WO2021179725A1 - 上行信道传输方法、装置、基站、终端及存储介质 - Google Patents

上行信道传输方法、装置、基站、终端及存储介质 Download PDF

Info

Publication number
WO2021179725A1
WO2021179725A1 PCT/CN2020/136875 CN2020136875W WO2021179725A1 WO 2021179725 A1 WO2021179725 A1 WO 2021179725A1 CN 2020136875 W CN2020136875 W CN 2020136875W WO 2021179725 A1 WO2021179725 A1 WO 2021179725A1
Authority
WO
WIPO (PCT)
Prior art keywords
determined according
uplink
terminal
uplink channel
pucch
Prior art date
Application number
PCT/CN2020/136875
Other languages
English (en)
French (fr)
Inventor
陈润华
李辉
骆亚娟
高秋彬
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US17/909,749 priority Critical patent/US20230144956A1/en
Priority to EP20923812.0A priority patent/EP4120759A4/en
Publication of WO2021179725A1 publication Critical patent/WO2021179725A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to the field of communication technology, and in particular to an uplink channel transmission method, device, base station, terminal, and storage medium.
  • uplink channels include PUSCH (Physical Uplink Shared Channel) and PUCCH (Physical Uplink Control Channel).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the uplink channel usually undergoes beamforming and then transmits to enhance coverage.
  • determining the beam used for uplink channel transmission based on the beam of the reference signal is implemented in a single manner, which reduces the efficiency of uplink channel transmission.
  • the embodiments of the present application provide an uplink channel transmission method, device, base station, terminal, and storage medium.
  • the embodiment of the present application provides an uplink channel transmission method.
  • the uplink channel transmission method is applied to a terminal and includes:
  • the setting rule includes multiple sub-rules
  • the determining the first beam used for uplink channel transmission according to the uplink beam or downlink beam and setting rules includes:
  • Acquiring second indication information configured by the base station for the terminal, where the second indication information includes an identifier used to indicate that the sub-rule takes effect;
  • the first beam used for uplink channel transmission is determined from the uplink beam or the downlink beam.
  • the uplink channel includes a first physical uplink shared channel PUSCH
  • the first beam includes a second beam used for transmission of the first PUSCH.
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the second beam is determined according to the beam of the physical downlink control channel PDCCH for scheduling the first PUSCH;
  • the second beam is determined according to the beam of the first control resource set CORESET;
  • the second beam is determined according to the beam of the demodulation reference signal DMRS in the first physical downlink shared channel PDSCH;
  • the second beam is determined according to the beam of the reference signal in the first channel state information reference signal resource indication CRI report of the terminal; wherein, the first CRI report is used to characterize the last time the terminal has determined the second beam CRI report;
  • the second beam is determined according to the beam used by the first random access channel RACH; wherein, the first RACH is used to characterize the last RACH of the terminal before determining the second beam;
  • the second beam is determined according to a predefined second PUSCH beam
  • the second beam is determined according to the beam of the channel sounding reference signal SRS used to determine the PDSCH transmission beam;
  • the second beam is determined according to the beam used by the first physical uplink control channel PUCCH.
  • the first CORESET includes:
  • the first time slot is used to characterize the last time slot in which the search space exists before the terminal determines the second beam.
  • the first PDSCH includes:
  • the terminal determines the last PDSCH before the second beam.
  • the terminal determines the last PDSCH before the second beam, and the last PDSCH is within a time window; or
  • the terminal determines the last PDSCH before the second beam, and the last PDSCH is outside a time window.
  • the beam used by the first PUCCH channel includes:
  • the beam of the predefined PUCCH resource or
  • Dynamically scheduled PUCCH resource beam used to feed back acknowledged ACK or non-acknowledged NACK information is a Dynamically scheduled PUCCH resource beam used to feed back acknowledged ACK or non-acknowledged NACK information.
  • the predefined PUCCH resource includes:
  • a PUCCH resource whose resource index changes according to a specified rule.
  • the uplink channel includes a second PUCCH
  • the first beam includes a third beam used for transmission of the second PUCCH.
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the third beam is determined according to a downlink PDCCH channel indicator
  • the third beam is determined according to the beam of the PDCCH scheduling the second PUCCH;
  • the third beam is determined according to a predefined third PUSCH
  • the third beam is determined according to the beam used by the second RACH channel; wherein, the second RACH is used to characterize the last RACH of the terminal before determining the third beam;
  • the third beam is determined according to the beam of the second CORESET
  • the third beam is determined according to the beam used by the PDSCH associated with the PUCCH.
  • the third PUSCH includes:
  • the terminal determines the last PUSCH before the third beam.
  • the terminal determines the last PUSCH before the third beam, and the last PUSCH does not exceed one time window.
  • the second CORESET includes:
  • the second time slot is used to characterize the last time slot in which the search space exists before the terminal determines the third beam.
  • the embodiment of the present application provides an uplink channel transmission method.
  • the uplink channel transmission method is applied to a base station and includes:
  • the first beam is used to receive the uplink channel.
  • the setting rule includes multiple sub-rules
  • the determining the first beam used for uplink channel transmission according to the uplink beam or downlink beam and setting rules includes:
  • Acquiring second indication information configured by the base station for the terminal, where the second indication information includes an identifier used to indicate that the sub-rule takes effect;
  • the first beam used for uplink channel transmission is determined from the uplink beam or the downlink beam.
  • the uplink channel includes a first physical uplink shared channel PUSCH
  • the first beam includes a second beam used for transmission of the first PUSCH.
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the second beam is determined according to the beam of the physical downlink control channel PDCCH for scheduling the first PUSCH;
  • the second beam is determined according to the beam of the first control resource set CORESET;
  • the second beam is determined according to the beam of the demodulation reference signal DMRS in the first physical downlink shared channel PDSCH;
  • the second beam is determined according to the beam of the reference signal in the first channel state information reference signal resource indication CRI report of the terminal; wherein, the first CRI report is used to characterize the last time the terminal has determined the second beam CRI report;
  • the second beam is determined according to the beam used by the first random access channel RACH; wherein, the first RACH is used to characterize the last RACH of the terminal before determining the second beam;
  • the second beam is determined according to a predefined second PUSCH beam
  • the second beam is determined according to the beam of the channel sounding reference signal SRS used to determine the PDSCH transmission beam;
  • the second beam is determined according to the beam used by the first physical uplink control channel PUCCH.
  • the uplink channel includes a second PUCCH
  • the first beam includes a third beam used for transmission of the second PUCCH.
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the third beam is determined according to a downlink PDCCH channel indicator
  • the third beam is determined according to the beam of the PDCCH scheduling the second PUCCH;
  • the third beam is determined according to a predefined third PUSCH
  • the third beam is determined according to the beam used by the second RACH channel; wherein, the second RACH is used to characterize the last RACH of the terminal before determining the third beam;
  • the third beam is determined according to the beam of the second CORESET
  • the third beam is determined according to the beam used by the PDSCH associated with the PUCCH.
  • An embodiment of the present application provides an uplink channel transmission device, where the uplink channel transmission device is used for a terminal, and includes:
  • the first determining module is used to determine the uplink beam or the downlink beam
  • the second determining module is configured to determine the first beam used for uplink channel transmission according to the uplink beam or downlink beam, and the setting rule or the first indication information configured by the base station for the terminal;
  • the sending module is configured to use the first beam to send an uplink channel.
  • An embodiment of the application provides an uplink channel transmission device, where the uplink channel transmission device is used in a base station, and includes:
  • the third determining module is used to determine the uplink beam or the downlink beam
  • a fourth determining module configured to determine the first beam used for uplink channel transmission according to the uplink beam or downlink beam, and the setting rule or the first indication information configured by the base station for the terminal;
  • the receiving module is configured to use the first beam to receive an uplink channel.
  • An embodiment of the present application provides a terminal, including a memory, a processor, and a program stored on the memory and capable of running on the processor, and the processor implements the following steps when the processor executes the program:
  • the setting rule includes multiple sub-rules
  • the determining the first beam used for uplink channel transmission according to the uplink beam or downlink beam and setting rules includes:
  • Acquiring second indication information configured by the base station for the terminal, where the second indication information includes an identifier used to indicate that the sub-rule takes effect;
  • the first beam used for uplink channel transmission is determined from the uplink beam or the downlink beam.
  • the uplink channel includes a first physical uplink shared channel PUSCH
  • the first beam includes a second beam used for transmission of the first PUSCH.
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the second beam is determined according to the beam of the physical downlink control channel PDCCH for scheduling the first PUSCH;
  • the second beam is determined according to the beam of the first control resource set CORESET;
  • the second beam is determined according to the beam of the demodulation reference signal DMRS in the first physical downlink shared channel PDSCH;
  • the second beam is determined according to the beam of the reference signal in the first channel state information reference signal resource indication CRI report of the terminal; wherein, the first CRI report is used to characterize the last time the terminal has determined the second beam CRI report;
  • the second beam is determined according to the beam used by the first random access channel RACH; wherein, the first RACH is used to characterize the last RACH of the terminal before determining the second beam;
  • the second beam is determined according to a predefined second PUSCH beam
  • the second beam is determined according to the beam of the channel sounding reference signal SRS used to determine the PDSCH transmission beam;
  • the second beam is determined according to the beam used by the first physical uplink control channel PUCCH.
  • the first CORESET includes:
  • the first time slot is used to characterize the last time slot in which the search space exists before the terminal determines the second beam.
  • the first PDSCH includes:
  • the terminal determines the last PDSCH before the second beam.
  • the terminal determines the last PDSCH before the second beam, and the last PDSCH is within a time window; or
  • the terminal determines the last PDSCH before the second beam, and the last PDSCH is outside a time window.
  • the beam used by the first PUCCH channel includes:
  • the beam of the predefined PUCCH resource or
  • Dynamically scheduled PUCCH resource beam used to feed back acknowledged ACK or non-acknowledged NACK information is a Dynamically scheduled PUCCH resource beam used to feed back acknowledged ACK or non-acknowledged NACK information.
  • the predefined PUCCH resource includes:
  • a PUCCH resource whose resource index changes according to a specified rule.
  • the uplink channel includes a second PUCCH
  • the first beam includes a third beam used for transmission of the second PUCCH.
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the third beam is determined according to a downlink PDCCH channel indicator
  • the third beam is determined according to the beam of the PDCCH scheduling the second PUCCH;
  • the third beam is determined according to a predefined third PUSCH
  • the third beam is determined according to the beam used by the second RACH channel; wherein, the second RACH is used to characterize the last RACH of the terminal before determining the third beam;
  • the third beam is determined according to the beam of the second CORESET
  • the third beam is determined according to the beam used by the PDSCH associated with the PUCCH.
  • the third PUSCH includes:
  • the terminal determines the last PUSCH before the third beam.
  • the terminal determines the last PUSCH before the third beam, and the last PUSCH does not exceed one time window.
  • the second CORESET includes:
  • the second time slot is used to characterize the last time slot in which the search space exists before the terminal determines the third beam.
  • An embodiment of the present application provides a base station, including a memory, a processor, and a program stored in the memory and capable of running on the processor, and the processor implements the following steps when the processor executes the program:
  • the first beam is used to receive the uplink channel.
  • the setting rule includes multiple sub-rules
  • the determining the first beam used for uplink channel transmission according to the uplink beam or downlink beam and setting rules includes:
  • Acquiring second indication information configured by the base station for the terminal, where the second indication information includes an identifier used to indicate that the sub-rule takes effect;
  • the first beam used for uplink channel transmission is determined from the uplink beam or the downlink beam.
  • the uplink channel includes a first physical uplink shared channel PUSCH
  • the first beam includes a second beam used for transmission of the first PUSCH.
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the second beam is determined according to the beam of the physical downlink control channel PDCCH for scheduling the first PUSCH;
  • the second beam is determined according to the beam of the first control resource set CORESET;
  • the second beam is determined according to the beam of the demodulation reference signal DMRS in the first physical downlink shared channel PDSCH;
  • the second beam is determined according to the beam of the reference signal in the first channel state information reference signal resource indication CRI report of the terminal; wherein, the first CRI report is used to characterize the last time the terminal has determined the second beam CRI report;
  • the second beam is determined according to the beam used by the first random access channel RACH; wherein, the first RACH is used to characterize the last RACH of the terminal before determining the second beam;
  • the second beam is determined according to a predefined second PUSCH beam
  • the second beam is determined according to the beam of the channel sounding reference signal SRS used to determine the PDSCH transmission beam;
  • the second beam is determined according to the beam used by the first physical uplink control channel PUCCH.
  • the uplink channel includes a second PUCCH
  • the first beam includes a third beam used for transmission of the second PUCCH.
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the third beam is determined according to a downlink PDCCH channel indicator
  • the third beam is determined according to the beam of the PDCCH scheduling the second PUCCH;
  • the third beam is determined according to a predefined third PUSCH
  • the third beam is determined according to the beam used by the second RACH channel; wherein, the second RACH is used to characterize the last RACH of the terminal before determining the third beam;
  • the third beam is determined according to the beam of the second CORESET
  • the third beam is determined according to the beam used by the PDSCH associated with the PUCCH.
  • the embodiment of the present application provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the above-mentioned terminal-side uplink channel transmission method are realized.
  • the embodiment of the present application provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the uplink channel transmission method on the base station side are realized.
  • the embodiments of the application provide an uplink channel transmission method, device, base station, terminal, and storage medium.
  • the uplink beam or downlink beam is determined, the first indication information configured by the base station for the terminal can be combined with the uplink beam or the downlink beam.
  • the first beam used for uplink channel transmission is determined, and the first beam is used to transmit the uplink channel, thereby improving the flexible selection of beams used for uplink channel transmission and also improving the efficiency of uplink channel transmission.
  • FIG. 1 is a flowchart of an uplink channel transmission method provided by an embodiment of the application
  • FIG. 2 is a flowchart of an uplink channel transmission method provided by an embodiment of the application
  • FIG. 3 is a block diagram of a module of an uplink channel transmission device provided by an embodiment of the application.
  • FIG. 4 is a block diagram of a module of an uplink channel transmission device provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of another terminal provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a base station provided by an embodiment of the application.
  • the uplink channel includes PUSCH and PUCCH.
  • the uplink channel For high-frequency transmission, due to the limited transmission range, the uplink channel usually undergoes beamforming and then transmits to enhance coverage. In order to determine the direction of the shaped beam, it is necessary to perform uplink or downlink reference signal beam scanning, select a reference signal with good beam quality, and determine the beam for uplink channel transmission based on the beam of this reference signal.
  • the beam used for uplink channel transmission selected by the base station is semi-statically directly configured to the terminal through spatial relation information (SpatialRelationInfo);
  • the beam used for uplink channel transmission selected by the base station is SRS (Sounding Reference) referred to by SRI (Sounding Reference Signal Resource Indicator) in the dynamic signaling DCI (Downlink Control Information) Signal, channel sounding reference signal) is indirectly indicated by the spatial relation information (SpatialRelationInfo) of the resource.
  • SRS Sounding Reference
  • SRI Sounding Reference Signal Resource Indicator
  • DCI Downlink Control Information
  • SpatialRelationInfo spatial relation information
  • the beam for PUSCH transmission can be dynamically indicated, it can only be determined by the beam of the reference signal; while the beam for PUCCH transmission can only be configured semi-statically and cannot be dynamically changed, which limits the flexible selection of beams used for uplink channel transmission.
  • the embodiments of the present application provide an uplink channel transmission method, device, base station, terminal, and storage medium to improve the flexible selection of beams used for uplink channel transmission.
  • the uplink channel transmission method, device, base station, terminal, and storage medium provided in the embodiments of the present application can be applied to a wireless communication system or a wireless and wired system.
  • a wireless communication system Including but not limited to 5G systems (such as NR systems), 6G systems, satellite systems, car networking systems, Long Term Evolution (LTE) systems, and subsequent evolution communication systems of the aforementioned systems, etc.
  • 5G systems such as NR systems
  • 6G systems such as NR systems
  • satellite systems such as NR systems
  • car networking systems such as Long Term Evolution (LTE) systems
  • LTE Long Term Evolution
  • the base station provided in the embodiments of the present application may include, but is not limited to, one or more of the following: commonly used base stations, evolved node base stations (eNB), network side equipment in 5G systems (such as next-generation base stations) (next generation node base station, gNB), transmission and reception point (transmission and reception point, TRP)) and other equipment.
  • commonly used base stations evolved node base stations (eNB)
  • eNB evolved node base stations
  • 5G systems such as next-generation base stations
  • gNB next generation node base station
  • TRP transmission and reception point
  • the terminal provided in the embodiment of the present application may be called a user equipment or the like.
  • Terminals include, but are not limited to, handheld devices and vehicle-mounted devices.
  • it may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA), etc.
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • FIG. 1 is a flowchart of an uplink channel transmission method provided by an embodiment of the application.
  • the uplink channel transmission method may be used in a terminal. As shown in Figure 1, the uplink channel transmission method includes the following steps:
  • Step 110 Determine the uplink beam or the downlink beam.
  • the uplink beam can be obtained through uplink beam management and used for downlink data transmission.
  • the uplink beam may include but is not limited to one or more of the following:
  • the beam of the nearest RACH Random Access Channel
  • the beam used by the uplink PUCCH channel is the beam used by the uplink PUCCH channel.
  • the most recent RACH may refer to the last RACH before the terminal determines the first beam used for uplink channel transmission.
  • the downlink beam can be obtained through downlink beam management and used for downlink transmission.
  • the downlink beam may include but is not limited to one or more of the following:
  • Downlink PDCCH Physical Downlink Control Channel, physical downlink control channel
  • Downlink CORESET (Control-resource set) beam
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • PDSCH Physical Downlink Shared Channel
  • the beam of the reference signal in the last CRI (Channel State Information-Reference Signal resource indicator) reported by the terminal;
  • the beam used by the downlink PDSCH channel is the beam used by the downlink PDSCH channel.
  • the most recent CRI report may refer to the last CRI report before the terminal determines the first beam used for uplink channel transmission.
  • Step 120 Determine the first beam used for uplink channel transmission according to the uplink beam or the downlink beam, the setting rule or the first indication information configured by the base station for the terminal.
  • the terminal may determine the first beam used for uplink channel transmission from the uplink beam or the downlink beam according to the set rule, or it may determine the first beam used for beam management configured by the base station for the terminal from the uplink beam or the downlink beam. Determine the first beam used for uplink channel transmission.
  • the setting rule may be a rule defined in advance by the system.
  • the first indication information may be indicated to the terminal by the base station through a dynamic instruction.
  • the uplink channel may include at least one of PUSCH and PUCCH.
  • Step 130 Use the first beam to send the uplink channel.
  • the first indication information configured by the base station for the terminal can be combined to determine the first beam used for uplink channel transmission from the uplink beam or the downlink beam, and use The first beam transmits the uplink channel, thereby improving the flexible selection of beams used for uplink channel transmission and also improving the efficiency of uplink channel transmission.
  • the setting rule in the foregoing step 120 includes a plurality of sub-rules; the second indication information configured by the base station for the terminal includes an identifier for indicating that the sub-rule is effective.
  • the second indication information configured by the base station for the terminal may be obtained first, and the second indication The information includes an identifier for indicating that the sub-rule is effective; and then according to the setting rule and the second indication information, the first beam used for uplink channel transmission is determined from the uplink beam or the downlink beam.
  • the base station may indicate the effective sub-rules in the set rules through high-layer signaling or physical layer signaling.
  • the terminal determines the effective sub-rule in the setting rule according to the second indication information, and determines the first beam used for uplink channel transmission according to the effective sub-rule.
  • the first beam used for uplink channel transmission can be determined from the uplink beam or downlink beam in combination with the setting rules and the second indication information configured by the base station for the terminal, and use The first beam transmits the uplink channel, thereby enriching the selection methods for determining the first beam, and improving the reliability of uplink channel transmission.
  • the uplink channel in the foregoing step 120 may include the first PUSCH, and the first beam used for uplink channel transmission includes the second beam used for transmission of the first PUSCH.
  • the second beam used for the first PUSCH transmission can be determined from the uplink beam or the downlink beam according to the set rule; or
  • the second beam used for transmission of the first PUSCH may be determined from the uplink beam or the downlink beam according to the first indication information for beam management configured by the base station for the terminal; or
  • the second beam used for the first PUSCH transmission can be determined from the uplink beam or the downlink beam according to the setting rule and the second indication information; wherein, the setting rule includes multiple sub-rules, and the second indication information configured by the base station for the terminal It includes an identifier used to indicate that the sub-rule takes effect.
  • the second beam used for the first PUSCH transmission can be determined from the uplink beam or the downlink beam in combination with the setting rules or the first indication information configured by the base station for the terminal, and The second beam is used to transmit the first PUSCH, thereby improving the flexible selection of beams used for PUSCH transmission and also improving the efficiency of uplink channel transmission.
  • the setting rule or the first indication information corresponding to the second beam used for transmission of the first PUSCH includes the following (1-1) to (1-8) One or more sub-rules of:
  • the second beam is determined according to the beam scheduling the PDCCH of the first PUSCH.
  • the terminal may determine the second beam used for transmission of the first PUSCH according to the beam of the PDCCH scheduling the first PUSCH.
  • the beam direction of the downlink PDCCH channel is determined by the beam used by the reference signal indicated by the TCI (Transmission Configuration Indication) status. Assuming that the TCI state indicates CSI-RSI (Channel State Information-Reference Signal, channel state information reference signal) resource 1, it indicates that the beam direction of the downlink PDCCH channel is the same as the beam direction of the CSI-RS resource 1. According to the sub-rule shown in (1-1), the terminal can determine the beam receiving CSI-RS resource 1 as the second beam used for the first PUSCH transmission.
  • TCI Transmission Configuration Indication
  • the second beam is determined according to the beam of the first CORESET.
  • the terminal may determine the second beam used for transmission of the first PUSCH according to the beam of the first CORESET used for the first PUSCH.
  • the first CORESET in (1-2) above may include:
  • the CORESET with the smallest ID (Identity document, identification number) in the first time slot where the search space exists; wherein, the first time slot is used to characterize the last time slot in which the search space exists before the terminal determines the second beam .
  • the first CORESET may be the CORESET with the smallest ID.
  • the terminal determines to receive the receive beam of the CORESET with the smallest ID, and uses this receive beam as the transmit beam of the first PUSCH.
  • the second beam is determined according to the beam of the DMRS in the first PDSCH.
  • the terminal may determine the second beam used for transmission of the first PUSCH according to the beam of the DMRS in the first PDSCH.
  • the first PDSCH in (1-3) above may include: the last PDSCH before the terminal determines the second beam; or
  • the terminal determines the last PDSCH before the second beam, and the last PDSCH is within a time window; or
  • the terminal determines the last PDSCH before the second beam, and the last PDSCH is outside a time window.
  • the base station uses MAC-CE (Media Access Control-Control Element, Media Access Control-Control Element) signaling to instruct the terminal to use the sub-rules shown in (1-3) above to determine the first PUSCH transmission used The second beam.
  • the terminal obtains the DMRS reference signal in the latest PDSCH transmission (wherein, the latest PDSCH refers to the last PDSCH before the terminal determines the second beam).
  • the beam used by the DMRS reference signal is determined by the reference signal indicated by QCL (QuasiCo-Location) information. If the QCL information indicates SSB1 (Synchronization Signal Block), that is, the DMRS is transmitted using the transmission beam of SSB1.
  • the terminal determines the receiving beam for receiving SSB1 as the second beam used for transmission of the first PUSCH.
  • the second beam is determined according to the beam of the reference signal reported by the terminal in the first CRI (Channel State Information-Reference Signal resource indicator, channel state information reference signal resource indicator); wherein, the first CRI The report is used to characterize the last CRI report of the terminal before determining the second beam.
  • first CRI Channel State Information-Reference Signal resource indicator, channel state information reference signal resource indicator
  • the terminal may determine the second beam used for transmission of the first PUSCH according to the beam of the reference signal reported by the terminal in the first CRI.
  • the pre-defined setting rule of the system includes that the second beam is determined according to the beam of the reference signal in the latest CRI report of the terminal (wherein, the latest CRI report refers to the terminal before determining the second beam). The most recent CRI report).
  • the terminal reports CSI at time n, and the content of the report includes CRI and L1-RSRP (Layer-1 Reference Signal Received Power). If the terminal reports multiple sets of CRI and L1-RSRP, it may be further agreed in the above rules that the CRI with the largest L1-RSRP is used to indicate the beam determination of the CSI-RS resource.
  • the base station side schedules the terminal to perform PUSCH transmission at time n+K, and there is no CRI report between time n and time n+K.
  • the terminal determines the CSI-RS resource corresponding to the CRI reported at time n, determines the receiving beam receiving this CSI-RS resource as the second beam used at time n+K, and uses the second beam to send Corresponding PUSCH.
  • the second beam is determined according to the beam used by the first RACH; wherein, the first RACH is used to characterize the last RACH of the terminal before determining the second beam;
  • the terminal may determine the second beam used for transmission of the first PUSCH according to the beam determination used by the first RACH.
  • the base station uses MAC-CE signaling to instruct the terminal to use the sub-rule shown in (1-5) above to determine the second beam used for the first PUSCH transmission.
  • the terminal Based on the MAC CE signaling indication, the terminal obtains the most recent RACH transmission beam (wherein, the most recent RACH refers to the last RACH before the terminal determines the second beam), and determines the most recent RACH transmission beam The second beam used for the first PUSCH transmission.
  • the second beam is determined according to a predefined second PUSCH beam.
  • the terminal may determine the second beam used for transmission of the first PUSCH according to the predefined second PUSCH beam.
  • the predefined second PUSCH may be the last PUSCH before the terminal determines the second beam.
  • the base station uses MAC-CE signaling to instruct the terminal to use the sub-rule shown in (1-6) above to determine the second beam used for the first PUSCH transmission.
  • the terminal Based on the MAC CE signaling indication, the terminal obtains the beam of the most recent PUSCH (wherein, the most recent PUSCH refers to the last PUSCH before the terminal determines the second beam), and determines the beam of the most recent PUSCH as the first A second beam used for PUSCH transmission.
  • the second beam is determined according to the beam of the SRS used to determine the PDSCH transmission beam.
  • the terminal may determine the second beam used for the first PUSCH transmission according to the beam of the SRS used to determine the PDSCH transmission beam.
  • the setting rule predefined by the system includes that the second beam is determined according to the beam of the SRS used to determine the transmission beam of the downlink PDSCH channel.
  • the base station selects the beam of SRS resource 1 to determine the beam of PDSCH according to the uplink SRS beam scanning.
  • the PDSCH beam can be indicated by DCI, and the indication field is SRS resource 1.
  • the terminal determines the transmission beam of the SRS resource 1 according to the DCI indication. According to the sub-rule shown in (1-7) above, the transmission beam of SRS resource 1 is determined as the second beam used for transmission of the first PUSCH.
  • the base station configures the spatial relationship information (SpatialRelationInfo) of SRS resource 1 as CORESET1 through RRC (Radio Resource Control). This configuration indicates that the terminal uses the receiving beam of CORESET1 to transmit SRS resource 1. Similarly, the base station configures the spatial relationship information (SpatialRelationInfo) of the SRS resource 2 as CORESET2, and the spatial relationship information (SpatialRelationInfo) of the SRS resource 3 as CORESET3.
  • the SRI field in the DCI signaling transmitted by the base station indicates SRS resource 1, indicating that the same beam is used to transmit PUSCH as SRS resource 1.
  • the SRI field of the DCI signaling transmitted by the base station indicates SRS resource 3, so that the terminal will use the same beam as SRS resource 3, that is, determine the receiving beam of CORESET3 as the second beam at time n+K and use
  • the second beam sends the corresponding PUSCH, so that the uplink beam can be changed through different indication information of the DCI.
  • the spatial relationship information may also be a downlink DMRS signal, a downlink PDSCH channel, an uplink PUCCH channel, and so on.
  • the second beam is determined according to the beam used by the first PUCCH channel.
  • the terminal may determine the second beam used for transmission of the first PUSCH according to the beam used by the first PUCCH channel.
  • the beam used by the first PUCCH channel in (1-8) above may include:
  • the beam of the predefined PUCCH resource or
  • Dynamically scheduled PUCCH resource beam used to feed back acknowledged ACK or non-acknowledged NACK information is a Dynamically scheduled PUCCH resource beam used to feed back acknowledged ACK or non-acknowledged NACK information.
  • the aforementioned predefined PUCCH resources include: fixed PUCCH resources; or PUCCH resources whose resource index changes according to a specified rule.
  • the setting rule predefined by the system includes the determination of the second beam according to the PUCCH beam with the lowest index.
  • the beam of the PUCCH with the lowest index is configured by spatial relation information (SpatialRelationInfo) of the RRC signaling, assuming that it is configured as SRS resource 1.
  • the terminal determines the transmission beam of the SRS resource 1 as the second beam used for transmission of the first PUSCH.
  • one or more sub-rules corresponding to the second beam used for the first PUSCH transmission can be combined to determine the use of the first PUSCH transmission from the uplink beam or downlink beam. And use the second beam to transmit the first PUSCH, thereby improving the accuracy and flexibility of determining the second beam.
  • the uplink channel in the foregoing step 120 may include the second PUCCH, and the first beam used for uplink channel transmission includes the third beam used for transmission of the second PUCCH.
  • the third beam used for the second PUCCH transmission can be determined from the uplink beam or the downlink beam according to the set rule; or
  • the third beam used for the second PUCCH transmission can be determined from the uplink beam or the downlink beam according to the first indication information for beam management configured by the base station for the terminal; or
  • the third beam used for the second PUCCH transmission can be determined from the uplink beam or the downlink beam according to the setting rule and the second indication information; wherein, the setting rule includes multiple sub-rules, and the second indication information configured by the base station for the terminal It includes an identifier used to indicate that the sub-rule takes effect.
  • the third beam used for second PUCCH transmission can be determined from the uplink beam or the downlink beam in combination with the setting rules or the first indication information configured by the base station for the terminal, and The third beam is used to transmit the second PUCCH, thereby improving the flexible selection of beams used for PUCCH transmission and also improving the efficiency of uplink channel transmission.
  • the setting rule or the first indication information corresponding to the third beam used for second PUCCH transmission includes the following (1-9) to (1-14) One or more sub-rules of:
  • the third beam is determined according to the downlink PDCCH channel indicator.
  • the terminal may determine the third beam used for transmission of the second PUCCH according to the downlink PDCCH channel indicator.
  • the base station indicates the transmission beam of the PUCCH through DCI signaling.
  • the indication information may be the ID of the reference signal, for example, indicating SRS resource 1.
  • the terminal determines that the transmission beam of the second PUCCH is the same as the beam of SRS resource 1, and sends the second PUCCH.
  • the base station side receives the second PUCCH by using the receiving beam for receiving SRS resource 1 according to the DCI signaling indication.
  • the receiving beam can be obtained by an uplink beam management process.
  • the DCI signaling indicates CSI-RS resource 1.
  • the terminal determines that the transmission beam of the second PUCCH is the same as the reception beam of the terminal receiving CSI-RS resource 1, and uses this beam to transmit the second PUCCH.
  • the base station side uses the transmission beam for transmitting the CSI-RS resource 1 to receive the second PUCCH.
  • DCI is downlink control signaling, and this signaling is transmitted through the downlink PDCCH channel in (1-9) above.
  • the third beam is determined according to the beam of the PDCCH scheduling the second PUCCH.
  • the terminal may determine the third beam used for transmission of the second PUCCH according to the beam of the PDCCH of the second PUCCH.
  • the setting rule predefined by the system includes the determination of the third beam according to the beam of the PDCCH scheduling the second PUCCH.
  • the beam of the PDCCH channel is determined by the beam of the reference signal indicated by the TCI status. If the TCI status indicates downlink CSI-RS resource 1, the beam of the PDCCH channel is transmitted using the beam of CSI-RS resource 1:
  • the base station schedules the terminal to feed back HARQ-ACK (Hybrid Automatic Repeat Quest) information through the PUCCH channel through the PDCCH channel.
  • HARQ-ACK Hybrid Automatic Repeat Quest
  • the terminal determines the receiving beam for receiving the PDCCH channel according to the above setting rule, and the beam is the same as the sending beam of the CSI-RS resource 1 indicated by the TCI status. Further, the receiving beam for receiving the PDCCH signal is determined to be the third beam used for transmission of the second PUCCH.
  • the base station side determines that the third beam used for second PUCCH transmission is the same as the receiving beam of the PDCCH channel according to the above setting rules, and determines the third beam used for second PUCCH transmission according to the TCI status information of the PDCCH.
  • the third beam is the same as the downlink transmission beam of the CSI-RS resource 1 indicated by the TCI status.
  • a fixed CORESET beam can be used. Or use the beam of the CORESET with the smallest ID to determine the third beam used for the second PUCCH transmission.
  • the third beam is determined according to a predefined third PUSCH.
  • the terminal may determine the third beam used for transmission of the second PUCCH according to the predefined third PUSCH.
  • the third PUSCH in (1-11) above may include:
  • the terminal determines the last PUSCH before the third beam.
  • the terminal determines the last PUSCH before the third beam, and the last PUSCH does not exceed one time window.
  • the third beam is determined according to the beam used by the second RACH channel; wherein, the second RACH is used to characterize the last RACH of the terminal before determining the third beam.
  • the terminal may determine the third beam used for second PUCCH transmission according to the beam used by the second RACH channel.
  • the third beam is determined according to the beam used for the second CORESET of PUCCH.
  • the terminal may determine the third beam used for the second PUCCH transmission according to the beam used for the second CORESET of the PUCCH.
  • the second CORESET in (1-13) above may include:
  • the second time slot is used to characterize the last time slot in which the search space exists before the terminal determines the third beam.
  • the setting rule includes the above three sub-rules (1-11), (1-12) and (1-13), specifically: the third beam used for the second PUCCH transmission is based on the nearest PUSCH (That is, the terminal determines the last PUSCH before the third beam is determined); or determines it according to the beam used by the nearest RACH (that is, the last RACH before the terminal determines the third beam), or uses the existing search space
  • the beam of the CORESET with the smallest ID in the nearest time slot that is, the last time slot in which the terminal has a search space before determining the third beam
  • the base station indicates the sub-rule adopted by the current system through high-level signaling or physical layer signaling. For example, if the MAC-CE is used to indicate that the beam is determined according to the latest PUSCH, the second PUCCH is transmitted using the same beam as the PUSCH beam.
  • the PUSCH beam is indicated by the SRI in the DCI signaling. What is indicated is an SRS resource, which means that the PUSCH uses the same beam as the indicated SRS resource.
  • the terminal is used to transmit the second PUCCH according to the most recent RACH transmission beam.
  • the terminal determines the PUCCH latest time slot containing the search space, and determines to receive the smallest ID in the search space
  • the receiving beam of CORESET is used to transmit the second PUCCH according to the configured sub-rules.
  • the third beam is determined according to the beam used by the PDSCH associated with the PUCCH.
  • the terminal may determine the third beam used for second PUCCH transmission according to the beam used by the PDSCH associated with the PUCCH.
  • the setting rule includes that the third beam is determined according to the beam used by the PDSCH associated with the PUCCH.
  • the association indicates that the PUCCH channel is used to transmit the ACK-NACK (acknowledgement-non-acknowledgement) information of the PDSCH channel.
  • the terminal determines the PDSCH channel for which ACK-NACK information is to be fed back, and the beam used by the PDSCH channel is indicated by the TCI state, for example, the TCI state indicates CSI-RS resource 0. In this way, the PDSCH channel uses the CSI-RS resource 0 beam for transmission.
  • the terminal determines the receiving beam of the CSI-RS resource 0 according to the above setting rule, and determines the receiving beam as the third beam used for second PUCCH transmission.
  • one or more sub-rules corresponding to the third beam used for second PUCCH transmission can be combined to determine the second PUCCH transmission use from the uplink beam or downlink beam. And use the third beam to transmit the second PUCCH, thereby improving the accuracy and flexibility of determining the third beam.
  • Fig. 2 is a flowchart of an uplink channel transmission method provided by an embodiment of the application.
  • the uplink channel transmission method may be used in a base station. As shown in Figure 2, the uplink channel transmission method includes the following steps:
  • Step 210 Determine the uplink beam or the downlink beam.
  • the uplink beam can be obtained through uplink beam management and used for downlink data transmission.
  • the uplink beam may include but is not limited to one or more of the following:
  • the beam of the nearest RACH is the beam of the nearest RACH
  • the beam used by the uplink PUCCH channel is the beam used by the uplink PUCCH channel.
  • the most recent RACH may refer to the last RACH before the terminal determines the first beam used for uplink channel transmission.
  • the downlink beam can be obtained through downlink beam management and used for downlink transmission.
  • the downlink beam may include but is not limited to one or more of the following:
  • the beam of the downlink PDCCH is the beam of the downlink PDCCH
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the beam used by the downlink PDSCH channel is the beam used by the downlink PDSCH channel.
  • the most recent CRI report may refer to the last CRI report before the terminal determines the first beam used for uplink channel transmission.
  • Step 220 Determine the first beam used for uplink channel transmission according to the setting rule for beam management or the first indication information for beam management configured by the base station for the terminal.
  • the base station may determine the first beam used for uplink channel transmission from the uplink beam or the downlink beam according to the set rule, or may determine the first beam used for beam management configured by the base station for the terminal from the uplink beam or the downlink beam. Determine the first beam used for uplink channel transmission.
  • the setting rule may be a rule defined in advance by the system.
  • the first indication information may be indicated to the terminal by the base station through a dynamic instruction.
  • the uplink channel may include at least one of PUSCH and PUCCH.
  • Step 230 Use the first beam to receive the uplink channel.
  • the first indication information configured by the base station for the terminal can be combined to determine the first beam used for uplink channel transmission from the uplink beam or the downlink beam, and use The first beam receives the uplink channel, thereby improving the flexible selection of beams used for uplink channel transmission and also improving the efficiency of uplink channel transmission.
  • the setting rule in the foregoing step 220 includes multiple sub-rules; the second indication information configured by the base station for the terminal includes an identifier for indicating that the sub-rules are effective.
  • the second indication information configured by the base station for the terminal may be obtained first, and the second indication The information includes an identifier for indicating that the sub-rule is effective; and then according to the setting rule and the second indication information, the first beam used for uplink channel transmission is determined from the uplink beam or the downlink beam.
  • the base station determines the effective sub-rule in the setting rule according to the second indication information, and determines the first beam used for uplink channel transmission according to the effective sub-rule.
  • the first beam used for uplink channel transmission can be determined from the uplink beam or downlink beam in combination with the setting rules and the second indication information configured by the base station for the terminal, and use The first beam receives the uplink channel, thereby enriching the selection methods for determining the first beam, and improving the reliability of uplink channel transmission.
  • the uplink channel in the foregoing step 220 may include the first PUSCH, and the first beam used for uplink channel transmission includes the second beam used for transmission of the first PUSCH.
  • step 220 when performing step 220:
  • the second beam used for the first PUSCH transmission can be determined from the uplink beam or the downlink beam according to the set rule; or
  • the second beam used for transmission of the first PUSCH may be determined from the uplink beam or the downlink beam according to the first indication information for beam management configured by the base station for the terminal; or
  • the second beam used for the first PUSCH transmission can be determined from the uplink beam or the downlink beam according to the setting rule and the second indication information; wherein, the setting rule includes multiple sub-rules, and the second indication information configured by the base station for the terminal It includes an identifier used to indicate that the sub-rule takes effect.
  • the second beam used for the first PUSCH transmission can be determined from the uplink beam or the downlink beam in combination with the setting rules or the first indication information configured by the base station for the terminal, and The second beam is used to receive the first PUSCH, thereby improving the flexible selection of beams used for PUSCH transmission and also improving the efficiency of uplink channel transmission.
  • the setting rule or the first indication information corresponding to the second beam used for the first PUSCH transmission includes one or more of the following sub-rules:
  • the second beam is determined according to the beam of the physical downlink control channel PDCCH for scheduling the first PUSCH;
  • the second beam is determined according to the beam of the first control resource set CORESET used for the first PUSCH;
  • the second beam is determined according to the beam of the demodulation reference signal DMRS in the first physical downlink shared channel PDSCH;
  • the second beam is determined according to the beam of the reference signal in the first channel state information reference signal resource indication CRI report of the terminal; wherein, the first CRI report is used to characterize the last time the terminal has determined the second beam CRI report;
  • the second beam is determined according to the beam used by the first random access channel RACH; wherein, the first RACH is used to characterize the last RACH of the terminal before determining the second beam;
  • the second beam is determined according to a predefined second PUSCH beam
  • the second beam is determined according to the beam of the channel sounding reference signal SRS used to determine the PDSCH transmission beam;
  • the second beam is determined according to the beam used by the first physical uplink control channel PUCCH.
  • one or more sub-rules corresponding to the second beam used for the first PUSCH transmission can be combined to determine the use of the first PUSCH transmission from the uplink beam or downlink beam. And use the second beam to receive the first PUSCH, thereby improving the accuracy and flexibility of determining the second beam.
  • the uplink channel in the foregoing step 220 may include the second PUCCH, and the first beam used for uplink channel transmission includes the third beam used for transmission of the second PUCCH.
  • step 220 when performing step 220:
  • the third beam used for the second PUCCH transmission can be determined from the uplink beam or the downlink beam according to the set rule; or
  • the third beam used for the second PUCCH transmission can be determined from the uplink beam or the downlink beam according to the first indication information for beam management configured by the base station for the terminal; or
  • the third beam used for the second PUCCH transmission can be determined from the uplink beam or the downlink beam according to the setting rule and the second indication information; wherein, the setting rule includes multiple sub-rules, and the second indication information configured by the base station for the terminal It includes an identifier used to indicate that the sub-rule takes effect.
  • the third beam used for second PUCCH transmission can be determined from the uplink beam or the downlink beam in combination with the setting rules or the first indication information configured by the base station for the terminal, and The third beam is used to receive the second PUCCH, thereby improving the flexible selection of beams used for PUCCH transmission and also improving the efficiency of uplink channel transmission.
  • the setting rule or the first indication information corresponding to the third beam used for second PUCCH transmission includes one or more of the following sub-rules:
  • the third beam is determined according to a downlink PDCCH channel indicator
  • the third beam is determined according to the beam of the PDCCH scheduling the second PUCCH;
  • the third beam is determined according to a predefined third PUSCH
  • the third beam is determined according to the beam used by the second RACH channel; wherein, the second RACH is used to characterize the last RACH of the terminal before determining the third beam;
  • the third beam is determined according to the beam used for the second CORESET of PUCCH;
  • the third beam is determined according to the beam used by the PDSCH associated with the PUCCH.
  • one or more sub-rules corresponding to the third beam used for second PUCCH transmission can be combined to determine the second PUCCH transmission use from the uplink beam or downlink beam. And use the third beam to receive the second PUCCH, thereby improving the accuracy and flexibility of determining the third beam.
  • FIG. 3 is a block diagram of a module of an uplink channel transmission device provided by an embodiment of the application.
  • the uplink channel transmission device may be used in a terminal; as shown in FIG. 3, the uplink channel transmission device may include:
  • the first determining module 31 is configured to determine an uplink beam or a downlink beam
  • the second determining module 32 is configured to determine the first beam used for uplink channel transmission according to the uplink beam or downlink beam, and the setting rule or the first indication information configured by the base station for the terminal;
  • the sending module 33 is configured to use the first beam to send an uplink channel.
  • the setting rule includes a plurality of sub-rules; the second determining module 32 determines the uplink channel transmission using the uplink beam or the downlink beam and the setting rule.
  • the first beam it can include:
  • the first obtaining submodule is configured to obtain second indication information configured by the base station for the terminal, and the second indication information includes an identifier used to indicate that the sub-rule takes effect;
  • the first determining submodule is configured to determine the first beam used for uplink channel transmission from the uplink beam or the downlink beam according to the setting rule and the second indication information.
  • the uplink channel includes a first physical uplink shared channel PUSCH
  • the first beam includes a second beam used for transmission of the first PUSCH.
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the second beam is determined according to the beam of the physical downlink control channel PDCCH for scheduling the first PUSCH;
  • the second beam is determined according to the beam of the first control resource set CORESET;
  • the second beam is determined according to the beam of the demodulation reference signal DMRS in the first physical downlink shared channel PDSCH;
  • the second beam is determined according to the beam of the reference signal in the first channel state information reference signal resource indication CRI report of the terminal; wherein, the first CRI report is used to characterize the last time the terminal has determined the second beam CRI report;
  • the second beam is determined according to the beam used by the first random access channel RACH; wherein, the first RACH is used to characterize the last RACH of the terminal before determining the second beam;
  • the second beam is determined according to a predefined second PUSCH beam
  • the second beam is determined according to the beam of the channel sounding reference signal SRS used to determine the PDSCH transmission beam;
  • the second beam is determined according to the beam used by the first physical uplink control channel PUCCH.
  • the first CORESET includes:
  • the first time slot is used to characterize the last time slot in which the search space exists before the terminal determines the second beam.
  • the first PDSCH includes:
  • the terminal determines the last PDSCH before the second beam.
  • the terminal determines the last PDSCH before the second beam, and the last PDSCH is within a time window; or
  • the terminal determines the last PDSCH before the second beam, and the last PDSCH is outside a time window.
  • the beam used by the first PUCCH channel includes:
  • the beam of the predefined PUCCH resource or
  • Dynamically scheduled PUCCH resource beam used to feed back acknowledged ACK or non-acknowledged NACK information is a Dynamically scheduled PUCCH resource beam used to feed back acknowledged ACK or non-acknowledged NACK information.
  • the predefined PUCCH resource includes:
  • a PUCCH resource whose resource index changes according to a specified rule.
  • the uplink channel includes a second PUCCH
  • the first beam includes a third beam used for transmission of the second PUCCH.
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the third beam is determined according to a downlink PDCCH channel indicator
  • the third beam is determined according to the beam of the PDCCH scheduling the second PUCCH;
  • the third beam is determined according to a predefined third PUSCH
  • the third beam is determined according to the beam used by the second RACH channel; wherein, the second RACH is used to characterize the last RACH of the terminal before determining the third beam;
  • the third beam is determined according to the beam of the second CORESET
  • the third beam is determined according to the beam used by the PDSCH associated with the PUCCH.
  • the third PUSCH includes:
  • the terminal determines the last PUSCH before the third beam.
  • the terminal determines the last PUSCH before the third beam, and the last PUSCH does not exceed one time window.
  • the second CORESET includes:
  • the second time slot is used to characterize the last time slot in which the search space exists before the terminal determines the third beam.
  • the device provided in this embodiment can implement all the method steps that can be implemented in the above method embodiments, and can achieve the same beneficial effects. The same content and beneficial effects will be repeated.
  • Fig. 4 is a block diagram of an uplink channel transmission device provided by an embodiment of the application.
  • the uplink channel transmission device may be used in a base station; as shown in Fig. 4, the uplink channel transmission device may include:
  • the third determining module 41 is configured to determine an uplink beam or a downlink beam
  • the fourth determining module 42 is configured to determine the first beam used for uplink channel transmission according to the uplink beam or downlink beam, and the setting rule or the first indication information configured by the base station for the terminal;
  • the receiving module 43 is configured to use the first beam to receive an uplink channel.
  • the setting rule includes a plurality of sub-rules; the fourth determining module 42 determines the uplink channel transmission using the uplink beam or the downlink beam and the setting rule.
  • the first beam it can include:
  • the second obtaining submodule is configured to obtain second indication information configured by the base station for the terminal, and the second indication information includes an identifier used to indicate that the sub-rule takes effect;
  • the second determining submodule is configured to determine the first beam used for uplink channel transmission from the uplink beam or the downlink beam according to the setting rule and the second indication information.
  • the uplink channel includes a first physical uplink shared channel PUSCH
  • the first beam includes a second beam used for transmission of the first PUSCH.
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the second beam is determined according to the beam of the physical downlink control channel PDCCH for scheduling the first PUSCH;
  • the second beam is determined according to the beam of the first control resource set CORESET;
  • the second beam is determined according to the beam of the demodulation reference signal DMRS in the first physical downlink shared channel PDSCH;
  • the second beam is determined according to the beam of the reference signal in the first channel state information reference signal resource indication CRI report of the terminal; wherein, the first CRI report is used to characterize the last time the terminal has determined the second beam CRI report;
  • the second beam is determined according to the beam used by the first random access channel RACH; wherein, the first RACH is used to characterize the last RACH of the terminal before determining the second beam;
  • the second beam is determined according to a predefined second PUSCH beam
  • the second beam is determined according to the beam of the channel sounding reference signal SRS used to determine the PDSCH transmission beam;
  • the second beam is determined according to the beam used by the first physical uplink control channel PUCCH.
  • the uplink channel includes a second PUCCH
  • the first beam includes a third beam used for transmission of the second PUCCH.
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the third beam is determined according to a downlink PDCCH channel indicator
  • the third beam is determined according to the beam of the PDCCH scheduling the second PUCCH;
  • the third beam is determined according to a predefined third PUSCH
  • the third beam is determined according to the beam used by the second RACH channel; wherein, the second RACH is used to characterize the last RACH of the terminal before determining the third beam;
  • the third beam is determined according to the beam of the second CORESET
  • the third beam is determined according to the beam used by the PDSCH associated with the PUCCH.
  • the device provided in this embodiment can implement all the method steps that can be implemented in the above method embodiments, and can achieve the same beneficial effects. The same content and beneficial effects will be repeated.
  • FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of the application.
  • the terminal 500 may include: at least one processor 501, a memory 502, at least one network interface 504, and other user interfaces 503.
  • the various components in the terminal 500 are coupled together through the bus system 505.
  • the bus system 505 is used to implement connection and communication between these components.
  • the bus system 505 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 505 in FIG. 5.
  • the user interface 503 may include a display, a keyboard, or a pointing device, such as a mouse, a trackball (trackball), a touch panel, or a touch screen.
  • a pointing device such as a mouse, a trackball (trackball), a touch panel, or a touch screen.
  • the memory 502 in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • SLDRAM Direct Rambus RAM
  • the memory 502 of the system and method described in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 502 stores the following elements, executable modules or data structures, or their subsets, or their extended sets, such as the operating system 5021 and application programs 5022.
  • the operating system 5021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 5022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • the program for implementing the method of the embodiment of the present application may be included in the application program 5022.
  • the processor 501 by calling a computer program or instruction stored in the memory 502, specifically, a computer program or instruction stored in the application program 5022, the processor 501 is used to:
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 501 or implemented by the processor 501.
  • the processor 501 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 501 or instructions in the form of software.
  • the aforementioned processor 501 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502, and completes the steps of the foregoing method in combination with its hardware.
  • the embodiments described in this application can be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the described technology can be implemented by modules (for example, procedures, functions, etc.) that execute the functions described in the embodiments of the present application.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the processor 501 is further configured to:
  • the setting rule includes multiple sub-rules
  • the determining the first beam used for uplink channel transmission according to the uplink beam or downlink beam and setting rules includes:
