WO2020020128A1 - 用于多波束发送上行信道的方法、终端设备和网络侧设备 - Google Patents

用于多波束发送上行信道的方法、终端设备和网络侧设备 Download PDF

Info

Publication number
WO2020020128A1
WO2020020128A1 PCT/CN2019/097222 CN2019097222W WO2020020128A1 WO 2020020128 A1 WO2020020128 A1 WO 2020020128A1 CN 2019097222 W CN2019097222 W CN 2019097222W WO 2020020128 A1 WO2020020128 A1 WO 2020020128A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
uplink
uplink beam
pucch
resource indication
Prior art date
Application number
PCT/CN2019/097222
Other languages
English (en)
French (fr)
Inventor
杨宇
孙鹏
孙晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19840757.9A priority Critical patent/EP3829238A4/en
Priority to JP2021504302A priority patent/JP7301122B2/ja
Publication of WO2020020128A1 publication Critical patent/WO2020020128A1/zh
Priority to US17/157,527 priority patent/US11974305B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method, a terminal device, and a network-side device for transmitting a multi-beam uplink channel.
  • the fifth-generation (5-th Generation, 5G) mobile communication system New Radio (NR) introduces large-scale antenna technology, which can better support Multi-User Multiple-Input Multiple- Output (MU-MIMO) antenna technology.
  • MU-MIMO Multi-User Multiple-Input Multiple- Output
  • a digital signal analog beamforming technique is used to make the transmitted signals and channels more roughly matched.
  • An object of the embodiments of the present disclosure is to provide a method, a terminal device, and a network-side device for transmitting an uplink channel in multiple beams, so as to solve a problem that related technologies cannot transmit an uplink channel based on multiple beams.
  • an example of the present disclosure provides a method for transmitting an uplink channel in multiple beams, which is applied to a terminal device, and the method includes:
  • Receive configuration information where the configuration information includes multiple uplink beam information for an uplink channel; the multiple uplink beam information has an association relationship with related parameters of the uplink channel.
  • an example of the present disclosure also provides a method for transmitting an uplink channel in multiple beams, which is applied to a network-side device.
  • the method includes:
  • the configuration information includes multiple uplink beam information for an uplink channel; the multiple uplink beam information has an association relationship with related parameters of the uplink channel.
  • an embodiment of the present disclosure further provides a terminal device, including:
  • the receiving module is configured to receive configuration information, where the configuration information includes multiple uplink beam information for an uplink channel; the multiple uplink beam information has an association relationship with related parameters of the uplink channel.
  • an embodiment of the present disclosure further provides a terminal device.
  • the terminal device includes a processor, a memory, and a program stored on the memory and executable on the processor.
  • the program is described by the The processor executes the steps of implementing the method for multi-beam transmission of an uplink channel as described in the first aspect.
  • an embodiment of the present disclosure further provides a computer-readable storage medium on which a program is stored, and when the program is executed by a processor, the program for implementing multi-beam as described in the first aspect is implemented. Steps of a method of transmitting an uplink channel.
  • an embodiment of the present disclosure further provides a network-side device, including:
  • a sending module is configured to send configuration information, where the configuration information includes multiple uplink beam information for an uplink channel; the multiple uplink beam information has an association relationship with related parameters of the uplink channel.
  • an embodiment of the present disclosure further provides a network-side device.
  • the network-side device includes a processor, a memory, and a program stored on the memory and executable on the processor.
  • the program is When the processor executes, the steps of implementing the method for multi-beam sending an uplink channel according to the second aspect are performed.
  • an embodiment of the present disclosure further provides a computer-readable storage medium.
  • the computer-readable storage medium stores a program, and when the program is executed by a processor, the program for multi-beam according to the second aspect is implemented. Steps of a method of transmitting an uplink channel.
  • multiple uplink beam information is configured for the uplink channel through the configuration information, and the multiple uplink beam information has an association relationship with relevant parameters of the uplink channel, so that the terminal device can use multiple uplink beam information according to the association relationship.
  • Send an uplink channel which can effectively improve the uplink transmission efficiency of the communication system.
  • FIG. 1 is a schematic diagram of a network architecture according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for sending an uplink channel in multiple beams according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another method for sending an uplink channel by using multiple beams according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a network-side device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another network-side device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a network architecture according to an embodiment of the present disclosure. As shown in FIG. 1, it includes a user terminal 11 and a base station 12.
  • the user terminal 11 may be a terminal equipment (UE, User Equipment), for example, a mobile phone, a tablet computer (Computer), and a laptop computer (Laptop).
  • Computer personal digital assistant (PDA, personal digital assistant), mobile Internet device (MID, Mobile Internet Device), or wearable device (Wearable Device) and other terminal-side devices.
  • PDA personal digital assistant
  • MID mobile Internet device
  • Wiarable Device wearable device
  • the specific type of the user terminal 11 is not limited.
  • the above base station 12 may be a base station of 5G and later versions (for example, gNB, 5G, NR, and NB), or a base station in another communication system, or referred to as a Node B. It should be noted that in the embodiment of the present disclosure, only 5G is used.
  • the base station is taken as an example, but the specific type of the base station 12 is not limited.
  • FIG. 2 is a schematic flowchart of a method for transmitting an uplink channel in multiple beams according to an embodiment of the present disclosure. The method is applied to a terminal device, and the method may be as follows.
  • Step 210 Receive configuration information, where the configuration information includes multiple uplink beam information for an uplink channel; the multiple uplink beam information has an association relationship with related parameters of the uplink channel.
  • the network-side device configures multiple uplink beam information for the uplink device for the terminal device.
  • PUSCH Physical Uplink shared channel
  • PUCCH Physical Uplink control channel
  • the network-side device configures multiple uplink beam information for the PUSCH.
  • receiving configuration information includes:
  • DCI Receive Downlink Control Information
  • the network-side device indicates configuration information to the terminal device by scheduling the DCI of the PUSCH, and the configuration information is used to configure multiple uplink beam information for the PUSCH.
  • the DCI includes at least one sounding reference signal resource indicator (SRI, Sounding Reference Signal Resource Indicator) signaling field;
  • SRI Sounding Reference Signal Resource Indicator
  • the manner in which the DCI indicates the configuration information includes at least one of the following:
  • One SRI signaling domain indicates multiple resource indication information, wherein each resource indication information in the multiple resource indication information indicates one uplink beam information;
  • the multiple SRI signaling domains indicate multiple resource indication information, wherein each SRI signaling domain in the multiple SRI signaling domains indicates at least one resource indication information, and each resource indication information in the at least one resource indication information indicates one Uplink beam information.
  • the resource indication information includes at least one of the following:
  • the channel state information refers to a signal resource indicator (CRI, Channel Information Information Indicator), a synchronization signal block resource indicator (SSBRI, Synchronization Signal Block Resource Indicator), and SRI.
  • CRI Signal Resource indicator
  • SSBRI Synchronization Signal Block Resource Indicator
  • the DCI includes an SRI signaling domain. Regardless of the number of bits in the SRI signaling domain, the DCI uses the SRI signaling domain to indicate multiple resource indication information. Among the multiple resource indication information, Each resource indication information indicates one piece of uplink beam information.
  • DCI1 of the PUSCH scheduled by the network-side device includes an SRI signaling domain, and the number of bits in the SRI signaling domain is 3 bits. Then, the SRI signaling domain can have 8 SRI signaling domain values (000 ⁇ 111), corresponding to 8 SRI codepoints.
  • the network-side device predetermines multiple resource indication information corresponding to each SRI codepoint: SRI codepoint 000 corresponds to two resource indication information: CRI1 and CRI2, and SRI codepoint 001 corresponds to two resource indication information: CRI3 and SSBRI2, etc.
  • the terminal device After the terminal device receives DCI1, if the SRI codepoint of the SRI signaling domain in DCI1 is 001, the terminal device can determine that the network side device is configured with two uplink beam information for PUSCH, which are: the uplink beam information indicated by CRI3 and SSBRI2 Indicated uplink beam information.
  • the DCI includes an SRI signaling domain, and the SRI signaling domain may be divided into multiple parts.
  • the DCI uses each of the multiple parts to indicate at least one resource indication information, wherein at least one Each resource indication information in the resource indication information indicates one piece of uplink beam information.
  • the DCI2 that the network-side device schedules for PUSCH includes an SRI signaling field.
  • the number of bits in the SRI signaling field is 9 bits.
  • the network-side device divides the SRI signaling field into three parts. The first part is the first three bits. The second part is the middle three bits and the third part is the last three bits.
  • Each of the three parts of the SRI signaling domain can have eight SRI signaling domain values (000 to 111), corresponding to eight SRI codepoints.
  • the SRI signaling domain values of the three parts of the SRI signaling domain together constitute one SRI signaling domain of the SRI signaling domain, and the one SRI signaling domain corresponds to one SRI codepoint.
  • the network-side device determines a plurality of resource indication information corresponding to each SRI codepoint in each of the three parts of the SRI signaling domain in advance.
  • SRI codepoint 000 corresponds to two resource indication information: CRI1 and CRI2, SRI codepoint 001 corresponds to one resource indication information: SSBRI2, etc .;
  • SRI codepoint 100 corresponds to two resource indication information: CRI3 and CRI4, SRI codepoint 111 corresponds to two resource indication information: SSBRI1 and SSBRI3, etc .;
  • SRI codepoint 101 corresponds to two resource indication information SRI1 and SRI2
  • SRI codepoint 110 corresponds to two resource indication information: SRI3 and SRI4, and so on.
  • the terminal device After the terminal device receives DCI2, if the SRI codepoint of the SRI signaling domain in DCI2 is 001111101, that is, the SRI codepoint of the first part of the SRI signaling domain is 001, the SRI codepoint of the second part is 111, and the SRI of the third part The codepoint is 101.
  • the terminal device can determine that the network side device has configured five uplink beam information for the PUSCH, which are: uplink beam information indicated by SSBRI2, uplink beam information indicated by SSBRI1, uplink beam information indicated by SSBRI3, uplink beam information indicated by SRI1, and SRI2. Indicated uplink beam information.
  • the DCI includes multiple SRI signaling domains, and the DCI uses each of the SRI signaling domains in the multiple SRI signaling domains to indicate at least one resource indication information, wherein the at least one resource indication information in the at least one resource indication information Each resource indication information indicates one piece of uplink beam information.
  • the DCI3 of the network-side device scheduling PUSCH includes three SRI signaling domains: a first SRI signaling domain, a second SRI signaling domain, and a third SRI signaling domain.
  • the number of bits in each SRI signaling domain is 3 bits (that is, 9-bit SRI signaling domain is included in DCI2), then each SRI signaling domain can have 8 SRI signaling domain values (000 to 111), corresponding to 8 SRIs respectively codepoint.
  • the network-side device determines in advance at least one resource indication information corresponding to each SRI codepoint in each SRI signaling domain.
  • SRI codepoint 000 corresponds to two resource indication information: CRI1 and CRI2, and SRI codepoint 001 corresponds to one resource indication information: SRI2, etc .;
  • SRI codepoint 100 corresponds to two resource indication information: CRI3 and SSBRI1
  • SRI codepoint111 corresponds to two resource indication information: SRI1 and SSBRI2, etc .;
  • SRI codepoint 101 corresponds to one resource indication information: SRI3
  • SRI codepoint 110 corresponds to two resource indication information: CRI4 and SSBRI3, and so on.
  • the terminal device After the terminal device receives DCI3, if the SRI codepoint of the first SRI signaling domain in the DCI3 is 000, the SRI codepoint of the second SRI signaling domain is 111, and the SRI codepoint of the third SRI signaling domain is 101, the terminal device can It is determined that the network side device is configured with five uplink beam information for PUSCH, which are: uplink beam information indicated by CRI1, uplink beam information indicated by CRI2, uplink beam information indicated by SRI1, uplink beam information indicated by SSBRI2, and uplink beam indicated by SRI3. information.
  • the method before receiving the DCI, the method further includes:
  • RRC Receive radio resource control
  • SRS Sounding Reference Signal
  • the network-side device configures the PUSCH Spatial Relation or the SRS resource Spatial Relation for the terminal device through RRC signaling, and then configures multiple uplink beam information for the PUSCH in the DCI that schedules the PUSCH.
  • the uplink beam information is determined according to the Spatial Relation configured for the PUSCH by the RRC signaling or the Spatial Relation configured for the SRS resources according to the RRC signaling.
  • the manner in which the RRC signaling configures the Spatial Relation of the PUSCH includes at least one of the following:
  • the RRC signaling includes a physical uplink shared channel spatial relationship information (PUSCH-Spatial Relation Info), and the PUSCH-Spatial Relation Info includes multiple resource indication information;
  • the RRC signaling includes multiple PUSCH-Spatial Relation Info, and each PUSCH-Spatial Relation Info in the multiple PUSCH-Spatial Relation Info includes at least one resource indication information.
  • the terminal device receives the RRC signaling sent by the network-side device.
  • the RRC signaling includes a PUSCH-SpatialRelationInfo
  • the PUSCH-SpatialRelationInfo includes three resource indication information: CRI1, SRI2, and SSBRI2.
  • the network-side device When the network-side device schedules the PUSCH in the future, it can indicate the PUSCH-Spatial Relation Info by scheduling the DCI of the PUSCH to configure three uplink beam information for the PUSCH, which are: the uplink beam information indicated by CRI1, and the uplink beam information indicated by SRI2. And uplink beam information indicated by SSBRI2.
  • the terminal device receives the RRC signaling sent by the network-side device, and the RRC signaling includes two PUSCH-Spatial Relation Info: a first PUSCH-Spatial Relation Info and a second PUSCH-Spatial Relation Info.
  • the first PUSCH-Spatial Relation Info includes two resource indication information: SRI1 and SSBRI1
  • the second PUSCH-Spatial Relation Info includes three resource indication information: CRI1, SRI2, and SSBRI2.
  • the network-side device When the network-side device schedules the PUSCH in the future, it can indicate the first PUSCH-SpatialRelationInfo and the second PUSCH-SpatialRelationInfo by scheduling the DCI of the PUSCH to configure five uplink beam information for the PUSCH, which are: Beam information, uplink beam information indicated by SSBRI1, uplink beam information indicated by CRI1, uplink beam information indicated by SRI2, and uplink beam information indicated by SSBRI2.
  • the manner in which the RRC signaling configures the Spatial Relation of the SRS resource includes at least one of the following:
  • RRC signaling configures a sounding reference signal spatial relationship information (SRS-SpatialRelationInfo) for each SRS resource, where the SRS-SpatialRelationInfo includes multiple resource indication information;
  • SRS-SpatialRelationInfo sounding reference signal spatial relationship information
  • the RRC signaling configures multiple SRS-SpatialRelationInfo for each SRS resource, wherein each SRS-SpatialRelationInfo of the multiple SRS-SpatialRelationInfo includes at least one resource indication information.
  • the network-side device configures SRS resources for the terminal device.
  • the terminal device receives RRC signaling sent by the network-side device.
  • the RRC signaling configures an SRS-SpatialRelationInfo for each SRS resource, and the SRS-SpatialRelationInfo includes multiple resource indication information.
  • the network-side device configures an SRS-SpatialRelationInfo for the first SRS resource through RRC signaling, and the SRS-SpatialRelationInfo includes two resource indication information: CRI1 and CRI2.
  • the DCI of the PUSCH may be used to indicate the first SRS resource, so that the SRS-Spatial Relation Info of the first SRS resource configured for the first SRS resource according to RRC signaling may be determined as the network-side device is
  • the PUSCH is configured with two uplink beam information, respectively: uplink beam information indicated by CRI1 and uplink beam information indicated by CRI2.
  • the network-side device configures an SRS resource for the terminal device.
  • the terminal device receives RRC signaling sent by the network-side device.
  • the RRC signaling configures at least one SRS-SpatialRelationInfo for each SRS resource, and each SRS-SpatialRelationInfo in the at least one SRS-SpatialRelationInfo includes At least one resource indication.
  • the network-side device configures two SRS-SpatialRelationInfo for the first SRS resource through RRC signaling: the first SRS-SpatialRelationInfo and the second SRS-SpatialRelationInfo, where the first SRS-SpatialRelationInfo includes Two resource indication information: CRI1 and CRI2, the second SRS-SpatialRelationInfo includes one resource indication information: SRI1;
  • the RRC signaling configures two SRS-SpatialRelationInfo for the second SRS resource: the third SRS-SpatialRelationInfo and the fourth SRS-SpatialRelationInfo, where the third SRS-SpatialRelationInfo includes two resource indication information : SSBRI1 and SSBRI2.
  • the fourth SRS-SpatialRelationInfo includes two resource indication information: SRI2 and SRI3.
  • the network-side device When the network-side device schedules the PUSCH subsequently, it can indicate the first SRS resource and the second SRS resource by scheduling the DCI of the PUSCH, thereby configuring the first SRS-SpatialRelationInfo and the second SRS- Spatial and Relation Info, and the third SRS-Spatial Relation Info and the fourth SRS-Spatial Relation Info configured for the second SRS resource according to RRC signaling, determine that the network-side device is configured with seven uplink beam information for PUSCH, respectively: CRI1 The uplink beam information indicated, the uplink beam information indicated by CRI2, the uplink beam information indicated by SRI1, the uplink beam information indicated by SSBRI1, the uplink beam information indicated by SSBRI2, the uplink beam information indicated by SRI2, and the uplink beam information indicated by SRI3.
  • CRI1 The uplink beam information indicated, the uplink beam information indicated by CRI2, the uplink beam information indicated by SRI1, the uplink beam information indicated by SSBRI1, the uplink beam information
  • the network-side device configures multiple uplink beam information for the PUCCH.
  • the network-side device configure multiple uplink beam information for the PUCCH.
  • receiving configuration information includes:
  • the network-side device indicates configuration information to the terminal device through the DCI, and the configuration information is used to configure multiple uplink beam information for the PUCCH.
  • the DCI includes at least one signaling domain
  • the manner in which the DCI indicates the configuration information includes at least one of the following:
  • One signaling field indicates one physical uplink control channel spatial relationship information (PUCCH-SpatialRelationInfo), where the PUCCH-SpatialRelationInfo indicates multiple resource indication information, and each resource indication information in the multiple resource indication information indicates one Uplink beam information;
  • PUCCH-SpatialRelationInfo indicates multiple resource indication information, and each resource indication information in the multiple resource indication information indicates one Uplink beam information;
  • At least one signaling field indicates multiple PUCCH-Spatial Relation Info, where each PUCCH-Spatial Relation Info of multiple PUCCH-Spatial Relation Info indicates at least one resource indication information, and each resource indication in at least one resource indication information The information indicates an uplink beam information.
  • the network-side device configures multiple uplink beam information for the PUCCH through the DCI.
  • the DCI configured by the network-side device to configure multiple uplink beam information for the PUCCH includes a signaling domain. Regardless of the number of bits in the signaling domain, DCI uses the signaling domain to indicate a PUCCH-SpatialRelationInfo
  • the PUCCH-Spatial Relation Info indicates a plurality of resource indication information, and each resource indication information in the plurality of resource indication information indicates an uplink beam information.
  • the DCI1 where the network-side device configures multiple uplink beam information for the PUCCH includes a signaling domain, and the number of bits in the signaling domain is 3 bits, the signaling domain can have eight signaling domain values (000 to 111). , Corresponding to 8 codepoints respectively.
  • the network-side device determines a PUCCH-Spatial Relation Info corresponding to each codepoint and multiple resource indication information indicated by each PUCCH-Spatial Relation Info: codepoint 000 corresponds to the first PUCCH-Spatial Relation Info, the first PUCCH- SpatialRelationInfo indicates two resource indication information: CRI1 and CRI2; codepoint001 corresponds to the second PUCCH-SpatialRelationInfo, and the second PUCCH-SpatialRelationInfo indicates two resource indication information: SSBRI1 and SRI1, and so on.
  • the terminal device may determine that the network-side device is configured with two uplink beam information for the PUCCH according to the first PUCCH-Spatial Relation Info indicated by the DCI. They are: uplink beam information indicated by CRI1 and uplink beam information indicated by CRI2.
  • the DCI that the network-side device configures multiple uplink beam information for the PUCCH includes multiple signaling domains, and the DCI uses at least one signaling domain in the multiple signaling domains to indicate multiple PUCCH-SpatialRelationInfo
  • each PUCCH-Spatial and Relation Info of the plurality of PUCCH-Spatial and Relation Info indicates at least one resource indication information
  • each of the resource indication information in the at least one resource indication information indicates one uplink beam information.
  • the DCI2 where the network-side device configures multiple uplink beam information for the PUCCH includes a signaling domain, and the number of bits in the signaling domain is 3 bits, so the signaling domain can have 8 signaling domain values (000 to 111). , Corresponding to 8 codepoints.
  • the network-side device predetermines multiple PUCCH-Spatial Relation Info corresponding to each codepoint and multiple resource indication information indicated by each PUCCH-Spatial Relation Info: codepoint 000 corresponds to the first PUCCH-Spatial Relation Info and the second PUCCH -Spatial and Relation Info, where the first PUCCH-SpatialRelationInfo indicates a resource indication: CRI1, the second PUCCH-SpatialRelationInfo indicates a resource indication: CRI2; codepoint001 corresponds to the third PUCCH-SpatialRelationInfo and the fourth PUCCH-Spatial Relation Info, where the third PUCCH-Spatial Relation Info indicates two resource indication information: SSBRI1 and SRI1, the fourth PUCCH-Spatial Relation Info indicates two resource indication information: SSBRI2 and SRI3, etc.
  • the terminal device After the terminal device receives the DCI2, if the codepoint of the signaling domain in DCI2 is 001, the terminal device can determine that the network-side device is PUCCH according to the third PUCCH-Spatial Relation Info and the fourth PUCCH-Spatial Relation Info indicated by DCI2.
  • Four uplink beam information are configured, respectively: uplink beam information indicated by SSBRI1, uplink beam information indicated by SRI1, uplink beam information indicated by SSBRI2, and uplink beam information indicated by SRI3.
  • the DCI3 where the network-side device configures multiple uplink beam information for the PUCCH includes two signaling domains: a first signaling domain and a second signaling domain.
  • the number of bits in each signaling domain is 3 bits (that is, 6-bit signaling domain is included in DCI2), then each signaling domain can have 8 signaling domain values (000 to 111), corresponding to 8 codepoints.
  • the network-side device predetermines multiple PUCCH-SpatialRelationInfo corresponding to each codepoint in each signaling domain, and each PUCCH-SpatialRelationInfo in multiple PUCCH-SpatialRelationInfo corresponding to each codepoint in each signaling domain. Multiple resource indication information indicated by SpatialRelationInfo.
  • codepoint 000 corresponds to two PUCCH-Spatial Relation Info: the first PUCCH-Spatial Relation Info and the second PUCCH-Spatial Relation Info, where the first PUCCH-Spatial Relation Info indicates a resource indication information CRI1, The second PUCCH-Spatial Relation Info indicates one resource indication information CRI2;
  • the codepoint 001 corresponds to two PUCCH-Spatial Relation Info: the third PUCCH-Spatial Relation Info and the fourth PUCCH-Spatial Relation Info, among which the third PUCCH-Spatial Relation Info Indicates two resource indication information: SSBRI1 and SRI1, and the fourth PUCCH-Spatial Relation Info indicates one resource indication information: SSBRI2 and so on.
  • codepoint 100 corresponds to two PUCCH-Spatial Relation Info: the fifth PUCCH-Spatial Relation Info and the sixth PUCCH-Spatial Relation Info, where the fifth PUCCH-Spatial Relation Info indicates a resource indication information CRI3,
  • the second PUCCH-Spatial Relation Info indicates a resource indication information CRI4;
  • the codepoint 111 corresponds to two PUCCH-Spatial Relation Info: the seventh PUCCH-Spatial Relation Info and the eighth PUCCH-Spatial Relation Info, of which the seventh PUCCH-Spatial Relation Info Indicates two resource indication information: SSBRI3 and SRI2, and eighth PUCCH-SpatialRelation Info indicates one resource indication information: SRI3 and so on.
  • the terminal device may according to the first PUCCH-Spatial, RelationInfo, and second PUCCH indicated by the DCI3.
  • -Spatial, Relation Info, seventh PUCCH-Spatial Relation Info, and eighth PUCCH-Spatial Relation Info determine that the network-side device is configured with five uplink beam information for PUCCH, which are: uplink beam information indicated by CRI1, and uplink beam indicated by CRI2 Information, uplink beam information indicated by SSBRI3, uplink beam information indicated by SRI2, and uplink beam information indicated by SRI3.
  • receiving configuration information includes:
  • High-level signaling includes at least one of the following: RRC signaling, Medium Access Control Layer Control Element (MAC, CE, Control, Element Control) signaling.
  • RRC signaling Medium Access Control Layer Control Element (MAC, CE, Control, Element Control) signaling.
  • MAC Medium Access Control Layer Control Element
  • CE Control, Element Control
  • the manner in which the high-level signaling indicates the configuration information includes at least one of the following:
  • One PUCCH-Spatial Relation Info indicates multiple resource indication information, wherein each resource indication information in the multiple resource indication information indicates one uplink beam information;
  • Multiple PUCCH-Spatial Relation Info indicates multiple resource indication information, wherein each PUCCH-Spatial Relation Info of multiple PUCCH-Spatial Relation Info indicates at least one resource indication information, each resource in at least one resource indication information
  • the indication information indicates an uplink beam information.
  • the network-side device configures multiple uplink beam information for the PUCCH through high-level signaling (RRC signaling, MAC CE signaling).
  • the terminal device receives the RRC signaling sent by the network-side device.
  • the RRC signaling includes a PUCCH-SpatialRelationInfo, which indicates two resource indication information: SRI1 and SSBRI1. Therefore, the terminal device can determine that the network side device has configured two uplink beam information for the PUCCH through RRC signaling, which are: the uplink beam information indicated by SRI1 and the uplink beam information indicated by SSBRI1.
  • the terminal device receives the RRC signaling sent by the network-side device, and the RRC signaling includes two PUSCH-Spatial Relation Info: a first PUSCH-Spatial Relation Info and a second PUSCH-Spatial Relation Info.
  • the first PUSCH-Spatial Relation Info indicates a resource indication information: SRI1
  • the second PUSCH-Spatial Relation Info indicates three resource indication information: CRI1, SRI2, and SSBRI2. Therefore, the terminal device can determine that the network-side device has configured four uplink beam information for the PUCCH through RRC signaling, which are: uplink beam information indicated by SRI1, uplink beam information indicated by CRI1, uplink beam information indicated by SRI2, and Uplink beam information.
  • a manner of determining an association relationship between multiple pieces of uplink beam information and related parameters of an uplink channel includes at least one of the following methods:
  • the terminal device After the network-side device configures multiple uplink beam information of the uplink channel for the terminal device, the terminal device determines an association relationship between the multiple uplink beam information and related parameters of the uplink channel.
  • association relationship between the multiple uplink beam information and the relevant parameters of the uplink channel may be specified by the protocol, may be configured by the network-side device, may be determined autonomously by the terminal device, or may be through other methods Certainly, it is not specifically limited here.
  • the network-side device can configure or indicate the association relationship for the terminal device through high-level signaling (RRC signaling, MAC CE signaling), and can also indicate the association relationship for the terminal device through DCI.
  • RRC signaling RRC signaling, MAC CE signaling
  • the DCI indicating the association relationship and the DCI indicating the configuration information for configuring multiple uplink beam information for the uplink channel may be the same or different, which is not specifically limited here.
  • the association relationship includes at least one of the following:
  • multiple uplink beam information is associated with different uplink channels
  • Multiple uplink beam information is associated with different transport blocks (TB, Transport Block) in the same uplink channel;
  • Multiple uplink beam information is associated with different layers (Layer) or different antenna ports (Antenna Port) corresponding to the same uplink channel;
  • Multiple uplink beam information is associated with parts of the same uplink channel transmitted at different times;
  • Multiple uplink beam information is associated with different physical resource block groups (PRB bundles, Physical Resource Blocks).
  • PRB bundles Physical Resource Blocks
  • multiple uplink beam information is associated with different resource allocation corresponding to the uplink channel
  • Multiple uplink beam information is associated with different modulation and coding schemes (MCS, Modulation and Coding Scheme) corresponding to the uplink channel;
  • MCS Modulation and Coding Scheme
  • Multiple uplink beam information is associated with different numerical configuration numerology corresponding to the uplink channel
  • the multiple uplink beam information is associated with different carriers (carriers) or different bandwidth parts (BWP, Bandwidth Part) corresponding to the uplink channel.
  • Multiple uplink beam information is associated with each repeated transmission of the uplink channel.
  • association relationship between the multiple uplink beam information and the related parameters of the uplink channel may include other association relationships in addition to the above a to k, which is not specifically limited here.
  • the two aspects of the terminal device using multiple uplink beam information to send a PUSCH and the terminal device using multiple uplink beam information to send a PUCCH are described in detail below.
  • the terminal device sends PUSCH using multiple uplink beam information.
  • the association relationship includes at least one of the following:
  • Multiple uplink beam information is associated with different PUSCHs scheduled by the same DCI.
  • the terminal device may determine uplink beam information used by each PUSCH in different PUSCHs scheduled by the same DCI according to the association relationship, and then the terminal device uses multiple uplink beam information to send different PUSCHs scheduled by the same DCI.
  • Multiple uplink beam information is associated with different TBs in the same PUSCH.
  • the terminal device can determine the uplink beam information used by each TB in the same PUSCH according to the association relationship, and then the terminal device uses multiple uplink beam information to send different TBs in the same PUSCH.
  • Multiple uplink beam information is associated with different layers or different antenna ports corresponding to the same PUSCH.
  • the terminal device can determine the uplink beam information used by each layer corresponding to the same PUSCH according to the association relationship, and then the terminal device uses multiple uplink beam information to send the PUSCH on different layers corresponding to the same PUSCH; or, the terminal device can determine the The uplink beam information used by each antenna port corresponding to the same PUSCH, and then the terminal device uses multiple uplink beam information to send the PUSCH on different antenna ports corresponding to the same PUSCH.
  • Multiple uplink beam information is associated with parts of the same PUSCH transmitted at different times.
  • the terminal device may determine uplink beam information used by parts of the same PUSCH transmitted at different times according to the association relationship, and then the terminal device uses multiple uplink beam information to send parts of the same PUSCH transmitted at different times.
  • Multiple uplink beam information is associated with different resource allocations corresponding to the PUSCH.
  • the terminal device can determine the uplink beam information used by different resource allocations corresponding to the PUSCH according to the association relationship, and then the terminal device uses multiple uplink beam information to send the PUSCH on different resource allocations corresponding to the PUSCH.
  • Multiple uplink beam information is associated with different MCSs corresponding to the PUSCH.
  • the terminal device can determine the uplink beam information used by different MCSs corresponding to the PUSCH according to the association relationship, and then the terminal device sends PUSCH by using different MCSs using multiple uplink beam information.
  • the multiple uplink beam information is associated with different numerology corresponding to the PUSCH.
  • the terminal device can determine the uplink beam information used by different numerology corresponding to the PUSCH according to the association relationship, and then the terminal device uses multiple uplink beam information to send the PUSCH using different numerology.
  • the multiple uplink beam information is associated with different carriers or different BWPs corresponding to the PUSCH.
  • the terminal device can determine the uplink beam information used by different carriers corresponding to the PUSCH according to the association relationship, and the terminal device can use multiple uplink beam information to send the PUSCH on different carriers; or, the terminal device can determine the different BWP locations corresponding to the PUSCH according to the association relationship.
  • the used uplink beam information and thus the terminal device uses multiple uplink beam information to send PUSCH on different BWPs.
  • association relationships a, b, c, d, g, h, i, j may be used singly or in combination, which is not specifically limited here.
  • the PUSCH is simultaneously sent using multiple uplink beam information.
  • the terminal device uses multiple uplink beam information to send different PUSCHs at the same time, send different TBs in the same PUSCH, send PUSCH on different layers corresponding to the same PUSCH, send PUSCH on different antenna ports corresponding to the same PUSCH, and correspond to PUSCH.
  • the PUSCH is sent using multiple uplink beam information according to a preset beam use order.
  • the terminal device uses multiple uplink beams to send different PUSCHs, send different TBs in the same PUSCH, send PUSCH on different layers corresponding to the same PUSCH, and use different antenna ports corresponding to the same PUSCH according to the preset beam usage order.
  • Send PUSCH send parts of the same PUSCH transmitted at different times, send PUSCH on different resource allocation corresponding to PUSCH, send PUSCH using different MCS, send PUSCH using different numerology, send PUSCH on different carriers, send on different BWP PUSCH.
  • the terminal device sends PUCCH using multiple uplink beam information.
  • the association relationship includes at least one of the following:
  • Multiple uplink beam information is associated with different PUCCH.
  • the terminal device may determine the uplink beam information used by each PUCCH in different PUCCH according to the association relationship, and then the terminal device uses multiple uplink beam information to send different PUCCH.
  • the same uplink control information (UCI, Uplink Control Information) can be transmitted on multiple different PUCCHs.
  • the PUCCH on which the same UCI is transmitted may be determined in a manner prescribed by the protocol or in a manner instructed by a network-side device.
  • Multiple uplink beam information is associated with different layers or different antenna ports corresponding to the same PUCCH.
  • the terminal device may determine the uplink beam information used by each layer corresponding to the same PUCCH according to the association relationship, and then the terminal device uses multiple uplink beam information to send the PUCCH on different layers corresponding to the same PUCCH; or, the terminal device may determine according to the association relationship
  • Multiple uplink beam information is associated with parts of the same PUCCH transmitted at different times.
  • the terminal device may determine uplink beam information used by parts of the same PUCCH transmitted at different times according to the association relationship, and then the terminal device uses multiple uplink beam information to send parts of the same PUCCH transmitted at different times.
  • Multiple uplink beam information is associated with different PRB bundles.
  • all PRBs in the PUCCH are divided into different PRB bundles, and then the PUCCH is sent according to the PRB bundle.
  • the terminal device can determine the uplink beam information used by different PRB bundles according to the association relationship, and then the terminal device uses multiple uplink beam information to send different PRB bundles.
  • Multiple uplink beam information is associated with different PRBs in the same PRB bundle.
  • the terminal device can determine the uplink beam information used by different PRBs in the same PRB bundle according to the association relationship, and then the terminal device uses multiple uplink beam information to send different PRBs in the same PRB bundle.
  • Multiple uplink beam information is associated with different resource allocations corresponding to the PUCCH.
  • the terminal device can determine the uplink beam information used by the different resource allocation corresponding to the PUCCH according to the association relationship, and then the terminal device uses multiple uplink beam information to send the PUCCH on the different resource allocation corresponding to the PUCCH.
  • Multiple uplink beam information is associated with different MCSs corresponding to the PUCCH.
  • the terminal device can determine the uplink beam information used by different MCSs corresponding to the PUCCH according to the association relationship, and then the terminal device uses multiple MCSs to send PUCCH using different MCSs.
  • Multiple uplink beam information is associated with different numerology corresponding to PUCCH.
  • the terminal device can determine the uplink beam information used by different numerology corresponding to the PUCCH according to the association relationship, and then the terminal device uses multiple uplink beam information to send the PUCCH by using different numerology.
  • the multiple uplink beam information is associated with different carriers or different BWPs corresponding to the PUCCH.
  • the terminal device may determine the uplink beam information used by different carriers corresponding to the PUCCH according to the association relationship, and the terminal device may use multiple uplink beam information to send the PUCCH on different carriers; or, the terminal device may determine the different BWP locations corresponding to the PUCCH according to the association relationship.
  • the used uplink beam information and thus the terminal device uses multiple uplink beam information to send PUCCH on different BWPs.
  • Multiple uplink beam information is associated with each repeated transmission of the PUCCH.
  • the terminal device can determine the uplink beam information used for each repeated transmission of the PUCCH according to the association relationship, and then the terminal device uses different uplink beam information for each repeated transmission of the PUCCH.
  • association relationships a, c, d, e, f, g, h, i, j, and k may be used alone or in combination, which is not specifically limited here.
  • the PUCCH is sent using multiple pieces of uplink beam information simultaneously.
  • the terminal device uses multiple uplink beam information to send different PUCCHs at the same time, sends PUCCH on different layers corresponding to the same PUCCH, sends PUCCH on different antenna ports corresponding to the same PUCCH, sends different PRB bundles, and sends the same PRB bundle.
  • PRB sending PUCCH on different resource allocation corresponding to PUCCH, sending PUCCH using different MCS, sending PUCCH using different numerology, sending PUCCH on different carriers, sending PUCCH on different BWP, sending each repeated transmission of PUCCH.
  • the PUCCH is sent using multiple uplink beam information according to a preset beam use order.
  • a terminal device uses a preset beam usage sequence, and uses multiple uplink beam information to send different PUCCHs, sends PUCCH on different layers corresponding to the same PUCCH, sends PUCCH on different antenna ports corresponding to the same PUCCH, and sends the same PUCCH in Parts transmitted at different times, sending different PRB bundles, sending different PRBs in the same PRB bundle, sending PUCCH on different resource allocations corresponding to PUCCH, sending PUCCH using different MCS, sending PUCCH using different numerology, sending PUCCH on different carriers, Send PUCCH on different BWP, send each repeated transmission of PUCCH.
  • a terminal device uses multiple uplink beam information to send parts of the same PUSCH transmitted at different times or parts of the same PUCCH transmitted at different times, or according to one or more of the association relationships, multiple users are used in a preset beam usage order.
  • the terminal device needs to determine the beam switching point first, and then use different uplink beam information before and after the beam switching point to send the PUSCH or PUCCH.
  • the manner of determining the beam switching point includes at least one of the following.
  • the network-side device configures frequency hopping information for the terminal device through RRC signaling; or, specifies the frequency hopping information through a protocol.
  • the terminal device may determine the frequency hopping point in the frequency hopping information as the beam switching point, that is, before and after the frequency hopping point, use different uplink beam information to send the PUSCH or PUCCH.
  • the network-side device may configure at least one beam switching point for the terminal device through high-level signaling or DCI, or the network-side device and the terminal device agree on at least one beam switching point in advance, or specify at least one beam switching point through a protocol.
  • the terminal device determines the at least one beam switching point, and then sends PUSCH or PUCCH using different uplink beam information before and after the beam switching point.
  • the manner of determining the preset beam usage sequence includes at least one of the following:
  • the network side device indicates the preset beam use order of multiple uplink beam information to the terminal device through high-level signaling or DCI, or the preset beam use order of multiple uplink beam information is specified by the protocol, or the terminal device autonomously according to its own transmission capability Determine the preset beam usage order of multiple uplink beam information, and then the terminal device uses multiple uplink beam information to send PUSCH or PUCCH in sequence according to the preset beam usage order.
  • multiple uplink beam information is configured for the uplink channel through configuration information, and the multiple uplink beam information has an associated relationship with related parameters of the uplink channel, so that the terminal device can use multiple uplinks according to the association relationship.
  • the beam information is transmitted on the uplink channel, which can effectively improve the uplink transmission efficiency of the communication system.
  • FIG. 3 is a schematic flowchart of another method for transmitting a multi-beam uplink channel according to an embodiment of the present disclosure. The method is applied to a network-side device, and the method may be as follows.
  • Step 310 Send configuration information, where the configuration information includes multiple uplink beam information for an uplink channel; the multiple uplink beam information has an association relationship with related parameters of the uplink channel.
  • the network-side device configures multiple uplink beam information of the uplink channel for the terminal device.
  • the network-side device configures multiple uplink beam information for the PUSCH.
  • sending configuration information includes:
  • the network-side device indicates configuration information to the terminal device by scheduling the DCI of the PUSCH, and the configuration information is used to configure multiple uplink beam information for the PUSCH.
  • the DCI includes at least one SRI signaling domain
  • the manner in which the DCI indicates the configuration information includes at least one of the following:
  • One SRI signaling domain indicates multiple resource indication information, wherein each resource indication information in the multiple resource indication information indicates one uplink beam information;
  • the multiple SRI signaling domains indicate multiple resource indication information, wherein each SRI signaling domain in the multiple SRI signaling domains indicates at least one resource indication information, and each resource indication information in the at least one resource indication information indicates one Uplink beam information.
  • the resource indication information includes at least one of the following:
  • the DCI includes an SRI signaling domain. Regardless of the number of bits in the SRI signaling domain, the DCI uses the SRI signaling domain to indicate multiple resource indication information. Among the multiple resource indication information, Each resource indication information indicates one piece of uplink beam information.
  • the DCI includes multiple SRI signaling domains, and the DCI uses each of the SRI signaling domains in the multiple SRI signaling domains to indicate at least one resource indication information, wherein the at least one resource indication information in the at least one resource indication information Each resource indication information indicates one piece of uplink beam information.
  • the method before sending the DCI, the method further includes:
  • RRC signaling is used to configure the Spatial Relation of the PUSCH or the Spatial Relation of the SRS resources.
  • the network-side device configures the PUSCH Spatial Relation or the SRS resource Spatial Relation for the terminal device through RRC signaling, and then configures multiple uplink beam information for the PUSCH in the DCI that schedules the PUSCH.
  • the uplink beam information is determined according to the Spatial Relation configured for the PUSCH by the RRC signaling or the Spatial Relation configured for the SRS resources according to the RRC signaling.
  • the manner in which the RRC signaling configures the Spatial Relation of the PUSCH includes at least one of the following:
  • the RRC signaling includes a PUSCH-Spatial and Relation Info, and the PUSCH-Spatial and Relation Info include multiple resource indication information;
  • the RRC signaling includes multiple PUSCH-Spatial Relation Info, and each PUSCH-Spatial Relation Info in the multiple PUSCH-Spatial Relation Info includes at least one resource indication information.
  • the specific process for the network-side device to configure the Spatial Relation of the PUSCH through RRC signaling is the same as the relevant part in the embodiment shown in FIG. 2 above.
  • the manner in which the RRC signaling configures the Spatial Relation of the SRS resource includes at least one of the following:
  • RRC signaling configures one SRS-SpatialRelationInfo for each SRS resource, where the SRS-SpatialRelationInfo includes multiple resource indication information;
  • the RRC signaling configures multiple SRS-SpatialRelationInfo for each SRS resource, wherein each SRS-SpatialRelationInfo of the multiple SRS-SpatialRelationInfo includes at least one resource indication information.
  • the network-side device configures multiple uplink beam information for the PUCCH.
  • the network-side device configure multiple uplink beam information for the PUCCH.
  • sending configuration information includes:
  • the network-side device indicates configuration information to the terminal device through the DCI, and the configuration information is used to configure multiple uplink beam information for the PUCCH.
  • the DCI includes at least one signaling domain
  • the manner in which the DCI indicates the configuration information includes at least one of the following:
  • One signaling field indicates one PUCCH-Spatial Relation Info, where the PUCCH-Spatial Relation Info indicates multiple resource indication information, and each resource indication information in the multiple resource indication information indicates one uplink beam information;
  • At least one signaling field indicates multiple PUCCH-Spatial Relation Info, where each PUCCH-Spatial Relation Info of multiple PUCCH-Spatial Relation Info indicates at least one resource indication information, and each resource indication in at least one resource indication information The information indicates an uplink beam information.
  • the network-side device configures multiple uplink beam information for the PUCCH through the DCI.
  • the specific process for the network-side device to configure multiple uplink beam information for the PUCCH through the DCI is the same as the relevant part in the embodiment shown in FIG. 2 above.
  • sending configuration information includes:
  • High-level signaling includes at least one of the following: RRC signaling, MAC signaling, and CE signaling.
  • the manner in which the high-level signaling indicates the configuration information includes at least one of the following:
  • One PUCCH-Spatial Relation Info indicates multiple resource indication information, wherein each resource indication information in the multiple resource indication information indicates one uplink beam information;
  • Multiple PUCCH-Spatial Relation Info indicates multiple resource indication information, wherein each PUCCH-Spatial Relation Info of multiple PUCCH-Spatial Relation Info indicates at least one resource indication information, each resource in at least one resource indication information
  • the indication information indicates an uplink beam information.
  • the network-side device configures multiple uplink beam information for the PUCCH through high-level signaling.
  • the specific process for the network-side device to configure multiple uplink beam information for the PUCCH through high-level signaling is the same as the relevant part in the embodiment shown in FIG. 2 above.
  • a manner of determining an association relationship between multiple pieces of uplink beam information and related parameters of an uplink channel includes at least one of the following methods:
  • the network-side device configures multiple uplink beam information of the uplink channel for the terminal device, it determines an association relationship between the multiple uplink beam information and related parameters of the uplink channel.
  • association relationship between the multiple uplink beam information and the relevant parameters of the uplink channel may be specified by the protocol, may be configured by the network-side device, may be determined autonomously by the terminal device, or may be through other methods Certainly, it is not specifically limited here.
  • the network-side device can configure or indicate the association relationship for the terminal device through high-level signaling (RRC signaling, MAC CE signaling), and can also indicate the association relationship for the terminal device through DCI.
  • RRC signaling RRC signaling, MAC CE signaling
  • the DCI indicating the association relationship and the DCI indicating the configuration information for configuring multiple uplink beam information for the uplink channel may be the same or different, which is not specifically limited here.
  • the association relationship includes at least one of the following:
  • multiple uplink beam information is associated with different uplink channels
  • Multiple uplink beam information is associated with different layers or different antenna ports (corresponding to the same uplink channel);
  • Multiple uplink beam information is associated with parts of the same uplink channel transmitted at different times;
  • Multiple uplink beam information is associated with different PRB bundles
  • multiple uplink beam information is associated with different resource allocation corresponding to the uplink channel
  • multiple uplink beam information is associated with different MCS corresponding to the uplink channel
  • Multiple uplink beam information is associated with different numerology corresponding to the uplink channel
  • the multiple uplink beam information is associated with different carriers or different BWPs corresponding to the uplink channel.
  • Multiple uplink beam information is associated with each repeated transmission of the uplink channel.
  • association relationship between the multiple uplink beam information and the related parameters of the uplink channel may include other association relationships in addition to the above-mentioned a to k, which is not specifically limited here.
  • the network-side device receives PUSCH using multiple uplink beam information.
  • the association relationship includes at least one of the following:
  • Multiple uplink beam information is associated with different PUSCHs scheduled by the same DCI.
  • the network side device uses multiple uplink beam information to receive different PUSCHs scheduled by the same DCI.
  • Multiple uplink beam information is associated with different TBs in the same PUSCH.
  • the network-side device uses multiple uplink beam information to receive different TBs in the same PUSCH.
  • Multiple uplink beam information is associated with different layers or different antenna ports corresponding to the same PUSCH.
  • the network side device uses multiple uplink beam information to receive PUSCH on different layers corresponding to the same PUSCH; or, the network side device uses multiple uplink beam information to receive PUSCH on different antenna ports corresponding to the same PUSCH. d. Multiple uplink beam information is associated with parts of the same PUSCH transmitted at different times.
  • the network-side device uses multiple uplink beam information to receive parts of the same PUSCH transmitted at different times.
  • Multiple uplink beam information is associated with different resource allocations corresponding to the PUSCH.
  • the network-side device uses multiple uplink beam information to receive the PUSCH on different resource allocations corresponding to the PUSCH.
  • Multiple uplink beam information is associated with different MCSs corresponding to the PUSCH.
  • the network-side device receives PUSCH by using different MCSs using multiple uplink beam information.
  • the multiple uplink beam information is associated with different numerology corresponding to the PUSCH.
  • the network-side device uses multiple uplink beam information to receive PUSCH with different numerology.
  • the multiple uplink beam information is associated with different carriers or different BWPs corresponding to the PUSCH.
  • the network-side device uses multiple uplink beam information to receive PUSCH on different carriers; or, the network-side device uses multiple uplink beam information to receive PUSCH on different BWPs.
  • association relationships a, b, c, d, g, h, i, j may be used singly or in combination, which is not specifically limited here.
  • the PUSCH is received using multiple pieces of uplink beam information simultaneously.
  • a network-side device receives multiple PUSCHs simultaneously using different uplink beam information, receives different TBs in the same PUSCH, receives PUSCH on different layers corresponding to the same PUSCH, receives PUSCH on different antenna ports corresponding to the same PUSCH, Receiving PUSCH on corresponding different resource allocation, receiving PUSCH using different MCS, receiving PUSCH using different numerology, receiving PUSCH on different carriers, receiving PUSCH on different BWP.
  • the PUSCH is received using multiple uplink beam information according to a preset beam use order.
  • a network-side device is used in a preset beam order, and uses multiple uplink beams to receive different PUSCHs, receive different TBs in the same PUSCH, receive PUSCHs on different layers corresponding to the same PUSCH, and differently correspond to the same PUSCH.
  • Receive PUSCH on antenna port receive parts of the same PUSCH transmitted at different times, receive PUSCH on different resource allocations corresponding to PUSCH, receive PUSCH with different MCS, receive PUSCH with different numerology, receive PUSCH on different carriers, and receive BSCH in different To receive PUSCH.
  • the network-side device receives PUCCH using multiple uplink beam information.
  • the association relationship includes at least one of the following:
  • Multiple uplink beam information is associated with different PUCCH.
  • the network-side device receives multiple PUCCHs using multiple uplink beam information.
  • a network-side device When a network-side device uses multiple uplink beam information to receive different PUCCHs, it can receive the same UCI on multiple different PUCCHs.
  • the PUCCH on which the same UCI is received may be determined in a manner prescribed by a protocol or in a manner instructed by a network-side device.
  • Multiple uplink beam information is associated with different layers or different antenna ports corresponding to the same PUCCH.
  • the network-side device uses multiple uplink beam information to receive PUCCH on different layers corresponding to the same PUCCH; or, the network-side device uses multiple uplink beam information to receive PUCCH on different antenna ports corresponding to the same PUCCH.
  • Multiple uplink beam information is associated with parts of the same PUCCH transmitted at different times.
  • the network side device uses multiple uplink beam information to receive parts of the same PUCCH transmitted at different times.
  • Multiple uplink beam information is associated with different PRB bundles.
  • the network-side device uses multiple uplink beam information to receive different PRB bundles.
  • Multiple uplink beam information is associated with different PRBs in the same PRB bundle.
  • the network side device uses multiple uplink beam information to receive different PRBs in the same PRB bundle.
  • Multiple uplink beam information is associated with different resource allocations corresponding to the PUCCH.
  • the network-side device uses multiple uplink beam information to receive the PUCCH on different resource allocations corresponding to the PUCCH.
  • Multiple uplink beam information is associated with different MCSs corresponding to the PUCCH.
  • the network side device receives PUCCH by using different MCSs using multiple uplink beam information.
  • Multiple uplink beam information is associated with different numerology corresponding to PUCCH.
  • the network-side device uses multiple uplink beam information to receive PUCCH using different numerology.
  • the multiple uplink beam information is associated with different carriers or different BWPs corresponding to the PUCCH.
  • the network-side device uses multiple uplink beam information to receive PUCCH on different carriers; or, the network-side device uses multiple uplink beam information to receive PUCCH on different BWPs.
  • Multiple uplink beam information is associated with each repeated transmission of the PUCCH.
  • the network side device uses different uplink beam information to receive each repeated transmission of the PUCCH.
  • association relationships a, c, d, e, f, g, h, i, j, and k may be used alone or in combination, which is not specifically limited here.
  • a plurality of uplink beam information is used to receive the PUCCH at the same time.
  • a network-side device receives multiple PUCCHs simultaneously using multiple uplink beam information, receives PUCCH on different layers corresponding to the same PUCCH, receives PUCCH on different antenna ports corresponding to the same PUCCH, receives different PRB bundles, and receives the same PRB bundle.
  • Different PRBs receiving PUCCH on different resource allocations corresponding to PUCCH, receiving PUCCH using different MCS, receiving PUCCH using different numerology, receiving PUCCH on different carriers, receiving PUCCH on different BWP, and receiving each repeated transmission of PUCCH.
  • the PUCCH is received using a plurality of uplink beam information according to a preset beam use order.
  • a network-side device is used according to a preset beam usage order, and successively uses multiple uplink beam information to receive different PUCCH, receives PUCCH on different layers corresponding to the same PUCCH, receives PUCCH on different antenna ports corresponding to the same PUCCH, and receives the same PUCCH. Parts transmitted at different times, receiving different PRB bundles, receiving different PRBs in the same PRB bundle, receiving PUCCH on different resource allocations corresponding to PUCCH, receiving PUCCH using different MCS, receiving PUCCH using different numerology, and receiving PUCCH on different carriers Receiving PUCCH on different BWP, receiving each repeated transmission of PUCCH.
  • a network-side device uses multiple uplink beam information to receive parts of the same PUSCH transmitted at different times or parts of PUCCH transmitted at different times, or according to one or more of the association relationships, multiples are used in a preset beam order.
  • the uplink beam information receives the PUSCH or PUCCH
  • the network-side device needs to determine the beam switching point first, and then use different uplink beam information before and after the beam switching point to receive the PUSCH or PUCCH.
  • the manner of determining the beam switching point includes at least one of the following.
  • the network-side device configures frequency hopping information for the terminal device through RRC signaling; or, specifies the frequency hopping information through a protocol.
  • the network-side device may determine the frequency hopping point in the frequency hopping information as a beam switching point, that is, before and after the frequency hopping point, use different uplink beam information to receive the PUSCH or PUCCH.
  • the network-side device may configure at least one beam switching point for the terminal device through high-level signaling or DCI, or the network-side device and the terminal device agree on at least one beam switching point in advance, or specify at least one beam switching point through a protocol.
  • the network-side device uses different uplink beam information before and after the beam switching point to receive the PUSCH or PUCCH.
  • the manner of determining the preset beam usage sequence includes at least one of the following:
  • the network side device indicates the preset beam use order of multiple uplink beam information to the terminal device through high-level signaling or DCI, or the preset beam use order of multiple uplink beam information is specified by the protocol, or the terminal device autonomously Determine the preset beam usage order of multiple uplink beam information, and then the terminal device uses multiple uplink beam information to send PUSCH or PUCCH in sequence according to the preset beam usage order, so that the network side device uses multiple The uplink beam information receives PUSCH or PUCCH.
  • multiple uplink beam information is configured for the uplink channel through the configuration information, and the multiple uplink beam information has an association relationship with the relevant parameters of the uplink channel, so that the terminal device can use multiple uplink beams according to the association relationship.
  • the beam information is transmitted on the uplink channel, which can effectively improve the uplink transmission efficiency of the communication system.
  • FIG. 4 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device 400 shown in FIG. 4 includes:
  • the receiving module 401 is configured to receive configuration information, where the configuration information includes multiple uplink beam information for an uplink channel; the multiple uplink beam information has an association relationship with related parameters of the uplink channel.
  • the receiving module 401 is further configured to:
  • the uplink channel is PUSCH, and the DCI includes at least one SRI signaling domain;
  • the manner in which the DCI indicates the configuration information includes at least one of the following:
  • One SRI signaling domain indicates multiple resource indication information, wherein each resource indication information in the multiple resource indication information indicates one uplink beam information;
  • the multiple SRI signaling domains indicate multiple resource indication information, wherein each SRI signaling domain in the multiple SRI signaling domains indicates at least one resource indication information, and each resource indication information in the at least one resource indication information indicates one Uplink beam information.
  • the receiving module 401 is further configured to:
  • Receive RRC signaling where the RRC signaling is used to configure the Spatial Relation of the PUSCH or the Spatial Relation of the SRS resources.
  • the manner in which the RRC signaling configures the Spatial Relation of the PUSCH includes at least one of the following:
  • the RRC signaling includes one PUSCH-Spatial Relation Info, and the PUSCH-Spatial Relation Info includes multiple resource indication information;
  • the RRC signaling includes multiple PUSCH-Spatial Relation Info, and each PUSCH-Spatial Relation Info in the multiple PUSCH-Spatial Relation Info includes at least one resource indication information.
  • the way in which the RRC signaling configures the Spatial Relation of the SRS resource includes at least one of the following:
  • the RRC signaling configures one SRS-SpatialRelationInfo for each SRS resource, where the SRS-SpatialRelationInfo includes multiple resource indication information;
  • the RRC signaling configures multiple SRS-SpatialRelationInfo for each SRS resource, wherein each SRS-SpatialRelationInfo of the multiple SRS-SpatialRelationInfo includes at least one resource indication information.
  • the uplink channel is PUCCH, and the DCI includes at least one signaling domain;
  • the manner in which the DCI indicates the configuration information includes at least one of the following:
  • One signaling field indicates one PUCCH-Spatial and Relation Info, where the PUCCH-Spatial and Relation Info indicate multiple resource indication information, and each resource indication information in the multiple resource indication information indicates one uplink beam information;
  • At least one signaling field indicates multiple PUCCH-Spatial Relation Info, where each PUCCH-Spatial Relation Info of multiple PUCCH-Spatial Relation Info indicates at least one resource indication information, and each resource indication in at least one resource indication information The information indicates an uplink beam information.
  • the uplink channel is PUCCH
  • the receiving module 401 is further configured to:
  • High-level signaling includes at least one of the following: RRC signaling, MAC signaling, and CE signaling.
  • the manner in which the high-level signaling indicates the configuration information includes at least one of the following:
  • One PUCCH-Spatial Relation Info indicates multiple resource indication information, wherein each resource indication information in the multiple resource indication information indicates one uplink beam information;
  • Multiple PUCCH-Spatial Relation Info indicates multiple resource indication information, wherein each PUCCH-Spatial Relation Info of multiple PUCCH-Spatial Relation Info indicates at least one resource indication information, each resource in at least one resource indication information
  • the indication information indicates an uplink beam information.
  • the resource indication information includes at least one of the following:
  • a manner of determining an association relationship between multiple uplink beam information and related parameters of an uplink channel includes at least one of the following:
  • association relationship includes at least one of the following:
  • multiple uplink beam information is associated with different uplink channels
  • multiple uplink beam information is associated with different layers or different antenna ports corresponding to the same uplink channel
  • Multiple uplink beam information is associated with parts of the same uplink channel transmitted at different times;
  • Multiple uplink beam information is associated with different PRB bundles
  • multiple uplink beam information is associated with different resource allocation corresponding to the uplink channel
  • multiple uplink beam information is associated with different MCS corresponding to the uplink channel
  • Multiple uplink beam information is associated with different numerology corresponding to the uplink channel
  • the multiple uplink beam information is associated with different carriers or different BWPs corresponding to the uplink channel.
  • Multiple uplink beam information is associated with each repeated transmission of the uplink channel.
  • the association relationship includes at least one of the following: a, b, c, d, g, h, i, j;
  • the association relationship includes at least one of the following: a, c, d, e, f, g, h, i, j, and k.
  • the terminal device 400 further includes:
  • the first sending module is configured to send multiple uplink beam information at the same time according to one or more of the association relationships a, b, c, e, f, g, h, i, j, and k.
  • the terminal device 400 further includes:
  • a second sending module configured to use a plurality of uplink beams according to a preset beam use order according to one or more of the association relationships a, b, c, d, e, f, g, h, i, j, and k Information is sent on the upstream channel.
  • first sending module and the second sending module may be the same hardware sending module having a sending function, or may be different software sending modules having a sending function, which are not specifically limited herein.
  • the terminal device 400 further includes:
  • a determining module for determining a beam switching point A determining module for determining a beam switching point.
  • the determining module is further configured to:
  • the determining module is further configured to:
  • the manner of determining the preset beam usage sequence includes at least one of the following:
  • the terminal device 400 provided in the embodiment of the present disclosure can implement the processes implemented by the terminal device in the method embodiment in FIG. 2. To avoid repetition, details are not described herein again.
  • FIG. 5 is a schematic structural diagram of a network-side device according to an embodiment of the present disclosure.
  • the network-side device 500 shown in FIG. 5 includes:
  • the sending module 501 is configured to send configuration information, where the configuration information includes multiple uplink beam information for an uplink channel; the multiple uplink beam information has an association relationship with related parameters of the uplink channel.
  • the sending module 501 is further configured to:
  • the uplink channel is PUSCH, and the DCI includes at least one SRI signaling domain;
  • the manner in which the DCI indicates the configuration information includes at least one of the following:
  • One SRI signaling domain indicates multiple resource indication information, wherein each resource indication information in the multiple resource indication information indicates one uplink beam information;
  • the multiple SRI signaling domains indicate multiple resource indication information, wherein each SRI signaling domain in the multiple SRI signaling domains indicates at least one resource indication information, and each resource indication information in the at least one resource indication information indicates one Uplink beam information.
  • the sending module 501 is further configured to:
  • RRC signaling is used to configure the Spatial Relation of the PUSCH or the Spatial Relation of the SRS resources.
  • the manner in which the RRC signaling configures the Spatial Relation of the PUSCH includes at least one of the following:
  • the RRC signaling includes one PUSCH-Spatial Relation Info, and the PUSCH-Spatial Relation Info includes multiple resource indication information;
  • the RRC signaling includes multiple PUSCH-Spatial Relation Info, and each PUSCH-Spatial Relation Info in the multiple PUSCH-Spatial Relation Info includes at least one resource indication information.
  • the way in which the RRC signaling configures the Spatial Relation of the SRS resource includes at least one of the following:
  • the RRC signaling configures one SRS-SpatialRelationInfo for each SRS resource, where the SRS-SpatialRelationInfo includes multiple resource indication information;
  • the RRC signaling configures multiple SRS-SpatialRelationInfo for each SRS resource, wherein each SRS-SpatialRelationInfo of the multiple SRS-SpatialRelationInfo includes at least one resource indication information.
  • the uplink channel is PUCCH, and the DCI includes at least one signaling domain;
  • the manner in which the DCI indicates the configuration information includes at least one of the following:
  • One signaling field indicates one PUCCH-Spatial and Relation Info, where the PUCCH-Spatial and Relation Info indicate multiple resource indication information, and each resource indication information in the multiple resource indication information indicates one uplink beam information;
  • At least one signaling field indicates multiple PUCCH-Spatial Relation Info, where each PUCCH-Spatial Relation Info of multiple PUCCH-Spatial Relation Info indicates at least one resource indication information, and each resource indication in at least one resource indication information The information indicates an uplink beam information.
  • the uplink channel is PUCCH
  • the sending module 501 is further configured to:
  • High-level signaling includes at least one of the following: RRC signaling, MAC signaling, and CE signaling.
  • the manner in which the high-level signaling indicates the configuration information includes at least one of the following:
  • One PUCCH-Spatial Relation Info indicates multiple resource indication information, wherein each resource indication information in the multiple resource indication information indicates one uplink beam information;
  • Multiple PUCCH-Spatial Relation Info indicates multiple resource indication information, wherein each PUCCH-Spatial Relation Info of multiple PUCCH-Spatial Relation Info indicates at least one resource indication information, each resource in at least one resource indication information
  • the indication information indicates an uplink beam information.
  • the resource indication information includes at least one of the following:
  • a manner of determining an association relationship between multiple uplink beam information and related parameters of an uplink channel includes at least one of the following:
  • association relationship includes at least one of the following:
  • multiple uplink beam information is associated with different uplink channels
  • multiple uplink beam information is associated with different layers or different antenna ports corresponding to the same uplink channel
  • Multiple uplink beam information is associated with parts of the same uplink channel transmitted at different times;
  • Multiple uplink beam information is associated with different PRB bundles
  • multiple uplink beam information is associated with different resource allocation corresponding to the uplink channel
  • multiple uplink beam information is associated with different MCS corresponding to the uplink channel
  • Multiple uplink beam information is associated with different numerology corresponding to the uplink channel
  • the multiple uplink beam information is associated with different carriers or different BWPs corresponding to the uplink channel.
  • Multiple uplink beam information is associated with each repeated transmission of the uplink channel.
  • the association relationship includes at least one of the following: a, b, c, d, g, h, i, j;
  • the association relationship includes at least one of the following: a, c, d, e, f, g, h, i, j, and k.
  • the network-side device further includes:
  • the first receiving module is configured to receive multiple uplink beams simultaneously using multiple uplink beam information according to one or more of the association relationships a, b, c, e, f, g, h, i, j, and k.
  • the network-side device further includes:
  • a second receiving module configured to use a plurality of uplink beams according to a preset beam use order according to one or more of the association relationships a, b, c, d, e, f, g, h, i, j, and k Information receiving uplink channel.
  • first receiving module and the second receiving module may be the same hardware receiving module having a receiving function, or may be different software receiving modules having a receiving function, which are not specifically limited herein.
  • the terminal device 500 further includes:
  • a determining module for determining a beam switching point A determining module for determining a beam switching point.
  • the determining module is further configured to:
  • the beam switching point is determined according to the frequency hopping point specified by the configuration or protocol of the network-side device 500.
  • the determining module is further configured to:
  • the manner of determining the preset beam usage sequence includes at least one of the following:
  • the network-side device 500 provided in the embodiment of the present disclosure can implement the processes implemented by the network-side device in the method embodiment in FIG. 3. To avoid repetition, details are not described herein again.
  • FIG. 6 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • the terminal device 600 shown in FIG. 6 includes: at least one processor 601, a memory 602, at least one network interface 604, and a user interface 603.
  • the various components in the terminal device 600 are coupled together by a bus system 605. It can be understood that the bus system 605 is used to implement connection and communication between these components.
  • the bus system 605 includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are marked as the bus system 605 in FIG. 6.
  • the user interface 603 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball, a touch pad, or a touch screen).
  • a pointing device for example, a mouse, a trackball, a touch pad, or a touch screen.
  • the memory 602 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM, Read-Only Memory), a programmable read-only memory (PROM, Programmable ROM), an erasable programmable read-only memory (EPROM, Erasable PROM), or Erase programmable read-only memory (EEPROM, Electrically EPROM) or flash memory.
  • the volatile memory may be random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DDRSDRAM synchronous dynamic random access memory
  • SDRAM Synchronous DRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synch link DRAM
  • DRRAM Direct Rambus RAM
  • the memory 602 of the systems and methods described in embodiments of the present disclosure is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 602 stores the following elements, executable modules or data structures, or a subset of them, or their extended set: an operating system 6021 and an application program 6022.
  • the operating system 6021 includes various system programs, such as a framework layer, a core library layer, and a driver layer, for implementing various basic services and processing hardware-based tasks.
  • the application program 6022 includes various application programs, such as a media player (Player), a browser (Browser), and the like, and is used to implement various application services.
  • a program for implementing the method of the embodiment of the present disclosure may be included in the application program 6022.
  • the terminal device 600 further includes: a computer program stored on the memory 602 and executable on the processor 601.
  • a computer program stored on the memory 602 and executable on the processor 601.
  • configuration information where the configuration information includes multiple uplink beam information for an uplink channel
  • the multiple uplink beam information has an associated relationship with the related parameters of the uplink channel.
  • the method disclosed in the foregoing embodiment of the present disclosure may be applied to the processor 601, or implemented by the processor 601.
  • the processor 601 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by using an integrated logic circuit of hardware in the processor 601 or an instruction in the form of software.
  • the above processor 601 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), an application specific integrated circuit (ASIC, Application Specific Integrated Circuit), a ready-made programmable gate array (FPGA, Field Programmable Gate Array), or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as being executed by a hardware decoding processor, or may be executed and completed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature computer-readable storage medium, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the computer-readable storage medium is located in the memory 602, and the processor 601 reads the information in the memory 602 and completes the steps of the above method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 601, each step of the method embodiment in FIG. 2 is implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application-specific integrated circuits (ASIC, Application Specific Integrated Circuits), digital signal processors (DSP, Digital Signal Processing), digital signal processing equipment (DSPD, DSP Device), programmable Logic Device (PLD, Programmable Logic Device), Field Programmable Gate Array (FPGA), General Purpose Processor, Controller, Microcontroller, Microprocessor, and others for performing the functions described in this disclosure Electronic unit or combination thereof.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSPD digital signal processing equipment
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the technology described in the embodiments of the present disclosure may be implemented by modules (such as procedures, functions, and the like) that perform the functions described in the embodiments of the present disclosure.
  • Software codes may be stored in a memory and executed by a processor.
  • the memory may be implemented in the processor or external to the processor.
  • the terminal device 600 can implement the processes implemented by the terminal device in the foregoing method embodiment in FIG. 2. To avoid repetition, details are not described herein again.
  • the embodiment of the present disclosure also provides a computer-readable storage medium.
  • a program is stored on the computer-readable storage medium.
  • the computer-readable storage medium is, for example, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk, or an optical disk.
  • FIG. 7 is a schematic structural diagram of another network-side device according to an embodiment of the present disclosure.
  • the network-side device 700 shown in FIG. 7 can implement the details of the method embodiment of FIG. 3 and achieve the same effect.
  • the network-side device 700 includes: a processor 701, a transceiver 702, a memory 703, a user interface 704, and a bus interface, where:
  • the network-side device 700 further includes: a computer program stored in the memory 703 and executable on the processor 701. When the computer program is executed by the processor 701, the following steps are implemented:
  • configuration information includes multiple uplink beam information for the uplink channel
  • the multiple uplink beam information has an associated relationship with the related parameters of the uplink channel.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 701 and various circuits of the memory represented by the memory 703 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 702 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the user interface 704 may also be an interface capable of externally connecting and connecting the required devices.
  • the connected devices include but are not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 can store data used by the processor 701 when performing operations.
  • the network-side device 700 can implement the processes implemented by the network-side device in the foregoing method embodiment in FIG. 3. To avoid repetition, details are not described herein again.
  • the embodiment of the present disclosure also provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer-readable storage medium is, for example, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种用于多波束发送上行信道的方法、终端设备和网络侧设备。所述方法包括:接收配置信息,其中,所述配置信息中包括用于上行信道的多个上行波束信息;所述多个上行波束信息与所述上行信道的相关参数具有关联关系。

