WO2021197088A1 - 控制信道检测方法、装置、终端、基站及存储介质 - Google Patents

控制信道检测方法、装置、终端、基站及存储介质 Download PDF

Info

Publication number
WO2021197088A1
WO2021197088A1 PCT/CN2021/081600 CN2021081600W WO2021197088A1 WO 2021197088 A1 WO2021197088 A1 WO 2021197088A1 CN 2021081600 W CN2021081600 W CN 2021081600W WO 2021197088 A1 WO2021197088 A1 WO 2021197088A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
control channel
detection
slot group
channel detection
Prior art date
Application number
PCT/CN2021/081600
Other languages
English (en)
French (fr)
Inventor
王俊伟
赵锐
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP21780717.1A priority Critical patent/EP4132061A4/en
Priority to BR112022019863A priority patent/BR112022019863A2/pt
Priority to US17/913,817 priority patent/US20240215037A1/en
Publication of WO2021197088A1 publication Critical patent/WO2021197088A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a control channel detection method, device, terminal, base station, and storage medium.
  • the base station Before data communication between the base station and the terminal, the base station needs to send scheduling signaling to the terminal.
  • the scheduling signaling is sent on the PDCCH (Physical Downlink Control Channel, physical downlink control channel).
  • PDCCH Physical Downlink Control Channel
  • the existing protocol stipulates that the terminal needs to detect multiple candidate PDCCH channels in each time slot. If the terminal detects more candidate PDCCH channels, the base station scheduling is more flexible, and at the same time, the terminal is required to have a stronger channel detection capability, which causes the problem of the balance between the flexibility of the base station scheduling and the terminal detection capability.
  • the time slot duration becomes smaller, which will cause the terminal to be unable to complete the control signaling reception and configuration process in the corresponding time slot.
  • the embodiments of the present disclosure provide a control channel detection method, device, terminal, base station, and storage medium.
  • the embodiments of the present disclosure provide a control channel detection method, which is applied to a terminal and includes:
  • Determining a detection time slot group for control channel detection where the detection time slot group is used to characterize the time slot group that can share the control channel detection capability when the time slot conditions are specified;
  • the specified time slot condition includes that the subcarrier spacing SCS is greater than 120 KHz; the shared control channel detection capability is used to characterize the control channel detection capabilities corresponding to multiple time slots.
  • the determining a detection time slot group used for control channel detection includes:
  • the first configuration information includes:
  • the number of time slots included in the detection time slot group is the number of time slots included in the detection time slot group
  • the maximum number of CCEs in the detection time slot group is the maximum number of CCEs in the detection time slot group.
  • it also includes at least one of the following:
  • the number of time slots is associated with SCS
  • the maximum number of candidate control channels is associated with SCS
  • the maximum number of CCEs is associated with SCS.
  • the number of time slots is 4; if the SCS is 960 KHz, the number of time slots is 8.
  • the number of time slots is determined based on the ratio of the SCS to the preset reference SCS.
  • the performing control channel detection in the search space includes:
  • control channel detection quantity is not greater than the maximum candidate control channel quantity, the control channel detection is performed in the search space.
  • the determining the search space of the detection time slot group includes:
  • the second configuration information includes:
  • First indication information where the first indication information is used to indicate a detection time slot group that has a control channel detection opportunity
  • the second indication information is used to indicate that the control channel detection opportunity is located at a designated position in the detection time slot group, and the designated position includes one designated time slot or multiple designated time slots in the detection time slot group .
  • the second configuration information further includes:
  • the start position offset of the detection time slot group, and the start position offset is used to indicate each time slot included in the detection time slot group.
  • the performing control channel detection in the search space includes:
  • it also includes:
  • the shared data channel is received or sent according to the detected one or more control information.
  • the embodiments of the present disclosure provide a control channel detection method, which is used in a base station and includes:
  • Determining a detection time slot group for control channel detection where the detection time slot group is used to characterize the time slot group that can share the control channel detection capability when the time slot conditions are specified;
  • the control channel is sent in the search space, so that the terminal performs control channel detection in the search space.
  • the specified time slot condition is that the subcarrier spacing SCS is greater than 120 KHz; the shared control channel detection capability is used to characterize the control channel detection capabilities corresponding to multiple time slots.
  • the determining a detection time slot group used for control channel detection includes:
  • the detection time slot group is determined according to the first configuration information.
  • the first configuration information includes:
  • the number of time slots included in the detection time slot group is the number of time slots included in the detection time slot group
  • the maximum number of CCEs in the detection time slot group is the maximum number of CCEs in the detection time slot group.
  • it also includes at least one of the following:
  • the number of time slots is associated with SCS
  • the maximum number of candidate control channels is associated with SCS
  • the maximum number of CCEs is associated with SCS.
  • the number of time slots is 4; if the SCS is 960 KHz, the number of time slots is 8.
  • the number of time slots is determined based on the ratio of the SCS to the preset reference SCS.
  • the determining the search space of the detection time slot group includes:
  • the search space is determined according to the second configuration information.
  • the second configuration information includes:
  • First indication information where the first indication information is used to indicate a detection time slot group that has a control channel detection opportunity
  • the second indication information is used to indicate that the control channel detection opportunity is located at a designated position in the detection time slot group, and the designated position includes one designated time slot or multiple designated time slots in the detection time slot group .
  • the second configuration information further includes:
  • the start position offset of the detection time slot group, and the start position offset is used to indicate each time slot included in the detection time slot group.
  • control channel is sent on one designated time slot or multiple designated time slots in the detection time slot group.
  • sending a control channel in the search space includes:
  • Each control information is received or transmitted on the shared data channel.
  • the embodiment of the present disclosure provides a control channel detection device, which is used in a terminal and includes:
  • the first determining module is configured to determine a detection time slot group for control channel detection, where the detection time slot group is used to characterize the time slot group that can share the control channel detection capability when the time slot conditions are specified;
  • the second determining module is configured to determine the search space of the detection time slot group
  • the control channel detection module is used to perform control channel detection in the search space.
  • the embodiment of the present disclosure provides a control channel detection device, which is used in a base station and includes:
  • a third determining module configured to determine a detection time slot group for control channel detection, where the detection time slot group is used to characterize a time slot group that can share control channel detection capabilities when time slot conditions are specified;
  • a fourth determining module configured to determine the search space of the detection time slot group
  • the control channel sending module is configured to send a control channel in the search space, so that the terminal can perform control channel detection in the search space.
  • the embodiment of the present disclosure provides a terminal including a memory, a processor, and a program stored on the memory and capable of running on the processor, and the processor implements the following steps when the program is executed:
  • the detection time slot group is used to characterize the time slot group that can share the control channel detection capability when the time slot conditions are specified
  • the specified time slot condition includes that the subcarrier spacing SCS is greater than 120 KHz; the shared control channel detection capability is used to characterize the control channel detection capabilities corresponding to multiple time slots.
  • the determining a detection time slot group used for control channel detection includes:
  • the first configuration information includes:
  • the number of time slots included in the detection time slot group is the number of time slots included in the detection time slot group
  • the maximum number of CCEs in the detection time slot group is the maximum number of CCEs in the detection time slot group.
  • the performing control channel detection in the search space includes:
  • control channel detection quantity is not greater than the maximum candidate control channel quantity, the control channel detection is performed in the search space.
  • the determining the search space of the detection time slot group includes:
  • the second configuration information includes:
  • First indication information where the first indication information is used to indicate a detection time slot group that has a control channel detection opportunity
  • the second indication information is used to indicate that the control channel detection opportunity is located at a designated position in the detection time slot group, and the designated position includes one designated time slot or multiple designated time slots in the detection time slot group .
  • the second configuration information further includes:
  • the start position offset of the detection time slot group, and the start position offset is used to indicate each time slot included in the detection time slot group.
  • the performing control channel detection in the search space includes:
  • it also includes:
  • the shared data channel is received or sent according to the detected one or more control information.
  • the embodiment of the present disclosure provides a base station, including a memory, a processor, and a program stored on the memory and capable of running on the processor, and the processor implements the following steps when the processor executes the program:
  • the detection time slot group is used to characterize the time slot group that can share the control channel detection capability when the time slot conditions are specified
  • the control channel is sent in the search space, so that the terminal performs control channel detection in the search space.
  • the specified time slot condition is that the subcarrier spacing SCS is greater than 120 KHz; the shared control channel detection capability is used to characterize the control channel detection capabilities corresponding to multiple time slots.
  • the determining a detection time slot group used for control channel detection includes:
  • the detection time slot group is determined according to the first configuration information.
  • the first configuration information includes:
  • the number of time slots included in the detection time slot group is the number of time slots included in the detection time slot group
  • the maximum number of CCEs in the detection time slot group is the maximum number of CCEs in the detection time slot group.
  • the determining the search space of the detection time slot group includes:
  • the search space is determined according to the second configuration information.
  • the second configuration information includes:
  • First indication information where the first indication information is used to indicate a detection time slot group that has a control channel detection opportunity
  • the second indication information is used to indicate that the control channel detection opportunity is located at a designated position in the detection time slot group, and the designated position includes one designated time slot or multiple designated time slots in the detection time slot group .
  • the second configuration information further includes:
  • the start position offset of the detection time slot group, and the start position offset is used to indicate each time slot included in the detection time slot group.
  • the sending a control channel in the search space includes:
  • the control channel is transmitted on one designated time slot or multiple designated time slots in the detection time slot group.
  • sending a control channel in the search space includes:
  • Each control information is received or transmitted on the shared data channel.
  • the embodiment of the present disclosure provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the control channel detection method on the terminal side are realized.
  • the embodiment of the present disclosure provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the control channel detection method on the base station side are realized.
  • the embodiments of the present disclosure provide a control channel detection method, device, terminal, base station, and storage medium.
  • the detection time slot group is used to characterize that it can be shared under specified time slot conditions.
  • the time slot group of the control channel detection capability is determined, the search space of the detection time slot group is determined, and the control channel detection is performed in the search space, so as to realize the control channel detection with the detection time slot group as a unit, avoiding the increase of SCS
  • the terminal is unable to complete the process of receiving and configuring the control signaling in the corresponding time slot due to the large size, which also reduces the complexity of the terminal to perform control channel detection.
  • FIG. 1 is a flowchart of a control channel detection method provided by an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of a search space configuration provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of PDCCH detection opportunities in a time slot group provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of another search space configuration provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of allocating detection quantities of candidate PDCCHs according to an embodiment of the disclosure.
  • Figure 7 is a schematic diagram of CCE aggregation levels and candidate PDCCHs provided by an embodiment of the disclosure.
  • FIG. 8 is another schematic diagram of allocating the detection quantity of candidate PDCCH according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of an indication of a time slot group and a time slot provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of another time slot group and time slot indication provided by an embodiment of the disclosure.
  • FIG. 11 is a block diagram of a control channel detection device provided by an embodiment of the disclosure.
  • FIG. 12 is a block diagram of a control channel detection device provided by an embodiment of the disclosure.
  • FIG. 13 is a schematic structural diagram of a terminal provided by an embodiment of the disclosure.
  • FIG. 14 is a schematic structural diagram of another terminal provided by an embodiment of the disclosure.
  • FIG. 15 is a schematic structural diagram of a base station provided by an embodiment of the disclosure.
  • the base station Before data communication between the base station and the terminal, the base station needs to send scheduling signaling to the terminal.
  • the scheduling signaling is sent on the PDCCH (Physical Downlink Control Channel, physical downlink control channel).
  • PDCCH Physical Downlink Control Channel
  • the existing protocol stipulates that the terminal needs to detect multiple candidate PDCCH channels in each time slot. If the terminal detects more candidate PDCCH channels, the base station scheduling is more flexible, and at the same time, the terminal is required to have a stronger channel detection capability, which causes the problem of the balance between the flexibility of the base station scheduling and the terminal detection capability.
  • the current standard defines the number of PDCCH candidate channels detected by the terminal in each time slot when the SCS is below 120KHz. For the case where the SCS is greater than 120KHz, how to define the terminal's ability to detect the number of PDCCH candidate channels, there is currently no better optimization solution.
  • the PDCCH channel is used to send DCI (Downlink Control Information, downlink control information), and the transmitted information includes public control information and user-specific control information.
  • DCI Downlink Control Information, downlink control information
  • CORESET control resource set, control resource set
  • NR New Radio
  • the CORESET is used to characterize the size of the PDCCH channel resource block.
  • a CORESET is composed of several CCEs (Control-Channel Elements), and each 6 CCEs form a REG (Resource Element Group), and each REG includes an RB (Resource Block, resource block).
  • a CORESET includes multiple candidate PDCCHs, and these candidate control channels need to be detected by the terminal.
  • any one or more CCEs can form a candidate PDCCH.
  • the current standard stipulates that the PDCCH is composed of 1 CCE, called the candidate PDCCH with CCE aggregation level 1, and the PDCCH is composed of 2 CCEs, called the candidate PDCCH with CCE aggregation level 2, and the PDCCH is composed of 4 CCEs, called CCE.
  • Candidate PDCCH with aggregation level 4 stipulates that the supported CCE aggregation levels are: 1, 2, 4, 8, 16.
  • the number of candidate PDCCHs of the broadcast channel and the aggregation level of CCEs are shown in Table 1.
  • the search space defines the time range during which the terminal needs to perform PDCCH detection.
  • Search space is divided into CSS (Common Search Space) and USS (User Equipment specific search space, terminal-specific search space).
  • CSS refers to the search space where all terminals or a group of terminals need to perform PDCCH detection; USS It is the base station unit that is individually configured for a certain terminal, and only the search space for the configured terminal to perform PDCCH detection.
  • the first number of candidate control channels that the CSS needs to detect is recorded as: For USS, the second number of candidate control channels that need to be detected is denoted as In each slot, detect the total number of candidate PDCCH It is the sum of the first quantity and the second quantity, and does not exceed a certain threshold.
  • the detection capability determined by the current standard protocol is shown in Table 2.
  • the number of first CCEs required to meet the number of candidate detection channels mentioned above is recorded as:
  • the number of second CCEs required to meet the number of candidate detection channels mentioned above is recorded as In each time slot, the total number of CCE It is the sum of the number of first CCEs and the number of second CCEs, and does not exceed a certain threshold.
  • the detection capabilities determined by the current standard protocol are shown in Table 3.
  • the number of candidate PDCCH detection channels and the number of CCEs defined in the current NR protocol are based on time slots. That is to say, the terminal needs to perform blind PDCCH detection based on the time slot.
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • PUSCH Physical Uplink Shared Channel, physical layer uplink shared channel
  • the base station when the base station schedules the terminal to receive a PDSCH, the base station first sends a scheduling information or DCI on the PDCCH.
  • the DCI indicates the time domain/frequency domain information of the PDSCH, modulation and coding rate, and other information.
  • the terminal detects the PDCCH at the appointed time slot position (the appointed time is configured by the base station), analyzes the DCI content, configures the receiving parameters of the PDSCH according to the analyzed DCI content, and the PDSCH demodulation & decoding module performs according to the configuration information Demodulation and decoding of PDSCH.
  • the PDCCH receiving and detecting module takes time t1; the PDCCH receiving and detecting module sends the detected DCI information to the DCI analysis module, which takes time t2; the DCI analysis module, takes time t3; the DCI analysis module configures PDSCH The information is sent to the PDSCH demodulation & decoding module, which takes time t4; the PDSCH demodulation & decoding module, takes time t5.
  • the time slot length is greater than or equal to 0.125ms, when each time slot has DCI scheduling information, within 0.125ms, PDCCH detection, DCI analysis and PDSCH scheduling information can be completed Configuration process.
  • the time slot becomes smaller. In the corresponding time slot, due to the following reasons, it is difficult for the terminal to complete the control signaling reception and configuration process:
  • embodiments of the present disclosure provide a control channel detection method, device, terminal, base station, and storage medium to meet the needs of wireless communication development.
  • the control channel detection method, device, terminal, base station, and storage medium provided by the embodiments of the present disclosure can be applied to a wireless communication system or a wireless and wired system.
  • a wireless communication system Including but not limited to 5G systems (such as NR systems), 6G systems, satellite systems, car networking systems, Long Term Evolution (LTE) systems, and subsequent evolution communication systems of the aforementioned systems, etc.
  • 5G systems such as NR systems
  • 6G systems such as NR systems
  • satellite systems such as NR systems
  • LTE Long Term Evolution
  • the base stations provided in the embodiments of the present disclosure may include, but are not limited to, one or more of the following: commonly used base stations, evolved node base stations (eNB), network side equipment in 5G systems (such as next-generation base stations) (next generation node base station, gNB), transmission and reception point (transmission and reception point, TRP)) and other equipment.
  • commonly used base stations evolved node base stations (eNB)
  • eNB evolved node base stations
  • 5G systems such as next-generation base stations
  • gNB next generation node base station
  • TRP transmission and reception point
  • the terminal provided in the embodiments of the present disclosure may be called User Equipment (User Equipment, UE for short).
  • Terminals include, but are not limited to, handheld devices and vehicle-mounted devices.
  • it may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA), etc.
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • FIG. 1 is a flowchart of a control channel detection method provided by an embodiment of the disclosure.
  • the control channel detection method may be used in a terminal. As shown in Figure 1, the control channel detection method may include the following steps:
  • Step 110 Determine a detection time slot group for control channel detection, and the detection time slot group is used to characterize the time slot group that can share the control channel detection capability when the time slot conditions are specified.
  • the shared control channel detection capability may mean that the control channel detection capability is based on a time slot group, that is, multiple time slots correspond to one control channel detection capability.
  • control channel detection can be used in the existing Uu interface; it can also be used in the side link, that is, the side link link.
  • the detection time slot group may refer to a time slot group composed of multiple time slots, and these time slots share a control channel detection capability when the time slot conditions are specified.
  • control channel is the PDCCH;
  • detection time slot group used for PDCCH detection includes multiple time slots, and these time slots share one PDCCH detection capability when the time slot conditions are specified.
  • the specified time slot condition may be a specific value or a value range of the SCS set according to actual conditions.
  • the specified time slot condition is that SCS is equal to 120KHz; or the specified time slot condition is that SCS is greater than 120KHz.
  • Step 120 Determine the search space for detecting the time slot group.
  • the search space may refer to the time range in which the control channel detection capability is configured in the detection time slot group, which is the time range in which the terminal needs to perform control channel detection and the time range in which the base station needs to send the control channel.
  • the search space that the terminal needs to detect the control channel and the search space that the base station needs to send the control channel are the same, which can reduce the implementation complexity of the terminal.
  • the type of search space can be CSS or USS.
  • the number of search spaces can be one or more.
  • SCS is equal to 480KHz
  • 4 time slots form a detection time slot group
  • the number of search spaces is 1
  • the search space is configured in time slot 1 of the detection time slot group
  • other time slots in the detection time slot group No search space is configured on it.
  • SCS is equal to 960KHz
  • 8 time slots form a detection time slot group
  • the number of search spaces is 2
  • the allocation is configured in time slot 0 and time slot 4.
  • Step 130 Perform control channel detection in the search space.
  • the base station when the base station sends control information on the control channel, it only sends control information in the search space configured with the control channel detection capability in the detection time slot group, so the terminal can only send the control information in the search space configured with the control channel detection capability. Perform control channel detection inside.
  • the base station when the base station sends DCI on the PDCCH, it only sends DCI on the time slot 0 configured with the PDCCH detection capability in the detection time slot group.
  • each DCI can schedule up to 4 PDSCH channel data or 4 PUSCH uplinks. Shared channel data.
  • the terminal only detects the PDCCH on the time slot 0 configured with the PDCCH detection capability in the time slot group, and performs PDSCH configuration reception or PUSCH transmission according to the detected DCI.
  • the corresponding Demodulation and decoding when performing PDSCH reception, the corresponding Demodulation and decoding.
  • the detection time slot group is used to characterize the time slot group that can share the control channel detection ability when the time slot conditions are specified, and the detection time slot group is determined
  • the search space and the control channel detection in the search space realize the control channel detection with the detection time slot group as a unit, and avoid the terminal being unable to complete the control signal in the corresponding time slot as the SCS increases.
  • the process of receiving and configuring commands also reduces the complexity of the terminal's control channel detection.
  • the specified time slot condition in the above step 110 may include that the SCS is greater than 120 KHz; the shared control channel detection capability is used to characterize the control channel detection capabilities corresponding to multiple time slots.
  • a time slot group can be used as a unit, that is, multiple time slots correspond to (or It is called sharing) a control channel detection capability, and the search space is configured to realize the corresponding control channel detection.
  • Corresponding or sharing control channel detection capability may mean that multiple time slots in the same time slot share one control channel detection capability.
  • the control channel is the PDCCH; the detection time slot group used for PDCCH detection includes multiple time slots, and these time slots share one PDCCH detection capability when the time slot conditions are specified.
  • the detection time slot group can be used as a unit to perform control channel detection, that is, multiple time slots correspond to one control channel detection capability, thereby avoiding the terminal caused by the increase of SCS The process of receiving and configuring control signaling cannot be completed in the corresponding time slot, which meets the needs of wireless communication development.
  • the detection time slot group used for control channel detection may include (1-1-1) or (1-1-2):
  • (1-1-1) Determine the first configuration information for the detection time slot group according to the interface protocol between the first node and the second node, and determine the detection time slot group according to the first configuration information.
  • the first node may be a base station and the second node may be a terminal; or, the first node may be a terminal and the second node may be a base station. That is, the first configuration information for the detection time slot group is determined according to the interface protocol between the base station and the terminal.
  • (1-1-2) Receive the first configuration information sent by the base station, and determine the detection time slot group according to the first configuration information.
  • the base station may send the first configuration information to the terminal through high-level signaling, so that the terminal may obtain the first configuration information through high-level signaling.
  • the first configuration information for the detection time slot group can be determined according to the interface protocol between the first node and the second node, and the detection time slot group can be determined according to the first configuration information, It is also possible to receive the first configuration information sent by the base station, and determine the detection time slot group according to the first configuration information, thereby enriching the method of obtaining the first configuration information, and thereby improving the reliability of determining the detection time slot group sex.
  • the first configuration information in (1-1-1) or (1-1-2) above may include:
  • the number of time slots included in the detection time slot group is the number of time slots included in the detection time slot group
  • the maximum number of CCEs in the detection time slot group is the maximum number of CCEs in the detection time slot group.