  • Acquiring second indication information configured by the base station for the terminal, where the second indication information includes an identifier used to indicate that the sub-rule takes effect;
  • the first beam used for uplink channel transmission is determined from the uplink beam or the downlink beam.
  • the processor 501 is further configured to:
  • the uplink channel includes a first physical uplink shared channel PUSCH, and the first beam includes a second beam used for transmission of the first PUSCH.
  • the processor 501 is further configured to:
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the second beam is determined according to the beam of the physical downlink control channel PDCCH for scheduling the first PUSCH;
  • the second beam is determined according to the beam of the first control resource set CORESET;
  • the second beam is determined according to the beam of the demodulation reference signal DMRS in the first physical downlink shared channel PDSCH;
  • the second beam is determined according to the beam of the reference signal in the first channel state information reference signal resource indication CRI report of the terminal; wherein, the first CRI report is used to characterize the last time the terminal has determined the second beam CRI report;
  • the second beam is determined according to the beam used by the first random access channel RACH; wherein, the first RACH is used to characterize the last RACH of the terminal before determining the second beam;
  • the second beam is determined according to a predefined second PUSCH beam
  • the second beam is determined according to the beam of the channel sounding reference signal SRS used to determine the PDSCH transmission beam;
  • the second beam is determined according to the beam used by the first physical uplink control channel PUCCH.
  • the processor 501 is further configured to:
  • the first CORESET includes:
  • the first time slot is used to characterize the last time slot in which the search space exists before the terminal determines the second beam.
  • the processor 501 is further configured to:
  • the first PDSCH includes:
  • the terminal determines the last PDSCH before the second beam.
  • the terminal determines the last PDSCH before the second beam, and the last PDSCH is within a time window; or
  • the terminal determines the last PDSCH before the second beam, and the last PDSCH is outside a time window.
  • the processor 501 is further configured to:
  • the beam used by the first PUCCH channel includes:
  • the beam of the predefined PUCCH resource or
  • Dynamically scheduled PUCCH resource beam used to feed back acknowledged ACK or non-acknowledged NACK information is a Dynamically scheduled PUCCH resource beam used to feed back acknowledged ACK or non-acknowledged NACK information.
  • the processor 501 is further configured to:
  • the predefined PUCCH resources include:
  • a PUCCH resource whose resource index changes according to a specified rule.
  • the processor 501 is further configured to:
  • the uplink channel includes a second PUCCH, and the first beam includes a third beam used for transmission of the second PUCCH.
  • the processor 501 is further configured to:
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the third beam is determined according to a downlink PDCCH channel indicator
  • the third beam is determined according to the beam of the PDCCH scheduling the second PUCCH;
  • the third beam is determined according to a predefined third PUSCH
  • the third beam is determined according to the beam used by the second RACH channel; wherein, the second RACH is used to characterize the last RACH of the terminal before determining the third beam;
  • the third beam is determined according to the beam of the second CORESET
  • the third beam is determined according to the beam used by the PDSCH associated with the PUCCH.
  • the processor 501 is further configured to:
  • the third PUSCH includes:
  • the terminal determines the last PUSCH before the third beam.
  • the terminal determines the last PUSCH before the third beam, and the last PUSCH does not exceed one time window.
  • the processor 501 is further configured to:
  • the second CORESET includes:
  • the second time slot is used to characterize the last time slot in which the search space exists before the terminal determines the third beam.
  • the terminal provided in the embodiment of the present application can implement the various processes implemented by the terminal in the foregoing embodiment, and in order to avoid repetition, details are not described herein again.
  • the first indication information configured by the base station for the terminal can be combined to determine the first beam used for uplink channel transmission from the uplink beam or the downlink beam, and use The first beam transmits the uplink channel, thereby improving the flexible selection of beams used for uplink channel transmission and also improving the efficiency of uplink channel transmission.
  • Fig. 6 is a schematic structural diagram of another terminal provided by an embodiment of the application.
  • the terminal in Fig. 6 can be a mobile phone, a tablet computer, a personal digital assistant (PDA), or an e-reader, a handheld game console, Point of Sales (POS), in-vehicle electronic equipment (in-vehicle computer), etc.
  • the terminal includes a radio frequency (RF) circuit 610, a memory 620, an input unit 630, a display unit 640, a processor 660, an audio circuit 670, a WiFi (Wireless Fidelity) module 680, and a power supply 690.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 6 does not constitute a limitation on the mobile phone, and may include more or less components than those shown in the figure, or combine certain components, or split certain components, or Different component arrangements.
  • the input unit 630 can be used to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the terminal.
  • the input unit 630 may include a touch panel 6301.
  • the touch panel 6301 also called a touch screen, can collect the user's touch operations on or near it (for example, the user's operations on the touch panel 6301 with fingers, stylus, or any other suitable objects or accessories), and can be set according to the preset
  • the specified program drives the corresponding connection device.
  • the touch panel 6301 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 660, and can receive and execute the commands sent by the processor 660.
  • the touch panel 6301 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 630 may also include other input devices 6302, and the other input devices 6302 may be used to receive input numbers or character information and generate key signal inputs related to user settings and function control of the terminal.
  • other input devices 6302 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, optical mice (optical mice are touch sensitive that do not display visual output). A surface, or an extension of a touch-sensitive surface formed by a touch screen).
  • the display unit 640 can be used to display information input by the user or information provided to the user and various menu interfaces of the terminal.
  • the display unit 640 may include a display panel 6401.
  • the display panel 8401 may be configured with the display panel 6401 in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), etc.
  • the touch panel 6301 can cover the display panel 6401 to form a touch screen.
  • the touch screen detects a touch operation on or near it, it is transmitted to the processor 660 to determine the type of touch event, and then the processor 660 provides corresponding visual output on the touch screen according to the type of touch event.
  • the touch screen includes an application program interface display area and a common control display area.
  • the arrangement of the display area of the application program interface and the display area of the commonly used controls is not limited, and can be arranged up and down, left and right, etc., which can distinguish the two display areas.
  • the application program interface display area can be used to display the application program interface. Each interface may include at least one application icon and/or widget desktop control and other interface elements.
  • the application program interface display area can also be an empty interface that does not contain any content.
  • the commonly used control display area is used to display the controls with a high usage rate, such as application icons such as setting buttons, interface numbers, scroll bars, and phonebook icons.
  • the RF circuit 610 can be used for receiving and sending signals during information transmission or communication. In particular, after receiving the downlink information on the network side, it is processed by the processor 660; in addition, the designed uplink data is sent to the network side.
  • the RF circuit 610 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 610 can also communicate with the network and other devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division) Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), Email, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • Email Short Messaging Service
  • the memory 620 is used to store software programs and modules, and the processor 660 executes various functional applications and data processing of the terminal by running the software programs and modules stored in the memory 620.
  • the memory 620 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of the terminal, etc.
  • the memory 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 660 is the control center of the terminal, which uses various interfaces and lines to connect to various parts of the entire mobile phone, runs or executes the software programs and/or modules stored in the first memory 6201, and calls the software programs and/or modules stored in the second memory 6202.
  • the data in the terminal performs various functions of the terminal and processes the data, so as to monitor the terminal as a whole.
  • the processor 660 may include one or more processing units.
  • the processor 660 by calling and storing the software program and/or module in the first memory 6201 and/or data in the second memory 6202, the processor 660 is configured to:
  • the processor 660 is further configured to:
  • the setting rule includes multiple sub-rules
  • the determining the first beam used for uplink channel transmission according to the uplink beam or downlink beam and setting rules includes:
  • Acquiring second indication information configured by the base station for the terminal, where the second indication information includes an identifier used to indicate that the sub-rule takes effect;
  • the first beam used for uplink channel transmission is determined from the uplink beam or the downlink beam.
  • the processor 660 is further configured to:
  • the uplink channel includes a first physical uplink shared channel PUSCH, and the first beam includes a second beam used for transmission of the first PUSCH.
  • the processor 660 is further configured to:
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the second beam is determined according to the beam of the physical downlink control channel PDCCH for scheduling the first PUSCH;
  • the second beam is determined according to the beam of the first control resource set CORESET;
  • the second beam is determined according to the beam of the demodulation reference signal DMRS in the first physical downlink shared channel PDSCH;
  • the second beam is determined according to the beam of the reference signal in the first channel state information reference signal resource indication CRI report of the terminal; wherein, the first CRI report is used to characterize the last time the terminal has determined the second beam CRI report;
  • the second beam is determined according to the beam used by the first random access channel RACH; wherein, the first RACH is used to characterize the last RACH of the terminal before determining the second beam;
  • the second beam is determined according to a predefined second PUSCH beam
  • the second beam is determined according to the beam of the channel sounding reference signal SRS used to determine the PDSCH transmission beam;
  • the second beam is determined according to the beam used by the first physical uplink control channel PUCCH.
  • the processor 660 is further configured to:
  • the first CORESET includes:
  • the first time slot is used to characterize the last time slot in which the search space exists before the terminal determines the second beam.
  • the processor 660 is further configured to:
  • the first PDSCH includes:
  • the terminal determines the last PDSCH before the second beam.
  • the terminal determines the last PDSCH before the second beam, and the last PDSCH is within a time window; or
  • the terminal determines the last PDSCH before the second beam, and the last PDSCH is outside a time window.
  • the processor 660 is further configured to:
  • the beam used by the first PUCCH channel includes:
  • the beam of the predefined PUCCH resource or
  • Dynamically scheduled PUCCH resource beam used to feed back acknowledged ACK or non-acknowledged NACK information is a Dynamically scheduled PUCCH resource beam used to feed back acknowledged ACK or non-acknowledged NACK information.
  • the processor 660 is further configured to:
  • the predefined PUCCH resources include:
  • a PUCCH resource whose resource index changes according to a specified rule.
  • the processor 660 is further configured to:
  • the uplink channel includes a second PUCCH, and the first beam includes a third beam used for transmission of the second PUCCH.
  • the processor 660 is further configured to:
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the third beam is determined according to a downlink PDCCH channel indicator
  • the third beam is determined according to the beam of the PDCCH scheduling the second PUCCH;
  • the third beam is determined according to a predefined third PUSCH
  • the third beam is determined according to the beam used by the second RACH channel; wherein, the second RACH is used to characterize the last RACH of the terminal before determining the third beam;
  • the third beam is determined according to the beam of the second CORESET
  • the third beam is determined according to the beam used by the PDSCH associated with the PUCCH.
  • the processor 660 is further configured to:
  • the third PUSCH includes:
  • the terminal determines the last PUSCH before the third beam.
  • the terminal determines the last PUSCH before the third beam, and the last PUSCH does not exceed one time window.
  • the processor 660 is further configured to:
  • the second CORESET includes:
  • the second time slot is used to characterize the last time slot in which the search space exists before the terminal determines the third beam.
  • the terminal provided in the embodiment of the present application can implement the various processes implemented by the terminal in the foregoing embodiment, and in order to avoid repetition, details are not described herein again.
  • the first indication information configured by the base station for the terminal can be combined to determine the first beam used for uplink channel transmission from the uplink beam or the downlink beam, and use The first beam transmits the uplink channel, thereby improving the flexible selection of beams used for uplink channel transmission and also improving the efficiency of uplink channel transmission.
  • FIG. 7 is a schematic structural diagram of a base station provided by an embodiment of the application.
  • the base station 700 may include at least one processor 701, a memory 702, at least one other user interface 703, and a transceiver 704.
  • the various components in the base station 700 are coupled together through the bus system 705.
  • the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clarity, various buses are marked as the bus system 705 in FIG. 7.
  • the bus system may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 701 and the memory 702
  • the various circuits of the representative memory are linked together.
  • the bus system can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are all known in the art, therefore, the embodiments of this application will not further describe them.
  • the bus interface provides the interface.
  • the transceiver 704 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 703 may also be an interface capable of externally connecting internally required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the memory 702 in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • SLDRAM Direct Rambus RAM
  • the memory 702 of the system and method described in each embodiment of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the processor 701 is responsible for managing the bus system and general processing.
  • the memory 702 can store computer programs or instructions used by the processor 701 when performing operations.
  • the processor 701 can be used for:
  • the first beam is used to receive the uplink channel.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 702, and the processor 701 reads the information in the memory 702, and completes the steps of the foregoing method in combination with its hardware.
  • the embodiments described in this application can be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the described technology can be implemented by modules (for example, procedures, functions, etc.) that execute the functions described in the embodiments of the present application.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the processor 701 is further configured to:
  • the setting rule includes multiple sub-rules
  • the determining the first beam used for uplink channel transmission according to the uplink beam or downlink beam and setting rules includes:
  • Acquiring second indication information configured by the base station for the terminal, where the second indication information includes an identifier used to indicate that the sub-rule takes effect;
  • the first beam used for uplink channel transmission is determined from the uplink beam or the downlink beam.
  • the processor 701 is further configured to:
  • the uplink channel includes a first physical uplink shared channel PUSCH, and the first beam includes a second beam used for transmission of the first PUSCH.
  • the processor 701 is further configured to:
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the second beam is determined according to the beam of the physical downlink control channel PDCCH for scheduling the first PUSCH;
  • the second beam is determined according to the beam of the first control resource set CORESET;
  • the second beam is determined according to the beam of the demodulation reference signal DMRS in the first physical downlink shared channel PDSCH;
  • the second beam is determined according to the beam of the reference signal in the first channel state information reference signal resource indication CRI report of the terminal; wherein, the first CRI report is used to characterize the last time the terminal has determined the second beam CRI report;
  • the second beam is determined according to the beam used by the first random access channel RACH; wherein, the first RACH is used to characterize the last RACH of the terminal before determining the second beam;
  • the second beam is determined according to a predefined second PUSCH beam
  • the second beam is determined according to the beam of the channel sounding reference signal SRS used to determine the PDSCH transmission beam;
  • the second beam is determined according to the beam used by the first physical uplink control channel PUCCH.
  • the processor 701 is further configured to:
  • the uplink channel includes a second PUCCH, and the first beam includes a third beam used for transmission of the second PUCCH.
  • the processor 701 is further configured to:
  • the setting rule or the first indication information includes one or more of the following sub-rules:
  • the third beam is determined according to a downlink PDCCH channel indicator
  • the third beam is determined according to the beam of the PDCCH scheduling the second PUCCH;
  • the third beam is determined according to a predefined third PUSCH
  • the third beam is determined according to the beam used by the second RACH channel; wherein, the second RACH is used to characterize the last RACH of the terminal before determining the third beam;
  • the third beam is determined according to the beam of the second CORESET
  • the third beam is determined according to the beam used by the PDSCH associated with the PUCCH.
  • the base station provided in the embodiments of the present application can implement the various processes implemented by the base station in the foregoing embodiments. To avoid repetition, details are not described herein again.
  • the first indication information configured by the base station for the terminal can be combined to determine the first beam used for uplink channel transmission from the uplink beam or the downlink beam, and use The first beam receives the uplink channel, thereby improving the flexible selection of beams used for uplink channel transmission and also improving the efficiency of uplink channel transmission.
  • the base station provided in the embodiments of the present application includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software.
  • the embodiment of the present application may divide the base station and the like into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections between devices or units through some interfaces.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of a software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions to enable a computer device (which can be a personal computer, a server, Or a network device, etc.) or a processor executes all or part of the steps of the method described in each embodiment of the present application.
  • the computer storage medium is a nontransitory (English: nontransitory) medium, including: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the embodiments of the present application also provide a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the methods provided in the foregoing embodiments, including:
  • the embodiments of the present application also provide a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the methods provided in the foregoing embodiments, including:
  • the first beam is used to receive the uplink channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种上行信道传输方法、装置、基站、终端及存储介质,该方法包括:确定上行波束或下行波束;根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;使用所述第一波束发送上行信道。因此,本申请实施例提高了上行信道传输使用的波束的灵活选择,还提高了上行信道传输的效率。

Description

上行信道传输方法、装置、基站、终端及存储介质
相关申请的交叉引用
本申请要求于2020年03月13日提交的申请号为2020101770822,发明名称为“上行信道传输方法、装置、基站、终端及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及通信技术领域,尤其涉及一种上行信道传输方法、装置、基站、终端及存储介质。
背景技术
在NR(New Radio,新空口)系统中,上行信道包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)和PUCCH(Physical Uplink Control Channel,物理上行控制信道)。目前,对于高频传输,由于传输范围受限,通常上行信道会经过波束赋形后进行传输以增强覆盖。为了确定赋形波束的方向,需要进行上行或者下行的参考信号波束扫描,选择波束质量好的参考信号,基于此参考信号的波束确定上行信道传输使用的波束。但是,基于参考信号的波束确定上行信道传输使用的波束,实现方式单一,降低了上行信道传输的效率。
发明内容
针对现有技术存在的问题,本申请实施例提供一种上行信道传输方法、装置、基站、终端及存储介质。
本申请实施例提供一种上行信道传输方法,所述上行信道传输方法用于终端,包括:
确定上行波束或下行波束;
根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
使用所述第一波束发送上行信道。
可选地,所述设定规则中包括多个子规则;
所述根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束,包括:
获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
可选地,所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
可选地,所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
所述第二波束根据第一控制资源集CORESET的波束确定;
所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
所述第二波束根据预定义的第二PUSCH的波束确定;
所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
可选地,所述第一CORESET包括:
固定的CORESET;或
在搜索空间存在的第一时隙中标识号ID最小的CORESET;其中,所述第一时隙用于表征终端在确定所述第二波束之前存在搜索空间的最后一个时隙。
可选地,所述第一PDSCH包括:
终端在确定所述第二波束之前的最后一个PDSCH;或
终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗内;或
终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗外。
可选地,所述第一PUCCH信道使用的波束包括:
预定义的PUCCH资源的波束;或
动态调度的用于反馈确认ACK或非确认NACK信息的PUCCH资源的波束。
可选地,所述预定义的PUCCH资源包括:
固定的PUCCH资源;或
资源索引按照指定规则变化的PUCCH资源。
可选地,所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
可选地,所述设定规则或所述第一指示信息包括以下一项或多项子规则:
所述第三波束根据下行PDCCH信道指示确定;
所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
所述第三波束根据预定义的第三PUSCH确定;
所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
所述第三波束根据第二CORESET的波束确定;
所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
可选地,所述第三PUSCH包括:
终端在确定所述第三波束之前的最后一个PUSCH;或
终端在确定所述第三波束之前的最后一个PUSCH,且所述最后一个PUSCH不超过一个时间窗。
可选地,所述第二CORESET包括:
固定的CORESET;或
在搜索空间存在的第二时隙中ID最小的CORESET;其中,所述第二时隙用于表征终端在确定所述第三波束之前存在搜索空间的最后一个时隙。
本申请实施例提供一种上行信道传输方法,所述上行信道传输方法用于基站,包括:
确定上行波束或下行波束;
根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
使用所述第一波束接收上行信道。
可选地,所述设定规则中包括多个子规则;
所述根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束,包括:
获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
可选地,所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
可选地,所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
所述第二波束根据第一控制资源集CORESET的波束确定;
所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
所述第二波束根据预定义的第二PUSCH的波束确定;
所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
可选地,所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
可选地,所述设定规则或所述第一指示信息包括以下一项或多项子规则:
所述第三波束根据下行PDCCH信道指示确定;
所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
所述第三波束根据预定义的第三PUSCH确定;
所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
所述第三波束根据第二CORESET的波束确定;
所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
本申请实施例提供一种上行信道传输装置,所述上行信道传输装置用于终端,包括:
第一确定模块,用于确定上行波束或下行波束;
第二确定模块,用于根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
发送模块,用于使用所述第一波束发送上行信道。
本申请实施例提供一种上行信道传输装置,所述上行信道传输装置用于基站,包括:
第三确定模块,用于确定上行波束或下行波束;
第四确定模块,用于根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
接收模块,用于使用所述第一波束接收上行信道。
本申请实施例提供一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
确定上行波束或下行波束;
根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
使用所述第一波束发送上行信道。
可选地,所述设定规则中包括多个子规则;
所述根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束,包括:
获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
可选地,所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
可选地,所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
所述第二波束根据第一控制资源集CORESET的波束确定;
所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
所述第二波束根据预定义的第二PUSCH的波束确定;
所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
可选地,所述第一CORESET包括:
固定的CORESET;或
在搜索空间存在的第一时隙中标识号ID最小的CORESET;其中,所述第一时隙用于表征终端在确定所述第二波束之前存在搜索空间的最后一个时隙。
可选地,所述第一PDSCH包括:
终端在确定所述第二波束之前的最后一个PDSCH;或
终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗内;或
终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗外。
可选地,所述第一PUCCH信道使用的波束包括:
预定义的PUCCH资源的波束;或
动态调度的用于反馈确认ACK或非确认NACK信息的PUCCH资源的波束。
可选地,所述预定义的PUCCH资源包括:
固定的PUCCH资源;或
资源索引按照指定规则变化的PUCCH资源。
可选地,所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
可选地,所述设定规则或所述第一指示信息包括以下一项或多项子规则:
所述第三波束根据下行PDCCH信道指示确定;
所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
所述第三波束根据预定义的第三PUSCH确定;
所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
所述第三波束根据第二CORESET的波束确定;
所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
可选地,所述第三PUSCH包括:
终端在确定所述第三波束之前的最后一个PUSCH;或
终端在确定所述第三波束之前的最后一个PUSCH,且所述最后一个PUSCH不超过一个时间窗。
可选地,所述第二CORESET包括:
固定的CORESET;或
在搜索空间存在的第二时隙中ID最小的CORESET;其中,所述第二时隙用于表征终端在确定所述第三波束之前存在搜索空间的最后一个时隙。
本申请实施例提供一种基站,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
确定上行波束或下行波束;
根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
使用所述第一波束接收上行信道。
可选地,所述设定规则中包括多个子规则;
所述根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束,包括:
获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
可选地,所述上行信道包括第一物理上行共享信道PUSCH,所述第一波 束中包括所述第一PUSCH传输使用的第二波束。
可选地,所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
所述第二波束根据第一控制资源集CORESET的波束确定;
所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
所述第二波束根据预定义的第二PUSCH的波束确定;
所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
可选地,所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
可选地,所述设定规则或所述第一指示信息包括以下一项或多项子规则:
所述第三波束根据下行PDCCH信道指示确定;
所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
所述第三波束根据预定义的第三PUSCH确定;
所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
所述第三波束根据第二CORESET的波束确定;
所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
本申请实施例提供一种非暂态计算机可读存储介质,其上存储有计算机 程序,该计算机程序被处理器执行时实现上述终端侧的上行信道传输方法的步骤。
本申请实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述基站侧的上行信道传输方法的步骤。
本申请实施例提供一种上行信道传输方法、装置、基站、终端及存储介质,在确定上行波束或下行波束后,可以结合设定规则或基站为终端配置的第一指示信息从上行波束或下行波束中来确定上行信道传输使用的第一波束,以及使用该第一波束发送上行信道,从而提高了上行信道传输使用的波束的灵活选择,还提高了上行信道传输的效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种上行信道传输方法的流程图;
图2为本申请实施例提供的一种上行信道传输方法的流程图;
图3为本申请实施例提供的一种上行信道传输装置的模块框图;
图4为本申请实施例提供的一种上行信道传输装置的模块框图;
图5为本申请实施例提供的一种终端的结构示意图;
图6为本申请实施例提供的另一种终端的结构示意图;
图7为本申请实施例提供的一种基站的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于 本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了便于清楚描述本申请实施例的技术方案,在本申请的各实施例中,若采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
在NR系统中,上行信道包括PUSCH和PUCCH。
目前,对于高频传输,由于传输范围受限,通常上行信道会经过波束赋形后进行传输以增强覆盖。为了确定赋形波束的方向,需要进行上行或者下行的参考信号波束扫描,选择波束质量好的参考信号,基于此参考信号的波束确定上行信道传输的波束。
比如:对于PUCCH,基站选择的上行信道传输使用的波束是通过空间关系信息(SpatialRelationInfo)半静态的直接配置给终端的;
对于PUSCH,基站选择的上行信道传输使用的波束是由动态信令DCI(Downlink Control Information,下行控制信息)中SRI(Sounding Reference Signal Resource Indicator,信道探测参考信号资源指示)所指的SRS(Sounding Reference Signal,信道探测参考信号)资源的空间关系信息(SpatialRelationInfo)间接指示的。
但是,PUSCH传输的波束虽然可以动态指示,但只能由参考信号的波束确定;而PUCCH传输的波束只能半静态配置,无法动态改变,从而限制了上行信道传输使用的波束的灵活选择。
针对上述问题,本申请实施例提供一种上行信道传输方法、装置、基站、终端及存储介质,以提高上行信道传输使用的波束的灵活选择。
本申请实施例提供的上行信道传输方法、装置、基站、终端及存储介质可以应用在无线通信系统或无线与有线结合的系统。包括但不限于5G系统(如NR系统)、6G系统、卫星系统、车联网系统、演进型长期演进(Long Term Evolution,LTE)系统,上述系统的后续演进通信系统等。
本申请实施例提供的基站可以包含但不限于以下中的一种或多种:通常 所用的基站、演进型基站(evolved node base station,eNB)、5G系统中的网络侧设备(例如下一代基站(next generation node base station,gNB)、发送和接收点(transmission and reception point,TRP))等设备。
本申请实施例提供的终端有可以被称为用户设备等。终端包括单不限于手持设备、车载设备。例如,可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
下面通过具体实施例进行说明。
图1为本申请实施例提供的一种上行信道传输方法的流程图,该上行信道传输方法可以用于终端。如图1所示,该上行信道传输方法包括如下步骤:
步骤110:确定上行波束或下行波束。
具体地,上行波束可以通过上行波束管理来获得,并用于进行下行数据传输。其中,上行波束可以包括但不限于以下一项或多项:
最近的RACH(Random Access Channel,随机接入信道)的波束;
预定义的PUSCH的波束;
上行PUCCH信道使用的波束。
其中,最近的RACH可以指的是终端在确定上行信道传输使用的第一波束之前的最后一个RACH。
另外,下行波束可以通过下行波束管理来获得,并用于进行下行传输。其中,下行波束可以包括但不限于以下一项或多项:
下行PDCCH(Physical Downlink Control Channel,物理下行控制信道)的波束;
下行CORESET(Control-resource set,控制资源集)的波束;
下行PDSCH(Physical Downlink Shared Channel,物理下行共享信道)中的DMRS(Demodulation Reference Signal,解调参考信号)的波束;
终端最近一次CRI(Channel State Information-Reference Signal resource indicator,信道状态信息参考信号资源指示)上报中的参考信号的波束;
用于确定下行PDSCH中的SRS的波束;
下行PDSCH信道使用的波束。
其中,最近一次CRI上报可以指的是终端在确定上行信道传输使用的第一波束之前的最后一次CRI上报。
步骤120:根据上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束。
具体地,终端可以根据设定规则从上行波束或下行波束中确定上行信道传输使用的第一波束,也可以根据基站为终端配置的用于波束管理的第一指示信息从上行波束或下行波束中确定上行信道传输使用的第一波束。
其中,设定规则可以是系统预先定义的规则。
第一指示信息可以是基站通过动态指令指示给终端的。
上行信道可以包括PUSCH和PUCCH中的至少一个。
步骤130:使用第一波束发送上行信道。
由上述实施例可见,在确定上行波束或下行波束后,可以结合设定规则或基站为终端配置的第一指示信息从上行波束或下行波束中来确定上行信道传输使用的第一波束,以及使用该第一波束发送上行信道,从而提高了上行信道传输使用的波束的灵活选择,还提高了上行信道传输的效率。
进一步地,建立在上述方法的基础上,上述步骤120中的设定规则中包括多个子规则;基站为终端配置的第二指示信息中包括用于指示所述子规则生效的标识。
与此对应的,在执行步骤120中根据上行波束或下行波束、以及设定规则确定上行信道传输使用的第一波束时,可以先获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;再根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
具体地,基站可以通过高层信令或物理层信令指示设定规则中生效的子规则。
比如:终端根据第二指示信息确定设定规则中生效的子规则,并根据该生效的子规则确定上行信道传输使用的第一波束。
由上述实施例可见,在确定上行波束或下行波束后,可以结合设定规则和基站为终端配置的第二指示信息从上行波束或下行波束中来确定上行信道传输使用的第一波束,以及使用该第一波束发送上行信道,从而丰富了确定第一波束的选择方式,提高了上行信道传输的可靠性。
进一步地,建立在上述方法的基础上,上述步骤120中的上行信道可以包括第一PUSCH,上行信道传输使用的第一波束中包括该第一PUSCH传输使用的第二波束。
与此对应的,在执行步骤120时:
可以根据设定规则从上行波束或下行波束中确定第一PUSCH传输使用的第二波束;或
可以根据基站为终端配置的用于波束管理的第一指示信息,从上行波束或下行波束中确定第一PUSCH传输使用的第二波束;或
可以根据设定规则和第二指示信息,从上行波束或下行波束中确定第一PUSCH传输使用的第二波束;其中,设定规则中包括多个子规则,基站为终端配置的第二指示信息中包括用于指示所述子规则生效的标识。
由上述实施例可见,在确定上行波束或下行波束后,可以结合设定规则或基站为终端配置的第一指示信息从上行波束或下行波束中来确定第一PUSCH传输使用的第二波束,以及使用该第二波束发送第一PUSCH,从而提高了PUSCH传输使用的波束的灵活选择,还提高了上行信道传输的效率。
进一步地,建立在上述方法的基础上,与第一PUSCH传输使用的第二波束对应的所述设定规则或所述第一指示信息中包括以下(1-1)至(1-8)中的一项或多项子规则:
(1-1)所述第二波束根据调度所述第一PUSCH的PDCCH的波束确定。
具体地,终端可以根据调度第一PUSCH的PDCCH的波束,确定第一PUSCH传输使用的第二波束。
在一实施例中,下行PDCCH信道的波束方向由TCI(Transmission Configuration Indication,传输配置指示)状态指示的参考信号所使用的波束确定。假设所述TCI状态指示CSI-RSI(Channel State Information-Reference  Signal,信道状态信息参考信号)资源1,则说明下行PDCCH信道的波束方向与CSI-RS资源1的波束方向相同。根据(1-1)所示子规则,终端可以将接收CSI-RS资源1的波束确定为第一PUSCH传输使用的第二波束。
(1-2)所述第二波束根据第一CORESET的波束确定。
具体地,终端可以根据用于所述第一PUSCH的第一CORESET的波束,确定第一PUSCH传输使用的第二波束。
可选地,上述(1-2)中的第一CORESET可以包括:
固定的CORESET;或
在搜索空间存在的第一时隙中ID(Identity document,标识号)最小的CORESET;其中,所述第一时隙用于表征终端在确定所述第二波束之前存在搜索空间的最后一个时隙。
在一实施例中,第一CORESET可以是ID最小的CORESET。终端确定接收此ID最小的CORESET的接收波束,将此接收波束作为第一PUSCH的发送波束。
(1-3)所述第二波束根据第一PDSCH中的DMRS的波束确定。
具体地,终端可以根据第一PDSCH中的DMRS的波束,确定第一PUSCH传输使用的第二波束。
可选地,上述(1-3)中第一PDSCH可以包括:终端在确定所述第二波束之前的最后一个PDSCH;或
终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗内;或
终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗外。
在一实施例中,基站使用MAC-CE(Media Access Control-Control Element,媒体接入控制-控制单元)信令指示终端使用上述(1-3)所示子规则来确定第一PUSCH传输使用的第二波束。终端基于该MAC CE信令指示,获取最近一次PDSCH传输中的DMRS参考信号(其中,最近一次PDSCH指的是终端在确定所述第二波束之前的最后一个PDSCH),。其中,所述DMRS参考 信号使用的波束由QCL(QuasiCo-Location,准共址)信息指示的参考信号确定。若所述QCL信息指示SSB1(Synchronization Signal Block,同步信号块),即所述DMRS使用SSB1的发送波束传输。终端将接收SSB1的接收波束确定为第一PUSCH传输使用的第二波束。
(1-4)所述第二波束根据终端在第一CRI(Channel State Information-Reference Signal resource indicator,信道状态信息参考信号资源指示)上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报。
具体地,终端可以根据终端在第一CRI上报中的参考信号的波束,确定第一PUSCH传输使用的第二波束。
在一实施例中,系统预定义的设定规则中包括第二波束根据终端最近一次CRI上报中的参考信号的波束确定(其中,最近一次CRI上报指的是终端在确定所述第二波束之前的最近一次CRI上报)。根据基站侧的配置,终端在时刻n进行了CSI上报,上报内容包括CRI和L1-RSRP(Layer-1 Reference Signal Received Power,层一参考信号接收功率)。若终端上报了多组CRI和L1-RSRP,可以进一步在上述规则中约定使用L1-RSRP最大的CRI指示CSI-RS资源的波束确定。基站侧在时刻n+K调度终端进行PUSCH传输,且在时刻n与时刻n+K之间没有CRI的上报。这样,根据上述规则,终端确定时刻n上报的CRI所对应的CSI-RS资源,将接收此CSI-RS资源的接收波束确定为n+K时刻使用的第二波束,并利用该第二波束发送对应的PUSCH。
(1-5)所述第二波束根据第一RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
具体地,终端可以根据第一RACH使用的波束确定,确定第一PUSCH传输使用的第二波束。
在一实施例中,基站使用MAC-CE信令指示终端使用上述(1-5)所示子规则来确定第一PUSCH传输使用的第二波束。终端基于该MAC CE信令指示,获取最近一次RACH的发送波束(其中,最近一次RACH指的是终端在确定所述第二波束之前的最后一个RACH),并将该最近一次RACH的发 送波束确定为第一PUSCH传输使用的第二波束。
(1-6)所述第二波束根据预定义的第二PUSCH的波束确定。
具体地,终端可以根据预定义的第二PUSCH的波束,确定第一PUSCH传输使用的第二波束。其中,预定义的第二PUSCH可以是终端在确定所述第二波束之前的最后一个PUSCH。
在一实施例中,基站使用MAC-CE信令指示终端使用上述(1-6)所示子规则来确定第一PUSCH传输使用的第二波束。终端基于该MAC CE信令指示,获取最近一次PUSCH的波束(其中,最近一次PUSCH指的是终端在确定所述第二波束之前的最后一个PUSCH),并将该最近一次PUSCH的波束确定为第一PUSCH传输使用的第二波束。
(1-7)所述第二波束根据用于确定PDSCH传输波束的SRS的波束确定。
具体地,终端可以根据用于确定PDSCH传输波束的SRS的波束,确定第一PUSCH传输使用的第二波束。
在一实施例中,系统预定义的设定规则包括第二波束根据用于确定下行PDSCH信道传输波束的SRS的波束确定。基站根据上行SRS波束扫描,选择SRS资源1的波束用于确定PDSCH的波束。此PDSCH的波束可以通过DCI指示,其指示域为SRS资源1。终端根据所述DCI指示,确定SRS资源1的发送波束。再根据上述(1-7)所示子规则,将SRS资源1的发送波束确定为第一PUSCH传输使用的第二波束。
在一实施例中,基站通过RRC(Radio Resource Control,无线资源控制)配置SRS资源1的空间关系信息(SpatialRelationInfo)为CORESET1,此配置说明终端使用接收CORESET1的接收波束用于传输SRS资源1。类似的,基站配置SRS资源2的空间关系信息(SpatialRelationInfo)为CORESET2,SRS资源3的空间关系信息(SpatialRelationInfo)为CORESET3。经过上行SRS波束扫描后,在时刻n,基站传输的DCI信令中的SRI域指示SRS资源1,指示与SRS资源1使用相同的波束传输PUSCH。在时刻n+K,基站传输DCI信令的SRI域指示SRS资源3,这样终端将与SRS资源3使用相同的波束,即将接收CORESET3的接收波束确定为n+K时刻的第二波束,并利用 该第二波束发送对应的PUSCH,从而实现了通过DCI的不同指示信息来改变上行波束。
类似的,所述的空间关系信息(SpatialRelationInfo)也可以是下行DMRS信号、下行PDSCH信道、上行PUCCH信道等。
(1-8)所述第二波束根据第一PUCCH信道使用的波束确定。
具体地,终端可以根据第一PUCCH信道使用的波束,确定第一PUSCH传输使用的第二波束。
可选地,上述(1-8)中所述第一PUCCH信道使用的波束可以包括:
预定义的PUCCH资源的波束;或
动态调度的用于反馈确认ACK或非确认NACK信息的PUCCH资源的波束。
可选地,上述所述预定义的PUCCH资源包括:固定的PUCCH资源;或资源索引按照指定规则变化的PUCCH资源。
在一实施例中,系统预定义的设定规则包括所述第二波束根据最低索引的PUCCH的波束确定。所述最低索引的PUCCH的波束通过RRC信令的空间关系信息(SpatialRelationInfo)配置,假设其配置为SRS资源1。终端根据上述规则,将SRS资源1的发送波束确定为第一PUSCH传输使用的第二波束。
由上述实施例可见,在确定上行波束或下行波束后,可以结合第一PUSCH传输使用的第二波束对应的一项或多项子规则,从上行波束或下行波束中来确定第一PUSCH传输使用的第二波束,以及使用该第二波束发送第一PUSCH,从而提高了确定第二波束的准确性和灵活性。
进一步地,建立在上述方法的基础上,上述步骤120中的上行信道可以包括第二PUCCH,上行信道传输使用的第一波束中包括该第二PUCCH传输使用的第三波束。
与此对应的,在执行步骤120时:
可以根据设定规则从上行波束或下行波束中确定第二PUCCH传输使用的第三波束;或
可以根据基站为终端配置的用于波束管理的第一指示信息,从上行波束 或下行波束中确定第二PUCCH传输使用的第三波束;或
可以根据设定规则和第二指示信息,从上行波束或下行波束中确定第二PUCCH传输使用的第三波束;其中,设定规则中包括多个子规则,基站为终端配置的第二指示信息中包括用于指示所述子规则生效的标识。
由上述实施例可见,在确定上行波束或下行波束后,可以结合设定规则或基站为终端配置的第一指示信息从上行波束或下行波束中来确定第二PUCCH传输使用的第三波束,以及使用该第三波束发送第二PUCCH,从而提高了PUCCH传输使用的波束的灵活选择,还提高了上行信道传输的效率。
进一步地,建立在上述方法的基础上,与第二PUCCH传输使用的第三波束对应的所述设定规则或所述第一指示信息中包括以下(1-9)至(1-14)中的一项或多项子规则:
(1-9)所述第三波束根据下行PDCCH信道指示确定。
具体地,终端可以根据下行PDCCH信道指示,确定第二PUCCH传输使用的第三波束。
在一实施例中,基站通过DCI信令指示PUCCH的传输波束。所述指示信息可以是参考信号的ID,例如指示SRS资源1。终端根据此指示信息,确定第二PUCCH的传输波束与SRS资源1的波束相同,并发送所述第二PUCCH。基站侧根据DCI信令指示,使用接收SRS资源1的接收波束接收所述第二PUCCH。所述接收波束可以由上行波束管理过程获得。
或者,所述DCI信令指示CSI-RS资源1。终端根据此指示信息,确定第二PUCCH的传输波束与终端接收CSI-RS资源1的接收波束相同,并使用此波束发送所述第二PUCCH。基站侧根据DCI信令指示,使用发送CSI-RS资源1的发送波束来接收所述第二PUCCH。
其中,DCI是下行控制信令,此信令通过上述(1-9)中的下行PDCCH信道传输。
(1-10)所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定。
具体地,终端可以根据第二PUCCH的PDCCH的波束,确定第二PUCCH传输使用的第三波束。
在一实施例中,系统预定义的设定规则包括所述第三波束根据调度第二PUCCH的PDCCH的波束确定。其中,PDCCH信道的波束通过TCI状态指示的参考信号的波束确定。若TCI状态指示下行CSI-RS资源1,则所述PDCCH信道的波束使用CSI-RS资源1的波束发送:
基站侧在时刻n,通过PDCCH信道调度终端通过PUCCH信道反馈HARQ-ACK(Hybrid Automatic RepeatreQuest,混合自动重传请求)信息。
终端根据上述设定规则,确定接收PDCCH信道的接收波束,所述波束与TCI状态指示的CSI-RS资源1的发送波束相同。进一步,将接收PDCCH信号的接收波束确定第二PUCCH传输使用的第三波束。
基站侧根据上述设定规则,确定第二PUCCH传输使用的第三波束与PDCCH信道的接收波束相同,并根据PDCCH的TCI状态信息确定第二PUCCH传输使用的第三波束。所述第三波束与TCI状态指示的CSI-RS资源1的下行发送波束相同。
另外,对于没有PDCCH调度的PUCCH,其无法使用上述设定规则。这种情况下,可以使用固定的CORESET的波束。或者使用ID最小的CORESET的波束来确定第二PUCCH传输使用的第三波束。
(1-11)所述第三波束根据预定义的第三PUSCH确定。
具体地,终端可以根据预定义的第三PUSCH,确定第二PUCCH传输使用的第三波束。
可选地,上述(1-11)中的所述第三PUSCH可以包括:
终端在确定所述第三波束之前的最后一个PUSCH;或
终端在确定所述第三波束之前的最后一个PUSCH,且所述最后一个PUSCH不超过一个时间窗。
(1-12)所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH。
具体地,终端可以根据第二RACH信道使用的波束,确定第二PUCCH传输使用的第三波束。
(1-13)所述第三波束根据用于PUCCH的第二CORESET的波束确定。
具体地,终端可以根据用于PUCCH的第二CORESET的波束,确定第二PUCCH传输使用的第三波束。
可选地,上述(1-13)中的所述第二CORESET可以包括:
固定的CORESET;或
在搜索空间存在的第二时隙中ID最小的CORESET;其中,所述第二时隙用于表征终端在确定所述第三波束之前存在搜索空间的最后一个时隙。
在一实施例中,设定规则中包括上述(1-11)、(1-12)和(1-13)这三个子规则,具体为:第二PUCCH传输使用的第三波束根据最近的PUSCH(即终端在确定所述第三波束之前的最后一个PUSCH)确定;或者根据最近的RACH(即终端在确定所述第三波束之前的最后一个RACH)使用的波束确定,或者使用搜索空间存在的最近的时隙(即终端在确定所述第三波束之前存在搜索空间的最后一个时隙)中ID最小的CORESET的波束确定。
进一步,基站通过高层信令或物理层信令指示当前系统采用的子规则。例如使用MAC-CE指示根据最近一次的PUSCH的波束确定,则使用与此PUSCH的波束相同的波束发送第二PUCCH,所述PUSCH的波束是通过DCI信令中的SRI进行指示的,所述SRI指示的是一个SRS资源,说明所述PUSCH使用与指示的SRS资源相同的波束。
若MAC-CE信令指示根据最近一次的RACH波束确定,则终端根据最近的一次RACH的发送波束用于发送第二PUCCH。
若MAC-CE信令指示使用搜索空间存在的最近的时隙中ID最小的CORESET的波束确定,则终端确定所述PUCCH最近的包含搜索空间的时隙,并确定接收此搜索空间内ID最小的CORESET的接收波束,根据配置的子规则,使用此接收波束用于传输所述第二PUCCH。
(1-14)所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
具体地,终端可以根据与PUCCH关联的PDSCH使用的波束,确定第二PUCCH传输使用的第三波束。
在一实施例中,设定规则中包括第三波束根据与PUCCH关联的PDSCH使用的波束确定。其中,所述关联表示PUCCH信道用于传输所述PDSCH信 道的ACK-NACK(确认-非确认)信息。终端确定待反馈ACK-NACK信息的PDSCH信道,所述PDSCH信道使用的波束由TCI状态指示,例如TCI状态指示CSI-RS资源0。这样PDSCH信道使用CSI-RS资源0的波束进行发送。终端根据上述设定规则,确定CSI-RS资源0的接收波束,并将该接收波束确定为第二PUCCH传输使用的第三波束。
由上述实施例可见,在确定上行波束或下行波束后,可以结合第二PUCCH传输使用的第三波束对应的一项或多项子规则,从上行波束或下行波束中来确定第二PUCCH传输使用的第三波束,以及使用该第三波束发送第二PUCCH,从而提高了确定第三波束的准确性和灵活性。
图2为本申请实施例提供的一种上行信道传输方法的流程图,该上行信道传输方法可以用于基站。如图2所示,该上行信道传输方法包括如下步骤:
步骤210:确定上行波束或下行波束。
具体地,上行波束可以通过上行波束管理来获得,并用于进行下行数据传输。其中,上行波束可以包括但不限于以下一项或多项:
最近的RACH的波束;
预定义的PUSCH的波束;
上行PUCCH信道使用的波束。
其中,最近的RACH可以指的是终端在确定上行信道传输使用的第一波束之前的最后一个RACH。
另外,下行波束可以通过下行波束管理来获得,并用于进行下行传输。其中,下行波束可以包括但不限于以下一项或多项:
下行PDCCH的波束;
下行CORESET的波束;
下行PDSCH中的DMRS(Demodulation Reference Signal,解调参考信号)的波束;
终端最近一次CRI上报中的参考信号的波束;
用于确定下行PDSCH中的SRS的波束;
下行PDSCH信道使用的波束。
其中,最近一次CRI上报可以指的是终端在确定上行信道传输使用的第一波束之前的最后一次CRI上报。
步骤220:根据用于波束管理的设定规则或基站为终端配置的用于波束管理的第一指示信息,确定上行信道传输使用的第一波束。
具体地,基站可以根据设定规则从上行波束或下行波束中确定上行信道传输使用的第一波束,也可以根据基站为终端配置的用于波束管理的第一指示信息从上行波束或下行波束中确定上行信道传输使用的第一波束。
其中,设定规则可以是系统预先定义的规则。
第一指示信息可以是基站通过动态指令指示给终端的。
上行信道可以包括PUSCH和PUCCH中的至少一个。
步骤230:使用第一波束接收上行信道。
由上述实施例可见,在确定上行波束或下行波束后,可以结合设定规则或基站为终端配置的第一指示信息从上行波束或下行波束中来确定上行信道传输使用的第一波束,以及使用该第一波束接收上行信道,从而提高了上行信道传输使用的波束的灵活选择,还提高了上行信道传输的效率。
进一步地,建立在上述方法的基础上,上述步骤220中的设定规则中包括多个子规则;基站为终端配置的第二指示信息中包括用于指示所述子规则生效的标识。
与此对应的,在执行步骤220中根据上行波束或下行波束、以及设定规则确定上行信道传输使用的第一波束时,可以先获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;再根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
比如:基站根据第二指示信息确定设定规则中生效的子规则,并根据该生效的子规则确定上行信道传输使用的第一波束。
由上述实施例可见,在确定上行波束或下行波束后,可以结合设定规则和基站为终端配置的第二指示信息从上行波束或下行波束中来确定上行信道传输使用的第一波束,以及使用该第一波束接收上行信道,从而丰富了确定 第一波束的选择方式,提高了上行信道传输的可靠性。
进一步地,建立在上述方法的基础上,上述步骤220中的上行信道可以包括第一PUSCH,上行信道传输使用的第一波束中包括该第一PUSCH传输使用的第二波束。
与此对应的,在执行步骤220时:
可以根据设定规则从上行波束或下行波束中确定第一PUSCH传输使用的第二波束;或
可以根据基站为终端配置的用于波束管理的第一指示信息,从上行波束或下行波束中确定第一PUSCH传输使用的第二波束;或
可以根据设定规则和第二指示信息,从上行波束或下行波束中确定第一PUSCH传输使用的第二波束;其中,设定规则中包括多个子规则,基站为终端配置的第二指示信息中包括用于指示所述子规则生效的标识。
由上述实施例可见,在确定上行波束或下行波束后,可以结合设定规则或基站为终端配置的第一指示信息从上行波束或下行波束中来确定第一PUSCH传输使用的第二波束,以及使用该第二波束接收第一PUSCH,从而提高了PUSCH传输使用的波束的灵活选择,还提高了上行信道传输的效率。
进一步地,建立在上述方法的基础上,与第一PUSCH传输使用的第二波束对应的所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
所述第二波束根据用于所述第一PUSCH的第一控制资源集CORESET的波束确定;
所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所 述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
所述第二波束根据预定义的第二PUSCH的波束确定;
所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
由上述实施例可见,在确定上行波束或下行波束后,可以结合第一PUSCH传输使用的第二波束对应的一项或多项子规则,从上行波束或下行波束中来确定第一PUSCH传输使用的第二波束,以及使用该第二波束接收第一PUSCH,从而提高了确定第二波束的准确性和灵活性。
进一步地,建立在上述方法的基础上,上述步骤220中的上行信道可以包括第二PUCCH,上行信道传输使用的第一波束中包括该第二PUCCH传输使用的第三波束。
与此对应的,在执行步骤220时:
可以根据设定规则从上行波束或下行波束中确定第二PUCCH传输使用的第三波束;或
可以根据基站为终端配置的用于波束管理的第一指示信息,从上行波束或下行波束中确定第二PUCCH传输使用的第三波束;或
可以根据设定规则和第二指示信息,从上行波束或下行波束中确定第二PUCCH传输使用的第三波束;其中,设定规则中包括多个子规则,基站为终端配置的第二指示信息中包括用于指示所述子规则生效的标识。
由上述实施例可见,在确定上行波束或下行波束后,可以结合设定规则或基站为终端配置的第一指示信息从上行波束或下行波束中来确定第二PUCCH传输使用的第三波束,以及使用该第三波束接收第二PUCCH,从而提高了PUCCH传输使用的波束的灵活选择,还提高了上行信道传输的效率。
进一步地,建立在上述方法的基础上,与第二PUCCH传输使用的第三波束对应的所述设定规则或所述第一指示信息中包括以下中的一项或多项子规则:
所述第三波束根据下行PDCCH信道指示确定;
所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
所述第三波束根据预定义的第三PUSCH确定;
所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
所述第三波束根据用于PUCCH的第二CORESET的波束确定;
所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
由上述实施例可见,在确定上行波束或下行波束后,可以结合第二PUCCH传输使用的第三波束对应的一项或多项子规则,从上行波束或下行波束中来确定第二PUCCH传输使用的第三波束,以及使用该第三波束接收第二PUCCH,从而提高了确定第三波束的准确性和灵活性。
图3为本申请实施例提供的一种上行信道传输装置的模块框图,该上行信道传输装置可以用于终端;如图3所示,该上行信道传输装置可以包括:
第一确定模块31,用于确定上行波束或下行波束;
第二确定模块32,用于根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
发送模块33,用于使用所述第一波束发送上行信道。
进一步地,建立在上述装置的基础上,所述设定规则中包括多个子规则;所述第二确定模块32在根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束时,可以包括:
第一获取子模块,用于获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
第一确定子模块,用于根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
进一步地,建立在上述装置的基础上,所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
进一步地,建立在上述装置的基础上,所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
所述第二波束根据第一控制资源集CORESET的波束确定;
所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
所述第二波束根据预定义的第二PUSCH的波束确定;
所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
进一步地,建立在上述装置的基础上,所述第一CORESET包括:
固定的CORESET;或
在搜索空间存在的第一时隙中标识号ID最小的CORESET;其中,所述第一时隙用于表征终端在确定所述第二波束之前存在搜索空间的最后一个时隙。
进一步地,建立在上述装置的基础上,所述第一PDSCH包括:
终端在确定所述第二波束之前的最后一个PDSCH;或
终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗内;或
终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗外。
进一步地,建立在上述装置的基础上,所述第一PUCCH信道使用的波束包括:
预定义的PUCCH资源的波束;或
动态调度的用于反馈确认ACK或非确认NACK信息的PUCCH资源的波束。
进一步地,建立在上述装置的基础上,所述预定义的PUCCH资源包括:
固定的PUCCH资源;或
资源索引按照指定规则变化的PUCCH资源。
进一步地,建立在上述装置的基础上,所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
进一步地,建立在上述装置的基础上,所述设定规则或所述第一指示信息包括以下一项或多项子规则:
所述第三波束根据下行PDCCH信道指示确定;
所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
所述第三波束根据预定义的第三PUSCH确定;
所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
所述第三波束根据第二CORESET的波束确定;
所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
进一步地,建立在上述装置的基础上,所述第三PUSCH包括:
终端在确定所述第三波束之前的最后一个PUSCH;或
终端在确定所述第三波束之前的最后一个PUSCH,且所述最后一个PUSCH不超过一个时间窗。
进一步地,建立在上述装置的基础上,所述第二CORESET包括:
固定的CORESET;或
在搜索空间存在的第二时隙中ID最小的CORESET;其中,所述第二时隙用于表征终端在确定所述第三波束之前存在搜索空间的最后一个时隙。
在此需要说明的是,本实施例提供的装置能够实现上述方法实施例所能够实现的所有方法步骤,并能够达到相同的有益效果,在此不再对本装置实施例中与上述方法实施例中的相同内容以及有益效果进行赘述。
图4为本申请实施例提供的一种上行信道传输装置的模块框图,该上行 信道传输装置可以用于基站;如图4所示,该上行信道传输装置可以包括:
第三确定模块41,用于确定上行波束或下行波束;
第四确定模块42,用于根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
接收模块43,用于使用所述第一波束接收上行信道。
进一步地,建立在上述装置的基础上,所述设定规则中包括多个子规则;所述第四确定模块42中根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束时,可以包括:
第二获取子模块,用于获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
第二确定子模块,用于根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
进一步地,建立在上述装置的基础上,所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
进一步地,建立在上述装置的基础上,所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
所述第二波束根据第一控制资源集CORESET的波束确定;
所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
所述第二波束根据预定义的第二PUSCH的波束确定;
所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
进一步地,建立在上述装置的基础上,所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
进一步地,建立在上述装置的基础上,所述设定规则或所述第一指示信息包括以下一项或多项子规则:
所述第三波束根据下行PDCCH信道指示确定;
所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
所述第三波束根据预定义的第三PUSCH确定;
所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
所述第三波束根据第二CORESET的波束确定;
所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
在此需要说明的是,本实施例提供的装置能够实现上述方法实施例所能够实现的所有方法步骤,并能够达到相同的有益效果,在此不再对本装置实施例中与上述方法实施例中的相同内容以及有益效果进行赘述。
图5为本申请实施例提供的一种终端的结构示意图,如图5所示,该终端500可以包括:至少一个处理器501、存储器502、至少一个网络接口504和其他的用户接口503。终端500中的各个组件通过总线系统505耦合在一起。可理解,总线系统505用于实现这些组件之间的连接通信。总线系统505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图5中将各种总线都标为总线系统505。
其中,用户接口503可以包括显示器、键盘或者点击设备,例如鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本申请实施例中的存储器502可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器 (Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请各实施例所描述的系统和方法的存储器502旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器502存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集,例如:操作系统5021和应用程序5022。
其中,操作系统5021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序5022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本申请实施例方法的程序可以包含在应用程序5022中。
在本申请实施例中,通过调用存储器502存储的计算机程序或指令,具体的,可以是应用程序5022中存储的计算机程序或指令,处理器501用于:
确定上行波束或下行波束;
根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
使用所述第一波束发送上行信道。
上述本申请实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在 实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本申请描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本申请实施例中所述功能的模块(例如过程、函数等)来实现所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,作为另一个实施例,处理器501还用于:
所述设定规则中包括多个子规则;
所述根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束,包括:
获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
可选地,作为另一个实施例,处理器501还用于:
所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
可选地,作为另一个实施例,处理器501还用于:
所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
所述第二波束根据第一控制资源集CORESET的波束确定;
所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
所述第二波束根据预定义的第二PUSCH的波束确定;
所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
可选地,作为另一个实施例,处理器501还用于:
所述第一CORESET包括:
固定的CORESET;或
在搜索空间存在的第一时隙中标识号ID最小的CORESET;其中,所述第一时隙用于表征终端在确定所述第二波束之前存在搜索空间的最后一个时隙。
可选地,作为另一个实施例,处理器501还用于:
所述第一PDSCH包括:
终端在确定所述第二波束之前的最后一个PDSCH;或
终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗内;或
终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗外。
可选地,作为另一个实施例,处理器501还用于:
所述第一PUCCH信道使用的波束包括:
预定义的PUCCH资源的波束;或
动态调度的用于反馈确认ACK或非确认NACK信息的PUCCH资源的波束。
可选地,作为另一个实施例,处理器501还用于:
所述预定义的PUCCH资源包括:
固定的PUCCH资源;或
资源索引按照指定规则变化的PUCCH资源。
可选地,作为另一个实施例,处理器501还用于:
所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
可选地,作为另一个实施例,处理器501还用于:
所述设定规则或所述第一指示信息包括以下一项或多项子规则:
所述第三波束根据下行PDCCH信道指示确定;
所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
所述第三波束根据预定义的第三PUSCH确定;
所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
所述第三波束根据第二CORESET的波束确定;
所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
可选地,作为另一个实施例,处理器501还用于:
所述第三PUSCH包括:
终端在确定所述第三波束之前的最后一个PUSCH;或
终端在确定所述第三波束之前的最后一个PUSCH,且所述最后一个PUSCH不超过一个时间窗。
可选地,作为另一个实施例,处理器501还用于:
所述第二CORESET包括:
固定的CORESET;或
在搜索空间存在的第二时隙中ID最小的CORESET;其中,所述第二时隙用于表征终端在确定所述第三波束之前存在搜索空间的最后一个时隙。
本申请实施例提供的终端能够实现前述实施例中终端实现的各个过程,为避免重复,此处不再赘述。
由上述实施例可见,在确定上行波束或下行波束后,可以结合设定规则或基站为终端配置的第一指示信息从上行波束或下行波束中来确定上行信道传输使用的第一波束,以及使用该第一波束发送上行信道,从而提高了上行信道传输使用的波束的灵活选择,还提高了上行信道传输的效率。
图6为本申请实施例提供的另一种终端的结构示意图,图6中的终端可以为手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或、电子阅读器、手持游戏机、销售终端(Point of Sales,POS)、车载电子设备(车载电脑)等。如图6所示,该终端包括射频(Radio Frequency,RF)电路610、存储器620、输入单元630、显示单元640、处理器660、音频电路670、WiFi(Wireless Fidelity)模块680和电源690。本领域技术人员可以理解,图6中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
其中,输入单元630可用于接收用户输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的信号输入。具体地,本申请实施例中,该输入单元630可以包括触控面板6301。触控面板6301,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔 等任何适合的物体或附件在触控面板6301上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板6301可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器660,并能接收处理器660发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板6301。除了触控面板6301,输入单元630还可以包括其他输入设备6302,其他输入设备6302可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,其他输入设备6302可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。
其中,显示单元640可用于显示由用户输入的信息或提供给用户的信息以及终端的各种菜单界面。显示单元640可包括显示面板6401。其中显示面板8401可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(OrganicLight-Emitting Diode,OLED)等形式来配置显示面板6401。
应注意,触控面板6301可以覆盖显示面板6401,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器660以确定触摸事件的类型,随后处理器660根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例 如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
RF电路610可用于收发信息或通话过程中,信号的接收和发送,特别地,将网络侧的下行信息接收后,给处理器660处理;另外,将设计上行的数据发送给网络侧。通常,RF电路610包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路610还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobilecommunication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband CodeDivision Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器620用于存储软件程序以及模块,处理器660通过运行存储在存储器620的软件程序以及模块,从而执行终端的各种功能应用以及数据处理。存储器620可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据终端的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其中处理器660是终端的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器6201内的软件程序和/或模块,以及调用存储在第二存储器6202内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。可选的,处理器660可包括一个或多个处理单元。
在本申请实施例中,通过调用存储该第一存储器6201内的软件程序和/或模块和/或该第二存储器6202内的数据,处理器660用于:
确定上行波束或下行波束;
根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
使用所述第一波束发送上行信道。
可选地,作为另一个实施例,处理器660还用于:
所述设定规则中包括多个子规则;
所述根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束,包括:
获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
可选地,作为另一个实施例,处理器660还用于:
所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
可选地,作为另一个实施例,处理器660还用于:
所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
所述第二波束根据第一控制资源集CORESET的波束确定;
所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
所述第二波束根据预定义的第二PUSCH的波束确定;
所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS 的波束确定;
所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
可选地,作为另一个实施例,处理器660还用于:
所述第一CORESET包括:
固定的CORESET;或
在搜索空间存在的第一时隙中标识号ID最小的CORESET;其中,所述第一时隙用于表征终端在确定所述第二波束之前存在搜索空间的最后一个时隙。
可选地,作为另一个实施例,处理器660还用于:
所述第一PDSCH包括:
终端在确定所述第二波束之前的最后一个PDSCH;或
终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗内;或
终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗外。
可选地,作为另一个实施例,处理器660还用于:
所述第一PUCCH信道使用的波束包括:
预定义的PUCCH资源的波束;或
动态调度的用于反馈确认ACK或非确认NACK信息的PUCCH资源的波束。
可选地,作为另一个实施例,处理器660还用于:
所述预定义的PUCCH资源包括:
固定的PUCCH资源;或
资源索引按照指定规则变化的PUCCH资源。
可选地,作为另一个实施例,处理器660还用于:
所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
可选地,作为另一个实施例,处理器660还用于:
所述设定规则或所述第一指示信息包括以下一项或多项子规则:
所述第三波束根据下行PDCCH信道指示确定;
所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
所述第三波束根据预定义的第三PUSCH确定;
所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
所述第三波束根据第二CORESET的波束确定;
所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
可选地,作为另一个实施例,处理器660还用于:
所述第三PUSCH包括:
终端在确定所述第三波束之前的最后一个PUSCH;或
终端在确定所述第三波束之前的最后一个PUSCH,且所述最后一个PUSCH不超过一个时间窗。
可选地,作为另一个实施例,处理器660还用于:
所述第二CORESET包括:
固定的CORESET;或
在搜索空间存在的第二时隙中ID最小的CORESET;其中,所述第二时隙用于表征终端在确定所述第三波束之前存在搜索空间的最后一个时隙。
本申请实施例提供的终端能够实现前述实施例中终端实现的各个过程,为避免重复,此处不再赘述。
由上述实施例可见,在确定上行波束或下行波束后,可以结合设定规则或基站为终端配置的第一指示信息从上行波束或下行波束中来确定上行信道传输使用的第一波束,以及使用该第一波束发送上行信道,从而提高了上行信道传输使用的波束的灵活选择,还提高了上行信道传输的效率。
图7为本申请实施例提供的一种基站的结构示意图,如图7所示,该基站700可以包括至少一个处理器701、存储器702、至少一个其他的用户接口703,以及收发机704。基站700中的各个组件通过总线系统705耦合在一起。 可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统705,总线系统可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器702代表的存储器的各种电路链接在一起。总线系统还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本申请实施例不再对其进行进一步描述。总线接口提供接口。收发机704可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口703还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
可以理解,本申请实施例中的存储器702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请各实施例所描述的系统和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
处理器701负责管理总线系统和通常的处理,存储器702可以存储处理器701在执行操作时所使用的计算机程序或指令,具体地,处理器701可以 用于:
确定上行波束或下行波束;
根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
使用所述第一波束接收上行信道。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本申请描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本申请实施例中所述功能的模块(例如过程、函数等)来实现所述的技术。软件代码可存储在存储器中并通过处理器执行。 存储器可以在处理器中或在处理器外部实现。
可选地,作为另一个实施例,处理器701还用于:
所述设定规则中包括多个子规则;
所述根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束,包括:
获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
可选地,作为另一个实施例,处理器701还用于:
所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
可选地,作为另一个实施例,处理器701还用于:
所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
所述第二波束根据第一控制资源集CORESET的波束确定;
所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
所述第二波束根据预定义的第二PUSCH的波束确定;
所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
可选地,作为另一个实施例,处理器701还用于:
所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
可选地,作为另一个实施例,处理器701还用于:
所述设定规则或所述第一指示信息包括以下一项或多项子规则:
所述第三波束根据下行PDCCH信道指示确定;
所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
所述第三波束根据预定义的第三PUSCH确定;
所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
所述第三波束根据第二CORESET的波束确定;
所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
本申请实施例提供的基站能够实现前述实施例中基站实现的各个过程,为避免重复,此处不再赘述。
由上述实施例可见,在确定上行波束或下行波束后,可以结合设定规则或基站为终端配置的第一指示信息从上行波束或下行波束中来确定上行信道传输使用的第一波束,以及使用该第一波束接收上行信道,从而提高了上行信道传输使用的波束的灵活选择,还提高了上行信道传输的效率。
上述主要从基站的角度对本申请实施例提供的方案进行了介绍。可以理解的是,本申请实施例提供的基站为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。
某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对基站等进行功能模块的划分,例 如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人 计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。所述计算机存储介质是非短暂性(英文:nontransitory)介质,包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的方法,包括:
确定上行波束或下行波束;
根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
使用所述第一波束发送上行信道。
另一方面,本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的方法,包括:
确定上行波束或下行波束;
根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
使用所述第一波束接收上行信道。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (56)

  1. 一种上行信道传输方法,其特征在于,所述上行信道传输方法用于终端,包括:
    确定上行波束或下行波束;
    根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
    使用所述第一波束发送上行信道。
  2. 根据权利要求1所述的上行信道传输方法,其特征在于,所述设定规则中包括多个子规则;
    所述根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束,包括:
    获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
    根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
  3. 根据权利要求1所述的上行信道传输方法,其特征在于,所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
  4. 根据权利要求3所述的上行信道传输方法,其特征在于,所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
    所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
    所述第二波束根据第一控制资源集CORESET的波束确定;
    所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
    所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
    所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
    所述第二波束根据预定义的第二PUSCH的波束确定;
    所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
    所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
  5. 根据权利要求4所述的上行信道传输方法,其特征在于,所述第一CORESET包括:
    固定的CORESET;或
    在搜索空间存在的第一时隙中标识号ID最小的CORESET;其中,所述第一时隙用于表征终端在确定所述第二波束之前存在搜索空间的最后一个时隙。
  6. 根据权利要求4所述的上行信道传输方法,其特征在于,所述第一PDSCH包括:
    终端在确定所述第二波束之前的最后一个PDSCH;或
    终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗内;或
    终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗外。
  7. 根据权利要求4所述的上行信道传输方法,其特征在于,所述第一PUCCH信道使用的波束包括:
    预定义的PUCCH资源的波束;或
    动态调度的用于反馈确认ACK或非确认NACK信息的PUCCH资源的波束。
  8. 根据权利要求7所述的上行信道传输方法,其特征在于,所述预定义的PUCCH资源包括:
    固定的PUCCH资源;或
    资源索引按照指定规则变化的PUCCH资源。
  9. 根据权利要求1或3所述的上行信道传输方法,其特征在于,所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
  10. 根据权利要求9所述的上行信道传输方法,其特征在于,所述设定规则或所述第一指示信息包括以下一项或多项子规则:
    所述第三波束根据下行PDCCH信道指示确定;
    所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
    所述第三波束根据预定义的第三PUSCH确定;
    所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
    所述第三波束根据第二CORESET的波束确定;
    所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
  11. 根据权利要求10所述的上行信道传输方法,其特征在于,所述第三PUSCH包括:
    终端在确定所述第三波束之前的最后一个PUSCH;或
    终端在确定所述第三波束之前的最后一个PUSCH,且所述最后一个PUSCH不超过一个时间窗。
  12. 根据权利要求10所述的上行信道传输方法,其特征在于,所述第二CORESET包括:
    固定的CORESET;或
    在搜索空间存在的第二时隙中ID最小的CORESET;其中,所述第二时隙用于表征终端在确定所述第三波束之前存在搜索空间的最后一个时隙。
  13. 一种上行信道传输方法,其特征在于,所述上行信道传输方法用于基站,包括:
    确定上行波束或下行波束;
    根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
    使用所述第一波束接收上行信道。
  14. 根据权利要求13所述的上行信道传输方法,其特征在于,所述设定规则中包括多个子规则;
    所述根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束,包括:
    获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
    根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
  15. 根据权利要求13所述的上行信道传输方法,其特征在于,所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
  16. 根据权利要求15所述的上行信道传输方法,其特征在于,所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
    所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
    所述第二波束根据第一控制资源集CORESET的波束确定;
    所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
    所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
    所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
    所述第二波束根据预定义的第二PUSCH的波束确定;
    所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
    所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
  17. 根据权利要求13或15所述的上行信道传输方法,其特征在于,所 述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
  18. 根据权利要求17所述的上行信道传输方法,其特征在于,所述设定规则或所述第一指示信息包括以下一项或多项子规则:
    所述第三波束根据下行PDCCH信道指示确定;
    所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
    所述第三波束根据预定义的第三PUSCH确定;
    所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
    所述第三波束根据第二CORESET的波束确定;
    所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
  19. 一种上行信道传输装置,其特征在于,所述上行信道传输装置用于终端,包括:
    第一确定模块,用于确定上行波束或下行波束;
    第二确定模块,用于根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
    发送模块,用于使用所述第一波束发送上行信道。
  20. 根据权利要求19所述的上行信道传输装置,其特征在于,所述设定规则中包括多个子规则;所述第二确定模块包括:
    第一获取子模块,用于获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
    第一确定子模块,用于根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
  21. 根据权利要求19所述的上行信道传输装置,其特征在于,所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
  22. 根据权利要求21所述的上行信道传输装置,其特征在于,所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
    所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
    所述第二波束根据第一控制资源集CORESET的波束确定;
    所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
    所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
    所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
    所述第二波束根据预定义的第二PUSCH的波束确定;
    所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
    所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
  23. 根据权利要求22所述的上行信道传输装置,其特征在于,所述第一CORESET包括:
    固定的CORESET;或
    在搜索空间存在的第一时隙中标识号ID最小的CORESET;其中,所述第一时隙用于表征终端在确定所述第二波束之前存在搜索空间的最后一个时隙。
  24. 根据权利要求22所述的上行信道传输装置,其特征在于,所述第一PDSCH包括:
    终端在确定所述第二波束之前的最后一个PDSCH;或
    终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗内;或
    终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗外。
  25. 根据权利要求22所述的上行信道传输装置,其特征在于,所述第一 PUCCH信道使用的波束包括:
    预定义的PUCCH资源的波束;或
    动态调度的用于反馈确认ACK或非确认NACK信息的PUCCH资源的波束。
  26. 根据权利要求25所述的上行信道传输装置,其特征在于,所述预定义的PUCCH资源包括:
    固定的PUCCH资源;或
    资源索引按照指定规则变化的PUCCH资源。
  27. 根据权利要求19或21所述的上行信道传输装置,其特征在于,所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
  28. 根据权利要求27所述的上行信道传输装置,其特征在于,所述设定规则或所述第一指示信息包括以下一项或多项子规则:
    所述第三波束根据下行PDCCH信道指示确定;
    所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
    所述第三波束根据预定义的第三PUSCH确定;
    所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
    所述第三波束根据第二CORESET的波束确定;
    所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
  29. 根据权利要求28所述的上行信道传输装置,其特征在于,所述第三PUSCH包括:
    终端在确定所述第三波束之前的最后一个PUSCH;或
    终端在确定所述第三波束之前的最后一个PUSCH,且所述最后一个PUSCH不超过一个时间窗。
  30. 根据权利要求28所述的上行信道传输装置,其特征在于,所述第二CORESET包括:
    固定的CORESET;或
    在搜索空间存在的第二时隙中ID最小的CORESET;其中,所述第二时隙用于表征终端在确定所述第三波束之前存在搜索空间的最后一个时隙。
  31. 一种上行信道传输装置,其特征在于,所述上行信道传输装置用于基站,包括:
    第三确定模块,用于确定上行波束或下行波束;
    第四确定模块,用于根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
    接收模块,用于使用所述第一波束接收上行信道。
  32. 根据权利要求31所述的上行信道传输装置,其特征在于,所述设定规则中包括多个子规则;
    所述第四确定模块包括:
    第二获取子模块,用于获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
    第二确定子模块,用于根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
  33. 根据权利要求31所述的上行信道传输装置,其特征在于,所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
  34. 根据权利要求33所述的上行信道传输装置,其特征在于,所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
    所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
    所述第二波束根据第一控制资源集CORESET的波束确定;
    所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
    所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
    所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
    所述第二波束根据预定义的第二PUSCH的波束确定;
    所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
    所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
  35. 根据权利要求31或33所述的上行信道传输装置,其特征在于,所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
  36. 根据权利要求35所述的上行信道传输装置,其特征在于,所述设定规则或所述第一指示信息包括以下一项或多项子规则:
    所述第三波束根据下行PDCCH信道指示确定;
    所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
    所述第三波束根据预定义的第三PUSCH确定;
    所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
    所述第三波束根据第二CORESET的波束确定;
    所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
  37. 一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    确定上行波束或下行波束;
    根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
    使用所述第一波束发送上行信道。
  38. 根据权利要求37所述的终端,其特征在于,所述设定规则中包括多个子规则;
    所述根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束,包括:
    获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
    根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
  39. 根据权利要求37所述的终端,其特征在于,所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
  40. 根据权利要求39所述的终端,其特征在于,所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
    所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的波束确定;
    所述第二波束根据第一控制资源集CORESET的波束确定;
    所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
    所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
    所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
    所述第二波束根据预定义的第二PUSCH的波束确定;
    所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
    所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
  41. 根据权利要求40所述的终端,其特征在于,所述第一CORESET包括:
    固定的CORESET;或
    在搜索空间存在的第一时隙中标识号ID最小的CORESET;其中,所述第一时隙用于表征终端在确定所述第二波束之前存在搜索空间的最后一个时 隙。
  42. 根据权利要求40所述的终端,其特征在于,所述第一PDSCH包括:
    终端在确定所述第二波束之前的最后一个PDSCH;或
    终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗内;或
    终端在确定所述第二波束之前的最后一个PDSCH,且所述最后一个PDSCH在一个时间窗外。
  43. 根据权利要求40所述的终端,其特征在于,所述第一PUCCH信道使用的波束包括:
    预定义的PUCCH资源的波束;或
    动态调度的用于反馈确认ACK或非确认NACK信息的PUCCH资源的波束。
  44. 根据权利要求43所述的终端,其特征在于,所述预定义的PUCCH资源包括:
    固定的PUCCH资源;或
    资源索引按照指定规则变化的PUCCH资源。
  45. 根据权利要求37或39所述的终端,其特征在于,所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
  46. 根据权利要求45所述的终端,其特征在于,所述设定规则或所述第一指示信息包括以下一项或多项子规则:
    所述第三波束根据下行PDCCH信道指示确定;
    所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
    所述第三波束根据预定义的第三PUSCH确定;
    所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
    所述第三波束根据第二CORESET的波束确定;
    所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
  47. 根据权利要求46所述的终端,其特征在于,所述第三PUSCH包括:
    终端在确定所述第三波束之前的最后一个PUSCH;或
    终端在确定所述第三波束之前的最后一个PUSCH,且所述最后一个PUSCH不超过一个时间窗。
  48. 根据权利要求46所述的终端,其特征在于,所述第二CORESET包括:
    固定的CORESET;或
    在搜索空间存在的第二时隙中ID最小的CORESET;其中,所述第二时隙用于表征终端在确定所述第三波束之前存在搜索空间的最后一个时隙。
  49. 一种基站,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    确定上行波束或下行波束;
    根据所述上行波束或下行波束、以及设定规则或基站为终端配置的第一指示信息,确定上行信道传输使用的第一波束;
    使用所述第一波束接收上行信道。
  50. 根据权利要求49所述的基站,其特征在于,所述设定规则中包括多个子规则;
    所述根据所述上行波束或下行波束、以及设定规则,确定上行信道传输使用的第一波束,包括:
    获取基站为终端配置的第二指示信息,所述第二指示信息中包括用于指示所述子规则生效的标识;
    根据所述设定规则和所述第二指示信息,从所述上行波束或下行波束中确定上行信道传输使用的第一波束。
  51. 根据权利要求49所述的基站,其特征在于,所述上行信道包括第一物理上行共享信道PUSCH,所述第一波束中包括所述第一PUSCH传输使用的第二波束。
  52. 根据权利要求51所述的基站,其特征在于,所述设定规则或所述第一指示信息中包括以下一项或多项子规则:
    所述第二波束根据调度所述第一PUSCH的物理下行控制信道PDCCH的 波束确定;
    所述第二波束根据第一控制资源集CORESET的波束确定;
    所述第二波束根据第一物理下行共享信道PDSCH中的解调参考信号DMRS的波束确定;
    所述第二波束根据终端在第一信道状态信息参考信号资源指示CRI上报中的参考信号的波束确定;其中,所述第一CRI上报用于表征终端在确定所述第二波束之前的最后一次CRI上报;
    所述第二波束根据第一随机接入信道RACH使用的波束确定;其中,所述第一RACH用于表征终端在确定所述第二波束之前的最后一个RACH;
    所述第二波束根据预定义的第二PUSCH的波束确定;
    所述第二波束根据用于确定PDSCH传输波束的信道探测参考信号SRS的波束确定;
    所述第二波束根据第一物理上行控制信道PUCCH信道使用的波束确定。
  53. 根据权利要求49或51所述的基站,其特征在于,所述上行信道包括第二PUCCH,所述第一波束中包括所述第二PUCCH传输使用的第三波束。
  54. 根据权利要求53所述的基站,其特征在于,所述设定规则或所述第一指示信息包括以下一项或多项子规则:
    所述第三波束根据下行PDCCH信道指示确定;
    所述第三波束根据调度所述第二PUCCH的PDCCH的波束确定;
    所述第三波束根据预定义的第三PUSCH确定;
    所述第三波束根据第二RACH信道使用的波束确定;其中,所述第二RACH用于表征终端在确定所述第三波束之前的最后一个RACH;
    所述第三波束根据第二CORESET的波束确定;
    所述第三波束根据与PUCCH关联的PDSCH使用的波束确定。
  55. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至12任一项所述的上行信道传输方法的步骤。
  56. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征 在于,该计算机程序被处理器执行时实现如权利要求13至18任一项所述的上行信道传输方法的步骤。
PCT/CN2020/136875 2020-03-13 2020-12-16 上行信道传输方法、装置、基站、终端及存储介质 WO2021179725A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/909,749 US20230144956A1 (en) 2020-03-13 2020-12-16 Uplink channel transmission method and apparatus, and base station, terminal and storage medium
EP20923812.0A EP4120759A4 (en) 2020-03-13 2020-12-16 UPLINK CHANNEL TRANSMISSION METHOD AND APPARATUS, BASE STATION, TERMINAL AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010177082.2 2020-03-13
CN202010177082.2A CN113395780B (zh) 2020-03-13 2020-03-13 上行信道传输方法、装置、基站、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2021179725A1 true WO2021179725A1 (zh) 2021-09-16