Description

用于多波束发送上行信道的方法、终端设备和网络侧设备
相关申请的交叉引用
本申请主张在2018年7月25日在中国提交的中国专利申请No.201810829855.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信领域,尤其涉及一种用于多波束发送上行信道的方法、终端设备和网络侧设备。
背景技术
第五代(5-th Generation,5G)移动通信系统新空口(New Radio,NR)引入了大规模天线技术,可以更好地支持多用户-多输入多输出(Multi-User Multiple-Input Multiple-Output,MU-MIMO)天线技术。为了降低大规模天线阵列导致的设备成本以及基带处理复杂度,通过数模混合波束赋形技术,使发送信号与信道实现较为粗略的匹配。
但是,在数模混合波束赋形技术中,目前仍缺少基于多波束发送上行信道的方案,导致通信系统的上行传输效率较低。
发明内容
本公开实施例的目的是提供一种用于多波束发送上行信道的方法、终端设备和网络侧设备,以解决相关技术无法基于多波束发送上行信道的问题。
第一方面,本公开实例提供了一种用于多波束发送上行信道的方法,应用于终端设备,所述方法包括:
接收配置信息,其中,所述配置信息中包括用于上行信道的多个上行波束信息;所述多个上行波束信息与所述上行信道的相关参数具有关联关系。
第二方面,本公开实例还提供了一种用于多波束发送上行信道的方法,应用于网络侧设备,所述方法包括:
发送配置信息,其中,所述配置信息中包括用于上行信道的多个上行波 束信息;所述多个上行波束信息与所述上行信道的相关参数具有关联关系。
第三方面,本公开实施例还提供了一种终端设备,包括:
接收模块,用于接收配置信息,其中,所述配置信息中包括用于上行信道的多个上行波束信息;所述多个上行波束信息与所述上行信道的相关参数具有关联关系。
第四方面,本公开实施例还提供了一种终端设备,所述终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面所述的用于多波束发送上行信道的方法的步骤。
第五方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储程序,所述程序被处理器执行时实现如第一方面所述的用于多波束发送上行信道的方法的步骤。
第六方面,本公开实施例还提供了一种网络侧设备,包括:
发送模块,用于发送配置信息,其中,所述配置信息中包括用于上行信道的多个上行波束信息;所述多个上行波束信息与所述上行信道的相关参数具有关联关系。
第七方面,本公开实施例还提供了一种网络侧设备,所述网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第二方面所述的用于多波束发送上行信道的方法的步骤。
第八方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储程序,所述程序被处理器执行时实现如第二方面所述的用于多波束发送上行信道的方法的步骤。
在本公开实施例中,通过配置信息为上行信道配置多个上行波束信息,多个上行波束信息与上行信道的相关参数具有关联关系,使得终端设备可以根据该关联关系,使用多个上行波束信息发送上行信道,从而可以有效提高通信系统的上行传输效率。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例提供的一种网络架构示意图;
图2为本公开实施例提供的一种用于多波束发送上行信道的方法的流程示意图;
图3为本公开实施例提供的另一种用于多波束发送上行信道的方法的流程示意图;
图4为本公开实施例提供的一种终端设备的结构示意图;
图5为本公开实施例提供的一种网络侧设备的结构示意图;
图6为本公开实施例提供的另一种终端设备的结构示意图;
图7为本公开实施例提供的另一种网络侧设备的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,图1为本公开实施例提供的一种网络架构示意图。如图1所示,包括用户终端11和基站12,其中,用户终端11可以是终端设备(UE,User Equipment),例如:可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(PDA,personal digital assistant)、移动上网装置(MID,Mobile Internet Device)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本发明实施例中并不限定用户终端11的具体类型。上述基站12可以是5G及以后版本的基站(例如:gNB、5G NR NB),或者其他通信系统中的基站,或者称之为节点B,需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定基站12的具体类型。
需要说明的是,上述用户终端11和基站12的具体功能将通过以下多个实施例进行具体描述。
图2为本公开实施例提供的一种用于多波束发送上行信道的方法的流程示意图。所述方法应用于终端设备,所述方法可以如下所示。
步骤210,接收配置信息,其中,配置信息中包括用于上行信道的多个上行波束信息;多个上行波束信息与上行信道的相关参数具有关联关系。
网络侧设备为终端设备配置用于上行信道的多个上行波束信息。
下面对网络侧设备为物理上行共享信道(PUSCH,Physical Uplink Shared Channel)配置多个上行波束信息和网络侧设备为物理上行控制信道(PUCCH,Physical Uplink Control Channel)配置多个上行波束信息两个方面分别进行详细介绍。
第一方面:网络侧设备为PUSCH配置多个上行波束信息。
本公开实施例中,接收配置信息,包括:
接收下行控制信息(DCI,Downlink Control Information),其中,DCI用于指示配置信息。
网络侧设备通过调度PUSCH的DCI向终端设备指示配置信息,该配置信息用于为PUSCH配置多个上行波束信息。
具体地,DCI中包括至少一个探测参考信号资源指示(SRI,Sounding Reference Signal Resource Indicator)信令域;
DCI指示配置信息的方式包括下述至少一种:
一个SRI信令域指示多个资源指示信息,其中,多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
多个SRI信令域指示多个资源指示信息,其中,多个SRI信令域中的每个SRI信令域指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
其中,资源指示信息包括下述至少一种:
信道状态信息参考信号资源指示(CRI,Channel State Information Resource Indicator)、同步信号块资源指示(SSBRI,Synchronization Signal Block Resource Indicator)、SRI。
在一实施例中,DCI中包括一个SRI信令域,无论该SRI信令域的比特数为多大,DCI使用该SRI信令域指示多个资源指示信息,其中,多个资源 指示信息中的每个资源指示信息指示一个上行波束信息。
例如,网络侧设备调度PUSCH的DCI1中包括一个SRI信令域,该SRI信令域的比特数为3比特(bit),则该SRI信令域可以有8个SRI信令域值(000~111),分别对应8个SRI码位(codepoint)。网络侧设备预先确定了与每个SRI codepoint对应的多个资源指示信息:SRI codepoint 000对应两个资源指示信息:CRI1和CRI2,SRI codepoint 001对应两个资源指示信息:CRI3和SSBRI2,等。
终端设备接收到DCI1后,若DCI1中该SRI信令域的SRI codepoint为001,则终端设备可以确定网络侧设备为PUSCH配置了两个上行波束信息,分别为:CRI3指示的上行波束信息和SSBRI2指示的上行波束信息。
在另一实施例中,DCI中包括一个SRI信令域,该SRI信令域可以分为多个部分,DCI使用该多个部分中的每一部分分别指示至少一个资源指示信息,其中,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
例如,网络侧设备调度PUSCH的DCI2中包括一个SRI信令域,该SRI信令域的比特数为9bit,网络侧设备将该SRI信令域分为三个部分:第一部分为前三个比特,第二部分为中间三个比特,第三部分为后三个比特。
该SRI信令域的三个部分分别可以有8个SRI信令域值(000~111),分别对应8个SRI codepoint。该SRI信令域的三个部分的SRI信令域值共同构成该SRI信令域的一个SRI信令域,该一个SRI信令域对应一个SRI codepoint。
网络侧设备预先确定了与该SRI信令域的三个部分中每个部分中每个SRI codepoint对应的多个资源指示信息。
该SRI信令域的第一部分:SRI codepoint 000对应两个资源指示信息:CRI1和CRI2,SRI codepoint 001对应一个资源指示信息:SSBRI2,等;
该SRI信令域的第二部分:SRI codepoint 100对应两个资源指示信息:CRI3和CRI4,SRI codepoint 111对应两个资源指示信息:SSBRI1和SSBRI3,等;
该SRI信令域的第三部分:SRI codepoint 101对应两个资源指示信息SRI1和SRI2,SRI codepoint 110对应两个资源指示信息:SRI3和SRI4,等。
终端设备接收到DCI2后,若DCI2中该SRI信令域的SRI codepoint为001111101,即该SRI信令域的第一部分的SRI codepoint为001、第二部分的SRI codepoint为111、第三部分的SRI codepoint为101。
则终端设备可以确定网络侧设备为PUSCH配置了五个上行波束信息,分别为:SSBRI2指示的上行波束信息、SSBRI1指示的上行波束信息、SSBRI3指示的上行波束信息、SRI1指示的上行波束信息和SRI2指示的上行波束信息。
在另一实施例中,DCI中包括多个SRI信令域,DCI使用多个SRI信令域中的每个SRI信令域分别指示至少一个资源指示信息,其中,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
例如,网络侧设备调度PUSCH的DCI3中包括三个SRI信令域:第一SRI信令域、第二SRI信令域和第三SRI信令域。每个SRI信令域的比特数为3bit(即DCI2中包括9bit SRI信令域),则每个SRI信令域可以有8个SRI信令域值(000~111),分别对应8个SRI codepoint。
网络侧设备预先确定了与每个SRI信令域中的每个SRI codepoint对应的至少一个资源指示信息。
第一SRI信令域中,SRI codepoint 000对应两个资源指示信息:CRI1和CRI2,SRI codepoint 001对应一个资源指示信息:SRI2,等;
第二SRI信令域中,SRI codepoint 100对应两个资源指示信息:CRI3和SSBRI1,SRI codepoint111对应两个资源指示信息:SRI1和SSBRI2,等;
第三SRI信令域中,SRI codepoint 101对应一个资源指示信息:SRI3,SRI codepoint 110对应两个资源指示信息:CRI4和SSBRI3,等。
终端设备接收到DCI3后,若DCI3中第一SRI信令域的SRI codepoint为000、第二SRI信令域的SRI codepoint为111,第三SRI信令域的SRI codepoint为101,则终端设备可以确定网络侧设备为PUSCH配置了五个上行波束信息,分别为:CRI1指示的上行波束信息、CRI2指示的上行波束信息、SRI1指示的上行波束信息、SSBRI2指示的上行波束信息和SRI3指示的上行波束信息。
本公开实施例中,在接收DCI之前,还包括:
接收无线资源控制(RRC,Radio Resource Control)信令,其中,RRC信令用于配置PUSCH的空间关系信息(Spatial Relation),或用于配置探测参考信号(SRS,Sounding Reference Signal)资源的Spatial Relation。
网络侧设备通过RRC信令为终端设备配置PUSCH的Spatial Relation或配置SRS资源的Spatial Relation,进而在调度PUSCH的DCI中为PUSCH配置多个上行波束信息,其中,该DCI中为PUSCH配置的多个上行波束信息是根据RRC信令为PUSCH配置的Spatial Relation确定的,或是根据RRC信令为SRS资源配置的Spatial Relation确定的。
本公开实施例中,RRC信令配置PUSCH的Spatial Relation的方式包括下述至少一种:
RRC信令中包括一个物理上行共享信道空间关系信息(PUSCH-Spatial Relation Info),该PUSCH-Spatial Relation Info中包括多个资源指示信息;
RRC信令中包括多个PUSCH-Spatial Relation Info,多个PUSCH-Spatial Relation Info中的每个PUSCH-Spatial Relation Info包括至少一个资源指示信息。
在一实施例中,终端设备接收网络侧设备发送的RRC信令,该RRC信令中包括一个PUSCH-Spatial Relation Info,该PUSCH-Spatial Relation Info包括三个资源指示信息:CRI1、SRI2和SSBRI2。
网络侧设备在后续调度PUSCH时,可以通过调度PUSCH的DCI来指示该PUSCH-Spatial Relation Info,从而为PUSCH配置三个上行波束信息,分别为:CRI1指示的上行波束信息、SRI2指示的上行波束信息和SSBRI2指示的上行波束信息。
在另一实施例中,终端设备接收网络侧设备发送的RRC信令,该RRC信令中包括两个PUSCH-Spatial Relation Info:第一PUSCH-Spatial Relation Info和第二PUSCH-Spatial Relation Info。其中,第一PUSCH-Spatial Relation Info中包括两个资源指示信息:SRI1和SSBRI1,第二PUSCH-Spatial Relation Info中包括三个资源指示信息:CRI1、SRI2和SSBRI2。
网络侧设备在后续调度PUSCH时,可以通过调度PUSCH的DCI来指示第一PUSCH-Spatial Relation Info和第二PUSCH-Spatial Relation Info,从而为 PUSCH配置五个上行波束信息,分别为:SRI1指示的上行波束信息、SSBRI1指示的上行波束信息、CRI1指示的上行波束信息、SRI2指示的上行波束信息和SSBRI2指示的上行波束信息。
本公开实施例中,RRC信令配置SRS资源的Spatial Relation的方式包括下述至少一种:
RRC信令为每个SRS资源配置一个探测参考信号空间关系信息(SRS-Spatial Relation Info),其中,该SRS-Spatial Relation Info中包括多个资源指示信息;
RRC信令为每个SRS资源配置多个SRS-Spatial Relation Info,其中,多个SRS-Spatial Relation Info中的每个SRS-Spatial Relation Info中包括至少一个资源指示信息。
在一实施例中,网络侧设备为终端设备配置SRS资源。终端设备接收网络侧设备发送的RRC信令,该RRC信令为每个SRS资源配置一个SRS-Spatial Relation Info,该SRS-Spatial Relation Info中包括多个资源指示信息。
例如,网络侧设备通过RRC信令为第一SRS资源配置一个SRS-Spatial Relation Info,该SRS-Spatial Relation Info中包括两个资源指示信息:CRI1和CRI2。
网络侧设备在后续调度PUSCH时,可以通过调度PUSCH的DCI指示第一SRS资源,从而根据RRC信令为第一SRS资源配置的该第一SRS资源的SRS-Spatial Relation Info,确定网络侧设备为PUSCH配置了两个上行波束信息,分别为:CRI1指示的上行波束信息和CRI2指示的上行波束信息。
在另一实施例中,网络侧设备为终端设备配置SRS资源。终端设备接收网络侧设备发送的RRC信令,该RRC信令为每个SRS资源配置至少一个SRS-Spatial Relation Info,所述至少一个SRS-Spatial Relation Info中的每个SRS-Spatial Relation Info中包括至少一个资源指示信息。
例如,网络侧设备通过RRC信令为第一SRS资源配置两个SRS-Spatial Relation Info:第一SRS-Spatial Relation Info和第二SRS-Spatial Relation Info,其中,第一SRS-Spatial Relation Info中包括两个资源指示信息:CRI1和CRI2,第二SRS-Spatial Relation Info中包括一个资源指示信息:SRI1;
该RRC信令为第二SRS资源配置两个SRS-Spatial Relation Info:第三SRS-Spatial Relation Info和第四SRS-Spatial Relation Info,其中,第三SRS-Spatial Relation Info中包括两个资源指示信息:SSBRI1和SSBRI2,第四SRS-Spatial Relation Info中包括两个资源指示信息:SRI2和SRI3。
网络侧设备在后续调度PUSCH时,可以通过调度PUSCH的DCI指示第一SRS资源和第二SRS资源,从而根据RRC信令为第一SRS资源配置的第一SRS-Spatial Relation Info和第二SRS-Spatial Relation Info,以及根据RRC信令为第二SRS资源配置的第三SRS-Spatial Relation Info和第四SRS-Spatial Relation Info,确定网络侧设备为PUSCH配置了七个上行波束信息,分别为:CRI1指示的上行波束信息、CRI2指示的上行波束信息、SRI1指示的上行波束信息、SSBRI1指示的上行波束信息、SSBRI2指示的上行波束信息、SRI2指示的上行波束信息和SRI3指示的上行波束信息。
第二方面:网络侧设备为PUCCH配置多个上行波束信息。
网络侧设备为PUCCH配置多个上行波束信息的方式包括下述至少两种。
第一种:
本公开实施例中,接收配置信息,包括:
接收DCI,其中,DCI用于指示配置信息。
网络侧设备通过DCI向终端设备指示配置信息,该配置信息用于为PUCCH配置多个上行波束信息。
具体地,DCI中包括至少一个信令域;
DCI指示配置信息的方式包括下述至少一种:
一个信令域指示一个物理上行控制信道空间关系信息(PUCCH-Spatial Relation Info),其中,该PUCCH-Spatial Relation Info指示多个资源指示信息,多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
至少一个信令域指示多个PUCCH-Spatial Relation Info,其中,多个PUCCH-Spatial Relation Info中的每个PUCCH-Spatial Relation Info指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
网络侧设备通过DCI为PUCCH配置多个上行波束信息。
在一实施例中,网络侧设备为PUCCH配置多个上行波束信息的DCI中包括一个信令域,无论该信令域的比特数为多大,DCI使用该信令域指示一个PUCCH-Spatial Relation Info,其中,该PUCCH-Spatial Relation Info指示多个资源指示信息,多个资源指示信息中的每个资源指示信息指示一个上行波束信息。
例如,网络侧设备为PUCCH配置多个上行波束信息的DCI1中包括一个信令域,该信令域的比特数为3bit,则该信令域可以有8个信令域值(000~111),分别对应8个码位(codepoint)。网络侧设备预先确定了与每个codepoint对应的一个PUCCH-Spatial Relation Info,以及每个PUCCH-Spatial Relation Info指示的多个资源指示信息:codepoint 000对应第一PUCCH-Spatial Relation Info,第一PUCCH-Spatial Relation Info指示两个资源指示信息:CRI1和CRI2;codepoint 001对应对应第二PUCCH-Spatial Relation Info,第二PUCCH-Spatial Relation Info指示两个资源指示信息:SSBRI1和SRI1,等。
终端设备接收到该DCI1后,若DCI1中该信令域的codepoint为000,则终端设备可以根据DCI指示的第一PUCCH-Spatial Relation Info,确定网络侧设备为PUCCH配置了两个上行波束信息,分别为:CRI1指示的上行波束信息和CRI2指示的上行波束信息。
在另一实施例中,网络侧设备为PUCCH配置多个上行波束信息的DCI中包括多个信令域,DCI使用多个信令域中的至少一个信令域指示多个PUCCH-Spatial Relation Info,其中,多个PUCCH-Spatial Relation Info中的每个PUCCH-Spatial Relation Info指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
例如,网络侧设备为PUCCH配置多个上行波束信息的DCI2中包括一个信令域,该信令域的比特数为3bit,则该信令域可以有8个信令域值(000~111),分别对应8个codepoint。网络侧设备预先确定了与每个codepoint对应的多个PUCCH-Spatial Relation Info,以及每个PUCCH-Spatial Relation Info指示的多个资源指示信息:codepoint 000对应第一PUCCH-Spatial Relation Info和第二PUCCH-Spatial Relation Info,其中,第一PUCCH-Spatial Relation Info指示一个资源指示信息:CRI1,第二PUCCH-Spatial Relation Info指示一个资源指示 信息:CRI2;codepoint 001对应第三PUCCH-Spatial Relation Info和第四PUCCH-Spatial Relation Info,其中,第三PUCCH-Spatial Relation Info指示两个资源指示信息:SSBRI1和SRI1,第四PUCCH-Spatial Relation Info指示两个资源指示信息:SSBRI2和SRI3等。
终端设备接收到该DCI2后,若DCI2中该信令域的codepoint为001,则终端设备可以根据DCI2指示的第三PUCCH-Spatial Relation Info和第四PUCCH-Spatial Relation Info,确定网络侧设备为PUCCH配置了四个上行波束信息,分别为:SSBRI1指示的上行波束信息、SRI1指示的上行波束信息、SSBRI2指示的上行波束信息和SRI3指示的上行波束信息。
例如,网络侧设备为PUCCH配置多个上行波束信息的DCI3中包括两个信令域:第一信令域和第二信令域。每个信令域的比特数为3bit(即DCI2中包括6bit信令域),则每个信令域可以有8个信令域值(000~111),分别对应8个codepoint。
网络侧设备预先确定了与每个信令域中的每个codepoint对应的多个PUCCH-Spatial Relation Info,以及每信令域中每个codepoint对应的多个PUCCH-Spatial Relation Info中每个PUCCH-Spatial Relation Info指示的多个资源指示信息。
第一信令域中,codepoint 000对应两个PUCCH-Spatial Relation Info:第一PUCCH-Spatial Relation Info和第二PUCCH-Spatial Relation Info,其中,第一PUCCH-Spatial Relation Info指示一个资源指示信息CRI1,第二PUCCH-Spatial Relation Info指示一个资源指示信息CRI2;codepoint 001对应两个PUCCH-Spatial Relation Info:第三PUCCH-Spatial Relation Info和第四PUCCH-Spatial Relation Info,其中,第三PUCCH-Spatial Relation Info指示两个资源指示信息:SSBRI1和SRI1,第四PUCCH-Spatial Relation Info指示一个资源指示信息:SSBRI2等。
第二信令域中,codepoint 100对应两个PUCCH-Spatial Relation Info:第五PUCCH-Spatial Relation Info和第六PUCCH-Spatial Relation Info,其中,第五PUCCH-Spatial Relation Info指示一个资源指示信息CRI3,第二PUCCH-Spatial Relation Info指示一个资源指示信息CRI4;codepoint 111对应 两个PUCCH-Spatial Relation Info:第七PUCCH-Spatial Relation Info和第八PUCCH-Spatial Relation Info,其中,第七PUCCH-Spatial Relation Info指示两个资源指示信息:SSBRI3和SRI2,第八PUCCH-Spatial Relation Info指示一个资源指示信息:SRI3等。
终端设备接收到该DCI3后,若DCI3中第一信令域的codepoint为000、第二信令域的codepoint为111,则终端设备可以根据DCI3指示的第一PUCCH-Spatial Relation Info、第二PUCCH-Spatial Relation Info、第七PUCCH-Spatial Relation Info和第八PUCCH-Spatial Relation Info,确定网络侧设备为PUCCH配置了五个上行波束信息,分别为:CRI1指示的上行波束信息、CRI2指示的上行波束信息、SSBRI3指示的上行波束信息、SRI2指示的上行波束信息和SRI3指示的上行波束信息。
第二种:
本公开实施例中,接收配置信息,包括:
接收高层信令,其中,高层信令用于指示配置信息;
高层信令包括下述至少一种:RRC信令、媒体接入控制层控制单元(MAC CE,Medium Access Control Control Element)信令。
具体地,高层信令指示配置信息的方式包括下述至少一种:
一个PUCCH-Spatial Relation Info指示多个资源指示信息,其中,多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
多个PUCCH-Spatial Relation Info指示多个资源指示信息,其中,多个PUCCH-Spatial Relation-Info中的每个PUCCH-Spatial Relation Info指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
网络侧设备通过高层信令(RRC信令、MAC CE信令)为PUCCH配置多个上行波束信息。
在一实施例中,终端设备接收网络侧设备发送的RRC信令,该RRC信令中包括一个PUCCH-Spatial Relation Info,该PUCCH-Spatial Relation Info指示两个资源指示信息:SRI1和SSBRI1。因此,终端设备可以确定网络侧设备通过RRC信令为PUCCH配置了两个上行波束信息,分别为:SRI1指示 的上行波束信息和SSBRI1指示的上行波束信息。
在另一实施例中,终端设备接收网络侧设备发送的RRC信令,该RRC信令中包括两个PUSCH-Spatial Relation Info:第一PUSCH-Spatial Relation Info和第二PUSCH-Spatial Relation Info。其中,第一PUSCH-Spatial Relation Info指示一个资源指示信息:SRI1,第二PUSCH-Spatial Relation Info指示三个资源指示信息:CRI1、SRI2和SSBRI2。因此,终端设备可以确定网络侧设备通过RRC信令为PUCCH配置了四个上行波束信息,分别为:SRI1指示的上行波束信息、CRI1指示的上行波束信息、SRI2指示的上行波束信息和SSBRI2指示的上行波束信息。
本公开实施例中,多个上行波束信息与上行信道的相关参数具有的关联关系的确定方式包括下述至少一种:
由协议规定;
通过网络侧设备配置;
通过终端设备确定。
网络侧设备为终端设备配置上行信道的多个上行波束信息之后,终端设备确定多个上行波束信息与上行信道的相关参数具有的关联关系。
需要说明的是,多个上行波束信息与上行信道的相关参数具有的关联关系可以是由协议规定的,可以是通过网络侧设备配置的,可以是终端设备自主确定的,还可以是通过其他方式确定的,这里不做具体限定。
其中,网络侧设备可以通过高层信令(RRC信令、MAC CE信令)为终端设备配置或指示该关联关系,还可以通过DCI为终端设备指示该关联关系。
需要说明的是,指示关联关系的DCI与指示用于为上行信道配置多个上行波束信息的配置信息的DCI可以相同,也可以不相同,这里不做具体限定。
本公开实施例中,关联关系包括下述至少一种:
a、多个上行波束信息与不同上行信道相关联;
b、多个上行波束信息与同一个上行信道中的不同传输块(TB,Transport Block)相关联;
c、多个上行波束信息与同一个上行信道对应的不同层(Layer)或不同天线端口(Antenna Port)相关联;
d、多个上行波束信息与同一个上行信道在不同时间传输的部分相关联;
e、多个上行波束信息与不同物理资源块组(PRB bundle,Physical Resource Block bundle)相关联;
f、多个上行波束信息与同一个PRB bundle中的不同PRB相关联;
g、多个上行波束信息与上行信道对应的不同资源分配相关联;
h、多个上行波束信息与上行信道对应的不同调制编码方案(MCS,Modulation and Coding Scheme)相关联;
i、多个上行波束信息与上行信道对应的不同数值配置numerology相关联;
j、多个上行波束信息与上行信道对应的不同载波(carrier)或不同带宽部分(BWP,Bandwidth Part)相关联。
k、多个上行波束信息与上行信道的每次重复传输相关联。
需要说明的是,多个上行波束信息与上行信道的相关参数具有的关联关系除了可以包括上述a~k之外,还可以包括其他关联关系,这里不做具体限定。
下面对终端设备使用多个上行波束信息发送PUSCH和终端设备使用多个上行波束信息发送PUCCH两个方面分别进行详细介绍。
第一方面:终端设备使用多个上行波束信息发送PUSCH。
本公开实施例中,上行信道为PUSCH时,关联关系包括下述至少一种:
a、多个上行波束信息与同一DCI调度的不同PUSCH相关联。
终端设备可以根据关联关系确定同一DCI调度的不同PUSCH中每个PUSCH所使用的上行波束信息,进而终端设备使用多个上行波束信息发送同一DCI调度的不同PUSCH。
b、多个上行波束信息与同一个PUSCH中的不同TB相关联。
终端设备可以根据关联关系确定同一PUSCH中每个TB所使用的上行波束信息,进而终端设备使用多个上行波束信息发送同一PUSCH中的不同TB。
c、多个上行波束信息与同一个PUSCH对应的不同层或不同天线端口相关联。
终端设备可以根据关联关系确定同一PUSCH对应的每个层所使用的上行波束信息,进而终端设备使用多个上行波束信息在同一PUSCH对应的不 同层上发送PUSCH;或,终端设备可以根据关联关系确定同一PUSCH对应的每个天线端口所使用的上行波束信息,进而终端设备使用多个上行波束信息在同一PUSCH对应的不同天线端口上发送PUSCH。
d、多个上行波束信息与同一个PUSCH在不同时间传输的部分相关联。
终端设备可以根据关联关系确定同一PUSCH在不同时间传输的部分所使用的上行波束信息,进而终端设备使用多个上行波束信息发送同一PUSCH在不同时间传输的部分。
g、多个上行波束信息与PUSCH对应的不同资源分配相关联。
终端设备可以根据关联关系确定PUSCH对应的不同资源分配所使用的上行波束信息,进而终端设备使用多个上行波束信息在PUSCH对应的不同资源分配上发送PUSCH。
h、多个上行波束信息与PUSCH对应的不同MCS相关联。
终端设备可以根据关联关系确定PUSCH对应的不同MCS所使用的上行波束信息,进而终端设备使用多个上行波束信息采用不同MCS发送PUSCH。
i、多个上行波束信息与PUSCH对应的不同numerology相关联。
终端设备可以根据关联关系确定PUSCH对应的不同numerology所使用的上行波束信息,进而终端设备使用多个上行波束信息采用不同numerology发送PUSCH。
j、多个上行波束信息与PUSCH对应的不同载波或不同BWP相关联。
终端设备可以根据关联关系确定PUSCH对应的不同载波所使用的上行波束信息,进而终端设备使用多个上行波束信息在不同载波上发送PUSCH;或,终端设备可以根据关联关系确定PUSCH对应的不同BWP所使用的上行波束信息,进而终端设备使用多个上行波束信息在不同BWP上发送PUSCH。
需要说明的是,上述关联关系a、b、c、d、g、h、i、j可以单独使用,也可以联合使用,这里不做具体限定。
本公开实施例中,还包括:
根据关联关系a、b、c、g、h、i、j中的一种或多种,同时使用多个上行波束信息发送PUSCH。
例如,终端设备同时使用多个上行波束信息发送不同PUSCH、发送同一 个PUSCH中的不同TB、在同一PUSCH对应的不同层上发送PUSCH、在同一PUSCH对应的不同天线端口上发送PUSCH、在PUSCH对应的不同资源分配上发送PUSCH、采用不同MCS发送PUSCH、采用不同numerology发送PUSCH、在不同载波上发送PUSCH、在不同BWP上发送PUSCH。
本公开实施例中,还包括:
根据关联关系a、b、c、d、g、h、i、j中的一种或多种,按照预设波束使用顺序使用多个上行波束信息发送PUSCH。
例如,终端设备按照预设波束使用顺序,先后使用多个上行波束信息发送不同PUSCH、发送同一个PUSCH中的不同TB、在同一PUSCH对应的不同层上发送PUSCH、在同一PUSCH对应的不同天线端口上发送PUSCH、发送同一个PUSCH在不同时间传输的部分、在PUSCH对应的不同资源分配上发送PUSCH、采用不同MCS发送PUSCH、采用不同numerology发送PUSCH、在不同载波上发送PUSCH、在不同BWP上发送PUSCH。
第二方面:终端设备使用多个上行波束信息发送PUCCH。
本公开实施例中,上行信道为PUCCH时,关联关系包括下述至少一种:
a、多个上行波束信息与不同PUCCH相关联。
终端设备可以根据关联关系确定不同PUCCH中每个PUCCH所使用的上行波束信息,进而终端设备使用多个上行波束信息发送不同PUCCH。
当终端设备使用多个上行波束信息发送不同PUCCH时,可以在多个不同PUCCH上传输相同的上行控制信息(UCI,Uplink Control Information)。
其中,可以由协议规定的方式或者网络侧设备指示的方式确定在哪些PUCCH上传输相同的UCI。
c、多个上行波束信息与同一个PUCCH对应的不同层或不同天线端口相关联。
终端设备可以根据关联关系确定同一PUCCH对应的每个层所使用的上行波束信息,进而终端设备使用多个上行波束信息在同一PUCCH对应的不同层上发送PUCCH;或,终端设备可以根据关联关系确定同一PUCCH对应的每个天线端口所使用的上行波束信息,进而终端设备使用多个上行波束信息在同一PUCCH对应的不同天线端口上发送PUCCH。
d、多个上行波束信息与同一个PUCCH在不同时间传输的部分相关联。
终端设备可以根据关联关系确定同一PUCCH在不同时间传输的部分所使用的上行波束信息,进而终端设备使用多个上行波束信息发送同一PUCCH在不同时间传输的部分。
e、多个上行波束信息与不同PRB bundle相关联.
实际应用中,根据为PUCCH定义的PRB bundle size,将PUCCH中的所有PRB划分为不同的PRB bundle,进而根据PRB bundle发送PUCCH。
终端设备可以根据关联关系确定不同PRB bundle所使用的上行波束信息,进而终端设备使用多个上行波束信息发送不同PRB bundle。
f、多个上行波束信息与同一个PRB bundle中的不同PRB相关联。
终端设备可以根据关联关系确定同一个PRB bundle中不同PRB所使用的上行波束信息,进而终端设备使用多个上行波束信息发送同一个PRB bundle中不同PRB。
g、多个上行波束信息与PUCCH对应的不同资源分配相关联。
终端设备可以根据关联关系确定PUCCH对应的不同资源分配所使用的上行波束信息,进而终端设备使用多个上行波束信息在PUCCH对应的不同资源分配上发送PUCCH。
h、多个上行波束信息与PUCCH对应的不同MCS相关联。
终端设备可以根据关联关系确定PUCCH对应的不同MCS所使用的上行波束信息,进而终端设备使用多个上行波束信息采用不同MCS发送PUCCH。
i、多个上行波束信息与PUCCH对应的不同numerology相关联。
终端设备可以根据关联关系确定PUCCH对应的不同numerology所使用的上行波束信息,进而终端设备使用多个上行波束信息采用不同numerology发送PUCCH。
j、多个上行波束信息与PUCCH对应的不同载波或不同BWP相关联。
终端设备可以根据关联关系确定PUCCH对应的不同载波所使用的上行波束信息,进而终端设备使用多个上行波束信息在不同载波上发送PUCCH;或,终端设备可以根据关联关系确定PUCCH对应的不同BWP所使用的上行波束信息,进而终端设备使用多个上行波束信息在不同BWP上发送PUCCH。
k、多个上行波束信息与PUCCH的每次重复传输相关联。
终端设备可以根据关联关系确定PUCCH的每次重复传输所使用的上行波束信息,进而终端设备在PUCCH的每次重复传输时使用不同的上行波束信息。
需要说明的是,上述关联关系a、c、d、e、f、g、h、i、j、k可以单独使用,也可以联合使用,这里不做具体限定。
本公开实施例中,还包括:
根据关联关系a、c、e、f、g、h、i、j、k中的一种或多种,同时使用多个上行波束信息发送PUCCH。
例如,终端设备同时使用多个上行波束信息发送不同PUCCH、在同一PUCCH对应的不同层上发送PUCCH、在同一PUCCH对应的不同天线端口上发送PUCCH、发送不同PRB bundle、发送同一个PRB bundle中不同PRB、在PUCCH对应的不同资源分配上发送PUCCH、采用不同MCS发送PUCCH、采用不同numerology发送PUCCH、在不同载波上发送PUCCH、在不同BWP上发送PUCCH、发送PUCCH的每次重复传输。
本公开实施例中,还包括:
根据关联关系a、c、d、e、f、g、h、i、j、k中的一种或多种,按照预设波束使用顺序使用多个上行波束信息发送PUCCH。
例如,终端设备按照预设波束使用顺序使用,先后使用多个上行波束信息发送不同PUCCH、在同一PUCCH对应的不同层上发送PUCCH、在同一PUCCH对应的不同天线端口上发送PUCCH、发送同一PUCCH在不同时间传输的部分、发送不同PRB bundle、发送同一个PRB bundle中不同PRB、在PUCCH对应的不同资源分配上发送PUCCH、采用不同MCS发送PUCCH、采用不同numerology发送PUCCH、在不同载波上发送PUCCH、在不同BWP上发送PUCCH、发送PUCCH的每次重复传输。
本公开实施例中,还包括:
确定波束切换点。
当终端设备使用多个上行波束信息发送同一个PUSCH在不同时间传输的部分或同一个PUCCH在不同时间传输的部分,或根据关联关系中的一种 或多种,按照预设波束使用顺序使用多个上行波束信息发送PUSCH或PUCCH时,终端设备需要先确定波束切换点,进而在波束切换点前后使用不同的上行波束信息发送PUSCH或PUCCH。
本公开实施例中,确定所述波束切换点的方式包括下述至少一种。
第一种:
根据网络侧设备配置或协议规定的跳频点,确定波束切换点。
实际应用中,网络侧设备通过RRC信令为终端设备配置跳频信息;或,通过协议规定跳频信息。
终端设备可以将跳频信息中的跳频点确定为波束切换点,即在跳频点前后,使用不同的上行波束信息发送PUSCH或PUCCH。
第二种:
通过网络侧设备配置或协议规定,确定至少一个波束切换点。
网络侧设备可以通过高层信令或DCI为终端设备配置至少一个波束切换点,或网络侧设备与终端设备预先约定至少一个波束切换点,或通过协议规定至少一个波束切换点。
终端设备确定该至少一个波束切换点,进而在波束切换点前后使用不同的上行波束信息发送PUSCH或PUCCH。
本公开实施例中,预设波束使用顺序的确定方式包括下述至少一种:
通过网络侧设备配置;
由协议规定;
通过终端设备确定。
网络侧设备通过高层信令或DCI为终端设备指示多个上行波束信息的预设波束使用顺序,或由协议规定多个上行波束信息的预设波束使用顺序,或终端设备根据自身传输能力,自主确定多个上行波束信息的预设波束使用顺序,进而终端设备按照预设波束使用顺序,先后使用多个上行波束信息发送PUSCH或PUCCH。
本公开实施例记载的技术方案,通过配置信息为上行信道配置多个上行波束信息,多个上行波束信息与上行信道的相关参数具有关联关系,使得终端设备可以根据该关联关系,使用多个上行波束信息发送上行信道,从而可 以有效提高通信系统的上行传输效率。
图3为本公开实施例提供的另一种用于多波束发送上行信道的方法的流程示意图。所述方法应用于网络侧设备,所述方法可以如下所示。
步骤310,发送配置信息,其中,配置信息中包括用于上行信道的多个上行波束信息;多个上行波束信息与上行信道的相关参数具有关联关系。
网络侧设备为终端设备配置上行信道的多个上行波束信息。
下面对网络侧设备为PUSCH配置多个上行波束信息和网络侧设备为PUCCH配置多个上行波束信息两个方面分别进行详细介绍。
第一方面:网络侧设备为PUSCH配置多个上行波束信息。
本公开实施例中,发送配置信息,包括:
发送DCI,其中,DCI用于指示配置信息。
网络侧设备通过调度PUSCH的DCI向终端设备指示配置信息,该配置信息用于为PUSCH配置多个上行波束信息。
具体地,DCI中包括至少一个SRI信令域;
DCI指示配置信息的方式包括下述至少一种:
一个SRI信令域指示多个资源指示信息,其中,多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
多个SRI信令域指示多个资源指示信息,其中,多个SRI信令域中的每个SRI信令域指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
其中,资源指示信息包括下述至少一种:
CRI、SSBRI、SRI。
在一实施例中,DCI中包括一个SRI信令域,无论该SRI信令域的比特数为多大,DCI使用该SRI信令域指示多个资源指示信息,其中,多个资源指示信息中的每个资源指示信息指示一个上行波束信息。
在另一实施例中,DCI中包括多个SRI信令域,DCI使用多个SRI信令域中的每个SRI信令域分别指示至少一个资源指示信息,其中,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
本公开实施例中,在发送DCI之前,还包括:
发送RRC信令,其中,RRC信令用于配置PUSCH的Spatial Relation,或用于配置SRS资源的Spatial Relation。
网络侧设备通过RRC信令为终端设备配置PUSCH的Spatial Relation或配置SRS资源的Spatial Relation,进而在调度PUSCH的DCI中为PUSCH配置多个上行波束信息,其中,该DCI中为PUSCH配置的多个上行波束信息是根据RRC信令为PUSCH配置的Spatial Relation确定的,或是根据RRC信令为SRS资源配置的Spatial Relation确定的。
本公开实施例中,RRC信令配置PUSCH的Spatial Relation的方式包括下述至少一种:
RRC信令中包括一个PUSCH-Spatial Relation Info,该PUSCH-Spatial Relation Info中包括多个资源指示信息;
RRC信令中包括多个PUSCH-Spatial Relation Info,多个PUSCH-Spatial Relation Info中的每个PUSCH-Spatial Relation Info包括至少一个资源指示信息。
其中,网络侧设备通过RRC信令配置PUSCH的Spatial Relation的具体过程与上述图2所示实施例中相关部分相同。
本公开实施例中,RRC信令配置SRS资源的Spatial Relation的方式包括下述至少一种:
RRC信令为每个SRS资源配置一个SRS-Spatial Relation Info,其中,该SRS-Spatial Relation Info中包括多个资源指示信息;
RRC信令为每个SRS资源配置多个SRS-Spatial Relation Info,其中,多个SRS-Spatial Relation Info中的每个SRS-Spatial Relation Info中包括至少一个资源指示信息。
其中,网络侧设备通过RRC信令配置SRS资源的Spatial Relation的具体过程与上述图2所示实施例中相关部分相同。
第二方面:网络侧设备为PUCCH配置多个上行波束信息。
网络侧设备为PUCCH配置多个上行波束信息的方式包括下述至少两种。
第一种:
本公开实施例中,发送配置信息,包括:
发送DCI,其中,DCI用于指示配置信息。
网络侧设备通过DCI向终端设备指示配置信息,该配置信息用于为PUCCH配置多个上行波束信息。
具体地,DCI中包括至少一个信令域;
DCI指示配置信息的方式包括下述至少一种:
一个信令域指示一个PUCCH-Spatial Relation Info,其中,该PUCCH-Spatial Relation Info指示多个资源指示信息,多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
至少一个信令域指示多个PUCCH-Spatial Relation Info,其中,多个PUCCH-Spatial Relation Info中的每个PUCCH-Spatial Relation Info指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
网络侧设备通过DCI为PUCCH配置多个上行波束信息。
其中,网络侧设备通过DCI为PUCCH配置多个上行波束信息的具体过程与上述图2所示实施例中相关部分相同。
第二种:
本公开实施例中,发送配置信息,包括:
发送高层信令,其中,高层信令用于指示配置信息;
高层信令包括下述至少一种:RRC信令、MAC CE信令。
具体地,高层信令指示配置信息的方式包括下述至少一种:
一个PUCCH-Spatial Relation Info指示多个资源指示信息,其中,多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
多个PUCCH-Spatial Relation Info指示多个资源指示信息,其中,多个PUCCH-Spatial Relation-Info中的每个PUCCH-Spatial Relation Info指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
网络侧设备通过高层信令为PUCCH配置多个上行波束信息。
其中,网络侧设备通过高层信令为PUCCH配置多个上行波束信息的具体过程与上述图2所示实施例中相关部分相同。
本公开实施例中,多个上行波束信息与上行信道的相关参数具有的关联关系的确定方式包括下述至少一种:
由协议规定;
通过网络侧设备配置;
通过终端设备确定。
网络侧设备为终端设备配置上行信道的多个上行波束信息之后,确定多个上行波束信息与上行信道的相关参数具有的关联关系。
需要说明的是,多个上行波束信息与上行信道的相关参数具有的关联关系可以是由协议规定的,可以是通过网络侧设备配置的,可以是终端设备自主确定的,还可以是通过其他方式确定的,这里不做具体限定。
其中,网络侧设备可以通过高层信令(RRC信令、MAC CE信令)为终端设备配置或指示该关联关系,还可以通过DCI为终端设备指示该关联关系。
需要说明的是,指示关联关系的DCI与指示用于为上行信道配置多个上行波束信息的配置信息的DCI可以相同,也可以不相同,这里不做具体限定。
本公开实施例中,关联关系包括下述至少一种:
a、多个上行波束信息与不同上行信道相关联;
b、多个上行波束信息与同一个上行信道中的不同TB相关联;
c、多个上行波束信息与同一个上行信道对应的不同层或不同天线端口(相关联;
d、多个上行波束信息与同一个上行信道在不同时间传输的部分相关联;
e、多个上行波束信息与不同PRB bundle相关联;
f、多个上行波束信息与同一个PRB bundle中的不同PRB相关联;
g、多个上行波束信息与上行信道对应的不同资源分配相关联;
h、多个上行波束信息与上行信道对应的不同MCS相关联;
i、多个上行波束信息与上行信道对应的不同numerology相关联;
j、多个上行波束信息与上行信道对应的不同载波或不同BWP相关联。
k、多个上行波束信息与上行信道的每次重复传输相关联。
需要说明的是,多个上行波束信息与上行信道的相关参数具有的关联关系除了可以包括上述a~k之外,还可以包括其他关联关系,这里不做具体限 定。
下面对网络侧设备使用多个上行波束信息接收PUSCH和网络侧设备使用多个上行波束信息接收PUCCH两个方面分别进行详细介绍。
第一方面:网络侧设备使用多个上行波束信息接收PUSCH。
本公开实施例中,上行信道为PUSCH时,关联关系包括下述至少一种:
a、多个上行波束信息与同一DCI调度的不同PUSCH相关联。
网络侧设备使用多个上行波束信息接收同一DCI调度的不同PUSCH。
b、多个上行波束信息与同一个PUSCH中的不同TB相关联。
网络侧设备使用多个上行波束信息接收同一PUSCH中的不同TB。
c、多个上行波束信息与同一个PUSCH对应的不同层或不同天线端口相关联。
网络侧设备使用多个上行波束信息在同一PUSCH对应的不同层上接收PUSCH;或,网络侧设备使用多个上行波束信息在同一PUSCH对应的不同天线端口上接收PUSCH。d、多个上行波束信息与同一个PUSCH在不同时间传输的部分相关联。
网络侧设备使用多个上行波束信息接收同一PUSCH在不同时间传输的部分。
g、多个上行波束信息与PUSCH对应的不同资源分配相关联。
网络侧设备使用多个上行波束信息在PUSCH对应的不同资源分配上接收PUSCH。
h、多个上行波束信息与PUSCH对应的不同MCS相关联。
网络侧设备使用多个上行波束信息采用不同MCS接收PUSCH。
i、多个上行波束信息与PUSCH对应的不同numerology相关联。
网络侧设备使用多个上行波束信息采用不同numerology接收PUSCH。
j、多个上行波束信息与PUSCH对应的不同载波或不同BWP相关联。
网络侧设备使用多个上行波束信息在不同载波上接收PUSCH;或,网络侧设备使用多个上行波束信息在不同BWP上接收PUSCH。
需要说明的是,上述关联关系a、b、c、d、g、h、i、j可以单独使用,也可以联合使用,这里不做具体限定。
本公开实施例中,还包括:
根据关联关系a、b、c、g、h、i、j中的一种或多种,同时使用多个上行波束信息接收PUSCH。
例如,网络侧设备同时使用多个上行波束信息接收不同PUSCH、接收同一个PUSCH中的不同TB、在同一PUSCH对应的不同层上接收PUSCH、在同一PUSCH对应的不同天线端口上接收PUSCH、在PUSCH对应的不同资源分配上接收PUSCH、采用不同MCS接收PUSCH、采用不同numerology接收PUSCH、在不同载波上接收PUSCH、在不同BWP上接收PUSCH。
本公开实施例中,还包括:
根据关联关系a、b、c、d、g、h、i、j中的一种或多种,按照预设波束使用顺序使用多个上行波束信息接收PUSCH。
例如,网络侧设备按照预设波束使用顺序使用,先后使用多个上行波束信息接收不同PUSCH、接收同一个PUSCH中的不同TB、在同一PUSCH对应的不同层上接收PUSCH、在同一PUSCH对应的不同天线端口上接收PUSCH、接收同一个PUSCH在不同时间传输的部分、在PUSCH对应的不同资源分配上接收PUSCH、采用不同MCS接收PUSCH、采用不同numerology接收PUSCH、在不同载波上接收PUSCH、在不同BWP上接收PUSCH。
第二方面:网络侧设备使用多个上行波束信息接收PUCCH。
本公开实施例中,上行信道为PUCCH时,关联关系包括下述至少一种:
a、多个上行波束信息与不同PUCCH相关联。
网络侧设备使用多个上行波束信息接收不同PUCCH。
当网络侧设备使用多个上行波束信息接收不同PUCCH时,可以在多个不同PUCCH上接收相同的UCI。
其中,可以由协议规定的方式或者网络侧设备指示的方式确定在哪些PUCCH上接收相同的UCI。
c、多个上行波束信息与同一个PUCCH对应的不同层或不同天线端口相关联。
网络侧设备使用多个上行波束信息在同一PUCCH对应的不同层上接收PUCCH;或,网络侧设备使用多个上行波束信息在同一PUCCH对应的不同 天线端口上接收PUCCH。
d、多个上行波束信息与同一个PUCCH在不同时间传输的部分相关联。
网络侧设备使用多个上行波束信息接收同一PUCCH在不同时间传输的部分。
e、多个上行波束信息与不同PRB bundle相关联.
网络侧设备使用多个上行波束信息接收不同PRB bundle。
f、多个上行波束信息与同一个PRB bundle中的不同PRB相关联。
网络侧设备使用多个上行波束信息接收同一个PRB bundle中不同PRB。
g、多个上行波束信息与PUCCH对应的不同资源分配相关联。
网络侧设备使用多个上行波束信息在PUCCH对应的不同资源分配上接收PUCCH。
h、多个上行波束信息与PUCCH对应的不同MCS相关联。
网络侧设备使用多个上行波束信息采用不同MCS接收PUCCH。
i、多个上行波束信息与PUCCH对应的不同numerology相关联。
网络侧设备使用多个上行波束信息采用不同numerology接收PUCCH。
j、多个上行波束信息与PUCCH对应的不同载波或不同BWP相关联。
网络侧设备使用多个上行波束信息在不同载波上接收PUCCH;或,网络侧设备使用多个上行波束信息在不同BWP上接收PUCCH。
k、多个上行波束信息与PUCCH的每次重复传输相关联。
网络侧设备使用不同的上行波束信息接收PUCCH的每次重复传输。
需要说明的是,上述关联关系a、c、d、e、f、g、h、i、j、k可以单独使用,也可以联合使用,这里不做具体限定。
本公开实施例中,还包括:
根据关联关系a、c、e、f、g、h、i、j、k中的一种或多种,同时使用多个上行波束信息接收PUCCH。
例如,网络侧设备同时使用多个上行波束信息接收不同PUCCH、在同一PUCCH对应的不同层上接收PUCCH、在同一PUCCH对应的不同天线端口上接收PUCCH、接收不同PRB bundle、接收同一个PRB bundle中不同PRB、在PUCCH对应的不同资源分配上接收PUCCH、采用不同MCS接收PUCCH、 采用不同numerology接收PUCCH、在不同载波上接收PUCCH、在不同BWP上接收PUCCH、接收PUCCH的每次重复传输。
本公开实施例中,还包括:
根据关联关系a、c、d、e、f、g、h、i、j、k中的一种或多种,按照预设波束使用顺序使用多个上行波束信息接收PUCCH。
例如,网络侧设备按照预设波束使用顺序使用,先后使用多个上行波束信息接收不同PUCCH、在同一PUCCH对应的不同层上接收PUCCH、在同一PUCCH对应的不同天线端口上接收PUCCH、接收同一PUCCH在不同时间传输的部分、接收不同PRB bundle、接收同一个PRB bundle中不同PRB、在PUCCH对应的不同资源分配上接收PUCCH、采用不同MCS接收PUCCH、采用不同numerology接收PUCCH、在不同载波上接收PUCCH、在不同BWP上接收PUCCH、接收PUCCH的每次重复传输。
本公开实施例中,还包括:
确定波束切换点。
当网络侧设备使用多个上行波束信息接收同一个PUSCH在不同时间传输的部分或PUCCH在不同时间传输的部分,或根据关联关系中的一种或多种,按照预设波束使用顺序使用多个上行波束信息接收PUSCH或PUCCH时,网络侧设备需要先确定波束切换点,进而在波束切换点前后使用不同的上行波束信息接收PUSCH或PUCCH。
本公开实施例中,确定所述波束切换点的方式包括下述至少一种。
第一种:
根据网络侧设备配置或协议规定的跳频点,确定波束切换点。
实际应用中,网络侧设备通过RRC信令为终端设备配置跳频信息;或,通过协议规定跳频信息。
网络侧设备可以将跳频信息中的跳频点确定为波束切换点,即在跳频点前后,使用不同的上行波束信息接收PUSCH或PUCCH。
第二种:
通过网络侧设备配置或协议规定,确定至少一个波束切换点。
网络侧设备可以通过高层信令或DCI为终端设备配置至少一个波束切换 点,或网络侧设备与终端设备预先约定至少一个波束切换点,或通过协议规定至少一个波束切换点。
网络侧设备在波束切换点前后使用不同的上行波束信息接收PUSCH或PUCCH。
本公开实施例中,预设波束使用顺序的确定方式包括下述至少一种:
通过网络侧设备配置;
由协议规定;
通过终端设备确定。
网络侧设备通过高层信令或DCI为终端设备指示多个上行波束信息的预设波束使用顺序,或由协议规定多个上行波束信息的预设波束使用顺序,或终端设备根据自身传输能力,自主确定多个上行波束信息的预设波束使用顺序,进而终端设备按照预设波束使用顺序,先后使用多个上行波束信息发送PUSCH或PUCCH,使得网络侧设备按照预设波束使用顺序,先后使用多个上行波束信息接收PUSCH或PUCCH。
本公开实施例记载的技术方案,通过配置信息为上行信道配置多个上行波束信息,多个上行波束信息与上行信道的相关参数具有关联关系,使得终端设备可以根据该关联关系,使用多个上行波束信息发送上行信道,从而可以有效提高通信系统的上行传输效率。
图4为本公开实施例提供的一种终端设备的结构示意图。图4所示的终端设备400包括:
接收模块401,用于接收配置信息,其中,配置信息中包括用于上行信道的多个上行波束信息;多个上行波束信息与上行信道的相关参数具有关联关系。
可选地,接收模块401进一步用于:
接收DCI,其中,DCI用于指示配置信息。
可选地,上行信道为PUSCH,DCI中包括至少一个SRI信令域;
DCI指示配置信息的方式包括下述至少一种:
一个SRI信令域指示多个资源指示信息,其中,多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
多个SRI信令域指示多个资源指示信息,其中,多个SRI信令域中的每个SRI信令域指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
可选地,接收模块401还用于:
接收RRC信令,其中,RRC信令用于配置PUSCH的Spatial Relation,或用于配置SRS资源的Spatial Relation。
可选地,RRC信令配置PUSCH的Spatial Relation的方式包括下述至少一种:
RRC信令中包括一个PUSCH-Spatial Relation Info,所述PUSCH-Spatial Relation Info中包括多个资源指示信息;
RRC信令中包括多个PUSCH-Spatial Relation Info,多个PUSCH-Spatial Relation Info中的每个PUSCH-Spatial Relation Info包括至少一个资源指示信息。
可选地,RRC信令配置SRS资源的Spatial Relation的方式包括下述至少一种:
RRC信令为每个SRS资源配置一个SRS-Spatial Relation Info,其中,SRS-Spatial Relation Info中包括多个资源指示信息;
RRC信令为每个SRS资源配置多个SRS-Spatial Relation Info,其中,多个SRS-Spatial Relation Info中的每个SRS-Spatial Relation Info中包括至少一个资源指示信息。
可选地,上行信道为PUCCH,DCI中包括至少一个信令域;
DCI指示配置信息的方式包括下述至少一种:
一个信令域指示一个PUCCH-Spatial Relation Info,其中,PUCCH-Spatial Relation Info指示多个资源指示信息,多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
至少一个信令域指示多个PUCCH-Spatial Relation Info,其中,多个PUCCH-Spatial Relation Info中的每个PUCCH-Spatial Relation Info指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
可选地,上行信道为PUCCH;
接收模块401进一步用于:
接收高层信令,其中,高层信令用于指示配置信息;
高层信令包括下述至少一种:RRC信令、MAC CE信令。
可选地,高层信令指示配置信息的方式包括下述至少一种:
一个PUCCH-Spatial Relation Info指示多个资源指示信息,其中,多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
多个PUCCH-Spatial Relation Info指示多个资源指示信息,其中,多个PUCCH-Spatial Relation-Info中的每个PUCCH-Spatial Relation Info指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
可选地,资源指示信息包括下述至少一种:
CRI、SSBRI、SRI。
可选地,多个上行波束信息与上行信道的相关参数具有的关联关系的确定方式包括下述至少一种:
由协议规定;
通过网络侧设备配置;
通过终端设备400确定。
可选地,关联关系包括下述至少一种:
a、多个上行波束信息与不同上行信道相关联;
b、多个上行波束信息与同一个上行信道中的不同TB相关联;
c、多个上行波束信息与同一个上行信道对应的不同层或不同天线端口相关联;
d、多个上行波束信息与同一个上行信道在不同时间传输的部分相关联;
e、多个上行波束信息与不同PRB bundle相关联;
f、多个上行波束信息与同一个PRB bundle中的不同PRB相关联;
g、多个上行波束信息与上行信道对应的不同资源分配相关联;
h、多个上行波束信息与上行信道对应的不同MCS相关联;
i、多个上行波束信息与上行信道对应的不同numerology相关联;
j、多个上行波束信息与上行信道对应的不同载波或不同BWP相关联。
k、多个上行波束信息与上行信道的每次重复传输相关联。
可选地,上行信道为PUSCH时,关联关系包括下述至少一种:a、b、c、d、g、h、i、j;
上行信道为PUCCH时,关联关系包括下述至少一种:a、c、d、e、f、g、h、i、j、k。
可选地,终端设备400还包括:
第一发送模块,用于根据关联关系a、b、c、e、f、g、h、i、j、k中的一种或多种,同时使用多个上行波束信息发送上行信道。
可选地,终端设备400还包括:
第二发送模块,用于根据关联关系a、b、c、d、e、f、g、h、i、j、k中的一种或多种,按照预设波束使用顺序使用多个上行波束信息发送上行信道。
需要说明的是,第一发送模块和第二发送模块可以为具有发送功能的同一硬件发送模块,也可以为具有发送功能的不同软件发送模块,这里不做具体限定。
可选地,终端设备400还包括:
确定模块,用于确定波束切换点。
可选地,确定模块进一步用于:
根据网络侧设备配置或协议规定的跳频点,确定波束切换点。
可选地,确定模块进一步用于:
通过网络侧设备配置或协议规定,确定至少一个波束切换点。
可选地,预设波束使用顺序的确定方式包括下述至少一种:
通过网络侧设备配置;
由协议规定;
通过终端设备400确定。
本公开实施例提供的终端设备400能够实现图2的方法实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
图5为本公开实施例提供的一种网络侧设备的结构示意图。图5所示的 网络侧设备500包括:
发送模块501,用于发送配置信息,其中,配置信息中包括用于上行信道的多个上行波束信息;多个上行波束信息与上行信道的相关参数具有关联关系。
可选地,发送模块501进一步用于:
发送DCI,其中,DCI用于指示配置信息。
可选地,上行信道为PUSCH,DCI中包括至少一个SRI信令域;
DCI指示配置信息的方式包括下述至少一种:
一个SRI信令域指示多个资源指示信息,其中,多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
多个SRI信令域指示多个资源指示信息,其中,多个SRI信令域中的每个SRI信令域指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
可选地,发送模块501还用于:
发送RRC信令,其中,RRC信令用于配置PUSCH的Spatial Relation,或用于配置SRS资源的Spatial Relation。
可选地,RRC信令配置PUSCH的Spatial Relation的方式包括下述至少一种:
RRC信令中包括一个PUSCH-Spatial Relation Info,PUSCH-Spatial Relation Info中包括多个资源指示信息;
RRC信令中包括多个PUSCH-Spatial Relation Info,多个PUSCH-Spatial Relation Info中的每个PUSCH-Spatial Relation Info包括至少一个资源指示信息。
可选地,RRC信令配置SRS资源的Spatial Relation的方式包括下述至少一种:
RRC信令为每个SRS资源配置一个SRS-Spatial Relation Info,其中,SRS-Spatial Relation Info中包括多个资源指示信息;
RRC信令为每个SRS资源配置多个SRS-Spatial Relation Info,其中,多个SRS-Spatial Relation Info中的每个SRS-Spatial Relation Info中包括至少一 个资源指示信息。
可选地,上行信道为PUCCH,DCI中包括至少一个信令域;
DCI指示配置信息的方式包括下述至少一种:
一个信令域指示一个PUCCH-Spatial Relation Info,其中,PUCCH-Spatial Relation Info指示多个资源指示信息,多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
至少一个信令域指示多个PUCCH-Spatial Relation Info,其中,多个PUCCH-Spatial Relation Info中的每个PUCCH-Spatial Relation Info指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
可选地,上行信道为PUCCH;
发送模块501进一步用于:
发送高层信令,其中,高层信令用于指示配置信息;
高层信令包括下述至少一种:RRC信令、MAC CE信令。
可选地,高层信令指示配置信息的方式包括下述至少一种:
一个PUCCH-Spatial Relation Info指示多个资源指示信息,其中,多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
多个PUCCH-Spatial Relation Info指示多个资源指示信息,其中,多个PUCCH-Spatial Relation-Info中的每个PUCCH-Spatial Relation Info指示至少一个资源指示信息,至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
可选地,资源指示信息包括下述至少一种:
CRI、SSBRI、SRI。
可选地,多个上行波束信息与上行信道的相关参数具有的关联关系的确定方式包括下述至少一种:
由协议规定;
通过网络侧设备500配置;
通过终端设备确定。
可选地,关联关系包括下述至少一种:
a、多个上行波束信息与不同上行信道相关联;
b、多个上行波束信息与同一个上行信道中的不同TB相关联;
c、多个上行波束信息与同一个上行信道对应的不同层或不同天线端口相关联;
d、多个上行波束信息与同一个上行信道在不同时间传输的部分相关联;
e、多个上行波束信息与不同PRB bundle相关联;
f、多个上行波束信息与同一个PRB bundle中的不同PRB相关联;
g、多个上行波束信息与上行信道对应的不同资源分配相关联;
h、多个上行波束信息与上行信道对应的不同MCS相关联;
i、多个上行波束信息与上行信道对应的不同numerology相关联;
j、多个上行波束信息与上行信道对应的不同载波或不同BWP相关联。
k、多个上行波束信息与上行信道的每次重复传输相关联。
可选地,上行信道为PUSCH时,关联关系包括下述至少一种:a、b、c、d、g、h、i、j;
上行信道为PUCCH时,关联关系包括下述至少一种:a、c、d、e、f、g、h、i、j、k。
可选地,网络侧设备还包括:
第一接收模块,用于根据关联关系a、b、c、e、f、g、h、i、j、k中的一种或多种,同时使用多个上行波束信息接收上行信道。
可选地,网络侧设备还包括:
第二接收模块,用于根据关联关系a、b、c、d、e、f、g、h、i、j、k中的一种或多种,按照预设波束使用顺序使用多个上行波束信息接收上行信道。
需要说明的是,第一接收模块和第二接收模块可以为具有接收功能的同一硬件接收模块,也可以为具有接收功能的不同软件接收模块,这里不做具体限定。
可选地,终端设备500还包括:
确定模块,用于确定波束切换点。
可选地,确定模块进一步用于:
根据网络侧设备500配置或协议规定的跳频点,确定波束切换点。
可选地,确定模块进一步用于
通过网络侧设备500配置或协议规定,确定至少一个波束切换点。
可选地,预设波束使用顺序的确定方式包括下述至少一种:
通过网络侧设备500配置;
由协议规定;
通过终端设备确定。
本公开实施例提供的网络侧设备500能够实现图3的方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
图6为本公开实施例提供的另一种终端设备的结构示意图。图6所示的终端设备600包括:至少一个处理器601、存储器602、至少一个网络接口604和用户接口603。终端设备600中的各个组件通过总线系统605耦合在一起。可理解,总线系统605用于实现这些组件之间的连接通信。总线系统605除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图6中将各种总线都标为总线系统605。
其中,用户接口603可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器602可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read-Only Memory)、可编程只读存储器(PROM,Programmable ROM)、可擦除可编程只读存储器(EPROM,Erasable PROM)、电可擦除可编程只读存储器(EEPROM,Electrically EPROM)或闪存。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static RAM)、动态随机存取存储器(DRAM,Dynamic RAM)、同步动态随机存取存储器(SDRAM,Synchronous DRAM)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate SDRAM)、增强型同步动态随机存取存储器(ESDRAM,Enhanced SDRAM)、同步连接动态随机存取存储器(SLDRAM,Synch link DRAM)和直接内存总线随机存取存储器(DRRAM,Direct Rambus RAM)。本公开实施例描述的系统 和方法的存储器602旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器602存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统6021和应用程序6022。
其中,操作系统6021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序6022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序6022中。
在本公开实施例中,终端设备600还包括:存储在存储器上602并可在处理器601上运行的计算机程序,计算机程序被处理器601执行时实现如下步骤:
接收配置信息,其中,配置信息中包括用于上行信道的多个上行波束信息;
多个上行波束信息与上行信道的相关参数具有关联关系。
上述本公开实施例揭示的方法可以应用于处理器601中,或者由处理器601实现。处理器601可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器601中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器601可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、现成可编程门阵列(FPGA,Field Programmable Gate Array)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器602,处理器601读取存储器602中的信息,结合其硬件完成上 述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器601执行时实现如图2的方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(ASIC,Application Specific Integrated Circuits)、数字信号处理器(DSP,Digital Signal Processing)、数字信号处理设备(DSPD,DSP Device)、可编程逻辑设备(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
终端设备600能够实现前述图2的方法实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有程序,该程序被处理器执行时实现上述图2的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等。
图7为本公开实施例提供的另一种网络侧设备的结构示意图。图7所示的网络侧设备700能够实现图3的方法实施例的细节,并达到相同的效果。如图7所示,网络侧设备700包括:处理器701、收发机702、存储器703、用户接口704和总线接口,其中:
在本公开实施例中,网络侧设备700还包括:存储在存储器上703并可在处理器701上运行的计算机程序,计算机程序被处理器701执行时实现如下步骤:
发送配置信息,其中,配置信息中包括用于上行信道的多个上行波束信息;
多个上行波束信息与上行信道的相关参数具有关联关系。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口704还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
网络侧设备700能够实现前述图3的方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述图3的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器, 空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (44)

  1. 一种用于多波束发送上行信道的方法,应用于终端设备,其中,所述方法包括:
    接收配置信息,其中,所述配置信息中包括用于上行信道的多个上行波束信息;所述多个上行波束信息与所述上行信道的相关参数具有关联关系。
  2. 如权利要求1所述的方法,其中,所述接收配置信息,包括:
    接收下行控制信息DCI,其中,所述DCI用于指示所述配置信息。
  3. 如权利要求2所述的方法,其中,所述上行信道为物理上行共享信道PUSCH,所述DCI中包括至少一个探测参考信号资源指示SRI信令域;
    所述DCI指示所述配置信息的方式包括下述至少一种:
    一个SRI信令域指示多个资源指示信息,其中,所述多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
    多个SRI信令域指示多个资源指示信息,其中,所述多个SRI信令域中的每个SRI信令域指示至少一个资源指示信息,所述至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
  4. 如权利要求3所述的方法,其中,在接收所述DCI之前,所述方法还包括:
    接收无线资源控制RRC信令,其中,所述RRC信令用于配置PUSCH的空间关系信息Spatial Relation,或用于配置探测参考信号SRS资源的Spatial Relation。
  5. 如权利要求4所述的方法,其中,所述RRC信令配置PUSCH的Spatial Relation的方式包括下述至少一种:
    所述RRC信令中包括一个物理上行共享信道空间关系信息PUSCH-Spatial Relation Info,所述PUSCH-Spatial Relation Info中包括多个资源指示信息;
    所述RRC信令中包括多个PUSCH-Spatial Relation Info,所述多个PUSCH-Spatial Relation Info中的每个PUSCH-Spatial Relation Info包括至少一个资源指示信息。
  6. 如权利要求4所述的方法,其中,所述RRC信令配置SRS资源的Spatial Relation的方式包括下述至少一种:
    所述RRC信令为每个SRS资源配置一个探测参考信号空间关系信息SRS-Spatial Relation Info,其中,所述SRS-Spatial Relation Info中包括多个资源指示信息;
    所述RRC信令为每个SRS资源配置多个SRS-Spatial Relation Info,其中,所述多个SRS-Spatial Relation Info中的每个SRS-Spatial Relation Info中包括至少一个资源指示信息。
  7. 如权利要求2所述的方法,其中,所述上行信道为物理上行控制信道PUCCH,所述DCI中包括至少一个信令域;
    所述DCI指示所述配置信息的方式包括下述至少一种:
    一个信令域指示一个物理上行控制信道空间关系信息PUCCH-Spatial Relation Info,其中,所述PUCCH-Spatial Relation Info指示多个资源指示信息,所述多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
    至少一个信令域指示多个PUCCH-Spatial Relation Info,其中,所述多个PUCCH-Spatial Relation Info中的每个PUCCH-Spatial Relation Info指示至少一个资源指示信息,所述至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
  8. 如权利要求1所述的方法,其中,所述上行信道为PUCCH;
    接收配置信息,包括:
    接收高层信令,其中,所述高层信令用于指示所述配置信息;
    所述高层信令包括下述至少一种:RRC信令、媒体接入控制层控制单元MAC CE信令。
  9. 如权利要求8所述的方法,其中,所述高层信令指示所述配置信息的方式包括下述至少一种:
    一个PUCCH-Spatial Relation Info指示多个资源指示信息,其中,所述多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
    多个PUCCH-Spatial Relation Info指示多个资源指示信息,其中,所述多个PUCCH-Spatial Relation-Info中的每个PUCCH-Spatial Relation Info指示至 少一个资源指示信息,所述至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
  10. 如权利要求3、5、6、7、9中任一项所述的方法,其中,所述资源指示信息包括下述至少一种:
    信道状态信息参考信号资源指示CRI、同步信号块资源指示SSBRI、SRI。
  11. 如权利要求1所述的方法,其中,所述多个上行波束信息与所述上行信道的相关参数具有的所述关联关系的确定方式包括下述至少一种:
    由协议规定;
    通过网络侧设备配置;
    通过所述终端设备确定。
  12. 如权利要求1所述的方法,其中,所述关联关系包括下述至少一种:
    a、所述多个上行波束信息与不同上行信道相关联;
    b、所述多个上行波束信息与同一个上行信道中的不同传输块TB相关联;
    c、所述多个上行波束信息与同一个上行信道对应的不同层或不同天线端口相关联;
    d、所述多个上行波束信息与同一个上行信道在不同时间传输的部分相关联;
    e、所述多个上行波束信息与不同物理资源块组PRB bundle相关联;
    f、所述多个上行波束信息与同一个PRB bundle中的不同物理资源块PRB相关联;
    g、所述多个上行波束信息与上行信道对应的不同资源分配相关联;
    h、所述多个上行波束信息与上行信道对应的不同调制编码方案MCS相关联;
    i、所述多个上行波束信息与上行信道对应的不同数值配置numerology相关联;
    j、所述多个上行波束信息与上行信道对应的不同载波或不同带宽部分BWP相关联。
    k、所述多个上行波束信息与上行信道的每次重复传输相关联。
  13. 如权利要求12所述的方法,其中,
    所述上行信道为PUSCH时,所述关联关系包括下述至少一种:a、b、c、d、g、h、i、j;
    所述上行信道为PUCCH时,所述关联关系包括下述至少一种:a、c、d、e、f、g、h、i、j、k。
  14. 如权利要求12所述的方法,还包括:
    根据所述关联关系a、b、c、e、f、g、h、i、j、k中的一种或多种,同时使用所述多个上行波束信息发送上行信道。
  15. 如权利要求12所述的方法,还包括:
    根据所述关联关系a、b、c、d、e、f、g、h、i、j、k中的一种或多种,按照预设波束使用顺序使用所述多个上行波束信息发送上行信道。
  16. 如权利要求15所述的方法,还包括:
    确定波束切换点。
  17. 如权利要求16所述的方法,其中,所述确定波束切换点,包括:
    根据网络侧设备配置或协议规定的跳频点,确定所述波束切换点。
  18. 如权利要求16所述的方法,其中,所述确定波束切换点,包括:
    通过网络侧设备配置或协议规定,确定至少一个所述波束切换点。
  19. 如权利要求15所述的方法,其中,所述预设波束使用顺序的确定方式包括下述至少一种:
    通过网络侧设备配置;
    由协议规定;
    通过所述终端设备确定。
  20. 一种用于多波束发送上行信道的方法,应用于网络侧设备,其中,所述方法包括:
    发送配置信息,其中,所述配置信息中包括用于上行信道的多个上行波束信息;所述多个上行波束信息与所述上行信道的相关参数具有关联关系。
  21. 如权利要求20所述的方法,其中,所述发送配置信息,包括:
    发送DCI,其中,所述DCI用于指示所述配置信息。
  22. 如权利要求21所述的方法,其中,所述上行信道为PUSCH,所述DCI中包括至少一个SRI信令域;
    所述DCI指示所述配置信息的方式包括下述至少一种:
    一个SRI信令域指示多个资源指示信息,其中,所述多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
    多个SRI信令域指示多个资源指示信息,其中,所述多个SRI信令域中的每个SRI信令域指示至少一个资源指示信息,所述至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
  23. 如权利要求22所述的方法,其中,在发送所述DCI之前,所述方法还包括:
    发送RRC信令,其中,所述RRC信令用于配置PUSCH的Spatial Relation,或用于配置SRS资源的Spatial Relation。
  24. 如权利要求23所述的方法,其中,所述RRC信令配置PUSCH的Spatial Relation的方式包括下述至少一种:
    所述RRC信令中包括一个PUSCH-Spatial Relation Info,所述PUSCH-Spatial Relation Info中包括多个资源指示信息;
    所述RRC信令中包括多个PUSCH-Spatial Relation Info,所述多个PUSCH-Spatial Relation Info中的每个PUSCH-Spatial Relation Info包括至少一个资源指示信息。
  25. 如权利要求23所述的方法,其中,所述RRC信令配置SRS资源的Spatial Relation的方式包括下述至少一种:
    所述RRC信令为每个SRS资源配置一个SRS-Spatial Relation Info,其中,所述SRS-Spatial Relation Info中包括多个资源指示信息;
    所述RRC信令为每个SRS资源配置多个SRS-Spatial Relation Info,其中,所述多个SRS-Spatial Relation Info中的每个SRS-Spatial Relation Info中包括至少一个资源指示信息。
  26. 如权利要求21所述的方法,其中,所述上行信道为PUCCH,所述DCI中包括至少一个信令域;
    所述DCI指示所述配置信息的方式包括下述至少一种:
    一个信令域指示一个PUCCH-Spatial Relation Info,其中,所述PUCCH-Spatial Relation Info指示多个资源指示信息,所述多个资源指示信息 中的每个资源指示信息指示一个上行波束信息;
    至少一个信令域指示多个PUCCH-Spatial Relation Info,其中,所述多个PUCCH-Spatial Relation Info中的每个PUCCH-Spatial Relation Info指示至少一个资源指示信息,所述至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
  27. 如权利要求20所述的方法,其中,所述上行信道为PUCCH;
    发送配置信息,包括:
    发送高层信令,其中,所述高层信令用于指示所述配置信息;
    所述高层信令包括下述至少一种:RRC信令、MAC CE信令。
  28. 如权利要求27所述的方法,其中,所述高层信令指示所述配置信息的方式包括下述至少一种:
    一个PUCCH-Spatial Relation Info指示多个资源指示信息,其中,所述多个资源指示信息中的每个资源指示信息指示一个上行波束信息;
    多个PUCCH-Spatial Relation Info指示多个资源指示信息,其中,所述多个PUCCH-Spatial Relation-Info中的每个PUCCH-Spatial Relation Info指示至少一个资源指示信息,所述至少一个资源指示信息中的每个资源指示信息指示一个上行波束信息。
  29. 如权利要求22、24、25、26、28中任一项所述的方法,其中,所述资源指示信息包括下述至少一种:
    CRI、SSBRI、SRI。
  30. 如权利要求20所述的方法,其中,所述多个上行波束信息与所述上行信道的相关参数具有的所述关联关系的确定方式包括下述至少一种:
    由协议规定;
    通过所述网络侧设备配置;
    通过终端设备确定。
  31. 如权利要求20所述的方法,其中,所述关联关系包括下述至少一种:
    a、所述多个上行波束信息与不同上行信道相关联;
    b、所述多个上行波束信息与同一个上行信道中的不同TB相关联;
    c、所述多个上行波束信息与同一个上行信道对应的不同层或不同天线端 口相关联;
    d、所述多个上行波束信息与同一个上行信道在不同时间传输的部分相关联;
    e、所述多个上行波束信息与不同PRB bundle相关联;
    f、所述多个上行波束信息与同一个PRB bundle中的不同PRB相关联;
    g、所述多个上行波束信息与上行信道对应的不同资源分配相关联;
    h、所述多个上行波束信息与上行信道对应的不同MCS相关联;
    i、所述多个上行波束信息与上行信道对应的不同numerology相关联;
    j、所述多个上行波束信息与上行信道对应的不同载波或不同BWP相关联。
    k、所述多个上行波束信息与上行信道的每次重复传输相关联。
  32. 如权利要求31所述的方法,其中,
    所述上行信道为PUSCH时,所述关联关系包括下述至少一种:a、b、c、d、g、h、i、j;
    所述上行信道为PUCCH时,所述关联关系包括下述至少一种:a、c、d、e、f、g、h、i、j、k。
  33. 如权利要求31所述的方法,其中,所述方法还包括:
    根据所述关联关系a、b、c、e、f、g、h、i、j、k中的一种或多种,同时使用所述多个上行波束信息接收上行信道。
  34. 如权利要求31所述的方法,还包括:
    根据所述关联关系a、b、c、d、e、f、g、h、i、j、k中的一种或多种,按照预设波束使用顺序使用所述多个上行波束信息接收上行信道。
  35. 如权利要求34所述的方法,还包括:
    确定波束切换点。
  36. 如权利要求35所述的方法,其中,所述确定波束切换点,包括:
    根据所述网络侧设备配置或协议规定的跳频点,确定所述波束切换点。
  37. 如权利要求35所述的方法,其中,所述确定波束切换点,包括:
    通过所述网络侧设备配置或协议规定,确定至少一个所述波束切换点。
  38. 如权利要求34所述的方法,其中,所述预设波束使用顺序的确定方 式包括下述至少一种:
    通过所述网络侧设备配置;
    由协议规定;
    通过终端设备确定。
  39. 一种终端设备,包括:
    接收模块,用于接收配置信息,其中,所述配置信息中包括用于上行信道的多个上行波束信息;所述多个上行波束信息与所述上行信道的相关参数具有关联关系。
  40. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中所述程序被所述处理器执行时实现如权利要求1至19中任一项所述的用于多波束发送上行信道的方法的步骤。
  41. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至19中任一项所述的用于多波束发送上行信道的方法的步骤。
  42. 一种网络侧设备,包括:
    发送模块,用于发送配置信息,其中,所述配置信息中包括用于上行信道的多个上行波束信息;
    所述多个上行波束信息与所述上行信道的相关参数具有关联关系。
  43. 一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中所述程序被所述处理器执行时实现如权利要求20至38中任一项所述的用于多波束发送上行信道的方法的步骤。
  44. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求20至38中任一项所述的用于多波束发送上行信道的方法的步骤。
PCT/CN2019/097222 2018-07-25 2019-07-23 用于多波束发送上行信道的方法、终端设备和网络侧设备 WO2020020128A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19840757.9A EP3829238A4 (en) 2018-07-25 2019-07-23 PROCESS, TERMINAL DEVICE AND NETWORK SIDE DEVICE FOR TRANSMITTING A UPRIGHT LINK CHANNEL THROUGH MULTIPLE BEAMS
JP2021504302A JP7301122B2 (ja) 2018-07-25 2019-07-23 マルチビームによるアップリンクチャネルの送信のための方法、端末装置及びネットワーク側装置
US17/157,527 US11974305B2 (en) 2018-07-25 2021-01-25 Method for transmitting uplink channel via multi-beams, terminal device and network-side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810829855.3A CN110769502B (zh) 2018-07-25 2018-07-25 用于多波束发送上行信道的方法、终端设备和网络侧设备
CN201810829855.3 2018-07-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/157,527 Continuation US11974305B2 (en) 2018-07-25 2021-01-25 Method for transmitting uplink channel via multi-beams, terminal device and network-side device

Publications (1)

Publication Number Publication Date
WO2020020128A1 true WO2020020128A1 (zh) 2020-01-30

Family

ID=69180226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097222 WO2020020128A1 (zh) 2018-07-25 2019-07-23 用于多波束发送上行信道的方法、终端设备和网络侧设备

Country Status (5)

Country Link
US (1) US11974305B2 (zh)
EP (1) EP3829238A4 (zh)
JP (1) JP7301122B2 (zh)
CN (2) CN114828246A (zh)
WO (1) WO2020020128A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113395780A (zh) * 2020-03-13 2021-09-14 大唐移动通信设备有限公司 上行信道传输方法、装置、基站、终端及存储介质
WO2021179113A1 (en) * 2020-03-09 2021-09-16 Qualcomm Incorporated Beam hopping within a single physical uplink control channel resource
WO2021179108A1 (en) * 2020-03-09 2021-09-16 Qualcomm Incorporated Beam hopping for repetitions in a physical uplink control channel resource
WO2021227024A1 (en) * 2020-05-15 2021-11-18 Apple Inc. Control signaling for robust physical uplink shared channel transmission
CN113709873A (zh) * 2020-05-22 2021-11-26 大唐移动通信设备有限公司 物理上行控制信道资源的配置方法及设备
WO2022060534A1 (en) * 2020-09-21 2022-03-24 Qualcomm Incorporated Switching between different configurations of frequency and beam hopping for single-beam and multi-beam pucch
EP4084552A4 (en) * 2020-02-14 2022-12-28 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD, DEVICE AND CHIP, AND READABLE RECORDING MEDIA
EP4149146A4 (en) * 2020-05-08 2023-08-30 Beijing Xiaomi Mobile Software Co., Ltd. METHOD, APPARATUS AND DEVICE FOR UPLINK SENDING, AND STORAGE MEDIA
EP4132158A4 (en) * 2020-03-25 2023-11-01 ZTE Corporation TRANSMISSION METHOD AND APPARATUS, APPARATUS, SYSTEM AND STORAGE MEDIUM

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021168803A1 (en) * 2020-02-28 2021-09-02 Qualcomm Incorporated Srs beam sweeping in multiple transmission reception point scenarios
EP4115680A4 (en) * 2020-03-04 2023-11-22 Qualcomm Incorporated MULTIPLEXING FOR PHYSICAL UPLINK CHANNELS WITH DIFFERENT DIRECTED BEAMS
CN115553029A (zh) * 2020-05-13 2022-12-30 高通股份有限公司 用于多个天线面板传输的多个上行链路配置
CN112423349B (zh) * 2020-10-27 2021-11-05 中国水利水电科学研究院 一种新能源大数据平台数据清洗方法及系统
WO2022254547A1 (ja) * 2021-05-31 2022-12-08 株式会社Nttドコモ 端末、無線通信方法及び基地局
EP4351241A1 (en) * 2021-05-31 2024-04-10 Ntt Docomo, Inc. Terminal, wireless communication method, and base station
CN116636275A (zh) * 2021-11-16 2023-08-22 北京小米移动软件有限公司 随机接入信道重复传输、接收方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039355A2 (en) * 2011-09-15 2013-03-21 Samsung Electronics Co., Ltd. Apparatus and method for beam selecting in beamformed wireless communication system
CN107294575A (zh) * 2017-06-16 2017-10-24 东南大学 大规模mimo波束域安全通信方法
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备
CN108282863A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 一种上行测量信号的指示方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168995B (zh) * 2017-01-05 2022-01-11 Lg电子株式会社 在无线通信系统中发送物理上行链路控制信道的方法及其装置
US10477484B2 (en) * 2017-03-10 2019-11-12 Qualcomm Incorporated Multi-link transmit power control for a plurality of uplink beam pairs
CN107453795B (zh) * 2017-08-21 2020-06-30 东南大学 多用户毫米波通信系统的波束分配方法及其装置和系统
US11026233B2 (en) * 2018-06-20 2021-06-01 Apple Inc. Emission and panel aware beam selection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039355A2 (en) * 2011-09-15 2013-03-21 Samsung Electronics Co., Ltd. Apparatus and method for beam selecting in beamformed wireless communication system
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备
CN108282863A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 一种上行测量信号的指示方法及装置
CN107294575A (zh) * 2017-06-16 2017-10-24 东南大学 大规模mimo波束域安全通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3829238A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4084552A4 (en) * 2020-02-14 2022-12-28 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD, DEVICE AND CHIP, AND READABLE RECORDING MEDIA
WO2021179113A1 (en) * 2020-03-09 2021-09-16 Qualcomm Incorporated Beam hopping within a single physical uplink control channel resource
WO2021179108A1 (en) * 2020-03-09 2021-09-16 Qualcomm Incorporated Beam hopping for repetitions in a physical uplink control channel resource
EP4118904A4 (en) * 2020-03-09 2023-11-29 Qualcomm Incorporated BEAM JUMPING ALLOWING REPETITIONS IN A RESOURCE OF A PHYSICAL UPLINK CONTROL CHANNEL
CN113395780A (zh) * 2020-03-13 2021-09-14 大唐移动通信设备有限公司 上行信道传输方法、装置、基站、终端及存储介质
WO2021179725A1 (zh) * 2020-03-13 2021-09-16 大唐移动通信设备有限公司 上行信道传输方法、装置、基站、终端及存储介质
CN113395780B (zh) * 2020-03-13 2023-09-12 大唐移动通信设备有限公司 上行信道传输方法、装置、基站、终端及存储介质
EP4132158A4 (en) * 2020-03-25 2023-11-01 ZTE Corporation TRANSMISSION METHOD AND APPARATUS, APPARATUS, SYSTEM AND STORAGE MEDIUM
EP4149146A4 (en) * 2020-05-08 2023-08-30 Beijing Xiaomi Mobile Software Co., Ltd. METHOD, APPARATUS AND DEVICE FOR UPLINK SENDING, AND STORAGE MEDIA
WO2021227024A1 (en) * 2020-05-15 2021-11-18 Apple Inc. Control signaling for robust physical uplink shared channel transmission
CN113709873A (zh) * 2020-05-22 2021-11-26 大唐移动通信设备有限公司 物理上行控制信道资源的配置方法及设备
CN113709873B (zh) * 2020-05-22 2024-05-03 大唐移动通信设备有限公司 物理上行控制信道资源的配置方法及设备
US11601159B2 (en) 2020-09-21 2023-03-07 Qualcomm Incorporated Switching between different configurations of frequency and beam hopping for single-beam and multi-beam PUCCH
WO2022060534A1 (en) * 2020-09-21 2022-03-24 Qualcomm Incorporated Switching between different configurations of frequency and beam hopping for single-beam and multi-beam pucch

Also Published As

Publication number Publication date
CN110769502A (zh) 2020-02-07
JP2021532662A (ja) 2021-11-25
EP3829238A4 (en) 2021-09-29
JP7301122B2 (ja) 2023-06-30
CN110769502B (zh) 2022-03-18
EP3829238A1 (en) 2021-06-02
US11974305B2 (en) 2024-04-30
CN114828246A (zh) 2022-07-29
US20210144722A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
WO2020020128A1 (zh) 用于多波束发送上行信道的方法、终端设备和网络侧设备
WO2020035069A1 (zh) 一种上行传输指示的方法、终端、基站及计算机存储介质
CN110138531B (zh) 混合自动重传请求应答的传输方法及其装置
US11950245B2 (en) Method and device for cross carrier scheduling physical downlink shared channel
WO2021204208A1 (zh) 信道状态信息csi报告的确定方法和通信设备
US11985679B2 (en) Wireless communication method and device
US11140704B2 (en) Method, apparatus and system for uplink information transmission
WO2019095808A1 (zh) 非周期信道状态信息的传输方法、终端设备及网路设备
WO2020168577A1 (zh) 传输上行反馈信息的方法、终端设备和网络设备
CN113747588B (zh) 信息传输方法及装置
WO2019028771A1 (zh) 传输数据的方法和终端设备
EP3800945B1 (en) Power allocation method and related device
WO2020015545A1 (zh) 用于波束失败恢复的方法、终端设备和网络侧设备
WO2019029287A1 (zh) Pucch传输方法、用户设备和装置
WO2021013088A1 (zh) 传输方式确定、信息配置方法和设备
WO2020125409A1 (zh) 一种时隙调度的方法、设备及介质
WO2019129253A1 (zh) 一种通信方法及装置
EP4152852A1 (en) Method for determining feedback information transmission location and device
WO2021197473A1 (zh) 一种信号传输方法和设备
WO2021159841A1 (zh) 一种控制信息传输方法及装置
KR102506828B1 (ko) 데이터 전송 방법 및 기기
CN110445588B (zh) 同步信号块传输方法、网络侧设备和终端设备
WO2023045709A1 (zh) 动态数据传输方法、装置及存储介质
WO2022061733A1 (zh) 无线通信方法和设备
WO2024093917A1 (zh) 时域信息的指示方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019840757

Country of ref document: EP

Effective date: 20210225