WO2020015545A1 - 用于波束失败恢复的方法、终端设备和网络侧设备 - Google Patents

用于波束失败恢复的方法、终端设备和网络侧设备 Download PDF

Info

Publication number
WO2020015545A1
WO2020015545A1 PCT/CN2019/095020 CN2019095020W WO2020015545A1 WO 2020015545 A1 WO2020015545 A1 WO 2020015545A1 CN 2019095020 W CN2019095020 W CN 2019095020W WO 2020015545 A1 WO2020015545 A1 WO 2020015545A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreset
bfr
bwp
cell
bfrq
Prior art date
Application number
PCT/CN2019/095020
Other languages
English (en)
French (fr)
Inventor
杨宇
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to SG11202100413XA priority Critical patent/SG11202100413XA/en
Priority to JP2021502418A priority patent/JP7222066B2/ja
Priority to EP19837923.2A priority patent/EP3826358A4/en
Priority to KR1020217003951A priority patent/KR102552623B1/ko
Publication of WO2020015545A1 publication Critical patent/WO2020015545A1/zh
Priority to US17/147,511 priority patent/US11799715B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings
    • H04L41/0816Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method, a terminal device, and a network-side device for recovering from a beam failure.
  • the fifth generation (5G) mobile communication system New Radio introduces large-scale antenna technology, which can better support Multi-User Multiple-Input Multiple-Output (MU-MIMO) ) Antenna technology.
  • MU-MIMO Multi-User Multiple-Input Multiple-Output
  • Antenna technology In order to reduce the equipment cost and complexity of baseband processing caused by large-scale antenna arrays, a digital signal to analog beamforming technique is used to make the transmitted signals and channels more roughly matched.
  • the related technology still lacks a scheme for flexibly configuring a control resource set (Beam Failure Recovery, CORESET-BFR) for beam failure recovery.
  • Beam Failure Recovery CORESET-BFR
  • the purpose of the embodiments of the present disclosure is to provide a method, a terminal device, and a network side device for recovering from a beam failure, so as to solve the problem that the CORESET-BFR cannot be flexibly configured in a multi-carrier system.
  • an embodiment of the present disclosure provides a method for recovering a beam failure, which is applied to a terminal device.
  • the method includes:
  • the configuration information of the CORESET-BFR includes at least one of the following:
  • the cell index of the cell where the CORESET-BFR is located and the BWP index of the BWP where the CORESET-BFR is located.
  • an embodiment of the present disclosure further provides a method for recovering a beam failure, which is applied to a network-side device.
  • the method includes:
  • the configuration information of the CORESET-BFR includes at least one of the following:
  • the cell index of the cell where the CORESET-BFR is located and the BWP index of the BWP where the CORESET-BFR is located.
  • an embodiment of the present disclosure further provides a terminal device, including:
  • a receiving module configured to receive high-level signaling, where the high-level signaling includes configuration information of CORESET-BFR configured for the terminal device;
  • the configuration information of the CORESET-BFR includes at least one of the following:
  • the cell index of the cell where the CORESET-BFR is located and the BWP index of the BWP where the CORESET-BFR is located.
  • an embodiment of the present disclosure further provides a terminal device.
  • the terminal device includes a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the computer program is When the processor executes, the steps of implementing the method for beam failure recovery according to the first aspect are performed.
  • an embodiment of the present disclosure further provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the computer program implements the method described in the first aspect. Steps in the method of beam failure recovery.
  • an embodiment of the present disclosure further provides a network-side device, including:
  • a sending module configured to send high-level signaling, where the high-level signaling includes configuration information of CORESET-BFR configured for a terminal device;
  • the configuration information of the CORESET-BFR includes at least one of the following:
  • the cell index of the cell where the CORESET-BFR is located and the BWP index of the BWP where the CORESET-BFR is located.
  • an embodiment of the present disclosure further provides a terminal device.
  • the terminal device includes a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the computer program is When the processor executes, the steps of implementing the method for beam failure recovery according to the second aspect are performed.
  • an embodiment of the present disclosure further provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the computer program implements the method described in the second aspect. Steps in the method of beam failure recovery.
  • the cell index of the cell where the CORESET-BFR is located and / or the BWP index of the BWP where the CORESET-BFR is located are added to the configuration information of the CORESET-BFR, so that in a multi-carrier system, high-layer signaling Flexible configuration of CORESET-BFR.
  • FIG. 1 is a schematic diagram of a network architecture according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for recovering a beam failure according to an embodiment of the present disclosure
  • FIG. 3 is another schematic flowchart of a method for recovering a beam failure according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a network-side device according to an embodiment of the present disclosure.
  • FIG. 6 is another schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 7 is another schematic structural diagram of a network-side device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a network architecture according to an embodiment of the present disclosure.
  • the user terminal 11 may be a terminal equipment (User Equipment, UE), for example, may be a mobile phone, a tablet computer (Tablet Personal Computer), and a laptop computer (Laptop Computer), personal digital assistant (PDA), mobile Internet device (MID) or wearable device (Wearable Device) and other terminal-side devices, it should be noted that in the embodiment of the present disclosure and The specific type of the user terminal 11 is not limited.
  • the above base station 12 may be a base station of 5G and later versions (for example, gNB, 5G, NR, and NB), or a base station in another communication system, or referred to as a Node B. It should be noted that in the embodiment of the present disclosure, only 5G The base station is taken as an example, but the specific type of the base station 12 is not limited.
  • FIG. 2 is a schematic flowchart of a method for recovering a beam failure according to an embodiment of the present disclosure. The method is applied to a terminal device, and the method may be as follows.
  • Step 210 Receive high-level signaling, where the high-level signaling includes configuration information of CORESET-BFR configured for the terminal device; the configuration information of CORESET-BFR includes at least one of the following: cell index and CORESET of the cell where the CORESET-BFR is located -BWP index of the Bandwidth Part (BWP) where the BFR is located.
  • the configuration information of CORESET-BFR includes at least one of the following: cell index and CORESET of the cell where the CORESET-BFR is located -BWP index of the Bandwidth Part (BWP) where the BFR is located.
  • the high-level signaling includes at least one of the following: radio resource control (RRC) signaling, and media access control layer control unit (MAC, CE) signaling.
  • RRC radio resource control
  • MAC media access control layer control unit
  • the network-side device adds the cell index of the cell where the CORESET-BFR is located and / or the BWP index of the BWP where the CORESET-BFR is located in the configuration information of the CORESET-BFR configured for the terminal device, and then sends the CORESET to the terminal device through high-level signaling.
  • -BFR configuration information enabling flexible configuration of CORESET-BFR for terminal equipment.
  • the cell or BWP in which the terminal device currently resides may or may not be the same as the cell or BWP in which the CORESET-BFR configured by the network device for the terminal device is located.
  • the current cell of the terminal device is the first cell
  • the network-side device configures the CORESET-BFR configuration information for the terminal device through high-level signaling on the first cell.
  • the cell index of the cell where the BFR is located, which indicates that the cell where the CORESET-BFR is located is the second cell.
  • the BWP where the terminal device is currently located is the first BWP
  • the network-side device configures the CORESET-BFR configuration information for the terminal device through high-level signaling on the first BWP.
  • the configuration information of the CORESET-BFR includes CORESET -The BWP index of the BWP where the BFR is located, which indicates that the BWP where the CORESET-BFR is located is the second BWP.
  • Beam Failure Event a beam failure event
  • BFRQ Beam Failure Recovery Request
  • the beam failure recovery request response information (Response) is received.
  • network-side equipment in addition to configuring CORESET-BFR for terminal equipment, network-side equipment also configures beam failure detection reference signals (BFD) for terminal equipment, enabling terminal equipment to perform beam failure detection based on BFD RS.
  • BFD beam failure detection reference signals
  • the terminal device measures the BFD RS at the physical layer and determines whether a beam failure event occurs based on the measurement results. If it is determined according to the measurement result that a beam failure event occurs in the first cell or the first BWP where the terminal device is located, the terminal device sends a BFRQ to the network-side device.
  • the manner in which the terminal device sends the BFRQ to the network-side device may include at least two of the following.
  • sending the BFRQ includes:
  • the BFRQ is transmitted using a target channel resource corresponding to the target beam reference signal.
  • the network-side equipment in addition to configuring CORESET-BFR and BFD RS for terminal equipment, the network-side equipment also configures candidate beam reference signals (Candidate Beam Reference Signal) for terminal equipment. After determining the occurrence of a beam failure event, the terminal equipment can One of the beam reference signals is selected as a target beam reference signal for beam failure recovery.
  • candidate beam reference signals Candidate Beam Reference Signal
  • the candidate beam reference signal may be a channel state information reference signal (Channel-Information Reference Signal, CSI-RS), may be a synchronization signal block (Synchronization Signal Block, SSB), or may be other reference signals, which are not specifically limited here. .
  • CSI-RS Channel-Information Reference Signal
  • SSB Synchronization Signal Block
  • the network-side device configures a corresponding target channel resource for the candidate beam reference signal.
  • the terminal device determines that a beam failure event has occurred in the first cell or the first BWP, and measures the candidate beam reference signal at the physical layer, and determines a target beam reference for beam failure recovery from the candidate beam reference signal according to the measurement result. After the signal, the target channel resource corresponding to the target beam reference signal is used to send a BFRQ to the network-side device.
  • sending the BFRQ includes:
  • the BFRQ is sent using a pre-configured target channel resource, where the BFRQ includes identification information of a target beam reference signal.
  • the network-side device pre-configures a target channel resource for the terminal device to send BFRQ.
  • the terminal device determines that a beam failure event has occurred in the first cell or the first BWP, and measures the candidate beam reference signal at the physical layer, and determines a target beam reference for beam failure recovery from the candidate beam reference signal according to the measurement result.
  • the BFRQ is sent to the network-side device using the pre-configured target channel resource, and the BFRQ carries identification information of the target beam reference signal.
  • the target channel resource is a semi-continuous physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the terminal device sends a BFRQ to the network-side device using a semi-persistent PUSCH corresponding to the target beam reference signal; or the terminal device sends a BFRQ to the network-side device using a pre-configured semi-persistent PUSCH, where the BFRQ includes the target beam reference signal. Identification information.
  • the target channel resource includes at least two of the following: semi-persistent PUSCH, Physical Random Access Channel (PRACH), Physical Uplink Control Channel (PUCCH), which sends BFRQ
  • the mode may include at least one of the following.
  • the sending priority of each of the at least two target channel resources may be pre-configured by the network-side device, or pre-agreed by the network-side device and the terminal device.
  • the first preset condition may be determined according to actual conditions, and is not specifically limited herein.
  • the first preset condition is that the sending priority is the highest.
  • the target channel resources include three types: semi-persistent PUSCH, PRACH, and PUCCH.
  • the three target channel resources in order of transmission priority are: semi-persistent PUSCH, PUCCH, and PRACH.
  • the terminal device sends the BFRQ to the network-side device using the target channel resource (semi-persistent PUSCH) with the highest sending priority.
  • Each of the at least two kinds of target channel resources has its own corresponding transmission time (periodic or aperiodic), and the terminal device uses the target channel resources whose transmission times meet the second preset condition among the at least two kinds of target channel resources.
  • the second preset condition may be determined according to actual conditions, and is not limited herein.
  • the second preset condition is that the sending time is closest to the current time.
  • the target channel resources include three types: semi-persistent PUSCH, PRACH, and PUCCH.
  • the sending times of the three target channel resources in order from near to far from the current time are: PUCCH, PRACH, and semi-persistent PUSCH.
  • the terminal device sends a BFRQ to the network-side device using a target channel resource (PUCCH) whose sending time is closest to the current time.
  • PUCCH target channel resource
  • the third preset condition may be determined according to actual conditions, and is not limited herein.
  • the third preset condition is that the size of the load is greater than the size of the BFRQ.
  • the target channel resources include three types: semi-persistent PUSCH, PRACH, and PUCCH, and among the three target channel resources, the size of the payload is greater than the size of BFRQ is PRACH. Then the terminal device sends a BFRQ to the network-side device using PRACH.
  • the target channel resource includes three types: semi-persistent PUSCH, PRACH, and PUCCH, and the terminal device sends the BFRQ to the network-side device using the semi-persistent PUSCH, PRACH, and PUCCH, respectively.
  • the sending time of each target channel resource sending BFRQ may be the same or different, which is not specifically limited here.
  • the target channel resource includes three types: semi-persistent PUSCH, PRACH, and PUCCH.
  • the terminal device uses the above methods c and a to jointly send BFRQ:
  • the terminal device selects three types of target channel resources whose target channel resources have a load size that satisfies the third preset condition (the load size is greater than the BFRQ size).
  • the target channel resources with a load size greater than the BFRQ size include two types: half Continuous PUSCH and PRACH;
  • the terminal device selects to use the target channel resources in the semi-persistent PUSCH and PRACH whose transmission priority satisfies the first preset condition (the sending priority is the highest) to send BFRQ to the network-side device, that is, the terminal device uses the semi-persistent with the higher sending priority.
  • the PUSCH sends a BFRQ to the network-side device.
  • the configuration information of the CORESET-BFR further includes: a transmission configuration indication state (TCI state) of the CORESET-BFR.
  • TCI state transmission configuration indication state
  • the network side device configures the COCI-BFR TCI state in at least two ways.
  • the network-side device configures a TCI state for CORESET-BFR through RRC signaling.
  • the configuration information of the CORESET-BFR includes a TCI state, that is, the TCI state is the TCI state of the CORESET-BFR.
  • the network-side device configures multiple TCI states through RRC signaling, and then instructs the terminal device with one TCI state among the multiple TCI states as the TCI state of CORESET-BFR through MAC and CE signaling.
  • the CORESET-BFR configuration information includes multiple TCI states, and the network-side device indicates the multiple TCIs to the terminal device through MAC CE signaling.
  • a TCI state of the state is used as the TCI state of the CORESET-BFR.
  • the BWP The second BWP indicated by the index is a different BWP.
  • the terminal device After the terminal device sends a BFRQ to the network-side device, it needs to switch to the second cell or the second BWP within a preset time period (4 timeslot slots), and determine the CORESET-BFR. QCL information, so that the beam failure recovery request response information can be received on the second cell or the second BWP according to the QCL information of the CORESET-BFR.
  • the manner in which the terminal device determines the QCL information of the CORESET-BFR may include at least two of the following.
  • determining the QCL information of the CORESET-BFR includes:
  • the QCL information of CORESET-BFR is determined.
  • the terminal device determines the CORESET-BFR according to the TCI state of the CORESET-BFR QCL information.
  • the terminal device may determine that the CSI-RS resource and CORESET-BFR are QCL.
  • the COCL-BFR QCL information is determined according to the TCI state of the CORESET-BFR configured by the network-side device for the terminal device, so that the network-side device and the terminal device have the same understanding of the QCL information of the CORESET-BFR, which can ensure the QCL information of the CORESET-BFR Accuracy.
  • determining the QCL information of the CORESET-BFR includes:
  • the QCL information of the target beam reference signal is determined as the QCL information of the CORESET-BFR.
  • the terminal device determines the QCL information of the target beam reference signal as the QCL information of the CORESET-BFR.
  • the terminal device may determine the QCL information of the SSB resource as the QCL information of CORESET-BFR, that is, the SSB resource and CORESET-BFR are QCL.
  • receiving the beam failure recovery request response information on the second cell or the second BWP according to the QCL information of the CORESET-BFR includes:
  • the second cell or the second BWP According to the QCL information of the CORESET-BFR, within the target time window, receive the beam failure recovery request carried by the dedicated physical downlink control channel (Physical Downlink Control Channel, PDCCH) on the CORESET-BFR Response message.
  • PDCCH Physical Downlink Control Channel
  • the terminal device After the terminal device switches to the second cell or the second BWP where the CORESET-BFR is located, it monitors within the target time window and receives the beam failure recovery request response information sent by the network-side device on the dedicated PDCCH on the CORESET-BFR.
  • the beam failure recovery request response information may include signaling that explicitly or implicitly instructs the terminal device to switch to the target beam corresponding to the target beam reference signal, may include signaling that instructs the terminal device to restart beam search, and may include other information. Order, not specifically limited here.
  • the terminal device receives the beam failure recovery request response information during the monitoring target time window, the beam failure recovery is successful.
  • the method further includes:
  • the terminal device can switch to the first cell or the first BWP where the beam failure event occurs outside the target time window, and monitor the first CORESET configured on the cell, or listening to the CORESET configured on the first BWP.
  • the terminal device can monitor the CORESET configured on the first cell, or monitor the CORESET configured on the first BWP, normal communication can be achieved, then the terminal device does not need to perform the beam failure recovery operation, or it still switches before the next target time window arrives Go to the second cell or the second BWP and monitor within the target time window; if the terminal device still cannot achieve normal communication when monitoring the CORESET configured on the first cell, or monitoring the CORESET configured on the first BWP, then Before the next target time window arrives, the terminal device switches to the second cell or the second BWP, and monitors within the target time window.
  • the CORESET-BFR is flexibly configured for signaling.
  • FIG. 3 is a schematic flowchart of a method for recovering a beam failure according to an embodiment of the present disclosure. The method is applied to a network-side device, and the method may be as follows.
  • Step 310 Send high-level signaling, where the high-level signaling includes configuration information of CORESET-BFR configured for the terminal device; the configuration information of CORESET-BFR includes at least one of the following: cell index and CORESET of the cell where the CORESET-BFR is located -BWP index of the BWP where the BFR is located.
  • the high-level signaling includes at least one of the following: RRC signaling, MAC signaling, and CE signaling.
  • the network-side device adds the cell index of the cell where the CORESET-BFR is located and / or the BWP index of the BWP where the CORESET-BFR is located in the configuration information of the CORESET-BFR configured for the terminal device, and then sends the CORESET to the terminal device through high-level signaling.
  • -BFR configuration information enabling flexible configuration of CORESET-BFR for terminal equipment.
  • the cell or BWP in which the terminal device currently resides may or may not be the same as the cell or BWP in which the CORESET-BFR configured by the network device for the terminal device is located.
  • the method further includes:
  • the beam failure recovery request response information is sent according to the QCL information of the CORESET-BFR.
  • network-side equipment in addition to configuring CORESET-BFR for terminal equipment, network-side equipment also configures BFD RS for terminal equipment, so that terminal equipment can perform beam failure detection based on BFD RS.
  • the terminal device measures the BFD RS at the physical layer and determines whether a beam failure event occurs based on the measurement results. If it is determined according to the measurement result that a beam failure event occurs in the first cell or the first BWP where the terminal device is located, the terminal device sends a BFRQ to the network-side device, so that the network-side device can receive the BFRQ sent by the terminal device.
  • the manner in which the network-side device receives the BFRQ sent by the terminal device may include at least two of the following.
  • receiving a BFRQ sent by a terminal device includes:
  • the BFRQ is received using a target channel resource, where the target channel resource is a channel resource corresponding to a target beam reference signal.
  • network-side equipment in addition to configuring CORESET-BFR and BFD RS for terminal equipment, network-side equipment also configures candidate beam reference signals for terminal equipment. After determining that a beam failure event occurs, the terminal equipment can select one of the candidate beam reference signals. As a target beam reference signal for beam failure recovery.
  • the candidate beam reference signal may be a CSI-RS, an SSB, or other reference signals, which is not specifically limited herein.
  • the network-side device configures a corresponding target channel resource for the candidate beam reference signal.
  • the terminal device After the terminal device determines that a beam failure event has occurred in the first cell or the first BWP, and determines a target beam reference signal from the candidate beam reference signals, it uses the target channel resource corresponding to the target beam reference signal to send a BFRQ to the network-side device. .
  • the network-side device After the network-side device receives the BFRQ on the target channel resource, since the target beam reference signal corresponds to the target channel resource, the network-side device can determine the target beam reference signal selected by the terminal device.
  • receiving a BFRQ sent by a terminal device includes:
  • the BFRQ is received using a pre-configured target channel resource, where the BFRQ includes identification information of a target beam reference signal.
  • the network-side device pre-configures a target channel resource for the terminal device to send BFRQ.
  • the terminal device After the terminal device determines that a beam failure event has occurred on the first cell or the first BWP, and determines a target beam reference signal from the candidate beam reference signals, it sends a BFRQ to the network-side device using a pre-configured target channel resource, which is carried in the BFRQ. Identification information of the target beam reference signal.
  • the network-side device may determine the target beam reference signal selected by the terminal device according to the identification information of the target beam reference signal carried in the BFRQ.
  • the target channel resource is a semi-persistent PUSCH.
  • the network-side device receives the BFRQ sent by the terminal device using a semi-persistent PUSCH corresponding to the target beam reference signal; or the network-side device receives the BFRQ sent by the terminal device using a pre-configured semi-persistent PUSCH, where the BFRQ includes the target beam reference Signal identification information.
  • the target channel resource includes at least two of the following: semi-persistent PUSCH, PRACH, PUCCH, and the manner of receiving BFRQ may include at least one of the following.
  • the receiving priority of each of the at least two target channel resources may be pre-configured by the network-side device, or pre-agreed by the network-side device and the terminal device.
  • the first preset condition may be determined according to actual conditions, and is not specifically limited herein.
  • the first preset condition is that the receiving priority is the highest.
  • the target channel resources include three types: semi-persistent PUSCH, PRACH, and PUCCH.
  • the three target channel resources in order of receiving priority from high to low are: semi-persistent PUSCH, PUCCH, and PRACH.
  • the network-side device uses the target channel resource (semi-persistent PUSCH) with the highest receiving priority to receive the BFRQ sent by the terminal device.
  • Each of the at least two kinds of target channel resources has its own corresponding receiving time (periodic or non-periodic), and the network-side device uses the target channel whose receiving times meet the second preset condition among the at least two kinds of target channel resources.
  • the resource receives the BFRQ sent by the terminal device.
  • the second preset condition may be determined according to actual conditions, and is not limited herein.
  • the second preset condition is that the receiving time is closest to the current time.
  • the target channel resources include three types: semi-persistent PUSCH, PRACH, and PUCCH.
  • the receiving times of the three target channel resources in order from near to far from the current time are: PUCCH, PRACH, and semi-persistent PUSCH.
  • the network-side device receives the BFRQ sent by the terminal device using a target channel resource (PUCCH) whose receiving time is closest to the current time.
  • PUCCH target channel resource
  • the third preset condition may be determined according to actual conditions, and is not limited herein.
  • the third preset condition is that the size of the load is greater than the size of the BFRQ.
  • the target channel resources include three types: semi-persistent PUSCH, PRACH, and PUCCH, and among the three target channel resources, the size of the payload is greater than the size of BFRQ is PRACH. Then, the network-side device receives the BFRQ sent by the terminal device using the PRACH.
  • the target channel resource includes three types: semi-persistent PUSCH, PRACH, and PUCCH, and the network-side device uses the semi-persistent PUSCH, PRACH, and PUCCH to receive BFRQs sent by the terminal.
  • the receiving time for receiving BFRQ for each type of target channel resource may be the same or different, which is not specifically limited here.
  • the target channel resources include three types: semi-persistent PUSCH, PRACH, and PUCCH.
  • the network-side device uses the above methods c and a to receive BFRQ:
  • the network-side device selects three types of target channel resources that have a load size that satisfies the third preset condition (the load size is greater than the BFRQ size).
  • the target channel resources with a load size greater than the BFRQ size include two types: Semi-persistent PUSCH and PRACH;
  • the network-side device chooses to receive the BFRQ sent by the terminal device by using the target channel resources in the semi-persistent PUSCH and PRACH that meet the first preset condition (highest reception priority), that is, the network-side device uses the higher-receiving priority.
  • the semi-persistent PUSCH receives the BFRQ sent by the terminal equipment.
  • the configuration information of the CORESET-BFR further includes: a TCI state of the CORESET-BFR.
  • the network side device configures the COCI-BFR TCI state in at least two ways.
  • the network-side device configures a TCI state for CORESET-BFR through RRC signaling.
  • the configuration information of the CORESET-BFR includes a TCI state, that is, the TCI state is the TCI state of the CORESET-BFR.
  • the network-side device configures multiple TCI states through RRC signaling, and then instructs the terminal device with one TCI state among the multiple TCI states as the TCI state of CORESET-BFR through MAC and CE signaling.
  • the CORESET-BFR configuration information includes multiple TCI states, and the network-side device indicates the multiple TCIs to the terminal device through MAC CE signaling.
  • a TCI state of the state is used as the TCI state of the CORESET-BFR.
  • the network-side device determines the QCL information of the CORESET-BFR configured for the terminal device, and then in the second cell or the second BWP where the CORESET-BFR is located, according to the CORESET -BCL QCL information, sending beam failure recovery request response information.
  • the manner in which the network-side device determines the QCL information of the CORESET-BFR may include at least two of the following.
  • determining the QCL information of the CORESET-BFR includes:
  • the QCL information of CORESET-BFR is determined.
  • the configuration information of the CORESET-BFR configured by the network-side device for the terminal device includes the TCI state of CORESET-BFR
  • the TCI state of the CORESET-BFR is used to indicate the QCL information of the CORESET-BFR
  • the network-side device according to the CORESET-BFR The TCI state of the BFR determines the QCL information of the CORESET-BFR.
  • the network-side device may determine that the CSI-RS resource and CORESET-BFR are QCL.
  • the COCL-BFR QCL information is determined according to the TCI state of the CORESET-BFR configured by the network-side device for the terminal device, so that the network-side device and the terminal device have the same understanding of the QCL information of the CORESET-BFR, which can ensure the QCL information of the CORESET-BFR Accuracy.
  • determining the QCL information of the CORESET-BFR includes:
  • the QCL information of the target beam reference signal is determined as the QCL information of the CORESET-BFR.
  • the network-side device determines the QCL information of the target beam reference signal as the QCL information of the CORESET-BFR.
  • the target beam reference signal is a candidate beam reference signal corresponding to a target channel resource receiving the BFRQ, or the target beam reference signal is a candidate beam reference signal corresponding to the identification information of the target beam reference signal included in the received BFRQ. .
  • the network-side device may determine the QCL information of the SSB resource as the QCL information of CORESET-BFR, that is, the SSB resource and CORESET-BFR are QCL.
  • sending the beam failure recovery request response information according to the QCL information of the CORESET-BFR on the second cell corresponding to the cell index or the second BWP corresponding to the BWP index includes:
  • the dedicated PDCCH on the CORESET-BFR is used to send beam failure recovery request response information.
  • the network-side device After the network-side device receives the BFRQ sent by the terminal device and determines the CORESET-BFR configured for the terminal device and the QCL information of the CORESET-BFR, the network-side device is in the second cell or the second BWP where the CORESET-BFR is located.
  • the dedicated PDCCH on the CORESET-BFR is used to send beam failure recovery request response information within a time window.
  • the beam failure recovery request response information may include signaling that explicitly or implicitly instructs the terminal device to switch to the target beam corresponding to the target beam reference signal, may include signaling that instructs the terminal device to restart beam search, and may include other information. Order, not specifically limited here.
  • FIG. 4 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device 400 shown in FIG. 4 includes:
  • the receiving module 401 is configured to receive high-level signaling, where the high-level signaling includes configuration information of CORESET-BFR configured for the terminal device 400;
  • CORESET-BFR configuration information includes at least one of the following:
  • the cell index of the cell where CORESET-BFR is located and the BWP index of the BWP where CORESET-BFR is located.
  • the terminal device 400 further includes:
  • a sending module configured to send a BFRQ if the terminal device 400 determines that a beam failure event occurs on the first cell or the first BWP;
  • a handover module for switching to a second cell corresponding to the cell index or a second BWP corresponding to the BWP index, wherein the first cell and the second cell are different cells, and the first BWP and the second BWP are different BWPs;
  • the receiving module 401 is further configured to receive a beam failure recovery request response message on the second cell or the second BWP according to the QCL information of the CORESET-BFR.
  • the sending module is further configured to:
  • the BFRQ is transmitted using a target channel resource corresponding to the target beam reference signal.
  • the sending module is further configured to:
  • the BFRQ is sent using a pre-configured target channel resource, where the BFRQ includes identification information of a target beam reference signal.
  • the target channel resource is a semi-persistent PUSCH.
  • the target channel resource includes at least two of the following: semi-persistent PUSCH, PRACH, PUCCH, and the sending module is further configured to:
  • the BFRQ is sent separately using each of the at least two kinds of target channel resources.
  • the configuration information of the CORESET-BFR further includes: a TCI state of the CORESET-BFR.
  • the determining module is further configured to:
  • the QCL information of CORESET-BFR is determined.
  • the determining module is further configured to:
  • the QCL information of the target beam reference signal is determined as the QCL information of the CORESET-BFR.
  • the receiving module 401 is further configured to:
  • the beam failure recovery request response information carried by the dedicated PDCCH on the CORESET-BFR is received.
  • the terminal device 400 further includes:
  • a switching module further configured to switch to the first cell or the first BWP where the beam failure event occurs outside the target time window;
  • the monitoring module is configured to monitor a CORESET configured on the first cell or a CORESET configured on the first BWP.
  • the high-level signaling includes at least one of the following:
  • the terminal device 400 provided in the embodiment of the present disclosure can implement the processes implemented by the terminal device in the method embodiment in FIG. 2. To avoid repetition, details are not described herein again.
  • FIG. 5 is a schematic structural diagram of a network-side device according to an embodiment of the present disclosure.
  • the network-side device 500 shown in FIG. 5 includes:
  • a sending module 501 is configured to send high-level signaling, where the high-level signaling includes configuration information of a CORESET-BFR configured for a terminal device;
  • CORESET-BFR configuration information includes at least one of the following:
  • the cell index of the cell where CORESET-BFR is located and the BWP index of the BWP where CORESET-BFR is located.
  • the network-side device 500 further includes:
  • the sending module 501 is further configured to send the beam failure recovery request response information on the second cell corresponding to the cell index or the second BWP corresponding to the BWP index according to the QCL information of the CORESET-BFR.
  • the receiving module is further configured to:
  • the BFRQ is received using a target channel resource, where the target channel resource is a channel resource corresponding to a target beam reference signal.
  • the receiving module is further configured to:
  • the BFRQ is received using a pre-configured target channel resource, where the BFRQ includes identification information of a target beam reference signal.
  • the target channel resource is a semi-persistent PUSCH.
  • the target channel resource includes at least two of the following: semi-persistent PUSCH, PRACH, PUCCH, and the receiving module is further configured to:
  • the BFRQ is received separately using each of the at least two target channel resources.
  • the configuration information of the CORESET-BFR further includes: a TCI state of the CORESET-BFR.
  • the determining module is further configured to:
  • the QCL information of CORESET-BFR is determined.
  • the determining module is further configured to:
  • the QCL information of the target beam reference signal is determined as the QCL information of the CORESET-BFR.
  • the sending module 501 is further configured to:
  • the dedicated PDCCH on the CORESET-BFR is used to send beam failure recovery request response information.
  • the high-level signaling includes at least one of the following:
  • the network-side device 500 provided in the embodiment of the present disclosure can implement the processes implemented by the network-side device in the method embodiment in FIG. 3. To avoid repetition, details are not described herein again.
  • FIG. 6 is another schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device 600 shown in FIG. 6 includes: at least one processor 601, a memory 602, at least one network interface 604, and a user interface 603.
  • the various components in the terminal device 600 are coupled together by a bus system 605. It can be understood that the bus system 605 is used to implement connection and communication between these components.
  • the bus system 605 includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are marked as the bus system 605 in FIG. 6.
  • the user interface 603 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball, a touch panel, or a touch screen).
  • a pointing device for example, a mouse, a trackball, a touch panel, or a touch screen.
  • the memory 602 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDRSDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synch link DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory 602 stores the following elements, executable modules or data structures, or a subset of them, or their extended set: an operating system 6021 and an application program 6022.
  • the operating system 6021 includes various system programs, such as a framework layer, a core library layer, and a driver layer, for implementing various basic services and processing hardware-based tasks.
  • the application program 6022 includes various application programs, such as a media player (Player), a browser (Browser), and the like, and is used to implement various application services.
  • a program for implementing the method of the embodiment of the present disclosure may be included in the application program 6022.
  • the terminal device 600 further includes: a computer program stored on the memory 602 and executable on the processor 601.
  • a computer program stored on the memory 602 and executable on the processor 601.
  • the configuration information of the CORESET-BFR includes at least one of the following: the cell index of the cell where the CORESET-BFR is located, and the location of the CORESET-BFR BWP BWP index.
  • the method disclosed in the foregoing embodiment of the present disclosure may be applied to the processor 601, or implemented by the processor 601.
  • the processor 601 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by using an integrated logic circuit of hardware in the processor 601 or an instruction in the form of software.
  • the above processor 601 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as being executed by a hardware decoding processor, or may be executed and completed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature computer-readable storage medium, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the computer-readable storage medium is located in the memory 602, and the processor 601 reads the information in the memory 602 and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 601, each step of the method embodiment in FIG. 2 is implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application-specific integrated circuits (ASICs), digital signal processors (DSP), digital signal processing devices (DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processor, controller, microcontroller, microprocessor, other for performing functions described in this disclosure Electronic unit or combination thereof.
  • ASICs application-specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller microcontroller
  • microprocessor other for performing functions described in this disclosure Electronic unit or combination thereof.
  • the technology described in the embodiments of the present disclosure may be implemented by modules (such as procedures, functions, and the like) that perform the functions described in the embodiments of the present disclosure.
  • Software codes may be stored in a memory and executed by a processor.
  • the memory may be implemented in the processor or external to the processor.
  • the terminal device 600 can implement the processes implemented by the terminal device in the foregoing method embodiment in FIG. 2. To avoid repetition, details are not described herein again.
  • the embodiment of the present disclosure also provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • FIG. 7 is another schematic structural diagram of a network-side device according to an embodiment of the present disclosure.
  • the network-side device 700 shown in FIG. 7 can implement the details of the method embodiment of FIG. 3 and achieve the same effect.
  • the network-side device 700 includes: a processor 701, a transceiver 702, a memory 703, a user interface 704, and a bus interface, where:
  • the network-side device 700 further includes: a computer program stored in the memory 703 and executable on the processor 701. When the computer program is executed by the processor 701, the following steps are implemented:
  • the high-level signaling includes the configuration information of the CORESET-BFR configured for the terminal device;
  • the configuration information of the CORESET-BFR includes at least one of the following: the cell index of the cell where the CORESET-BFR is located, where the CORESET-BFR is located BWP BWP index.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 701 and various circuits of the memory represented by the memory 703 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described further herein.
  • the bus interface provides an interface.
  • the transceiver 702 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the user interface 704 may also be an interface capable of externally connecting and connecting the required devices.
  • the connected devices include but are not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 can store data used by the processor 701 when performing operations.
  • the network-side device 700 can implement the processes implemented by the network-side device in the foregoing method embodiment in FIG. 3. To avoid repetition, details are not described herein again.
  • the embodiment of the present disclosure also provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种用于波束失败恢复的方法、终端设备和网络侧设备,该方法包括:接收高层信令,其中,高层信令中包括为终端设备配置的CORESET-BFR的配置信息;CORESET-BFR的配置信息包括下述至少一种:CORESET-BFR所在小区的cell index、CORESET-BFR所在BWP的BWP index。

Description

用于波束失败恢复的方法、终端设备和网络侧设备
相关申请的交叉引用
本申请主张在2018年7月18日在中国提交的中国专利申请号No.201810789689.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信领域,尤其涉及一种用于波束失败恢复的方法、终端设备和网络侧设备。
背景技术
第五代(5G)移动通信系统新空口(New Radio,NR)引入了大规模天线技术,可以更好地支持多用户-多输入多输出(Multi-User Multiple-Input Multiple-Output,MU-MIMO)天线技术。为了减低大规模天线阵列导致的设备成本以及基带处理复杂度,通过数模混合波束赋形技术,使发送信号与信道实现较为粗略的匹配。
但是,在基于数模混合波束赋形技术的多载波系统中,相关技术中仍缺少灵活配置用于波束失败恢复的控制资源集(Control Resource Set Beam Failure Recovery,CORESET-BFR)的方案。
发明内容
本公开实施例的目的是提供一种用于波束失败恢复的方法、终端设备和网络侧设备,以解决在多载波系统中无法灵活配置CORESET-BFR的问题。
第一方面,本公开实施例提供了一种用于波束失败恢复的方法,应用于终端设备,所述方法包括:
接收高层信令,其中,所述高层信令中包括为所述终端设备配置的CORESET-BFR的配置信息;
所述CORESET-BFR的配置信息包括下述至少一种:
所述CORESET-BFR所在小区的cell index、所述CORESET-BFR所在 BWP的BWP index。
第二方面,本公开实施例还提供了一种用于波束失败恢复的方法,应用于网络侧设备,所述方法包括:
发送高层信令,其中,所述高层信令中包括为终端设备配置的CORESET-BFR的配置信息;
所述CORESET-BFR的配置信息包括下述至少一种:
所述CORESET-BFR所在小区的cell index、所述CORESET-BFR所在BWP的BWP index。
第三方面,本公开实施例还提供了一种终端设备,包括:
接收模块,用于接收高层信令,其中,所述高层信令中包括为所述终端设备配置的CORESET-BFR的配置信息;
所述CORESET-BFR的配置信息包括下述至少一种:
所述CORESET-BFR所在小区的cell index、所述CORESET-BFR所在BWP的BWP index。
第四方面,本公开实施例还提供了一种终端设备,所述终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的用于波束失败恢复的方法的步骤。
第五方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的用于波束失败恢复的方法的步骤。
第六方面,本公开实施例还提供了一种网络侧设备,包括:
发送模块,用于发送高层信令,其中,所述高层信令中包括为终端设备配置的CORESET-BFR的配置信息;
所述CORESET-BFR的配置信息包括下述至少一种:
所述CORESET-BFR所在小区的cell index、所述CORESET-BFR所在BWP的BWP index。
第七方面,本公开实施例还提供了一种终端设备,所述终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序, 所述计算机程序被所述处理器执行时实现如第二方面所述的用于波束失败恢复的方法的步骤。
第八方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第二方面所述的用于波束失败恢复的方法的步骤。
在本公开实施例中,在CORESET-BFR的配置信息中增加CORESET-BFR所在小区的cell index和/或CORESET-BFR所在BWP的BWP index,使得在多载波系统中,可以有效实现通过高层信令灵活配置CORESET-BFR。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例提供的网络架构示意图;
图2为本公开实施例提供的用于波束失败恢复的方法的流程示意图;
图3为本公开实施例提供的用于波束失败恢复的方法的另一流程示意图;
图4为本公开实施例提供的终端设备的结构示意图;
图5为本公开实施例提供的网络侧设备的结构示意图;
图6为本公开实施例提供的终端设备的另一结构示意图;
图7为本公开实施例提供的网络侧设备的另一结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。所属领域技术人员可以理解,和/或表示所连接对象的至少其中之一。
参见图1,图1为本公开实施例提供的一种网络架构示意图。如图1所示,包括用户终端11和基站12,其中,用户终端11可以是终端设备(User  Equipment,UE),例如:可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定用户终端11的具体类型。上述基站12可以是5G及以后版本的基站(例如:gNB、5G NR NB),或者其他通信系统中的基站,或者称之为节点B,需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定基站12的具体类型。
需要说明的是,上述用户终端11和基站12的具体功能将通过以下多个实施例进行具体描述。
图2为本公开实施例提供的用于波束失败恢复的方法的流程示意图。所述方法应用于终端设备,所述方法可以如下所示。
步骤210,接收高层信令,其中,高层信令中包括为终端设备配置的CORESET-BFR的配置信息;CORESET-BFR的配置信息包括下述至少一种:CORESET-BFR所在小区的cell index、CORESET-BFR所在带宽部分(Bandwidth Part,BWP)的BWP index。
其中,高层信令包括下述至少一种:无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制层控制单元(Medium Access Control Control Element,MAC CE)信令。
网络侧设备在为终端设备配置的CORESET-BFR的配置信息中增加该CORESET-BFR所在小区的cell index和/或该CORESET-BFR所在BWP的BWP index,进而通过高层信令向终端设备发送该CORESET-BFR的配置信息,实现为终端设备灵活配置CORESET-BFR。
其中,终端设备当前所在小区或所在BWP,与网络侧设备为终端设备配置的CORESET-BFR所在小区或所在BWP可能相同,也可能不相同,这里不做具体限定。
在一实施例中,终端设备当前所在小区为第一小区,网络侧设备在第一小区上通过高层信令为终端设备配置CORESET-BFR的配置信息,该CORESET-BFR的配置信息中包括CORESET-BFR所在小区的cell index,该cell index指示了该CORESET-BFR所在小区为第二小区。
在另一实施例中,终端设备当前所在BWP为第一BWP,网络侧设备在第一BWP上通过高层信令为终端设备配置CORESET-BFR的配置信息,该CORESET-BFR的配置信息中包括CORESET-BFR所在BWP的BWP index,该BWP index指示了该CORESET-BFR所在BWP为第二BWP。
本公开实施例中,还包括:
若终端设备确定在第一小区或第一BWP上发生波束失败事件(Beam Failure Event),发送波束失败恢复请求(Beam Failure Recovery Request,BFRQ);
切换到与cell index对应的第二小区或与BWP index对应的第二BWP,其中,第一小区和第二小区为不同小区,第一BWP和第二BWP为不同BWP;
确定CORESET-BFR的准共址(Quasi-colocation,QCL)信息;
在第二小区或第二BWP上,根据CORESET-BFR的QCL信息,接收波束失败恢复请求响应信息(Response)。
实际应用中,网络侧设备除了为终端设备配置CORESET-BFR之外,还为终端设备配置波束失败检测参考信号(Beam Failure Detection Reference Signal,BFD RS),使得终端设备根据BFD RS进行波束失败检测。
终端设备在物理层对BFD RS进行测量,并根据测量结果来判断是否发生波束失败事件。若根据测量结果确定终端设备所在第一小区或第一BWP上发生波束失败事件,则终端设备向网络侧设备发送BFRQ。
终端设备向网络侧设备发送BFRQ的方式可以包括下述至少两种。
第一种:
本公开实施例中,若终端设备确定在第一小区或第一BWP上发生波束失败事件,发送BFRQ,包括:
确定用于波束失败恢复的目标波束参考信号;
使用与目标波束参考信号对应的目标信道资源发送BFRQ。
实际应用中,网络侧设备除了为终端设备配置CORESET-BFR、BFD RS之外,还为终端设备配置候选波束参考信号(Candidate Beam Reference Signal),终端设备在确定发生波束失败事件之后,可以从候选波束参考信号中选择一个作为用于波束失败恢复的目标波束参考信号。
其中,候选波束参考信号可以是信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),可以是同步信号块(Synchronization Signal Block,SSB),还可以是其他参考信号,这里不做具体限定。
网络侧设备为候选波束参考信号配置了对应的目标信道资源。
终端设备确定在第一小区或第一BWP上发生了波束失败事件,并在物理层对候选波束参考信号进行测量,以及根据测量结果从候选波束参考信号中确定用于波束失败恢复的目标波束参考信号之后,使用与该目标波束参考信号对应的目标信道资源向网络侧设备发送BFRQ。
第二种:
本公开实施例中,若终端设备确定在第一小区或第一BWP上发生波束失败事件,发送BFRQ,包括:
确定用于波束失败恢复的目标波束参考信号;
使用预先配置的目标信道资源发送BFRQ,其中,BFRQ中包括目标波束参考信号的标识信息。
网络侧设备为终端设备预先配置了用于发送BFRQ的目标信道资源。
终端设备确定在第一小区或第一BWP上发生了波束失败事件,并在物理层对候选波束参考信号进行测量,以及根据测量结果从候选波束参考信号中确定用于波束失败恢复的目标波束参考信号之后,使用预先配置的目标信道资源向网络侧设备发送BFRQ,该BFRQ中携带目标波束参考信号的标识信息。
本公开实施例中,目标信道资源为半持续物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
例如,终端设备使用与目标波束参考信号对应的半持续PUSCH向网络侧设备发送BFRQ;或,终端设备使用预先配置的半持续PUSCH向网络侧设备发送BFRQ,其中,BFRQ中包括目标波束参考信号的标识信息。
本公开实施例中,目标信道资源包括下述至少两种:半持续PUSCH、物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH),发送BFRQ的方式可以包括下述至少一种。
a、使用至少两种目标信道资源中发送优先级满足第一预设条件的目标信道资源发送BFRQ。
其中,至少两种目标信道资源中每种信道资源的发送优先级可以是网络侧设备预先配置的,或网络侧设备与终端设备预先约定的。
第一预设条件可以根据实际情况确定,这里不做具体限定。
可选地,第一预设条件为发送优先级最高。
例如,目标信道资源包括三种:半持续PUSCH、PRACH、PUCCH,三种目标信道资源按照发送优先级从高到低依次为:半持续PUSCH、PUCCH、PRACH。则终端设备使用发送优先级最高的目标信道资源(半持续PUSCH)向网络侧设备发送BFRQ。
b、使用至少两种目标信道资源中发送时刻满足第二预设条件的目标信道资源发送BFRQ。
至少两种目标信道资源中每种目标信道资源都有自身对应的发送时刻(周期性或非周期性),终端设备使用至少两种目标信道资源中发送时刻满足第二预设条件的目标信道资源向网络侧设备发送BFRQ。
第二预设条件可以根据实际情况确定,这里不做限定。
可选地,第二预设条件为发送时刻距离当前时刻最近。
例如,目标信道资源包括三种:半持续PUSCH、PRACH、PUCCH,三种目标信道资源的发送时刻按照距离当前时刻从近到远依次为:PUCCH、PRACH、半持续PUSCH。则终端设备使用发送时刻距离当前时刻最近的目标信道资源(PUCCH)向网络侧设备发送BFRQ。
c、使用至少两种目标信道资源中载荷大小满足第三预设条件的目标信道资源发送BFRQ。
第三预设条件可以根据实际情况确定,这里不做限定。
可选地,第三预设条件为载荷大小大于BFRQ的大小。
例如,目标信道资源包括三种:半持续PUSCH、PRACH、PUCCH,三种目标信道资源中载荷大小大于BFRQ的大小的为PRACH。则终端设备使用PRACH向网络侧设备发送BFRQ。
d、使用至少两种目标信道资源中的每种目标信道资源分别发送BFRQ。
例如,目标信道资源包括三种:半持续PUSCH、PRACH、PUCCH,则终端设备分别使用半持续PUSCH、PRACH、PUCCH向网络侧设备发送BFRQ。
其中,每种目标信道资源发送BFRQ的发送时刻可以相同,也可以不相同,这里不做具体限定。
上述a-d四种方式可以单独使用,也可以多种方式联合使用,这里不做具体限定。
例如,目标信道资源包括三种:半持续PUSCH、PRACH、PUCCH,终端设备联合使用上述方式c和a发送BFRQ:
首先,终端设备选择三种目标信道资源中载荷大小满足第三预设条件(载荷大小大于BFRQ的大小)的目标信道资源,此时,载荷大小大于BFRQ的大小的目标信道资源包括两种:半持续PUSCH和PRACH;
然后,终端设备选择使用半持续PUSCH和PRACH中发送优先级满足第一预设条件(发送优先级最高)的目标信道资源向网络侧设备发送BFRQ,即终端设备使用发送优先级较高的半持续PUSCH向网络侧设备发送BFRQ。
本公开实施例中,CORESET-BFR的配置信息还包括:CORESET-BFR的传输配置指示状态(Transmission Configuration Indication state,TCI state)。
网络侧设备配置CORESET-BFR的TCI state的方式可以包括下述至少两种。
第一种:
网络侧设备通过RRC信令为CORESET-BFR配置一个TCI state。
网络侧设备通过RRC信令为终端设备配置CORESET-BFR的配置信息时,该CORESET-BFR的配置信息中包括一个TCI state,即该TCI state为CORESET-BFR的TCI state。
第二种:
网络侧设备通过RRC信令配置多个TCI state,进而通过MAC CE信令向终端设备指示多个TCI state中的一个TCI state作为CORESET-BFR的TCI state。
网络侧设备通过RRC信令为终端设备配置CORESET-BFR的配置信息时,该CORESET-BFR的配置信息中包括多个TCI state,进而网络侧设备通过 MAC CE信令向终端设备指示该多个TCI state的一个TCI state作为CORESET-BFR的TCI state。
若终端设备发生波束失败事件的第一小区与CORESET-BFR的配置信息中cell index指示的第二小区为不同小区,或终端设备发生波束失败事件的第一BWP与CORESET-BFR的配置信息中BWP index指示的第二BWP为不同BWP,则终端设备向网络侧设备发送BFRQ之后,需要在预设时长(4个时隙slot)内切换到第二小区或第二BWP,并确定CORESET-BFR的QCL信息,以使得可以在第二小区或第二BWP上,根据CORESET-BFR的QCL信息,接收波束失败恢复请求响应信息。
终端设备确定CORESET-BFR的QCL信息的方式可以包括下述至少两种。
第一种:
本公开实施例中,确定CORESET-BFR的QCL信息,包括:
根据CORESET-BFR的TCI state,确定CORESET-BFR的QCL信息。
若CORESET-BFR的配置信息中包括CORESET-BFR的TCI state,由于该CORESET-BFR的TCI state用于指示CORESET-BFR的QCL信息,则终端设备根据该CORESET-BFR的TCI state,确定CORESET-BFR的QCL信息。
例如,CORESET-BFR的TCI state指示的源参考信号(Source Reference Signal,Source RS)为某个CSI-RS resource,则终端设备可以确定该CSI-RS resource与CORESET-BFR是QCL的。
根据网络侧设备为终端设备配置的CORESET-BFR的TCI state来确定CORESET-BFR的QCL信息,使得网络侧设备和终端设备对CORESET-BFR的QCL信息的理解一致,可以确保CORESET-BFR的QCL信息的准确性。
第二种:
本公开实施例中,确定CORESET-BFR的QCL信息,包括:
将目标波束参考信号的QCL信息确定为CORESET-BFR的QCL信息。
无论CORESET-BFR的配置信息中是否包括CORESET-BFR的TCI state,终端设备都将目标波束参考信号的QCL信息确定为CORESET-BFR的QCL信息。
例如,目标波束参考信号为某个SSB resource,则终端设备可以将该SSB  resource的QCL信息确定为CORESET-BFR的QCL信息,即该SSB resource与CORESET-BFR是QCL的。
本公开实施例中,在第二小区或第二BWP上,根据CORESET-BFR的QCL信息,接收波束失败恢复请求响应信息,包括:
在第二小区或第二BWP上,根据CORESET-BFR的QCL信息,在目标时间窗口之内,接收CORESET-BFR上的专用物理下行控制信道(Physical Downlink Control Channel,PDCCH)携带的波束失败恢复请求响应信息。
终端设备切换到CORESET-BFR所在的第二小区或第二BWP之后,在目标时间窗口内进行监听,以及接收网络侧设备在CORESET-BFR上的专用PDCCH上发送的波束失败恢复请求响应信息。
其中,波束失败恢复请求响应信息可以包括显式或隐式指示终端设备切换到目标波束参考信号对应的目标波束的信令,可以包括指示终端设备重新启动波束搜索的信令,还可以包括其他信令,这里不做具体限定。
若终端设备在监听目标时间窗口的过程中接收到波束失败恢复请求响应信息,则波束失败恢复成功。
本公开实施例中,所述方法还包括:
在目标时间窗口之外,切换到发生波束失败事件的第一小区或第一BWP;
监听第一小区上配置的CORESET,或监听第一BWP上配置的CORESET。
若终端设备在监听目标时间窗口的过程中未接收到波束失败恢复请求响应信息,则终端设备可以在目标时间窗口之外,切换到发生波束失败事件的第一小区或第一BWP,监听第一小区上配置的CORESET,或监听第一BWP上配置的CORESET。
若终端设备在监听第一小区上配置的CORESET,或监听第一BWP上配置的CORESET时,可以实现正常通信,则终端设备无需再进行波束失败恢复操作,或者仍在下一个目标时间窗口到来之前切换到第二小区或第二BWP上,并在目标时间窗口内进行监听;若终端设备在监听第一小区上配置的CORESET,或监听第一BWP上配置的CORESET时,仍然无法实现正常通信,则终端设备在下一个目标时间窗口到来之前,切换到第二小区或第二BWP上,并在目标时间窗口内进行监听。
本公开实施例记载的技术方案,在CORESET-BFR的配置信息中增加CORESET-BFR所在小区的cell index和/或CORESET-BFR所在BWP的BWP index,使得在多载波系统中,可以有效实现通过高层信令灵活配置CORESET-BFR。
图3为本公开实施例提供的用于波束失败恢复的方法的流程示意图。所述方法应用于网络侧设备,所述方法可以如下所示。
步骤310,发送高层信令,其中,高层信令中包括为终端设备配置的CORESET-BFR的配置信息;CORESET-BFR的配置信息包括下述至少一种:CORESET-BFR所在小区的cell index、CORESET-BFR所在BWP的BWP index。
其中,高层信令包括下述至少一种:RRC信令、MAC CE信令。
网络侧设备在为终端设备配置的CORESET-BFR的配置信息中增加该CORESET-BFR所在小区的cell index和/或该CORESET-BFR所在BWP的BWP index,进而通过高层信令向终端设备发送该CORESET-BFR的配置信息,实现为终端设备灵活配置CORESET-BFR。
其中,终端设备当前所在小区或所在BWP,与网络侧设备为终端设备配置的CORESET-BFR所在小区或所在BWP可能相同,也可能不相同,这里不做具体限定。
本公开实施例中,所述方法还包括:
接收终端设备发送的BFRQ;
确定CORESET-BFR的QCL信息;
在与cell index对应的第二小区或与BWP index对应的第二BWP上,根据CORESET-BFR的QCL信息,发送波束失败恢复请求响应信息。
实际应用中,网络侧设备除了为终端设备配置CORESET-BFR之外,还为终端设备配置BFD RS,使得终端设备根据BFD RS进行波束失败检测。
终端设备在物理层对BFD RS进行测量,并根据测量结果来判断是否发生波束失败事件。若根据测量结果确定终端设备所在第一小区或第一BWP上发生波束失败事件,则终端设备向网络侧设备发送BFRQ,使得网络侧设备可以接收到终端设备发送的BFRQ。
网络侧设备接收终端设备发送的BFRQ的方式可以包括下述至少两种。
第一种:
本公开实施例中,接收终端设备发送的BFRQ,包括:
使用目标信道资源接收BFRQ,其中,目标信道资源是与目标波束参考信号对应的信道资源。
实际应用中,网络侧设备除了为终端设备配置CORESET-BFR、BFD RS之外,还为终端设备配置候选波束参考信号,终端设备在确定发生波束失败事件之后,可以从候选波束参考信号中选择一个作为用于波束失败恢复的目标波束参考信号。
其中,候选波束参考信号可以是CSI-RS,可以是SSB,还可以是其他参考信号,这里不做具体限定。
网络侧设备为候选波束参考信号配置了对应的目标信道资源。
终端设备确定在第一小区或第一BWP上发生了波束失败事件,并从候选波束参考信号中确定目标波束参考信号之后,使用与该目标波束参考信号对应的目标信道资源向网络侧设备发送BFRQ。
网络侧设备在目标信道资源上接收到BFRQ之后,由于目标波束参考信号与目标信道资源是对应的,因此,网络侧设备可以确定终端设备选择的目标波束参考信号。
第二种:
本公开实施例中,接收终端设备发送的BFRQ,包括:
使用预先配置的目标信道资源接收BFRQ,其中,BFRQ中包括目标波束参考信号的标识信息。
网络侧设备为终端设备预先配置了用于发送BFRQ的目标信道资源。
终端设备确定在第一小区或第一BWP上发生了波束失败事件,并从候选波束参考信号中确定目标波束参考信号之后,使用预先配置的目标信道资源向网络侧设备发送BFRQ,该BFRQ中携带目标波束参考信号的标识信息。
网络侧设备在目标信道资源上接收到BFRQ之后,可以根据BFRQ中携带目标波束参考信号的标识信息,确定终端设备选择的目标波束参考信号。
本公开实施例中,目标信道资源为半持续PUSCH。
例如,网络侧设备使用与目标波束参考信号对应的半持续PUSCH接收 终端设备发送的BFRQ;或,网络侧设备使用预先配置的半持续PUSCH接收终端设备发送的BFRQ,其中,BFRQ中包括目标波束参考信号的标识信息。
本公开实施例中,目标信道资源包括下述至少两种:半持续PUSCH、PRACH、PUCCH,接收BFRQ的方式可以包括下述至少一种。
a、使用至少两种目标信道资源中接收优先级满足第一预设条件的目标信道资源接收BFRQ。
其中,至少两种目标信道资源中每种信道资源的接收优先级可以是网络侧设备预先配置的,或网络侧设备与终端设备预先约定的。
第一预设条件可以根据实际情况确定,这里不做具体限定。
可选地,第一预设条件为接收优先级最高。
例如,目标信道资源包括三种:半持续PUSCH、PRACH、PUCCH,三种目标信道资源按照接收优先级从高到低依次为:半持续PUSCH、PUCCH、PRACH。则网络侧设备使用接收优先级最高的目标信道资源(半持续PUSCH)接收终端设备发送的BFRQ。
b、使用至少两种目标信道资源中接收时刻满足第二预设条件的目标信道资源接收BFRQ。
至少两种目标信道资源中每种目标信道资源都有自身对应的接收时刻(周期性或非周期性),网络侧设备使用至少两种目标信道资源中接收时刻满足第二预设条件的目标信道资源接收终端设备发送的BFRQ。
第二预设条件可以根据实际情况确定,这里不做限定。
可选地,第二预设条件为接收时刻距离当前时刻最近。
例如,目标信道资源包括三种:半持续PUSCH、PRACH、PUCCH,三种目标信道资源的接收时刻按照距离当前时刻从近到远依次为:PUCCH、PRACH、半持续PUSCH。则网络侧设备使用接收时刻距离当前时刻最近的目标信道资源(PUCCH)接收终端设备发送的BFRQ。
c、使用至少两种目标信道资源中载荷大小满足第三预设条件的目标信道资源接收BFRQ。
第三预设条件可以根据实际情况确定,这里不做限定。
可选地,第三预设条件为载荷大小大于BFRQ的大小。
例如,目标信道资源包括三种:半持续PUSCH、PRACH、PUCCH,三种目标信道资源中载荷大小大于BFRQ的大小的为PRACH。则网络侧设备使用PRACH接收终端设备发送的BFRQ。
d、使用至少两种目标信道资源中的每种目标信道资源分别接收BFRQ。
例如,目标信道资源包括三种:半持续PUSCH、PRACH、PUCCH,则网络侧设备分别使用半持续PUSCH、PRACH、PUCCH接收终端备发送的BFRQ。
其中,每种目标信道资源接收BFRQ的接收时刻可以相同,也可以不相同,这里不做具体限定。
上述a-d四种方式可以单独使用,也可以多种方式联合使用,这里不做具体限定。
例如,目标信道资源包括三种:半持续PUSCH、PRACH、PUCCH,网络侧设备联合使用上述方式c和a接收BFRQ:
首先,网络侧设备选择三种目标信道资源中载荷大小满足第三预设条件(载荷大小大于BFRQ的大小)的目标信道资源,此时,载荷大小大于BFRQ的大小的目标信道资源包括两种:半持续PUSCH和PRACH;
然后,网络侧设备选择使用半持续PUSCH和PRACH中接收优先级满足第一预设条件(接收优先级最高)的目标信道资源接收终端设备发送的BFRQ,即网络侧设备使用接收优先级较高的半持续PUSCH接收终端设备设备发送的BFRQ。
本公开实施例中,CORESET-BFR的配置信息还包括:CORESET-BFR的TCI state。
网络侧设备配置CORESET-BFR的TCI state的方式可以包括下述至少两种。
第一种:
网络侧设备通过RRC信令为CORESET-BFR配置一个TCI state。
网络侧设备通过RRC信令为终端设备配置CORESET-BFR的配置信息时,该CORESET-BFR的配置信息中包括一个TCI state,即该TCI state为CORESET-BFR的TCI state。
第二种:
网络侧设备通过RRC信令配置多个TCI state,进而通过MAC CE信令向终端设备指示多个TCI state中的一个TCI state作为CORESET-BFR的TCI state。
网络侧设备通过RRC信令为终端设备配置CORESET-BFR的配置信息时,该CORESET-BFR的配置信息中包括多个TCI state,进而网络侧设备通过MAC CE信令向终端设备指示该多个TCI state的一个TCI state作为CORESET-BFR的TCI state。
若网络侧设备接收到终端设备发送的BFRQ,则网络侧设备确定为该终端设备配置的CORESET-BFR的QCL信息,进而在该CORESET-BFR所在的第二小区或第二BWP上,根据该CORESET-BFR的QCL信息,发送波束失败恢复请求响应信息。
网络侧设备确定CORESET-BFR的QCL信息的方式可以包括下述至少两种。
第一种:
本公开实施例中,确定CORESET-BFR的QCL信息,包括:
根据CORESET-BFR的TCI state,确定CORESET-BFR的QCL信息。
若网络侧设备为终端设备配置的CORESET-BFR的配置信息中包括CORESET-BFR的TCI state,由于该CORESET-BFR的TCI state用于指示CORESET-BFR的QCL信息,则网络侧设备根据该CORESET-BFR的TCI state,确定CORESET-BFR的QCL信息。
例如,网络侧设备为CORESET-BFR配置的TCI state指示的Source RS为某个CSI-RS resource,则网络侧设备可以确定该CSI-RS resource与CORESET-BFR是QCL的。
根据网络侧设备为终端设备配置的CORESET-BFR的TCI state来确定CORESET-BFR的QCL信息,使得网络侧设备和终端设备对CORESET-BFR的QCL信息的理解一致,可以确保CORESET-BFR的QCL信息的准确性。
第二种:
本公开实施例中,确定CORESET-BFR的QCL信息,包括:
将目标波束参考信号的QCL信息确定为CORESET-BFR的QCL信息。
无论CORESET-BFR的配置信息中是否包括CORESET-BFR的TCI state,网络侧设备都将目标波束参考信号的QCL信息确定为CORESET-BFR的QCL信息。其中,该目标波束参考信号是与接收BFRQ的目标信道资源对应的候选波束参考信号,或该目标波束参考信号是与接收到的BFRQ中包括的目标波束参考信号的标识信息对应的候选波束参考信号。
例如,目标波束参考信号为某个SSB resource,则网络侧设备可以将该SSB resource的QCL信息确定为CORESET-BFR的QCL信息,即该SSB resource与CORESET-BFR是QCL的。
本公开实施例中,在与cell index对应的第二小区或与BWP index对应的第二BWP上,根据CORESET-BFR的QCL信息,发送波束失败恢复请求响应信息,包括:
在第二小区或第二BWP上,根据CORESET-BFR的QCL信息,在目标时间窗口之内,使用CORESET-BFR上的专用PDCCH,发送波束失败恢复请求响应信息。
网络侧设备接收到终端设备发送的BFRQ,并确定为该终端设备配置的CORESET-BFR,以及该CORESET-BFR的QCL信息之后,网络侧设备在该CORESET-BFR所在的第二小区或第二BWP上,使用该CORESET-BFR上的专用PDCCH,在时间窗口内发送波束失败恢复请求响应信息。
其中,波束失败恢复请求响应信息可以包括显式或隐式指示终端设备切换到目标波束参考信号对应的目标波束的信令,可以包括指示终端设备重新启动波束搜索的信令,还可以包括其他信令,这里不做具体限定。
本公开实施例记载的技术方案,在CORESET-BFR的配置信息中增加CORESET-BFR所在小区的cell index和/或CORESET-BFR所在BWP的BWP index,使得在多载波系统中,可以有效实现通过高层信令灵活配置CORESET-BFR。
图4为本公开实施例提供的终端设备的结构示意图。图4所示的终端设备400包括:
接收模块401,用于接收高层信令,其中,高层信令中包括为终端设备 400配置的CORESET-BFR的配置信息;
CORESET-BFR的配置信息包括下述至少一种:
CORESET-BFR所在小区的cell index、CORESET-BFR所在BWP的BWP index。
可选地,终端设备400还包括:
发送模块,用于若终端设备400确定在第一小区或第一BWP上发生波束失败事件,发送BFRQ;
切换模块,用于切换到与cell index对应的第二小区或与BWP index对应的第二BWP,其中,第一小区和第二小区为不同小区,第一BWP和第二BWP为不同BWP;
确定模块,用于确定CORESET-BFR的QCL信息;
接收模块401,还用于在第二小区或第二BWP上,根据CORESET-BFR的QCL信息,接收波束失败恢复请求响应信息。
可选地,发送模块进一步用于:
确定用于波束失败恢复的目标波束参考信号;
使用与目标波束参考信号对应的目标信道资源发送BFRQ。
可选地,发送模块进一步用于:
确定用于波束失败恢复的目标波束参考信号;
使用预先配置的目标信道资源发送BFRQ,其中,BFRQ中包括目标波束参考信号的标识信息。
可选地,目标信道资源为半持续PUSCH。
可选地,目标信道资源包括下述至少两种:半持续PUSCH、PRACH、PUCCH,发送模块进一步用于:
使用至少两种目标信道资源中发送优先级满足第一预设条件的目标信道资源发送BFRQ;
使用至少两种目标信道资源中发送时刻满足第二预设条件的目标信道资源发送BFRQ;
使用至少两种目标信道资源中载荷大小满足第三预设条件的目标信道资源发送BFRQ;
使用至少两种目标信道资源中的每种目标信道资源分别发送BFRQ。
可选地,CORESET-BFR的配置信息还包括:CORESET-BFR的TCI state。
可选地,确定模块进一步用于:
根据CORESET-BFR的TCI state,确定CORESET-BFR的QCL信息。
可选地,确定模块进一步用于:
将目标波束参考信号的QCL信息确定为CORESET-BFR的QCL信息。
可选地,接收模块401进一步用于:
在第二小区或第二BWP上,根据CORESET-BFR的QCL信息,在目标时间窗口之内,接收CORESET-BFR上的专用PDCCH携带的波束失败恢复请求响应信息。
可选地,终端设备400还包括:
切换模块,还用于在目标时间窗口之外,切换到发生波束失败事件的第一小区或第一BWP;
监听模块,用于监听第一小区上配置的CORESET,或监听第一BWP上配置的CORESET。
可选地,高层信令包括下述至少一种:
RRC信令、MAC CE信令。
本公开实施例提供的终端设备400能够实现图2的方法实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
图5为本公开实施例提供的网络侧设备的结构示意图。图5所示的网络侧设备500包括:
发送模块501,用于发送高层信令,其中,高层信令中包括为终端设备配置的CORESET-BFR的配置信息;
CORESET-BFR的配置信息包括下述至少一种:
CORESET-BFR所在小区的cell index、CORESET-BFR所在BWP的BWP index。
可选地,网络侧设备500还包括:
接收模块,用于接收终端设备发送的BFRQ;
确定模块,用于确定CORESET-BFR的QCL信息;
发送模块501,还用于在与cell index对应的第二小区或与BWP index对应的第二BWP上,根据CORESET-BFR的QCL信息,发送波束失败恢复请求响应信息。
可选地,接收模块进一步用于:
使用目标信道资源接收BFRQ,其中,目标信道资源是与目标波束参考信号对应的信道资源。
可选地,接收模块进一步用于:
使用预先配置的目标信道资源接收BFRQ,其中,BFRQ中包括目标波束参考信号的标识信息。
可选地,目标信道资源为半持续PUSCH。
可选地,目标信道资源包括下述至少两种:半持续PUSCH、PRACH、PUCCH,接收模块进一步用于:
使用至少两种目标信道资源中接收优先级满足第一预设条件的目标信道资源接收BFRQ;
使用至少两种目标信道资源中接收时刻满足第二预设条件的目标信道资源接收BFRQ;
使用至少两种目标信道资源中载荷大小满足第三预设条件的目标信道资源接收BFRQ;
使用至少两种目标信道资源中的每种目标信道资源分别接收BFRQ。
可选地,CORESET-BFR的配置信息还包括:CORESET-BFR的TCI state。
可选地,确定模块进一步用于:
根据CORESET-BFR的TCI state,确定CORESET-BFR的QCL信息。
可选地,确定模块进一步用于:
将目标波束参考信号的QCL信息确定为CORESET-BFR的QCL信息。
可选地,发送模块501进一步用于:
在第二小区或第二BWP上,根据CORESET-BFR的QCL信息,在目标时间窗口之内,使用CORESET-BFR上的专用PDCCH,发送波束失败恢复请求响应信息。
可选地,高层信令包括下述至少一种:
RRC信令、MAC CE信令。
本公开实施例提供的网络侧设备500能够实现图3的方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
图6为本公开实施例提供的终端设备的另一结构示意图。图6所示的终端设备600包括:至少一个处理器601、存储器602、至少一个网络接口604和用户接口603。终端设备600中的各个组件通过总线系统605耦合在一起。可理解,总线系统605用于实现这些组件之间的连接通信。总线系统605除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图6中将各种总线都标为总线系统605。
其中,用户接口603可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等)。
可以理解,本公开实施例中的存储器602可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器602旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器602存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统6021和应用程序6022。
其中,操作系统6021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序6022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序6022中。
在本公开实施例中,终端设备600还包括:存储在存储器上602并可在处理器601上运行的计算机程序,计算机程序被处理器601执行时实现如下步骤:
接收高层信令,其中,高层信令中包括为终端设备配置的CORESET-BFR的配置信息;CORESET-BFR的配置信息包括下述至少一种:CORESET-BFR所在小区的cell index、CORESET-BFR所在BWP的BWP index。
上述本公开实施例揭示的方法可以应用于处理器601中,或者由处理器601实现。处理器601可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器601中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器601可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器602,处理器601读取存储器602中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器601执行时实现如图2的方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一 个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
终端设备600能够实现前述图2的方法实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述图2的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
图7为本公开实施例提供的网络侧设备的另一结构示意图。图7所示的网络侧设备700能够实现图3的方法实施例的细节,并达到相同的效果。如图7所示,网络侧设备700包括:处理器701、收发机702、存储器703、用户接口704和总线接口,其中:
在本公开实施例中,网络侧设备700还包括:存储在存储器上703并可在处理器701上运行的计算机程序,计算机程序被处理器701执行时实现如下步骤:
发送高层信令,其中,高层信令中包括为终端设备配置的CORESET-BFR的配置信息;CORESET-BFR的配置信息包括下述至少一种:CORESET-BFR所在小区的cell index、CORESET-BFR所在BWP的BWP index。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其 进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口704还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
网络侧设备700能够实现前述图3的方法实施例中网络侧设备实现的各个过程,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述图3的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求 所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (29)

  1. 一种用于波束失败恢复的方法,应用于终端设备,包括:
    接收高层信令,其中,所述高层信令中包括为所述终端设备配置的用于波束失败恢复的控制资源集CORESET-BFR的配置信息;
    所述CORESET-BFR的配置信息包括下述至少一种:
    所述CORESET-BFR所在小区的小区标识cell index、所述CORESET-BFR所在带宽部分BWP的BWP标识BWP index。
  2. 如权利要求1所述的方法,还包括:
    当所述终端设备确定在第一小区或第一BWP上发生波束失败事件时,发送波束失败恢复请求BFRQ;
    切换到与所述cell index对应的第二小区或与所述BWP index对应的第二BWP,其中,所述第一小区和所述第二小区为不同小区,所述第一BWP和所述第二BWP为不同BWP;
    确定所述CORESET-BFR的准共址QCL信息;
    在所述第二小区或所述第二BWP上,根据所述CORESET-BFR的QCL信息,接收波束失败恢复请求响应信息。
  3. 如权利要求2所述的方法,其中,若所述终端设备确定在第一小区或第一BWP上发生波束失败事件,发送BFRQ,包括:
    确定用于波束失败恢复的目标波束参考信号;
    使用与所述目标波束参考信号对应的目标信道资源发送所述BFRQ。
  4. 如权利要求2所述的方法,其中,若所述终端设备确定在第一小区或第一BWP上发生波束失败事件,发送BFRQ,包括:
    确定用于波束失败恢复的目标波束参考信号;
    使用预先配置的目标信道资源发送所述BFRQ,其中,所述BFRQ中包括所述目标波束参考信号的标识信息。
  5. 如权利要求3或4所述的方法,其中,所述目标信道资源为半持续物理上行共享信道PUSCH。
  6. 如权利要求3或4所述的方法,其中,所述目标信道资源包括下述至 少两种:半持续PUSCH、物理随机接入信道PRACH、物理上行控制信道PUCCH,发送所述BFRQ的方式包括下述至少一种:
    使用至少两种目标信道资源中发送优先级满足第一预设条件的目标信道资源发送所述BFRQ;
    使用所述至少两种目标信道资源中发送时刻满足第二预设条件的目标信道资源发送所述BFRQ;
    使用所述至少两种目标信道资源中载荷大小满足第三预设条件的目标信道资源发送所述BFRQ;
    使用所述至少两种目标信道资源中的每种目标信道资源分别发送所述BFRQ。
  7. 如权利要求2所述的方法,其中,所述CORESET-BFR的配置信息还包括:所述CORESET-BFR的传输配置指示状态TCI state。
  8. 如权利要求7所述的方法,其中,确定所述CORESET-BFR的QCL信息,包括:
    根据所述CORESET-BFR的TCI state,确定所述CORESET-BFR的QCL信息。
  9. 如权利要求3或4所述的方法,其中,确定所述CORESET-BFR的QCL信息,包括:
    将所述目标波束参考信号的QCL信息确定为所述CORESET-BFR的QCL信息。
  10. 如权利要求2所述的方法,其中,在所述第二小区或所述第二BWP上,根据所述CORESET-BFR的QCL信息,接收波束失败恢复请求响应信息,包括:
    在所述第二小区或所述第二BWP上,根据所述CORESET-BFR的QCL信息,在目标时间窗口之内,接收所述CORESET-BFR上的专用物理下行控制信道PDCCH携带的所述波束失败恢复请求响应信息。
  11. 如权利要求10所述的方法,还包括:
    在所述目标时间窗口之外,切换到发生波束失败事件的所述第一小区或所述第一BWP;
    监听所述第一小区上配置的CORESET,或监听所述第一BWP上配置的CORESET。
  12. 如权利要求1所述的方法,其中,所述高层信令包括下述至少一种:
    无线资源控制RRC信令、媒体接入控制层控制单元MAC CE信令。
  13. 一种用于波束失败恢复的方法,应用于网络侧设备,包括:
    发送高层信令,其中,所述高层信令中包括为终端设备配置的CORESET-BFR的配置信息;
    所述CORESET-BFR的配置信息包括下述至少一种:
    所述CORESET-BFR所在小区的cell index、所述CORESET-BFR所在BWP的BWP index。
  14. 如权利要求13所述的方法,还包括:
    接收所述终端设备发送的BFRQ;
    确定所述CORESET-BFR的QCL信息;
    在与所述cell index对应的第二小区或与所述BWP index对应的第二BWP上,根据所述CORESET-BFR的QCL信息,发送波束失败恢复请求响应信息。
  15. 如权利要求14所述的方法,其中,接收所述终端设备发送的BFRQ,包括:
    使用目标信道资源接收所述BFRQ,其中,所述目标信道资源是与目标波束参考信号对应的信道资源。
  16. 如权利要求14所述的方法,其中,接收所述终端设备发送的BFRQ,包括:
    使用预先配置的目标信道资源接收所述BFRQ,其中,所述BFRQ中包括目标波束参考信号的标识信息。
  17. 如权利要求15或16所述的方法,其中,所述目标信道资源为半持续PUSCH。
  18. 如权利要求15或16所述的方法,其中,所述目标信道资源包括下述至少两种:半持续PUSCH、PRACH、PUCCH,接收所述BFRQ的方式包括下述至少一种:
    使用至少两种目标信道资源中接收优先级满足第一预设条件的目标信道资源接收所述BFRQ;
    使用所述至少两种目标信道资源中接收时刻满足第二预设条件的目标信道资源接收所述BFRQ;
    使用所述至少两种目标信道资源中载荷大小满足第三预设条件的目标信道资源接收所述BFRQ;
    使用所述至少两种目标信道资源中的每种目标信道资源分别接收所述BFRQ。
  19. 如权利要求14所述的方法,其中,所述CORESET-BFR的配置信息还包括:所述CORESET-BFR的TCI state。
  20. 如权利要求19所述的方法,其中,确定所述CORESET-BFR的QCL信息,包括:
    根据所述CORESET-BFR的TCI state,确定所述CORESET-BFR的QCL信息。
  21. 如权利要求15或16所述的方法,其中,确定所述CORESET-BFR的QCL信息,包括:
    将所述目标波束参考信号的QCL信息确定为所述CORESET-BFR的QCL信息。
  22. 如权利要求14所述的方法,其中,在与所述cell index对应的第二小区或与所述BWP index对应的第二BWP上,根据所述CORESET-BFR的QCL信息,发送波束失败恢复请求响应信息,包括:
    在所述第二小区或所述第二BWP上,根据所述CORESET-BFR的QCL信息,在目标时间窗口之内,使用所述CORESET-BFR上的专用PDCCH,发送所述波束失败恢复请求响应信息。
  23. 如权利要求13所述的方法,其中,所述高层信令包括下述至少一种:
    RRC信令、MAC CE信令。
  24. 一种终端设备,包括:
    接收模块,用于接收高层信令,其中,所述高层信令中包括为所述终端设备配置的CORESET-BFR的配置信息;
    所述CORESET-BFR的配置信息包括下述至少一种:
    所述CORESET-BFR所在小区的cell index、所述CORESET-BFR所在BWP的BWP index。
  25. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至12中任一项所述的用于波束失败恢复的方法的步骤。
  26. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12中任一项所述的用于波束失败恢复的方法的步骤。
  27. 一种网络侧设备,包括:
    发送模块,用于发送高层信令,其中,所述高层信令中包括为终端设备配置的CORESET-BFR的配置信息;
    所述CORESET-BFR的配置信息包括下述至少一种:
    所述CORESET-BFR所在小区的cell index、所述CORESET-BFR所在BWP的BWP index。
  28. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求13至23中任一项所述的用于波束失败恢复的方法的步骤。
  29. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求13至23中任一项所述的用于波束失败恢复的方法的步骤。
PCT/CN2019/095020 2018-07-18 2019-07-08 用于波束失败恢复的方法、终端设备和网络侧设备 WO2020015545A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11202100413XA SG11202100413XA (en) 2018-07-18 2019-07-08 Beam failure recovery method, terminal device, and network side device
JP2021502418A JP7222066B2 (ja) 2018-07-18 2019-07-08 ビーム障害回復のための方法、端末機器及びネットワーク側機器
EP19837923.2A EP3826358A4 (en) 2018-07-18 2019-07-08 HARNESS FAILURE RECOVERY PROCESS, TERMINAL DEVICE AND NETWORK SIDE DEVICE
KR1020217003951A KR102552623B1 (ko) 2018-07-18 2019-07-08 빔 페일 회복을 위한 방법, 단말 기기 및 네트워크측 기기
US17/147,511 US11799715B2 (en) 2018-07-18 2021-01-13 Beam failure recovery method, terminal device, and network side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810789689.9 2018-07-18
CN201810789689.9A CN110740480B (zh) 2018-07-18 2018-07-18 用于波束失败恢复的方法、终端设备和网络侧设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/147,511 Continuation US11799715B2 (en) 2018-07-18 2021-01-13 Beam failure recovery method, terminal device, and network side device

Publications (1)

Publication Number Publication Date
WO2020015545A1 true WO2020015545A1 (zh) 2020-01-23

Family

ID=69164250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095020 WO2020015545A1 (zh) 2018-07-18 2019-07-08 用于波束失败恢复的方法、终端设备和网络侧设备

Country Status (7)

Country Link
US (1) US11799715B2 (zh)
EP (1) EP3826358A4 (zh)
JP (1) JP7222066B2 (zh)
KR (1) KR102552623B1 (zh)
CN (1) CN110740480B (zh)
SG (1) SG11202100413XA (zh)
WO (1) WO2020015545A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292878A (zh) * 2020-09-07 2021-01-29 北京小米移动软件有限公司 控制资源集合池索引更新方法、装置、终端、网络设备
US11283674B2 (en) * 2018-11-01 2022-03-22 Comcast Cable Communications, Llc Beam failure recovery in carrier aggregation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10834647B2 (en) 2018-08-07 2020-11-10 Ofinno, Llc Beam failure recovery procedure in carrier aggregation
CN113260001B (zh) * 2020-02-12 2022-06-10 维沃移动通信有限公司 关联邻小区的方法和设备
CN114765492A (zh) * 2021-01-13 2022-07-19 展讯半导体(南京)有限公司 传输配置指示状态确定方法及装置、可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复
WO2018129300A1 (en) * 2017-01-06 2018-07-12 Idac Holdings, Inc. Beam failure recovery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10554280B2 (en) 2015-05-01 2020-02-04 Futurewei Technologies, Inc. Device, network, and method for CSI feedback of hybrid beamforming
US10615862B2 (en) * 2016-04-13 2020-04-07 Qualcomm Incorporated System and method for beam adjustment request
US10172071B2 (en) * 2016-10-21 2019-01-01 Qualcomm Incorporated Directional synchronization in assisted millimeter wave systems
CN107342801B (zh) * 2017-06-15 2021-04-02 宇龙计算机通信科技(深圳)有限公司 一种波束处理方法、用户设备及基站
US20210058133A1 (en) * 2017-12-27 2021-02-25 Ntt Docomo, Inc. User terminal and radio communication method
WO2019138531A1 (ja) * 2018-01-12 2019-07-18 株式会社Nttドコモ ユーザ端末及び無線通信方法
MX2020008478A (es) * 2018-02-19 2020-09-28 Ntt Docomo Inc Terminal de usuario y metodo de radiocomunicacion.
US11601181B2 (en) * 2018-03-16 2023-03-07 Lenovo (Beijing) Limited Beam failure recovery
MX2020012491A (es) * 2018-05-21 2021-02-16 Ntt Docomo Inc Terminal de usuario y metodo de comunicacion por radio.
WO2019244221A1 (ja) * 2018-06-18 2019-12-26 株式会社Nttドコモ ユーザ端末
US20210258809A1 (en) * 2018-06-19 2021-08-19 Nec Corporation Csi measurement for multiple trp/panel transmission
MX2021000119A (es) * 2018-07-04 2021-03-09 Ntt Docomo Inc Terminal de usuario.
US20210234752A1 (en) * 2018-07-12 2021-07-29 Ntt Docomo, Inc. User terminal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复
WO2018129300A1 (en) * 2017-01-06 2018-07-12 Idac Holdings, Inc. Beam failure recovery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Draft] Reply LS on beam failure recovery", 3GPP TSG RAN WG1 MEETING #93 R1-1807129, 25 May 2018 (2018-05-25), XP051442327 *
"Leftover issues for BFR", 3GPP TSG-RAN WG2#101-BIS R2-1804481, 20 April 2018 (2018-04-20), XP051428216 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11283674B2 (en) * 2018-11-01 2022-03-22 Comcast Cable Communications, Llc Beam failure recovery in carrier aggregation
US11646932B2 (en) 2018-11-01 2023-05-09 Comcast Cable Communications, Llc Beam failure recovery in carrier aggregation
US11949552B2 (en) 2018-11-01 2024-04-02 Comcast Cable Communications, Llc Beam failure recovery of a secondary cell
CN112292878A (zh) * 2020-09-07 2021-01-29 北京小米移动软件有限公司 控制资源集合池索引更新方法、装置、终端、网络设备
CN112292878B (zh) * 2020-09-07 2023-06-06 北京小米移动软件有限公司 控制资源集合池索引更新方法、装置、终端、网络设备

Also Published As

Publication number Publication date
EP3826358A1 (en) 2021-05-26
JP7222066B2 (ja) 2023-02-14
KR20210025112A (ko) 2021-03-08
KR102552623B1 (ko) 2023-07-05
US11799715B2 (en) 2023-10-24
CN110740480A (zh) 2020-01-31
CN110740480B (zh) 2021-08-24
JP2021531691A (ja) 2021-11-18
SG11202100413XA (en) 2021-02-25
EP3826358A4 (en) 2021-09-01
US20210135927A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
WO2020015545A1 (zh) 用于波束失败恢复的方法、终端设备和网络侧设备
US11950245B2 (en) Method and device for cross carrier scheduling physical downlink shared channel
WO2020020128A1 (zh) 用于多波束发送上行信道的方法、终端设备和网络侧设备
AU2019302968B2 (en) Method for Determining Search Space Parameter, and Terminal Device
JP2022519356A (ja) 省電力モードの切替方法、省電力モードの配置方法及び通信機器
WO2020164613A1 (zh) 中继通信的方法和装置
US11985679B2 (en) Wireless communication method and device
WO2019029383A1 (zh) Pdcch的搜索空间的配置、监听方法及设备
WO2020024803A1 (zh) 用于波束失败恢复的方法和终端设备
CN110167163B (zh) 参考信号发送和接收方法及装置
US11968699B2 (en) Radio communication method and device
WO2022028297A1 (zh) 辅小区组的主小区更新方法、装置及存储介质
KR20230044514A (ko) 서비스의 처리 방법, 정보 지시 방법, 단말 및 네트워크 기기
CN110167167B (zh) 半持续性信道状态信息报告发送和接收方法及装置
WO2021238944A1 (zh) 波束指示方法、网络侧设备和终端
JP2021520110A (ja) データフロー設定方法及び装置
WO2024022157A1 (zh) 定位处理方法、装置及设备
WO2022237678A1 (zh) 带宽部分处理方法、装置及终端
WO2024067422A1 (zh) 切换方法和通信装置
WO2023241181A1 (zh) 指示方法、终端及网络侧设备
WO2024022191A1 (zh) 信息指示、处理方法、装置、网络设备及终端设备
WO2023273967A1 (zh) 小区指示、小区切换方法、装置、服务节点、终端及介质
WO2024067552A1 (zh) 一种通信方法、装置和系统
KR20230054433A (ko) 다운링크 채널의 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502418

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217003951

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019837923

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019837923

Country of ref document: EP

Effective date: 20210218