  • the number of time slots is associated with the SCS. For example, if the SCS is 480KHz, the number of time slots is 4, and if the SCS is 960KHz, the number of time slots is 8. Of course, this is only an example, and the relationship between the number of time slots and the SCS can be set based on requirements.
  • the number of time slots included in the detection time slot group can be directly configured, for example: the number of time slots is 5 or 4; in addition, the number of time slots can be based on SCS and a preset reference SCS The ratio is determined, and at this time, a certain specific SCS can be used as a reference for multiple expansion.
  • the extension formula is:
  • ⁇ r is the reference SCS
  • k 0 is the expansion coefficient.
  • the maximum number of candidate control channels is the maximum number of candidate PDCCHs, as shown in Table 4 Among them, the configuration of the maximum number of candidate PDCCHs depends on the capabilities of the terminal.
  • the shared time slot is 2, and the maximum number of candidate PDCCHs is M1.
  • the shared time slot is 4, and the maximum number of PDCCH candidates is M2.
  • the shared time slot is 8, and the maximum number of PDCCH candidates is M3.
  • the shared time slot is 16, and the maximum number of PDCCH candidates is M4.
  • SCS 480KHz
  • SCS 960KHz
  • the maximum number of CCEs is C3, and C3 ⁇ C2.
  • this is only an example, and the relationship between the maximum number of CCEs and SCS can be set based on requirements.
  • the maximum number of CCEs mentioned above can be as in Table 5 Among them, the configuration of the maximum number of CCEs also depends on the capabilities of the terminal.
  • the shared time slot is 2, and the maximum number of CCEs is C1.
  • the shared time slot is 4, and the maximum number of CCEs is C2.
  • the shared time slot is 8, and the maximum number of CCEs is C3.
  • the shared time slot is 16, and the maximum number of CCEs is C4.
  • control channel detection in the search space in step 130 it may include:
  • the base station when the base station sends control channels, it must be within the range of the "maximum number of candidate control channels configured"; correspondingly, when the terminal performs control channel detection, it is only within the range of the "maximum number of candidate control channels configured". Perform control channel detection inside.
  • the number of control channel detections is less than or equal to 20.
  • control channel detection is performed in the search space, thereby ensuring that the control channel detection is performed within the capability of the terminal, and the control channel is improved. Reliability of detection.
  • (1-3-1) Determine the second configuration information for the search space according to the interface protocol between the first node and the second node, and determine the search space according to the second configuration information.
  • the first node may be a base station and the second node may be a terminal; or, the first node may be a terminal and the second node may be a base station. That is, the second configuration information for the search space is determined according to the interface protocol between the base station and the terminal.
  • (1-3-2) Receive the second configuration information sent by the base station, and determine the search space according to the second configuration information.
  • the base station may send the second configuration information to the terminal through high-level signaling, so that the terminal may obtain the second configuration information through high-level signaling.
  • the second configuration information for the search space can be determined according to the interface protocol between the first node and the second node, and the search space can be determined according to the second configuration information, and the base station can also be received
  • the second configuration information is sent, and the search space is determined according to the second configuration information, thereby enriching the way of obtaining the second configuration information, and further improving the reliability of determining the search space.
  • the second configuration information in (1-3-1) or (1-3-2) above may include:
  • First indication information where the first indication information is used to indicate a detection time slot group that has a control channel detection opportunity
  • the second indication information is used to indicate that the control channel detection opportunity is located at a designated position in the detection time slot group, and the designated position includes one designated time slot or multiple designated time slots in the detection time slot group .
  • multiple designated time slots may refer to at least two time slots, for example, time slot 0 and time slot 3 in the detection time slot group.
  • the above-mentioned first indication information can indicate which time slot groups have control channel detection opportunities.
  • the terminal When the time slot group is configured with detection opportunities, the terminal performs control channel detection in the time slot group, otherwise, it is not used in the time slot group. Control channel detection is performed in the process.
  • ⁇ 0, 1, 2, 3 ⁇ is a time slot group, which has control channel detection opportunities
  • ⁇ 8, 9, 10, 11 ⁇ is another time slot group, which does not have Control channel detection opportunities.
  • the first way is to use a bitmap (bitmap) to express.
  • use 80bit size value which means 10ms configuration (0.125ms is a time slot group, 10ms contains 80 time slot groups
  • 1 means that the corresponding time slot group needs to be PDCCH detection
  • 0 means that the corresponding time slot group does not need to be PDCCH Detection.
  • the second way is to use periodic instructions. Its configuration parameters include: time slot group period, and time slot group offset.
  • the search space period is 4 SGs (Slot Group), and the offset is 2SG.
  • the terminal When detecting the PDCCH, the terminal only performs PDCCH detection on the SG with a period of 4SG and an offset of 2SG.
  • the position of the above-mentioned control channel detection opportunity in the detection time slot group may refer to the position of the time slot and symbol configured with the control channel detection opportunity.
  • ⁇ 0, 1, 2, 3 ⁇ is a time slot group, and the time slot group has a control channel detection opportunity and is located in time slot 0.
  • the second configuration information may include: a start position offset (offset) of the detection time slot group, and the start position offset is used to indicate each time included in the detection time slot group. Gap.
  • start position offset (offset) is used to indicate which time slots a time slot group is composed of.
  • the start position offset (offset) is 0 and the number of time slots in the time slot group is 4, the number of time slots included in the time slot group is ⁇ 4n, 4n+1, 4n+2, 4n+3 ⁇ .
  • n is an integer greater than or equal to zero. For example: ⁇ 0, 1, 2, 3 ⁇ is a time slot group, ⁇ 8, 9, 10, 11 ⁇ is another time slot group.
  • the number of time slots included in the time slot group is ⁇ 4n+2, 4n+1+2, 4n+2+2 , 4n+3+2 ⁇ .
  • n is an integer greater than or equal to zero.
  • ⁇ 2, 3, 4, 5 ⁇ is a time slot group, ⁇ 10, 11, 12, 13 ⁇ is another time slot group.
  • the base station may send the start position offset (offset) to the terminal through high-level signaling.
  • the base station transmits the control channel, it is ensured that the control channel is transmitted in the time domain "in the configured search space".
  • the terminal only performs control channel detection in the configured time domain.
  • start position offset (offset) is always 0, it can be used as a default setting and no indication is given.
  • control channel detection in the search space in step 130 it may include:
  • the position of the control channel detection opportunity in the detection time slot group may refer to the position of the time slot and symbol configured with the control channel detection opportunity.
  • ⁇ 0, 1, 2, 3 ⁇ is a time slot group, this time slot group has a control channel detection opportunity in time slot 0, and the terminal can only perform control channel detection in time slot 0.
  • ⁇ 0, 1, 2, 3 ⁇ is a time slot group, which has control channel detection opportunities in time slot 0 and time slot 3, and the terminal can control in time slot 0 and time slot 3.
  • Channel detection is a time slot group, which has control channel detection opportunities in time slot 0 and time slot 3, and the terminal can control in time slot 0 and time slot 3.
  • control channel detection can be performed at the position where the control channel detection opportunity is located in the detection time slot group, thereby improving the efficiency of control channel detection.
  • the method may further include:
  • the shared data channel is received or sent according to the detected one or more control information.
  • the corresponding sending or receiving time requirements are calculated according to the end time of the last search space.
  • the data transmission preparation time requirement is N2 (unit is symbol or time)
  • the CORESET end time of the last search space in the time slot group is t2
  • the terminal is not required to be able to send data before t2+N2.
  • the data receiving time requirement is N1 (unit is symbol or time)
  • the CORESET end time of the last search space in the time slot group is t2
  • control channel detection can be used in the existing Uu interface; it can also be used in the side link, that is, the side link link.
  • control information corresponding to the Uu interface is DCI; the control information corresponding to the side link is SCI (Sidelink Control Information).
  • PDSCH reception is performed according to the detected one or more DCIs.
  • the PDCCH is used to transmit DCI control information.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Control Channel
  • PSCCH is used to transmit SCI control information.
  • the shared data channel is received or transmitted according to the detected one or more control information, thereby reducing the terminal The complexity of receiving or sending shared data channels.
  • FIG. 2 is a flowchart of a control channel detection method provided by an embodiment of the disclosure, and the control channel detection method may be used in a base station. As shown in Figure 2, the control channel detection method may include the following steps:
  • Step 210 Determine a detection time slot group used for control channel detection, and the detection time slot group is used to represent a time slot group that can share the control channel detection capability when the time slot conditions are specified.
  • control channel detection can be used in the existing Uu interface; it can also be used in the side link, that is, the side link link.
  • the detection time slot group may refer to a time slot group composed of multiple time slots, and these time slots share a control channel detection capability when the time slot conditions are specified.
  • control channel is the PDCCH;
  • detection time slot group used for PDCCH detection includes multiple time slots, and these time slots share one PDCCH detection capability when the time slot conditions are specified.
  • the specified time slot condition may be a specific value or a value range of the SCS set according to actual conditions.
  • the specified time slot condition is that SCS is equal to 120KHz; or the specified time slot condition is that SCS is greater than 120KHz.
  • Step 220 Determine the search space for detecting the time slot group.
  • the search space may refer to the time range in which the control channel detection capability is configured in the detection time slot group, which is the time range in which the terminal needs to perform control channel detection and the time range in which the base station needs to send the control channel.
  • the search space that the terminal needs to detect the control channel and the search space that the base station needs to send the control channel are the same, which can reduce the implementation complexity of the terminal.
  • the type of search space can be CSS or USS.
  • the number of search spaces can be one or more.
  • SCS is equal to 480KHz
  • 4 time slots form a detection time slot group
  • the number of search spaces is 1
  • the search space is configured in time slot 2 of the detection time slot group
  • other time slots of the detection time slot group No search space is configured on it.
  • SCS is equal to 960KHz
  • 8 time slots form a detection time slot group
  • the number of search spaces is 2
  • the allocation is configured in time slot 0 and time slot 4.
  • Step 230 Send a control channel in the search space, so that the terminal performs control channel detection in the search space.
  • the base station when the base station sends control information on the control channel, it only sends control information in the search space configured with the control channel detection capability in the detection time slot group; the terminal also only performs control in the search space configured with the control channel detection capability Channel detection.
  • the base station when the base station sends DCI on the PDCCH, it only sends DCI on the time slot 0 configured with the PDCCH detection capability in the detection time slot group.
  • each DCI can schedule up to 4 PDSCH channel data.
  • the terminal only detects the PDCCH on the time slot 0 configured with the PDCCH detection capability in the time slot group, and performs PDSCH configuration reception according to the detected DCI, and corresponding demodulation and decoding.
  • the detection time slot group is used to characterize the time slot group that can share the control channel detection ability when the time slot conditions are specified, and the detection time slot group is determined Search space, and send control channels in the search space, so that the terminal can perform control channel detection in the search space, so that the terminal can detect the control channel by detecting the time slot group as a unit, and avoid the increase of SCS.
  • the terminal cannot complete the control signaling reception and configuration process, especially the detection ability of a time slot group is concentrated in the search space of the time slot group, which improves the scheduling flexibility of the base station.
  • the specified time slot condition in step 210 may include that the SCS is greater than 120 KHz; the shared control channel detection capability is used to characterize the control channel detection capabilities corresponding to multiple time slots.
  • a time slot group can be used as a unit, that is, multiple time slots correspond to (or It is called the shared control channel detection capability, and the search space is configured to realize the corresponding control channel detection.
  • Corresponding or sharing control channel detection capability may mean that multiple time slots in the same time slot share one control channel detection capability.
  • the control channel is the PDCCH; the detection time slot group used for PDCCH detection includes multiple time slots, and these time slots share one PDCCH detection capability when the time slot conditions are specified.
  • the detection time slot group can be used as a unit for control channel detection, that is, multiple time slots share a control channel detection capability, thereby avoiding the terminal caused by the increase of SCS
  • the process of receiving and configuring control signaling cannot be completed in the corresponding time slot, which meets the needs of wireless communication development.
  • the detection time slot group used for control channel detection when the detection time slot group used for control channel detection is determined in step 210, it may include:
  • (2-1-1) Determine the first configuration information for the detection time slot group according to the interface protocol between the first node and the second node.
  • the first node may be a base station and the second node may be a terminal; or, the first node may be a terminal and the second node may be a base station. That is, the first configuration information for the detection time slot group is determined according to the interface protocol between the base station and the terminal.
  • the first configuration information for the detection time slot group can be determined according to the interface protocol between the first node and the second node, and the detection time slot group can be determined according to the first configuration information, Therefore, the reliability of determining the detection time slot group is improved.
  • the first configuration information in the foregoing (2-1-1) may include:
  • the number of time slots included in the detection time slot group is the number of time slots included in the detection time slot group
  • the maximum number of CCEs in the detection time slot group is the maximum number of CCEs in the detection time slot group.
  • the number of time slots is associated with SCS
  • the maximum number of candidate control channels is associated with SCS
  • the maximum number of CCEs is associated with SCS.
  • the number of time slots is 4; if the SCS is 960 KHz, the number of time slots is 8.
  • the number of time slots included in the detection time slot group can be directly configured, for example: the number of time slots is 5 or 4; in addition, the number of time slots is based on the ratio of the SCS to the preset reference SCS The determined, at this time, a specific SCS can be used as a reference for multiple expansion.
  • the extension formula is:
  • ⁇ r is the reference SCS
  • k 0 is the expansion coefficient.
  • the maximum number of candidate control channels is the maximum number of candidate PDCCHs, as shown in Table 4 above Among them, the configuration of the maximum number of candidate PDCCHs depends on the capabilities of the terminal.
  • the configuration of the maximum number of CCEs also depends on the capabilities of the terminal.
  • the search space for detecting the time slot group when the search space for detecting the time slot group is determined in step 220, it may include:
  • (2-2-1) Determine the second configuration information for the search space according to the interface protocol between the first node and the second node.
  • the first node may be a base station and the second node may be a terminal; or, the first node may be a terminal and the second node may be a base station. That is, the second configuration information for the search space is determined according to the interface protocol between the base station and the terminal.
  • the second configuration information for the search space can be determined according to the interface protocol between the first node and the second node, and the search space can be determined according to the second configuration information, thereby improving the determination. Reliability of the search space.
  • the second configuration information in the foregoing (2-2-1) may include:
  • First indication information where the first indication information is used to indicate a detection time slot group that has a control channel detection opportunity
  • the second indication information is used to indicate that the control channel detection opportunity is located at a designated position in the detection time slot group, and the designated position includes one designated time slot or multiple designated time slots in the detection time slot group .
  • multiple designated time slots may refer to at least two time slots, for example, time slot 0 and time slot 3 in the detection time slot group.
  • the above-mentioned first indication information can indicate which time slot groups have control channel detection opportunities.
  • the terminal When the time slot group is configured with detection opportunities, the terminal performs control channel detection in the time slot group, otherwise, it is not used in the time slot group. Control channel detection is performed in the process.
  • ⁇ 0, 1, 2, 3 ⁇ is a time slot group, which has control channel detection opportunities
  • ⁇ 8, 9, 10, 11 ⁇ is another time slot group, which does not have Control channel detection opportunities.
  • the first way is to use a bitmap (bitmap) to express.
  • use 80bit size value which means 10ms configuration (0.125ms is a time slot group, 10ms contains 80 time slot groups
  • 1 means that the corresponding time slot group needs to be PDCCH detection
  • 0 means that the corresponding time slot group does not need to be PDCCH Detection.
  • the second way is to use periodic instructions. Its configuration parameters include: time slot group period, and time slot group offset.
  • the search space period is 4 SGs (Slot Group), and the offset is 2SG.
  • the terminal When detecting the PDCCH, the terminal only performs PDCCH detection on the SG with a period of 4SG and an offset of 2SG.
  • the position of the above-mentioned control channel detection opportunity in the detection time slot group may refer to the position of the time slot and symbol configured with the control channel detection opportunity.
  • ⁇ 0, 1, 2, 3 ⁇ is a time slot group, and the time slot group has a control channel detection opportunity and is located in time slot 0.
  • the second configuration information may include: a start position offset (offset) of the detection time slot group, and the start position offset is used to indicate each time included in the detection time slot group. Gap.
  • start position offset (offset) is used to indicate which time slots a time slot group is composed of.
  • the start position offset (offset) is 0 and the number of time slots in the time slot group is 4, the number of time slots included in the time slot group is ⁇ 4n, 4n+1, 4n+2, 4n+3 ⁇ .
  • n is an integer greater than or equal to zero. For example: ⁇ 0, 1, 2, 3 ⁇ is a time slot group, ⁇ 8, 9, 10, 11 ⁇ is another time slot group.
  • the number of time slots included in the time slot group is ⁇ 4n+2, 4n+1+2, 4n+2+2 , 4n+3+2 ⁇ .
  • n is an integer greater than or equal to zero.
  • ⁇ 2, 3, 4, 5 ⁇ is a time slot group, ⁇ 10, 11, 12, 13 ⁇ is another time slot group.
  • the base station may send the start position offset (offset) to the terminal through high-level signaling.
  • the base station transmits the control channel, it is ensured that the control channel is transmitted in the time domain "in the configured search space".
  • the terminal only performs control channel detection in the configured time domain.
  • start position offset (offset) is always 0, it can be used as a default setting and no indication is given.
  • control channel when the control channel is sent in the search space in step 230, it may include: specifying one of the detection time slot groups On a time slot or multiple designated time slots, a control channel is sent.
  • ⁇ 0, 1, 2, 3 ⁇ is a time slot group, and the time slot group has a control channel detection opportunity in time slot 0, and the base station can only send the control channel in time slot 0.
  • ⁇ 0, 1, 2, 3 ⁇ is a time slot group
  • the time slot group has control channel detection opportunities in time slot 0 and time slot 3
  • the base station can send control on time slot 0 and time slot 3 channel.
  • control channel when the control channel is sent in the search space in step 230, it may include:
  • (2-3-1) Send control information in one or more search spaces in the detection time slot group, so that after the terminal has completed control channel detection for all search spaces in the detection time slot group,
  • the shared data channel is received or sent according to the detected one or more control information.
  • control channel detection can be used in the existing Uu interface; it can also be used in the side link, that is, the side link link.
  • control information corresponding to the Uu interface is DCI; the control information corresponding to the side link is SCI.
  • the base station sends DCI in one or more search spaces in the detection time slot group, so that the terminal can perform PDCCH detection based on the detected one or more search spaces in the detection time slot group.
  • Multiple DCIs receive PDSCH.
  • the PDCCH is used to transmit DCI control information.
  • the base station sends SCI in one or more search spaces in the detection time slot group, so that the terminal can perform PSCCH detection on all search spaces in the detection time slot group according to the detected one.
  • multiple SCIs receive PSSCH.
  • PSCCH is used to transmit SCI control information.
  • control information can be sent in one or more search spaces in the detection time slot group, so that after the terminal has completed control channel detection for all search spaces in the detection time slot group, The shared data channel is received or sent according to the detected one or more control information, thereby further improving the scheduling flexibility of the base station.
  • Example 1 SCS is 480KHz, 4 time slots are 1 time slot group, the search space is configured in one time slot, and its position is in the first time slot.
  • Configuring the time slot group sharing the PDCCH detection capability includes configuring the maximum number of candidate PDCCH detections and/or configuring the maximum number of CCEs.
  • Method 1 directly configure the number of time slots included in a time slot group.
  • the number of time slots is 5 or 4.
  • the second method is to use a specific SCS as a reference to perform multiple expansion.
  • the extension formula is:
  • ⁇ r is the reference SCS.
  • Search space configuration including: search space type (USS or CSS); configuration of the time slot group required for PDCCH detection.
  • the search space type is indicated in the search space type.
  • To configure the time slot group for PDCCH detection you can use the following two configuration methods:
  • the first way is to use a bitmap (bitmap) to express.
  • use 80bit size value which means 10ms configuration (0.125ms is a time slot group, 10ms contains 80 time slot groups
  • 1 means that the corresponding time slot group needs to be PDCCH detection
  • 0 means that the corresponding time slot group does not need to be PDCCH Detection.
  • the second way is to use periodic instructions. Its configuration parameters include: time slot group period, and time slot group offset.
  • the search space period T is 4 SGs (Slot Group), and the offset is 2SG.
  • the terminal When detecting the PDCCH, the terminal only performs PDCCH detection on the SG with a period of 4SG and an offset of 2SG. Among them, in an SG with a PDCCH detection opportunity, the PDCCH detection opportunity is located in the first time slot.
  • Example 2 SCS is 960KHz, 8 time slots are a group, the search space is configured in 2 time slots, and its positions are in time slots 0 and 4 respectively.
  • Configuring the time slot group sharing the PDCCH detection capability includes configuring the maximum number of candidate PDCCH detections and/or configuring the maximum number of CCEs.
  • Method 1 directly configure the number of time slots included in a time slot group.
  • the number of time slots is 5 or 4.
  • the second method is to use a specific SCS as a reference to perform multiple expansion.
  • the extension formula is:
  • ⁇ r is the reference SCS
  • k 0 is the expansion coefficient.
  • the expansion factor can be 1, 2 or other values.
  • the first way is to use a bitmap (bitmap) to express.
  • use 80bit size value which means 10ms configuration (0.125ms is a time slot group, 10ms contains 80 time slot groups
  • 1 means that the corresponding time slot group needs to be PDCCH detection
  • 0 means that the corresponding time slot group does not need to be PDCCH Detection.
  • the second way is to use periodic instructions. Its configuration parameters include: time slot group period, and time slot group offset.
  • the search space period is 4 SGs (Slot Group), and the offset is 2SG.
  • the terminal When detecting the PDCCH, the terminal only performs PDCCH detection on the SG with a period of 4SG and an offset of 2SG. Among them, in an SG with a PDCCH detection opportunity, the PDCCH detection opportunity is located in the first time slot.
  • Ku is the number (or the maximum number) of time slots in a time slot group
  • the monitoringslotWithinSlotgroup is configured as 10001000, which means that in an SG composed of 8 time slots, time slots 0 and 4 have PDCCH detection opportunities. It can be seen from the foregoing embodiment that by defining a time slot group as a unit to determine the PDCCH detection capability, it is beneficial to the design and implementation of the terminal side.
  • Example 3 The allocation method of detection capability when multiple detection opportunities are configured in a time slot group
  • Step A Determine the number of candidate control channels and the number of CCEs required on the detection opportunity.
  • Method 1 The number of PDCCH candidate control channels is allocated equally, and the number of CCEs is allocated according to the maximum number
  • Method 2 The number of PDCCH candidate control channels is based on the capability reported by the terminal, and the number of CCEs is based on the capability reported by the terminal.
  • the number of PDCCH candidate control channels determined is M01 and M02.
  • M01+M02 may be equal to the number of PDCCH candidate control channels configured with one detection opportunity, or may be greater than the number of PDCCH candidate control channels configured with one detection opportunity. There is no restriction here.
  • Step B In the time slot group, allocate the corresponding candidate channel
  • the number of candidate PDCCHs is:
  • ML is the number of candidate PDCCHs corresponding to each CCE aggregation level.
  • the number of PDCCH candidates is 4, which are PDCCH1, PDCCH2, PDCCH3, and PDCCH4; when the CCE aggregation level is 8, the number of PDCCH candidates is 2, respectively PDCCH5, PDCCH6; when the CCE aggregation level is 16, the number of candidate PDCCHs is 1, specifically PDCCH7. That is, the total number of PDCCH candidates is 7.
  • K K candidate detection opportunities; in the above example 2, K is 2.
  • the allocation method is as follows:
  • the order of candidate PDCCHs can be sorted by CCE aggregation level from small to large, or CCE aggregation level from large to small.
  • the order of the candidate PDCCHs can be sorted according to the CCE aggregation level from small to large, or according to the DCI size. For example, when two DCIs have different sizes, they can be allocated to different PDCCH detection opportunities.
  • the base station and the terminal can pass an agreement to detect all the detection opportunities and then report to the DCI analysis module, that is, when calculating the time slot or timing, the last The symbol calculation of a PDCCH detection opportunity shall prevail.
  • the PDCCH detection capability allocation in this embodiment can be allocated in one search space or in different search spaces. For example, search space S1 detects candidate PDCCHs with CCE aggregation level 4; search space S2 detects candidate PDCCH5 with CCE aggregation levels 8 and 16.
  • the scheduling indication of the time slot group is added, and the method is as follows:
  • the scheduling is PDSCH
  • the value of k0 is used (for example, PUSCH is scheduled, the value of k2 is reused), which represents the offset of the time slot group (groupslot-offset), and the time slot offset in the time slot group is used The way of bitmap.
  • the scheduling parameters are set to: k0, groupslot[K ⁇ ], where K ⁇ is related to the number of time slots included in the time slot group.
  • the groupslot is 0101, which means that in the scheduled time slot group, time slot 0 and time slot 2 have no data scheduling; time slot 1 and time slot 3 have data scheduling.
  • the groupslot-offset information may be indicated in the DCI.
  • FIG. 11 is a block diagram of a control channel detection device provided by an embodiment of the disclosure.
  • the control channel detection device may be used in a terminal; as shown in FIG. 11, the control channel detection device may include:
  • the first determining module 111 is configured to determine a detection time slot group used for control channel detection, where the detection time slot group is used to characterize a time slot group that can share control channel detection capabilities when time slot conditions are specified;
  • the second determining module 112 is configured to determine the search space of the detection time slot group
  • the control channel detection module 113 is configured to perform control channel detection in the search space.
  • the specified time slot condition includes that the subcarrier spacing SCS is greater than 120 KHz; the shared control channel detection capability is used to characterize the control channel detection capabilities corresponding to multiple time slots.
  • the first determining module 111 may include:
  • the first determining submodule is configured to determine the first configuration information for the detection time slot group according to the interface protocol between the first node and the second node, and determine the detection time slot group according to the first configuration information ;or
  • the second determining submodule is configured to receive the first configuration information sent by the base station, and determine the detection time slot group according to the first configuration information.
  • the first configuration information includes:
  • the number of time slots included in the detection time slot group is the number of time slots included in the detection time slot group
  • the maximum number of CCEs in the detection time slot group is the maximum number of CCEs in the detection time slot group.
  • the number of time slots is associated with SCS
  • the maximum number of candidate control channels is associated with SCS
  • the maximum number of CCEs is associated with SCS.
  • the number of time slots is 4; if the SCS is 960 KHz, the number of time slots is 8.
  • the number of time slots is determined based on the ratio of the SCS to the preset reference SCS.
  • control channel detection module 113 may include:
  • the first detection sub-module is configured to perform control channel detection in the search space according to that the number of control channel detections is not greater than the maximum number of candidate control channels.
  • the second determining module 112 may include:
  • the third determining submodule is configured to determine the second configuration information for the search space according to the interface protocol between the first node and the second node, and determine the search space according to the second configuration information;
  • the fourth determining submodule is configured to receive the second configuration information sent by the base station, and determine the search space according to the second configuration information.
  • the second configuration information includes:
  • First indication information where the first indication information is used to indicate a detection time slot group that has a control channel detection opportunity
  • the second indication information is used to indicate that the control channel detection opportunity is located at a designated position in the detection time slot group, and the designated position includes one designated time slot or multiple designated time slots in the detection time slot group .
  • the second configuration information further includes:
  • the start position offset of the detection time slot group, and the start position offset is used to indicate each time slot included in the detection time slot group.
  • control channel detection module 113 may include:
  • the second detection sub-module is used to perform control channel detection on one designated time slot or multiple designated time slots in the detection time slot group.
  • the transmission module of the shared data channel is used to receive or send the shared data channel according to the detected one or more control information after the control channel detection has been completed for all search spaces in the detection time slot group.
  • the device provided in this embodiment can implement all the method steps that can be implemented in the above method embodiments, and can achieve the same beneficial effects. The same content and beneficial effects will be repeated.
  • FIG. 12 is a block diagram of a control channel detection device provided by an embodiment of the disclosure.
  • the control channel detection device may be used in a base station; as shown in FIG. 12, the control channel detection device may include:
  • the third determining module 121 is configured to determine a detection time slot group used for control channel detection, where the detection time slot group is used to characterize a time slot group that can share the control channel detection capability when a time slot condition is specified;
  • the fourth determining module 122 is configured to determine the search space of the detection time slot group
  • the control channel sending module 123 is configured to send a control channel in the search space, so that the terminal can perform control channel detection in the search space.
  • the specified time slot condition is that the subcarrier spacing SCS is greater than 120 KHz; the shared control channel detection capability is used to characterize the control channel detection capabilities corresponding to multiple time slots.
  • the third determining module 121 includes:
  • a fifth determining submodule configured to determine the first configuration information for the detection time slot group according to the interface protocol between the first node and the second node;
  • the sixth determining submodule is configured to determine the detection time slot group according to the first configuration information.
  • the first configuration information includes:
  • the number of time slots included in the detection time slot group is the number of time slots included in the detection time slot group
  • the maximum number of CCEs in the detection time slot group is the maximum number of CCEs in the detection time slot group.
  • the number of time slots is associated with SCS
  • the maximum number of candidate control channels is associated with SCS
  • the maximum number of CCEs is associated with SCS.
  • the number of time slots is 4; if the SCS is 960 KHz, the number of time slots is 8.
  • the number of time slots is determined based on the ratio of the SCS to the preset reference SCS.
  • the fourth determining module 122 may include:
  • a seventh determining submodule configured to determine the second configuration information for the search space according to the interface protocol between the first node and the second node;
  • the eighth determining submodule is configured to determine the search space according to the second configuration information.
  • the second configuration information includes:
  • First indication information where the first indication information is used to indicate a detection time slot group that has a control channel detection opportunity
  • the second indication information is used to indicate that the control channel detection opportunity is located at a designated position in the detection time slot group, and the designated position includes one designated time slot or multiple designated time slots in the detection time slot group .
  • the second configuration information further includes:
  • the start position offset of the detection time slot group, and the start position offset is used to indicate each time slot included in the detection time slot group.
  • control channel sending module 123 is specifically configured to send a control channel on one designated time slot or multiple designated time slots in the detection time slot group.
  • control channel sending module 123 may include:
  • the sending sub-module is used to send control information in one or more search spaces in the detection time slot group, so that after the terminal has completed the control channel detection in all search spaces in the detection time slot group, it is based on The detected one or more control information is received or sent on the shared data channel.
  • the device provided in this embodiment can implement all the method steps that can be implemented in the above method embodiments, and can achieve the same beneficial effects. The same content and beneficial effects will be repeated.
  • FIG. 13 is a schematic structural diagram of a terminal provided by an embodiment of the disclosure.
  • the terminal 500 may include: at least one processor 501, a memory 502, at least one network interface 504, and other user interfaces 503.
  • the various components in the terminal 500 are coupled together through the bus system 505.
  • the bus system 505 is used to implement connection and communication between these components.
  • the bus system 505 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 505 in FIG. 13.
  • the user interface 503 may include a display, a keyboard, or a pointing device, such as a mouse, a trackball (trackball), a touch panel, or a touch screen.
  • a pointing device such as a mouse, a trackball (trackball), a touch panel, or a touch screen.
  • the memory 502 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • SLDRAM Direct Rambus RAM
  • the memory 502 of the system and method described in the various embodiments of the present disclosure is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 502 stores the following elements, executable modules or data structures, or their subsets, or their extended sets, such as the operating system 5021 and application programs 5022.
  • the operating system 5021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 5022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • a program that implements the method of the embodiment of the present disclosure may be included in the application program 5022.
  • the processor 501 by calling a computer program or instruction stored in the memory 502, specifically, a computer program or instruction stored in the application program 5022, the processor 501 is configured to:
  • the detection time slot group is used to characterize the time slot group that can share the control channel detection capability when the time slot conditions are specified
  • the methods disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 501 or implemented by the processor 501.
  • the processor 501 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 501 or instructions in the form of software.
  • the aforementioned processor 501 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502, and completes the steps of the foregoing method in combination with its hardware.
  • the embodiments described in the present disclosure can be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the described technology can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the processor 501 is further configured to:
  • the specified time slot conditions include that the subcarrier spacing SCS is greater than 120KHz; the shared control channel detection capability is used to characterize the control channel detection capabilities corresponding to multiple time slots.
  • the processor 501 is further configured to:
  • the determining a detection time slot group used for control channel detection includes:
  • the processor 501 is further configured to:
  • the first configuration information includes:
  • the number of time slots included in the detection time slot group is the number of time slots included in the detection time slot group
  • the maximum number of CCEs in the detection time slot group is the maximum number of CCEs in the detection time slot group.
  • it also includes at least one of the following:
  • the number of time slots is associated with SCS
  • the maximum number of candidate control channels is associated with SCS
  • the maximum number of CCEs is associated with SCS.
  • the number of time slots is 4; if the SCS is 960 KHz, the number of time slots is 8.
  • the number of time slots is determined based on the ratio of the SCS to the preset reference SCS.
  • the processor 501 is further configured to:
  • the performing control channel detection in the search space includes:
  • control channel detection quantity is not greater than the maximum candidate control channel quantity, the control channel detection is performed in the search space.
  • the processor 501 is further configured to:
  • the determining the search space of the detection time slot group includes:
  • the processor 501 is further configured to:
  • the second configuration information includes:
  • First indication information where the first indication information is used to indicate a detection time slot group that has a control channel detection opportunity
  • the second indication information is used to indicate that the control channel detection opportunity is located at a designated position in the detection time slot group, and the designated position includes one designated time slot or multiple designated time slots in the detection time slot group .
  • the processor 501 is further configured to:
  • the second configuration information further includes:
  • the start position offset of the detection time slot group, and the start position offset is used to indicate each time slot included in the detection time slot group.
  • the processor 501 is further configured to:
  • the performing control channel detection in the search space includes:
  • the processor 501 is further configured to:
  • the shared data channel is received or sent according to the detected one or more control information.
  • the terminal provided in the embodiments of the present disclosure can implement the various processes implemented by the terminal in the foregoing embodiments, and in order to avoid repetition, details are not described herein again.
  • the detection time slot group is used to characterize the time slot group that can share the control channel detection ability when the time slot conditions are specified, and the detection time slot group is determined
  • the search space and the control channel detection in the search space realize the control channel detection with the detection time slot group as a unit, and avoid the terminal being unable to complete the control signal in the corresponding time slot as the SCS increases.
  • the process of receiving and configuring commands also reduces the complexity of the terminal's control channel detection.
  • FIG. 14 is a schematic structural diagram of another terminal provided by an embodiment of the present disclosure.
  • the terminal in FIG. 14 may be a mobile phone, a tablet computer, a personal digital assistant (PDA), or an e-reader, a handheld game console, Point of Sales (POS), in-vehicle electronic equipment (in-vehicle computer), etc.
  • the terminal includes a radio frequency (RF) circuit 610, a memory 620, an input unit 630, a display unit 640, a processor 660, an audio circuit 670, a WiFi (Wireless Fidelity) module 680, and a power supply 690.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 14 does not constitute a limitation on the mobile phone, and may include more or less components than those shown in the figure, or combine certain components, or split certain components, or Different component arrangements.
  • the input unit 630 can be used to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the terminal.
  • the input unit 630 may include a touch panel 6301.
  • the touch panel 6301 also called a touch screen, can collect the user's touch operations on or near it (for example, the user's operations on the touch panel 6301 with fingers, stylus, etc.)
  • the specified program drives the corresponding connection device.
  • the touch panel 6301 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 660, and can receive and execute the commands sent by the processor 660.
  • the touch panel 6301 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 630 may also include other input devices 6302, and the other input devices 6302 may be used to receive input numbers or character information and generate key signal inputs related to user settings and function control of the terminal.
  • other input devices 6302 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, optical mice (optical mice are touch sensitive that do not display visual output). A surface, or an extension of a touch-sensitive surface formed by a touch screen).
  • the display unit 640 can be used to display information input by the user or information provided to the user and various menu interfaces of the terminal.
  • the display unit 640 may include a display panel 6401.
  • the display panel 8401 can be configured with the display panel 6401 in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), etc.
  • the touch panel 6301 can cover the display panel 6401 to form a touch screen.
  • the touch screen detects a touch operation on or near it, it is transmitted to the processor 660 to determine the type of touch event, and then the processor 660 provides corresponding visual output on the touch screen according to the type of touch event.
  • the touch screen includes an application program interface display area and a common control display area.
  • the arrangement of the display area of the application program interface and the display area of the commonly used controls is not limited, and can be arranged up and down, left and right, etc., which can distinguish the two display areas.
  • the application program interface display area can be used to display the application program interface. Each interface may include at least one application icon and/or widget desktop control and other interface elements.
  • the application program interface display area can also be an empty interface that does not contain any content.
  • the commonly used control display area is used to display controls with a higher usage rate, such as application icons such as setting buttons, interface numbers, scroll bars, and phonebook icons.
  • the RF circuit 610 can be used for receiving and sending signals during information transmission or communication. In particular, after receiving the downlink information on the network side, it is processed by the processor 660; in addition, the designed uplink data is sent to the network side.
  • the RF circuit 610 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 610 can also communicate with the network and other devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division) Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), Email, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • Email Short Messaging Service
  • the memory 620 is used to store software programs and modules, and the processor 660 executes various functional applications and data processing of the terminal by running the software programs and modules stored in the memory 620.
  • the memory 620 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of the terminal, etc.
  • the memory 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 660 is the control center of the terminal, which uses various interfaces and lines to connect to various parts of the entire mobile phone, runs or executes the software programs and/or modules stored in the first memory 6201, and calls the software programs and/or modules stored in the second memory 6202.
  • the data in the terminal performs various functions of the terminal and processes the data, so as to monitor the terminal as a whole.
  • the processor 660 may include one or more processing units.
  • the processor 660 by calling and storing software programs and/or modules in the first memory 6201 and/or data in the second memory 6202, the processor 660 is configured to:
  • the detection time slot group is used to characterize the time slot group that can share the control channel detection capability when the time slot conditions are specified
  • the processor 660 is further configured to:
  • the specified time slot condition includes that the subcarrier spacing SCS is greater than 120KHz; the shared control channel detection capability is used to characterize the control channel detection capabilities corresponding to multiple time slots.
  • the processor 660 is further configured to:
  • the determining a detection time slot group used for control channel detection includes:
  • the processor 660 is further configured to:
  • the first configuration information includes:
  • the number of time slots included in the detection time slot group is the number of time slots included in the detection time slot group
  • the maximum number of CCEs in the detection time slot group is the maximum number of CCEs in the detection time slot group.
  • it also includes at least one of the following:
  • the number of time slots is associated with SCS
  • the maximum number of candidate control channels is associated with SCS
  • the maximum number of CCEs is associated with SCS.
  • the number of time slots is 4; if the SCS is 960 KHz, the number of time slots is 8.
  • the number of time slots is determined based on the ratio of the SCS to the preset reference SCS.
  • the processor 660 is further configured to:
  • the performing control channel detection in the search space includes:
  • control channel detection quantity is not greater than the maximum candidate control channel quantity, the control channel detection is performed in the search space.
  • the processor 660 is further configured to:
  • the determining the search space of the detection time slot group includes:
  • the processor 660 is further configured to:
  • the second configuration information includes:
  • First indication information where the first indication information is used to indicate a detection time slot group that has a control channel detection opportunity
  • the second indication information is used to indicate that the control channel detection opportunity is located at a designated position in the detection time slot group, and the designated position includes one designated time slot or multiple designated time slots in the detection time slot group .
  • the processor 660 is further configured to:
  • the second configuration information further includes:
  • the start position offset of the detection time slot group, and the start position offset is used to indicate each time slot included in the detection time slot group.
  • the processor 660 is further configured to:
  • the performing control channel detection in the search space includes:
  • the processor 660 is further configured to:
  • the shared data channel is received or sent according to the detected one or more control information.
  • the terminal provided in the embodiments of the present disclosure can implement the various processes implemented by the terminal in the foregoing embodiments, and in order to avoid repetition, details are not described herein again.
  • the detection time slot group is used to characterize the time slot group that can share the control channel detection ability when the time slot conditions are specified, and the detection time slot group is determined
  • the search space and the control channel detection in the search space realize the control channel detection with the detection time slot group as a unit, and avoid the terminal being unable to complete the control signal in the corresponding time slot as the SCS increases.
  • the process of receiving and configuring commands also reduces the complexity of the terminal's control channel detection.
  • FIG. 15 is a schematic structural diagram of a base station provided by an embodiment of the disclosure.
  • the base station 700 may include at least one processor 701, a memory 702, at least one other user interface 703, and a transceiver 704.
  • the various components in the base station 700 are coupled together through the bus system 705.
  • the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 705 in FIG. 15.
  • the bus system may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 701 and the memory 702
  • the various circuits of the representative memory are linked together.
  • the bus system can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art. Therefore, the embodiments of the present disclosure will not further describe them.
  • the bus interface provides the interface.
  • the transceiver 704 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 703 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and so on.
  • the memory 702 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • SLDRAM Direct Rambus RAM
  • the memory 702 of the system and method described in the various embodiments of the present disclosure is intended to include, but is not limited to, these and any other suitable types of memory.
  • the processor 701 is responsible for managing the bus system and general processing.
  • the memory 702 may store computer programs or instructions used by the processor 701 when performing operations. Specifically, the processor 701 may be used for:
  • the detection time slot group is used to characterize the time slot group that can share the control channel detection capability when the time slot conditions are specified
  • the control channel is sent in the search space, so that the terminal performs control channel detection in the search space.
  • the methods disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the above method can be completed by hardware integrated logic circuits in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 702, and the processor 701 reads the information in the memory 702, and completes the steps of the foregoing method in combination with its hardware.
  • the embodiments described in the present disclosure can be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the described technology can be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the processor 701 is further configured to:
  • the specified time slot condition is that the subcarrier spacing SCS is greater than 120KHz; the shared control channel detection capability is used to characterize the control channel detection capabilities corresponding to multiple time slots.
  • the processor 701 is further configured to: the determining a detection time slot group used for control channel detection includes:
  • the detection time slot group is determined according to the first configuration information.
  • the processor 701 is further configured to:
  • the first configuration information includes:
  • the number of time slots included in the detection time slot group is the number of time slots included in the detection time slot group
  • the maximum number of CCEs in the detection time slot group is the maximum number of CCEs in the detection time slot group.
  • it also includes at least one of the following:
  • the number of time slots is associated with SCS
  • the maximum number of candidate control channels is associated with SCS
  • the maximum number of CCEs is associated with SCS.
  • the processor 701 is further configured to:
  • the determining the search space of the detection time slot group includes:
  • the search space is determined according to the second configuration information.
  • the processor 701 is further configured to:
  • the second configuration information includes:
  • First indication information where the first indication information is used to indicate a detection time slot group that has a control channel detection opportunity
  • the second indication information is used to indicate that the control channel detection opportunity is located at a designated position in the detection time slot group, and the designated position includes one designated time slot or multiple designated time slots in the detection time slot group .
  • the processor 701 is further configured to:
  • the second configuration information further includes:
  • the start position offset of the detection time slot group, and the start position offset is used to indicate each time slot included in the detection time slot group.
  • the processor 701 is further configured to:
  • Sending a control channel in the search space includes:
  • the control channel is transmitted on one designated time slot or multiple designated time slots in the detection time slot group.
  • the processor 701 is further configured to:
  • Sending a control channel in the search space includes:
  • Each control information is received or transmitted on the shared data channel.
  • the base station provided in the embodiments of the present disclosure can implement various processes implemented by the base station in the foregoing embodiments, and in order to avoid repetition, details are not described herein again.
  • the detection time slot group is used to characterize the time slot group that can share the control channel detection ability when the time slot conditions are specified, and the detection time slot group is determined Search space, and send control channels in the search space, so that the terminal can perform control channel detection in the search space, so that the terminal can detect the control channel by detecting the time slot group as a unit, and avoid the increase of SCS.
  • the terminal cannot complete the control signaling reception and configuration process, especially the detection ability of a time slot group is concentrated in the search space of the time slot group, which improves the scheduling flexibility of the base station.
  • the base station provided in the embodiments of the present disclosure includes hardware structures and/or software modules corresponding to each function.
  • the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections between devices or units through some interfaces.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of a software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions to enable a computer device (which can be a personal computer, a server, Or a network device, etc.) or a processor executes all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the computer storage medium is a non-transitory (English: nontransitory) medium, including: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the embodiments of the present disclosure also provide a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by a processor to perform the methods provided in the foregoing embodiments, including:
  • the detection time slot group is used to characterize the time slot group that can share the control channel detection capability when the time slot conditions are specified
  • the embodiments of the present disclosure also provide a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by a processor to perform the methods provided in the foregoing embodiments, including:
  • the detection time slot group is used to characterize the time slot group that can share the control channel detection capability when the time slot conditions are specified
  • the control channel is sent in the search space, so that the terminal performs control channel detection in the search space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种控制信道检测方法、装置、终端、基站及存储介质,该方法包括:确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组;确定所述检测时隙组的搜索空间;在所述搜索空间内进行控制信道检测。因此,本公开实施例实现了以检测时隙组为单元进行控制信道检测,避免了随着SCS的增大而导致的终端在对应的时隙内无法完成控制信令的接收和配置过程,还降低了终端进行控制信道检测的复杂度。

Description

控制信道检测方法、装置、终端、基站及存储介质
相关申请的交叉引用
本申请要求于2020年04月02日提交的申请号为2020102557496,发明名称为“控制信道检测方法、装置、终端、基站及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种控制信道检测方法、装置、终端、基站及存储介质。
背景技术
随着无线通信的发展,用户对移动通信的需求越来越高。尤其是在通信带宽和通信速率上,为满足用户对通信高速率的要求,需要开发更大带宽的频谱。
目前,3GPP标准开始研究在52.6GHz—71GHz的频段上进行移动无线通信,更高的通信频率虽然能够带来更大的带宽优势,但对无线通信设计却带来更大的挑战,主要是:更高的频率有更大的多普勒频偏,同时也有更大的相位噪声产生。为解决高频带来的多普勒和相位噪声的影响,采用更高的SCS(Sub-Carrier Spacing,子载波间隔)。
基站和终端数据通信之前,需要基站发送调度信令给终端,该调度信令在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上发送,考虑到一个基站会服务多个终端,同时下行信道质量是变换的,为了让基站调度具有灵活性,现有协议规定,终端在每个时隙里,需要检测多个候选PDCCH信道。如果让终端检测的候选PDCCH信道越多,基站调度也就越灵活,同时要求终端检测信道的能力越强,这就引起基站调度的灵活性和终端检测能力平衡的问题。
但是,随着SCS的增大,时隙时长变小,在对应的时隙内将导致终端无法完成控制信令的接收和配置过程。
发明内容
针对现有技术存在的问题,本公开实施例提供一种控制信道检测方法、装置、终端、基站及存储介质。
本公开实施例提供一种控制信道检测方法,所述控制信道检测方法用于终端,包括:
确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组;
确定所述检测时隙组的搜索空间;
在所述搜索空间内进行控制信道检测。
可选地,所述指定时隙条件包括子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
可选地,所述确定用于控制信道检测的检测时隙组,包括:
根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息,并根据所述第一配置信息确定所述检测时隙组;或
接收基站发送的所述第一配置信息,并根据所述第一配置信息确定所述检测时隙组。
可选地,所述第一配置信息包括:
所述检测时隙组中包含的时隙个数;
所述检测时隙组中最大候选控制信道数量;
所述检测时隙组中最大控制信道单元CCE数量。
可选地,还包括下述至少一项:
所述时隙个数与SCS相关联;
所述最大候选控制信道数量与SCS相关联;
最大CCE数量与SCS相关联。
可选地,若所述SCS为480KHz,所述时隙个数为4;若所述SCS为960KHz,所述时隙个数为8。
可选地,所述时隙个数是基于SCS与预设参考SCS的比值所确定的。
可选地,所述在所述搜索空间内进行控制信道检测,包括:
按照控制信道检测数量不大于所述最大候选控制信道数量,在所述搜索空间内进行控制信道检测。
可选地,所述确定所述检测时隙组的搜索空间,包括:
根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息,并根据所述第二配置信息确定所述搜索空间;或
接收基站发送的所述第二配置信息,并根据所述第二配置信息确定所述搜索空间。
可选地,所述第二配置信息包括:
第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
可选地,所述第二配置信息还包括:
所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
可选地,所述在所述搜索空间内进行控制信道检测,包括:
在所述检测时隙组中的一个指定时隙或多个指定时隙上,进行控制信道检测。
可选地,还包括:
在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
本公开实施例提供一种控制信道检测方法,所述控制信道检测方法用于基站,包括:
确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组;
确定所述检测时隙组的搜索空间;
在所述搜索空间内发送控制信道,以使终端在所述搜索空间内进行控制信道检测。
可选地,所述指定时隙条件为子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
可选地,所述确定用于控制信道检测的检测时隙组,包括:
根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息;
根据所述第一配置信息确定所述检测时隙组。
可选地,所述第一配置信息包括:
所述检测时隙组中包含的时隙个数;
所述检测时隙组中最大候选控制信道数量;
所述检测时隙组中最大控制信道单元CCE数量。
可选地,还包括下述至少一项:
所述时隙个数与SCS相关联;
所述最大候选控制信道数量与SCS相关联;
最大CCE数量与SCS相关联。
可选地,若所述SCS为480KHz,所述时隙个数为4;若所述SCS为960KHz,所述时隙个数为8。
可选地,所述时隙个数是基于SCS与预设参考SCS的比值所确定的。
可选地,所述确定所述检测时隙组的搜索空间,包括:
根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息;
根据所述第二配置信息确定所述搜索空间。
可选地,所述第二配置信息包括:
第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙 或多个指定时隙。
可选地,所述第二配置信息还包括:
所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
可选地,在所述检测时隙组中的一个指定时隙或多个指定时隙上,发送控制信道。
可选地,在所述搜索空间内发送控制信道,包括:
在所述检测时隙组中的一个或多个搜索空间发送控制信息,以使终端在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
本公开实施例提供一种控制信道检测装置,所述控制信道检测装置用于终端,包括:
第一确定模块,用于确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组;
第二确定模块,用于确定所述检测时隙组的搜索空间;
控制信道检测模块,用于在所述搜索空间内进行控制信道检测。
本公开实施例提供一种控制信道检测装置,所述控制信道检测装置用于基站,包括:
第三确定模块,用于确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组;
第四确定模块,用于确定所述检测时隙组的搜索空间;
控制信道发送模块,用于在所述搜索空间内发送控制信道,以使终端在所述搜索空间内进行控制信道检测。
本公开实施例提供一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组
确定所述检测时隙组的搜索空间;
在所述搜索空间内进行控制信道检测。
可选地,所述指定时隙条件包括子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
可选地,所述确定用于控制信道检测的检测时隙组,包括:
根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息,并根据所述第一配置信息确定所述检测时隙组;或
接收基站发送的所述第一配置信息,并根据所述第一配置信息确定所述检测时隙组。
可选地,所述第一配置信息包括:
所述检测时隙组中包含的时隙个数;
所述检测时隙组中最大候选控制信道数量;
所述检测时隙组中最大控制信道单元CCE数量。
可选地,所述在所述搜索空间内进行控制信道检测,包括:
按照控制信道检测数量不大于所述最大候选控制信道数量,在所述搜索空间内进行控制信道检测。
可选地,所述确定所述检测时隙组的搜索空间,包括:
根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息,并根据所述第二配置信息确定所述搜索空间;或
接收基站发送的所述第二配置信息,并根据所述第二配置信息确定所述搜索空间。
可选地,所述第二配置信息包括:
第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
可选地,所述第二配置信息还包括:
所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测 时隙组中包括的各个时隙。
可选地,所述在所述搜索空间内进行控制信道检测,包括:
在所述检测时隙组中的一个指定时隙或多个指定时隙上,进行控制信道检测。
可选地,还包括:
在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
本公开实施例提供一种基站,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组
确定所述检测时隙组的搜索空间;
在所述搜索空间内发送控制信道,以使终端在所述搜索空间内进行控制信道检测。
可选地,所述指定时隙条件为子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
可选地,所述确定用于控制信道检测的检测时隙组,包括:
根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息;
根据所述第一配置信息确定所述检测时隙组。
可选地,所述第一配置信息包括:
所述检测时隙组中包含的时隙个数;
所述检测时隙组中最大候选控制信道数量;
所述检测时隙组中最大控制信道单元CCE数量。
可选地,所述确定所述检测时隙组的搜索空间,包括:
根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息;
根据所述第二配置信息确定所述搜索空间。
可选地,所述第二配置信息包括:
第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
可选地,所述第二配置信息还包括:
所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
可选地,所述在所述搜索空间内发送控制信道,包括:
在所述检测时隙组中的一个指定时隙或多个指定时隙上,发送控制信道。
可选地,在所述搜索空间内发送控制信道,包括:
在所述检测时隙组中的一个或多个搜索空间发送控制信息,以使终端在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
本公开实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述终端侧的控制信道检测方法的步骤。
本公开实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述基站侧的控制信道检测方法的步骤。
本公开实施例提供一种控制信道检测方法、装置、终端、基站及存储介质,通过确定用于控制信道检测的检测时隙组,该检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组,确定检测时隙组的搜索空间,以及在搜索空间内进行控制信道检测,从而实现了以检测时隙组为单元进行控制信道检测,避免了随着SCS的增大而导致的终端在对应的时隙内无法完成控制信令的接收和配置过程,还降低了终端进行控制信道检测的复杂度。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种控制信道检测方法的流程图;
图2为本公开实施例提供的一种控制信道检测方法的流程图;
图3为本公开实施例提供的一种搜索空间配置的示意图;
图4为本公开实施例提供的在一个时隙组内PDCCH检测机会的示意图;
图5为本公开实施例提供的另一种搜索空间配置的示意图;
图6为本公开实施例提供的一种分配候选PDCCH检测数量的示意图;
图7为本公开实施例提供的CCE聚合等级和候选PDCCH的示意图;
图8为本公开实施例提供的另一种分配候选PDCCH检测数量的示意图;
图9为本公开实施例提供的一种时隙组和时隙的指示示意图;
图10为本公开实施例提供的另一种时隙组和时隙的指示示意图;
图11为本公开实施例提供的一种控制信道检测装置的模块框图;
图12为本公开实施例提供的一种控制信道检测装置的模块框图;
图13为本公开实施例提供的一种终端的结构示意图;
图14为本公开实施例提供的另一种终端的结构示意图;
图15为本公开实施例提供的一种基站的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
为了便于清楚描述本公开实施例的技术方案,在本公开的各实施例中,若采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
随着无线通信的发展,用户对移动通信的需求越来越高。尤其是在通信带宽和通信速率上,为满足用户对通信高速率的要求,需要开发更大带宽的频谱。
目前,3GPP标准开始研究在52.6GHz—71GHz的频段上进行移动无线通信,更高的通信频率虽然能够带来更大的带宽优势,但对无线通信设计却带来更大的挑战,主要是:更高的频率有更大的多普勒频偏,同时也有更大的相位噪声产生。为解决高频带来的多普勒和相位噪声的影响,采用更高的SCS(sub-carrier spacing,子载波间隔)。
基站和终端数据通信之前,需要基站发送调度信令给终端,该调度信令在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上发送,考虑到一个基站会服务多个终端,同时下行信道质量是变换的,为了让基站调度具有灵活性,现有协议规定,终端在每个时隙里,需要检测多个候选PDCCH信道。如果让终端检测的候选PDCCH信道越多,基站调度也就越灵活,同时要求终端检测信道的能力越强,这就引起基站调度的灵活性和终端检测能力平衡的问题。
但是,当前标准定义了SCS在120KHz以下的每个时隙终端检测PDCCH候选信道的数量。对于SCS大于120KHz情况下,如何定义终端检测PDCCH候选信道数量的能力,目前还没有更好的优化方案。
其中,(1)针对候选PDCCH信道:
PDCCH信道是用来发送DCI(Downlink Control Information,下行控制信息),其传输的信息包括公共控制信息和用户专属控制信息。
为了便于描述PDCCH,NR(New Radio,新空口)中引入了CORESET(control resource set,控制资源集合)概念。其中,该CORESET用于表征PDCCH信道资源块的大小。一个CORESET由若干个CCE(Control-Channel  Element,控制信道单元)组成,每6个CCE构成一个REG(Resource Element Group,资源单元组),每个REG包含一个RB(Resource Block,资源块)。
在一个CORESET中,包括多个候选PDCCH,这些候选的控制信道需要终端都进行检测。一般来讲,任何一个或者多个CCE都可以形成一个候选PDCCH。标准当前规定,PDCCH由1个CCE组成的,叫做CCE聚合等级为1的候选PDCCH,PDCCH由2个CCE组成的,叫做CCE聚合等级为2的候选PDCCH,PDCCH由4个CCE组成的,叫做CCE聚合等级为4的候选PDCCH,以此类推,当前标准协议规定支持的CCE聚合等级为:1、2、4、8、16。
在一个CORESET中,相同CCE聚合级别的候选PDCCH也会有多个,当前标准协议规定的数量为0、1、2、3、4、5、6、8。
比如:广播信道的候选PDCCH数量和CCE的聚合等级,如表1所示。
表1
CCE聚合等级 候选PDCCH数量
4 4
8 2
16 1
其中,用于调度传输广播信道的控制信道,CCE聚合级别为4的,有4个候选PDCCH;CCE聚合级别为8的,有2个候选PDCCH;CCE聚合级别为16的,有1个候选PDCCH;即总共有4+2+1=7个候选PDCCH需要终端进行检测。
(2)搜索空间(search space)类型:
搜索空间定义的是终端需要进行PDCCH检测的时间范围。搜索空间分为CSS(Common Search Space,公共搜索空间)和USS((User Equipment specific search space,终端专属搜索空间)。其中,CSS是指所有终端或者一组终端需要进行PDCCH检测的搜索空间;USS是基站单位为某一终端单独配置,只需要被配置的终端进行PDCCH检测的搜索空间。
对于CSS需要检测的候选控制信道的第一数量记为:
Figure PCTCN2021081600-appb-000001
对于USS, 需要检测的候选控制信道的第二数量记为
Figure PCTCN2021081600-appb-000002
在每个时隙中,检测候选PDCCH的总数量
Figure PCTCN2021081600-appb-000003
为第一数量和第二数量之和、且不超过一定的门限值,当前标准协议确定的检测能力,如表2所示。
表2
Figure PCTCN2021081600-appb-000004
其中,μ是计算SCS的因子或者索引数值,即SCS=2 μ×15KHz。比如:μ为0,则SCS为15KHz,即对于SCS为15KHz的时隙,其检测最大候选PDCCH数量为44。
同样,对于CSS,需要满足上述候选检测信道的数量所需要的第一CCE数量记为:
Figure PCTCN2021081600-appb-000005
对于USS,需要满足上述候选检测信道的数目所需要的第二CCE数量记为
Figure PCTCN2021081600-appb-000006
在每个时隙中,CCE的总数量
Figure PCTCN2021081600-appb-000007
为第一CCE数量和第二CCE数量之和、且不超过一定的门限,当前标准协议确定的检测能力,如表3所示。
表3
Figure PCTCN2021081600-appb-000008
因此,当前NR协议中定义的候选PDCCH检测信道数量和CCE数量,都是基于时隙为单位的,也就是说,在终端,需要以时隙为单位,进行PDCCH盲检,终端根据检测出来的DCI内容,进行PDSCH(Physical Downlink Shared Channel,物理下行共享信道)数据的接收或者PUSCH(Physical Uplink Share Channel,物理层上行共享信道)发送。
比如:当基站调度终端接收一个PDSCH时,基站先在PDCCH上发送一个调度信息或者DCI,DCI指示PDSCH的时域/频域信息,调制编码速率以及其它信息。终端在约定的时隙位置进行PDCCH的检测(约定的时间是由基站配置的),并解析DCI内容,根据解析的DCI内容,配置PDSCH的接收参数,PDSCH解调&译码模块根据配置信息进行PDSCH的解调和译码。
其中,PDCCH接收与检测模块,花费时间为t1;PDCCH接收与检测模块将检测出来的DCI信息发送给DCI解析模块,花费时间为t2;DCI解析模块,花费时间为t3;DCI解析模块将PDSCH配置信息发送给PDSCH解调&译码模块,花费时间为t4;PDSCH解调&译码模块,花费时间为t5。
当SCS比较小时,比如,小于等于120KHz时,时隙长度大于等于0.125ms,当每个时隙都有DCI调度信息时,在0.125ms内,能够完成PDCCH的检测、DCI解析和PDSCH调度信息的配置过程。但随着SCS的增大,时隙变小,在对应的时隙内,由于如下原因,导致终端难于完成控制信令接收和配置过程:
1:虽然随着SCS的增大,搜索复杂度的配置可能进一步减少(比如:候选PDCCH数量,CCE数量),但每次调度的信息在不同模块之间传输需要的时间无法减少,而且搜索复杂度的减少(如:减少CCE数量,减少候选PDCCH的检测数量),会减少基站调度的灵活性。
2:虽然可以通过增加控制信道的计算资源来提高并行度,但这会增加终端的实现成本(相对应SCS<=120KHz的设备)。
因此,采用传统的基于时隙为单位,定义控制信道检测能力的方法已经不能满足无线通信发展的需求。
针对上述问题,本公开实施例提供一种控制信道检测方法、装置、终端、基站及存储介质,以满足无线通信发展的需求。
本公开实施例提供的控制信道检测方法、装置、终端、基站及存储介质可以应用在无线通信系统或无线与有线结合的系统。包括但不限于5G系统(如NR系统)、6G系统、卫星系统、车联网系统、演进型长期演进(Long Term Evolution,LTE)系统,上述系统的后续演进通信系统等。
本公开实施例提供的基站可以包含但不限于以下中的一种或多种:通常所用的基站、演进型基站(evolved node base station,eNB)、5G系统中的网络侧设备(例如下一代基站(next generation node base station,gNB)、发送和接收点(transmission and reception point,TRP))等设备。
本公开实施例提供的终端有可以被称为用户设备(UserEquipment,简称为UE)等。终端包括单不限于手持设备、车载设备。例如,可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
下面通过具体实施例进行说明。
图1为本公开实施例提供的一种控制信道检测方法的流程图,该控制信道检测方法可以用于终端。如图1所示,该控制信道检测方法可以包括如下步骤:
步骤110:确定用于控制信道检测的检测时隙组,该检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组。其中,共享控制信道检测能力可以指的是该控制信道检测能力是基于时隙组的,即多个时隙对应一个控制信道检测能力。
具体地,控制信道(control channel)检测可以用于现有的Uu接口;也可以用于边链路中,即直连(side link)链路。
检测时隙组可以指的是多个时隙组成的一个时隙组,并且这些个时隙在指定时隙条件时共享一个控制信道检测能力。
比如:控制信道为PDCCH;用于PDCCH检测的检测时隙组中包括多个时隙,这些个时隙在指定时隙条件时共享一个PDCCH检测能力。
其中,指定时隙条件可以是根据实际情况设置的SCS的一个具体的值或一个取值范围。比如:指定时隙条件为SCS等于120KHz;或指定时隙条件为SCS大于120KHz。
步骤120:确定检测时隙组的搜索空间。
具体地,搜索空间可以指的是检测时隙组中配置了控制信道检测能力的时间范围,其是终端需要进行控制信道检测的时间范围,以及基站需要发送 控制信道的时间范围。另外,终端需要进行控制信道检测的搜索空间和基站需要发送控制信道的搜索空间,二者是相同的,这样可以减少终端的实现复杂度。
其中,搜索空间的类型可以是CSS,也可以是USS。搜索空间的数量可以是一个或多个。
比如:SCS等于480KHz,4时隙组成1个检测时隙组,搜索空间的数量为1个,该搜索空间配置在该检测时隙组的时隙1中,而检测时隙组的其他时隙上不配置搜索空间。
又比如:SCS等于960KHz,8时隙组成1个检测时隙组,搜索空间的数量为2个,分配配置在时隙0和时隙4中。
步骤130:在搜索空间内进行控制信道检测。
具体地,由于基站在控制信道上发送控制信息时,只在检测时隙组中配置了控制信道检测能力的搜索空间内发送控制信息,所以,终端可以只在配置了控制信道检测能力的搜索空间内进行控制信道检测。
比如:基站在PDCCH上发送DCI时,只在检测时隙组中配置了PDCCH检测能力的时隙0上发送DCI,在DCI上,每个DCI可以调度至多4个PDSCH信道数据或者4个PUSCH上行共享信道数据。与此对应的,终端只在时隙组中配置了PDCCH检测能力的时隙0上检测PDCCH,并根据检测到的DCI,进行PDSCH配置接收或者PUSCH发送,当进行PDSCH接收时,同时需要相应的解调和译码。
由上述实施例可见,通过确定用于控制信道检测的检测时隙组,该检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组,确定检测时隙组的搜索空间,以及在搜索空间内进行控制信道检测,从而实现了以检测时隙组为单元进行控制信道检测,避免了随着SCS的增大而导致的终端在对应的时隙内无法完成控制信令的接收和配置过程,还降低了终端进行控制信道检测的复杂度。
进一步地,建立在上述方法的基础上,上述步骤110中的所述指定时隙条件可以包括SCS大于120KHz;所述共享控制信道检测能力用于表征多个 时隙对应的控制信道检测能力。
具体地,由于当前标准只定义了SCS在120KHz以下的每个时隙终端检测PDCCH候选信道的数量,所以对于SCS大于120KHz情况,可以采用以时隙组为单元,即多个时隙对应(或称为共享)一个控制信道检测能力,并进行搜索空间的配置,来实现相应的控制信道检测。
对应或共享控制信道检测能力可以指的是同一时隙中的多个时隙共享一个控制信道检测能力。比如:控制信道为PDCCH;用于PDCCH检测的检测时隙组中包括多个时隙,这些个时隙在指定时隙条件时共享一个PDCCH检测能力。
由上述实施例可见,在SCS大于120KHz时,可以以检测时隙组为单元进行控制信道检测,即多个时隙对应一个控制信道检测能力,从而避免了随着SCS的增大而导致的终端在对应的时隙内无法完成控制信令的接收和配置过程,满足了无线通信发展的需求。
进一步地,建立在上述方法的基础上,在执行步骤110中确定用于控制信道检测的检测时隙组时,可以包括(1-1-1)或(1-1-2):
(1-1-1)根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息,并根据所述第一配置信息确定所述检测时隙组。
具体地,第一节点可以是基站,第二节点可以是终端;或者,第一节点可以是终端,第二节点可以是基站。即根据基站和终端之间的接口协议确定针对所述检测时隙组的第一配置信息。
(1-1-2)接收基站发送的所述第一配置信息,并根据所述第一配置信息确定所述检测时隙组。
具体地,基站可以通过高层信令将第一配置信息发送至终端,这样终端可以通过高层信令获取该第一配置信息。
由上述实施例可见,可以根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息,并根据所述第一配置信息确定所述检测时隙组,也可以接收基站发送的所述第一配置信息,并根据所述第一配置信息确定所述检测时隙组,从而丰富了第一配置信息的获取方式,进而提高 了确定检测时隙组的可靠性。
进一步地,建立在上述方法的基础上,上述(1-1-1)或(1-1-2)中的第一配置信息可以包括:
所述检测时隙组中包含的时隙个数;
所述检测时隙组中最大候选控制信道数量;
所述检测时隙组中最大CCE数量。
其中,时隙个数与SCS相关联,例如若SCS为480KHz时时隙个数为4,SCS为960KHz时时隙个数为8。当然在此仅为举例说明,时隙个数与SCS的关联关系可以基于需求进行设定。
具体地,上述检测时隙组中包含的时隙个数可以是直接配置的,比如:时隙个数为5或4;此外,所述时隙个数可以是基于SCS与预设参考SCS的比值所确定的,此时可以是以某一特定的SCS为参考,进行倍数扩展的。其扩展公式为:
Figure PCTCN2021081600-appb-000009
其中,μ r为参考SCS,k 0是扩展系数。该扩展系数可以为1、2或其他数值。比如:以0.125ms的长度(SCS=120KHz)为参考(μ r=3),进行倍数扩展。又比如:当SCS=480KHz时,时隙个数为K μ=5=1*2 5-3=4。
最大候选控制信道数量与SCS相关联,例如SCS=480KHz时最大候选控制信道数量为M2,SCS=960KHz时最大候选控制信道数量为M3,且M3>M2。当然在此仅为举例说明,最大候选控制信道数量与SCS的关联关系可以基于需求进行设定。
上述最大候选控制信道数量,若控制信道为PDCCH,该最大候选控制信道数量为最大候选PDCCH数量,可以如表4中的
Figure PCTCN2021081600-appb-000010
其中,配置最大候选PDCCH数量,依赖于终端的能力。
表4
Figure PCTCN2021081600-appb-000011
Figure PCTCN2021081600-appb-000012
其中,μ是计算SCS的因子或者索引数值,即SCS=2 μ×15KHz。比如:μ为4,则SCS为240KHz。