Family

ID=77616408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136875 WO2021179725A1 (zh) 2020-03-13 2020-12-16 上行信道传输方法、装置、基站、终端及存储介质

Country Status (4)

Country Link
US (1) US20230144956A1 (zh)
EP (1) EP4120759A4 (zh)
CN (1) CN113395780B (zh)
WO (1) WO2021179725A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116684043A (zh) * 2022-02-18 2023-09-01 大唐移动通信设备有限公司 Msg3发送方法、Msg3接收方法、装置、设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150453A (zh) * 2017-06-16 2019-01-04 电信科学技术研究院 波束管理方法、网络设备和终端
WO2020020128A1 (zh) * 2018-07-25 2020-01-30 维沃移动通信有限公司 用于多波束发送上行信道的方法、终端设备和网络侧设备
CN110809331A (zh) * 2018-08-06 2020-02-18 华为技术有限公司 接收参考信号的方法和通信设备
CN110838861A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 信号传输方法、波束确定方法及其装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3602939A1 (en) * 2017-03-24 2020-02-05 Telefonaktiebolaget LM Ericsson (PUBL) Systems and methods of indicating a transmitter configuration for a wireless device
CN108988921B (zh) * 2017-08-11 2019-08-02 电信科学技术研究院有限公司 一种波束信息的指示、确定方法及装置、通信系统
KR20190044875A (ko) * 2017-10-23 2019-05-02 삼성전자주식회사 무선 통신 시스템에서 상향링크 기준신호 또는 채널의 송수신 방법 및 장치
JP2021516892A (ja) * 2018-02-14 2021-07-08 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 物理上り共有チャネルの伝送方法及び端末デバイス
US11812449B2 (en) * 2018-08-10 2023-11-07 Qualcomm Incorporated Active beam management, configuration, and capability signaling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150453A (zh) * 2017-06-16 2019-01-04 电信科学技术研究院 波束管理方法、网络设备和终端
WO2020020128A1 (zh) * 2018-07-25 2020-01-30 维沃移动通信有限公司 用于多波束发送上行信道的方法、终端设备和网络侧设备
CN110809331A (zh) * 2018-08-06 2020-02-18 华为技术有限公司 接收参考信号的方法和通信设备
CN110838861A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 信号传输方法、波束确定方法及其装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "UL beam management RS", 3GPP DRAFT; R1-1612496, vol. RAN WG1, 4 November 2016 (2016-11-04), Reno, USA, pages 1 - 5, XP051189623 *
See also references of EP4120759A4 *

Also Published As

Publication number Publication date
CN113395780A (zh) 2021-09-14
EP4120759A4 (en) 2024-04-03
CN113395780B (zh) 2023-09-12
US20230144956A1 (en) 2023-05-11
EP4120759A1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2018113593A1 (zh) 一种波束管理信息的配置、处理方法、终端及基站
US11647482B2 (en) Method and device for selecting grant-free and grant-based uplink transmission
WO2021175146A1 (zh) 频率补偿方法、装置、网络侧设备、终端及存储介质
WO2021174994A1 (zh) 波束推荐方法、装置、网络侧设备、终端及存储介质
WO2021196880A1 (zh) 一种harq反馈方法、终端及基站
WO2021179725A1 (zh) 上行信道传输方法、装置、基站、终端及存储介质
WO2022012171A1 (zh) Csi反馈方法、装置、电子设备及存储介质
WO2019034074A1 (zh) 随机接入方法、终端和基站
JP7073525B2 (ja) 物理アップリンク制御チャネルリソースの決定方法及び通信装置
WO2021175149A1 (zh) 一种信号的传输方法、终端、网络设备和存储介质
WO2022028138A1 (zh) 上行信道的传输方法、终端、基站及存储介质
WO2021197088A1 (zh) 控制信道检测方法、装置、终端、基站及存储介质
CN113328831B (zh) Harq-ack反馈方法终端、基站和存储介质
EP3664339A1 (en) Data transmission method, and data detection method and device
US20230291521A1 (en) Signal transmission method and apparatus, and device and storage medium
CN113473607B (zh) Pucch传输方法、装置、终端、网络侧和存储介质
US20220132327A1 (en) Method for pucch transmission, method for information configuration, and device
WO2021219084A1 (zh) 信号的发送方法、信号的接收方法、装置及存储介质
WO2022022135A1 (zh) 一种数据传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020923812

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020923812

Country of ref document: EP

Effective date: 20221013

NENP Non-entry into the national phase

Ref country code: DE