在所述预设加热温度区间。
  15. 根据权利要求13所述的制冷装置的控制方法,还包括以下步骤:
    所述第一阀门装置保持在所述第二工作状态到达预设时长后,控制所述第一阀门装置关闭,使所述加热区内的温度下降至预设低温区间。
  16. 根据权利要求15所述的制冷装置的控制方法,其中,所述加热区包括用于连通冰箱制冷区的风道,所述风道上设置有用于控制所述风道流通的风道控制装置;所述使所述加热区内的温度下降至预设低温区间,包括:
    控制所述风道控制装置启动,使所述加热区内的温度下降至预设低温区间。
  17. 一种食材处理方法,应用于制冷装置,所述制冷装置包括压缩机、冷凝器、节流装置和蒸发器,所述压缩机、所述冷凝器、所述节流装置和所述蒸发器依次连接形成冷媒循环回路,其中所述冷媒循环回路中所述压缩机的排气口与所述节流装置的冷媒入口之间的连接管路为第一连接管路,所述冷凝器设置于所述第一连接管路上,所述制冷装置还包括加热区和辅助换热支路,所述辅助换热支路包括用于加热所述加热区内温度的冷凝加热器,所述辅助换热支路并联设置于所述第一连接管路上,所述辅助换热支路上还设置有用于控制所述辅助换热支路冷媒流量的第一阀门装置,所述加热区包括用于连通冰箱制冷区的风道,所述风道上设置有用于控制所述风道流通的风道控制装置,所述食材处理方法还包括以下步骤:
    控制所述第一阀门装置为第一工作状态,使所述加热区内的温度上升到第一预设温度区间;
    控制所述第一阀门装置为第二工作状态,使所述加热区内的温度保持在所述第一预设加热温度区间并持续第一预设时长;
    控制所述第一阀门装置关闭,控制所述风道控制装置开启;
    所述加热区内的温度降低到预设低温区间后,关闭所述风道控制装置;
    控制所述第一阀门装置为第一工作状态,使所述加热区内的温度上升到第二预设温度区间;以及
    控制所述第一阀门装置为第二工作状态,使所述加热区内的温度保持在所述第二预设加热温度区间并持续第二预设时长。
  18. 根据权利要求17所述的一种食材处理方法,还包括以下步骤:
    控制所述第一阀门装置关闭,开启所述风道控制装置,使所述加热区内的温度降低到预设保鲜温度区间。
  19. 一种控制装置,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求11至16中任意一项所述的制冷装置的控制方法或者实现如权利要求17至18中任意一项所述的食材处理方法。
  20. 一种冰箱,包括权利要求19所述的控制装置。
  21. 一种计算机存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求11至16中任意一项所述的制冷装置的控制方法或者权利要求17至18任意一项所述的食材处理方法。
PCT/CN2020/138704 2020-03-12 2020-12-23 制冷装置、冰箱及其控制方法、食材处理方法、控制装置 WO2021179734A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20923781.7A EP4092363A4 (en) 2020-03-12 2020-12-23 REFRIGERATION DEVICE, REFRIGERATOR AND CONTROL METHOD THEREOF, FOOD PROCESSING METHOD AND CONTROL DEVICE
US17/796,270 US20230119128A1 (en) 2020-03-12 2020-12-23 Refrigeration device, refrigerator and control method therefor, food processing method and control device
JP2022544787A JP7505008B2 (ja) 2020-03-12 2020-12-23 冷却装置、冷蔵庫及びその制御方法、食材処理方法、制御装置、コンピュータ記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010172075.3A CN113390217B (zh) 2020-03-12 2020-03-12 制冷装置、冰箱及其控制方法、食材处理方法、控制装置
CN202010172075.3 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021179734A1 true WO2021179734A1 (zh) 2021-09-16

Family

ID=77616312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138704 WO2021179734A1 (zh) 2020-03-12 2020-12-23 制冷装置、冰箱及其控制方法、食材处理方法、控制装置

Country Status (5)

Country Link
US (1) US20230119128A1 (zh)
EP (1) EP4092363A4 (zh)
JP (1) JP7505008B2 (zh)
CN (1) CN113390217B (zh)
WO (1) WO2021179734A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4279841A1 (en) * 2022-05-20 2023-11-22 Whirlpool Corporation Refrigerator appliance with convertible compartment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080054523A (ko) * 2006-12-13 2008-06-18 주식회사 대우일렉트로닉스 보온실이 구비된 냉장고
KR20120064144A (ko) * 2010-12-09 2012-06-19 김무중 냉온장고
CN105698463A (zh) * 2016-03-14 2016-06-22 合肥华凌股份有限公司 冰箱
CN106595181A (zh) * 2016-12-21 2017-04-26 合肥美的电冰箱有限公司 一种冰箱制冷系统、冰箱及解冻方法
CN107024059A (zh) * 2017-05-12 2017-08-08 海信(山东)冰箱有限公司 一种冰箱以及解冻控制方法
CN109827375A (zh) * 2019-03-29 2019-05-31 合肥华凌股份有限公司 储物盒及制冷设备
CN209840498U (zh) * 2019-04-03 2019-12-24 安徽康佳同创电器有限公司 一种自带解冻室的冰箱
CN110657629A (zh) * 2019-09-23 2020-01-07 广州美的华凌冰箱有限公司 冰箱及其控制方法、控制装置及计算机可读存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436575A (ja) * 1990-05-31 1992-02-06 Sanyo Electric Co Ltd 解凍室を有する貯蔵庫
JP2008035814A (ja) * 2006-08-09 2008-02-21 Hoshizaki Electric Co Ltd 食品保管庫
CN201569203U (zh) * 2009-12-25 2010-09-01 韩旭 蒸冷式调温除湿机组
CN102853595A (zh) * 2012-10-12 2013-01-02 天津商业大学 一种制冷系统
CN103175366A (zh) * 2013-03-29 2013-06-26 天津大学 基于双冷凝器的节能型精确控温冷库
CN105758044A (zh) * 2016-03-01 2016-07-13 珠海格力节能环保制冷技术研究中心有限公司 一种制冷系统
CN105605858B (zh) * 2016-03-16 2018-05-11 合肥华凌股份有限公司 冰箱及冰箱内恒温室的温度控制方法
US11085685B2 (en) * 2018-08-27 2021-08-10 Samsung Electronics Co., Ltd. Refrigerator and method of controlling same based on an estimation of a varying state
CN109945582A (zh) * 2019-03-01 2019-06-28 珠海格力电器股份有限公司 冰箱系统、冰箱及变温室的控制方法
CN110671889A (zh) * 2019-10-11 2020-01-10 合肥晶弘电器有限公司 冰箱内食物储藏控制方法、装置、设备及冰箱系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080054523A (ko) * 2006-12-13 2008-06-18 주식회사 대우일렉트로닉스 보온실이 구비된 냉장고
KR20120064144A (ko) * 2010-12-09 2012-06-19 김무중 냉온장고
CN105698463A (zh) * 2016-03-14 2016-06-22 合肥华凌股份有限公司 冰箱
CN106595181A (zh) * 2016-12-21 2017-04-26 合肥美的电冰箱有限公司 一种冰箱制冷系统、冰箱及解冻方法
CN107024059A (zh) * 2017-05-12 2017-08-08 海信(山东)冰箱有限公司 一种冰箱以及解冻控制方法
CN109827375A (zh) * 2019-03-29 2019-05-31 合肥华凌股份有限公司 储物盒及制冷设备
CN209840498U (zh) * 2019-04-03 2019-12-24 安徽康佳同创电器有限公司 一种自带解冻室的冰箱
CN110657629A (zh) * 2019-09-23 2020-01-07 广州美的华凌冰箱有限公司 冰箱及其控制方法、控制装置及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4092363A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4279841A1 (en) * 2022-05-20 2023-11-22 Whirlpool Corporation Refrigerator appliance with convertible compartment

Also Published As

Publication number Publication date
JP7505008B2 (ja) 2024-06-24
CN113390217B (zh) 2022-06-07
US20230119128A1 (en) 2023-04-20
CN113390217A (zh) 2021-09-14
JP2023511674A (ja) 2023-03-22
EP4092363A4 (en) 2023-06-07
EP4092363A1 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
CN108224840B (zh) 一种热泵空调系统和控制方法
CN109764607A (zh) 冰箱的控制方法
WO2018188269A1 (zh) 一种冷量回收式变容量空气源热泵系统
JP5178771B2 (ja) 冷凍冷蔵庫
CN111207534A (zh) 制冷系统、制冷设备以及制冷系统的控制方法
CN109737662A (zh) 一种紧凑型卧式无霜冷柜制冷系统及除霜控制方法
CN108131765B (zh) 一种整体式单双级热泵系统及其控制方法
CN207849814U (zh) 一种冷媒循环系统
WO2021179734A1 (zh) 制冷装置、冰箱及其控制方法、食材处理方法、控制装置
JP2010133590A (ja) 冷凍冷蔵庫
CN203203293U (zh) 空气源热泵制冷制热系统
CN107367125A (zh) 冰箱及冰箱控制方法
JP2023528838A (ja) 冷蔵庫の除霜制御方法
CN113040613A (zh) 饮水机的水路系统
JP2008075939A (ja) 冷蔵庫
CN210463717U (zh) 一种风循环冷暖储藏柜
JP2014112008A (ja) 冷蔵庫
WO2021244077A1 (zh) 冰箱的控制方法及冰箱
US20220235977A1 (en) Method for controlling refrigerator
WO2020143777A1 (zh) 一种化霜系统、冰箱
CN111947377A (zh) 多元化制冷设备及其控制方法和装置
CN219713716U (zh) 一种用于冰箱的制冷系统及冰箱
CN110425804A (zh) 一种风循环冷暖储藏柜及其控制方法
CN215348409U (zh) 饮水机的水路系统
CN115200115B (zh) 空调器及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544787

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020923781

Country of ref document: EP

Effective date: 20220815

NENP Non-entry into the national phase

Ref country code: DE