当SCS为240KHz时,共享时隙为2,最大候选PDCCH数量为M1。当SCS为480KHz时,共享时隙为4,最大候选PDCCH数量为M2。当SCS为960KHz时,共享时隙为8,最大候选PDCCH数量为M3。当SCS为1920KHz时,共享时隙为16,最大候选PDCCH数量为M4。其中,M1/M2/M3/M4均为整数,且M1<=M2<=M3<=M4。比如:M1=20,M2=22,M3=36,M4=44。
最大CCE数量与SCS相关联,例如SCS=480KHz时最大CCE数量为C2,SCS=960KHz时最大CCE数量为C3,且C3≥C2。当然在此仅为举例说明,最大CCE数量与SCS的关联关系可以基于需求进行设定。
上述最大CCE数量,可以如表5中的
Figure PCTCN2021081600-appb-000013
其中,配置最大CCE数量,同样依赖于终端的能力。
表5
Figure PCTCN2021081600-appb-000014
其中,当SCS为240KHz时,共享时隙为2,最大CCE数量为C1。当SCS为480KHz时,共享时隙为4,最大CCE数量为C2。当SCS为960KHz时,共享时隙为8,最大CCE数量为C3。当SCS为1920KHz时,共享时隙为16,最大CCE数量为C4。其中,C1/C2/C3/C4均为整数,且C1<=C2<=C3<=C4。比如:C1=32,C2=48,C3=56,C4=56。
由上述实施例可见,在确定检测时隙组时,可以根据第一配置信息中的时隙个数、最大候选控制信道数量、最大CCE数量来确定,从而提高了确定检测时隙组的准确性。
与此对应的,在执行步骤130中在搜索空间内进行控制信道检测时,可以包括:
(1-2-1)按照控制信道检测数量不大于所述最大候选控制信道数量,在所述搜索空间内进行控制信道检测。
具体地,基站发送控制信道时,确保在“配置的最大候选控制信道数量”范围之内;与此对应的,终端在进行控制信道检测时,仅仅在“配置的最大候选控制信道数量”范围之内进行控制信道检测。
比如:最大候选控制信道数量为20,则控制信道检测数量小于或等于20。
由上述实施例可见,按照控制信道检测数量不大于所述最大候选控制信道数量,在所述搜索空间内进行控制信道检测,从而保证了在终端能力范围之内进行控制信道检测,提高了控制信道检测的可靠性。
进一步地,建立在上述方法的基础上,在执行步骤120中确定检测时隙组的搜索空间时,可以包括(1-3-1)或(1-3-2):
(1-3-1)根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息,并根据所述第二配置信息确定所述搜索空间。
具体地,第一节点可以是基站,第二节点可以是终端;或者,第一节点可以是终端,第二节点可以是基站。即根据基站和终端之间的接口协议确定针对所述搜索空间的第二配置信息。
(1-3-2)接收基站发送的所述第二配置信息,并根据所述第二配置信息确定所述搜索空间。
具体地,基站可以通过高层信令将第二配置信息发送至终端,这样终端可以通过高层信令获取该第二配置信息。
由上述实施例可见,可以根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息,并根据所述第二配置信息确定所述搜索空间,也可以接收基站发送的所述第二配置信息,并根据所述第二配置信息确定所述搜索空间,从而丰富了第二配置信息的获取方式,进而提高了确定搜索空间的可靠性。
进一步地,建立在上述方法的基础上,上述(1-3-1)或(1-3-2)中的第 二配置信息可以包括:
第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。其中,多个指定时隙可以指的是至少两个时隙,比如:检测时隙组中的时隙0和时隙3。
具体地,上述第一指示信息可以指示哪些时隙组中有控制信道的检测机会,当时隙组配置了检测机会,终端在该时隙组中进行控制信道的检测,反之不用在该时隙组中进行控制信道检测。
比如:{0,1,2,3}是一个时隙组,该时隙组具有控制信道检测机会;而{8,9,10,11}是另一个时隙组,该时隙组不具有控制信道检测机会。
其中,在指示具有控制信道检测机会的检测时隙组时,可以使用如下两种配置方式:
方式一,使用位图(bitmap)的方式表示。
比如:使用80bit大小数值,表示10ms的配置(0.125ms为一个时隙组,10ms包含80个时隙组),1表示对应时隙组需要进行PDCCH检测,0表示对应时隙组不需要进行PDCCH检测。
方式二,使用周期方式指示。其配置参数包括:时隙组周期,和时隙组偏移量。
比如:基站通过高层信令配置了基于时隙组的搜索空间,4个时隙为一组(SCS=480KHz,每时隙长度是0.125ms/4)。在高层信令配置中,搜索空间周期是4个SG(Slot Group,时隙组),偏移量是2SG。终端在检测PDCCH时,只在周期为4SG,偏移量为2SG的SG上进行PDCCH的检测。
上述控制信道检测机会位于在所述检测时隙组中的位置,可以指的是配置有控制信道检测机会的时隙和符号的位置。
比如:{0,1,2,3}是一个时隙组,该时隙组具有控制信道检测机会位于时隙0中。
可选地,所述第二配置信息可以包括:所述检测时隙组的起始位置偏移(offset),所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
具体地,该起始位置偏移(offset)用于指示一个时隙组是由哪些时隙组成的。
当起始位置偏移(offset)为0,时隙组的时隙个数为4时,在时隙组包括的时隙编号有{4n,4n+1,4n+2,4n+3}。其中,n是大于或等于0的整数。比如:{0,1,2,3}是一个时隙组,{8,9,10,11}是另一个时隙组。
当起始位置偏移(offset)为2,时隙组的时隙个数为4时,在时隙组包括的时隙编号有{4n+2,4n+1+2,4n+2+2,4n+3+2}。其中,n是大于或等于0的整数。比如:{2,3,4,5}是一个时隙组,{10,11,12,13}是另一个时隙组。
基站可以通过高层信令将起始位置偏移(offset)发送至终端。基站发送控制信道时,确保在“配置的搜索空间内”的时间域上发送控制信道。与此对应的,终端只在配置的时间域上进行控制信道检测。
另外,若起始位置偏移(offset)一直为0时,可作为默认设置,不进行指示。
与此对应的,在执行步骤130中在搜索空间内进行控制信道检测时,可以包括:
(1-4-1)在所述检测时隙组中的一个指定时隙或多个指定时隙上,进行控制信道检测。
具体地,该控制信道检测机会位于在所述检测时隙组中的位置,可以指的是配置有控制信道检测机会的时隙和符号的位置。
比如:{0,1,2,3}是一个时隙组,该时隙组具有控制信道检测机会位于时隙0中,终端可以只在时隙0中进行控制信道检测。
又比如:{0,1,2,3}是一个时隙组,该时隙组具有控制信道检测机会位于时隙0和时隙3中,终端可以在时隙0和时隙3中进行控制信道检测。
由上述实施例可见,可以在所述控制信道检测机会位于在所述检测时隙组中的位置,进行控制信道检测,从而提高了控制信道检测的效率。
进一步地,建立在上述方法的基础上,在执行步骤130之后,还可以包括:
(1-5-1)在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。相应的,对应发送或者接收的时间要求按照最后一个搜索空间结束时间计算,如:数据发送准备时间的要求为N2(单位为符号或者时间),时隙组内最后一个搜索空间的CORESET结束时间为t2,则不要求终端能够在t2+N2之前进行数据的发送。同理:数据完成接收时间的要求为N1(单位为符号或者时间),时隙组内最后一个搜索空间的CORESET结束时间为t2,则不要求终端能够在t2+N1之前反馈接收数据的译码结果。
具体地,控制信道检测可以用于现有的Uu接口;也可以用于边链路中,即直连(side link)链路。其中,Uu接口对应的控制信息为DCI;直连(side link)对应的控制信息为SCI(Sidelink Control Information,边链路控制信息)。
比如:在对所述检测时隙组中的所有搜索空间均已完成PDCCH检测之后,根据检测到的一个或多个DCI进行PDSCH的接收。其中,PDCCH用于传输DCI控制信息。
又比如:在对所述检测时隙组中的所有搜索空间均已完成PSCCH(Pysical Sidelink Control Channel,物理直通链路控制信道)检测之后,根据检测到的一个或多个SCI进行PSSCH(Physical Sidelink Shared CHannel,物理直通链路共享信道)的接收。其中,PSCCH用于传输SCI控制信息。
由上述实施例可见,在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送,从而降低了终端进行共享数据信道的接收或者发送的复杂度。
图2为本公开实施例提供的一种控制信道检测方法的流程图,该控制信道检测方法可以用于基站。如图2所示,该控制信道检测方法可以包括如下步骤:
步骤210:确定用于控制信道检测的检测时隙组,该检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组。
具体地,控制信道检测可以用于现有的Uu接口;也可以用于边链路中,即直连(side link)链路。
检测时隙组可以指的是多个时隙组成的一个时隙组,并且这些个时隙在指定时隙条件时共享一个控制信道检测能力。
比如:控制信道为PDCCH;用于PDCCH检测的检测时隙组中包括多个时隙,这些个时隙在指定时隙条件时共享一个PDCCH检测能力。
其中,指定时隙条件可以是根据实际情况设置的SCS的一个具体的值或一个取值范围。比如:指定时隙条件为SCS等于120KHz;或指定时隙条件为SCS大于120KHz。
步骤220:确定检测时隙组的搜索空间。
具体地,搜索空间可以指的是检测时隙组中配置了控制信道检测能力的时间范围,其是终端需要进行控制信道检测的时间范围,以及基站需要发送控制信道的时间范围。另外,终端需要进行控制信道检测的搜索空间和基站需要发送控制信道的搜索空间,二者是相同的,这样可以减少终端的实现复杂度。
其中,搜索空间的类型可以是CSS,也可以是USS。搜索空间的数量可以是一个或多个。
比如:SCS等于480KHz,4时隙组成1个检测时隙组,搜索空间的数量为1个,该搜索空间配置在该检测时隙组的时隙2中,而检测时隙组的其他时隙上不配置搜索空间。
又比如:SCS等于960KHz,8时隙组成1个检测时隙组,搜索空间的数量为2个,分配配置在时隙0和时隙4中。
步骤230:在搜索空间内发送控制信道,以使终端在搜索空间内进行控制信道检测。
具体地,基站在控制信道上发送控制信息时,只在检测时隙组中配置了控制信道检测能力的搜索空间内发送控制信息;终端也只在配置了控制信道检测能力的搜索空间内进行控制信道检测。
比如:基站在PDCCH上发送DCI时,只在检测时隙组中配置了PDCCH 检测能力的时隙0上发送DCI,在DCI上,每个DCI可以调度至多4个PDSCH信道数据。与此对应的,终端只在时隙组中配置了PDCCH检测能力的时隙0上检测PDCCH,并根据检测到的DCI,进行PDSCH配置接收,以及相应的解调和译码。
由上述实施例可见,通过确定用于控制信道检测的检测时隙组,该检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组,确定检测时隙组的搜索空间,以及在搜索空间内发送控制信道,以使终端在搜索空间内进行控制信道检测,从而实现了终端以检测时隙组为单元进行控制信道检测,避免了随着SCS的增大而导致的终端在对应的时隙内无法完成控制信令的接收和配置过程,尤其是将一个时隙组的检测能力,集中在该时隙组的搜索空间内,提高了基站的调度灵活性。
进一步地,建立在上述方法的基础上,上述步骤210中的所述指定时隙条件可以包括SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
具体地,由于当前标准只定义了SCS在120KHz以下的每个时隙终端检测PDCCH候选信道的数量,所以对于SCS大于120KHz情况,可以采用以时隙组为单元,即多个时隙对应(或称为共享)的控制信道检测能力,并进行搜索空间的配置,来实现相应的控制信道检测。
对应或共享控制信道检测能力可以指的是同一时隙中的多个时隙共享一个控制信道检测能力。比如:控制信道为PDCCH;用于PDCCH检测的检测时隙组中包括多个时隙,这些个时隙在指定时隙条件时共享一个PDCCH检测能力。
由上述实施例可见,在SCS大于120KHz时,可以以检测时隙组为单元进行控制信道检测,即多个时隙共享一个控制信道检测能力,从而避免了随着SCS的增大而导致的终端在对应的时隙内无法完成控制信令的接收和配置过程,满足了无线通信发展的需求。
进一步地,建立在上述方法的基础上,在执行步骤210中确定用于控制信道检测的检测时隙组时,可以包括:
(2-1-1)根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息。
具体地,第一节点可以是基站,第二节点可以是终端;或者,第一节点可以是终端,第二节点可以是基站。即根据基站和终端之间的接口协议确定针对所述检测时隙组的第一配置信息。
(2-1-2)根据所述第一配置信息确定所述检测时隙组。
由上述实施例可见,可以根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息,并根据所述第一配置信息确定所述检测时隙组,从而提高了确定检测时隙组的可靠性。
进一步地,建立在上述方法的基础上,上述(2-1-1)中的第一配置信息可以包括:
所述检测时隙组中包含的时隙个数;
所述检测时隙组中最大候选控制信道数量;
所述检测时隙组中最大控制信道单元CCE数量。
其中,还包括下述至少一项:
所述时隙个数与SCS相关联;
所述最大候选控制信道数量与SCS相关联;
最大CCE数量与SCS相关联。
具体的,若所述SCS为480KHz,所述时隙个数为4;若所述SCS为960KHz,所述时隙个数为8。
具体地,上述检测时隙组中包含的时隙个数可以是直接配置的,比如:时隙个数为5或4;此外,所述时隙个数是基于SCS与预设参考SCS的比值所确定的,此时可以以某一特定的SCS为参考,进行倍数扩展的。其扩展公式为:
Figure PCTCN2021081600-appb-000015
其中,μ r为参考SCS,k 0是扩展系数。该扩展系数可以为1、2或其他数值。比如:以0.125ms的长度(SCS=120KHz)为参考(μ r=3),进行倍数扩展。又比如:当SCS=480KHz时,时隙个数为K μ=6=1*2 6-3=8。
上述最大候选控制信道数量,若控制信道为PDCCH,则最大候选控制信道数量为最大候选PDCCH数量,如上述表4中的
Figure PCTCN2021081600-appb-000016
其中,配置最大候选PDCCH数量,依赖于终端的能力。
上述最大CCE数量,最大CCE数量,如上述表5中的
Figure PCTCN2021081600-appb-000017
其中,配置最大CCE数量,同样依赖于终端的能力。
由上述实施例可见,在确定检测时隙组时,可以根据第一配置信息中的时隙个数、最大候选控制信道数量、最大CCE数量来确定,从而提高了确定检测时隙组的准确性。
进一步地,建立在上述方法的基础上,在执行步骤220中确定检测时隙组的搜索空间时,可以包括:
(2-2-1)根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息。
具体地,第一节点可以是基站,第二节点可以是终端;或者,第一节点可以是终端,第二节点可以是基站。即根据基站和终端之间的接口协议确定针对所述搜索空间的第二配置信息。
(2-2-2)根据所述第二配置信息确定所述搜索空间。
由上述实施例可见,可以根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息,并根据所述第二配置信息确定所述搜索空间,从而提高了确定搜索空间的可靠性。
进一步地,建立在上述方法的基础上,上述(2-2-1)中的第二配置信息可以包括:
第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。其中,多个指定时隙可以指的是至少两个时隙,比如:检测时隙组中的时隙0和时隙3。
具体地,上述第一指示信息可以指示哪些时隙组中有控制信道的检测机 会,当时隙组配置了检测机会,终端在该时隙组中进行控制信道的检测,反之不用在该时隙组中进行控制信道检测。
比如:{0,1,2,3}是一个时隙组,该时隙组具有控制信道检测机会;而{8,9,10,11}是另一个时隙组,该时隙组不具有控制信道检测机会。
其中,在指示具有控制信道检测机会的检测时隙组时,可以使用如下两种配置方式:
方式一,使用位图(bitmap)的方式表示。
比如:使用80bit大小数值,表示10ms的配置(0.125ms为一个时隙组,10ms包含80个时隙组),1表示对应时隙组需要进行PDCCH检测,0表示对应时隙组不需要进行PDCCH检测。
方式二,使用周期方式指示。其配置参数包括:时隙组周期,和时隙组偏移量。
比如:基站通过高层信令配置了基于时隙组的搜索空间,4个时隙为一组(SCS=480KHz,每时隙长度是0.125ms/4)。在高层信令配置中,搜索空间周期是4个SG(Slot Group,时隙组),偏移量是2SG。终端在检测PDCCH时,只在周期为4SG,偏移量为2SG的SG上进行PDCCH的检测。
上述控制信道检测机会位于在所述检测时隙组中的位置,可以指的是配置有控制信道检测机会的时隙和符号的位置。
比如:{0,1,2,3}是一个时隙组,该时隙组具有控制信道检测机会位于时隙0中。
可选地,所述第二配置信息可以包括:所述检测时隙组的起始位置偏移(offset),所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
具体地,该起始位置偏移(offset)用于指示一个时隙组是由哪些时隙组成的。
当起始位置偏移(offset)为0,时隙组的时隙个数为4时,在时隙组包括的时隙编号有{4n,4n+1,4n+2,4n+3}。其中,n是大于或等于0的整数。比如:{0,1,2,3}是一个时隙组,{8,9,10,11}是另一个时隙组。
当起始位置偏移(offset)为2,时隙组的时隙个数为4时,在时隙组包 括的时隙编号有{4n+2,4n+1+2,4n+2+2,4n+3+2}。其中,n是大于或等于0的整数。比如:{2,3,4,5}是一个时隙组,{10,11,12,13}是另一个时隙组。
基站可以通过高层信令将起始位置偏移(offset)发送至终端。基站发送控制信道时,确保在“配置的搜索空间内”的时间域上发送控制信道。与此对应的,终端只在配置的时间域上进行控制信道检测。
另外,若起始位置偏移(offset)一直为0时,可作为默认设置,不进行指示。
进一步地,建立在上述方法的基础上,进一步地,建立在上述方法的基础上,在执行步骤230中在搜索空间内发送控制信道时,可以包括:在所述检测时隙组中的一个指定时隙或多个指定时隙上,发送控制信道。
比如:{0,1,2,3}是一个时隙组,该时隙组具有控制信道检测机会位于时隙0中,基站可以只在时隙0上发送控制信道。
又比如:{0,1,2,3}是一个时隙组,该时隙组具有控制信道检测机会位于时隙0和时隙3中,基站可以在时隙0和时隙3上发送控制信道。
进一步地,建立在上述方法的基础上,在执行步骤230中在搜索空间内发送控制信道时,可以包括:
(2-3-1)在所述检测时隙组中的一个或多个搜索空间发送控制信息,以使终端在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
具体地,控制信道检测可以用于现有的Uu接口;也可以用于边链路中,即直连(side link)链路。其中,Uu接口对应的控制信息为DCI;直连(side link)对应的控制信息为SCI。
比如:基站在所述检测时隙组中的一个或多个搜索空间发送DCI,这样终端可以在对所述检测时隙组中的所有搜索空间均已完成PDCCH检测之后,根据检测到的一个或多个DCI进行PDSCH的接收。其中,PDCCH用于传输DCI控制信息。
又比如:基站在所述检测时隙组中的一个或多个搜索空间发送SCI,这样 终端可以在对所述检测时隙组中的所有搜索空间均已完成PSCCH检测之后,根据检测到的一个或多个SCI进行PSSCH的接收。其中,PSCCH用于传输SCI控制信息。
由上述实施例可见,可以在所述检测时隙组中的一个或多个搜索空间发送控制信息,以使终端在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送,从而进一步提高了基站的调度灵活性。
下面针对图1和图2所示的控制信道检测方法,通过具体示例进行说明。
示例1:SCS为480KHz,4时隙为1个时隙组,搜索空间配置在一个时隙中,其位置在第一个时隙。
第一、配置时隙SCS=480KHz的共享PDCCH检测能力的时隙组
配置共享PDCCH检测能力的时隙组,包括配置最大候选PDCCH检测数量和/或配置最大CCE数量。
其中,每个时隙组包含的时隙个数有两种配置方式:
方式一,直接配置一个时隙组包括的时隙个数。
比如:时隙个数为5或4。
方式二,以某一特定的SCS为参考,进行倍数扩展。其扩展公式为:
Figure PCTCN2021081600-appb-000018
其中,μ r为参考SCS。
比如:以0.125ms的长度(SCS=120KHz)为参考(μ r=3),进行倍数扩展。
又比如:当SCS=480KHz时,时隙个数为K μ=5=2 5-3=4。
其中,以某一SCS的时长为参考,以时隙组为单位配置PDCCH检测能力好处在于便于实现设计时能够统一考虑架构和模块之间的交互时序要求。
配置最大候选PDCCH数量,依赖于终端的能力,仍然可以以SCS=120KHz为能力基线。
配置最大CCE数量,同样依赖于终端的能力,仍然可以以SCS=120KHz为能力基线。
第二、配置时隙SCS=480KHz的共享PDCCH检测能力的时隙组的搜索空间
搜索空间配置,包括:搜索空间类型(USS或者CSS);配置需要做PDCCH检测的时隙组。搜索空间类型在搜索空间类型中指示。配置需要做PDCCH检测的时隙组,可以使用如下两种配置方式:
方式一,使用位图(bitmap)的方式表示。
比如:使用80bit大小数值,表示10ms的配置(0.125ms为一个时隙组,10ms包含80个时隙组),1表示对应时隙组需要进行PDCCH检测,0表示对应时隙组不需要进行PDCCH检测。
方式二,使用周期方式指示。其配置参数包括:时隙组周期,和时隙组偏移量。
比如:如图3所示,基站通过高层信令配置了基于时隙组的搜索空间,4个时隙为一组(SCS=480KHz,每时隙长度是0.125ms/4)。在高层信令配置中,搜索空间周期T是4个SG(Slot Group,时隙组),偏移量是2SG。终端在检测PDCCH时,只在周期为4SG,偏移量为2SG的SG上进行PDCCH的检测。其中,在有PDCCH检测机会的SG中,PDCCH检测机会位于第一个时隙上。
由上述实施例可见,通过定义以时隙组为单元,确定PDCCH的检测能力,有利于终端侧的设计和实现。
示例2:SCS为960KHz,8时隙为1组,搜索空间配置在2个时隙中,其位置分别在时隙0和4。
第一、配置时隙SCS=960KHz的共享PDCCH检测能力的时隙组
配置共享PDCCH检测能力的时隙组,包括配置最大候选PDCCH检测数量和/或配置最大CCE数量。
其中,每个时隙组包含的时隙个数有两种配置方式:
方式一,直接配置一个时隙组包括的时隙个数。
比如:时隙个数为5或4。
方式二,以某一特定的SCS为参考,进行倍数扩展。其扩展公式为:
Figure PCTCN2021081600-appb-000019
其中,μ r为参考SCS,k 0是扩展系数。该扩展系数可以为1、2或其他数值。
比如:以0.125ms的长度(SCS=120KHz)为参考(μ r=3),进行倍数扩展。
又比如:当SCS=960KHz时,时隙个数为K μ=6=1*2 6-3=8。
其中,以某一SCS的时长为参考,以时隙组为单位配置PDCCH检测能力好处在于便于实现设计时能够统一考虑架构和模块之间的交互时序要求。
配置最大候选PDCCH数量,依赖于终端的能力,仍然可以以SCS=120KHz为能力基线,也可以以SCS=15KHz为能力基线。
配置最大CCE数量,同样依赖于终端的能力,仍然可以以SCS=120KHz为能力基线,也可以以SCS=15KHz为能力基线。
第二、配置时隙SCS=960KHz的共享PDCCH检测能力的时隙组的搜索空间
1)配置需要做PDCCH检测的时隙组
可以使用如下两种配置方式:
方式一,使用位图(bitmap)的方式表示。
比如:使用80bit大小数值,表示10ms的配置(0.125ms为一个时隙组,10ms包含80个时隙组),1表示对应时隙组需要进行PDCCH检测,0表示对应时隙组不需要进行PDCCH检测。
方式二,使用周期方式指示。其配置参数包括:时隙组周期,和时隙组偏移量。
比如:基站通过高层信令配置了基于时隙组的搜索空间,4个时隙为一组(SCS=480KHz,每时隙长度是0.125ms/4)。在高层信令配置中,搜索空间周期是4个SG(Slot Group,时隙组),偏移量是2SG。终端在检测PDCCH时,只在周期为4SG,偏移量为2SG的SG上进行PDCCH的检测。其中,在有PDCCH检测机会的SG中,PDCCH检测机会位于第一个时隙上。
2)配置时隙组内需要做PDCCH检测的时隙
可以采用如下配置方式:
monitoringslotWithinSlotgroupBITSTRING(SIZE(Ku))
其中,Ku为一个时隙组中包括时隙的个数(或者最大个数)
上述字符串定义,当定义为1时,表示对应时隙有PDCCH检测机会,如果为0表示没有检测机会。
比如:如图4和图5所示,monitoringslotWithinSlotgroup配置为10001000,即表示在8个时隙组成的SG中,时隙0和时隙4有PDCCH检测机会。由上述实施例可见,通过定义以时隙组为单元,确定PDCCH的检测能力,有利于终端侧的设计和实现。
示例3:时隙组内配置多个检测机会时的检测能力分配方式
上述示例2中,给出了在一个时隙组中,有两个PDCCH检测机会的情况,在实际配置中,可以在一个时隙组中配置多个PDCCH的检测机会。在这种情况下,候选控制信道数量和CCE数量如何分配,标准协议上需要确定。可以分成如下两个步骤:
步骤A:确定检测机会上需要的候选控制信道数量和CCE数量。
方法1:PDCCH候选控制信道数量按照平均分配,CCE数量按照最大数目配置
方法2:PDCCH候选控制信道数量按照终端上报的能力,CCE数量按照终端上报的能力。
比如:如图6所示,上述示例2中,确定下来的PDCCH候选控制信道数量为M01和M02。其中,M01+M02可以等于配置1个检测机会的PDCCH候选控制信道数量,也可以是大于配置1个检测机会的PDCCH候选控制信道数量。这里不做限制。
步骤B:时隙组内,分配相应的候选信道
假设某个搜索空间的配置中,在一个时隙组内,配置了如下参数:
1:候选PDCCH数量;
比如:该候选PDCCH数量为:
Figure PCTCN2021081600-appb-000020
其中,M L是对应每个CCE聚合等级对应的候选PDCCH数量。
比如:如图7所示,CCE聚合等级为4的情况下,候选PDCCH数量PDCCH为4,分别为PDCCH1、PDCCH2、PDCCH3、PDCCH4;CCE聚合等级在8的情况下,候选PDCCH数量为2,分别为PDCCH5、PDCCH6;CCE聚合等级为16时,候选PDCCH数量为1,具体为PDCCH7。即总共候选PDCCH数量为7。
2:K个候选检测机会;上述示例2中,K为2。
分配方法如下:
1)将候选PDCCH的进行编号,顺序为:先以相同CCE的聚合等级内的候选PDCCH进行排序,CCE索引进行增序;然后以不同CCE的聚合等级间的候选PDCCH进行排序,CCE的聚合等级为增效,可参见图7所示。
2)假设时隙组中,有M total个PDCCH检测机会。(如示例1中,K=1,示例2中K=2)。
则每个PDCCH检测机会的起始候选PDCCH编号为:
Figure PCTCN2021081600-appb-000021
Figure PCTCN2021081600-appb-000022
比如:如图8所示,M01=3,M02=4,两个PDCCH检测机会上,分配的PDCCH分别是:时隙0={PDCCH1,PDCCH2,PDCCH3},时隙4={PDCCH4,PDCCH5,PDCCH6,PDCCH7}。即在时隙0上,终端需检测的PDCCH为:CCE聚合级别为4的候选PDCCH1、PDCCH2、PDCCH3;在时隙4上,终端需要检测的PDCCH为:CCE聚合级别为4的候选PDCCH4,聚合级别为8的候选PDCCH5、PDCCH6,聚合级别为16的候选PDCCH7。
由上述实施例可见,使用不同CCE聚合级别分配在不同的PDCCH检测机会上,使得基站调度更加灵活,能够调度更多的终端和数据包。
另外,上述实施例中,
1:候选PDCCH的顺序,可以以CCE聚合等级从小到大排序,也可以 按照CCE聚合级别从大到小排序。
2:候选PDCCH的顺序,可以以CCE聚合等级从小到大排序,也可以按照DCI大小进行排序。比如当有两个DCI大小不同时,可以分配到不同的PDCCH检测机会上。
3:当一个时隙组中有多个PDCCH检测机会时,基站和终端可以通过协议,将所有的检测机会都检测完后再上报给DCI解析模块,即当计算时隙或者定时时,以最后一个PDCCH检测机会的符号计算为准。
4:本实施例的PDCCH检测能力分配,可以在一个搜索空间中分配,也可以在不同的搜索空间中分配。比如:搜索空间S1,检测CCE聚合级别为4的候选PDCCH;搜索空间S2检测CCE聚合级别为8和16的候选PDCCH5。
还有,上述实施例中,
在一个时隙组中有共享PDCCH检测能力,在一个DCI,有可能调度的PDSCH/PUSCH在本时隙组的时隙上发送,也与可能在其它时隙组上调度。调度信令中,增加时隙组的调度指示,方法如下:
1:当调度是PDSCH时,使用k0的数值(如调度的是PUSCH,重用k2的数值),表示时隙组的偏移量(groupslot-offset),时隙组内的时隙偏移量用bitmap的方式。
比如:如图9所示,调度参数设置为:k0,groupslot[K μ],其中,K μ和时隙组中包含的时隙个数相关。
其中,k0=2,则表示调度时隙组为1+k0=3;
groupslot为0101,即表示在调度的时隙组中,时隙0和时隙2没有数据调度;时隙1和时隙3有数据调度。
进一步的,groupslot-offset信息可以指示在DCI中。
2:当调度是PDSCH时,新增时隙组的指示,即groupslot-index。时隙组的数值范围进行限制,如限制在0、1、2、3、…、16。
比如:如图10所示,groupslot-index为2,即表示时隙组的偏移量为2,即在时隙1+2=3的时隙组上有PDSCH调度。
k0指示时隙组内的偏移量,若k0=3,即在调度时隙组内,在时隙3上。
图11为本公开实施例提供的一种控制信道检测装置的模块框图,该控制信道检测装置可以用于终端;如图11所示,该控制信道检测装置可以包括:
第一确定模块111,用于确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组;
第二确定模块112,用于确定所述检测时隙组的搜索空间;
控制信道检测模块113,用于在所述搜索空间内进行控制信道检测。
进一步地,建立在上述装置的基础上,所述指定时隙条件包括子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
进一步地,建立在上述装置的基础上,所述第一确定模块111可以包括:
第一确定子模块,用于根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息,并根据所述第一配置信息确定所述检测时隙组;或
第二确定子模块,用于接收基站发送的所述第一配置信息,并根据所述第一配置信息确定所述检测时隙组。
进一步地,建立在上述装置的基础上,所述第一配置信息包括:
所述检测时隙组中包含的时隙个数;
所述检测时隙组中最大候选控制信道数量;
所述检测时隙组中最大控制信道单元CCE数量。
进一步地,还包括下述至少一项:
所述时隙个数与SCS相关联;
所述最大候选控制信道数量与SCS相关联;
最大CCE数量与SCS相关联。
进一步地,若所述SCS为480KHz,所述时隙个数为4;若所述SCS为960KHz,所述时隙个数为8。
进一步地,所述时隙个数是基于SCS与预设参考SCS的比值所确定的。
进一步地,建立在上述装置的基础上,所述控制信道检测模块113可以包括:
第一检测子模块,用于按照控制信道检测数量不大于所述最大候选控制信道数量,在所述搜索空间内进行控制信道检测。
进一步地,建立在上述装置的基础上,所述第二确定模块112可以包括:
第三确定子模块,用于根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息,并根据所述第二配置信息确定所述搜索空间;或
第四确定子模块,用于接收基站发送的所述第二配置信息,并根据所述第二配置信息确定所述搜索空间。
进一步地,建立在上述装置的基础上,所述第二配置信息包括:
第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
进一步地,建立在上述装置的基础上,所述第二配置信息还包括:
所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
进一步地,建立在上述装置的基础上,所述控制信道检测模块113可以包括:
第二检测子模块,用于在所述检测时隙组中的一个指定时隙或多个指定时隙上,进行控制信道检测。
进一步地,建立在上述装置的基础上,还包括:
共享数据信道的传输模块,用于在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
在此需要说明的是,本实施例提供的装置能够实现上述方法实施例所能够实现的所有方法步骤,并能够达到相同的有益效果,在此不再对本装置实施例中与上述方法实施例中的相同内容以及有益效果进行赘述。
图12为本公开实施例提供的一种控制信道检测装置的模块框图,该控制信道检测装置可以用于基站;如图12所示,该控制信道检测装置可以包括:
第三确定模块121,用于确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组;
第四确定模块122,用于确定所述检测时隙组的搜索空间;
控制信道发送模块123,用于在所述搜索空间内发送控制信道,以使终端在所述搜索空间内进行控制信道检测。
进一步地,建立在上述装置的基础上,所述指定时隙条件为子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
进一步地,建立在上述装置的基础上,所述第三确定模块121包括:
第五确定子模块,用于根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息;
第六确定子模块,用于根据所述第一配置信息确定所述检测时隙组。
进一步地,建立在上述装置的基础上,所述第一配置信息包括:
所述检测时隙组中包含的时隙个数;
所述检测时隙组中最大候选控制信道数量;
所述检测时隙组中最大控制信道单元CCE数量。
进一步地,还包括下述至少一项:
所述时隙个数与SCS相关联;
所述最大候选控制信道数量与SCS相关联;
最大CCE数量与SCS相关联。
进一步地,若所述SCS为480KHz,所述时隙个数为4;若所述SCS为960KHz,所述时隙个数为8。
进一步地,所述时隙个数是基于SCS与预设参考SCS的比值所确定的。
进一步地,建立在上述装置的基础上,所述第四确定模块122可以包括:
第七确定子模块,用于根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息;
第八确定子模块,用于根据所述第二配置信息确定所述搜索空间。
进一步地,建立在上述装置的基础上,所述第二配置信息包括:
第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
进一步地,建立在上述装置的基础上,所述第二配置信息还包括:
所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
进一步地,建立在上述装置的基础上,控制信道发送模块123具体用于在所述检测时隙组中的一个指定时隙或多个指定时隙上,发送控制信道。
进一步地,建立在上述装置的基础上,所述控制信道发送模块123可以包括:
发送子模块,用于在所述检测时隙组中的一个或多个搜索空间发送控制信息,以使终端在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
在此需要说明的是,本实施例提供的装置能够实现上述方法实施例所能够实现的所有方法步骤,并能够达到相同的有益效果,在此不再对本装置实施例中与上述方法实施例中的相同内容以及有益效果进行赘述。
图13为本公开实施例提供的一种终端的结构示意图,如图13所示,该终端500可以包括:至少一个处理器501、存储器502、至少一个网络接口504和其他的用户接口503。终端500中的各个组件通过总线系统505耦合在一起。可理解,总线系统505用于实现这些组件之间的连接通信。总线系统505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图13中将各种总线都标为总线系统505。
其中,用户接口503可以包括显示器、键盘或者点击设备,例如鼠标, 轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器502可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开各实施例所描述的系统和方法的存储器502旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器502存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集,例如:操作系统5021和应用程序5022。
其中,操作系统5021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序5022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序5022中。
在本公开实施例中,通过调用存储器502存储的计算机程序或指令,具体的,可以是应用程序5022中存储的计算机程序或指令,处理器501用于:
确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组
确定所述检测时隙组的搜索空间;
在所述搜索空间内进行控制信道检测。
上述本公开实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本公开描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例中所述功能的模块(例如过程、函数等)来实现所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,作为另一个实施例,处理器501还用于:
所述指定时隙条件包括子载波间隔SCS大于120KHz;所述共享控制信 道检测能力用于表征多个时隙对应的控制信道检测能力。
可选地,作为另一个实施例,处理器501还用于:
所述确定用于控制信道检测的检测时隙组,包括:
根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息,并根据所述第一配置信息确定所述检测时隙组;或
接收基站发送的所述第一配置信息,并根据所述第一配置信息确定所述检测时隙组。
可选地,作为另一个实施例,处理器501还用于:
所述第一配置信息包括:
所述检测时隙组中包含的时隙个数;
所述检测时隙组中最大候选控制信道数量;
所述检测时隙组中最大控制信道单元CCE数量。
可选地,还包括下述至少一项:
所述时隙个数与SCS相关联;
所述最大候选控制信道数量与SCS相关联;
最大CCE数量与SCS相关联。
可选地,若所述SCS为480KHz,所述时隙个数为4;若所述SCS为960KHz,所述时隙个数为8。
可选地,所述时隙个数是基于SCS与预设参考SCS的比值所确定的。
可选地,作为另一个实施例,处理器501还用于:
所述在所述搜索空间内进行控制信道检测,包括:
按照控制信道检测数量不大于所述最大候选控制信道数量,在所述搜索空间内进行控制信道检测。
可选地,作为另一个实施例,处理器501还用于:
所述确定所述检测时隙组的搜索空间,包括:
根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息,并根据所述第二配置信息确定所述搜索空间;或
接收基站发送的所述第二配置信息,并根据所述第二配置信息确定所述 搜索空间。
可选地,作为另一个实施例,处理器501还用于:
所述第二配置信息包括:
第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
可选地,作为另一个实施例,处理器501还用于:
所述第二配置信息还包括:
所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
可选地,作为另一个实施例,处理器501还用于:
所述在所述搜索空间内进行控制信道检测,包括:
在所述检测时隙组中的一个指定时隙或多个指定时隙上,进行控制信道检测。
可选地,作为另一个实施例,处理器501还用于:
在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
本公开实施例提供的终端能够实现前述实施例中终端实现的各个过程,为避免重复,此处不再赘述。
由上述实施例可见,通过确定用于控制信道检测的检测时隙组,该检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组,确定检测时隙组的搜索空间,以及在搜索空间内进行控制信道检测,从而实现了以检测时隙组为单元进行控制信道检测,避免了随着SCS的增大而导致的终端在对应的时隙内无法完成控制信令的接收和配置过程,还降低了终端进行控制信道检测的复杂度。
图14为本公开实施例提供的另一种终端的结构示意图,图14中的终 端可以为手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或、电子阅读器、手持游戏机、销售终端(Point of Sales,POS)、车载电子设备(车载电脑)等。如图14所示,该终端包括射频(Radio Frequency,RF)电路610、存储器620、输入单元630、显示单元640、处理器660、音频电路670、WiFi(Wireless Fidelity)模块680和电源690。本领域技术人员可以理解,图14中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
其中,输入单元630可用于接收用户输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的信号输入。具体地,本公开实施例中,该输入单元630可以包括触控面板6301。触控面板6301,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板6301上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板6301可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器660,并能接收处理器660发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板6301。除了触控面板6301,输入单元630还可以包括其他输入设备6302,其他输入设备6302可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,其他输入设备6302可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。
其中,显示单元640可用于显示由用户输入的信息或提供给用户的信息以及终端的各种菜单界面。显示单元640可包括显示面板6401。其中显示面板8401可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发 光二极管(OrganicLight-Emitting Diode,OLED)等形式来配置显示面板6401。
应注意,触控面板6301可以覆盖显示面板6401,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器660以确定触摸事件的类型,随后处理器660根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
RF电路610可用于收发信息或通话过程中,信号的接收和发送,特别地,将网络侧的下行信息接收后,给处理器660处理;另外,将设计上行的数据发送给网络侧。通常,RF电路610包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路610还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobilecommunication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband CodeDivision Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器620用于存储软件程序以及模块,处理器660通过运行存储在存储器620的软件程序以及模块,从而执行终端的各种功能应用以及数据处理。存储器620可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、 图像播放功能等)等;存储数据区可存储根据终端的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其中处理器660是终端的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器6201内的软件程序和/或模块,以及调用存储在第二存储器6202内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。可选的,处理器660可包括一个或多个处理单元。
在本公开实施例中,通过调用存储该第一存储器6201内的软件程序和/或模块和/或该第二存储器6202内的数据,处理器660用于:
确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组
确定所述检测时隙组的搜索空间;
在所述搜索空间内进行控制信道检测。
可选地,作为另一个实施例,处理器660还用于:
所述指定时隙条件包括子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
可选地,作为另一个实施例,处理器660还用于:
所述确定用于控制信道检测的检测时隙组,包括:
根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息,并根据所述第一配置信息确定所述检测时隙组;或
接收基站发送的所述第一配置信息,并根据所述第一配置信息确定所述检测时隙组。
可选地,作为另一个实施例,处理器660还用于:
所述第一配置信息包括:
所述检测时隙组中包含的时隙个数;
所述检测时隙组中最大候选控制信道数量;
所述检测时隙组中最大控制信道单元CCE数量。
可选地,还包括下述至少一项:
所述时隙个数与SCS相关联;
所述最大候选控制信道数量与SCS相关联;
最大CCE数量与SCS相关联。
可选地,若所述SCS为480KHz,所述时隙个数为4;若所述SCS为960KHz,所述时隙个数为8。
可选地,所述时隙个数是基于SCS与预设参考SCS的比值所确定的。
可选地,作为另一个实施例,处理器660还用于:
所述在所述搜索空间内进行控制信道检测,包括:
按照控制信道检测数量不大于所述最大候选控制信道数量,在所述搜索空间内进行控制信道检测。
可选地,作为另一个实施例,处理器660还用于:
所述确定所述检测时隙组的搜索空间,包括:
根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息,并根据所述第二配置信息确定所述搜索空间;或
接收基站发送的所述第二配置信息,并根据所述第二配置信息确定所述搜索空间。
可选地,作为另一个实施例,处理器660还用于:
所述第二配置信息包括:
第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
可选地,作为另一个实施例,处理器660还用于:
所述第二配置信息还包括:
所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测 时隙组中包括的各个时隙。
可选地,作为另一个实施例,处理器660还用于:
所述在所述搜索空间内进行控制信道检测,包括:
在所述检测时隙组中的一个指定时隙或多个指定时隙上,进行控制信道检测。
可选地,作为另一个实施例,处理器660还用于:
在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
本公开实施例提供的终端能够实现前述实施例中终端实现的各个过程,为避免重复,此处不再赘述。
由上述实施例可见,通过确定用于控制信道检测的检测时隙组,该检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组,确定检测时隙组的搜索空间,以及在搜索空间内进行控制信道检测,从而实现了以检测时隙组为单元进行控制信道检测,避免了随着SCS的增大而导致的终端在对应的时隙内无法完成控制信令的接收和配置过程,还降低了终端进行控制信道检测的复杂度。
图15为本公开实施例提供的一种基站的结构示意图,如图15所示,该基站700可以包括至少一个处理器701、存储器702、至少一个其他的用户接口703,以及收发机704。基站700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图15中将各种总线都标为总线系统705,总线系统可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器702代表的存储器的各种电路链接在一起。总线系统还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本公开实施例不再对其进行进一步描述。总线接口提供接口。收发机704可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用 户接口703还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
可以理解,本公开实施例中的存储器702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开各实施例所描述的系统和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
处理器701负责管理总线系统和通常的处理,存储器702可以存储处理器701在执行操作时所使用的计算机程序或指令,具体地,处理器701可以用于:
确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组
确定所述检测时隙组的搜索空间;
在所述搜索空间内发送控制信道,以使终端在所述搜索空间内进行控制信道检测。
上述本公开实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电 路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本公开描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例中所述功能的模块(例如过程、函数等)来实现所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,作为另一个实施例,处理器701还用于:
所述指定时隙条件为子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
可选地,作为另一个实施例,处理器701还用于:所述确定用于控制信道检测的检测时隙组,包括:
根据第一节点与第二节点之间的接口协议确定针对所述检测时隙组的第一配置信息;
根据所述第一配置信息确定所述检测时隙组。
可选地,作为另一个实施例,处理器701还用于:
所述第一配置信息包括:
所述检测时隙组中包含的时隙个数;
所述检测时隙组中最大候选控制信道数量;
所述检测时隙组中最大控制信道单元CCE数量。
可选地,还包括下述至少一项:
所述时隙个数与SCS相关联;
所述最大候选控制信道数量与SCS相关联;
最大CCE数量与SCS相关联。
可选地,作为另一个实施例,处理器701还用于:
所述确定所述检测时隙组的搜索空间,包括:
根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息;
根据所述第二配置信息确定所述搜索空间。
可选地,作为另一个实施例,处理器701还用于:
所述第二配置信息包括:
第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
可选地,作为另一个实施例,处理器701还用于:
所述第二配置信息还包括:
所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
可选地,作为另一个实施例,处理器701还用于:
在所述搜索空间内发送控制信道,包括:
在所述检测时隙组中的一个指定时隙或多个指定时隙上,发送控制信道。
可选地,作为另一个实施例,处理器701还用于:
在所述搜索空间内发送控制信道,包括:
在所述检测时隙组中的一个或多个搜索空间发送控制信息,以使终端在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
本公开实施例提供的基站能够实现前述实施例中基站实现的各个过程,为避免重复,此处不再赘述。
由上述实施例可见,通过确定用于控制信道检测的检测时隙组,该检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组,确定检测时隙组的搜索空间,以及在搜索空间内发送控制信道,以使终端在搜索空间内进行控制信道检测,从而实现了终端以检测时隙组为单元进行控制信道检测,避免了随着SCS的增大而导致的终端在对应的时隙内无法完成控制信令的接收和配置过程,尤其是将一个时隙组的检测能力,集中在该时隙组的搜索空间内,提高了基站的调度灵活性。
上述主要从基站的角度对本公开实施例提供的方案进行了介绍。可以理解的是,本公开实施例提供的基站为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本公开中所公开的实施例描述的各示例的单元及算法步骤,本公开能够以硬件或硬件和计算机软件的结合形式来实现。
某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
本公开实施例可以根据上述方法示例对基站等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
需要说明的是,本公开实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本公开各个实施例所述方法的全部或部分步骤。所述计算机存储介质是非短暂性(英文:nontransitory)介质,包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或 者光盘等各种可以存储程序代码的介质。
另一方面,本公开实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的方法,包括:
确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组
确定所述检测时隙组的搜索空间;
在所述搜索空间内进行控制信道检测。
另一方面,本公开实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的方法,包括:
确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组
确定所述检测时隙组的搜索空间;
在所述搜索空间内发送控制信道,以使终端在所述搜索空间内进行控制信道检测。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (77)

  1. 一种控制信道检测方法,其特征在于,所述控制信道检测方法用于终端,包括:
    确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组;
    确定所述检测时隙组的搜索空间;
    在所述搜索空间内进行控制信道检测。
  2. 根据权利要求1所述的控制信道检测方法,其特征在于,所述指定时隙条件包括子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
  3. 根据权利要求1所述的控制信道检测方法,其特征在于,所述确定用于控制信道检测的检测时隙组,包括:
    根据第一节点与第二节点之间的接口协议确定针对检测时隙组的第一配置信息,并根据所述第一配置信息确定所述检测时隙组;或
    接收基站发送的第一配置信息,并根据所述第一配置信息确定所述检测时隙组。
  4. 根据权利要求3所述的控制信道检测方法,其特征在于,所述第一配置信息包括:
    所述检测时隙组中包含的时隙个数;
    所述检测时隙组中最大候选控制信道数量;
    所述检测时隙组中最大控制信道单元CCE数量。
  5. 根据权利要求4所述的控制信道检测方法,其特征在于,还包括下述至少一项:
    所述时隙个数与SCS相关联;
    所述最大候选控制信道数量与SCS相关联;
    最大CCE数量与SCS相关联。
  6. 根据权利要求5所述的控制信道检测方法,其特征在于,若所述SCS为480KHz,所述时隙个数为4;若所述SCS为960KHz,所述时隙个数为8。
  7. 根据权利要求4所述的控制信道检测方法,其特征在于,所述时隙个数是基于SCS与预设参考SCS的比值所确定的。
  8. 根据权利要求4所述的控制信道检测方法,其特征在于,所述在所述搜索空间内进行控制信道检测,包括:
    按照控制信道检测数量不大于所述最大候选控制信道数量,在所述搜索空间内进行控制信道检测。
  9. 根据权利要求1所述的控制信道检测方法,其特征在于,所述确定所述检测时隙组的搜索空间,包括:
    根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息,并根据所述第二配置信息确定所述搜索空间;或
    接收基站发送的所述第二配置信息,并根据所述第二配置信息确定所述搜索空间。
  10. 根据权利要求9所述的控制信道检测方法,其特征在于,所述第二配置信息包括:
    第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
    第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
  11. 根据权利要求10所述的控制信道检测方法,其特征在于,所述第二配置信息还包括:
    所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
  12. 根据权利要求10或11所述的控制信道检测方法,其特征在于,所述在所述搜索空间内进行控制信道检测,包括:
    在所述检测时隙组中的一个指定时隙或多个指定时隙上,进行控制信道检测。
  13. 根据权利要求1所述的控制信道检测方法,其特征在于,还包括:
    在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
  14. 一种控制信道检测方法,其特征在于,所述控制信道检测方法用于基站,包括:
    确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组;
    确定所述检测时隙组的搜索空间;
    在所述搜索空间内发送控制信道,以使终端在所述搜索空间内进行控制信道检测。
  15. 根据权利要求14所述的控制信道检测方法,其特征在于,所述指定时隙条件为子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
  16. 根据权利要求14所述的控制信道检测方法,其特征在于,所述确定用于控制信道检测的检测时隙组,包括:
    根据第一节点与第二节点之间的接口协议确定针对检测时隙组的第一配置信息;
    根据所述第一配置信息确定所述检测时隙组。
  17. 根据权利要求16所述的控制信道检测方法,其特征在于,所述第一配置信息包括:
    所述检测时隙组中包含的时隙个数;
    所述检测时隙组中最大候选控制信道数量;
    所述检测时隙组中最大控制信道单元CCE数量。
  18. 根据权利要求17所述的控制信道检测方法,其特征在于,还包括下述至少一项:
    所述时隙个数与SCS相关联;
    所述最大候选控制信道数量与SCS相关联;
    最大CCE数量与SCS相关联。
  19. 根据权利要求18所述的控制信道检测方法,其特征在于,若所述 SCS为480KHz,所述时隙个数为4;若所述SCS为960KHz,所述时隙个数为8。
  20. 根据权利要求17所述的控制信道检测方法,其特征在于,所述时隙个数是基于SCS与预设参考SCS的比值所确定的。
  21. 根据权利要求14所述的控制信道检测方法,其特征在于,所述确定所述检测时隙组的搜索空间,包括:
    根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息;
    根据所述第二配置信息确定所述搜索空间。
  22. 根据权利要求21所述的控制信道检测方法,其特征在于,所述第二配置信息包括:
    第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
    第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
  23. 根据权利要求22所述的控制信道检测方法,其特征在于,所述第二配置信息还包括:
    所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
  24. 根据权利要求22或23所述的控制信道检测方法,其特征在于,所述在所述搜索空间内发送控制信道,包括:
    在所述检测时隙组中的一个指定时隙或多个指定时隙上,发送控制信道。
  25. 根据权利要求14所述的控制信道检测方法,其特征在于,在所述搜索空间内发送控制信道,包括:
    在所述检测时隙组中的一个或多个搜索空间发送控制信息,以使终端在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
  26. 一种控制信道检测装置,其特征在于,所述控制信道检测装置用于终端,包括:
    第一确定模块,用于确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组;
    第二确定模块,用于确定所述检测时隙组的搜索空间;
    控制信道检测模块,用于在所述搜索空间内进行控制信道检测。
  27. 根据权利要求26所述的控制信道检测装置,其特征在于,所述指定时隙条件包括子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
  28. 根据权利要求26所述的控制信道检测装置,其特征在于,所述第一确定模块包括:
    第一确定子模块,用于根据第一节点与第二节点之间的接口协议确定针对检测时隙组的第一配置信息,并根据所述第一配置信息确定所述检测时隙组;或
    第二确定子模块,用于接收基站发送的第一配置信息,并根据所述第一配置信息确定所述检测时隙组。
  29. 根据权利要求28所述的控制信道检测装置,其特征在于,所述第一配置信息包括:
    所述检测时隙组中包含的时隙个数;
    所述检测时隙组中最大候选控制信道数量;
    所述检测时隙组中最大控制信道单元CCE数量。
  30. 根据权利要求29所述的控制信道检测装置,其特征在于,还包括下述至少一项:
    所述时隙个数与SCS相关联;
    所述最大候选控制信道数量与SCS相关联;
    最大CCE数量与SCS相关联。
  31. 根据权利要求30所述的控制信道检测装置,其特征在于,若所述SCS为480KHz,所述时隙个数为4;若所述SCS为960KHz,所述时隙个数 为8。
  32. 根据权利要求29所述的控制信道检测装置,其特征在于,所述时隙个数是基于SCS与预设参考SCS的比值所确定的。
  33. 根据权利要求29所述的控制信道检测装置,其特征在于,所述控制信道检测模块包括:
    第一检测子模块,用于按照控制信道检测数量不大于所述最大候选控制信道数量,在所述搜索空间内进行控制信道检测。
  34. 根据权利要求26所述的控制信道检测装置,其特征在于,所述第二确定模块包括:
    第三确定子模块,用于根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息,并根据所述第二配置信息确定所述搜索空间;或
    第四确定子模块,用于接收基站发送的所述第二配置信息,并根据所述第二配置信息确定所述搜索空间。
  35. 根据权利要求34所述的控制信道检测装置,其特征在于,所述第二配置信息包括:
    第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
    第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
  36. 根据权利要求35所述的控制信道检测装置,其特征在于,所述第二配置信息还包括:
    所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
  37. 根据权利要求35或36所述的控制信道检测装置,其特征在于,所述控制信道检测模块包括:
    第二检测子模块,用于在所述检测时隙组中的一个指定时隙或多个指定 时隙上,进行控制信道检测。
  38. 根据权利要求26所述的控制信道检测装置,其特征在于,还包括:
    共享数据信道的传输模块,用于在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
  39. 一种控制信道检测装置,其特征在于,所述控制信道检测装置用于基站,包括:
    第三确定模块,用于确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组;
    第四确定模块,用于确定所述检测时隙组的搜索空间;
    控制信道发送模块,用于在所述搜索空间内发送控制信道,以使终端在所述搜索空间内进行控制信道检测。
  40. 根据权利要求39所述的控制信道检测装置,其特征在于,所述指定时隙条件为子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
  41. 根据权利要求39所述的控制信道检测装置,其特征在于,所述第三确定模块包括:
    第五确定子模块,用于根据第一节点与第二节点之间的接口协议确定针对检测时隙组的第一配置信息;
    第六确定子模块,用于根据所述第一配置信息确定所述检测时隙组。
  42. 根据权利要求41所述的控制信道检测装置,其特征在于,所述第一配置信息包括:
    所述检测时隙组中包含的时隙个数;
    所述检测时隙组中最大候选控制信道数量;
    所述检测时隙组中最大控制信道单元CCE数量。
  43. 根据权利要求42所述的控制信道检测装置,其特征在于,还包括下述至少一项:
    所述时隙个数与SCS相关联;
    所述最大候选控制信道数量与SCS相关联;
    最大CCE数量与SCS相关联。
  44. 根据权利要求43所述的控制信道检测装置,其特征在于,若所述SCS为480KHz,所述时隙个数为4;若所述SCS为960KHz,所述时隙个数为8。
  45. 根据权利要求42所述的控制信道检测装置,其特征在于,所述时隙个数是基于SCS与预设参考SCS的比值所确定的。
  46. 根据权利要求39所述的控制信道检测装置,其特征在于,所述第四确定模块包括:
    第七确定子模块,用于根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息;
    第八确定子模块,用于根据所述第二配置信息确定所述搜索空间。
  47. 根据权利要求46所述的控制信道检测装置,其特征在于,所述第二配置信息包括:
    第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
    第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
  48. 根据权利要求47所述的控制信道检测装置,其特征在于,所述第二配置信息还包括:
    所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
  49. 根据权利要求47或48所述的控制信道检测装置,其特征在于,所述控制信道发送模块具体用于在所述检测时隙组中的一个指定时隙或多个指定时隙上,发送控制信道。
  50. 根据权利要求39所述的控制信道检测装置,其特征在于,所述控制信道发送模块包括:
    发送子模块,用于在所述检测时隙组中的一个或多个搜索空间发送控制信息,以使终端在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
  51. 一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组;
    确定所述检测时隙组的搜索空间;
    在所述搜索空间内进行控制信道检测。
  52. 根据权利要求51所述的终端,其特征在于,所述指定时隙条件包括子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
  53. 根据权利要求51所述的终端,其特征在于,所述确定用于控制信道检测的检测时隙组,包括:
    根据第一节点与第二节点之间的接口协议确定针对检测时隙组的第一配置信息,并根据所述第一配置信息确定所述检测时隙组;或
    接收基站发送的第一配置信息,并根据所述第一配置信息确定所述检测时隙组。
  54. 根据权利要求53所述的终端,其特征在于,所述第一配置信息包括:
    所述检测时隙组中包含的时隙个数;
    所述检测时隙组中最大候选控制信道数量;
    所述检测时隙组中最大控制信道单元CCE数量。
  55. 根据权利要求54所述的终端,其特征在于,还包括下述至少一项:
    所述时隙个数与SCS相关联;
    所述最大候选控制信道数量与SCS相关联;
    最大CCE数量与SCS相关联。
  56. 根据权利要求55所述的终端,其特征在于,若所述SCS为480KHz, 所述时隙个数为4;若所述SCS为960KHz,所述时隙个数为8。
  57. 根据权利要求54所述的终端,其特征在于,所述时隙个数是基于SCS与预设参考SCS的比值所确定的。
  58. 根据权利要求54所述的终端,其特征在于,所述在所述搜索空间内进行控制信道检测,包括:
    按照控制信道检测数量不大于所述最大候选控制信道数量,在所述搜索空间内进行控制信道检测。
  59. 根据权利要求51所述的终端,其特征在于,所述确定所述检测时隙组的搜索空间,包括:
    根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息,并根据所述第二配置信息确定所述搜索空间;或
    接收基站发送的所述第二配置信息,并根据所述第二配置信息确定所述搜索空间。
  60. 根据权利要求59所述的终端,其特征在于,所述第二配置信息包括:
    第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
    第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
  61. 根据权利要求60所述的终端,其特征在于,所述第二配置信息还包括:
    所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
  62. 根据权利要求60或61所述的终端,其特征在于,所述在所述搜索空间内进行控制信道检测,包括:
    在所述检测时隙组中的一个指定时隙或多个指定时隙上,进行控制信道检测。
  63. 根据权利要求51所述的终端,其特征在于,还包括:
    在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
  64. 一种基站,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    确定用于控制信道检测的检测时隙组,所述检测时隙组用于表征在指定时隙条件时能够共享控制信道检测能力的时隙组
    确定所述检测时隙组的搜索空间;
    在所述搜索空间内发送控制信道,以使终端在所述搜索空间内进行控制信道检测。
  65. 根据权利要求64所述的基站,其特征在于,所述指定时隙条件为子载波间隔SCS大于120KHz;所述共享控制信道检测能力用于表征多个时隙对应的控制信道检测能力。
  66. 根据权利要求64所述的基站,其特征在于,所述确定用于控制信道检测的检测时隙组,包括:
    根据第一节点与第二节点之间的接口协议确定针对检测时隙组的第一配置信息;
    根据所述第一配置信息确定所述检测时隙组。
  67. 根据权利要求66所述的基站,其特征在于,所述第一配置信息包括:
    所述检测时隙组中包含的时隙个数;
    所述检测时隙组中最大候选控制信道数量;
    所述检测时隙组中最大控制信道单元CCE数量。
  68. 根据权利要求67所述的基站,其特征在于,还包括下述至少一项:
    所述时隙个数与SCS相关联;
    所述最大候选控制信道数量与SCS相关联;
    最大CCE数量与SCS相关联。
  69. 根据权利要求68所述的基站,其特征在于,若所述SCS为480KHz,所述时隙个数为4;若所述SCS为960KHz,所述时隙个数为8。
  70. 根据权利要求67所述的基站,其特征在于,所述时隙个数是基于 SCS与预设参考SCS的比值所确定的。
  71. 根据权利要求64所述的基站,其特征在于,所述确定所述检测时隙组的搜索空间,包括:
    根据第一节点与第二节点之间的接口协议确定针对所述搜索空间的第二配置信息;
    根据所述第二配置信息确定所述搜索空间。
  72. 根据权利要求71所述的基站,其特征在于,所述第二配置信息包括:
    第一指示信息,所述第一指示信息用于指示具有控制信道检测机会的检测时隙组;
    第二指示信息,所述第二指示信息用于指示控制信道检测机会位于检测时隙组中的指定位置,所述指定位置包括位于检测时隙组中的一个指定时隙或多个指定时隙。
  73. 根据权利要求72所述的基站,其特征在于,所述第二配置信息还包括:
    所述检测时隙组的起始位置偏移,所述起始位置偏移用于指示所述检测时隙组中包括的各个时隙。
  74. 根据权利要求72或73所述的基站,其特征在于,所述在所述搜索空间内发送控制信道,包括:
    在所述检测时隙组中的一个指定时隙或多个指定时隙上,发送控制信道。
  75. 根据权利要求64所述的基站,其特征在于,在所述搜索空间内发送控制信道,包括:
    在所述检测时隙组中的一个或多个搜索空间发送控制信息,以使终端在对所述检测时隙组中的所有搜索空间均已完成控制信道检测之后,根据检测到的一个或多个控制信息进行共享数据信道的接收或者发送。
  76. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至13任一项所述的控制信道检测方法的步骤。
  77. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求14至25任一项所述的控制信道检测方法的步骤。
PCT/CN2021/081600 2020-04-02 2021-03-18 控制信道检测方法、装置、终端、基站及存储介质 WO2021197088A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21780717.1A EP4132061A4 (en) 2020-04-02 2021-03-18 CONTROL CHANNEL DETECTION METHOD AND DEVICE, AND TERMINAL, BASE STATION AND STORAGE MEDIUM
BR112022019863A BR112022019863A2 (pt) 2020-04-02 2021-03-18 Método e dispositivo de monitoramento de canal de controle, terminal, estação-base e mídia de armazenamento
US17/913,817 US20240215037A1 (en) 2020-04-02 2021-03-18 Control channel monitoring method and device, terminal, base station and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010255749.6A CN113498080B (zh) 2020-04-02 2020-04-02 控制信道检测方法、装置、终端、基站及存储介质
CN202010255749.6 2020-04-02

Publications (1)

Publication Number Publication Date
WO2021197088A1 true WO2021197088A1 (zh) 2021-10-07

Family

ID=77927425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081600 WO2021197088A1 (zh) 2020-04-02 2021-03-18 控制信道检测方法、装置、终端、基站及存储介质

Country Status (6)

Country Link
US (1) US20240215037A1 (zh)
EP (1) EP4132061A4 (zh)
CN (1) CN113498080B (zh)
BR (1) BR112022019863A2 (zh)
TW (1) TWI840662B (zh)
WO (1) WO2021197088A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118679772A (zh) * 2022-02-11 2024-09-20 苹果公司 多时隙pdcch监测搜索空间配置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365936A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种通信方法,装置及系统
CN109474384A (zh) * 2017-09-08 2019-03-15 华为技术有限公司 通信方法、终端设备和网络设备
WO2019099435A1 (en) * 2017-11-14 2019-05-23 Idac Holdings, Inc. Methods for physical downlink control channel (pdcch) candidate determination
CN109963339A (zh) * 2017-12-25 2019-07-02 维沃移动通信有限公司 控制信道配置及检测方法和装置、程序及介质
CN110839287A (zh) * 2018-08-17 2020-02-25 中国移动通信有限公司研究院 一种指示方法、用户设备及网络侧设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448309B1 (ko) * 2007-09-28 2014-10-08 엘지전자 주식회사 무선통신 시스템에서 하향링크 제어채널 모니터링 방법
CN108270514A (zh) * 2017-01-03 2018-07-10 中兴通讯股份有限公司 Pdsch资源的确定方法及装置、终端、基站
CN109729593B (zh) * 2017-10-27 2021-09-10 大唐移动通信设备有限公司 信道传输方法及装置、计算机存储介质
US11395277B2 (en) * 2018-01-12 2022-07-19 Qualcomm Incorporated Control channel mapping within search space for wireless systems
CN110536420B (zh) * 2018-05-23 2022-04-01 中国移动通信有限公司研究院 配置物理下行控制信道时域检测位置的方法及设备
WO2020033652A1 (en) * 2018-08-10 2020-02-13 Intel Corporation Enhanced pdcch monitoring in new radio systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365936A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种通信方法,装置及系统
CN109474384A (zh) * 2017-09-08 2019-03-15 华为技术有限公司 通信方法、终端设备和网络设备
WO2019099435A1 (en) * 2017-11-14 2019-05-23 Idac Holdings, Inc. Methods for physical downlink control channel (pdcch) candidate determination
CN109963339A (zh) * 2017-12-25 2019-07-02 维沃移动通信有限公司 控制信道配置及检测方法和装置、程序及介质
CN110839287A (zh) * 2018-08-17 2020-02-25 中国移动通信有限公司研究院 一种指示方法、用户设备及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4132061A4 *

Also Published As

Publication number Publication date
BR112022019863A2 (pt) 2022-11-22
CN113498080B (zh) 2024-04-02
TWI840662B (zh) 2024-05-01
EP4132061A4 (en) 2024-04-10
TW202139627A (zh) 2021-10-16
US20240215037A1 (en) 2024-06-27
EP4132061A1 (en) 2023-02-08
CN113498080A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2022214013A1 (zh) 资源确定方法、装置、终端、网络侧设备及存储介质
WO2018082543A1 (zh) 下行控制信道的检测方法、指示方法、终端及网络侧设备
US11973620B2 (en) Downlink control channel detection method, terminal and base station
WO2019095834A1 (zh) 一种上行控制信道的资源配置方法和装置
WO2022152176A1 (zh) 传输处理方法及相关设备
WO2018103577A1 (zh) 一种终端调度方法、终端及基站
WO2018201938A1 (zh) 资源映射方法、网络设备和终端设备
WO2022028464A1 (zh) 资源调度方法、装置及设备
US11497009B2 (en) Frequency domain resource allocation method and apparatus
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
WO2023025016A1 (zh) 传输处理方法、装置及设备
WO2022253312A1 (zh) 上行数据传输方法、装置、终端及介质
WO2021197088A1 (zh) 控制信道检测方法、装置、终端、基站及存储介质
WO2021196880A1 (zh) 一种harq反馈方法、终端及基站
WO2022012171A1 (zh) Csi反馈方法、装置、电子设备及存储介质
WO2022022714A1 (zh) 定位参考信号传输方法、装置及设备
WO2018082546A1 (zh) 下行控制信道的检测方法、发送方法、网络侧设备及终端
WO2018126997A1 (zh) 传输资源的配置方法、基站及终端
WO2021097818A1 (zh) 通信方法及装置
WO2019228535A1 (zh) 一种信号发送方法、装置及系统
WO2018228409A1 (zh) 控制信息的传输方法、终端设备和网络设备
WO2021179812A1 (zh) 一种子载波间隔指示方法、终端及基站
CN113328831B (zh) Harq-ack反馈方法终端、基站和存储介质
WO2021179725A1 (zh) 上行信道传输方法、装置、基站、终端及存储介质
WO2022007951A1 (zh) 资源传输方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17913817

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022019863

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021780717

Country of ref document: EP

Effective date: 20221102

ENP Entry into the national phase

Ref document number: 112022019863

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220930