WO2020053940A1 - ユーザ端末 - Google Patents

ユーザ端末 Download PDF

Info

Publication number
WO2020053940A1
WO2020053940A1 PCT/JP2018/033505 JP2018033505W WO2020053940A1 WO 2020053940 A1 WO2020053940 A1 WO 2020053940A1 JP 2018033505 W JP2018033505 W JP 2018033505W WO 2020053940 A1 WO2020053940 A1 WO 2020053940A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
dci
search space
tci
control
Prior art date
Application number
PCT/JP2018/033505
Other languages
English (en)
French (fr)
Inventor
一樹 武田
祐輝 松村
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US17/274,659 priority Critical patent/US11696302B2/en
Priority to PCT/JP2018/033505 priority patent/WO2020053940A1/ja
Publication of WO2020053940A1 publication Critical patent/WO2020053940A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to a user terminal in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A LTE Advanced, LTE @ Rel. 10, 11, 12, 13
  • LTE @ Rel. 8, 9 LTE @ Rel. 8, 9
  • a user terminal In an existing LTE system (for example, LTE@Rel.8-13), a user terminal (UE: User @ Equipment) is based on downlink control information (DCI: Downlink @ Control @ Information, also referred to as DL assignment, etc.) from a radio base station. Then, reception of a downlink shared channel (for example, PDSCH: Physical Downlink Shared Channel) is controlled. Further, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
  • the DCI format is also called a DCI format or the like.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the UE In a future wireless communication system (hereinafter, referred to as NR), the UE indicates a pseudo colocation (QCL: Quasi-Co-Location) relationship of a downlink shared channel to a specific DCI format (for example, DCI format 1_1, DL assignment). It is considered that the determination is made based on the state (TCI state) of a transmission configuration identifier (TCI) indicated by the value of a predetermined field in the field.
  • QCL pseudo colocation
  • NR it is considered to configure one or more partial bands (also referred to as bandwidth parts (BWP: Bandwidth Part), etc.) in a carrier (component carrier (CC: Component @ Carrier)). Also, setting one or more control resource sets (CORESET: Control ⁇ Resource ⁇ Set) in the BWP is being studied.
  • BWP Bandwidth Part
  • C Component @ Carrier
  • information Presence information, TCI presence information, tci-PresentInDCI, etc. indicating whether or not a predetermined field indicating a TCI state exists in a specific DCI format among a plurality of coresets set in BWP.
  • the size of DCI (payload size) monitored in the plurality of search spaces respectively associated with the plurality of coresets is different, so that the monitoring of the DCI may not be appropriately controlled.
  • a user terminal is a receiving unit that receives setting information of a plurality of control resource sets set in a partial band in a carrier, and among the plurality of control resource sets, specific downlink control information.
  • DCI downlink control information
  • FIG. 1 is a diagram illustrating an example of BWP switching.
  • 2A and 2B are diagrams illustrating an example of DCI when BWP # X in which a plurality of coresets having different TCI presence information are set is switched to BWP # Y.
  • 3A and 3B are diagrams illustrating an example of DCI monitored in a search space associated with a plurality of coresets according to the first embodiment.
  • FIG. 4 is a diagram illustrating another example of DCI monitored in a search space associated with a plurality of coresets according to the first example.
  • 5A and 5B are diagrams illustrating an example of DCI monitored in a search space associated with a plurality of coresets according to the second example.
  • FIG. 1 is a diagram illustrating an example of BWP switching.
  • 2A and 2B are diagrams illustrating an example of DCI when BWP # X in which a plurality of coresets having different TCI presence information are set is switched to BWP #
  • FIG. 6 is a diagram showing another example of DCI associated with a plurality of coresets according to the second example.
  • 7A and 7B are diagrams illustrating an example of BWP switching according to the third mode.
  • 8A and 8B are diagrams showing another example of the BWP switching according to the third mode.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • FIG. 10 is a diagram showing an example of the overall configuration of the base station according to the present embodiment.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of the base station according to the present embodiment.
  • FIG. 12 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the present embodiment.
  • the UE performs at least reception processing (eg, demapping, demodulation, and decoding) of the downlink shared channel.
  • reception processing eg, demapping, demodulation, and decoding
  • the QCL is an index indicating the statistical property of the channel. For example, when one signal and another signal have a QCL relationship, a Doppler shift (doppler shift), a Doppler spread (doppler spread), an average delay (average delay), and a delay spread (delay) among these different signals. spread) and spatial parameters (Spatial @ parameter) (for example, spatial reception parameters (Spatial @ Rx @ Prameter)).
  • the QCL may be called a space QCL or the like.
  • the QCL may be provided with one or more types (QCL types) having different parameters that can be assumed to be the same.
  • QCL types QCL types
  • four QCL types A to D having different parameters that can be assumed to be the same may be provided.
  • QCL type A QCL for which Doppler shift, Doppler spread, average delay and delay spread can be assumed to be the same QCL type B: QCL for which Doppler shift and Doppler spread can be assumed to be the same QCL type C: QCL for which the average delay and Doppler shift can be assumed to be the same QCL type D: QCL for which spatial reception parameters can be assumed to be the same
  • the state (TCI-state) of the transmission configuration identifier may indicate (or may include) information (also referred to as QCL information or the like) on the QCL for PDSCH.
  • the QCL information for the PDSCH is, for example, information on the QCL between the PDSCH (or the DMRS port for the PDSCH) and a downlink reference signal (DL-RS: Downlink Reference Signal). It may include at least one of information on RS (DL-RS related information) and information indicating the QCL type (QCL type information).
  • the DMRS port is an antenna port of a demodulation reference signal (DMRS: Demodulation Reference Signal).
  • DMRS Demodulation Reference Signal
  • a DMRS port may be a DMRS port group including a plurality of DMRS ports, and a DMRS port in this specification may be read as a DMRS port group.
  • the DL-RS related information may include at least one of information indicating a DL-RS having a QCL relation and information indicating a resource of the DL-RS.
  • the DL-RS related information includes PDSCH (or DMRS port for PDSCH) and QCL in the reference signals included in the RS set.
  • RS sets reference signal sets
  • a predetermined DL-RS to be related and resources for the DL-RS may be indicated.
  • the DL-RS is a synchronization signal (SS: Synchronization Signal) (for example, at least one of a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS: Secondary Synchronization Signal)), a mobility reference signal (SSS).
  • SS Synchronization Signal
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • MRS Mobility RS, channel state information reference signal (CSI-RS: Channel Satate Information-Reference Signal), demodulation reference signal (DMRS: DeModulation Reference Signal), broadcast channel (PBCH: Physical Broadcast Channel), beam-specific signal Or a signal configured by expanding and / or changing them (for example, a signal configured by changing the density and / or period).
  • CSI-RS Channel Satate Information-Reference Signal
  • DMRS Demodulation Reference Signal
  • PBCH Physical Broadcast Channel
  • beam-specific signal a signal configured by expanding and / or changing them (for example, a signal configured by changing
  • the block including the SS and the PBCH is also called a synchronization signal block (SSB: Synchronization Signal Block), an SS / PBCH block, or the like.
  • SSB Synchronization Signal Block
  • each TCI state can indicate (can include) QCL information for PDSCH.
  • the UE may be notified (configured) of one or more TCI states (one or more QCL information for PDSCH) by higher layer signaling (eg, RRC signaling) from the base station.
  • higher layer signaling eg, RRC signaling
  • the DCI (DL assignment, for example, DCI format 1_1) used for PDSCH scheduling includes a predetermined field (for example, a transmission configuration identifier (TCI) field) indicating a TCI state (QCL information for PDSCH), Status field or the like).
  • TCI field may be composed of a predetermined number of bits (for example, 3 bits).
  • the radio base station may configure up to eight types of TCI states in the user terminal in advance by higher layer signaling.
  • the value of the TCI field in the DCI may indicate one of the TCI states preset by higher layer signaling.
  • the upper layer signaling is, for example, RRC (Radio Resource Control) signaling, broadcast information (for example, MIB: Master Information Block), system information (for example, SIB: System Information Block, RMSI: Remaining Minimum System Information).
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • TCI states When more than eight types of TCI states are set in the user terminal, eight or less TCI states are activated by a MAC control element (MAC CE: Medium Access Control Element) (also referred to as an activation command). (Specified).
  • MAC CE Medium Access Control Element
  • the TCI field value in DCI may indicate one of the TCI states activated by MAC @ CE.
  • the time between the TCI state and the value (code point) of the TCI field in DCI is determined.
  • the mapping may be applied a predetermined time after slot n.
  • the predetermined period may be determined based on the number of slots N subframe, ⁇ slot for each subcarrier interval ⁇ per subframe .
  • code points For example, eight kinds of values (code points) “000” to “111” of the 3-bit TCI field are respectively set in upper layer signaling (or set by upper layer signaling and activated by MAC @ CE). ) May be associated with a TCI state.
  • the TCI state of the PDSCH may be set or activated for each carrier (CC, cell) for which the PDSCH is scheduled by DCI or for each partial band (bandwidth part (BWP: Bandwidth Part)) in the carrier.
  • CC carrier
  • BWP Bandwidth Part
  • the user terminal determines the QCL of the PDSCH (or the DMRS port of the PDSCH) based on the TCI state indicated by the value (code point) of the TCI field in the DCI. For example, the user terminal assumes that the DMRS port (or DMRS port group) of the PDSCH of the serving cell (or BWP) is DL-RS and QCL corresponding to the TCI state notified by DCI, and performs the PDSCH reception processing. (For example, a decoding process and / or a demodulation process). Thereby, the reception accuracy of PDSCH can be improved.
  • the UE receives information (also referred to as presence (presence) information, TCI presence information, tci-PresentInDCI, etc.) indicating whether or not a TCI field (TCI state) is present in DCI from the base station. May be.
  • the UE may receive the TCI presence information by higher layer signaling. Further, the UE may receive the TCI presence information for each control resource set (CORESET).
  • CORESET control resource set
  • CORESET is a control resource area, and may be configured to include one or more time domain resources (for example, symbols) and one or more frequency domain resources (for example, physical resource blocks (PRB: Physical @ Resource @ Block)). Good.
  • a search space including one or more candidate resources (PDCCH candidates) in which a downlink control channel (PDCCH: Physical Downlink Control Channel) is arranged may be associated with the CORESET.
  • the UE may assume that there is no TCI field in the DCI. On the other hand, when the TCI presence information is notified (activated), the UE may assume that the TCI field exists in the DCI.
  • DCI for example, DCI format 1_1.
  • DCI for example, DCI format 1_1
  • the number of DCI bits is equal regardless of whether the TCI presence information is validated.
  • the UE can appropriately control the monitoring (blind decoding) of the DCI.
  • BWP switching When a plurality of BWPs used for at least one of downlink (DL: Downlink) and uplink (UL: Uplink) are set in the carrier, at least one of the plurality of BWPs is activated. And at least one of deactivation (activation / deactivation) is controlled. That is, the BWP applied by the UE to signal transmission / reception is switched. Such an operation in which BWP is switched may be referred to as BWP switching.
  • FIG. 1 is a diagram illustrating an example of BWP switching.
  • FIG. 1 shows an example of switching from BWP # X to BWP # Y.
  • FIG. 1 shows an example in which the bandwidth of BWP # Y is wider than the bandwidth of BWP # X, but the present invention is not limited to this.
  • the UE monitors a search space associated with a control resource set (CORESET: Control ⁇ Resource ⁇ Set) of an activated BWP (active BWP) #X, and checks a shared channel (for example, PDSCH) of BWP #Y. Or, the DCI (DL assignment or UL grant, for example, DCI format 1_1 or 0_1) for scheduling the PUSCH is detected.
  • CORESET Control ⁇ Resource ⁇ Set
  • a shared channel for example, PDSCH
  • DCI DL assignment or UL grant, for example, DCI format 1_1 or 0_1
  • the DCI is transmitted by CORRESET set to BWP # X, but a predetermined field (for example, a BWP identifier (BI: BWP @ Indicator) field) in the DCI may indicate another BWP # Y.
  • a predetermined field for example, a BWP identifier (BI: BWP @ Indicator) field
  • the current active BWP is deactivated, and the other BWP becomes active. May be used.
  • the size of the DCI may be increased or decreased to match the bandwidth of the other BWP. For example, in FIG. 1, since the bandwidth of BWP # Y is wider than the bandwidth of BWP # X, a predetermined bit (for example, a predetermined number of most significant bits (MSB: Most : Significant Bit)) in the DCI is zero. It may be padded. Although not shown, when the bandwidth of BWP # Y is narrower than the bandwidth of BWP # X, a predetermined bit (for example, a predetermined number of MSBs) in the DCI may be removed (truncate).
  • MSB Most significant bits
  • the UE may ignore a predetermined field. For example, in FIG. 1, when BWP # X is set in one transport block (TB: Transport @ Block) and BWP # Y specified by DCI is set in 2TB, the UE sets a predetermined field for TB2 (for example, A modulation and coding scheme (MCS: Modulation and Coding Scheme) field, a new data identifier (NDI: New Data Indicator) field, and a redundancy version (RV: Redundancy Version) field may be ignored.
  • MCS Modulation and Coding Scheme
  • NDI New Data Indicator
  • RV Redundancy Version
  • the control based on the frequency domain resource allocation field controls the BWP bandwidth specified by the BI field in the DCI. It may be performed based on this.
  • one or more coresets can be set in one BWP. Also, it is assumed that TCI presence information indicating whether or not a TCI field exists in DCI is set for each BWP CORESET. Therefore, it is assumed that a plurality of coresets having different TCI presence information are set in the same BWP.
  • the size of DCI (for example, DCI format 1_1) to be monitored by the UE differs among the plurality of coresets.
  • the UE may not be able to properly control BWP switching.
  • FIGS. 2A and 2B are diagrams illustrating an example of DCI in a case where BWP # X in which a plurality of coresets having different TCI presence information are set is switched to BWP # Y.
  • BWP # X in which a plurality of coresets having different TCI presence information are set is switched to BWP # Y.
  • CORP # A and #B are set in BWP # X.
  • TCI presence information is validated in CORRESET # A, and TCI presence information is invalidated in CORRESET # B.
  • DCI for example, DCI format 1_1 arranged in search space # 1 associated with CORP # A of BWP # X includes a TCI field of a predetermined number of bits (for example, 3 bits). It is.
  • a DCI (for example, DCI format 1_1) arranged in a search space # 2 associated with CORPET # B of BWP # X has a TCI field of a predetermined number of bits (for example, 3 bits). Is not included.
  • monitoring is performed in the plurality of search spaces. It is conceivable that some of the DCIs monitored in the plurality of search spaces are appended with zeros until they are equal to the maximum size of the DCIs. However, how to add zero to some of the DCIs has not been sufficiently studied.
  • the UE cannot appropriately detect the DCI, and from the BWP # X where the DCI is detected, the BWP in which the PDSCH is scheduled by the DCI Switching to #Y may not be performed properly. Further, the UE may not be able to appropriately receive the PDSCH of BWP # Y scheduled by the DCI.
  • the present invention appropriately appends (zero) to at least one DCI arranged in a plurality of search spaces associated with a plurality of coresets set in BWP # X, thereby applying the plurality of search spaces to the plurality of search spaces.
  • the idea is to make the sizes of the DCIs assigned to the BWPs match, thereby appropriately controlling the switching from the BWP # X to the BWP # Y.
  • the present inventors assume that, when a plurality of CORESTs in which the TCI presence information is set differently in the same BWP are set, the UE invalidates the TCI presence information and sets the COREST # B. Adding a zero after the last field of the DCI monitored in the search space # 2 associated with the search space # 2 (first mode), or validating the TCI presence information in the DCI monitored in the search space # 2. (2nd aspect) that zero is added to the same position as the DCI monitored in search space # 1 associated with CORRESET # A set in the second step.
  • the specific DCI format is DCI format 1_1 used for PDSCH scheduling, but is not limited to this.
  • the DCI may have any format as long as it includes a predetermined field (for example, a TCI field) indicating a TCI state.
  • DCI format 1_1 includes, for example, the following fields in order, but is not limited thereto.
  • DCI format 1_1 may include at least one of the following fields.
  • the number of bits shown below is merely an example, and is not limited to the number shown below.
  • a field for identifying a DCI format ... A field for identifying a 1-bit carrier (Carrier Indicator (CI) field) ... 0 or 3 bits
  • Time domain resource assignment (Time domain resource assignment) field).
  • PRB Physical Resource Block
  • a field for indicating a PRB bundling size 0 or 1 bit
  • a field for specifying information relating to rate matching 0, 1, or 2 bits
  • a field for specifying information on a zero-power CSI-RS trigger a field for specifying a modulation and coding scheme, a new data identifier, and a redundant version for 0, 1 or 2 bit transport block 1, respectively. ...
  • transport block 2 5 bits + 1 bit + 2 bits If transport block 2 is present, a field specifying modulation and coding scheme, new data identifier and redundant version for transport block 2 respectively 0 bit or 5 bits + 1 bit + 2 bit ⁇
  • DAI downlink assignment index
  • TPC transmission power control
  • Field relating to initialization of DMRS sequence (sequence) of PDSCH 0 or 1 bit
  • the TCI field is not included.
  • a predetermined number of zeros may be added after the last field of DCI (for example, DCI format 1_1).
  • a TCI field of a predetermined number of bits has a position (for example, 3 bits) defined in a DCI format.
  • a predetermined number of bits eg, 3 bits
  • a last field eg, a DMRS sequence
  • the UE may assume the position of each field in the DCI (depending on) depending on which search space the DCI is monitored (detected) in which search space is associated with the DCI.
  • FIGS. 3A and 3B are diagrams showing an example of DCI monitored in a plurality of search spaces associated with a plurality of coresets according to the first embodiment.
  • CORP # A and #B are set in BWP # X.
  • CORRESET # A second control resource set
  • TCI existence information is validated
  • CORRESET # B first control resource set
  • TCI presence information is invalidated (or not validated).
  • the TCI field in DCI (for example, DCI format 1_1) is 3 bits, but the present invention is not limited to this.
  • the fields after the TCI field include an SRS request field, a CBGTI field, a CBGFI field, and a DMRS sequence initialization field, but are not limited thereto.
  • One or more fields may be included after the TCI field, or no other fields may be included (the TCI field may be the last field).
  • the DCI arranged in the search space # 1 associated with the coreset #A includes a 3-bit TCI field at a predetermined field position.
  • 3-bit zero “000” is added after the last field to DCI (for example, DCI format 1_1) arranged in search space # 2 associated with CORRESET #B.
  • the TCI field after the TCI field is determined. The position of each field is different.
  • the UE may determine based on which coreset the search space in which the DCI is detected is associated (i.e., which is associated with coreset where TCI presence information is enabled or coreset where TCI presence information is disabled). The position of each field after the TCI field in DCI may be determined. The UE may control the decoding of the DCI based on the determined position of each field.
  • a cyclic redundancy check (CRC) bit may be added or included in the DCI shown in FIGS. 3A and 3B.
  • the size of the DCI (payload size) may or may not include the number of the CRC bits.
  • the CRC bits are scrambled (or may be masked) by a predetermined radio network temporary identifier (RNTI: Radio ⁇ Network ⁇ Temporary ⁇ Indicator).
  • the 3-bit zero added instead of the TCI field may be added before the CRC bit, or may be added after the CRC bit.
  • FIG. 4 is a diagram showing another example of DCI monitored in a plurality of search spaces associated with a plurality of coresets according to the first embodiment.
  • at least one of PDCCH candidates (candidate resources) for DCI for example, DCI format 1_1 in search spaces # 1 and # 2 in which (configuration of) TCI presence information is associated with different CORRESET #A and #B, respectively.
  • An example of a case where a part overlaps is shown.
  • the UE may assume any of the following (1) to (4) for DCI detected in PDCCH candidates (overlapping portions) overlapping between search spaces # 1 and # 2. .
  • the UE assumes that DCI detected in a PDCCH candidate overlapping between search spaces # 1 and # 2 is detected in search space # 1 associated with CORESET # A for which TCI presence information is enabled. May be.
  • the UE may control the DCI reception process (eg, decoding, demodulation, etc.) on the assumption that the TCI field is included in a predetermined field position (eg, FIG. 3A).
  • the UE may control the PDSCH reception process based on the TCI state indicated by the value of the TCI field in the DCI.
  • the UE assumes that DCI detected in a PDCCH candidate overlapping between search spaces # 1 and # 2 is detected in search space # 2 associated with CORRESET #B for which TCI presence information is invalidated. May be.
  • the UE may control the DCI reception process (eg, decoding, demodulation, etc.) on the assumption that each field is included in each field position (eg, FIG. 3B).
  • the UE assumes that the PDCCH transmitted in CORRESET # B and the TCI state are the same, and controls the PDSCH receiving process based on the TCI state associated with CORRESET # B. Is also good.
  • the UE is configured to use CORESET # A in which TCI presence information is enabled or CORESET # B in which TCI presence information is enabled. Which of the associated search spaces is assumed to be detected may depend on the UE implementation (up @ to @ implementation).
  • the UE does not need to assume that PDCCH candidates overlap between a plurality of search spaces # 1 and # 2 respectively associated with a plurality of coresets #A and #B having different (configurations) of TCI presence information. Good.
  • the base station may configure all PDCCH candidates in the search spaces # 1 and # 2 with different resources, or map the DCI to PDCCH candidates that do not overlap between search spaces # 1 and # 2. You may.
  • a predetermined number of bits (the same number of bits as the TCI field, for example, 3 bits) after the last field of DCI detected in search space # 2 associated with CORRESET #B in which TCI presence information is invalidated Is added. For this reason, even when a plurality of RESETs #A and #B having different TCI presence information are set in the BWP, the DCIs monitored by the search spaces # 1 and # 2 associated with the respective RESETs #A and #B, respectively. Can be equal in size.
  • a TCI field of a predetermined number of bits has a position (for example, 3 bits) defined in a DCI format. (After the antenna port field and before the SRS request field).
  • a zero of a predetermined number of bits is associated with a CORESET for which TCI presence information is enabled. (Eg, after the antenna port field and before the SRS request field) at the same position as the DCI TCI field monitored in the search space.
  • the UE sets the position (field @ position) of each field other than the TCI field in the DCI. Can be determined.
  • FIGS. 5A and 5B are diagrams showing an example of DCI associated with a plurality of coresets according to the second embodiment.
  • the preconditions of FIGS. 5A and 5B are the same as those of FIGS. 3A and 3B, and the following mainly describes differences from FIGS. 3A and 3B.
  • the DCI arranged in the search space associated with CORRESET # A includes a 3-bit TCI field at a predetermined field position.
  • the DCI for example, DCI format 1_1
  • 3-bit zero “000” is located at the same position as the TCI field in FIG. 5A. Will be added.
  • the TCI field is independent of the DCI detected in the search space associated with either CORESET # A for which TCI presence information is enabled or CORESET # B for which TCI presence information is enabled.
  • the position of each subsequent field is the same.
  • the UE may determine whether the search space in which the DCI is detected is associated with which RESET (i.e., whether the TCI presence information is enabled or the RESET is disabled). The position of each field after the TCI field in DCI may be determined. The UE may control the decoding of the DCI based on the determined position of each field.
  • a CRC bit may be added or included in the DCI shown in FIGS. 5A and 5B.
  • the size of the DCI may or may not include the number of the CRC bits.
  • FIG. 6 is a diagram showing another example of DCI associated with a plurality of coresets according to the second example.
  • the preconditions in FIG. 6 are the same as those in FIG. 4, and the following description will focus on differences from FIG. 4.
  • the UE may assume any of the following (1) to (4) for DCI detected in PDCCH candidates (overlapping portions) overlapping between search spaces # 1 and # 2. .
  • the UE assumes that DCI detected in a PDCCH candidate overlapping between search spaces # 1 and # 2 is detected in search space # 2 associated with CORRESET #B for which TCI presence information is invalidated. May be.
  • the UE assumes that the TCI state of the PDSCH scheduled by the DCI is the same as the TCI state associated with RESET # B (the TCI state of the PDCCH transmitted by RESET # B), in other words, RESET. It may be assumed that they are the DMRS and QCL of the PDCCH transmitted in #B.
  • the network (for example, a base station) sets zero (for example, “000” in the case of 3 bits) in the TCI field in DCI detected in the PDCCH candidate overlapping between search spaces # 1 and # 2. You may. Further, when a non-zero value is set in a TCI field in a DCI detected in a PDCCH candidate overlapping between search spaces # 1 and # 2, the UE may discard the DCI.
  • the UE assumes that DCI detected in a PDCCH candidate overlapping between search spaces # 1 and # 2 is detected in search space # 1 associated with CORRESET #A for which TCI presence information is validated. May be.
  • the network for example, a base station
  • assigns an arbitrary value for example, “000” to 3 bits in the TCI field
  • Any of "111" may be set.
  • the UE may control the PDSCH receiving process based on the TCI state indicated by the value of the TCI field in the DCI.
  • the UE is configured to use CORESET # A in which TCI presence information is enabled or CORESET # B in which TCI presence information is enabled. Which of the associated search spaces is assumed to be detected may depend on the UE implementation.
  • whether or not the UE is implemented may be determined based on the value of the TCI field in the DCI. For example, if the UE detects the TCI field in the DCI with a value (code point) other than zero (for example, “000” in the case of 3 bits), the UE determines that the TCI presence information is enabled. It may be assumed that the DCI is detected in the search space associated with A.
  • the UE detects the TCI field in the DCI with a value of zero, whether the UE assumes that the DCI is detected in the search space associated with CORESET #A or #B depends on the UE. It may be up to the implementation.
  • the UE does not need to assume that PDCCH candidates overlap between a plurality of search spaces # 1 and # 2 respectively associated with a plurality of coresets #A and #B having different (configurations) of TCI presence information. Good.
  • the base station may configure all PDCCH candidates in the search spaces # 1 and # 2 with different resources, or map the DCI to PDCCH candidates that do not overlap between search spaces # 1 and # 2. You may.
  • the UE uses a PDCCH candidate (overlapping portion) that overlaps between search spaces # 1 and # 2 at the field position of the TCI field with zero (for example, “000 in the case of 3 bits, )), And assuming that the DCI is detected in search space # 1 associated with CORRESET #A in which the TCI presence information is enabled, the UE may perform the following 1) or Any of 2) may be assumed.
  • the UE may assume that zero in the field position of the TCI field in the DCI is zero padding and is a non-informative value (no @ informative @ value).
  • the UE assumes that the TCI state of the PDSCH is the same as the TCI state (TCI state of the PDCCH transmitting the DCI) associated with CORESET # B in which the DCI presence information is enabled. Is also good.
  • the UE may operate in a manner similar to the case where the TCI existence information is not set in the RESET for scheduling the PDSCH or the case where the PDSCH is scheduled in the DCI format 1_0.
  • the UE may assume that zero in the field position of the TCI field in DCI is the TCI field value. In case 2), the UE may assume that the TCI state of the PDSCH is the TCI state indicated by the TCI field value (ie, zero).
  • the TCI state indicated by the TCI field value (zero) is the identifier (eg, CRI-RS resource identifier) of the DL-RS (eg, CSI-RS or SSB) that has a relationship between PDSCH and QCL. (CRI: CSI-RS ⁇ Resource ⁇ Indicator) or SSB index).
  • the UE may control the reception process of the PDSCH, assuming that the DL-RS indicated by the identifier and the PDSCH have a QCL relationship.
  • the DCI detected in the search space associated with CORRESET # B in which the TCI presence information is invalidated has a predetermined number of bits (the same number of bits as the TCI field) in the same field position as the DCI including the TCI field. , For example, 3 bits). Therefore, regardless of whether the search space is associated with CORET # A in which the TCI presence information in the same BWP is validated or CORRESET # B in which the TCI presence information is invalidated, the search space is detected in the search space.
  • the size of the DCI to be performed can be made equal.
  • FIGS. 7A and 7B are diagrams illustrating an example of BWP switching according to the third embodiment. 7A and 7B, it is assumed that a BWP # Y different from the current active BWP # X is designated by the BI field in the DCI. 7A and 7B, zero is added to some DCIs as described in the first embodiment.
  • a predetermined number of zeros are added after the last field to the DCI monitored in search space # 2 associated with CORRESET #B in which TCI presence information is invalidated. Is done. Therefore, the size of the DCI can be made equal to the DCI monitored in the search space # 1 associated with the coreset #A in which the TCI presence information is validated. Thereby, the UE can appropriately control switching from BWP # X to BWP # Y.
  • FIGS. 8A and 8B are diagrams showing another example of the BWP switching according to the third embodiment. 8A and 8B differ from FIGS. 7A and 7B in that zero is added to some DCIs as described in the second embodiment.
  • the DCI monitored in the search space # 2 associated with the RESET # B in which the TCI presence information is invalidated includes the RESET # in which the TCI presence information is invalidated.
  • a predetermined number of zeros are added to the same position as the DCI TCI field monitored in search space # 1 associated with A. Therefore, the size of the DCI can be made equal to the DCI monitored in the search space # 1 associated with the coreset #A in which the TCI presence information is validated. Thereby, the UE can appropriately control switching from BWP # X to BWP # Y.
  • CORESET and “search space” may be interchanged with each other.
  • DCI monitored or detected in a search space associated with a predetermined coreset is “DCI monitored or detected in a predetermined coreset”, “DCI monitored or detected in a predetermined search space” May be paraphrased as appropriate.
  • DCI and DCI format may be interchanged with each other.
  • DCI monitoring may be paraphrased as DCI brand decoding, monitoring, and the like.
  • Detection of DCI may be detection of DCI in a specific DCI format.
  • wireless communication system Wireless communication system
  • communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 9 is a diagram showing an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a predetermined bandwidth as one unit can be applied.
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • NR New Radio
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the wireless communication system 1 may support dual connectivity between a plurality of RATs (Radio Access Technology) (multi-RAT dual connectivity (MR-DC: Multi-RAT Dual Connectivity)).
  • the MR-DC has dual connectivity (LTE and NR) in which an LTE (E-UTRA) base station (eNB) becomes a master node (MN) and an NR base station (gNB) becomes a secondary node (SN).
  • EN-DC E-UTRA-NR ⁇ Dual ⁇ Connectivity
  • NR base station (gNB) becomes MN
  • Dual connectivity (NR and LTE) NE-DC: NR-E-UTRA ⁇ Dual ⁇ Connectivity) may be included.
  • the wireless communication system 1 performs dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NN-DC: NR NR Dual Connectivity) in which both MN and SN become NR base stations (gNB). )) May be supported.
  • dual connectivity for example, dual connectivity (NN-DC: NR NR Dual Connectivity
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
  • a base station 11 forming a macro cell C1 having relatively wide coverage
  • a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
  • user terminals 20 are arranged in the macro cell C1 and each small cell C2.
  • the arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
  • the user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. In addition, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, five or less CCs and six or more CCs).
  • CCs cells
  • Communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, or the like
  • a wide bandwidth may be used, or between the user terminal 20 and the base station 11.
  • the same carrier as described above may be used. Note that the configuration of the frequency band used by each base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a single numerology may be applied, or a plurality of different numerologies may be applied.
  • Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like.
  • the numerology may be referred to as different.
  • the base station 11 and the base station 12 may be connected by wire (for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)) or wirelessly. Good.
  • wire for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)
  • CPRI Common Public Radio Interface
  • the base station 11 and each base station 12 are respectively connected to the upper station apparatus 30, and are connected to the core network 40 via the upper station apparatus 30.
  • the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • each base station 12 may be connected to the higher station apparatus 30 via the base station 11.
  • the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), a transmission / reception point, and the like. May be called.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
  • Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • Orthogonal Frequency Division Multiple Access (OFDMA) is applied to the downlink as a wireless access method, and Single Carrier-Frequency Division Multiple Access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier for communication.
  • the SC-FDMA divides a system bandwidth into bands constituted by one or continuous resource blocks for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like shared by each user terminal 20 are used. Used.
  • the PDSCH transmits user data, upper layer control information, SIB (System @ Information @ Block), and the like. Also, MIB (Master ⁇ Information ⁇ Block) is transmitted by PBCH.
  • SIB System @ Information @ Block
  • MIB Master ⁇ Information ⁇ Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical DownlinkFControl Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
  • the scheduling information may be notified by DCI.
  • a DCI that schedules DL data (eg, PDSCH) reception and / or measurement of a DL reference signal may be referred to as a DL assignment, a DL grant, a DL @ DCI, and so on.
  • a DCI that schedules transmission of UL data (eg, PUSCH) transmission and / or transmission of a UL sounding (for measurement) signal may be referred to as UL grant, UL @ DCI, and so on.
  • PCFICH transmits the number of OFDM symbols used for PDCCH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat Repeat request) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) for the PUSCH.
  • HARQ Hybrid Automatic Repeat Repeat request
  • the EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
  • PDSCH Downlink Shared Data Channel
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), and a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • a cell-specific reference signal CRS: Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DMRS Demodulation Reference Signal
  • PRS Positioning Reference Signal
  • a reference signal for measurement SRS: Sounding Reference Signal
  • DMRS reference signal for demodulation
  • the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 10 is a diagram showing an example of the overall configuration of the base station according to the present embodiment.
  • the base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
  • the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) Transmission / reception control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc., and transmission / reception processing are performed.
  • RLC Radio Link Control
  • MAC Medium Access
  • Transmission / reception control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 103 converts the baseband signal precoded and output from the baseband signal processing unit 104 for each antenna into a radio frequency band, and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
  • Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface.
  • the transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
  • FIG. 11 is a diagram showing an example of a functional configuration of the base station according to the present embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations only need to be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
  • the control unit (scheduler) 301 controls the entire base station 10.
  • the control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
  • the control unit 301 performs scheduling (for example, resource transmission) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; Quota). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • scheduling for example, resource transmission
  • a downlink data signal for example, a signal transmitted on the PDSCH
  • a downlink control signal for example, a signal transmitted on the PDCCH and / or the EPDCCH; Quota
  • control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • the control unit 301 controls scheduling of a synchronization signal (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and a downlink reference signal (for example, CRS, CSI-RS, and DMRS).
  • a synchronization signal for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
  • a downlink reference signal for example, CRS, CSI-RS, and DMRS.
  • the control unit 301 includes an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, (Transmission signal), uplink reference signal, and the like.
  • an uplink data signal for example, a signal transmitted on the PUSCH
  • an uplink control signal for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.
  • a random access preamble for example, (Transmission signal), uplink reference signal, and the like.
  • Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated signal to mapping section 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example.
  • the DL assignment and the UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 or the like.
  • CSI Channel ⁇ State ⁇ Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the result to transmission / reception section 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
  • Measuring section 305 receives power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Power for example, RSRP (Reference Signal Received Power)
  • reception quality for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • channel information for example, CSI
  • the measurement result may be output to the control unit 301.
  • the transmission / reception section 103 may transmit various setting information, downlink control information, a downlink shared channel, a downlink reference signal, and the like. Specifically, the transmitting / receiving section 103 may transmit setting information of a plurality of control resource sets set in a partial band in a carrier.
  • control unit 301 may control transmission processing (for example, transmission, mapping, modulation, encoding, and the like) of the downlink control information and the downlink shared channel.
  • control unit 301 includes a predetermined field indicating the state of the transmission configuration identifier in a specific downlink control information (DCI) format among a plurality of control resource sets set in a partial band in a carrier.
  • DCI downlink control information
  • FIG. 12 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
  • the radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204.
  • the transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processor 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
  • FIG. 13 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls a signal reception process in the reception signal processing unit 404, a signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
  • control unit 401 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
  • Transmission signal generation section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
  • the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10.
  • the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
  • the measuring unit 405 measures the received signal.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), and channel information (for example, CSI).
  • the measurement result may be output to the control unit 401.
  • the transmission / reception unit 203 may receive various setting information, downlink control information, a downlink shared channel, a downlink reference signal, and the like. Specifically, the transmission / reception unit 203 may receive setting information of a plurality of control resource sets set in a partial band in a carrier.
  • the control unit 401 may control the reception processing (for example, reception, demapping, demodulation, decoding, and the like) of the downlink control information and the downlink shared channel.
  • the control unit 401 has a predetermined field indicating the state of the transmission configuration identifier in a specific downlink control information (DCI) format among a plurality of control resource sets set in a partial band in a carrier.
  • DCI downlink control information
  • the downlink control information monitored in the first search space associated with the first control resource set for which the presence information is not validated may have zero added after a last field of the specific DCI format ( First embodiment, FIG. 3B).
  • the control unit 401 may assume that the downlink control information detected in the overlapping candidate resource is detected in the first search space or the second search space (first mode, FIG. 4).
  • the downlink control information monitored in a first search space associated with a first control resource set in which the presence information is not validated includes a downlink control information associated with a second control resource set in which the presence information is validated. Zero may be added to the same position as the downlink control information monitored in the second search space (second mode, FIG. 5B).
  • control unit 401 determines the downlink detected by the overlapping candidate resources.
  • Control information may be assumed to be detected in the first search space or the second search space (second aspect, FIG. 6).
  • the control unit 401 transmits the downlink shared channel scheduled by the downlink control information.
  • the state of the identifier is the same as the state of the TCI associated with the first control resource set, or the state of the transmission configuration identifier of the downlink shared channel is set in the predetermined field in the downlink control information. May be assumed to be indicated by a zero (second aspect, FIG. 6).
  • each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.), and may be implemented using these multiple devices.
  • the functional block may be realized by combining one device or the plurality of devices with software.
  • the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • the base station, the user terminal, and the like according to the present embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method according to the present disclosure.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the present embodiment.
  • the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 performs an arithmetic operation and communicates via the communication device 1004.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
  • the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be implemented similarly.
  • the memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the present embodiment.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like may be realized by the communication device 1004.
  • the transmission / reception unit 103 may be mounted physically or logically separated between the transmission unit 103a and the reception unit 103b.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard.
  • a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be configured by one or more periods (frames) in the time domain.
  • the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
  • SCS SubCarrier @ Spacing
  • TTI Transmission @ Time @ Interval
  • TTI Transmission @ Time @ Interval
  • radio frame configuration transmission and reception.
  • At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be constituted by one or more symbols in the time domain.
  • the mini-slot may be called a sub-slot.
  • a minislot may be made up of a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval)
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot is called a TTI.
  • You may. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
  • the TTI refers to, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
  • radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms.
  • the TTI having the above-described TTI length may be replaced with the TTI.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
  • one or more RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical @ RB
  • SCG Sub-Carrier @ Group
  • REG Resource @ Element @ Group
  • PRB pair an RB pair, and the like. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource @ Element).
  • RE Resource @ Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
  • the common RB may be specified by an index of the RB based on the common reference point of the carrier.
  • a PRB may be defined by a BWP and numbered within the BWP.
  • $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
  • BWP for a UE, one or more BWPs may be configured in one carrier.
  • At least one of the configured BWPs may be active, and the UE does not have to assume to transmit and receive a given signal / channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
  • the structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic @ Prefix) length, and the like can be variously changed.
  • the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented.
  • a radio resource may be indicated by a predetermined index.
  • Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
  • the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
  • Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
  • the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
  • the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
  • the determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, and the like may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
  • system and “network” as used in this disclosure may be used interchangeably.
  • precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “pseudo collocation (QCL: Quasi-Co-Location)”, “transmission power”, “phase rotation”, “antenna port” , “Antenna port group”, “layer”, “number of layers”, “rank”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel”, etc. The terms may be used interchangeably.
  • base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)”, “panel”, “cell” , “Sector”, “cell group”, “carrier”, “component carrier” and the like may be used interchangeably.
  • a base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
  • a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)).
  • a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head).
  • RRH small indoor base station
  • the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced with a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, and the like may be replaced with a side channel.
  • the user terminal in the present disclosure may be replaced with a base station.
  • a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
  • the operation performed by the base station may be performed by an upper node (upper node) in some cases.
  • various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution.
  • the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be interchanged in order as long as there is no inconsistency.
  • elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication
  • 5G 5th generation mobile communication system
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • GSM Registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.11 Wi-Fi
  • WiMAX registered trademark
  • UWB Ultra-WideBand
  • Bluetooth registered trademark
  • a system using other appropriate wireless communication methods and a next-generation system extended based on these methods.
  • a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
  • any reference to elements using designations such as "first,” “second,” etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
  • determining means judging, calculating, computing, processing, deriving, investigating, searching (upping, searching, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
  • determining includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
  • judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, etc. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
  • “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
  • the “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
  • connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
  • the term “A and B are different” may mean that “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • Terms such as “separate”, “coupled” and the like may be interpreted similarly to "different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係るユーザ端末は、キャリア内の部分帯域内に設定される複数の制御リソースセットの設定情報を受信する受信部と、前記複数の制御リソースセット間において、特定の下り制御情報(DCI)フォーマット内に送信構成識別子の状態を示す所定フィールドが存在するか否かを示す存在情報が異なって設定される場合、前記複数の制御リソースセットにそれぞれ関連付けられる複数のサーチスペースにおける前記特定のDCIフォーマットの下り制御情報の監視を制御する制御部と、を具備する。

Description

ユーザ端末
 本開示は、次世代移動通信システムにおけるユーザ端末に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末(UE:User Equipment)は、無線基地局からの下り制御情報(DCI:Downlink Control Information、DLアサインメント等ともいう)に基づいて、下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。また、ユーザ端末は、DCI(ULグラント等ともいう)に基づいて、上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。DCIのフォーマットは、DCIフォーマット等とも呼ばれる。
 将来の無線通信システム(以下、NRという)では、UEは、下り共有チャネルの疑似コロケーション(QCL:Quasi-Co-Location)の関係を、特定のDCIフォーマット(例えば、DCIフォーマット1_1、DLアサインメント)内の所定フィールドの値が示す送信構成識別子(TCI:Transmission Configuration Indicator)の状態(TCI状態)に基づいて決定することが検討されている。
 また、NRでは、キャリア(コンポーネントキャリア(CC:Component Carrier))内に一以上の部分帯域(帯域幅部分(BWP:Bandwidth Part)等ともいう)を設定(configure)することが検討されている。また、当該BWP内に一以上の制御リソースセット(CORESET:Control Resource Set)を設定することも検討されている。
 しかしながら、当該BWP内に複数のCORESETが設定される場合、当該複数のCORESETにそれぞれ関連付けられる複数のサーチスペースにおけるDCIの監視(monitor)(モニタリング、ブラインド復号等ともいう)を適切に制御できない恐れがある。
 例えば、BWP内に設定される複数のCORESET間において特定のDCIフォーマット内にTCI状態を示す所定フィールドが存在するか否かを示す情報(存在(presence)情報、TCI存在情報、tci-PresentInDCI等ともいう)が異なって設定される場合、前記複数のCORESETにそれぞれ関連付けられる複数のサーチスペースで監視されるDCIのサイズ(ペイロードサイズ)が異なる結果、当該DCIの監視を適切に制御できない恐れがある。
 そこで、本開示は、BWPに設定される複数のCORESETにそれぞれ関連付けられる複数のサーチスペースにおけるDCIの監視を適切に制御できるユーザ端末を提供することを目的の1つとする。
 本開示の一態様に係るユーザ端末は、キャリア内の部分帯域内に設定される複数の制御リソースセットの設定情報を受信する受信部と、前記複数の制御リソースセット間において、特定の下り制御情報(DCI)フォーマット内に送信構成識別子の状態を示す所定フィールドが存在するか否かを示す存在情報が異なって設定される場合、前記複数の制御リソースセットにそれぞれ関連付けられる複数のサーチスペースにおける前記特定のDCIフォーマットの下り制御情報の監視を制御する制御部と、を具備することを特徴とする。
 本開示の一態様によれば、BWPに設定される複数のCORESETにそれぞれ関連付けられる複数のサーチスペースにおけるDCIの監視を適切に制御できる。
図1は、BWPスイッチングの一例を示す図である。 図2A及び2Bは、TCI存在情報が異なる複数のCORESETが設定されるBWP#XをBWP#Yにスイッチする場合のDCIの一例を示す図である。 図3A及び3Bは、第1の態様に係る複数のCORESETに関連付けられるサーチスペースで監視されるDCIの一例を示す図である。 図4は、第1の態様に係る複数のCORESETに関連付けられるサーチスペースで監視されるDCIの他の例を示す図である。 図5A及び5Bは、第2の態様に係る複数のCORESETに関連付けられるサーチスペースで監視されるDCIの一例を示す図である。 図6は、第2の態様に係る複数のCORESETに関連付けられるDCIの他の例を示す図である。 図7A及び7Bは、第3の態様に係るBWPスイッチングの一例を示す図である。 図8A及び8Bは、第3の態様に係るBWPスイッチングの他の例を示す図である。 図9は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 図10は、本実施の形態に係る基地局の全体構成の一例を示す図である。 図11は、本実施の形態に係る基地局の機能構成の一例を示す図である。 図12は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 図13は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 図14は、本実施の形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(PDSCH用のQCL)
 NRでは、UEは、下り共有チャネル(例えば、PDSCH)の疑似コロケーション(QCL:Quasi-Co-Location)に関する情報に基づいて、当該下り共有チャネルの受信処理(例えば、デマッピング、復調、復号の少なくとも一つ)を制御することが検討されている。
 ここで、QCLとは、チャネルの統計的性質を示す指標である。例えば、ある信号と他の信号がQCLの関係である場合、これらの異なる複数の信号間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Prameter))の少なくとも一つが同一であると仮定できることをいう。QCLは、空間QCL等と呼ばれてもよい。
 QCLには、同一であると仮定できるパラメータが異なる一以上のタイプ(QCLタイプ)が設けられてもよい。例えば、同一であると仮定できるパラメータが異なる4つのQCLタイプA~Dが設けられてもよい。
・QCLタイプA:ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッドが同一であると仮定できるQCL
・QCLタイプB:ドップラーシフト及びドップラースプレッドが同一であると仮定できるQCL
・QCLタイプC:平均遅延及びドップラーシフトが同一であると仮定できるQCL
・QCLタイプD:空間受信パラメータが同一であると仮定できるQCL
 送信構成識別子(TCI:Transmission Configuration Indicator)の状態(TCI状態(TCI-state))は、PDSCH用のQCLに関する情報(QCL情報等ともいう)を示してもよい(含んでもよい)。当該PDSCH用のQCL情報は、例えば、当該PDSCH(又は当該PDSCH用のDMRSポート)と下り参照信号(DL-RS:Downlink Reference Signal)とのQCLに関する情報であり、例えば、QCL関係となるDL-RSに関する情報(DL-RS関連情報)及び上記QCLタイプを示す情報(QCLタイプ情報)の少なくとも一つを含んでもよい。
 ここで、DMRSポートは、復調用参照信号(DMRS:Demodulation Reference Signal)のアンテナポートである。DMRSポートは、複数のDMRSポートを含むDMRSポートグループであってもよく、本明細書におけるDMRSポートは、DMRSポートグループと読み替えられてもよい。
 当該DL-RS関連情報は、QCL関係となるDL-RSを示す情報及び当該DL-RSのリソースを示す情報の少なくとも一つを含んでもよい。例えば、UEに一以上の参照信号セット(RSセット)が設定される場合、当該DL-RS関連情報は、当該RSセットに含まれる参照信号の中でPDSCH(又はPDSCH用のDMRSポート)とQCL関係となる所定のDL-RS及び当該DL-RS用のリソースを示してもよい。
 ここで、DL-RSは、同期信号(SS:Synchronaization Signal)(例えば、プライマリ同期信号(PSS:Primary Synchronaization Signal)及びセカンダリ同期信号(SSS:Secondary Synchronaization Signal)の少なくとも一つ)、モビリティ参照信号(MRS:Mobility RS)、チャネル状態情報参照信号(CSI-RS:Channel Satate Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、報知チャネル(PBCH:Physical Broadcast Channel)、ビーム固有の信号などの少なくとも1つ、又はこれらを拡張及び/又は変更して構成される信号(例えば、密度及び/又は周期を変更して構成される信号)であってもよい。
 なお、SSとPBCHを含むブロックは、同期信号ブロック(SSB:Synchronaization Signal Block)、SS/PBCHブロック等とも呼ばれる。
 以上のように、各TCI状態は、PDSCH用のQCL情報を示すことができる(含むことができる)。UEに対しては、一以上のTCI状態(一以上のPDSCH用のQCL情報)が上位レイヤシグナリング(例えば、RRCシグナリング)により基地局から通知(設定(configure))されてもよい。
 PDSCHのスケジューリングに用いられるDCI(DLアサインメント、例えば、DCIフォーマット1_1)は、TCI状態(PDSCH用のQCL情報)を示す所定のフィールド(例えば、送信構成識別子(TCI:Transmission configuration indication)フィールド、TCI状態フィールド等ともいう)を含んでもよい。TCIフィールドは、所定ビット数(例えば、3ビット)で構成されてもよい。
 例えば、DCIが3ビットのTCIフィールドを含む場合、無線基地局は、最大8種類のTCI状態を上位レイヤシグナリングによりユーザ端末に予め設定(configure)してもよい。DCI内のTCIフィールドの値(TCIフィールド値)は、上位レイヤシグナリングにより予め設定されたTCI状態の一つを示してもよい。
 ここで、上位レイヤシグナリングとは、例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(例えば、MIB:Master Information Block)、システム情報(例えば、SIB:System Information Block、RMSI:Remaining Minimum System Informationなど)の少なくとも一つであればよい。
 8種類を超えるTCI状態がユーザ端末に設定される場合、MAC制御要素(MAC CE:Medium Access Control Control Element)(アクティブ化コマンド(activation command)等ともいう)により、8種類以下のTCI状態がアクティブ化(指定)されてもよい。DCI内のTCIフィールド値は、MAC CEによりアクティブ化されたTCI状態の一つを示してもよい。
 アクティブ化コマンドを伝送するPDSCHの送達確認情報(HARQ-ACK:Hybrid Automatic Repeat reQuest-Acknowledge)がスロットnで送信される場合、TCI状態とDCI内のTCIフィールドの値(コードポイント)との間のマッピングは、スロットnから所定期間後に適用されてもよい。当該所定期間は、1サブフレームあたりのサブキャリア間隔μ毎のスロット数Nsubframe,μ slotに基づいて決定されてもよい。
 例えば、3ビットのTCIフィールドの8種類の値(コードポイント)「000」~「111」は、それぞれ、上位レイヤシグナリングに設定される(又は上位レイヤシグナリングにより設定され、MAC CEによりアクティブ化される)TCI状態に関連付られてもよい。
 なお、PDSCHのTCI状態は、DCIによりPDSCHがスケジューリングされるキャリア(CC、セル)又は当該キャリア内の部分帯域(帯域幅部分(BWP:Bandwidth Part))毎に設定又はアクティブ化されてもよい。
 ユーザ端末は、DCI内のTCIフィールドの値(コードポイント)が示すTCI状態に基づいて、PDSCH(又はPDSCHのDMRSポート)のQCLを決定する。例えば、ユーザ端末は、サービングセル(又はBWP)のPDSCHのDMRSポート(又は、DMRSポートグループ)が、DCIで通知されたTCI状態に対応するDL-RSとQCLであると想定してPDSCHの受信処理(例えば、復号処理及び/又は復調処理等)を制御する。これにより、PDSCHの受信精度を向上できる。
 また、UEは、基地局から、DCI内にTCIフィールド(TCI状態)が存在する(present)か否かを示す情報(存在(presence)情報、TCI存在情報、tci-PresentInDCI等ともいう)を受信してもよい。例えば、UEは、上位レイヤシグナリングにより、当該TCI存在情報を受信してもよい。また、UEは、制御リソースセット(CORESET)毎に、TCI存在情報を受信してもよい。
 CORESETは、制御用のリソース領域であり、1以上の時間領域リソース(例えば、シンボル)及び1以上の周波数領域リソース(例えば、物理リソースブロック(PRB:Physical Resource Block))を含んで構成されてもよい。CORESETには、下り制御チャネル(PDCCH:Physical Downlink Control Channel)が配置される一以上の候補リソース(PDCCH候補)で構成されるサーチスペースが関連付けられてもよい。
 TCI存在情報が通知されない(有効化(enable)されない又は無効化(disable)される)場合、UEは、DCI内にTCIフィールドが存在しないと想定してもよい。一方、TCI存在情報が通知される(有効化される)場合、UEは、DCI内にTCIフィールドが存在すると想定してもよい。
 TCI存在情報が無効化される場合、DCI(例えば、DCIフォーマット1_1)には、TCIフィールドと同じビット数の「0(zero)」が付加されてもよい。これにより、TCI存在情報が有効化されるか否かに関係なく、DCIのビット数が等しくなる。この結果、DCI内にTCIフィールドが含まれるか否かによってDCIのビット数が変更されるのを防止でき、UEは、DCIの監視(ブラインド復号)を適切に制御できる。
(BWPスイッチング)
 キャリア内に下り(DL:Downlink)及び上り(UL:Uplink)の少なくとも一つ(DL/UL)に用いられる複数のBWPが上位設定される場合、複数のBWPの少なくとも一つのアクティブ化(activation)及び非アクティブ化(deactivation)の少なくとも一つ(アクティブ化/非アクティブ化)が制御される。つまり、UEが信号の送受信に適用するBWPがスイッチングされる。このように、BWPが切り替えられる動作は、BWPスイッチングと呼ばれてもよい。
 図1は、BWPスイッチングの一例を示す図である。図1では、BWP#XからBWP#Yへのスイッチングの一例が示される。なお、図1では、BWP#Yの帯域幅がBWP#Xの帯域幅よりも広い一例が示されるが、これに限られない。
 図1において、UEは、アクティブ化されているBWP(アクティブBWP)#Xの制御リソースセット(CORESET:Control Resource Set)に関連付けられるサーチスペースを監視して、BWP#Yの共有チャネル(例えば、PDSCH又はPUSCH)をスケジューリングするDCI(DLアサインメント又はULグラント、例えば、DCIフォーマット1_1又は0_1)を検出する。
 当該DCIは、BWP#Xに設定されるCORESETで送信されるが、当該DCI内の所定フィールド(例えば、BWP識別子(BI:BWP Indicator)フィールド)は、他のBWP#Yを示してもよい。このように、現在の(current)アクティブBWPに設定されるCORESETで検出されるDCIが他のBWPのPDSCH又はPUSCHをスケジューリングする場合、現在のアクティブBWPが非アクティブ化され、当該他のBWPがアクティブ化されてもよい。
 当該DCIのサイズは、当該他のBWPの帯域幅に一致するように、増加又は減少されてもよい。例えば、図1では、BWP#Yの帯域幅はBWP#Xの帯域幅よりも広いので、当該DCI内の所定のビット(例えば、所定数の最上位ビット(MSB:Most Significant Bit))がゼロパディングされてもよい。なお、図示しないが、BWP#Yの帯域幅はBWP#Xの帯域幅よりも狭い場合、当該DCI内の所定ビット(例えば、所定数のMSB)が取り除かれてもよい(truncate)。
 当該DCIにゼロパディングが適用される場合、UEは、所定のフィールドを無視(ignore)してもよい。例えば、図1においてBWP#Xが1トランスポートブロック(TB:Transport Block)で設定され、DCIによって指定されるBWP#Yが2TBで設定される場合、UEは、TB2用の所定フィールド(例えば、変調及び符号化方式(MCS:Modulation and Coding Scheme)フィールド、新規データ識別子(NDI:New Data Indicator)フィールド、冗長バージョン(RV:Redundancy Version)フィールド)を無視してもよい。
 また、当該DCIにゼロパディング又は除去(truncation)が適用される場合、所定の条件を除いて、周波数領域リソース割り当てフィールドに基づく制御は、当該DCI内のBIフィールドによって指定されるBWPの帯域幅に基づいて行われてもよい。
 ところで、一つのBWPには、一以上のCORESETが設定可能である。また、DCI内にTCIフィールドが存在するか否かを示すTCI存在情報は、BWPのCORESET毎に設定されることが想定される。このため、TCI存在情報が異なる複数のCORESETが同一のBWPに設定されることが想定される。
 しかしながら、当該TCI存在情報が異なる複数のCORESETが設定されるBWPを他のBWPにスイッチする場合、当該複数のCORESET間でUEが監視すべきDCI(例えば、DCIフォーマット1_1)のサイズが異なる結果、UEが、BWPスイッチングを適切に制御できない恐れがある。
 図2A及び2Bは、TCI存在情報が異なる複数のCORESETが設定されるBWP#XをBWP#Yにスイッチする場合のDCIの一例を示す図である。例えば、図2A及び2Bでは、BWP#XにCORESET#A及び#Bが設定されるものとする。また、CORESET#Aでは、TCI存在情報が有効化され、CORESET#Bでは、TCI存在情報が無効化されるものとする。
 図2Aに示すように、BWP#XのCORESET#Aに関連付けられるサーチスペース#1に配置されるDCI(例えば、DCIフォーマット1_1)には、所定ビット数(例えば、3ビット)のTCIフィールドが含まれる。
 一方、図2Bに示すように、BWP#XのCORESET#Bに関連付けられるサーチスペース#2に配置されるDCI(例えば、DCIフォーマット1_1)には、所定ビット数(例えば、3ビット)のTCIフィールドが含まれない。
 このように、TCI存在情報が異なって設定(configure)される複数のCORESETにそれぞれ関連付けられる複数のサーチスペースに配置されるDCIのサイズの不一致を防止するため、当該複数のサーチスペースで監視されるDCIの最大サイズに等しくなるまで、当該複数のサーチスペースに監視される一部のDCIにゼロが付加(append)されることが考えられる。しかしながら、当該一部のDCIに対してどのようにゼロを付加するかは十分に検討されていない。
 例えば、図2A及び2Bでは、図2AのCORESET#Aに関連付けられるサーチスペース#1で監視されるDCIのサイズと等しくなるまで、図2BのCORESET#Bに関連付けられるサーチスペース#2で監視されるDCIにゼロを付加することが想定される。しかしながら、当該サーチスペース#2で監視されるDCIのどの位置にゼロを付加するかが問題となる。
 図2Bに例示されるDCIの適切な位置にゼロが付加されない場合、UEは、当該DCIを適切に検出できず、当該DCIが検出されるBWP#Xから、当該DCIによりPDSCHがスケジューリングされるBWP#Yへのスイッチングを適切に行うことができない恐れがある。また、UEは、当該DCIによりスケジューリングされるBWP#YのPDSCHを適切に受信できない恐れがある。
 そこで、本発明らは、BWP#Xに設定される複数のCORESETに関連付けられる複数のサーチスペースに配置される少なくとも一つのDCIにゼロを適切に付加する(append)ことにより、当該複数のサーチスペースに配置されるDCIのサイズを一致させること、これにより、当該BWP#XからBWP#Yへのスイッチングを適切に制御することを着想した。
 具体的には、本発明者らは、同一のBWP内にTCI存在情報が異なって設定される複数のCORESTが設定される場合、UEは、TCI存在情報を無効化して設定されるCORESET#Bに関連付けられるサーチスペース#2で監視されるDCIの最終フィールドの後にゼロを付加すること(第1の態様)、又は、当該サーチスペース#2で監視されるDCI内の、TCI存在情報を有効化して設定されるCORESET#Aに関連付けられるサーチスペース#1で監視されるDCIと同一の位置(position)にゼロを付加すること(第2の態様)を着想した。
 以下、本実施の形態について図面を参照して説明する。なお、本実施の形態において、特定のDCIフォーマットは、PDSCHのスケジューリングに用いられるDCIフォーマット1_1であるものとするが、これに限られない。本実施の形態において、DCIは、TCI状態を示す所定フィールド(例えば、TCIフィールド)を含めば、どのようなフォーマットであってもよい。
 また、DCIフォーマット1_1は、一例として、以下のフィールドを順番に含むものとするが、これに限られない。DCIフォーマット1_1は、以下に示される少なくとも一つのフィールドを含めばよい。また、以下に示すビット数は、一例にすぎず、下記に示すものに限られない。
・DCIフォーマットを識別するためのフィールド…1ビット
・キャリアを識別するためのフィールド(キャリア識別(CI:Carrier Indicator)フィールド)…0又は3ビット
・BWPを識別するためのフィールド(BIフィールド)…0、1又は2ビット
・PDSCHに割り当てられる周波数領域リソースの決定に用いられるフィールド(周波数領域リソース割り当て(Frequency domain resource assignment)フィールド)…例えば、BWPのサイズ等に基づいて決定される所定数のビット
・PDSCHに割り当てられる時間領域リソースの決定に用いられるフィールド(時間領域リソース割り当て(Time domain resource assignment)フィールド)…0、1、2、3又は4ビット
・仮想リソースブロック(VRB:Virtual Resource Block)から物理リソースブロック(PRB:Physical Resource Block)へのマッピングに関する情報を指定するフィールド…0又は1ビット
・PRBのバンドリングサイズを示すフィールド…0又は1ビット
・レートマッチングに関する情報を指定するフィールド…0、1又は2ビット
・ゼロパワーのCSI-RSのトリガ(trigger)に関する情報を指定するフィールド…0、1又は2ビット
・トランスポートブロック1についての変調及び符号化方式、新規データ識別子及び冗長バージョンのそれぞれを指定するフィールド…5ビット+1ビット+2ビット
・トランスポートブロック2が存在する場合、トランスポートブロック2についての変調及び符号化方式、新規データ識別子及び冗長バージョンのそれぞれを指定するフィールド…0ビット又は5ビット+1ビット+2ビット
・HARQプロセス番号を指定するフィールド…4ビット
・下り割り当てインデックス(DAI:Downlink assignment index)を指定するフィールド…4、2又は0ビット
・PUCCH用の送信電力制御(TPC:Transmission Power Control)コマンドを示すフィールド…2ビット
・PUCCH用のリソースを指定するフィールド…3ビット
・PDSCHに対するHARQのフィードバックタイミングを指定するフィールド…0、1、2又は3ビット
・アンテナポートを指定するフィールド(アンテナポートフィールド)…4、5又は6ビット
・TCIフィールド…0又は3ビット
・サウンディング参照信号(SRS:Sounding Reference Signal)の送信を要求するフィールド(SRS要求(request)フィールド)…2ビット
・トランスポートブロック内のどのコードブロックグループ(CBG:Code Block Group)を送信するかを指定するフィールド(CBG送信情報(CBGTI:CBG Transmission information)フィールド)…0、2、4、6又は8ビット
・CBGのフラッシュに関する情報を指定するフィールド(CBGフラッシュ情報(CBGFI:CBG flushing out information)フィールド)…0又は1ビット
・PDSCHのDMRSの系列(sequence)の初期化(initialization)に関するフィールド(DMRS系列初期化フィールド)…0又は1ビット
(第1の態様)
 第1の態様では、同一のBWP内に設定される複数のCORESTに関連付けられるサーチスペースで複数のDCIを監視し、かつ一部のCORESETにTCI存在情報が設定される場合、TCIフィールドを含まないDCI(例えば、DCIフォーマット1_1)の最終フィールドの後に所定数のゼロを付加してもよい。
 第1の態様において、TCI存在情報が有効化されたCORESETに関連付けられるサーチスペースで監視されるDCIについて、所定ビット数(例えば、3ビット)のTCIフィールドは、DCIフォーマットで定められる位置(例えば、アンテナポートフィールドの後でSRS要求フィールドの前)に存在してもよい。
 第1の態様において、TCI存在情報が有効化されないCORESETに関連付けられるサーチスペースで監視されるDCIについて、所定ビット数(例えば、3ビット)のゼロは、当該DCI内の最終フィールド(例えば、DMRSシーケンス初期化フィールド)の後に存在してもよい。
 DCIがどのCORESETに関連付けられるサーチスペースで監視(検出)されるかに応じて(depending on)、UEは、当該DCI内の各フィールドの位置(field position)を想定してもよい。
 図3A及び3Bは、第1の態様に係る複数のCORESETに関連付けられる複数のサーチスペースで監視されるDCIの一例を示す図である。例えば、図3A及び3Bでは、BWP#XにCORESET#A及び#Bが設定されるものとする。また、CORESET#A(第2の制御リソースセット)では、TCI存在情報が有効化され、CORESET#B(第1の制御リソースセット)では、TCI存在情報が無効化される(もしくは、有効化されない)ものとする。
 なお、図3A及び3Bでは、DCI(例えば、DCIフォーマット1_1)内のTCIフィールドが3ビットであるものとするが、これに限られない。また、図3A及び3Bでは、TCIフィールド後のフィールドには、SRS要求フィールド、CBGTIフィールド、CBGFIフィールド、DMRS系列初期化フィールドが含まれるものとするが、これに限られない。TCIフィールドの後には、一以上のフィールドが含まれてもよいし、又は、他のフィールドが含まれなくともよい(TCIフィールドが最終フィールドであってもよい)。
 図3Aに示すように、CORESET#Aに関連付けられるサーチスペース#1に配置されるDCIには、所定のフィールド位置に、3ビットのTCIフィールドが含まれる。一方、図3Bに示すように、CORESET#Bに関連付けられるサーチスペース#2に配置されるDCI(例えば、DCIフォーマット1_1)には、最終フィールドの後に3ビットのゼロ「000」が付加される。
 図3A及び3Bでは、TCI存在情報が有効化されるCORESET#A又はTCI存在情報が有効化されるCORESET#Bのいずれに関連付けられるサーチスペースで検出されるDCIであるかによって、TCIフィールド後の各フィールドの位置が異なる。
 UEは、DCIが検出されるサーチスペースがどのCORESETに関連付けられるか(すなわち、TCI存在情報が有効化されるCORESETとTCI存在情報が無効化されるCORESETのどちらに関連付けられるか)に基づいて、DCI内のTCIフィールド後の各フィールドの位置を決定してもよい。UEは、決定された各フィールドの位置に基づいて、当該DCIの復号を制御してもよい。
 なお、図3A及び3Bに示されるDCIには、巡回冗長検査(CRC:Cyclic Redundancy Check)ビットが付加される、又は、含まれてもよい。当該DCIのサイズ(ペイロードサイズ)は、当該CRCビットの数を含んでもよいし、含まなくともよい。当該CRCビットは、所定の無線ネットワーク一時識別子(RNTI:Radio Network Temporary Indicator)によってスクランブル(マスクされてもよい)。
 図3Bにおいて、TCIフィールドの代わりに付加される3ビットのゼロは、CRCビットの前に付加されてもよいし、又は、CRCビットの後に付加されてもよい。
 図4は、第1の態様に係る複数のCORESETに関連付けられる複数のサーチスペースで監視されるDCIの他の例を示す図である。図4では、TCI存在情報(の構成)が異なるCORESET#A及び#Bにそれぞれ関連付けられるサーチスペース#1及び#2において、DCI(例えば、DCIフォーマット1_1)用のPDCCH候補(候補リソース)の少なくとも一部が重複(overlap)する場合の一例が示される。
 例えば、図4では、TCI存在情報が有効化されるCORESET#Aに関連付けられるサーチスペース#1と、TCI存在情報が無効化されるCORESET#Bに関連付けられるサーチスペース#2とが、異なる周期でUEに設定されるものとする。また、所定スロットにおいてサーチスペース#1及び#2内の少なくとも一部のPDCCH候補が衝突するものとする。
 図4の場合、UEは、サーチスペース#1及び#2間で重複するPDCCH候補(重複部分)で検出されるDCIについて、以下の(1)~(4)のいずれかを想定してもよい。
 (1)UEは、サーチスペース#1及び#2間で重複するPDCCH候補で検出されるDCIが、TCI存在情報が有効化されるCORESET#Aに関連付けられるサーチスペース#1で検出されると想定してもよい。この場合、UEは、所定のフィールド位置(例えば、図3A)にTCIフィールドが含まれると想定して、当該DCIの受信処理(例えば、復号、復調など)を制御してもよい。また、UEは、当該DCI内のTCIフィールドの値が示すTCI状態に基づいて、PDSCHの受信処理を制御してもよい。
 (2)UEは、サーチスペース#1及び#2間で重複するPDCCH候補で検出されるDCIが、TCI存在情報が無効化されるCORESET#Bに関連付けられるサーチスペース#2で検出されると想定してもよい。この場合、UEは、各フィールド位置(例えば、図3B)に各フィールドが含まれると想定して、当該DCIの受信処理(例えば、復号、復調など)を制御してもよい。
 また、(2)の場合、UEは、CORESET#Bで送信されるPDCCHとTCI状態が同一であると想定し、CORESET#Bに関連付けられるTCI状態に基づいて、PDSCHの受信処理を制御してもよい。
 (3)UEは、サーチスペース#1及び#2間で重複するPDCCH候補で検出されるDCIについて、TCI存在情報が有効化されるCORESET#A又はTCI存在情報が有効化されるCORESET#Bのいずれに関連付けられるサーチスペースで検出されると想定するかは、UEの実装次第(up to implementation)であってもよい。
 (4)UEは、TCI存在情報(の構成)が異なる複数のCORESET#A及び#Bにそれぞれ関連付けられる複数のサーチスペース#1及び#2間において、PDCCH候補が重複することを想定しなくともよい。この場合、基地局は、当該サーチスペース#1及び#2内の全PDCCH候補を異なるリソースで構成してもよいし、サーチスペース#1及び#2間で重複しないPDCCH候補に当該DCIをマッピングしてもよい。
 第1の態様では、TCI存在情報が無効化されるCORESET#Bに関連付けられるサーチスペース#2で検出されるDCIの最終フィールドの後に所定ビット数(TCIフィールドと同じビット数、例えば、3ビット)のゼロが追加される。このため、BWP内にTCI存在情報が異なる複数のCORESET#A及び#Bが設定される場合にも、当該CORESET#A及び#Bにそれぞれ関連付けられるサーチスペース#1及び#2で監視されるDCIのサイズを等しくできる。
(第2の態様)
 第2の態様では、同一のBWP内に設定される複数のCORESTに関連付けられるサーチスペースで複数のDCIを監視する場合、TCIフィールドを含まないDCIの最後に所定数のゼロを付加する代わりに、TCIフィールドを含むDCIと同じ位置に所定数のゼロを付加する。以下では、第1の態様との相違点を中心に説明する。
 第2の態様において、TCI存在情報が有効化されたCORESETに関連付けられるサーチスペースで監視されるDCIについて、所定ビット数(例えば、3ビット)のTCIフィールドは、DCIフォーマットで定められる位置(例えば、アンテナポートフィールドの後でSRS要求フィールドの前)に存在してもよい。
 第2の態様において、TCI存在情報が有効化されないCORESETに関連付けられるサーチスペースで監視されるDCIについて、所定ビット数(例えば、3ビット)のゼロは、TCI存在情報が有効化されるCORESETに関連付けられるサーチスペースで監視されるDCIのTCIフィールドと同一の位置(例えば、アンテナポートフィールドの後でSRS要求フィールドの前)に付加されてもよい(存在してもよい)。
 第2の態様では、DCIがどのCORESETに関連付けられるサーチスペースで監視(検出)されるかに関係なく(depending on)、UEは、当該DCI内のTCIフィールド以外の各フィールドの位置(field position)を決定できる。
 図5A及び5Bは、第2の態様に係る複数のCORESETに関連付けられるDCIの一例を示す図である。図5A及び5Bの前提条件は、図3A及び3Bと同一であり、以下では、図3A及び3Bとの相違点を中心に説明する。
 図5Aに示すように、CORESET#Aに関連付けられるサーチスペースに配置されるDCIには、所定のフィールド位置に、3ビットのTCIフィールドが含まれる。一方、図5Bに示すように、CORESET#Bに関連付けられるサーチスペースに配置されるDCI(例えば、DCIフォーマット1_1)には、図5AのTCIフィールドと同一の位置に3ビットのゼロ「000」が付加される。
 図5A及び5Bでは、TCI存在情報が有効化されるCORESET#A又はTCI存在情報が有効化されるCORESET#Bのいずれに関連付けられるサーチスペースで検出されるDCIであるかに関係なく、TCIフィールド後の各フィールドの位置が同一である。
 UEは、DCIが検出されるサーチスペースがどのCORESETに関連付けられるか(すなわち、TCI存在情報が有効化されるCORESETとTCI存在情報が無効化されるCORESETのどちらに関連付けられるか)に関係なく、DCI内のTCIフィールド後の各フィールドの位置を決定してもよい。UEは、決定された各フィールドの位置に基づいて、当該DCIの復号を制御してもよい。
 なお、図5A及5Bに示されるDCIには、CRCビットが付加される、又は、含まれてもよい。当該DCIのサイズ(ペイロードサイズ)は、当該CRCビットの数を含んでもよいし、含まなくともよい。
 図6は、第2の態様に係る複数のCORESETに関連付けられるDCIの他の例を示す図である。図6の前提条件は、図4と同一であり、以下では、図4との相違点を中心に説明する。
 例えば、図6では、TCI存在情報が有効化されるCORESET#Aに関連付けられるサーチスペース#1と、TCI存在情報が無効化されるCORESET#Bに関連付けられるサーチスペース#2とが、異なる周期でUEに設定されるものとする。また、所定スロットにおいてサーチスペース#1及び#2内の少なくとも一部のPDCCH候補の衝突するものとする。
 図6の場合、UEは、サーチスペース#1及び#2間で重複するPDCCH候補(重複部分)で検出されるDCIについて、以下の(1)~(4)のいずれかを想定してもよい。
 (1)UEは、サーチスペース#1及び#2間で重複するPDCCH候補で検出されるDCIが、TCI存在情報が無効化されるCORESET#Bに関連付けられるサーチスペース#2で検出されると想定してもよい。この場合、UEは、当該DCIによりスケジューリングされるPDSCHのTCI状態が、CORESET#Bに関連付けられるTCI状態(CORESET#Bで送信されるPDCCHのTCI状態)と同一であると想定する、言い換えればCORESET#Bで送信されるPDCCHのDMRSとQCLであると想定してもよい。
 また、ネットワーク(例えば、基地局)は、サーチスペース#1及び#2間で重複するPDCCH候補で検出されるDCI内のTCIフィールドにゼロ(例えば、3ビットの場合、「000」)を設定してもよい。また、UEは、サーチスペース#1及び#2間で重複するPDCCH候補で検出されるDCI内のTCIフィールドにゼロ以外が設定される場合、当該DCIを破棄(discard)してもよい。
 (2)UEは、サーチスペース#1及び#2間で重複するPDCCH候補で検出されるDCIが、TCI存在情報が有効化されるCORESET#Aに関連付けられるサーチスペース#1で検出されると想定してもよい。この場合、ネットワーク(例えば、基地局)は、サーチスペース#1及び#2間で重複するPDCCH候補で検出されるDCI内のTCIフィールドに任意の値(例えば、3ビットの場合、「000」~「111」のいずれか)を設定してもよい。
 また、UEは、当該DCI内のTCIフィールドの値が示すTCI状態に基づいて、PDSCHの受信処理を制御してもよい。
 (3)UEは、サーチスペース#1及び#2間で重複するPDCCH候補で検出されるDCIについて、TCI存在情報が有効化されるCORESET#A又はTCI存在情報が有効化されるCORESET#Bのいずれに関連付けられるサーチスペースで検出されると想定するかは、UEの実装次第であってもよい。
 なお、UEの実装次第とするか否かは、当該DCI内のTCIフィールドの値に基づいて決定されてもよい。例えば、UEは、当該DCI内のTCIフィールドをゼロ(例えば、3ビットの場合、「000」)以外の値(コードポイント)で検出するなら、UEは、TCI存在情報が有効化されるCORESET#Aに関連付けられるサーチスペースで当該DCIが検出されると想定してもよい。
 一方、UEは、当該DCI内のTCIフィールドをゼロの値で検出するなら、UEがCORESET#A又は#Bのいずれに関連付けられるサーチスペースで当該DCIが検出されると想定するかは、UEの実装次第としてもよい。
 (4)UEは、TCI存在情報(の構成)が異なる複数のCORESET#A及び#Bにそれぞれ関連付けられる複数のサーチスペース#1及び#2間において、PDCCH候補が重複することを想定しなくともよい。この場合、基地局は、当該サーチスペース#1及び#2内の全PDCCH候補を異なるリソースで構成してもよいし、サーチスペース#1及び#2間で重複しないPDCCH候補に当該DCIをマッピングしてもよい。
 上記(2)又は(3)の場合において、UEは、サーチスペース#1及び#2間で重複するPDCCH候補(重複部分)でTCIフィールドのフィールド位置においてゼロ(例えば、3ビットの場合、「000」)でDCIを検出し、TCI存在情報が有効化されたCORESET#Aに関連付けられるサーチスペース#1で当該DCIが検出されると想定する場合、UEは、当該ゼロについて、以下の1)又は2)のいずれかを想定してもよい。
 1)UEは、当該DCI内のTCIフィールドのフィールド位置のゼロがゼロパディングであり、非情報的な値(no informative value)であると想定してもよい。想定1)の場合、UEは、PDSCHのTCI状態が、DCI存在情報が有効化されたCORESET#Bに関連付けられるTCI状態(当該DCIを伝送するPDCCHのTCI状態)と同一であると想定してもよい。
 想定1)の場合、PDSCHをスケジューリングするCORESETにTCI存在情報が設定されない場合、又は、PDSCHがDCIフォーマット1_0でスケジューリングされる場合と同様に、UEは動作してもよい。
 2)UEは、DCI内のTCIフィールドのフィールド位置のゼロがTCIフィールド値であると想定してもよい。想定2)の場合、UEは、PDSCHのTCI状態が、当該TCIフィールド値(すなわち、ゼロ)が示すTCI状態であると想定してもよい。
 想定2)の場合、例えば、当該TCIフィールド値(ゼロ)が示すTCI状態が、PDSCHとQCLの関係となるDL-RS(例えば、CSI-RS又はSSB)の識別子(例えば、CRI-RSリソース識別子(CRI:CSI-RS Resource Indicator)又はSSBインデックス)を示すと想定してもよい。UEは、当該識別子によって示されるDL-RSとPDSCHとがQCLの関係にあると想定して、当該PDSCHの受信処理を制御してもよい。
 第2の態様では、TCI存在情報が無効化されるCORESET#Bに関連付けられるサーチスペースで検出されるDCIに、TCIフィールドを含むDCIと同一のフィールド位置に所定ビット数(TCIフィールドと同じビット数、例えば、3ビット)のゼロが追加される。このため、サーチスペースが、同じBWP内のTCI存在情報が有効化されるCORESET#A又はTCI存在情報が無効化されるCORESET#Bのどちらに関連付けられる場合であっても、当該サーチスペースで検出されるDCIのサイズを等しくできる。
(第3の態様)
 第3の態様では、上記第1又は第2の態様において、複数のCORESTが設定されるBWP#XからBWP#Yへのスイッチング時の動作について詳細に説明する。
 図7A及び7Bは、第3の態様に係るBWPスイッチングの一例を示す図である。図7A及び7Bでは、DCI内のBIフィールドによって、現在のアクティブBWP#Xとは別のBWP#Yが指定されるものとする。図7A及び7Bでは、第1の態様で説明したように、一部のDCIにゼロが付加される。
 具体的には、図7A及び7Bに示すように、TCI存在情報が無効化されるCORESET#Bに関連付けられるサーチスペース#2で監視されるDCIには、最終フィールドの後に所定数のゼロが付加される。このため、当該DCIのサイズを、TCI存在情報が有効化されるCORESET#Aに関連付けられるサーチスペース#1で監視されるDCIと等しくできる。これにより、UEは、BWP#XからBWP#Yへのスイッチングを適切に制御できる。
 図8A及び8Bは、第3の態様に係るBWPスイッチングの他の例を示す図である。図8A及び8Bでは、第2の態様で説明したように、一部のDCIにゼロが付加される点で、図7A及び7Bと異なる。
 具体的には、図8A及び8Bに示すように、TCI存在情報が無効化されるCORESET#Bに関連付けられるサーチスペース#2で監視されるDCIには、TCI存在情報が無効化されるCORESET#Aに関連付けられるサーチスペース#1で監視されるDCIのTCIフィールドと同一の位置に所定数のゼロが付加される。このため、当該DCIのサイズを、TCI存在情報が有効化されるCORESET#Aに関連付けられるサーチスペース#1で監視されるDCIと等しくできる。これにより、UEは、BWP#XからBWP#Yへのスイッチングを適切に制御できる。
(その他)
 本実施の形態において、「CORESET」及び「サーチスペース」は互いに言い換えられてもよい。具体的には、「所定のCORESETに関連付けられるサーチスペースで監視又は検出されるDCI」は、「所定のCORESETで監視又は検出されるDCI」、「所定のサーチスペースで監視又は検出されるDCI」と適宜言い換えられてもよい。
 また、本実施の形態において、「DCI」及び「DCIフォーマット」は互いに言い換えられてもよい。また、「DCIの監視」は、DCIのブランド復号、モニタリング等と言い換えられてもよい。また、「DCIの検出」は、特定のDCIフォーマットでDCIを検出することであってもよい。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図9は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、所定の帯域幅を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 また、無線通信システム1は、複数のRAT(Radio Access Technology)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(MR-DC:Multi-RAT Dual Connectivity))をサポートしてもよい。MR-DCは、LTE(E-UTRA)の基地局(eNB)がマスターノード(MN)となり、NRの基地局(gNB)がセカンダリーノード(SN)となるLTEとNRとのデュアルコネクティビィティ(EN-DC:E-UTRA-NR Dual Connectivity)、NRの基地局(gNB)がMNとなり、LTE(E-UTRA)の基地局(eNB)がSNとなるNRとLTEとのデュアルコネクティビィティ(NE-DC:NR-E-UTRA Dual Connectivity)等を含んでもよい。また、無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)となるデュアルコネクティビティ(NN-DC:NR NR Dual Connectivity))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
 ユーザ端末20は、基地局11及び基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、基地局11との間と同じキャリアが用いられてもよい。なお、各基地局が利用する周波数帯域の構成はこれに限られない。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。
 基地局11と基地局12との間(又は、2つの基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
 基地局11及び各基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各基地局12は、基地局11を介して上位局装置30に接続されてもよい。
 なお、基地局11は、相対的に広いカバレッジを有する基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、基地局12は、局所的なカバレッジを有する基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DCIによってスケジューリング情報が通知されてもよい。DLデータ(例えば、PDSCH)受信及び/又はDL参照信号の測定をスケジューリングするDCIは、DLアサインメント、DLグラント、DL DCIなどと呼ばれてもよい。ULデータ(例えば、PUSCH)送信及び/又はULサウンディング(測定用)信号の送信をスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(基地局)
 図10は、本実施の形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクによって基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図11は、本実施の形態に係る基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
 制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
 なお、送受信部103は、各種設定情報、下り制御情報、下り共有チャネル、下り参照信号等を送信してもよい。具体的には、送受信部103は、キャリア内の部分帯域内に設定される複数の制御リソースセットの設定情報を送信してもよい。
 また、制御部301は、下り制御情報及び下り共有チャネルの送信処理(例えば、送信、マッピング、変調、符号化など)を制御してもよい。具体的には、制御部301は、キャリア内の部分帯域に設定される複数の制御リソースセット間において、特定の下り制御情報(DCI)フォーマット内に送信構成識別子の状態を示す所定フィールドが存在するか否かを示す存在情報が異なって設定される場合、前記複数の制御リソースセットにそれぞれ関連付けられる複数のサーチスペースにおける前記特定のDCIフォーマットの下り制御情報の送信を制御してもよい。
(ユーザ端末)
 図12は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
 図13は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
 制御部401は、基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 また、制御部401は、基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
 なお、送受信部203は、各種設定情報、下り制御情報、下り共有チャネル、下り参照信号等を受信してもよい。具体的には、送受信部203は、キャリア内の部分帯域内に設定される複数の制御リソースセットの設定情報を受信してもよい。
 また、制御部401は、下り制御情報及び下り共有チャネルの受信処理(例えば、受信、デマッピング、復調、復号など)を制御してもよい。具体的には、制御部401は、キャリア内の部分帯域に設定される複数の制御リソースセット間において、特定の下り制御情報(DCI)フォーマット内に送信構成識別子の状態を示す所定フィールドが存在するか否かを示す存在情報が異なって設定される場合、前記複数の制御リソースセットにそれぞれ関連付けられる複数のサーチスペースにおける前記特定のDCIフォーマットの下り制御情報の監視を制御してもよい。
 前記存在情報が有効化されない第1の制御リソースセットに関連付けられる第1のサーチスペースで監視される前記下り制御情報には、前記特定のDCIフォーマットの最終フィールドの後にゼロが付加されてもよい(第1の態様、図3B)。
 前記第1のサーチスペース及び前記存在情報が有効化される第2の制御リソースセットに関連付けられる第2のサーチスペース間で前記特定のDCIフォーマット用の候補リソースの少なくとも一部が重複する場合、前記制御部401は、前記重複する候補リソースで検出される前記下り制御情報は、前記第1のサーチスペース又は前記第2のサーチスペースで検出されると想定してもよい(第1の態様、図4)。
 前記存在情報が有効化されない第1の制御リソースセットに関連付けられる第1のサーチスペースで監視される前記下り制御情報には、前記存在情報が有効化される第2の制御リソースセットに関連付けられる第2のサーチスペースで監視される前記下り制御情報と同一の位置にゼロが付加されてもよい(第2の態様、図5B)。
 前記第1のサーチスペース及び前記第2のサーチスペース間で前記特定のDCIフォーマット用の候補リソースの少なくとも一部が重複する場合、前記制御部401は、前記重複する候補リソースで検出される前記下り制御情報は、前記第1のサーチスペース又は前記第2のサーチスペースで検出されると想定してもよい(第2の態様、図6)。
 前記重複する候補リソースで検出される前記下り制御情報は、前記第1のサーチスペースで検出されると想定する場合、前記制御部401は、前記下り制御情報によりスケジューリングされる下り共有チャネルの送信構成識別子の状態が前記第1の制御リソースセットに関連付けられるTCIの状態と同一であると想定する、又は、前記下り共有チャネルの送信構成識別子の状態が前記下り制御情報内の前記所定フィールドにセットされるゼロによって示されると想定してもよい(第2の態様、図6)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の本実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、本実施の形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103は、送信部103aと受信部103bとで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa、an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  キャリア内の部分帯域内に設定される複数の制御リソースセットの設定情報を受信する受信部と、
     前記複数の制御リソースセット間において、特定の下り制御情報(DCI)フォーマット内に送信構成識別子の状態を示す所定フィールドが存在するか否かを示す存在情報が異なって設定される場合、前記複数の制御リソースセットにそれぞれ関連付けられる複数のサーチスペースにおける前記特定のDCIフォーマットの下り制御情報の監視を制御する制御部と、
    を具備することを特徴とするユーザ端末。
  2.  前記存在情報が有効化されない第1の制御リソースセットに関連付けられる第1のサーチスペースで監視される前記下り制御情報には、前記特定のDCIフォーマットの最終フィールドの後にゼロが付加されることを特徴とする請求項1に記載のユーザ端末。
  3.  前記第1のサーチスペース及び前記存在情報が有効化される第2の制御リソースセットに関連付けられる第2のサーチスペース間で前記特定のDCIフォーマット用の候補リソースの少なくとも一部が重複する場合、前記制御部は、前記重複する候補リソースで検出される前記下り制御情報は、前記第1のサーチスペース又は前記第2のサーチスペースで検出されると想定することを特徴とする請求項2に記載のユーザ端末。
  4.  前記存在情報が有効化されない第1の制御リソースセットに関連付けられる第1のサーチスペースで監視される前記下り制御情報には、前記存在情報が有効化される第2の制御リソースセットに関連付けられる第2のサーチスペースで監視される前記下り制御情報と同一の位置にゼロが付加されることを特徴とする請求項1に記載のユーザ端末。
  5.  前記第1のサーチスペース及び前記第2のサーチスペース間で前記特定のDCIフォーマット用の候補リソースの少なくとも一部が重複する場合、前記制御部は、前記重複する候補リソースで検出される前記下り制御情報は、前記第1のサーチスペース又は前記第2のサーチスペースで検出されると想定することを特徴とする請求項4に記載のユーザ端末。
  6.  前記重複する候補リソースで検出される前記下り制御情報は、前記第1のサーチスペースで検出されると想定する場合、前記制御部は、前記下り制御情報によりスケジューリングされる下り共有チャネルの送信構成識別子の状態が前記第1の制御リソースセットに関連付けられるTCIの状態と同一であると想定する、又は、前記下り共有チャネルの送信構成識別子の状態が前記下り制御情報内の前記所定フィールドにセットされるゼロによって示されると想定することを特徴とする請求項5に記載のユーザ端末。
PCT/JP2018/033505 2018-09-10 2018-09-10 ユーザ端末 WO2020053940A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/274,659 US11696302B2 (en) 2018-09-10 2018-09-10 User terminal
PCT/JP2018/033505 WO2020053940A1 (ja) 2018-09-10 2018-09-10 ユーザ端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033505 WO2020053940A1 (ja) 2018-09-10 2018-09-10 ユーザ端末

Publications (1)

Publication Number Publication Date
WO2020053940A1 true WO2020053940A1 (ja) 2020-03-19

Family

ID=69776664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033505 WO2020053940A1 (ja) 2018-09-10 2018-09-10 ユーザ端末

Country Status (2)

Country Link
US (1) US11696302B2 (ja)
WO (1) WO2020053940A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111698780A (zh) * 2020-05-19 2020-09-22 武汉领芯智能科技有限公司 一种基于urllc的资源调度方法、基站、终端和系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512421A (ja) 2005-08-15 2009-03-26 ヴァクシン インコーポレイテッド 非複製性ベクターワクチン投与による鳥類への免疫方法
LT2741740T (lt) 2011-08-12 2017-08-10 Merial, Inc. Biologinių produktų, ypatingai vakcinų, vakuuminis konservavimas
ES2757623T3 (es) 2012-07-25 2020-04-29 Broad Inst Inc Proteínas de unión a ADN inducibles y herramientas de perturbación genómica y aplicaciones de las mismas
WO2015057671A1 (en) 2013-10-14 2015-04-23 The Broad Institute, Inc. Artificial transcription factors comprising a sliding domain and uses thereof
WO2020027472A1 (ko) * 2018-08-03 2020-02-06 엘지전자 주식회사 공통 자원 블록 그리드에 관계 없는 기준점을 설정하는 방법 및 이를 위한 장치
CN115442902A (zh) * 2018-11-05 2022-12-06 华为技术有限公司 信息传输方法及装置
EP3906728A4 (en) * 2019-02-01 2022-04-06 Huawei Technologies Co., Ltd. DEVICE, NETWORK, AND METHOD FOR TRANSMITTING AND RECEIVING SOUNDING REFERENCE SIGNAL
US11665692B2 (en) * 2020-01-16 2023-05-30 Samsung Electronics Co., Ltd. Method and apparatus for beam indication in a multi-beam system
KR20220030167A (ko) * 2020-08-28 2022-03-10 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 다운링크 데이터를 수신하기 위한 방법 및 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2861202T3 (es) * 2018-05-10 2021-10-06 Asustek Comp Inc Procedimiento y aparato para la indicación de haz para la transmisión de enlace ascendente en un sistema de comunicación inalámbrica

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On remaining issues of BWPs", TSG-RAN WG1 #92 R1-1802916, 17 February 2018 (2018-02-17), XP051398305 *
LG ELECTRONICS: "Remaining issues on PDCCH structure", 3GPP TSG RAN WG1 MEETING #93 R1-1806615, 20 May 2018 (2018-05-20), XP051441817 *
NTT DOCOMO, INC.: "Offline summary for AI 7.1.3.1.2 Search space", 3GPP TSG RAN WG1 MEETING #93 R1-1807709, 22 May 2018 (2018-05-22), XP051442729 *
NTT DOCOMO, INC.: "Other aspects on bandwidth Parts", 3GPP TSG RAN WG1 MEETING #92BIS R1-1805058, 15 April 2018 (2018-04-15), XP051427319 *
QUALCOMM INCORPORATED: "Remaining issues on control resource set and search space", 3GPP TSG RAN WG1 MEETING #93 R1-1807353, 20 May 2018 (2018-05-20), XP051442545 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111698780A (zh) * 2020-05-19 2020-09-22 武汉领芯智能科技有限公司 一种基于urllc的资源调度方法、基站、终端和系统

Also Published As

Publication number Publication date
US11696302B2 (en) 2023-07-04
US20210258936A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2019244218A1 (ja) ユーザ端末
WO2019244207A1 (ja) ユーザ端末及び無線通信方法
WO2019244221A1 (ja) ユーザ端末
WO2020053978A1 (ja) ユーザ端末及び無線通信方法
WO2019244214A1 (ja) ユーザ端末
WO2020026296A1 (ja) ユーザ端末及び無線通信方法
WO2020053940A1 (ja) ユーザ端末
WO2020026454A1 (ja) ユーザ端末及び無線通信方法
WO2020026297A1 (ja) 基地局及び無線通信方法
JPWO2020026295A1 (ja) ユーザ端末および無線通信方法
WO2020039484A1 (ja) ユーザ端末
WO2020021725A1 (ja) ユーザ端末及び無線通信方法
WO2020031353A1 (ja) ユーザ端末及び無線通信方法
WO2020053942A1 (ja) ユーザ端末及び無線通信方法
WO2020016934A1 (ja) ユーザ端末
WO2020053941A1 (ja) ユーザ端末及び無線通信方法
WO2020031354A1 (ja) ユーザ端末及び無線通信方法
WO2020031387A1 (ja) ユーザ端末及び無線通信方法
WO2020008644A1 (ja) ユーザ端末及び基地局
JPWO2018203409A1 (ja) ユーザ端末及び無線通信方法
WO2020017055A1 (ja) ユーザ端末及び無線通信方法
WO2020003522A1 (ja) ユーザ端末
WO2020039483A1 (ja) ユーザ端末
WO2020003541A1 (ja) ユーザ端末
WO2020035949A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP