WO2019244221A1 - ユーザ端末 - Google Patents

ユーザ端末 Download PDF

Info

Publication number
WO2019244221A1
WO2019244221A1 PCT/JP2018/023164 JP2018023164W WO2019244221A1 WO 2019244221 A1 WO2019244221 A1 WO 2019244221A1 JP 2018023164 W JP2018023164 W JP 2018023164W WO 2019244221 A1 WO2019244221 A1 WO 2019244221A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
repetition
transmission
signal
user terminal
Prior art date
Application number
PCT/JP2018/023164
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201880096539.8A priority Critical patent/CN112567800A/zh
Priority to US17/253,431 priority patent/US20210259004A1/en
Priority to PCT/JP2018/023164 priority patent/WO2019244221A1/ja
Publication of WO2019244221A1 publication Critical patent/WO2019244221A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint

Definitions

  • the present disclosure relates to a user terminal in a next generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A LTE Advanced, LTE @ Rel. 10, 11, 12, 13
  • LTE @ Rel. 8, 9 LTE @ Rel. 8, 9
  • a user terminal transmits downlink control information (DCI) transmitted via a downlink control channel (for example, PDCCH: Physical @ Downlink @ Control @ Channel).
  • DCI downlink control information
  • a downlink control channel for example, PDCCH: Physical @ Downlink @ Control @ Channel
  • Control of downlink shared channel for example, PDSCH: Physical downlink shared channel
  • the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Universal Terrestrial Radio Access Network
  • a future wireless communication system for example, NR, 5G, 5G +, or Rel. 15 or later
  • BF beamforming
  • the user terminal performs the reception processing of the channel / signal based on the information (QCL information) on the pseudo collocation (QCL: Quasi-Co-Location) of at least one of the predetermined channel and signal (channel / signal).
  • Controlling eg, at least one of demapping, demodulation, and decoding
  • the QCL information of a predetermined channel / signal (for example, PDSCH, PDCCH, etc.) is also called a transmission configuration instruction (TCI: Transmission Configuration Indication or Transmission Configuration Indicator) state (TCI state) of the predetermined channel / signal.
  • TCI Transmission Configuration Indication or Transmission Configuration Indicator
  • acknowledgment information for the downlink shared channel (HARQ-ACK: Hybrid Automatic Repeat reQuest-Acknowledge, ACK or NACK: Acknowledge or Non- Acknowledge) , A / N, etc.) is a problem.
  • the user terminal is a receiving unit that receives a downlink shared channel repeatedly transmitted from a plurality of transmission / reception points, and at least one of the plurality of transmission / reception points, using an uplink control channel, A control unit that controls transmission of acknowledgment information for each repetition of the shared channel or transmission of acknowledgment information generated based on all repetitions of the downlink shared channel.
  • FIG. 1A and 1B are diagrams illustrating an example of repeated transmission of a channel / signal using a plurality of TRPs.
  • FIG. 2 is a diagram illustrating an example of a first HARQ-ACK feedback according to the first example.
  • FIG. 3 is a diagram showing an example of setting of spatial relation information using higher layer signaling in the first HARQ-ACK feedback according to the first example.
  • FIG. 4 is a diagram showing an example of setting of spatial relation information using DCI in the first HARQ-ACK feedback according to the first example.
  • FIG. 5 is a diagram illustrating an example of the second HARQ-ACK feedback according to the first example.
  • FIG. 6A and 6B are diagrams illustrating an example of setting of spatial relation information using higher layer signaling in the second HARQ-ACK feedback according to the first example.
  • 7A and 7B are diagrams illustrating an example of setting of spatial relation information using DCI in the second HARQ-ACK feedback according to the first example.
  • FIG. 8 is a diagram illustrating an example of HARQ-ACK feedback according to the second example.
  • 9A and 9B are diagrams illustrating an example of HARQ-ACK feedback according to the third example.
  • FIG. 17 is a diagram illustrating an example of HARQ-ACK feedback according to a fourth example.
  • FIG. 25 is a diagram illustrating an example of HARQ-ACK feedback according to a fifth example.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the embodiment.
  • FIG. 13 is a diagram illustrating an example of the entire configuration of the wireless base station according to the embodiment.
  • FIG. 14 is a diagram illustrating an example of a functional configuration of the wireless base station according to the embodiment.
  • FIG. 15 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
  • FIG. 16 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment.
  • FIG. 17 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the embodiment.
  • the channel / signal is, for example, PDSCH, PDCCH, PUSCH, PUCCH, DL-RS, uplink reference signal (UL-RS) or the like, but is not limited thereto.
  • FIGS. 1A and 1B are diagrams illustrating an example of repeated transmission of a channel / signal using a plurality of TRPs.
  • FIGS. 1A and 1B show an example of repeated transmission of PDSCH using TRPs # 1 to # 4.
  • FIG. 1A shows an example in which the geographical positions (TCI states) of TRP # 1 to # 4 are different, the present invention is not limited to this.
  • TRP # 1 to # 4 may be different antenna panels installed at the same transmission location. Further, the number of TRPs used for repetitive transmission is not limited to the illustrated one.
  • the same PDSCH (or DL data) may be copied to a plurality of TRPs, and the PDSCH may be repeatedly transmitted.
  • copy of DL data may mean copying at least one of an information bit sequence, a code block, a transport block, and a coded codeword sequence that constitute the DL data.
  • “copy of DL data” does not necessarily mean copying all the same bit strings, but by copying at least a part of a codeword generated from the same information bit string or at least a part of a modulation symbol sequence.
  • RVs of codewords obtained by encoding a certain information bit sequence may be the same or different.
  • the copied plurality of DL data may be a modulation symbol sequence obtained by modulating the different RVs or the same RV. All of the copied DL data are transmitted as PDSCH.
  • the PDSCH may be repeated with different resources in at least one of the time domain and the frequency domain.
  • the PDSCH may be repeated with resources (for example, one or more slots) that have the same frequency domain and are continuous in the time domain.
  • resources for example, one or more slots
  • it may be repeated in a resource having the same time domain and continuous in the frequency domain (for example, one or more resource blocks (RB) or an RB group (RBG) including one or more RBs).
  • RB resource blocks
  • RBG RB group
  • FIG. 1B shows a case where a plurality of resources corresponding to different repetitions are respectively continuous in the time domain or the frequency domain, but need not be continuous. Further, the plurality of resources may be resources that are different in both the time domain and the frequency domain.
  • FIG. 1B shows a case where the PDSCH is transmitted to a different TRP for each repetition.
  • the present invention is not limited to this, and the PDSCH may be transmitted to a different TRP for a predetermined number of repetitions (one or more repetitions). Good.
  • TRP may be paraphrased as a network, a radio base station, an antenna device, an antenna panel, a serving cell, a cell, a component carrier (CC), a carrier, or the like.
  • TRP is the same” for different transmission / reception signals or channels means that the TCI state, QCL or QCL relation is the same between the different transmission / reception signals or channels or between their reference signals. You may.
  • different TRPs for different transmitted / received signals or channels may be rephrased as having different TCI states, QCLs, or QCL relationships between the different transmitted / received signals or channels or between their reference signals.
  • the user terminal determines the channel based on information (QCL information) about a pseudo collocation (QCL: Quasi-Co-Location) of at least one of a predetermined channel and a signal (channel / signal). Controlling the reception process of a signal (eg, at least one of demapping, demodulation, and decoding) is being considered.
  • QCL information information about a pseudo collocation (QCL: Quasi-Co-Location) of at least one of a predetermined channel and a signal (channel / signal).
  • QCL is an index indicating the statistical property of the channel / signal. For example, when one signal and another signal have a QCL relationship, a Doppler shift (doppler shift), a Doppler spread (doppler spread), an average delay (average delay), and a delay spread (delay) among these different signals. spread) and at least one of the spatial parameters (Spatial @ parameter) (e.g., the spatial reception parameter (Spatial @ Rx @ Parameter)) may be assumed to be the same (QCL for at least one of these).
  • the spatial reception parameter may correspond to a reception beam (for example, a reception analog beam) of the user terminal, and the beam may be specified based on the spatial QCL.
  • the QCL and at least one element of the QCL in the present disclosure may be read as sQCL (spatial @ QCL).
  • QCL types a plurality of types (QCL types) may be defined.
  • QCL types AD with different parameters (or parameter sets) that can be assumed to be the same may be provided, and are described below.
  • QCL type A Doppler shift, Doppler spread, average delay and delay spread
  • ⁇ QCL type B Doppler shift and Doppler spread
  • QCL type C Doppler shift and average delay
  • QCL type D spatial reception parameter.
  • the state (TCI-state) of the transmission configuration instruction indicates QCL information of a predetermined channel / signal (for example, PDSCH, PDCCH, PUCCH, PUSCH, etc.). (May be included).
  • the TCI state is identified by a predetermined identifier (TCI state ID (TCI-StateId)), and a target channel / signal (or a reference signal for the channel (or an antenna port of the reference signal)) and another signal (For example, information (QCL information (QCL-Info)) about QCL with another downlink reference signal (DL-RS: Downlink Reference Signal) may be indicated (or may be included).
  • TCI state ID TCI state ID
  • TCI-StateId TCI state ID
  • QCL information QL-Info
  • DL-RS Downlink Reference Signal
  • the QCL information includes, for example, information on the DL-RS having a QCL relationship with the target channel / signal (DL-RS related information), information indicating the QCL type (QCL type information), and the DL-RS. It may include at least one of information on a carrier (cell) and BWP.
  • the DL-RS related information may include information indicating at least one of a DL-RS having a QCL relationship with a target channel / signal and resources of the DL-RS. For example, when a plurality of reference signal sets (RS sets) are set in the user terminal, the DL-RS related information includes a channel (or a port for the channel) among the RSs included in the RS set and a QCL relation. , And at least one of the DL-RS and the resource for the DL-RS.
  • RS sets reference signal sets
  • the DL-RS is, for example, a synchronization signal (SS: Synchronization Signal), a broadcast channel (PBCH: Physical Broadcast Channel), a synchronization signal block (SSB: Synchronization Signal Block), a mobility reference signal (MRS: Mobility RS), At least one of a channel state information reference signal (CSI-RS: Channel Satate Information-Reference Signal), a tracking CSI-RS, a beam-specific signal, or a signal configured by extending or changing these (for example, , A signal configured by changing at least one of the density and the period).
  • SS Synchronization Signal
  • PBCH Physical Broadcast Channel
  • SSB Synchronization Signal Block
  • MRS Mobility RS
  • CSI-RS Channel Satate Information-Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS: Primary Synchronaization Signal) and a secondary synchronization signal (SSS: Secondary Synchronaization Signal).
  • PSS Primary Synchronaization Signal
  • SSS Secondary Synchronaization Signal
  • the SSB is a signal block including a synchronization signal and a broadcast channel, and may be called an SS / PBCH block or the like.
  • the TCI state for the PDCCH may include QCL information regarding the QCL of the PDCCH.
  • the TCI state includes a demodulation reference signal (DMRS) of the PDCCH (an antenna port (DMRS port) of the DMRS or a group of the DMRS ports (DMRS port group)) and the DL- It may include QCL information on the QCL with the RS.
  • DMRS demodulation reference signal
  • One or more TCI states may be configured for each control resource set (CORESET: Control Resource Set) set in the user terminal. Also, if more than one TCI state is set per CORESET, a single TCI state may be activated.
  • CORESET Control Resource Set
  • the user terminal may determine the QCL for the PDCCH based on the TCI state associated (or activated) with the RESET. Specifically, the user terminal assumes that the DMRS (DMRS port or DMRS port group) of the PDCCH is DL-RS and QCL corresponding to the TCI state, and performs PDCCH reception processing (eg, decoding, demodulation). Etc.) may be controlled.
  • PDCCH reception processing eg, decoding, demodulation). Etc.
  • the upper layer signaling may be, for example, any one of RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, and the like, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may use, for example, a MAC control element (MAC CE (Control Element)), a MAC PDU (Protocol Data Unit), or the like.
  • the broadcast information may be, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), or the like.
  • the setting of one or more TCI states for each CORRESET may be performed by the RRC control element “TCI-StatesPDCCH”. Activation or deactivation of the set TCI state may be controlled by MAC @ CE.
  • a predetermined number (for example, three or less) of CORESET may be set for each bandwidth portion (BWP: Bandwidth @ Part) set for the user terminal in the serving cell.
  • BWP is a partial band set in a carrier (also called a cell, a serving cell, a component carrier (CC: Component Carrier), etc.), and is also called a partial band.
  • the BWP may include a BWP for uplink (UL: Uplink) (UL @ BWP, uplink BWP) and a BWP for downlink (DL: Downlink) (DL @ BWP, downlink BWP).
  • UL Uplink
  • DL Downlink
  • Each BWP to which the predetermined number of coresets are given may be DL BWP.
  • a search space including one or more PDCCH candidates may be associated with COREST.
  • One or more search spaces per coreset may be associated.
  • the user terminal may monitor (monitor) the search space and detect the PDCCH (DCI).
  • the PDCCH candidate is a resource unit to which one PDCCH is mapped, and may be configured by, for example, a number of control channel elements (CCE: Control Channel Element) according to an aggregation level.
  • CCE Control Channel Element
  • the search space may include a number of PDCCH candidates according to the aggregation level.
  • monitoring of CORESET “monitor of search space (or SS set)”, “monitor of PDCCH candidate (or set of one or more PDCCH candidates (PDCCH candidate set)”), “downlink control channel “Monitor of (for example, PDCCH)” and “Monitor of downlink control information (DCI)” may be read interchangeably.
  • monitoring (monitoring) may be read as “at least one of blind decoding and blind detection”.
  • the TCI state for PDSCH may include QCL information about the PDSCH QCL.
  • the TCI state may include QCL information on the DMRS of the PDSCH or the port of the DMRS and the QCL with the DL-RS.
  • the user terminal may be notified (configured) of M (M ⁇ 1) TCI states (QCL information for M PDSCHs) for PDSCH by higher layer signaling.
  • M M
  • TCI states QCL information for M PDSCHs
  • the number M of TCI states set in the user terminal may be limited by at least one of the capability (UE @ capability) of the user terminal and the QCL type.
  • the DCI used for PDSCH scheduling may include a predetermined field (for example, a TCI field, a TCI field, a TCI status field, etc.) indicating a TCI status (QCL information for PDSCH).
  • the DCI may be used for scheduling the PDSCH of one cell, and may be called, for example, DL @ DCI, DL assignment, DCI format 1_0, DCI format 1_1, and the like.
  • the $ TCI field may be composed of a predetermined number of bits (for example, 3 bits). Whether or not the TCI field is included in DCI may be controlled by information notified from the base station to the UE.
  • the information may be information (TCI-PresentInDCI) indicating whether or not a TCI field exists in DCI (present @ or @ absent).
  • TCI-PresentInDCI may be set in the user terminal by, for example, higher layer signaling (RRC information element (IE: Information @ Element)).
  • the terminal may be configured in advance.
  • the value of the TCI field in the DCI (TCI field value) may indicate one of the TCI states preset by higher layer signaling.
  • TCI states may be activated (designated) using MAC $ CE.
  • the value of the TCI field in DCI may indicate one of the TCI states activated by MAC @ CE.
  • the user terminal may determine the QCL for the PDSCH based on the TCI state indicated by the TCI field value in DCI. Specifically, the user terminal assumes that the DMRS (DMRS port or DMRS port group) of the PDSCH is the DL-RS and the QCL corresponding to the TCI state notified by the DCI, and performs the PDSCH reception processing (eg, , Decoding, demodulation, etc.).
  • the DMRS DMRS port or DMRS port group
  • the QCL corresponding to the TCI state notified by the DCI performs the PDSCH reception processing (eg, , Decoding, demodulation, etc.).
  • the user terminal may assume that the TDC field is present (included) in the DL @ DCI of the PDCCH transmitted in the RESET.
  • the TCI state for the PDSCH in the determination of the antenna port QCL of the PDSCH is it may be assumed that the TCI state applied to the CORESET used for the PDCCH transmission is identical. Note that an antenna port (port) in the present disclosure may be replaced with an antenna port group (port group).
  • the user terminal transmits at least one of an uplink channel (for example, PUCCH, PDSCH) and an uplink signal (uplink channel / signal) and a reference signal (reference RS (reference RS)).
  • an uplink channel for example, PUCCH, PDSCH
  • an uplink signal uplink channel / signal
  • a reference signal reference RS (reference RS)
  • the spatial relationship corresponds to a spatial association between the uplink channel / signal and the reference RS.
  • the user terminal can transmit the uplink channel / signal by using the same beam as the reference RS having the same spatial relationship as the uplink channel / signal based on the spatial relationship.
  • the reference RS is at least one of SSB, CSI-RS, a sounding reference signal (SRS), a signal unique to a beam, or a signal configured by extending or changing these (eg, density). And at least one of the periods is changed).
  • SRS sounding reference signal
  • the information indicating the spatial relation may include information indicating at least one of the following: An identifier (pucch-SpatialRelationInfoId) of the spatial relation information; A reference signal spatially related to the uplink channel (eg, SSB index, CSI-RS resource (eg, non-zero power CSI-RS) identifier or SRS resource identifier, etc.); A reference RS (PUCCH-PathlossReferenceRS) (for example, at least one of an index of one or more SSBs and an index of a CSI-RS configuration) used for calculating a path loss for transmission power control of an uplink channel (for example, PUCCH); A parameter (p0-PUCCH) for open loop control of transmission power of an uplink channel (for example, PUCCH), The time position (eg, K PUCCH, l ) of the TPC command ( ⁇ PUCCH ) for closed-loop control of transmission
  • the “spatial relation information” may be paraphrased as the above-mentioned TCI state, QCL, QCL relation, QCL information, SRS resource instruction (SRI: SRS resource indicator), or the like.
  • the user terminal may be set with one or more spatial relation information (for example, one or more spatial relation information per uplink BWP of the serving cell) by higher layer signaling.
  • one or more pieces of spatial relation information may be set by RRC signaling, one piece of spatial relation information may be activated by MAC @ CE.
  • acknowledgment information also referred to as HARQ-ACK, ACK or NACK, A / N, etc.
  • the question is how to give feedback.
  • the present inventors have studied a method of appropriately controlling the feedback of HARQ-ACK to the PDSCH when the PDSCH is repeatedly transmitted from different TRPs, and reached the present invention.
  • the PDSCH may be transmitted by a different TRP for a predetermined number of repetitions (one or more repetitions).
  • the HARQ-ACK may be fed back to a different TRP every predetermined number of repetitions.
  • repetitive transmission of the PDSCH is performed using different resources in the time domain.
  • repetitive transmission of the PDSCH is performed using resources in which at least one of the time domain and the frequency domain is different. I just want to.
  • “PDCCH” and “DCI” may be interchanged.
  • “transmitting a plurality of channels / signals from different TRPs” is synonymous with different TCI states (also referred to as QCL and QCL information) among the plurality of channels / signals.
  • TCI states also referred to as QCL and QCL information
  • the user terminal may assume that the plurality of channels / signals are transmitted from different TRPs. Therefore, “receiving a channel / signal transmitted from a different transmission / reception point every predetermined number of repetitions” means receiving a channel / signal having a different TCI state (also referred to as QCL or QCL information) every predetermined number of repetitions. Synonymous with that.
  • “transmitting a plurality of channels / signals to different TRPs” is synonymous with different spatial relationship information among the plurality of channels / signals.
  • the user terminal may assume that the plurality of channels / signals are transmitted to different TRPs. Therefore, "transmitting a channel / signal to a different transmission / reception point every predetermined number of repetitions" is synonymous with receiving a channel / signal having different spatial relation information every predetermined number of repetitions.
  • the PUCCH spatial relation information may be specified for each repetition (the user terminal may receive the spatial relation information corresponding to each repetition). For example, when the geographical relationships between the different TRPs and UEs are different, the spatial relationship information may be different for each repetition.
  • HARQ-ACK for each repetition may be transmitted using PUCCH resources that are commonly (samely) allocated between repetitions (first HARQ-ACK feedback), or individually for each repetition ( (Separate) PUCCH resources may be sent (second HARQ-ACK feedback).
  • the PUCCH resource is a resource used for transmitting the PUCCH.
  • a PUCCH resource may include at least one of the following: Time domain resources (eg, the number of symbols) allocated to PUCCH, A start position in the time domain of the PUCCH (eg, a start symbol); An initial cyclic shift (CS) interval (initial CS interval); Information indicating whether to enable frequency hopping for the PUCCH, A frequency domain resource (for example, a physical resource block (PRB)) allocated to the PUCCH, ⁇ Initial cyclic shift (CS) index, An index of an orthogonal spreading code (for example, OCC: Orthogonal Cover Code) in a time domain.
  • the length of the OCC used for block spreading before the discrete Fourier transform (DFT), -OCC index used for block-wise spreading after DFT The number of PRBs allocated to PUCCH, The index of the second hop frequency domain resource when frequency hopping is enabled.
  • One or more sets (PUCCH resource sets) each including one or more PUCCH resources may be configured in the user terminal by higher layer signaling.
  • the user terminal may select the PUCCH resource set based on the number of bits of the uplink control information (UCI) including the HARQ-ACK.
  • the user terminal may determine a PUCCH resource to be used for transmitting the UCI from the PUCCH resource set based on at least one of a predetermined field in the DCI and an implicit index (for example, a CCE index).
  • a predetermined field in DCI used for PUCCH resource determination is called an ARI (ACK / NACK @ Resource @ Indicator) field, but the name of the predetermined field is not limited to this.
  • the predetermined field may be called, for example, a field for a PUCCH resource identifier (PUCCH @ resource @ indicator), an ACK / NACK resource offset (ARO: ACK / NACK @ Resource @ Offset), a field for a TPC command, or the like.
  • an implicit index will be described as, for example, the minimum CCE index to which the DCI is assigned, but the present invention is not limited to this.
  • the implicit index may be any information other than information that is explicitly signaled.
  • the same PUCCH resource is used between repetitions for HARQ-ACK transmission for each PDSCH repetition.
  • the same PUCCH resource may be determined based on at least one of an ARI field and a CCE index in DCI.
  • the DCI may be, for example, a DCI that schedules a PDSCH with a repetition factor K over all repetitions.
  • HARQ-ACK transmission for each PDSCH repetition may use spatial relationship information that is separately allocated between repetitions.
  • the spatial relation information may be determined by at least one of higher layer signaling and DCI.
  • FIG. 2 is a diagram showing an example of the first HARQ-ACK feedback according to the first example.
  • FIG. 2 shows an example in which the repetition coefficient K of PDSCH is 4.
  • HARQ-ACK for each repetition may be transmitted to each TRP.
  • PUCCH resources used for transmitting HARQ-ACK to each TRP may be the same.
  • the user terminal may determine the same PUCCH resource based on at least one of the ARI field and the CCE index in the DCI.
  • the spatial relationship information of the PUCCH used for transmitting the HARQ-ACK to each TRP may be different or the same.
  • the spatial relation information may be set in the user terminal by higher layer signaling (eg, RRC signaling) for each TRP (every repetition or each PUCCH), or may be specified by DCI.
  • FIG. 3 is a diagram showing an example of setting of spatial relation information using higher layer signaling in the first HARQ-ACK feedback according to the first example.
  • the ARI field in the DCI is assumed to be 3 bits, but the number of bits in the ARI field is not limited to this.
  • the spatial relation information of the PUCCH is set in the user terminal by higher layer signaling (for example, RRC signaling) for each repetition (for each TRP or for each PUCCH). Therefore, regardless of which PUCCH resource is specified by the value of the ARI field in the DCI, the spatial relation information for each repetition is fixed quasi-statically.
  • RRC signaling for example, RRC signaling
  • PUCCH resources are specified based on the ARI field in DCI that collectively schedules PDSCHs with repetition coefficient K, and the spatial relationship information of PUCCH is set by higher layer signaling. Therefore, different PUCCH resources may be allocated between PDSCHs with a repetition factor K scheduled by different DCIs.
  • the spatial relationship information of the PUCCH is fixed quasi-statically, it is fixed regardless of the value of the ARI field in the DCI.
  • FIG. 4 is a diagram showing an example of setting of spatial relation information using DCI in the first HARQ-ACK feedback according to the first example.
  • FIG. 4 differs from FIG. 3 in that each value of the ARI field in DCI indicates not only the PUCCH resource but also the spatial relation information for each repetition (for each TRP or for each PUCCH). In FIG. 4, the description will focus on the differences from FIG. 3.
  • Each PUCCH resource may be associated with PUCCH spatial relation information (PUCCH spatial relation information used for transmission of HARQ-ACK for each TRP) for each repetition by higher layer signaling.
  • PUCCH spatial relation information PUCCH spatial relation information used for transmission of HARQ-ACK for each TRP
  • the user terminal determines the spatial relation information of the PUCCH for each repetition based on the value of the ARI field in the DCI. Specifically, the user terminal may determine the spatial relation information associated with the PUCCH resource determined based on the ARI field in the DCI.
  • PUCCH resources not only PUCCH resources but also spatial relation information of PUCCH are designated based on the ARI field in DCI for scheduling PDSCH of repetition coefficient K collectively. Therefore, different PUCCH resources may be allocated between PDSCHs with a repetition factor K scheduled by different DCIs. Further, between PDSCHs with a repetition coefficient K scheduled by different DCIs, different spatial relationship information may be used even for PUCCHs for the same TRP.
  • PUCCH resources allocated separately between the repetitions may be used for transmission of the HARQ-ACK for each repetition of the PDSCH.
  • the PUCCH resource for each repetition may be determined based on at least one of the ARI field and the CCE index in DCI.
  • the DCI may be, for example, a DCI that schedules a PDSCH with a repetition coefficient K for each repetition.
  • ⁇ Also for transmission of HARQ-ACK for each PDSCH repetition, spatial relationship information that is separately allocated between repetitions is used.
  • the spatial relation information may be determined by at least one of higher layer signaling and DCI.
  • FIG. 5 is a diagram illustrating an example of the second HARQ-ACK feedback according to the first example.
  • FIG. 5 differs from FIG. 2 in that when a PDSCH is transmitted from a different TRP for each repetition, HARQ-ACK for each repetition is transmitted to each TRP using a different PUCCH resource for each repetition.
  • a description will be given focusing on differences from FIG.
  • PUCCH resources used for transmitting HARQ-ACK for each TRP may be different.
  • the user terminal may determine the PUCCH resource for each repetition based on at least one of the ARI field and the CCE index in the DCI.
  • the spatial relationship information of PUCCH used for transmitting HARQ-ACK to each TRP may be different or the same.
  • the spatial relation information may be set in the user terminal by higher layer signaling (eg, RRC signaling) for each TRP (every repetition or each PUCCH), or may be specified by DCI.
  • ⁇ Setting of spatial relation information by upper layer signaling are diagrams illustrating an example of setting of spatial relation information using higher layer signaling in the second HARQ-ACK feedback according to the first example.
  • the ARI field in the DCI has three bits, but the number of bits of the ARI field is not limited to this.
  • each value of the ARI field in the DCI may indicate a PUCCH resource for each repetition (for each TRP, for each PUCCH, or for each repetition index).
  • the transmission may be performed using the resource #a.
  • each value of the ARI field in the DCI may indicate a PUCCH resource of a target repetition (TRP, PUCCH or repetition index).
  • the user terminal determines the HARQ-value for the first PDSCH.
  • a PUCCH resource used for ACK transmission may be determined.
  • PUCCH resources used for transmitting HARQ-ACK for the second and subsequent PDSCHs are similarly determined.
  • the spatial relation information of the PUCCH is set in the user terminal by higher layer signaling (for example, RRC signaling) for each repetition (for each TRP or for each PUCCH). Therefore, regardless of which PUCCH resource is specified by the value of the ARI field in the DCI, the spatial relation information for each repetition is fixed quasi-statically.
  • RRC signaling for example, RRC signaling
  • different PUCCH resources can be assigned for each repetition based on the ARI field value in DCI.
  • the spatial relationship information of the PUCCH is fixed quasi-statically, it is fixed regardless of the value of the ARI field in the DCI.
  • FIGS. 7A and 7B are diagrams illustrating an example of setting of spatial relation information using DCI in the second HARQ-ACK feedback according to the first example.
  • FIGS. 7A and 7B differ from FIGS. 6A and 6B in that each value of the ARI field in the DCI indicates not only the PUCCH resource but also the spatial relationship information for each repetition (for each TRP or for each PUCCH). 7A and 7B will be described focusing on differences from FIGS. 6A and 6B.
  • FIG. 7A describes DCI for scheduling PDSCH of all repetitions with repetition coefficient K.
  • the PUCCH resource for each repetition (for each TRP or for each repetition index) indicated by each value of the ARI field in the DCI is used for spatial relation information of the PUCCH for each repetition (used for transmission of HARQ-ACK for each TRP) by higher layer signaling. (PUCCH spatial relationship information).
  • the user terminal may determine the PUCCH resource for each repetition based on the value of the ARI field in DCI. Specifically, the user terminal may determine the spatial relation information based on the value of the ARI field, or may determine the spatial relation information associated with the PUCCH resource by higher layer signaling.
  • FIG. 7B describes DCI for scheduling PDSCH for each repetition of repetition coefficient K.
  • each value of the ARI field in the DCI may indicate a PUCCH resource of a target repetition (TRP, PUCCH or repetition index).
  • the PUCCH resource may be associated with PUCCH spatial relationship information (PUCCH spatial relationship information used for transmitting HARQ-ACK for each TRP) by higher layer signaling.
  • the user terminal may determine a PUCCH resource used for transmitting HARQ-ACK for the PDSCH based on the value of the ARI field in the DCI that schedules the PDSCH for each repetition. Also, the user terminal may determine the spatial relation information based on the value of the ARI field, or may determine the spatial relation information associated with the PUCCH resource by higher layer signaling.
  • PUCCH resources are separately allocated between repetitions. Therefore, when HARQ-ACK is fed back for each repetition, PUCCH resources can be controlled more flexibly than in the first HARQ-ACK feedback.
  • FIG. 8 is a diagram showing an example of HARQ-ACK feedback according to the second example.
  • the description will focus on the differences from FIG. 2.
  • HARQ-ACK for each PDSCH May be synthesized.
  • the user terminal may feed back 1-bit HARQ-ACK indicating ACK.
  • the user terminal may feed back 1-bit HARQ-ACK indicating NACK.
  • the user terminal may repeat 1-bit HARQ-ACK indicating ACK or NACK, and transmit each of the plurality of TRPs (here, TRP # 1 to # 4) using the PUCCH.
  • the PUCCH resource used for transmitting the HARQ-ACK may be the same for the plurality of TRPs (between repetitions or between repetition indices) (see the first HARQ-ACK feedback in the first aspect), or It may be assigned individually (see second HARQ-ACK feedback in first aspect).
  • the PUCCH spatial relation information used for transmitting the HARQ-ACK may be assigned by at least one of higher layer signaling (for example, RRC signaling) and DCI for each TRP (for each repetition or each repetition index).
  • higher layer signaling for example, RRC signaling
  • DCI for each TRP (for each repetition or each repetition index).
  • the predetermined period K1 may be determined in advance by specifications, or may be specified by at least one of higher layer signaling and DCI.
  • the 1-bit HARQ-ACK is fed back in the order of TRP # 4, # 3, # 2, # 1, but the feedback order is not limited to this.
  • TRP # 4 when the last repetition of the PDSCH is fed back first to the TRP (here, TRP # 4), the last reception beam of the PDSCH and the first transmission beam of the HARQ-ACK are transmitted.
  • TRP # 4 when the last repetition of the PDSCH is fed back first to the TRP (here, TRP # 4), the last reception beam of the PDSCH and the first transmission beam of the HARQ-ACK are transmitted.
  • TRP # 4 the last reception beam of the PDSCH and the first transmission beam of the HARQ-ACK are transmitted.
  • the combined result of HARQ-ACK for each repetition is repeated and fed back to a plurality of TRPs, so that the plurality of TRPs transmitting the PDSCH with repetition coefficient K need to retransmit the PDSCH. Can be easily recognized.
  • 1-bit HARQ-ACK obtained by combining PDSCH decoding results for each repetition is fed back to a plurality of TRPs that transmitted the PDSCH, but is not limited to this. May be fed back.
  • the single TRP may be, for example, a primary TRP (also referred to as a primary cell (PCCell) or a primary secondary cell (PSCell)).
  • HARQ-ACK for each repetition is fed back, which is common to the first aspect. It differs from the first aspect in that each HARQ-ACK is fed back to a single TRP.
  • a description will be given focusing on differences from the first embodiment.
  • FIGS. 9A and 9B are diagrams illustrating an example of HARQ-ACK feedback according to the third example. 9A and 9B will be described focusing on differences from FIGS.
  • the user terminal may feed back the HARQ-ACK for the PDSCH to a single TRP after a predetermined period K1 after receiving each repeated PDSCH.
  • the predetermined period K1 may be determined in advance by specifications, or may be specified by at least one of higher layer signaling and DCI.
  • the single TRP may be the above-described primary TRP, or may be a TRP (also referred to as a serving cell, a cell, or the like) in which the user terminal first detects DCI for scheduling the PDSCH first. .
  • TRP # 4 may stop the transmission of the PDSCH based on the instruction information from TRP # 1.
  • TRP # 1 and TRP # 4 may be connected by an ideal interface (ideal @ interface) such as an optical line.
  • PUCCH resources used for feedback of HARQ-ACK of each repetition may be the same (see the first HARQ-ACK feedback of the first aspect), or individually. May be assigned (see the second HARQ-ACK feedback of the first aspect).
  • the spatial relationship information of the PUCCH used for transmission of each HARQ-ACK may be the same.
  • the spatial relation information may be assigned by at least one of higher layer signaling (for example, RRC signaling) and DCI.
  • the single TRP can centrally perform retransmission control based on the HARQ-ACK.
  • FIG. 10 is a diagram showing an example of HARQ-ACK feedback according to the fourth example.
  • a description will be given focusing on differences from FIGS.
  • HARQ-ACK for each PDSCH is used. May be transmitted to the TRPs # 4, # 3, # 2, and # 1 that have transmitted the PDSCH, respectively.
  • the predetermined period K1 may be determined in advance by specifications, or may be specified by at least one of higher layer signaling and DCI.
  • the order of feedback is not limited to the order shown in FIG.
  • TRP # 4 when the last repetition of the PDSCH is fed back first to the TRP (here, TRP # 4), the last reception beam of the PDSCH and the first transmission beam of the HARQ-ACK are transmitted.
  • the load due to beam sweep for example, in the case of analog beamforming
  • PUCCH resources used for feedback of HARQ-ACK having the same number of bits as repetition coefficient K may be the same (see first HARQ-ACK feedback in first embodiment), or (See the second HARQ-ACK feedback of the first aspect).
  • the spatial relationship information of the PUCCH used for transmission of the HARQ-ACK may be assigned by at least one of higher layer signaling (eg, RRC signaling) and DCI for each repetition (for each PUCCH or repetition index).
  • higher layer signaling eg, RRC signaling
  • DCI for each repetition (for each PUCCH or repetition index).
  • HARQ-ACKs having the same number of bits as the repetition coefficient K are fed back to a plurality of TRPs, so that any of the TRPs fails to detect the HARQ-ACKs. Even in this case, retransmission control of the PDSCH with the repetition coefficient K can be appropriately performed.
  • HARQ-ACK for each repetition is fed back, which is common to the first aspect. It differs from the first aspect in that each HARQ-ACK is fed back to a plurality of TRPs.
  • a description will be given focusing on differences from the first embodiment.
  • FIG. 11 is a diagram showing an example of HARQ-ACK feedback according to the fifth example.
  • a description will be given focusing on differences from FIG.
  • the user terminal generates HARQ-ACK having the same number of bits as the repetition coefficient K based on the decoding result of the received PDSCH after a predetermined period K1 from the reception of the PDSCH of each repetition, and generates the HARQ-ACK. Feedback is provided to different TRPs.
  • PUCCH resources used for HARQ-ACK feedback for each iteration may be the same (see the first HARQ-ACK feedback of the first aspect), or may be individually allocated. (See the second HARQ-ACK feedback of the first aspect).
  • the spatial relationship information of PUCCH used for transmitting HARQ-ACK to different TRPs may be the same or different.
  • the spatial relation information may be assigned by at least one of higher layer signaling (for example, RRC signaling) and DCI for each TRP.
  • the HARQ-ACK of each repetition is fed back to all the TRPs that repeat the PDSCH, if the repetition coefficient K is within the repetition period (repetition window) of the PDSCH, the HARQ-ACK based on the HARQ-ACK is used. Thus, the repeated transmission of PDSCH can be stopped.
  • wireless communication system Wireless communication system
  • communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 12 is a diagram showing an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • NR New Radio
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the radio communication system 1 includes a radio base station 11 forming a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. , Is provided. Further, user terminals 20 are arranged in the macro cell C1 and each small cell C2. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Further, the user terminal 20 may apply CA or DC using a plurality of cells (CCs).
  • CCs cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz or the like
  • the same carrier as that between may be used.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a single numerology may be applied, or a plurality of different numerologies may be applied.
  • Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like.
  • the numerology may be referred to as different.
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like) or wirelessly. May be done.
  • the wireless base station 11 and each wireless base station 12 are connected to the upper station device 30 and connected to the core network 40 via the upper station device 30.
  • the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), and a mobility management entity (MME), but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • the radio base station 11 is a radio base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the wireless base station 12 is a wireless base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point or the like.
  • the wireless base stations 11 and 12 are not distinguished, they are collectively referred to as a wireless base station 10.
  • Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • Orthogonal Frequency Division Multiple Access (OFDMA) is applied to the downlink as a wireless access method, and Single Carrier-Frequency Division Multiple Access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier to perform communication.
  • SC-FDMA divides a system bandwidth into bands each composed of one or a continuous resource block for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like shared by each user terminal 20 are used. Used.
  • the PDSCH transmits user data, upper layer control information, SIB (System Information Block), and the like.
  • SIB System Information Block
  • MIB Master ⁇ Information ⁇ Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • DCI for scheduling DL data reception may be referred to as DL assignment
  • DCI for scheduling UL data transmission may be referred to as UL grant.
  • PCFICH transmits the number of OFDM symbols used for PDCCH.
  • the PHICH transmits acknowledgment information (eg, retransmission control information, HARQ-ACK, ACK / NACK, etc.) of HARQ (Hybrid Automatic Repeat Repeat reQuest) to the PUSCH.
  • the EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
  • PDSCH Downlink Shared Data Channel
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • user data higher layer control information, etc. are transmitted.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information delivery confirmation information
  • scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a cell-specific reference signal CRS: Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DMRS Demodulation Reference Signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • the transmitted reference signal is not limited to these.
  • FIG. 13 is a diagram showing an example of the overall configuration of the radio base station according to the present embodiment.
  • the wireless base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
  • the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control)
  • the transmission / reception unit performs retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and so on.
  • HARQ transmission processing for example, HARQ transmission processing
  • IFFT inverse fast Fourier transform
  • precoding processing precoding processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to the transmission / reception unit 103.
  • the transmission / reception section 103 converts the baseband signal precoded and output from the baseband signal processing section 104 for each antenna into a radio frequency band, and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101.
  • the transmission / reception unit 103 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
  • Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the wireless base station 10, management of wireless resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives signals (backhaul signaling) to and from another wireless base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). You may.
  • CPRI Common Public Radio Interface
  • X2 interface X2 interface
  • the transmission / reception unit 103 may further include an analog beamforming unit that performs analog beamforming.
  • the analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be.
  • the transmitting / receiving antenna 101 may be configured by, for example, an array antenna.
  • FIG. 14 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment.
  • functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the radio base station 10, and some or all of the configurations need not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire wireless base station 10.
  • the control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
  • the control unit 301 performs scheduling (for example, resources) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • scheduling for example, resources
  • a downlink data signal for example, a signal transmitted on the PDSCH
  • a downlink control signal for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like. Allocation.
  • control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), SSB, and downlink reference signals (for example, CRS, CSI-RS, DMRS).
  • synchronization signals for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
  • SSB Service-SS
  • downlink reference signals for example, CRS, CSI-RS, DMRS.
  • the control unit 301 transmits an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, a PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
  • an uplink data signal for example, a signal transmitted on the PUSCH
  • an uplink control signal for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.
  • a random access preamble for example, a PRACH.
  • Transmission signal scheduling of uplink reference signals and the like.
  • the control unit 301 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 104 and / or analog BF (for example, phase rotation) in the transmission and reception unit 103. May be performed.
  • the control unit 301 may perform control to form a beam based on downlink channel information, uplink channel information, and the like. These propagation path information may be acquired from the reception signal processing unit 304 and / or the measurement unit 305.
  • Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated downlink signal to mapping section 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example.
  • the DL assignment and the UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 and the like.
  • CSI Channel ⁇ State ⁇ Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generating section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs it to transmitting / receiving section 103.
  • the mapping unit 303 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
  • the measurement unit 305 receives the reception power (for example, RSRP (Reference Signal Received Power)), the reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received @ Signal @ Strength @ Indicator)), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 301.
  • the transmitting / receiving section 103 may transmit downlink control information (DCI) (DL assignment or the like) for scheduling a downlink shared channel (for example, PDSCH).
  • DCI downlink control information
  • the transmitting / receiving section 103 may transmit the downlink shared channel for at least a part of the repetition. Further, transmitting / receiving section 103 may transmit DCI used for scheduling all repetitions of the downlink shared channel. In addition, the transmitting / receiving section 103 may transmit DCI used for repetitive scheduling of the downlink shared channel every predetermined number.
  • the transmission / reception unit 103 may use the uplink control channel to receive acknowledgment information for each repetition of the downlink shared channel or acknowledgment information generated based on all repetitions of the downlink shared channel. Good.
  • control unit 301 may control the repeated transmission of the downlink shared channel. Specifically, transmission of PDSCH from different transmission / reception points may be controlled every predetermined number of repetitions.
  • the control unit 301 may control at least one of generation and transmission of DCI used for scheduling all repetitions of the downlink shared channel. Further, the control unit 301 may control at least one of generation and transmission of DCI used for repetitive scheduling of the downlink shared channel every predetermined number.
  • control unit 301 uses an uplink control channel to receive acknowledgment information for each repetition of the downlink shared channel or to receive acknowledgment information generated based on all repetitions of the downlink shared channel. It may be controlled.
  • FIG. 15 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
  • the radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204.
  • the transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
  • the transmission / reception unit 203 may further include an analog beamforming unit that performs analog beamforming.
  • the analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be.
  • the transmitting / receiving antenna 201 may be configured by, for example, an array antenna.
  • FIG. 16 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
  • the control unit 401 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 204 and / or analog BF (for example, phase rotation) in the transmission / reception unit 203. May be performed.
  • the control unit 401 may perform control to form a beam based on downlink channel information, uplink channel information, and the like. These propagation path information may be obtained from the reception signal processing unit 404 and / or the measurement unit 405.
  • control unit 401 When the control unit 401 acquires various information notified from the radio base station 10 from the reception signal processing unit 404, the control unit 401 may update the parameters used for control based on the information.
  • Transmission signal generating section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the radio base station 10 includes an UL grant.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
  • the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 may perform the same frequency measurement and / or the different frequency measurement on one or both of the first carrier and the second carrier.
  • measurement section 405 may perform the different frequency measurement on the second carrier based on the measurement instruction acquired from reception signal processing section 404.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • the transmission / reception unit 203 may receive downlink control information (DCI) (DL assignment or the like) for scheduling a downlink shared channel (for example, PDSCH).
  • DCI downlink control information
  • the transmission / reception unit 203 may receive the downlink shared channel from different transmission / reception points every predetermined number of repetitions. Further, transmitting / receiving section 203 may receive DCI used for scheduling all repetitions of the downlink shared channel. Further, transmitting / receiving section 203 may receive DCI used for repetitive scheduling of a predetermined number of the downlink shared channels.
  • the transmission / reception unit 203 uses at least one of a plurality of transmission / reception points, using an uplink control channel, based on acknowledgment information for each repetition of the downlink shared channel or based on all repetitions of the downlink shared channel. May be transmitted.
  • control section 401 may control the reception of DCI used for scheduling all repetitions of the downlink shared channel. Further, control section 401 may control the reception of DCI used for scheduling a predetermined number of repetitions of the downlink shared channel.
  • control unit 401 transmits, to at least one of the plurality of transmission / reception points, transmission acknowledgment information for each repetition of the downlink shared channel using an uplink control channel, or based on all repetitions of the downlink shared channel. May be transmitted.
  • control unit 401 determines the spatial relationship information for each repetition based on at least one of upper layer signaling and a predetermined field value in downlink control information used for scheduling of the downlink shared channel, The transmission of the acknowledgment information for each repetition may be controlled based on
  • control unit 401 is assigned the same among all the repetitions based on at least one of a predetermined field value in the downlink control information and an index of a control channel element (CCE) in which the downlink control information is arranged.
  • a resource for the uplink control channel may be determined (first HARQ-ACK feedback).
  • control unit 401 is configured to allocate the uplink control channel allocated for each repetition based on at least one of a predetermined field value in downlink control information and an index of a control channel element (CCE) in which the downlink control information is arranged. May be determined (second HARQ-ACK feedback).
  • CCE control channel element
  • the downlink control information may be used for scheduling of all the repetitions of the downlink shared channel, or may be used for scheduling of the downlink shared channel for each repetition.
  • the control unit 401 may control the transmission of the acknowledgment information after a predetermined period after receiving each repetition or the last repetition of the downlink shared channel.
  • each functional block is realized by an arbitrary combination of at least one of hardware and software.
  • a method for implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically combined, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and using these multiple devices.
  • a wireless base station, a user terminal, or the like may function as a computer that performs processing of the wireless communication method according to the present disclosure.
  • FIG. 17 is a diagram illustrating an example of a hardware configuration of the radio base station and the user terminal according to the embodiment.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more devices shown in the drawing, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the radio base station 10 and the user terminal 20 are performed by, for example, reading predetermined software (program) on hardware, such as the processor 1001 and the memory 1002, so that the processor 1001 performs an arithmetic operation and the communication device 1004 via the communication device 1004. It is realized by controlling communication and controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
  • the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.)), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission line interface 106, and the like may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard.
  • a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
  • SCS SubCarrier @ Spacing
  • TTI Transmission @ Time @ Interval
  • TTI Transmission @ Time @ Interval
  • radio frame configuration transmission and reception.
  • At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the slot may be configured by one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be constituted by one or more symbols in the time domain.
  • minislots may be called subslots.
  • a minislot may be made up of a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding thereto. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval)
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot is called a TTI.
  • You may. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit of scheduling in wireless communication.
  • a radio base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
  • radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, a code word, or a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms.
  • the TTI having the TTI length described above may be replaced with the TTI.
  • the resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
  • one or a plurality of RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical @ RB
  • SCG Sub-Carrier @ Group
  • REG Resource @ Element @ Group
  • PRB pair an RB pair, and the like. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource @ Element).
  • RE Resource @ Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (which may also be referred to as a partial bandwidth or the like) may represent a subset of contiguous common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
  • the common RB may be specified by an index of the RB based on the common reference point of the carrier.
  • a PRB may be defined in a BWP and numbered within the BWP.
  • $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
  • BWP for a UE, one or more BWPs may be configured in one carrier.
  • At least one of the configured BWPs may be active, and the UE may not have to assume transmitting and receiving a given signal / channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
  • the structures of the above-described radio frame, subframe, slot, minislot, and symbol are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the configuration such as the cyclic prefix (CP) length can be variously changed.
  • the information, parameters, and the like described in the present disclosure may be represented using an absolute value, may be represented using a relative value from a predetermined value, or may be represented using another corresponding information. May be represented.
  • a radio resource may be indicated by a predetermined index.
  • Names used for parameters and the like in the present disclosure are not limited in any way. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
  • the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to at least one of the upper layer.
  • Information, signals, and the like may be input and output via a plurality of network nodes.
  • Information and signals input and output may be stored in a specific location (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
  • Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
  • the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
  • the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
  • the determination may be made by a value represented by 1 bit (0 or 1) or by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, and the like may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
  • system and “network” may be used interchangeably.
  • precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “transmission power”, “phase rotation”, “antenna port”, “layer”, “number of layers”, “rank”, Terms such as “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” and the like may be used interchangeably.
  • base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ “Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)", “panel”, “cell” Terms such as, “sector”, “cell group”, “carrier”, “component carrier” may be used interchangeably.
  • a base station may be referred to by a term such as a macro cell, a small cell, a femto cell, a pico cell, and the like.
  • a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio ⁇ Head)).
  • a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio ⁇ Head).
  • RRH Small indoor base station
  • the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , A handset, a user agent, a mobile client, a client or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (maned or unmanned). ).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • the wireless base station in the present disclosure may be replaced with a user terminal.
  • communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration described above.
  • the configuration may be such that the user terminal 20 has the function of the wireless base station 10 described above.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, and the like may be replaced with a side channel.
  • the user terminal in the present disclosure may be replaced with a wireless base station.
  • the configuration may be such that the wireless base station 10 has the functions of the user terminal 20 described above.
  • an operation performed by the base station may be performed by an upper node (upper node) in some cases.
  • various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility @ Management @ Entity), S-GW (Serving-Gateway), etc., but not limited thereto, or a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched and used in execution.
  • the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no inconsistency.
  • elements of the various steps are presented in an exemplary order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-B Long Term Evolution-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication
  • system 5G (5th generation mobile communication system)
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • GSM Registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • UWB Ultra-WideBand
  • Bluetooth registered trademark
  • a system using other appropriate wireless communication methods a next-generation system extended based on these systems, and the like.
  • a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
  • any reference to elements using designations such as "first,” “second,” etc., as used in the present disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining means judging, calculating, computing, processing, deriving, investigating, looking up (for example, a table, Searching in a database or another data structure), ascertaining, etc., may be regarded as "deciding".
  • determination includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
  • judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
  • “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
  • the “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
  • connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, the light (both visible and invisible) regions, and the like.
  • the term “A and B are different” may mean that “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • Terms such as “separate” and “coupled” may be construed similarly to “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係るユーザ端末は、複数の送受信ポイントから繰り返し送信される下り共有チャネルを受信する受信部と、前記複数の送受信ポイントの少なくとも一つに対する、上り制御チャネルを用いた、前記下り共有チャネルの繰り返し毎の送達確認情報の送信、又は、前記下り共有チャネルの全ての繰り返しに基づいて生成される送達確認情報の送信を制御する制御部と、を具備する。

Description

ユーザ端末
 本開示は、次世代移動通信システムにおけるユーザ端末に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-14)では、ユーザ端末(UE:User Equipment)は、下り制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)を介して伝送される下り制御情報(DCI:Downlink Control Information、DLアサインメント等ともいう)に基づいて、下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。また、ユーザ端末は、DCI(ULグラント等ともいう)に基づいて、上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。
 将来の無線通信システム(例えば、NR、5G、5G+又はRel.15以降)では、ビームフォーミング(BF:Beam Forming)を利用して通信を行うことが検討されている。このため、ユーザ端末は、所定のチャネル及び信号の少なくとも一つ(チャネル/信号)の疑似コロケーション(QCL:Quasi-Co-Location)に関する情報(QCL情報)に基づいて、当該チャネル/信号の受信処理(例えば、デマッピング、復調、復号の少なくとも1つ)を制御することが検討されている。
 所定のチャネル/信号(例えば、PDSCH、PDCCH等)のQCL情報は、当該所定のチャネル/信号の送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)の状態(TCI状態)とも呼ばれる。
 ところで、上記将来の無線通信システムでは、下り共有チャネル(例えば、PDSCH)を繰り返して(repetition)送信することが検討されている。また、所定数の繰り返し(例えば、1繰り返し)毎に異なる複数の送受信ポイント(TRP:Transmission and Reception Point)から当該下り共有チャネルを送信することも検討されている。
 しかしながら、所定数の繰り返し毎に異なるTRPから当該下り共有チャネルが送信される場合、当該下り共有チャネルに対する送達確認情報(HARQ-ACK:Hybrid Automatic Repeat reQuest-Acknowledge、ACK又はNACK:Acknowledge又はNon- Acknowledge、A/N等ともいう)をどのようにフィードバックするかが問題となる。
 そこで、本開示は、異なるTRPから下り共有チャネルの繰り返し送信が行われる場合に、当該下り共有チャネルの送達確認情報のフィードバックを適切に制御可能なユーザ端末を提供することを目的の1つとする。
 本開示の一態様に係るユーザ端末は、複数の送受信ポイントから繰り返し送信される下り共有チャネルを受信する受信部と、前記複数の送受信ポイントの少なくとも一つに対する、上り制御チャネルを用いた、前記下り共有チャネルの繰り返し毎の送達確認情報の送信、又は、前記下り共有チャネルの全ての繰り返しに基づいて生成される送達確認情報の送信を制御する制御部と、を具備することを特徴とする。
 本開示の一態様によれば、異なるTRPから下り共有チャネルの繰り返し送信が行われる場合に、当該下り共有チャネルの送達確認情報のフィードバックを適切に制御できる。
図1A及び1Bは、複数のTRPを用いたチャネル/信号の繰り返し送信の一例を示す図である。 図2は、第1の態様に係る第1のHARQ-ACKフィードバックの一例を示す図である。 図3は、第1の態様に係る第1のHARQ-ACKフィードバックにおける上位レイヤシグナリングを用いた空間関係情報の設定の一例を示す図である。 図4は、第1の態様に係る第1のHARQ-ACKフィードバックにおけるDCIを用いた空間関係情報の設定の一例を示す図である。 図5は、第1の態様に係る第2のHARQ-ACKフィードバックの一例を示す図である。 図6A及び6Bは、第1の態様に係る第2のHARQ-ACKフィードバックにおける上位レイヤシグナリングを用いた空間関係情報の設定の一例を示す図である。 図7A及び7Bは、第1の態様に係る第2のHARQ-ACKフィードバックにおけるDCIを用いた空間関係情報の設定の一例を示す図である。 図8は、第2の態様に係るHARQ-ACKフィードバックの一例を示す図である。 図9A及び9Bは、第3の態様に係るHARQ-ACKフィードバックの一例を示す図である。 第4の態様に係るHARQ-ACKフィードバックの一例を示す図である。 第5の態様に係るHARQ-ACKフィードバックの一例を示す図である。 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図13は、一実施形態に係る無線基地局の全体構成の一例を示す図である。 図14は、一実施形態に係る無線基地局の機能構成の一例を示す図である。 図15は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。 図16は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。 図17は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システム(例えば、NR、5G、5G+又はRel.15以降)では、チャネル及び信号の少なくとも一つ(チャネル/信号)を繰り返して(repetition)送信することが検討されている。より具体的には、複数の送受信ポイント(TRP:Transmission and Reception Point)を用いてチャネル/信号の繰り返し送信を行うことが検討されている。
 当該チャネル/信号は、例えば、PDSCH、PDCCH、PUSCH、PUCCH、DL-RS、上り参照信号(UL-RS)等であるが、これに限られない。
 図1A及び1Bは、複数のTRPを用いたチャネル/信号の繰り返し送信の一例を示す図である。例えば、図1A及び1Bでは、TRP#1~#4を用いたPDSCHの繰り返し送信の一例が示される。なお、図1Aでは、TRP#1~#4の地理的な位置(TCI状態)が異なる一例が示されるが、これに限られない。TRP#1~#4は、同じ送信場所に設置される異なるアンテナパネルであってもよい。また、繰り返し送信に用いられるTRPの数も図示するものに限られない。
 図1Bに示すように、同一のPDSCH(又はDLデータ)が複数のTRPにコピーされ、繰り返しとしてPDSCHが送信されてもよい。ここで、「DLデータのコピー」とは、DLデータを構成する情報ビット系列、コードブロック、トランスポートブロック、符号化後の符号語系列の少なくとも一つを複製することであってもよい。
 或いは、「DLデータのコピー」とは、必ずしも同じビット列全ての複製を表すものではなく、同じ情報ビット列から生成される符号語の少なくとも一部、もしくは変調シンボル系列の少なくとも一部を複製することであってもよい。例えば、コピーされた複数のDLデータ間では、ある情報ビット系列を符号化して得られる符号語のRVは、同一であってもよいし、異なっていてもよい。または、コピーされた複数のDLデータは、前記異なるRVまたは同じRVを変調して得られる変調シンボル系列であってもよい。また、コピーされた複数のDLデータは、いずれもPDSCHとして送信される。当該PDSCHは、時間領域及び周波数領域の少なくとも一つが異なるリソースで繰り返されてもよい。
 例えば、図1Bに示すように、PDSCHは、周波数領域が同一で時間領域で連続するリソース(例えば、一以上のスロット)で繰り返されてもよい。あるいは、時間領域が同一で周波数領域で連続するリソース(例えば、一以上のリソースブロック(RB)又は一以上のRBを含むRBグループ(RBG))で繰り返しされてもよい。各繰り返しは、異なるTRPに送信されてもよい。
 なお、図1Bでは、異なる繰り返しに対応する複数のリソースは、それぞれ、時間領域又は周波数領域で連続する場合を示しているが、連続しなくともよい。また、当該複数のリソースは、時間領域及び周波数領域の双方が異なるリソースであってもよい。
 また、図1Bでは、1繰り返し毎に異なるTRPにPDSCHを送信する場合を示しているが、これに限られず、所定数の繰り返し(1以上の繰り返し)毎に異なるTRPにPDSCHを送信してもよい。
 なお、「TRP」は、ネットワーク、無線基地局、アンテナ装置、アンテナパネル、サービングセル、セル、コンポーネントキャリア(CC)又はキャリア等と、言い換えられてもよい。また、異なる送受信信号またはチャネルについて、「TRPが同一である」とは、前記異なる送受信信号またはチャネルの間、あるいはそれらの参照信号間で、TCI状態、QCL又はQCL関係が同一であると言い換えられてもよい。また、異なる送受信信号またはチャネルについて、「TRPが異なる」とは、前記異なる送受信信号またはチャネルの間、あるいはそれらの参照信号間で、TCI状態、QCL又はQCL関係が異なると言い換えられてもよい。
(QCL)
 当該将来の無線通信システムでは、ユーザ端末は、所定のチャネル及び信号の少なくとも一つ(チャネル/信号)の疑似コロケーション(QCL:Quasi-Co-Location)に関する情報(QCL情報)に基づいて、当該チャネル/信号の受信処理(例えば、デマッピング、復調、復号の少なくとも1つ)を制御することが検討されている。
 ここで、QCLとは、チャネル/信号の統計的性質を示す指標である。例えば、ある信号と他の信号がQCLの関係である場合、これらの異なる複数の信号間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、ユーザ端末の受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL、及びQCLの少なくとも1つの要素は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータについて示す:
 ・QCLタイプA:ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB:ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC:ドップラーシフト及び平均遅延、
 ・QCLタイプD:空間受信パラメータ。
 送信構成指示(TCI:Transmission Configuration Indication又はTransmission Configuration Indicator)の状態(TCI状態(TCI-state))は、所定のチャネル/信号(例えば、PDSCH、PDCCH、PUCCH又はPUSCH等)のQCL情報を示してもよい(含んでもよい)。
 TCI状態は、所定の識別子(TCI状態ID(TCI-StateId))によって識別され、対象となるチャネル/信号(又は当該チャネル用の参照信号(又は当該参照信号のアンテナポート))と、別の信号(例えば、別の下り参照信号(DL-RS:Downlink Reference Signal))とのQCLに関する情報(QCL情報(QCL-Info))を示してもよい(含んでもよい)。
 QCL情報は、例えば、対象となるチャネル/信号とQCL関係となるDL-RSに関する情報(DL-RS関連情報)及び上記QCLタイプを示す情報(QCLタイプ情報)、当該DL-RSが配置されるキャリア(セル)及びBWPに関する情報の少なくとも1つを含んでもよい。
 DL-RS関連情報は、対象となるチャネル/信号とQCL関係となるDL-RS及び当該DL-RSのリソースの少なくとも一つを示す情報を含んでもよい。例えば、ユーザ端末に複数の参照信号セット(RSセット)が設定される場合、当該DL-RS関連情報は、当該RSセットに含まれるRSのうち、チャネル(又は当該チャネル用のポート)とQCL関係を有するDL-RS、当該DL-RS用のリソースなどの少なくとも1つを示してもよい。
 ここで、DL-RSは、例えば、同期信号(SS:Synchronaization Signal)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、同期信号ブロック(SSB:Synchronization Signal Block)、モビリティ参照信号(MRS:Mobility RS)、チャネル状態情報参照信号(CSI-RS:Channel Satate Information-Reference Signal)、トラッキング用のCSI-RS、ビーム固有の信号などの少なくとも1つ、又はこれらを拡張、変更などして構成される信号(例えば、密度及び周期の少なくとも一方を変更して構成される信号)であってもよい。
 同期信号は、例えば、プライマリ同期信号(PSS:Primary Synchronaization Signal)及びセカンダリ同期信号(SSS:Secondary Synchronaization Signal)の少なくとも1つであってもよい。SSBは、同期信号及びブロードキャストチャネルを含む信号ブロックであり、SS/PBCHブロックなどと呼ばれてもよい。
<PDCCH用のTCI状態>
 PDCCH用のTCI状態は、PDCCHのQCLに関するQCL情報を含んでもよい。具体的には、当該TCI状態は、PDCCHの復調用参照信号(DMRS:DeModulation Reference Signal)(当該DMRSのアンテナポート(DMRSポート)又は当該DMRSポートのグループ(DMRSポートグループ))と、上記DL-RSとのQCLに関するQCL情報を含んでもよい。
 ユーザ端末に設定される制御リソースセット(CORESET:Control Resource Set)毎に一以上のTCI状態が設定(configure)されてもよい。また、1CORESETあたり一以上のTCI状態が設定される場合、単一のTCI状態がアクティブ化されてもよい。
 ユーザ端末は、CORESETに関連付けられる(又はアクティブ化される)TCI状態に基づいて、PDCCHに関するQCLを決定してもよい。具体的には、ユーザ端末は、PDCCHのDMRS(DMRSポート又はDMRSポートグループ)が、当該TCI状態に対応するDL-RSとQCLであると想定して、PDCCHの受信処理(例えば、復号、復調など)を制御してもよい。
 なお、一以上のTCIの設定及びアクティブ化の少なくとも一つは、上位レイヤシグナリングによって行われる。上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)などであってもよい。
 例えば、CORESET毎の一以上のTCI状態の設定は、RRC制御要素「TCI-StatesPDCCH」によって行われてもよい。また、設定されたTCI状態のアクティブ化又は非アクティブ化は、MAC CEによって制御されてもよい。
 また、CORESETは、サービングセルにおいてユーザ端末に設定される帯域幅部分(BWP:Bandwidth Part)ごとに、所定数(例えば、3個以下)設定されてもよい。
 ここで、BWPとは、キャリア(セル、サービングセル、コンポーネントキャリア(CC:Component Carrier)などともいう)内に設定される部分的な帯域であり、部分帯域などとも呼ばれる。BWPは、上り(UL:Uplink)用のBWP(UL BWP、上りBWP)及び下り(DL:Downlink)用のBWP(DL BWP、下りBWP)を有してもよい。上記所定数のCORESETが与えられる各BWPは、DL BWPであってもよい。
 また、CORESETには、一以上のPDCCH候補(PDCCH candidates)を含むサーチスペースが関連付けられてもよい。CORESETあたり一以上のサーチスペースが関連づけられてもよい。ユーザ端末は、サーチスペースを監視(モニタ(monitor))して、PDCCH(DCI)を検出してもよい。
 PDCCH候補は、一つのPDCCHがマッピングされるリソース単位であり、例えば、アグリゲーションレベルに応じた数の制御チャネル要素(CCE:Control Channel Element)で構成されてもよい。サーチスペースには、アグリゲーションレベルに応じた数のPDCCH候補が含まれてもよい。
 なお、本開示において、「CORESETのモニタ」、「サーチスペース(又はSSセット)のモニタ」、「PDCCH候補(又は一以上のPDCCH候補のセット(PDCCH候補セット))のモニタ」、「下り制御チャネル(例えばPDCCH)のモニタ」及び「下り制御情報(DCI)のモニタ」は、互いに読み替えられてもよい。また、「モニタ(監視)」は、「ブラインド復号及びブラインド検出の少なくとも一方」で読み替えられてもよい。
<PDSCH用のTCI状態>
 PDSCH用のTCI状態は、PDSCHのQCLに関するQCL情報を含んでもよい。具体的には、当該TCI状態は、PDSCHのDMRS又は当該DMRSのポートと、上記DL-RSとのQCLに関するQCL情報を含んでもよい。
 ユーザ端末は、PDSCH用のM(M≧1)個のTCI状態(M個のPDSCH用のQCL情報)を、上位レイヤシグナリングによって通知(設定(configure))されてもよい。なお、ユーザ端末に設定されるTCI状態の数Mは、ユーザ端末の能力(UE capability)及びQCLタイプの少なくとも1つによって制限されてもよい。
 PDSCHのスケジューリングに用いられるDCIは、TCI状態(PDSCH用のQCL情報)を示す所定のフィールド(例えば、TCI用のフィールド、TCIフィールド、TCI状態フィールドなどと呼ばれてもよい)を含んでもよい。当該DCIは、1つのセルのPDSCHのスケジューリングに用いられてもよく、例えば、DL DCI、DLアサインメント、DCIフォーマット1_0、DCIフォーマット1_1などと呼ばれてもよい。
 TCIフィールドは、所定ビット数(例えば、3ビット)で構成されてもよい。当該TCIフィールドがDCIに含まれるか否かは、基地局からUEに通知される情報によって制御されてもよい。当該情報は、DCI内にTCIフィールドが存在するか否か(present or absent)を示す情報(TCI-PresentInDCI)であってもよい。TCI-PresentInDCIは、例えば、上位レイヤシグナリング(RRCの情報要素(IE:Information Element))によってユーザ端末に設定されてもよい。
 当該DCIがxビット(例えば、x=3)のTCIフィールドを含む場合、基地局は、最大2(例えば、x=3の場合、8)種類のTCI状態を、上位レイヤシグナリングを用いてユーザ端末に予め設定(configure)してもよい。DCI内のTCIフィールドの値(TCIフィールド値)は、上位レイヤシグナリングにより予め設定されたTCI状態の1つを示してもよい。
 8種類を超えるTCI状態がユーザ端末に設定される場合、MAC CEを用いて、8種類以下のTCI状態がアクティブ化(指定)されてもよい。DCI内のTCIフィールドの値は、MAC CEによりアクティブ化されたTCI状態の一つを示してもよい。
 ユーザ端末は、DCI内のTCIフィールド値が示すTCI状態に基づいて、PDSCHに関するQCLを決定してもよい。具体的には、ユーザ端末は、PDSCHのDMRS(DMRSポート又はDMRSポートグループ)が、DCIで通知されたTCI状態に対応するDL-RSとQCLであると想定して、PDSCHの受信処理(例えば、復号、復調など)を制御してもよい。
 ユーザ端末は、PDSCHをスケジューリングするCORESETのためのTCI-PresentInDCIが有効である場合、当該CORESETにおいて送信されるPDCCHのDL DCIにTCIフィールドが存在する(含まれる)と想定してもよい。
 ユーザ端末は、PDSCHをスケジューリングするCORESETのためのTCI-PresentInDCIが無効である又はPDSCHがDCIフォーマット1_0によってスケジュールされる場合、当該PDSCHのアンテナポートQCLの決定において、当該PDSCHのためのTCI状態が、当該PDCCH送信に用いられるCORESETに適用されるTCI状態と同一である(identical)と想定してもよい。なお、本開示におけるアンテナポート(ポート)は、アンテナポートグループ(ポートグループ)で読み替えられてもよい。
(空間関係情報)
 また、当該将来の無線通信システムでは、ユーザ端末は、上りチャネル(例えば、PUCCH、PDSCH)及び上り信号の少なくとも一つ(上りチャネル/信号)と基準となる参照信号(基準RS(reference RS))との空間関係(spatial relation)に基づいて、当該上りチャネル/信号の送信処理(例えば、符号化、変調、マッピング)の少なくとも一つを制御することが検討されている。
 ここで、空間関係とは、上りチャネル/信号と基準RSとの空間的な関連付けに相当する。ユーザ端末は、当該空間関係に基づいて、上りチャネル/信号と同一の空間関係にある基準RSと同一のビームを用いて、上りチャネル/信号を送信できる。
 また、基準RSは、SSB、CSI-RS、サウンディング参照信号(SRS:Sounding Reference Signal)、ビーム固有の信号などの少なくとも1つ、又はこれらを拡張、変更などして構成される信号(例えば、密度及び周期の少なくとも一方を変更して構成される信号)であってもよい。
 上記空間関係を示す情報(空間関係情報(spatialRelationInfo)等とも呼ばれる)は、以下の少なくとも一つを示す情報を含んでもよい:
・当該空間関係情報の識別子(pucch-SpatialRelationInfoId)、
・上りチャネルと空間関係にある参照信号(例えば、SSBのインデックス、CSI-RSリソース(例えば、ノンゼロパワーCSI-RS)の識別子又はSRS用のリソースの識別子等)、
・上りチャネル(例えば、PUCCH)の送信電力制御用のパスロスの計算に用いられる基準RS(PUCCH-PathlossReferenceRS)(例えば、一以上のSSBのインデックス及びCSI-RS構成のインデックスの少なくとも一つ)、
・上りチャネル(例えば、PUCCH)の送信電力の開ループ制御用のパラメータ(p0-PUCCH)、
・上りチャネル(例えば、PUCCH)の送信期間iに対する送信電力の閉ループ制御用のTPCコマンド(δPUCCH)の時間位置(例えば、KPUCCH,l)。
 なお、「空間関係情報」は、上記TCI状態、QCL、QCL関係、QCL情報、SRSリソース指示(SRI:SRS resource indicator)等と言い換えられてもよい。
 ユーザ端末は、一以上の空間関係情報(例えば、サービングセルの上りBWPあたり一以上の空間関係情報)を上位レイヤシグナリングにより設定されてもよい。また、ユーザ端末は、当該一以上の空間関係情報がRRCシグナリングにより設定される場合、MAC CEにより一つの空間関係情報がアクティブ化されてもよい。
 しかしながら、図1A及び1Bに示すように、所定数の繰り返し毎に異なるTRPからPDSCHが送信される場合、当該PDSCHに対する送達確認情報(HARQ-ACK、ACK又はNACK、A/N等ともいう)をどのようにフィードバックするかが問題となる。
 そこで、本発明者らは、異なるTRPからPDSCHの繰り返し送信が行われる場合に、当該PDSCHに対するHARQ-ACKのフィードバックを適切に制御する方法を検討し、本発明に至った。
 以下、本実施の形態について、図面を参照して詳細に説明する。以下では、1繰り返し毎に異なるTRPからPDSCHが送信される例を説明するが、上述のように、当該PDSCHは、所定数の繰り返し(1以上の繰り返し)毎に異なるTRPによって送信されてもよく、所定数の繰り返し毎に異なるTRPにHARQ-ACKがフィードバックされてもよい。
 また、以下では、PDSCHの繰り返し送信が時間領域で異なるリソースで行われる例を中心に説明するが、上述のように、PDSCHの繰り返し送信は、時間領域及び周波数領域の少なくとも一つが異なるリソースで行われればよい。また、以下において、「PDCCH」及び「DCI」は相互に言い換えられてもよい。
 また、以下において、「異なるTRPから複数のチャネル/信号を送信する」とは、当該複数のチャネル/信号間で、TCI状態(QCL、QCL情報ともいう)が異なることと同義である。ユーザ端末は、TCI状態が異なる複数のチャネル/信号を受信する場合、当該複数のチャネル/信号が異なるTRPから送信されると想定してもよい。したがって、「所定数の繰り返し毎に異なる送受信ポイントから送信されるチャネル/信号を受信する」とは、所定数の繰り返し毎にTCI状態(QCL、QCL情報ともいう)が異なるチャネル/信号を受信することと同義である。
 また、以下において、「異なるTRPそれぞれに対して複数のチャネル/信号を送信する」とは、当該複数のチャネル/信号間で、空間関係情報が異なることと同義である。ユーザ端末は、異なる空間関係情報に基づいて複数のチャネル/信号を送信する場合、当該複数のチャネル/信号を異なるTRPに送信すると想定してもよい。したがって、「所定数の繰り返し毎に異なる送受信ポイントに対してチャネル/信号を送信する」とは、所定数の繰り返し毎に空間関係情報が異なるチャネル/信号を受信することと同義である。
(第1の態様)
 第1の態様では、繰り返し毎に異なる複数のTRPから(又は複数のTCI状態で)PDSCHが送信される場合(ユーザ端末が、繰り返し毎に異なるTCI状態に基づいてPDSCHを受信する場合)、PUCCHを用いて、繰り返し毎に異なるTRPに対して(繰り返し毎に異なる空間関係情報を用いて)、繰り返し毎のHARQ-ACKを送信する例について説明する。
 上記PUCCHの空間関係情報は、繰り返し毎に指定されてもよい(ユーザ端末は、各繰り返しに対応する空間関係情報を受信してもよい)。例えば、上記異なるTRPとUEとの地理的関係がそれぞれ異なる場合、当該空間関係情報は、繰り返し毎に異なってもよい。
 また、繰り返し毎のHARQ-ACKは、繰り返し間で共通に(同一に)割り当てられるPUCCHリソースを用いて送信されてもよいし(第1のHARQ-ACKフィードバック)、又は、繰り返し毎に個別に(別々に)割り当てられるPUCCHリソースを用いて送信されてもよい(第2のHARQ-ACKフィードバック)。
 ここで、PUCCHリソースとは、PUCCHの送信に用いられるリソースである。PUCCHリソースは、以下の少なくとも一つを含んでもよい:
・PUCCHに割り当てられる時間領域リソース(例えば、シンボル数)、
・PUCCHの時間領域における開始位置(例えば、開始シンボル)、
・初期巡回シフト(CS:Cyclic Shift)の間隔(初期CS間隔)、
・PUCCHに周波数ホッピングを有効化するか否かを示す情報、
・PUCCHに割り当てられる周波数領域リソース(例えば、物理リソースブロック(PRB:Physical Resource Block))、
・初期巡回シフト(CS:Cyclic Shift)のインデックス、
・時間領域(time-domain)における直交拡散符号(例えば、OCC:Orthogonal Cover Code)のインデックス、
・離散フーリエ変換(DFT)前のブロック拡散に用いられるOCCの長さ、
・DFT後のブロック拡散(block-wise spreading)に用いられるOCCのインデックス、
・PUCCHに割り当てられるPRBの数、
・周波数ホッピングが有効な場合の第2ホップの周波数領域リソースのインデックス。
 ユーザ端末には、一以上のPUCCHリソースをそれぞれ含む一以上のセット(PUCCHリソースセット)が上位レイヤシグナリングにより設定されてもよい。ユーザ端末は、上記HARQ-ACKを含む上り制御情報(UCI)のビット数に基づいてPUCCHリソースセットを選択してもよい。ユーザ端末は、DCI内の所定フィールド及び黙示的なインデックス(例えば、CCEインデックス)の少なくとも一つに基づいて、当該PUCCHリソースセットから当該UCIの送信に用いるPUCCHリソースを決定してもよい。
 以下では、PUCCHリソースの決定に用いられるDCI内の所定フィールドを、ARI(ACK/NACK Resource Indicator)フィールドと呼ぶが、当該所定フィールドの名称はこれに限られない。当該所定のフィールドは、例えば、PUCCHリソース識別子(PUCCH resource indicator)用フィールド、ACK/NACKリソースオフセット(ARO:ACK/NACK Resource Offset)又はTPCコマンド用フィールド等とも呼ばれてもよい。また、以下では、黙示的なインデックスが、例えば、当該DCIが割り当てられる最小のCCEインデックスとして説明を行うが、これに限られない。黙示的なインデックスは、明示的にシグナリングされる情報以外であれば、どのような情報であってもよい。
<第1のHARQ-ACKフィードバック>
 第1のHARQ-ACKフィードバックでは、PDSCHの繰り返し毎のHARQ-ACKの送信に、繰り返し間で同一のPUCCHリソースが用いられる。当該同一のPUCCHリソースは、DCI内のARIフィールド及びCCEインデックスの少なくとも一つに基づいて、決定されてもよい。当該DCIは、例えば、繰り返し係数KのPDSCHを全繰り返しに渡りスケジューリングするDCIであってもよい。
 一方、PDSCHの繰り返し毎のHARQ-ACKの送信に、繰り返し間でそれぞれ別々に割り当てられる空間関係情報が用いられてもよい。当該空間関係情報は、上位レイヤシグナリング及びDCIの少なくとも一つによって決定されればよい。
 図2は、第1の態様に係る第1のHARQ-ACKフィードバックの一例を示す図である。図2では、PDSCHの繰り返し係数Kが4である例が示される。また、図2では、繰り替しインデックスk=0、1、2、3それぞれ識別される繰り返しが、TRP#1、#2、#3、#4によってそれぞれ送信されるものとする。
 また、図2では、繰り返しインデックスk=0、1、2、3にそれぞれ、PDSCHのTCI状態ID#0、#1、#2、#3が関連付けられる場合を一例として説明する。なお、図2は例示にすぎず、RVインデックスpにTCI状態IDが関連付けられてもよい。以下では、図1A及び1Bとの相違点を中心に説明する。
 図2に示すように、繰り返し毎に異なるTRPからPDSCHが送信される場合、各繰り返しのHARQ-ACKは、各TRPに送信されてもよい。例えば、図2では、繰り返しインデックスk=0、1、2、3のPDSCHのHARQ-ACKは、それぞれのPDSCHを送信したTRP#1、#2、#3、#4にフィードバックされる。
 図2において、各TRPに対するHARQ-ACKの送信に用いられるPUCCHリソースは、同一であってもよい。ユーザ端末は、DCI内のARIフィールド及びCCEインデックスの少なくとも一つに基づいて、当該同一のPUCCHリソースを決定してもよい。当該DCIは、例えば、繰り返しインデックスk=0、1、2、3のPDSCHを一括でスケジューリングする単一のDCIであってもよい。
 一方、各TRPに対するHARQ-ACKの送信に用いられるPUCCHの空間関係情報は、異なってもよいし、又は、同一であってもよい。当該空間関係情報は、TRP毎(繰り返し毎又はPUCCH毎)に、上位レイヤシグナリング(例えば、RRCシグナリング)によりユーザ端末に設定されてもよいし、又は、DCIによって指定されてもよい。
≪上位レイヤシグナリングによる空間関係情報の設定≫
 図3は、第1の態様に係る第1のHARQ-ACKフィードバックにおける上位レイヤシグナリングを用いた空間関係情報の設定の一例を示す図である。図3では、DCI内のARIフィールドが3ビットであるものとするが、ARIフィールドのビット数は、これに限られない。
 図3に示すように、ユーザ端末は、DCI内のARIフィールドの値が示すPUCCHリソースを、“各TRPに対するHARQ-ACKの送信に用いられる同一のPUCCHリソース”として決定する。例えば、繰り返しインデックスk=0、1、2、3のPDSCHを一括でスケジューリングするDCI内のARIフィールドの値が“000”である場合、ユーザ端末は、PUCCHリソース#aを用いて、繰り返しインデックスk=0、1、2、3それぞれのPDSCHに対するHARQ-ACKを送信してもよい。
 一方、図3では、PUCCHの空間関係情報は、繰り返し毎(TRP毎又はPUCCH毎)に、上位レイヤシグナリング(例えば、RRCシグナリング)によりユーザ端末に設定される。このため、上記DCI内のARIフィールドの値によりどのPUCCHリソースが指定されるかに関係なく、繰り返し毎の空間関係情報は、準静的に固定である。
 このように、図3では、繰り返し係数KのPDSCHを一括でスケジューリングするDCI内のARIフィールドに基づいてPUCCHリソースが指定され、PUCCHの空間関係情報は上位レイヤシグナリングにより設定される。このため、異なるDCIによりスケジューリングされる繰り返し係数KのPDSCH間では異なるPUCCHリソースが割り当てられ得る。一方、PUCCHの空間関係情報は、準静的に固定されるので、DCI内のARIフィールドの値に関係なく、固定である。
≪DCIによる空間関係情報の設定≫
 図4は、第1の態様に係る第1のHARQ-ACKフィードバックにおけるDCIを用いた空間関係情報の設定の一例を示す図である。図4では、DCI内のARIフィールドの各値が、PUCCHリソースだけでなく、繰り返し毎(TRP毎又はPUCCH毎の)空間関係情報を示す点で、図3と異なる。図4では、図3との相違点を中心に説明する。
 各PUCCHリソースは、上位レイヤシグナリングにより、繰り返し毎のPUCCHの空間関係情報(各TRPに対するHARQ-ACKの送信に用いられるPUCCHの空間関係情報)に関連付けられてもよい。
 図4に示すように、ユーザ端末は、DCI内のARIフィールドの値に基づいて、繰り返し毎のPUCCHの空間関係情報を決定する。具体的には、ユーザ端末は、当該DCI内のARIフィールドに基づいて決定されるPUCCHリソースに関連付けられる空間関係情報を決定してもよい。
 このように、図4では、繰り返し係数KのPDSCHを一括でスケジューリングするDCI内のARIフィールドに基づいてPUCCHリソースだけでなく、PUCCHの空間関係情報が指定される。このため、異なるDCIによりスケジューリングされる繰り返し係数KのPDSCH間では異なるPUCCHリソースが割り当てられ得る。また、異なるDCIによりスケジューリングされる繰り返し係数KのPDSCH間では、同一のTRPに対するPUCCHであっても異なる空間関係情報が用いられ得る。
 HARQ-ACKフィードバックでは、繰り返し間でPUCCHリソースが共通であるため、繰り返し毎にHARQ-ACKをフィードバックする場合であっても、ユーザ端末におけるPUCCHリソースの決定を簡略化できる。
<第2のHARQ-ACKフィードバック>
 第2のHARQ-ACKフィードバックでは、PDSCHの繰り返し毎のHARQ-ACKの送信に、繰り返し間でそれぞれ別々に割り当てられるPUCCHリソースが用いられてもよい。繰り返し毎のPUCCHリソースは、DCI内のARIフィールド及びCCEインデックスの少なくとも一つに基づいて、決定されてもよい。当該DCIは、例えば、繰り返し係数KのPDSCHを繰り返し毎にスケジューリングするDCIであってもよい。
 また、PDSCHの繰り返し毎のHARQ-ACKの送信に、繰り返し間でそれぞれ別々に割り当てられる空間関係情報が用いられる。当該空間関係情報は、上位レイヤシグナリング及びDCIの少なくとも一つによって決定されればよい。
 図5は、第1の態様に係る第2のHARQ-ACKフィードバックの一例を示す図である。図5では、繰り返し毎に異なるTRPからPDSCHが送信される場合、各繰り返しのHARQ-ACKは、繰り返し毎に異なるPUCCHリソースを用いて各TRPに送信される点で図2と異なる。図5では、図2との相違点を中心に説明する。
 図5において、各TRPに対するHARQ-ACKの送信に用いられるPUCCHリソースは、異なってもよい。ユーザ端末は、DCI内のARIフィールド及びCCEインデックスの少なくとも一つに基づいて、繰り返し毎のPUCCHリソースを決定してもよい。当該DCIは、例えば、繰り返しインデックスk=0、1、2、3のPDSCHを一括でスケジューリングするDCIであってもよいし、繰り返しインデックスk=0、1、2、3のPDSCHをそれぞれスケジューリングするDCIであってもよい。
 また、各TRPに対するHARQ-ACKの送信に用いられるPUCCHの空間関係情報は、異なってもよいし、又は、同一であってもよい。当該空間関係情報は、TRP毎(繰り返し毎又はPUCCH毎)に、上位レイヤシグナリング(例えば、RRCシグナリング)によりユーザ端末に設定されてもよいし、又は、DCIによって指定されてもよい。
≪上位レイヤシグナリングによる空間関係情報の設定≫
 図6A及び6Bは、第1の態様に係る第2のHARQ-ACKフィードバックにおける上位レイヤシグナリングを用いた空間関係情報の設定の一例を示す図である。図6A及び6Bでは、DCI内のARIフィールドが3ビットであるものとするが、ARIフィールドのビット数は、これに限られない。
 図6Aでは、繰り返し係数Kの全ての繰り返しのPDSCHをスケジューリングするDCIについて説明する。図6Aに示すように、当該DCI内のARIフィールドの各値は、繰り返し毎(TRP毎、PUCCH毎又は繰り返しインデックス毎)のPUCCHリソースを示してもよい。
 例えば、当該DCI内のARIフィールドの値が“000”である場合、ユーザ端末は、繰り返し係数K=4の1回目(例えば、図5の繰り返しインデックスk=0)のPDSCHに対するHARQ-ACKをPUCCHリソース#aを用いて送信してもよい。同様に、2、3、4回目(例えば、図5の繰り返しインデックスk=1、2、3)のPDSCHに対するHARQ-ACKをPUCCHリソース#b、#c、#dを用いて送信してもよい。
 図6Bでは、繰り返し係数Kの繰り返し毎にPDSCHをスケジューリングするDCIについて説明する。図6Bに示すように、当該DCI内のARIフィールドの各値は、対象となる繰り返し(TRP、PUCCH又は繰り返しインデックス)のPUCCHリソースを示してもよい。
 例えば、ユーザ端末は、繰り返し係数K=4の1回目(例えば、図5の繰り返しインデックスk=0)のPDSCHをスケジューリングするDCI内のARIフィールドの値に基づいて、当該1回目のPDSCHに対するHARQ-ACKの送信に用いるPUCCHリソースを決定してもよい。同様に、2回目以降のPDSCHに対するHARQ-ACKの送信に用いるPUCCHリソースも同様に決定される。
 また、図6A及び6Bでは、PUCCHの空間関係情報は、繰り返し毎(TRP毎又はPUCCH毎)に、上位レイヤシグナリング(例えば、RRCシグナリング)によりユーザ端末に設定される。このため、上記DCI内のARIフィールドの値によりどのPUCCHリソースが指定されるかに関係なく、繰り返し毎の空間関係情報は、準静的に固定である。
 このように、図6A及び6Bでは、DCI内のARIフィールド値に基づいて繰り返し毎に異なるPUCCHリソースが割り当てられ得る。一方、PUCCHの空間関係情報は、準静的に固定されるので、DCI内のARIフィールドの値に関係なく、固定である。
≪DCIによる空間関係情報の設定≫
 図7A及び7Bは、第1の態様に係る第2のHARQ-ACKフィードバックにおけるDCIを用いた空間関係情報の設定の一例を示す図である。図7A及び7Bでは、DCI内のARIフィールドの各値が、PUCCHリソースだけでなく、繰り返し毎(TRP毎又はPUCCH毎の)空間関係情報を示す点で、図6A及び6Bと異なる。図7A及び7Bでは、図6A及び6Bとの相違点を中心に説明する。
 図7Aでは、繰り返し係数Kの全ての繰り返しのPDSCHをスケジューリングするDCIについて説明する。当該DCI内のARIフィールドの各値が示す繰り返し毎(TRP毎又は繰り返しインデックス毎)のPUCCHリソースは、上位レイヤシグナリングにより、繰り返し毎のPUCCHの空間関係情報(各TRPに対するHARQ-ACKの送信に用いられるPUCCHの空間関係情報)に関連付けられてもよい。
 例えば、図7Aでは、ユーザ端末は、DCI内のARIフィールドの値に基づいて、繰り返し毎のPUCCHリソースを決定してもよい。具体的には、ユーザ端末は、当該ARIフィールドの値に基づいて空間関係情報を決定してもよいし、又は、当該PUCCHリソースに上位レイヤシグナリングにより関連付けられる空間関係情報を決定してもよい。
 図7Bでは、繰り返し係数Kの繰り返し毎にPDSCHをスケジューリングするDCIについて説明する。図7Bに示すように、当該DCI内のARIフィールドの各値は、対象となる繰り返し(TRP、PUCCH又は繰り返しインデックス)のPUCCHリソースを示してもよい。当該PUCCHリソースは、上位レイヤシグナリングにより、PUCCHの空間関係情報(各TRPに対するHARQ-ACKの送信に用いられるPUCCHの空間関係情報)に関連付けられてもよい。
 図7Bでは、ユーザ端末は、繰り返し毎にPDSCHをスケジューリングするDCI内のARIフィールドの値に基づいて、当該PDSCHに対するHARQ-ACKの送信に用いるPUCCHリソースを決定してもよい。また、ユーザ端末は、当該ARIフィールドの値に基づいて空間関係情報を決定してもよいし、又は、当該PUCCHリソースに上位レイヤシグナリングにより関連付けられる空間関係情報を決定してもよい。
 第2のHARQ-ACKフィードバックでは、繰り返し間でPUCCHリソースが別々に割り当てられるため、繰り返し毎にHARQ-ACKをフィードバックする場合、第1のHARQ-ACKフィードバックと比べて柔軟にPUCCHリソースを制御できる。
(第2の態様)
 第2の態様では、繰り返し毎に異なる複数のTRPから(又は複数のTCI状態で)PDSCHが送信される場合(ユーザ端末が、繰り返し毎に異なるTCI状態に基づいてPDSCHを受信する場合)、繰り返し毎のHARQ-ACKをフィードバックする代わりに、繰り返し毎のHARQ-ACKの合成結果をフィードバックする点で第1の態様と異なる。以下では、第1の態様との相違点を中心に説明する。
 図8は、第2の態様に係るHARQ-ACKフィードバックの一例を示す図である。図8では、図2との相違点を中心に説明する。図8に示すように、繰り替しインデックスk=0、1、2、3のPDSCHが、TRP#1、#2、#3、#4によってそれぞれ送信される場合、それぞれのPDSCHに対するHARQ-ACKが合成されてもよい。
 例えば、繰り返し係数K(ここでは、K=4)のPDSCHの少なくとも一つの繰り返しの復号に成功する場合、ユーザ端末は、ACKを示す1ビットのHARQ-ACKをフィードバックしてもよい。一方、全ての繰り返しの復号に失敗する場合、ユーザ端末は、NACKを示す1ビットのHARQ-ACKをフィードバックしてもよい。
 ユーザ端末は、ACK又はNACKを示す1ビットのHARQ-ACKを繰り返して、複数のTRP(ここでは、TRP#1~#4)それぞれに対してPUCCHを用いて送信してもよい。
 上記HARQ-ACKの送信に用いるPUCCHリソースは、当該複数のTRP(繰り返し間又は繰り返しインデックス間)で同一であってもよいし(第1の態様の第1のHARQ-ACKフィードバック参照)、又は、個別に割り当てられてもよい(第1の態様の第2のHARQ-ACKフィードバック参照)。
 また、上記HARQ-ACKの送信に用いるPUCCHの空間関係情報は、TRP毎(繰り返し毎又は繰り返しインデックス毎)に上位レイヤシグナリング(例えば、RRCシグナリング)及びDCIの少なくとも一つにより割り当てられればよい。
 また、図8に示すように、ユーザ端末は、最後の繰り返し(ここでは、繰り返しインデックスk=3)から所定期間K1後に、上記1ビットのHARQ-ACKを複数のTRPに送信してもよい。当該所定期間K1は、予め仕様で定められていてもよいし、上位レイヤシグナリング及びDCIの少なくとも一つにより指定されてもよい。
 なお、図8では、上記1ビットのHARQ-ACKは、TRP#4、#3、#2、#1の順番にフィードバックされるが、フィードバック順序はこれに限られない。図8に示すように、PDSCHの最後の繰り返しを送信するTRP(ここでは、TRP#4)に対して先にフィードバックする場合、PDSCHの最後の受信ビームと、HARQ-ACKの最初の送信ビームとが同一となるので、ビームスウィープ(例えば、アナログビームフォーミングの場合)による負担を軽減できる。
 第2の態様では、繰り返し毎のHARQ-ACKの合成結果が繰り返されて複数のTRPにフィードバックされるので、繰り返し係数KのPDSCHを送信する当該複数のTRPが、当該PDSCHの再送が必要であるか否かを簡易に認識できる。
 なお、上記第2の態様では、繰り返し毎のPDSCHの復号結果を合成した1ビットのHARQ-ACKが、当該PDSCHを送信した複数のTRPにフィードバックされるが、これに限られず、単一のTRPにフィードバックされてもよい。当該単一のTRPは、例えば、プライマリTRP(プライマリセル(PCell)又はプライマリセカンダリセル(PSCell)等ともいう)であってもよい。
(第3の態様)
 第3の態様では、繰り返し毎に異なる複数のTRPから(又は複数のTCI状態で)PDSCHが送信される場合、繰り返し毎のHARQ-ACKをフィードバックする点で第1の態様と共通するが、繰り返し毎のHARQ-ACKを単一のTRPにフィードバックする点で第1の態様と異なる。以下では、第1の態様との相違点を中心に説明する。
 図9A及び9Bは、第3の態様に係るHARQ-ACKフィードバックの一例を示す図である。図9A及び9Bでは、図2、5との相違点を中心に説明する。
 図9Aに示すように、ユーザ端末は、各繰り返しのPDSCHを受信してから所定期間K1後に当該PDSCHに対するHARQ-ACKを単一のTRPにフィードバックしてもよい。当該所定期間K1は、予め仕様で定められていてもよいし、上位レイヤシグナリング及びDCIの少なくとも一つにより指定されてもよい。
 当該単一のTRPは、上述のプライマリTRPであってもよいし、又は、ユーザ端末が最初に当該PDSCHをスケジューリングするDCIを最初に検出したTRP(サービングセル、セル等ともいう)であってもよい。
 また、図9Bに示すように、所定期間K1が、繰り返し係数KのPDSCHの繰り返し期間(繰り返しウィンドウ)内である場合、ACKを示すHARQ-ACKに基づいて、他のTRPからの繰り返しの送信が停止されてもよい。ユーザ端末は、前記ACKを示すHARQ-ACKを送信してから所定時間経過後以降、当該ACKが対応するデータの繰り返し送信が行われないと想定して、前記所定時間経過後以降の繰り返しに対する受信信号処理を行わなくてもよい。
 例えば、図9Bでは、ユーザ端末は、繰り返しインデックスk=0のPDSCHの復号に成功し、当該PDSCHの受信から所定期間K1後にACKを、TRP#1にフィードバックする。
 図9Bにおいて、ユーザ端末からのACKを受信したTRP#1は、TRP#4に対して最後の繰り返し(繰り返しインデックスk=3)のPDSCHの送信中止を指示する指示情報を送信してもよい。TRP#4は、TRP#1からの指示情報にも基づいて、当該PDSCHの送信を中止してもよい。この場合、TRP#1及びTRP#4は、例えば、光回線等の理想的なインターフェース(ideal interface)で接続されていてもよい。
 なお、図9A及び9Bにおいて、各繰り返しのHARQ-ACKのフィードバックに用いられるPUCCHリソースは、同一であってもよいし(第1の態様の第1のHARQ-ACKフィードバック参照)、又は、個別に割り当てられてもよい(第1の態様の第2のHARQ-ACKフィードバック参照)。
 また、同一のTRPに対して各繰り返しのHARQ-ACKをフィードバックする場合、各HARQ-ACKの送信に用いるPUCCHの空間関係情報は、同一であってもよい。当該空間関係情報は、上位レイヤシグナリング(例えば、RRCシグナリング)及びDCIの少なくとも一つにより割り当てられればよい。
 第3の態様では、各繰り返しのHARQ-ACKが単一のTRPにフィードバックされるので、当該HARQ-ACKに基づく再送制御を当該単一のTRPが集中的に行うことができる。
(第4の態様)
 第4の態様では、繰り返し毎に異なる複数のTRPから(又は複数のTCI状態で)PDSCHが送信される場合、繰り返し毎のHARQ-ACKをフィードバックする点で第1の態様と共通するが、全ての繰り返しのHARQ-ACKをそれぞれ複数のTRPにフィードバックする点で第1の態様と異なる。以下では、第1の態様との相違点を中心に説明する。
 図10は、第4の態様に係るHARQ-ACKフィードバックの一例を示す図である。図10では、図2、5との相違点を中心に説明する。
 図10に示すように、繰り替しインデックスk=0、1、2、3のPDSCHが、TRP#1、#2、#3、#4によってそれぞれ送信される場合、それぞれのPDSCHに対するHARQ-ACKが、それぞれ、PDSCHを送信したTRP#4、#3、#2、#1に対して送信してもよい。
 例えば、図10では、繰り替しインデックスk=0、1のPDSCHの復号に失敗し、繰り返しインデックスk=2、3のPDSCHの復号に成功する。このため、ユーザ端末は、NACK、NACK、ACK、ACKを示す4ビットのHARQ-ACKを、それぞれ、繰り替しインデックスk=3、2、1、0のPDSCHを送信したTRP#4、#3、#2、#1に対して送信する。
 図10に示すように、ユーザ端末は、最後の繰り返し(ここでは、繰り返しインデックスk=3)から所定期間K1後に、上記1ビットのHARQ-ACKを複数のTRPに送信してもよい。当該所定期間K1は、予め仕様で定められていてもよいし、上位レイヤシグナリング及びDCIの少なくとも一つにより指定されてもよい。
 なお、当該繰り返し係数K(ここでは、K=4)と等しいビット数のHARQ-ACKがそれぞれ複数のTRPにフィードバックする場合、フィードバックの順序は、図10に示すものに限られない。図10に示すように、PDSCHの最後の繰り返しを送信するTRP(ここでは、TRP#4)に対して先にフィードバックする場合、PDSCHの最後の受信ビームと、当該HARQ-ACKの最初の送信ビームとが同一となるので、ビームスウィープ(例えば、アナログビームフォーミングの場合)による負担を軽減できる。
 なお、図10において、繰り返し係数Kと等しいビット数のHARQ-ACKのフィードバックに用いられるPUCCHリソースは、同一であってもよいし(第1の態様の第1のHARQ-ACKフィードバック参照)、又は、個別に割り当てられてもよい(第1の態様の第2のHARQ-ACKフィードバック参照)。
 また、当該HARQ-ACKの送信に用いるPUCCHの空間関係情報は、繰り返し毎(PUCCH毎又は繰り返しインデックス毎)に、上位レイヤシグナリング(例えば、RRCシグナリング)及びDCIの少なくとも一つにより割り当てられればよい。
 第4の態様では、繰り返し係数Kと等しいビット数のHARQ-ACK(全ての繰り返しそれぞれのHARQ-ACK)をそれぞれ複数のTRPにフィードバックするので、いずれかのTRPがHARQ-ACKの検出に失敗する場合でも、繰り返し係数KのPDSCHの再送制御を適切に行うことができる。
(第5の態様)
 第5の態様では、繰り返し毎に異なる複数のTRPから(又は複数のTCI状態で)PDSCHが送信される場合、繰り返し毎のHARQ-ACKをフィードバックする点で第1の態様と共通するが、繰り返し毎のHARQ-ACKをそれぞれ複数のTRPにフィードバックする点で第1の態様と異なる。以下では、第1の態様との相違点を中心に説明する。
 図11は、第5の態様に係るHARQ-ACKフィードバックの一例を示す図である。図11では、図11との相違点を中心に説明する。
 図11では、ユーザ端末は、各繰り返しのPDSCHの受信から所定期間K1後に、受信したPDSCHの復号結果に基づいて、繰り返し係数Kと等しいビット数のHARQ-ACKを生成し、当該HARQ-ACKをそれぞれ異なるTRPにフィードバックする。
 例えば、図11では、ユーザ端末は、初回の繰り返し(繰り返しインデックスk=0)のPDSCHの復号に失敗する場合、当該PDSCHの受信から所定期間K1後に、繰り返しインデックスk=0のNACKを示すHARQ-ACKをそれぞれ複数のTRP#1、#2、#3、#4にフィードバックする。
 また、図11では、ユーザ端末は、2回目の繰り返し(繰り返しインデックスk=1)のPDSCHの復号に成功する場合、当該PDSCHの受信から所定期間K1後に、繰り返しインデックスk=1のACKを示すHARQ-ACKを複数のTRP#1、#2、#3、#4にフィードバックする。同様に、3回目以降も各繰り返しインデックスkのPDSCHに対するHARQ-ACKが、複数のTRPにフィードバックされる。
 図11では、2回目の繰り返し(繰り返しインデックスk=1)のPDSCHに対するHARQ-ACK(ACK)を受信したTRP#4は、4回目の繰り返し(繰り返しインデックスk=1)のPDSCHの送信を中止してもよい。
 なお、図11において、各繰り返しのHARQ-ACKのフィードバックに用いられるPUCCHリソースは、同一であってもよいし(第1の態様の第1のHARQ-ACKフィードバック参照)、又は、個別に割り当てられてもよい(第1の態様の第2のHARQ-ACKフィードバック参照)。
 また、異なるTRPに対するHARQ-ACKの送信に用いるPUCCHの空間関係情報は、同一であってもよいし、異なってもよい。当該空間関係情報は、TRP毎に、上位レイヤシグナリング(例えば、RRCシグナリング)及びDCIの少なくとも一つにより割り当てられればよい。
 第5の態様では、各繰り返しのHARQ-ACKがPDSCHの繰り返しを行う全てのTRPにフィードバックされるので、繰り返し係数KのPDSCHの繰り返し期間(繰り返しウィンドウ)内であれば、当該HARQ-ACKに基づいて、PDSCHの繰り返し送信を中止できる。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図12は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末ごとに1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
<無線基地局>
 図13は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ101は、例えばアレーアンテナによって構成してもよい。
 図14は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
 制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、SSB、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
 制御部301は、ベースバンド信号処理部104におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部103におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部301は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部304及び/又は測定部305から取得されてもよい。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
 なお、送受信部103は、下り共有チャネル(例えば、PDSCH)のスケジュールのための下り制御情報(DCI)(DLアサインメントなど)を送信してもよい。
 また、送受信部103は、下り共有チャネルの繰り返し送信を行う場合、少なくとも一部の繰り替しについての下り共有チャネルを送信してもよい。また、送受信部103は、当該下り共有チャネルの全ての繰り返しのスケジューリングに用いられるDCIを送信してもよい。また、送受信部103は、当該下り共有チャネルの所定数毎の繰り返しのスケジューリングに用いられるDCIを送信してもよい。
 また、送受信部103は、上り制御チャネルを用いて、前記下り共有チャネルの繰り返し毎の送達確認情報、又は、前記下り共有チャネルの全ての繰り返しに基づいて生成される送達確認情報を受信してもよい。
 また、制御部301は、下り共有チャネルの繰り返し送信を制御してもよい。具体的には、所定数の繰り返し毎に異なる送受信ポイントからのPDSCHの送信を制御してもよい。
 また、制御部301は、当該下り共有チャネルの全ての繰り返しのスケジューリングに用いられるDCIの生成及び送信の少なくとも一つを制御してもよい。また、制御部301は、当該下り共有チャネルの所定数毎の繰り返しのスケジューリングに用いられるDCIの生成及び送信の少なくとも一つを制御してもよい。
 また、制御部301は、上り制御チャネルを用いて、前記下り共有チャネルの繰り返し毎の送達確認情報の受信、又は、前記下り共有チャネルの全ての繰り返しに基づいて生成される送達確認情報の受信を制御してもよい。
<ユーザ端末>
 図15は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ201は、例えばアレーアンテナによって構成してもよい。
 図16は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 制御部401は、ベースバンド信号処理部204におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部203におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部401は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部404及び/又は測定部405から取得されてもよい。
 また、制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、第1のキャリア及び第2のキャリアの一方又は両方について、同周波測定及び/又は異周波測定を行ってもよい。測定部405は、第1のキャリアにサービングセルが含まれる場合に、受信信号処理部404から取得した測定指示に基づいて第2のキャリアにおける異周波測定を行ってもよい。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
 なお、送受信部203は、下り共有チャネル(例えば、PDSCH)のスケジュールのための下り制御情報(DCI)(DLアサインメントなど)を受信してもよい。
 また、送受信部203は、下り共有チャネルの繰り返し送信を行う場合、所定数の繰り返し毎に異なる送受信ポイントから下り共有チャネルを受信してもよい。また、送受信部203は、当該下り共有チャネルの全ての繰り返しのスケジューリングに用いられるDCIを受信してもよい。また、送受信部203は、当該下り共有チャネルの所定数毎の繰り返しのスケジューリングに用いられるDCIを受信してもよい。
 また、送受信部203は、複数の送受信ポイントの少なくとも一つに対して、上り制御チャネルを用いて、前記下り共有チャネルの繰り返し毎の送達確認情報、又は、前記下り共有チャネルの全ての繰り返しに基づいて生成される送達確認情報を送信してもよい。
 また、制御部401は、当該下り共有チャネルの全ての繰り返しのスケジューリングに用いられるDCIの受信を制御してもよい。また、制御部401は、当該下り共有チャネルの所定数の繰り返し毎のスケジューリングに用いられるDCIの受信を制御してもよい。
 また、制御部401は、複数の送受信ポイントの少なくとも一つに対する、上り制御チャネルを用いた、前記下り共有チャネルの繰り返し毎の送達確認情報の送信、又は、前記下り共有チャネルの全ての繰り返しに基づいて生成される送達確認情報の送信を制御してもよい。
 また、制御部401は、上位レイヤシグナリング及び前記下り共有チャネルのスケジューリングに用いられる下り制御情報内の所定フィールド値の少なくとも一つに基づいて前記繰り返し毎の空間関係情報を決定し、該空間関係情報に基づいて前記繰り返し毎の前記送達確認情報の送信を制御してもよい。
 また、制御部401は、下り制御情報内の所定フィールド値及び前記下り制御情報が配置される制御チャネル要素(CCE)のインデックスの少なくとも一つに基づいて、前記全ての繰り返し間で同一に割り当てられる前記上り制御チャネル用のリソースを決定してもよい(第1のHARQ-ACKフィードバック)。
 また、制御部401は、下り制御情報内の所定フィールド値及び前記下り制御情報が配置される制御チャネル要素(CCE)のインデックスの少なくとも一つに基づいて、前記繰り返し毎に割り当てられる前記上り制御チャネル用のリソースを決定してもよい(第2のHARQ-ACKフィードバック)。
 前記下り制御情報は、前記下り共有チャネルの前記全ての繰り返しのスケジューリングに用いられる、又は、前記下り共有チャネルの前記繰り返し毎のスケジューリングに用いられてもよい。
 また、制御部401は、前記下り共有チャネルの各繰り返し又は最後の繰り返しを受信してから所定期間以降における、前記送達確認情報の送信を制御してもよい。
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。
 例えば、本開示の一実施形態における無線基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「送信電力」、「位相回転」、「アンテナポート」、「レイヤ」、「レイヤ数」、「ランク」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。
 また、本開示における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  複数の送受信ポイントから繰り返し送信される下り共有チャネルを受信する受信部と、
     前記複数の送受信ポイントの少なくとも一つに対する、上り制御チャネルを用いた、前記下り共有チャネルの繰り返し毎の送達確認情報の送信、又は、前記下り共有チャネルの全ての繰り返しに基づいて生成される送達確認情報の送信を制御する制御部と、
    を具備することを特徴とするユーザ端末。
  2.  前記制御部は、上位レイヤシグナリング及び前記下り共有チャネルのスケジューリングに用いられる下り制御情報内の所定フィールド値の少なくとも一つに基づいて前記繰り返し毎の空間関係情報を決定し、該空間関係情報に基づいて前記繰り返し毎の前記送達確認情報の送信を制御することを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、下り制御情報内の所定フィールド値及び前記下り制御情報が配置される制御チャネル要素(CCE)のインデックスの少なくとも一つに基づいて、前記全ての繰り返し間で同一に割り当てられる前記上り制御チャネル用のリソースを決定することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、下り制御情報内の所定フィールド値及び前記下り制御情報が配置される制御チャネル要素(CCE)のインデックスの少なくとも一つに基づいて、前記繰り返し毎に割り当てられる前記上り制御チャネル用のリソースを決定することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  5.  前記下り制御情報は、前記下り共有チャネルの前記全ての繰り返しのスケジューリングに用いられる、又は、前記下り共有チャネルの前記繰り返し毎のスケジューリングに用いられることを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  前記制御部は、前記下り共有チャネルの各繰り返し又は最後の繰り返しを受信してから所定期間以降における、前記送達確認情報の送信を制御することを特徴とする請求項1から請求項5のいずれかに記載のユーザ端末。
PCT/JP2018/023164 2018-06-18 2018-06-18 ユーザ端末 WO2019244221A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880096539.8A CN112567800A (zh) 2018-06-18 2018-06-18 用户终端
US17/253,431 US20210259004A1 (en) 2018-06-18 2018-06-18 User terminal
PCT/JP2018/023164 WO2019244221A1 (ja) 2018-06-18 2018-06-18 ユーザ端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023164 WO2019244221A1 (ja) 2018-06-18 2018-06-18 ユーザ端末

Publications (1)

Publication Number Publication Date
WO2019244221A1 true WO2019244221A1 (ja) 2019-12-26

Family

ID=68983293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023164 WO2019244221A1 (ja) 2018-06-18 2018-06-18 ユーザ端末

Country Status (3)

Country Link
US (1) US20210259004A1 (ja)
CN (1) CN112567800A (ja)
WO (1) WO2019244221A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181684A1 (ja) * 2020-03-13 2021-09-16 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2021227033A1 (en) 2020-05-15 2021-11-18 Apple Inc. Control signaling for pucch reliability enhancement
WO2022014055A1 (ja) * 2020-07-17 2022-01-20 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2022030003A1 (ja) * 2020-08-07 2022-02-10 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2022029723A1 (en) * 2020-08-07 2022-02-10 Telefonaktiebolaget Lm Ericsson (Publ) System and methods of pucch enhancement with intra-slot repetitions towards multiple trps
US20220132550A1 (en) * 2020-10-23 2022-04-28 FG Innovation Company Limited Method and user equipment for beam indication for uplink transmission
WO2022083773A1 (en) * 2020-10-23 2022-04-28 FG Innovation Company Limited Method and user equipment for beam indication for downlink reception
EP4120716A4 (en) * 2020-03-13 2023-12-06 Ntt Docomo, Inc. TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION
US12016037B2 (en) * 2021-10-22 2024-06-18 FG Innovation Company Limited Method and user equipment for beam indication for uplink transmission

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11432369B2 (en) * 2018-06-19 2022-08-30 Apple Inc. Reference signal and control information processing in 5G-NR wireless systems
CN110740480B (zh) * 2018-07-18 2021-08-24 维沃移动通信有限公司 用于波束失败恢复的方法、终端设备和网络侧设备
US11296827B2 (en) * 2018-07-27 2022-04-05 Qualcomm Incorporated Feedback mode indication for coordinated transmission
JP7248099B2 (ja) * 2018-08-03 2023-03-29 日本電気株式会社 通信のための方法
US11812449B2 (en) * 2018-08-10 2023-11-07 Qualcomm Incorporated Active beam management, configuration, and capability signaling
US20210297192A1 (en) * 2018-08-10 2021-09-23 Apple Inc. Enhanced harq feedback for reliable communications
CN109075921B (zh) * 2018-08-10 2021-12-14 北京小米移动软件有限公司 车联网设备之间的反馈信息传输方法、装置及系统
CN110876194B (zh) * 2018-08-29 2022-04-05 中国移动通信有限公司研究院 一种空间相关信息的指示方法和设备
CN113078927B (zh) * 2019-01-07 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021012163A1 (en) * 2019-07-22 2021-01-28 Lenovo (Beijing) Limited Apparatus and method of pucch repetition using multiple beams
US11483099B2 (en) * 2019-08-16 2022-10-25 Samsung Electronics Co., Ltd. Apparatus and method for transmission of uplink control information in network cooperative communication
US11470588B2 (en) * 2019-08-27 2022-10-11 Qualcomm Incorporated Techniques for managing physical uplink control channel grouping for multiple transmit receive points
US11824613B2 (en) * 2020-03-26 2023-11-21 Samsung Electronics Co., Ltd. Method and apparatus for a multi-beam downlink and uplink wireless system
US11871410B2 (en) * 2020-05-12 2024-01-09 Qualcomm Incorporated Joint shared channel timing allocation in downlink control information

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529014A (ja) * 2014-09-23 2017-09-28 日本電気株式会社 通信システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052949A2 (ko) * 2009-10-26 2011-05-05 엘지전자 주식회사 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
CN105409138B (zh) * 2013-07-26 2018-09-25 Lg 电子株式会社 发送用于mtc的信号的方法及其装置
US10397903B2 (en) * 2015-01-05 2019-08-27 Lg Electronics Inc. Method for transmitting HARQ-ACK information in multi-cell environment, and apparatus therefor
JP6081531B2 (ja) * 2015-06-26 2017-02-15 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2019125821A (ja) * 2016-05-13 2019-07-25 シャープ株式会社 端末装置および方法
WO2018084331A1 (ko) * 2016-11-02 2018-05-11 엘지전자 주식회사 Rrc 연결 요청을 전송하는 방법 및 이를 위한 단말
CN109150250B (zh) * 2016-11-04 2020-03-10 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
EP4054101A3 (en) * 2016-11-04 2023-01-04 Motorola Mobility LLC Identifying a resource for transmitting a first uplink channel
WO2018141246A1 (en) * 2017-02-03 2018-08-09 Huawei Technologies Co., Ltd. Downlink control information for network coordination schemes
CN109391435B (zh) * 2017-08-11 2021-05-25 电信科学技术研究院有限公司 Pucch传输方法、用户设备和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529014A (ja) * 2014-09-23 2017-09-28 日本電気株式会社 通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Remaining details of PDSCH repetitions", 3GPP TSG WG1 MEETING #93 RL-1806494, vol. RAN WG1, 21 May 2018 (2018-05-21) - 25 May 2018 (2018-05-25), XP051441696 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181684A1 (ja) * 2020-03-13 2021-09-16 株式会社Nttドコモ 端末、無線通信方法及び基地局
EP4120716A4 (en) * 2020-03-13 2023-12-06 Ntt Docomo, Inc. TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION
WO2021227033A1 (en) 2020-05-15 2021-11-18 Apple Inc. Control signaling for pucch reliability enhancement
EP4133842A4 (en) * 2020-05-15 2023-05-10 Apple Inc. COMMAND SIGNALING FOR PUCCH RELIABILITY IMPROVEMENT
WO2022014055A1 (ja) * 2020-07-17 2022-01-20 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2022030003A1 (ja) * 2020-08-07 2022-02-10 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2022029723A1 (en) * 2020-08-07 2022-02-10 Telefonaktiebolaget Lm Ericsson (Publ) System and methods of pucch enhancement with intra-slot repetitions towards multiple trps
US20220132550A1 (en) * 2020-10-23 2022-04-28 FG Innovation Company Limited Method and user equipment for beam indication for uplink transmission
WO2022083773A1 (en) * 2020-10-23 2022-04-28 FG Innovation Company Limited Method and user equipment for beam indication for downlink reception
US12016037B2 (en) * 2021-10-22 2024-06-18 FG Innovation Company Limited Method and user equipment for beam indication for uplink transmission

Also Published As

Publication number Publication date
US20210259004A1 (en) 2021-08-19
CN112567800A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2019244221A1 (ja) ユーザ端末
JP7171719B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019244207A1 (ja) ユーザ端末及び無線通信方法
WO2020044409A1 (ja) ユーザ端末及び無線通信方法
JP7116168B2 (ja) ユーザ端末
WO2019244222A1 (ja) ユーザ端末及び無線通信方法
US11611412B2 (en) Base station and radio communication method
WO2020053978A1 (ja) ユーザ端末及び無線通信方法
WO2020026454A1 (ja) ユーザ端末及び無線通信方法
WO2020026296A1 (ja) ユーザ端末及び無線通信方法
WO2020054036A1 (ja) ユーザ端末及び無線通信方法
WO2020031353A1 (ja) ユーザ端末及び無線通信方法
WO2020039484A1 (ja) ユーザ端末
WO2020026424A1 (ja) ユーザ端末
WO2020053940A1 (ja) ユーザ端末
WO2020021725A1 (ja) ユーザ端末及び無線通信方法
WO2020016934A1 (ja) ユーザ端末
JP7426171B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020053941A1 (ja) ユーザ端末及び無線通信方法
WO2020012661A1 (ja) ユーザ端末及び基地局
WO2020031354A1 (ja) ユーザ端末及び無線通信方法
WO2020012662A1 (ja) ユーザ端末及び基地局
WO2020031387A1 (ja) ユーザ端末及び無線通信方法
WO2020003522A1 (ja) ユーザ端末
JPWO2018203409A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP