WO2021174994A1 - 波束推荐方法、装置、网络侧设备、终端及存储介质 - Google Patents

波束推荐方法、装置、网络侧设备、终端及存储介质 Download PDF

Info

Publication number
WO2021174994A1
WO2021174994A1 PCT/CN2020/142360 CN2020142360W WO2021174994A1 WO 2021174994 A1 WO2021174994 A1 WO 2021174994A1 CN 2020142360 W CN2020142360 W CN 2020142360W WO 2021174994 A1 WO2021174994 A1 WO 2021174994A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
recommended
mapping relationship
terminal
database
Prior art date
Application number
PCT/CN2020/142360
Other languages
English (en)
French (fr)
Inventor
陈山枝
张鑫
高秋彬
黄秋萍
索士强
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2021174994A1 publication Critical patent/WO2021174994A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a beam recommendation method, device, network side equipment, terminal, and storage medium.
  • the millimeter wave frequency band has more spectrum resources and can provide greater bandwidth, and has become an important frequency band for future applications of mobile communication systems.
  • the base station or terminal usually obtains a better beamforming direction by means of beam scanning.
  • Beam scanning obtains a better beamforming direction by measuring signals in different beam directions.
  • the process of beam scanning usually includes processes such as sending reference signals in different beam directions, signal quality measurement, and beam selection.
  • embodiments of the present application provide a beam recommendation method, device, network side equipment, terminal, and storage medium.
  • An embodiment of the present application provides a beam recommendation method.
  • the beam recommendation method is applied to a network-side device and includes:
  • the first beam information and the beam database or beam model determine a recommended beam for signal transmission and/or a change trend of the recommended beam; wherein, the signal transmission includes uplink signal transmission or downlink signal transmission .
  • the determining a beam database or beam model used for beam recommendation includes:
  • Second beam information Acquiring second beam information reported by all terminals in a designated area within a designated time period, where the second beam information includes beam quality information and/or beam identification information;
  • the beam database or beam model is determined according to the second beam information.
  • the beam database or beam model includes one or more of the following beam mapping relationships:
  • a first mapping relationship where the first mapping relationship is used to characterize a change in beam identification information and a mapping relationship with a recommended beam and/or a change trend of the recommended beam;
  • a second mapping relationship where the second mapping relationship is used to characterize the beam identification information, the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a third mapping relationship where the third mapping relationship is used to characterize the movement direction of the terminal, the beam identification information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a fourth mapping relationship where the fourth mapping relationship is used to characterize the mapping relationship between the motion trajectory of the terminal, the beam identification information and the recommended beam and/or the change trend of the recommended beam;
  • a fifth mapping relationship where the fifth mapping relationship is used to characterize the AOD change of the terminal's azimuth angle, the mapping relationship between the beam identification information and the recommended beam and/or the change trend of the recommended beam;
  • a sixth mapping relationship where the sixth mapping relationship is used to characterize a change in beam quality information, a mapping relationship with a recommended beam and/or a change trend of the recommended beam;
  • a seventh mapping relationship where the seventh mapping relationship is used to characterize the beam quality information ratio change, the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • An eighth mapping relationship where the eighth mapping relationship is used to characterize the movement direction of the terminal, beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a ninth mapping relationship where the ninth mapping relationship is used to characterize the motion trajectory of the terminal, beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a tenth mapping relationship where the tenth mapping relationship is used to characterize the AOD change of the terminal, the beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam.
  • the first beam information includes an uplink signal used for beam quality measurement
  • the first beam information used for beam recommendation sent by the receiving terminal includes:
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model includes:
  • the third beam information includes beam quality information and/or beam identification information corresponding to the uplink signal
  • a recommended beam used for signal transmission and/or a change trend of the recommended beam is determined.
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the third beam information and the beam database or beam model includes:
  • first historical beam information Acquiring first historical beam information within a specified time period, where the first historical beam information includes beam quality information and/or beam identification information;
  • a recommended beam for signal transmission and/or a change trend of the recommended beam is determined.
  • the first beam information includes beam quality information and/or beam identification information corresponding to the downlink signal
  • the first beam information used for beam recommendation sent by the receiving terminal includes:
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model includes:
  • the second historical beam information includes beam quality information and/or beam identification information
  • a recommended beam for signal transmission and/or a change trend of the recommended beam is determined.
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model includes:
  • the recommended beam used for signal transmission and/or the change trend of the recommended beam is determined according to the moving direction of the terminal and the beam mapping relationship.
  • the beam database or beam model includes track information or road information
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model includes:
  • the recommended beam used for signal transmission and/or the change trend of the recommended beam is determined according to the moving direction of the terminal and the beam mapping relationship.
  • it also includes:
  • the beam database or beam model is updated according to the first beam information to obtain an updated beam database or beam model.
  • An embodiment of the present application provides a beam recommendation method.
  • the beam recommendation method is applied to a terminal and includes:
  • the first beam information is sent to the network side device, so that the network side device determines the recommended beam and/or the recommended beam for signal transmission according to the first beam information and the beam database or beam model The trend of change; wherein, the signal transmission includes uplink signal transmission or downlink signal transmission.
  • the determining the first beam information used for beam recommendation includes:
  • Network-side configuration information or instruction information sent by the network-side device where the network-side configuration information or instruction information is used to instruct the terminal to send an uplink signal for beam quality measurement;
  • the determining the first beam information used for beam recommendation includes:
  • An embodiment of the present application provides a beam recommendation device, where the beam recommendation device is used in a network side device, and includes:
  • the determining module is used to determine the beam database or beam model used for beam recommendation
  • a receiving module configured to receive the first beam information used for beam recommendation sent by the terminal
  • a recommendation module configured to determine a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model; wherein, the signal transmission includes an uplink signal Transmission or downlink signal transmission.
  • An embodiment of the present application provides a beam recommendation device, where the beam recommendation device is used in a terminal, and includes:
  • An information determining module configured to determine the first beam information used for beam recommendation
  • the information sending module is configured to send the first beam information to the network side device, so that the network side device determines the recommended beam and beam for signal transmission according to the first beam information and the beam database or beam model. /Or the changing trend of the recommended beam; wherein, the signal transmission includes uplink signal transmission or downlink signal transmission.
  • An embodiment of the present application provides a network-side device including a memory, a processor, and a program stored on the memory and capable of running on the processor, and the processor implements the following steps when the program is executed:
  • the first beam information and the beam database or beam model determine a recommended beam for signal transmission and/or a change trend of the recommended beam; wherein, the signal transmission includes uplink signal transmission or downlink signal transmission .
  • the determining a beam database or beam model used for beam recommendation includes:
  • Second beam information Acquiring second beam information reported by all terminals in a designated area within a designated time period, where the second beam information includes beam quality information and/or beam identification information;
  • the beam database or beam model is determined according to the second beam information.
  • the beam database or beam model includes one or more of the following beam mapping relationships:
  • a first mapping relationship where the first mapping relationship is used to characterize a change in beam identification information and a mapping relationship with a recommended beam and/or a change trend of the recommended beam;
  • a second mapping relationship where the second mapping relationship is used to characterize the beam identification information, the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a third mapping relationship where the third mapping relationship is used to characterize the movement direction of the terminal, the beam identification information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a fourth mapping relationship where the fourth mapping relationship is used to characterize the mapping relationship between the motion trajectory of the terminal, the beam identification information and the recommended beam and/or the change trend of the recommended beam;
  • a fifth mapping relationship where the fifth mapping relationship is used to characterize the AOD change of the terminal's azimuth angle, the mapping relationship between the beam identification information and the recommended beam and/or the change trend of the recommended beam;
  • a sixth mapping relationship where the sixth mapping relationship is used to characterize a change in beam quality information, a mapping relationship with a recommended beam and/or a change trend of the recommended beam;
  • a seventh mapping relationship where the seventh mapping relationship is used to characterize the beam quality information ratio change, the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • An eighth mapping relationship where the eighth mapping relationship is used to characterize the movement direction of the terminal, beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a ninth mapping relationship where the ninth mapping relationship is used to characterize the motion trajectory of the terminal, beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • the tenth mapping relationship is used to characterize the AOD change of the terminal, the beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam.
  • the first beam information includes an uplink signal used for beam quality measurement
  • the first beam information used for beam recommendation sent by the receiving terminal includes:
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model includes:
  • the third beam information includes beam quality information and/or beam identification information corresponding to the uplink signal
  • a recommended beam used for signal transmission and/or a change trend of the recommended beam is determined.
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the third beam information and the beam database or beam model includes:
  • first historical beam information Acquiring first historical beam information within a specified time period, where the first historical beam information includes beam quality information and/or beam identification information;
  • a recommended beam for signal transmission and/or a change trend of the recommended beam is determined.
  • the first beam information includes beam quality information and/or beam identification information corresponding to the downlink signal
  • the first beam information used for beam recommendation sent by the receiving terminal includes:
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model includes:
  • the second historical beam information includes beam quality information and/or beam identification information
  • a recommended beam for signal transmission and/or a change trend of the recommended beam is determined.
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model includes:
  • the recommended beam used for signal transmission and/or the change trend of the recommended beam is determined according to the moving direction of the terminal and the beam mapping relationship.
  • the beam database or beam model includes track information or road information
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model includes:
  • the recommended beam used for signal transmission and/or the change trend of the recommended beam is determined according to the moving direction of the terminal and the beam mapping relationship.
  • it also includes:
  • the beam database or beam model is updated according to the first beam information to obtain an updated beam database or beam model.
  • An embodiment of the present application provides a terminal, including a memory, a processor, and a program stored on the memory and capable of running on the processor, and the processor implements the following steps when the processor executes the program:
  • the first beam information is sent to the network side device, so that the network side device determines the recommended beam and/or the recommended beam for signal transmission according to the first beam information and the beam database or beam model The trend of change; wherein, the signal transmission includes uplink signal transmission or downlink signal transmission.
  • the determining the first beam information used for beam recommendation includes:
  • Network-side configuration information or instruction information sent by the network-side device where the network-side configuration information or instruction information is used to instruct the terminal to send an uplink signal for beam quality measurement;
  • the determining the first beam information used for beam recommendation includes:
  • the embodiment of the present application provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of a beam recommendation method for a network side device are implemented.
  • the embodiment of the present application provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of a beam recommendation method for a terminal are implemented.
  • the embodiments of the application provide a beam recommendation method, device, network side equipment, terminal, and storage medium.
  • determining a beam database or beam model for beam recommendation the first beam information sent by the terminal for beam recommendation is received
  • the recommended beam used for signal transmission and/or the change trend of the recommended beam can be determined according to the first beam information and the beam database or beam model, thereby solving the problem caused by frequent beam scanning processes in high-speed scenarios.
  • the problem of overhead and delay saves beam scanning time and beam overhead, and also improves the efficiency and accuracy of beam recommendation.
  • FIG. 1 is a flowchart of a beam recommendation method provided by an embodiment of this application
  • FIG. 2 is a flowchart of a beam recommendation method provided by an embodiment of this application.
  • Fig. 3 is a block diagram of a beam recommendation device provided by an embodiment of the application.
  • FIG. 4 is a block diagram of a beam recommendation device provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of another terminal provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a network side device provided by an embodiment of this application.
  • the millimeter wave frequency band As low frequency band resources become scarce, the millimeter wave frequency band has more spectrum resources and can provide greater bandwidth, and has become an important frequency band for future applications of mobile communication systems.
  • the millimeter wave frequency band has different propagation characteristics from the traditional low frequency spectrum due to its shorter wavelength, such as higher propagation loss, poor reflection and diffraction performance, and so on. Therefore, a larger-scale antenna array is usually used to form a shaped beam with greater gain to overcome propagation loss and ensure system coverage.
  • each antenna has an independent radio frequency link channel, but shares the same digital link channel.
  • Each radio frequency link allows independent amplitude and phase adjustments of the transmitted signal, resulting in a beam It is mainly achieved by adjusting the phase and amplitude of the radio frequency channel, which is called an analog beamforming signal.
  • each antenna has an independent digital link channel, which can control the amplitude and phase of each signal in the baseband.
  • the base station or terminal usually obtains a better beamforming direction by means of beam scanning.
  • Beam scanning obtains a better beamforming direction by measuring signals in different beam directions.
  • the process of beam scanning usually includes processes such as sending reference signals in different beam directions, signal quality measurement, and beam selection.
  • analog beamforming is shaped over the entire bandwidth, and cannot be targeted to some parts like digital beamforming.
  • the subbands are shaped separately, so the analog beamforming needs to be multiplexed by TDM (Time Division Multiplexing). More beam directions mean that it takes a long time to perform beam scanning. In the high-speed mobile scenario, the channel environment changes quickly, and the optimal beam direction and service site also change quickly. If the traditional beam scanning technology is still used, it may not be able to track the changes of the beam in time, resulting in beam failure or wireless link failure, which affects performance.
  • the embodiments of the present application provide a beam recommendation method, device, network-side equipment, terminal, and storage medium, so as to reduce the time and overhead of beam scanning.
  • the beam recommendation method, device, network-side equipment, terminal, and storage medium provided in the embodiments of the present application can be applied to a wireless communication system or a wireless and wired system.
  • a wireless communication system Including but not limited to 5G systems (such as NR systems), 6G systems, satellite systems, car networking systems, Long Term Evolution (LTE) systems, and subsequent evolution communication systems of the aforementioned systems, etc.
  • 5G systems such as NR systems
  • 6G systems such as NR systems
  • satellite systems such as NR systems
  • LTE Long Term Evolution
  • the network-side equipment provided by the embodiments of this application may include, but is not limited to, one or more of the following: commonly used base stations, evolved node base stations (eNB), network-side equipment in 5G systems (for example, the following Equipment such as next generation node base station (gNB), transmission and reception point (TRP)).
  • commonly used base stations evolved node base stations (eNB)
  • eNB evolved node base stations
  • 5G systems for example, the following Equipment such as next generation node base station (gNB), transmission and reception point (TRP)).
  • gNB next generation node base station
  • TRP transmission and reception point
  • the terminal provided in the embodiment of the present application may be called a user equipment or the like.
  • Terminals include, but are not limited to, handheld devices and vehicle-mounted devices.
  • it may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA), etc.
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • FIG. 1 is a flowchart of a beam recommendation method provided by an embodiment of the application.
  • the beam recommendation method may be used in a network side device, such as a base station. As shown in Figure 1, the beam recommendation method includes the following steps:
  • Step 110 Determine a beam database or beam model for beam recommendation.
  • the base station can obtain this rule based on the historical information reported by all users in the cell. According to this rule, beam recommendation can be performed for the current user, so as to achieve the purpose of saving overhead.
  • the network side equipment (such as the base station) establishes a beam database or beam model based on the beam information reported by the users served by the network.
  • the network side can match the beam quality information of the user with the database. Or input the user's beam quality information into the mathematical model to obtain a better beam direction for downlink transmission or uplink transmission.
  • the beam information may include beam quality information (such as RSRP, BLER, etc.) and/or beam identification information.
  • the reference signal quality information here may be RSRP (Reference Signal Receiving Power), BLER (BLock Error Rate, block error rate), etc.
  • the network side device can establish a beam database or beam model for each terminal separately; it can also establish a beam database or beam model suitable for multiple terminals.
  • Step 120 Receive the first beam information used for beam recommendation sent by the terminal.
  • the first beam information may include information obtained by the terminal in an uplink transmission mode, for example: an uplink signal for beam quality measurement sent by the terminal according to the configuration or instructions of the network side device; and may also include information obtained by the downlink transmission mode.
  • the terminal performs measurement according to the downlink signal sent by the network side device, and obtains the beam quality information corresponding to the downlink signal.
  • Step 130 Determine a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model.
  • the signal transmission includes uplink signal transmission or downlink signal transmission.
  • the network-side device (such as a base station) can perform operations such as matching, comparing, fitting, and searching the beam quality information determined according to the first beam information with the database to obtain the recommended beam and/or all the beams used for signal transmission.
  • the change trend of the recommended beam; the beam quality information determined according to the first beam information may also be input into the beam model to obtain the recommended beam for signal transmission and/or the change trend of the recommended beam.
  • the recommended beam may be a better beam determined according to the first beam information and the beam database or beam model.
  • the change trend of the recommended beam may be the beam quality change of multiple beams recommended at the location of the terminal, or it may be a possible beam change in the subsequent motion direction of the terminal, or it may include one or more of the terminal's subsequent motion trajectories. Better beams in different positions.
  • the number of recommended beams may be one or more.
  • the currently determined recommended beam may be the same or different from the recommended beam used in previous signal transmission.
  • the process for the network side device (such as the base station) to determine the recommended beam for signal transmission and/or the change trend of the recommended beam according to the first beam information reported by the terminal, the beam database or the beam model may be an iterative process. process.
  • the network side device determines one or more recommended beams for the terminal based on the beam information reported by the terminal and the beam database or beam model for the first time
  • the network side device sends the reference on the above one or more beams Signals, such as CRS (Cell Reference Signal), and indicate to the terminal.
  • the terminal monitors the reference signal quality on these multiple beams, such as RSRP, and reports the beam information that meets the requirements to the base station according to predefined criteria .
  • the network side device (for example, the base station) again determines the recommended beam according to the information reported by the terminal and the beam database or the beam recommendation model. Repeat the above process.
  • the predefined criteria include the best RSRP quality, or the reception quality is greater than a certain threshold, and so on.
  • a network-side device (such as a base station) can send a downlink signal on the recommended beam and the beam on which the network-side device sent a downlink signal for measurement to the terminal last time; the terminal receives the reference signal sent on the above-mentioned beam, and then A predefined criterion (for example, the best RSRP quality) reports the optimal beam information to the network side device; the network side device selects the better beam according to the beam information reported by the terminal.
  • a predefined criterion for example, the best RSRP quality
  • the determination of the beam database or beam model used for beam recommendation in the step 110 may adopt but not limited to the following implementation manners:
  • the following process may be used for all terminals in the cell.
  • the network side device sends downlink signals for beam measurement on one or more beams, such as CRS, CSI-RS (Channel State Indication-Reference Signal), etc.), and the terminal detects the above one Or signals sent on multiple beams, and the beam information that meets the requirements is reported to the network side device according to preset criteria.
  • the network side device stores the beam information reported by the terminal in the beam database and/or performs beam selection according to the beam information reported by the terminal, and stores the information of the selected beam in the beam database.
  • the network side device configures or instructs the terminal to send uplink signals on one or more beams, such as: SRS (Sounding Reference Signal, uplink sounding reference signal), PRACH (Physical Random Access Channel, physical random access channel), etc.
  • the network side device measures the uplink signal sent by the terminal, the network side device stores the measurement result in the beam database according to preset criteria and/or the network side device selects the beam according to the measurement result, and stores the information of the selected beam in the beam database .
  • the beam database stores the change trend of the beam information reported by the terminal (the relationship between the trajectory and/or position of the terminal and the beam quality information and/or beam identification information).
  • the network side device also uses the beam measurement results to estimate the position and/or motion trajectory of the terminal, and stores the position and/or motion trajectory of the terminal in the beam database.
  • the relationship between the position and/or movement track of the terminal and the beam measurement information is stored in the beam database.
  • the network-side device when it establishes a beam model, it can repeatedly use the process of establishing a beam database for all terminals in the cell to collect information, and use the collected information to establish a beam model. For example, the user's trajectory is determined based on the collected information data, and the beam model is determined based on the trajectory information.
  • the second beam information reported by all terminals in a designated area is acquired within a designated time period, and the second beam information includes beam quality information and/or beam identification information, and is based on the second beam information.
  • the beam information determines the beam database or beam model, thereby ensuring the reliability of the beam database or beam model.
  • the beam database or beam model includes one or more of the following beam mapping relationships:
  • a first mapping relationship where the first mapping relationship is used to characterize a change in beam identification information and a mapping relationship with a recommended beam and/or a change trend of the recommended beam;
  • a second mapping relationship where the second mapping relationship is used to characterize the beam identification information, the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a third mapping relationship where the third mapping relationship is used to characterize the movement direction of the terminal, the beam identification information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a fourth mapping relationship where the fourth mapping relationship is used to characterize the mapping relationship between the motion trajectory of the terminal, the beam identification information and the recommended beam and/or the change trend of the recommended beam;
  • a fifth mapping relationship where the fifth mapping relationship is used to characterize the AOD (Azimuth Angle Of Departure, departure azimuth) change of the terminal, the mapping relationship between the beam identification information and the recommended beam and/or the change trend of the recommended beam;
  • a sixth mapping relationship where the sixth mapping relationship is used to characterize a change in beam quality information, a mapping relationship with a recommended beam and/or a change trend of the recommended beam;
  • a seventh mapping relationship where the seventh mapping relationship is used to characterize the beam quality information ratio change, the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • An eighth mapping relationship where the eighth mapping relationship is used to characterize the movement direction of the terminal, beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a ninth mapping relationship where the ninth mapping relationship is used to characterize the motion trajectory of the terminal, beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a tenth mapping relationship where the tenth mapping relationship is used to characterize the AOD change of the terminal, the beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam.
  • the first beam information includes an uplink signal for beam quality measurement;
  • the first beam information sent by the receiving terminal in step 120 for beam recommendation may be But not limited to the following implementation methods:
  • (1-2-1) Sending network-side configuration information or instruction information to the terminal, where the network-side configuration information or instruction information is used to instruct the terminal to send an uplink signal for beam quality measurement.
  • uplink signals used for beam quality measurement such as SRS, PRACH, and so on.
  • the recommended beam for signal transmission and/or the change trend of the recommended beam may be determined, but Not limited to the following implementations:
  • (1-3-1) Measure the quality of the uplink signal, and determine third beam information according to the measurement result, where the third beam information includes beam quality information and/or beam identification information corresponding to the uplink signal.
  • the network side device measures the quality of the uplink signal, and can obtain beam quality information corresponding to one or more beams in the uplink signal.
  • the beam quality information may include measured reference signal quality information and/or beam identification, uplink signal identification, etc. according to requirements.
  • the reference signal quality information here may be RSRP, BLER (BLock Error Rate, block error rate), etc.
  • the beam quality information and/or beam identification information corresponding to the uplink signal is obtained, and then the beam quality information and/or beam identification information corresponding to the uplink signal is obtained according to the beam quality information corresponding to the uplink signal.
  • Quality information and/or beam identification information, as well as the beam database or beam model determine the recommended beam for signal transmission and/or the change trend of the recommended beam, thereby saving beam scanning time and signaling overhead, and reducing The delay caused by the beam scanning process.
  • (1-4-1) Acquire first historical beam information within a specified time period, where the first historical beam information includes beam quality information and/or beam identification information.
  • the network side device may use the beam quality information and/or beam identification information of the terminal in the past period of time T 0 and the uplink determined according to the first beam information.
  • the beam quality information and/or beam identification information corresponding to the signal together with the beam database or beam model, determine the current recommended beam determined for signal transmission by the terminal and/or the change trend of the recommended beam, such as optimal beam information .
  • (1-4-1) Determine the recommended beam for signal transmission and/or the change trend of the recommended beam according to the first historical beam information, the third beam information, and the beam database or beam model .
  • the recommended beam and/or the beam model for signal transmission are determined according to the first historical beam information, the current third beam information, and the beam database or beam model of the terminal within a specified time period.
  • the change trend of the recommended beam thereby further improving the accuracy of the beam recommendation.
  • the first beam information includes beam quality information and/or beam identification information corresponding to the downlink signal; the receiving terminal in step 120 sends the first beam recommendation information
  • the beam information can adopt but not limited to the following implementation methods:
  • (1-5-1) Send a downlink signal for beam quality measurement to a terminal, so that the terminal can measure the quality of the downlink signal, and determine the beam quality information and/or corresponding to the downlink signal according to the measurement result Or beam identification information.
  • CSI-RS Downlink Signal
  • the terminal measures the quality of the downlink signal, and can obtain beam quality information corresponding to one or more beams in the downlink signal.
  • the beam quality information may include measured reference signal quality information and/or beam identification, downlink signal identification, etc. according to requirements.
  • the reference signal quality information here may be RSRP, BLER, etc.
  • the recommended beam for signal transmission and/or the change trend of the recommended beam may be determined, but Not limited to the following implementations:
  • the downlink beam information includes the beam quality information corresponding to the downlink signal and/ Or terminal location information, and then determine the transmission beam used for signal transmission and/or the change trend of the transmission beam according to the beam quality information and network deployment information, thereby saving beam scanning time and beam overhead, and reducing the beam scanning process band Time delay.
  • the recommended beam for signal transmission and/or the change trend of the recommended beam may be determined, but not Limited to the following implementations:
  • (1-6-1) Acquire second historical beam information within a specified time period, where the second historical beam information includes beam quality information and/or beam identification information.
  • the network-side device may use the beam quality information and/or beam identification information of the terminal in the past period of time T 0 , and the beam quality information and beam quality information corresponding to the downlink signal. /Or the beam identification information, together with the beam database or the beam model, determine the current recommended beam determined by the terminal for signal transmission and/or the change trend of the recommended beam, such as optimal beam information.
  • (1-6-2) Determine a recommended beam for signal transmission and/or a change trend of the recommended beam according to the second historical beam information, the first beam information, and the beam database or beam model .
  • the recommended beam and/or the beam model for signal transmission are determined according to the second historical beam information of the terminal in a specified time period, the current first beam information, and the beam database or beam model.
  • the change trend of the recommended beam thereby further improving the accuracy of the beam recommendation.
  • the recommended beam for signal transmission and/or the recommended beam is determined.
  • the change trend can be implemented but not limited to the following implementation methods:
  • the network side device can speculate and determine the direction of movement of the terminal based on the AOD information in the first beam information reported by the terminal, and based on the direction of movement of the terminal and the beam database Or various beam mapping relationships included in the beam model determine the recommended beam used by the terminal for signal transmission and/or the change trend of the recommended beam, such as current optimal beam information.
  • (1-7-2) Determine a recommended beam for signal transmission and/or a change trend of the recommended beam according to the direction of movement of the terminal and the beam mapping relationship.
  • the direction of movement of the terminal can be determined according to the AOD information in the first beam information, and the recommended beam for signal transmission and/or the recommendation can be determined according to the direction of movement of the terminal and the beam mapping relationship.
  • the changing trend of the beam thereby improving the efficiency and accuracy of the beam recommendation.
  • the beam database or beam model includes track information or road information; in step 130, it is determined according to the first beam information and the beam database or beam model
  • the recommended beam used for signal transmission and/or the change trend of the recommended beam may be implemented in but not limited to the following implementation manners:
  • the network side device can determine the direction of movement of the terminal according to the first beam information reported by the terminal and the track information or road information, and according to the direction of movement of the terminal and the beam
  • the various beam mapping relationships included in the database or beam model determine the recommended beam used by the terminal for signal transmission and/or the change trend of the recommended beam, such as current optimal beam information.
  • (1-8-2) Determine a recommended beam for signal transmission and/or a change trend of the recommended beam according to the direction of movement of the terminal and the beam mapping relationship.
  • the direction of movement of the terminal can be determined according to the first beam information and the track information or road information, and then according to the direction of movement of the terminal and the beam mapping
  • the relationship determines the recommended beam used for signal transmission and/or the change trend of the recommended beam, thereby enriching the implementation manners for determining the movement direction of the terminal, and improving the flexibility of determining the movement direction of the terminal.
  • the beam recommendation method further includes the following steps:
  • the beam database or beam model is updated according to the first beam information to obtain an updated beam database or beam model.
  • the network side device may update the beam database or beam model.
  • the network side device receives the first beam information reported by the terminal, if the first beam information includes an uplink signal for beam quality measurement, the quality of the uplink signal is measured to obtain the beam quality information corresponding to the uplink signal And/or beam identification information, and then use the beam quality information and/or beam identification information corresponding to the uplink signal to update the beam database or beam model; if the first beam information includes the beam quality information and/or beam identification information corresponding to the downlink signal , The beam quality information and/or beam identification information corresponding to the downlink signal can be used directly to update the beam database or beam model.
  • FIG. 2 is a flowchart of a beam recommendation method provided by an embodiment of the application.
  • the beam recommendation method may be used in a terminal; as shown in FIG. 2, the beam recommendation method includes the following steps:
  • Step 210 Determine first beam information used for beam recommendation.
  • the first beam information may include information obtained by the terminal using an uplink transmission mode, for example: an uplink signal for beam quality measurement sent by the terminal according to the configuration or instructions of the network side device; and may also include information obtained by using a downlink transmission mode
  • the terminal performs measurement according to the downlink signal sent by the network side device, and obtains the beam quality information corresponding to the downlink signal.
  • Step 220 Send the first beam information to the network side device, so that the network side device determines the recommended beam for signal transmission and/or the changing trend of the recommended beam according to the first beam information and the beam database or beam model .
  • signal transmission includes uplink signal transmission or downlink signal transmission.
  • the recommended beam may be a better beam determined according to the first beam information and the beam database or beam model.
  • the change trend of the recommended beam may be the beam quality change of multiple beams recommended at the location of the terminal, or it may be a possible beam change in the subsequent motion direction of the terminal, or it may include one or more of the terminal's subsequent motion trajectories. Better beams in different positions.
  • the number of recommended beams may be one or more.
  • the currently determined recommended beam may be the same or different from the recommended beam used in previous signal transmission.
  • the first beam information is sent to the network side device, so that the network side device can determine the use of the beam according to the first beam information and the beam database or beam model
  • the recommended beam for signal transmission and/or the change trend of the recommended beam wherein, the signal transmission includes uplink signal transmission or downlink signal transmission, thereby solving the problem of large overhead and delay caused by frequent beam scanning processes in high-speed scenarios , Which saves beam scanning time and beam overhead, and also improves the efficiency and accuracy of beam recommendation.
  • the determination of the first beam information used for beam recommendation in the step 210 may adopt, but is not limited to, the following implementation manners:
  • (2-1-1) Receive network-side configuration information or indication information sent by the network-side device, where the network-side configuration information or indication information is used to instruct the terminal to send an uplink signal for beam quality measurement.
  • uplink signals used for beam quality measurement such as SRS, PRACH, and so on.
  • (2-1-2) Determine the uplink signal used for beam quality measurement as the first beam information.
  • the network side device can measure the quality of the uplink signal to obtain the beam quality information corresponding to the uplink signal, and then according to the beam quality information The recommended beam and/or the change trend of the recommended beam used for signal transmission with the beam database or beam model, thereby saving beam scanning time and beam overhead.
  • the determination of the first beam information used for beam recommendation in the step 210 may adopt, but is not limited to, the following implementation manners:
  • CSI-RS Downlink Signal
  • the terminal measures the quality of the downlink signal, and can obtain beam quality information corresponding to one or more beams in the downlink signal.
  • the beam quality information may include measured reference signal quality information and/or beam identification, downlink signal identification, etc. according to requirements.
  • the reference signal quality information here may be RSRP, BLER, etc.
  • the downlink signal for beam quality measurement sent by the network side device is received, and the quality of the downlink signal is measured to obtain the beam quality information corresponding to the downlink signal, and the downlink signal
  • the corresponding beam quality information and/or beam identification information are sent to the network side device, so that the network side device can use the beam quality information and the beam database or beam model for the recommended beam for signal transmission and/or the change trend of the recommended beam , Thereby saving beam scanning time and beam overhead, and reducing the time delay caused by the beam scanning process.
  • the following describes the beam recommendation method shown in FIG. 1 and FIG. 2 through specific examples.
  • Example 1 The network side collects beam quality measurement information of multiple terminals, and establishes a terminal's beam change trend database based on the information of these users. Obtain the beam change trend of the terminal through the beam quality information and/or beam identification information obtained one or more times, and compare the change trend with the database to obtain a better beam, thereby improving the accuracy of the recommended beam.
  • Example 2 The network side collects beam quality measurement information of multiple terminals, and establishes a beam model of the terminal based on the information of these users.
  • the network side inputs the beam quality information and/or beam identification information obtained one or more times into the beam model to obtain the better beam and/or the change trend of the better beam.
  • Example 2 A specific implementation of Example 2: The terminal reports the beam identification information of the M beams with the best quality in the two reports, and the network side stores the mapping relationship between the beam identification information change and the better beam/better beam change trend . The network side can obtain the better beam and/or the change trend of the better beam according to the mapping relationship. As shown in Table 1: Under this mapping relationship, if the beam ID reported by the terminal for the first time is beam 1, 2, 3, and the beam ID reported for the second time is beam 2, 3, 4, the network side knows the current best The beam of is beam 2. As the terminal moves, the optimal beam will become beam 3 after a certain period of time.
  • Example 3 Downlink beam determination scheme based on database
  • the downlink beam determination scheme is as follows.
  • the network-side device sends the reference signal CRS to the terminal on multiple beams, and the terminal measures the quality of the CRS (such as RSRP) sent on each beam, and reports the beam information of one or more beams with the best RSRP to the network-side device.
  • the beam information of may include beam quality information (such as RSRP) and beam identification information (such as CSI-RI).
  • the network side device receives the beam information reported by the terminal, selects the optimal beam according to a preset criterion (RSRP is the best), and stores the beam information in the beam database.
  • Process 2 Use the beam database to determine the beam
  • the network side sends a downlink signal (such as CSI-RS) for beam quality measurement to the terminal;
  • a downlink signal such as CSI-RS
  • the terminal monitors the RSRP of reference signals (such as CRS, CSI-RS, etc.) used for beam information measurement, and reports the beam information (such as RSRP, CRI) to the network side device.
  • the network side device stores the beam information reported by the terminal in the beam database.
  • the network side device determines the recommended beam corresponding to the beam information according to the beam information reported by the terminal and the information in the database, and sends the downlink reference signal on the recommended beam.
  • the process of determining the recommended beam is as follows: Determine the trajectory of the terminal according to the beam information reported by the terminal and the beam database information, and match the beam information with the terminal with the same or similar trajectory fitted to the information in the beam database, and determine the recommendation corresponding to the beam information Beam.
  • Example 4 An uplink beam determination scheme
  • the uplink beam determination scheme is as follows.
  • the network side device configures or instructs the terminal to send the uplink reference signal SRS respectively on one or more beams, and the network side device measures the uplink reference signal SRS sent by the terminal to obtain a measurement result (such as the RSRP value of the SRS).
  • the network side device stores the measurement results (beam quality information RSRP and beam identification information CRI) in the database according to a preset criterion (the highest RSRP).
  • Process 2 Use the beam database to determine the beam
  • the network side device configures or instructs the terminal to send the uplink reference signal SRS for beam quality measurement
  • the terminal sends the uplink reference signal SRS to the network side device according to the instruction;
  • the network side device measures the quality of the uplink reference signal SRS (such as RSRP), and determines the beam quality information RSRP and the beam identification information CRI corresponding to one or more of the uplink signals;
  • SRS uplink reference signal
  • the network side compares the beam quality information RSRP and the beam identification information CRI with the database, and determines a better beam for uplink transmission.
  • the process of determining the better beam Determine the terminal's motion trajectory according to the measurement results (beam quality information and beam identification information), and match the beam information according to the terminal's motion trajectory and the beam information of the terminal of the same trajectory fitted in the database to determine the beam information The corresponding better beam.
  • Fig. 3 is a block diagram of a beam recommendation device provided by an embodiment of the application.
  • the beam recommendation device may be used in a network side device; as shown in Fig. 3, the beam recommendation device may include:
  • the determining module 31 is configured to determine a beam database or beam model used for beam recommendation
  • the receiving module 32 is configured to receive the first beam information used for beam recommendation sent by the terminal;
  • the recommendation module 33 is configured to determine a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model; wherein, the signal transmission includes uplink Signal transmission or downlink signal transmission.
  • the determining module 31 may include:
  • An obtaining submodule configured to obtain second beam information reported by all terminals in a specified area within a specified time period, where the second beam information includes beam quality information and/or beam identification information;
  • the determining sub-module is configured to determine the beam database or beam model according to the second beam information.
  • the beam database or beam model includes one or more of the following beam mapping relationships:
  • a first mapping relationship where the first mapping relationship is used to characterize a change in beam identification information and a mapping relationship with a recommended beam and/or a change trend of the recommended beam;
  • a second mapping relationship where the second mapping relationship is used to characterize the beam identification information, the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a third mapping relationship where the third mapping relationship is used to characterize the movement direction of the terminal, the beam identification information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a fourth mapping relationship where the fourth mapping relationship is used to characterize the mapping relationship between the motion trajectory of the terminal, the beam identification information and the recommended beam and/or the change trend of the recommended beam;
  • a fifth mapping relationship where the fifth mapping relationship is used to characterize the AOD change of the terminal's azimuth angle, the mapping relationship between the beam identification information and the recommended beam and/or the change trend of the recommended beam;
  • a sixth mapping relationship where the sixth mapping relationship is used to characterize a change in beam quality information, a mapping relationship with a recommended beam and/or a change trend of the recommended beam;
  • a seventh mapping relationship where the seventh mapping relationship is used to characterize the beam quality information ratio change, the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • An eighth mapping relationship where the eighth mapping relationship is used to characterize the movement direction of the terminal, beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a ninth mapping relationship where the ninth mapping relationship is used to characterize the motion trajectory of the terminal, beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a tenth mapping relationship where the tenth mapping relationship is used to characterize the AOD change of the terminal, the beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam.
  • the first beam information includes an uplink signal used for beam quality measurement;
  • the receiving module 32 may include:
  • the first sending submodule is configured to send network-side configuration information or instruction information to a terminal, where the network-side configuration information or instruction information is used to instruct the terminal to send an uplink signal for beam quality measurement;
  • the first receiving submodule is configured to receive the uplink signal used for beam quality measurement sent by the terminal.
  • the recommendation module 33 may include:
  • the first measurement sub-module is configured to measure the quality of the uplink signal and determine third beam information according to the measurement result, where the third beam information includes beam quality information and/or beam identification information corresponding to the uplink signal ;
  • the first determining submodule is configured to determine a recommended beam for signal transmission and/or a change trend of the recommended beam according to the third beam information and the beam database or beam model.
  • the first determining submodule may include:
  • An obtaining unit configured to obtain first historical beam information within a specified time period, where the first historical beam information includes beam quality information and/or beam identification information;
  • the determining unit is configured to obtain first historical beam information within a specified time period, where the first historical beam information includes beams according to the first historical beam information, the third beam information, and the beam database or beam
  • the model determines the recommended beam used for signal transmission and/or the changing trend of the recommended beam.
  • the first beam information includes beam quality information and/or beam identification information corresponding to the downlink signal; the receiving module 32 may include:
  • the second sending submodule is configured to send a downlink signal for beam quality measurement to the terminal, so that the terminal can measure the quality of the downlink signal, and determine the beam quality information and the beam quality information corresponding to the downlink signal according to the measurement result. / Or beam identification information;
  • the second sending submodule is configured to receive beam quality information and/or beam identification information corresponding to the downlink signal reported by the terminal.
  • the recommendation module 33 may include:
  • An obtaining submodule configured to obtain second historical beam information within a specified time period, where the second historical beam information includes beam quality information and/or beam identification information;
  • the second determining submodule is configured to determine a recommended beam for signal transmission and/or a change in the recommended beam according to the second historical beam information, the first beam information, and the beam database or beam model trend.
  • the recommendation module 33 may include:
  • the third determining submodule is configured to determine the direction of movement of the terminal according to the AOD information in the first beam information
  • the fourth determining sub-module is configured to determine a recommended beam for signal transmission and/or a change trend of the recommended beam according to the moving direction of the terminal and the beam mapping relationship.
  • the beam database or beam model includes track information or road information; the recommendation module 33 may include:
  • a fifth determining submodule configured to determine the direction of movement of the terminal according to the first beam information and the track information or road information;
  • the sixth determining sub-module is configured to determine a recommended beam for signal transmission and/or a change trend of the recommended beam according to the motion direction of the terminal and the beam mapping relationship.
  • the update module is configured to update the beam database or beam model according to the first beam information to obtain an updated beam database or beam model.
  • the device provided in this embodiment can implement all the method steps that can be implemented in the above method embodiments, and can achieve the same beneficial effects. The same content and beneficial effects will be repeated.
  • Fig. 4 is a block diagram of a beam recommending device provided by an embodiment of the application.
  • the beam recommending device may be used in a terminal; as shown in Fig. 4, the beam recommending device may include:
  • the information determining module 41 is configured to determine the first beam information used for beam recommendation
  • the information sending module 42 is configured to send the first beam information to a network side device, so that the network side device determines a recommended beam for signal transmission according to the first beam information and the beam database or beam model And/or the changing trend of the recommended beam; wherein, the signal transmission includes uplink signal transmission or downlink signal transmission.
  • the information determining module 41 may include:
  • the first information receiving submodule is configured to receive network-side configuration information or instruction information sent by the network-side device, where the network-side configuration information or instruction information is used to instruct the terminal to send an uplink signal for beam quality measurement;
  • the first information determining submodule is configured to determine the uplink signal used for beam quality measurement as the first beam information.
  • the information determining module 41 may include:
  • the second information receiving submodule is configured to receive a downlink signal used for beam quality measurement sent by the network side device;
  • the second measurement sub-module is configured to measure the quality of the downlink signal, and determine beam quality information and/or beam identification information corresponding to the downlink signal according to the measurement result;
  • the second information determining submodule is configured to determine beam quality information and/or beam identification information corresponding to the downlink signal as the first beam information.
  • the device provided in this embodiment can implement all the method steps that can be implemented in the above method embodiments, and can achieve the same beneficial effects. The same content and beneficial effects will be repeated.
  • FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of the application.
  • the terminal 500 may include: at least one processor 501, a memory 502, at least one network interface 504, and other user interfaces 503.
  • the various components in the terminal 500 are coupled together through the bus system 505.
  • the bus system 505 is used to implement connection and communication between these components.
  • the bus system 505 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 505 in FIG. 5.
  • the user interface 503 may include a display, a keyboard, or a pointing device, such as a mouse, a trackball (trackball), a touch panel, or a touch screen.
  • a pointing device such as a mouse, a trackball (trackball), a touch panel, or a touch screen.
  • the memory 502 in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • SLDRAM Direct Rambus RAM
  • the memory 502 of the system and method described in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 502 stores the following elements, executable modules or data structures, or their subsets, or their extended sets, such as the operating system 5021 and application programs 5022.
  • the operating system 5021 includes various system programs, such as a framework layer, a core library layer, and a driver layer, which are used to implement various basic services and process hardware-based tasks.
  • the application program 5022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • the program for implementing the method of the embodiment of the present application may be included in the application program 5022.
  • the processor 501 by calling a computer program or instruction stored in the memory 502, specifically, a computer program or instruction stored in the application program 5022, the processor 501 is used to:
  • the first beam information is sent to the network side device, so that the network side device determines the recommended beam and/or the recommended beam for signal transmission according to the first beam information and the beam database or beam model The trend of change; wherein, the signal transmission includes uplink signal transmission or downlink signal transmission.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 501 or implemented by the processor 501.
  • the processor 501 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 501 or instructions in the form of software.
  • the aforementioned processor 501 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502, and completes the steps of the foregoing method in combination with its hardware.
  • the embodiments described in this application can be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the described technology can be implemented by modules (for example, procedures, functions, etc.) that execute the functions described in the embodiments of the present application.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the processor 501 is further configured to:
  • the determining the first beam information used for beam recommendation includes:
  • Network-side configuration information or instruction information sent by the network-side device where the network-side configuration information or instruction information is used to instruct the terminal to send an uplink signal for beam quality measurement;
  • the processor 501 is further configured to:
  • the terminal provided in the embodiment of the present application can implement the various processes implemented by the terminal in the foregoing embodiment, and in order to avoid repetition, details are not described herein again.
  • the first beam information is sent to the network side device, so that the network side device can determine the use of the beam according to the first beam information and the beam database or beam model
  • the recommended beam for signal transmission and/or the change trend of the recommended beam wherein, the signal transmission includes uplink signal transmission or downlink signal transmission, thereby solving the problem of large overhead and delay caused by frequent beam scanning processes in high-speed scenarios , Which saves beam scanning time and beam overhead, and also improves the efficiency and accuracy of beam recommendation.
  • Fig. 6 is a schematic structural diagram of another terminal provided by an embodiment of the application.
  • the terminal in Fig. 6 can be a mobile phone, a tablet computer, a personal digital assistant (PDA), or an e-reader, a handheld game console, Point of Sales (POS), in-vehicle electronic equipment (in-vehicle computer), etc.
  • the terminal includes a radio frequency (RF) circuit 610, a memory 620, an input unit 630, a display unit 640, a processor 660, an audio circuit 670, a WiFi (Wireless Fidelity) module 680, and a power supply 690.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 6 does not constitute a limitation on the mobile phone, and may include more or less components than those shown in the figure, or combine certain components, or split certain components, or Different component arrangements.
  • the input unit 630 can be used to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the terminal.
  • the input unit 630 may include a touch panel 6301.
  • the touch panel 6301 also called a touch screen, can collect the user's touch operations on or near it (for example, the user's operations on the touch panel 6301 with fingers, stylus, or any other suitable objects or accessories), and can be set according to the preset
  • the specified program drives the corresponding connection device.
  • the touch panel 6301 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 660, and can receive and execute the commands sent by the processor 660.
  • the touch panel 6301 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 630 may also include other input devices 6302, and the other input devices 6302 may be used to receive input numbers or character information and generate key signal inputs related to user settings and function control of the terminal.
  • other input devices 6302 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, optical mice (optical mice are touch sensitive that do not display visual output). A surface, or an extension of a touch-sensitive surface formed by a touch screen).
  • the display unit 640 can be used to display information input by the user or information provided to the user and various menu interfaces of the terminal.
  • the display unit 640 may include a display panel 6401.
  • the display panel 8401 can be configured with the display panel 6401 in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), etc.
  • the touch panel 6301 can cover the display panel 6401 to form a touch screen.
  • the touch screen detects a touch operation on or near it, it is transmitted to the processor 660 to determine the type of touch event, and then the processor 660 provides corresponding visual output on the touch screen according to the type of touch event.
  • the touch screen includes an application program interface display area and a common control display area.
  • the arrangement of the display area of the application program interface and the display area of the commonly used controls is not limited, and can be arranged up and down, left and right, etc., which can distinguish the two display areas.
  • the application program interface display area can be used to display the application program interface. Each interface may include at least one application icon and/or widget desktop control and other interface elements.
  • the application program interface display area can also be an empty interface that does not contain any content.
  • the commonly used control display area is used to display controls with a higher usage rate, such as application icons such as setting buttons, interface numbers, scroll bars, and phonebook icons.
  • the RF circuit 610 can be used for receiving and sending signals during information transmission or communication. In particular, after receiving the downlink information on the network side, it is processed by the processor 660; in addition, the designed uplink data is sent to the network side.
  • the RF circuit 610 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 610 can also communicate with the network and other devices through wireless communication.
  • the wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division Multiple Access). Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), Email, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband
  • the memory 620 is used to store software programs and modules, and the processor 660 executes various functional applications and data processing of the terminal by running the software programs and modules stored in the memory 620.
  • the memory 620 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of the terminal, etc.
  • the memory 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 660 is the control center of the terminal, which uses various interfaces and lines to connect to various parts of the entire mobile phone, runs or executes the software programs and/or modules stored in the first memory 6201, and calls the software programs and/or modules stored in the second memory 6202.
  • the data in the terminal performs various functions of the terminal and processes the data, so as to monitor the terminal as a whole.
  • the processor 660 may include one or more processing units.
  • the processor 660 by calling and storing the software program and/or module in the first memory 6201 and/or data in the second memory 6202, the processor 660 is configured to:
  • the first beam information is sent to the network side device, so that the network side device determines the recommended beam and/or the recommended beam for signal transmission according to the first beam information and the beam database or beam model The trend of change; wherein, the signal transmission includes uplink signal transmission or downlink signal transmission.
  • the processor 660 is further configured to:
  • the determining the first beam information used for beam recommendation includes:
  • Network-side configuration information or instruction information sent by the network-side device where the network-side configuration information or instruction information is used to instruct the terminal to send an uplink signal for beam quality measurement;
  • the processor 660 is further configured to:
  • the determining the first beam information used for beam recommendation includes:
  • the terminal provided in the embodiment of the present application can implement the various processes implemented by the terminal in the foregoing embodiment, and in order to avoid repetition, details are not repeated here.
  • the first beam information is sent to the network side device, so that the network side device can determine the use of the beam according to the first beam information and the beam database or beam model
  • the recommended beam for signal transmission and/or the change trend of the recommended beam wherein, the signal transmission includes uplink signal transmission or downlink signal transmission, thereby solving the problem of large overhead and delay caused by frequent beam scanning processes in high-speed scenarios , Which saves beam scanning time and beam overhead, and also improves the efficiency and accuracy of beam recommendation.
  • FIG. 7 is a schematic structural diagram of a network-side device provided by an embodiment of the application.
  • the network-side device 700 may include at least one processor 701, a memory 702, at least one other user interface 703, and a transceiver ⁇ 704.
  • the components in the network side device 700 are coupled together through the bus system 705.
  • the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clarity, various buses are marked as the bus system 705 in FIG. 7.
  • the bus system may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 701 and the memory 702
  • the various circuits of the representative memory are linked together.
  • the bus system can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art. Therefore, the embodiments of the present application will not further describe them.
  • the bus interface provides the interface.
  • the transceiver 704 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 703 may also be an interface that can externally and internally connect the required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the memory 702 in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the memory 702 of the system and method described in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the processor 701 is responsible for managing the bus system and general processing.
  • the memory 702 may store computer programs or instructions used by the processor 701 when performing operations. Specifically, the processor 701 may be used for:
  • the first beam information and the beam database or beam model determine a recommended beam for signal transmission and/or a change trend of the recommended beam; wherein, the signal transmission includes uplink signal transmission or downlink signal transmission .
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 702, and the processor 701 reads the information in the memory 702, and completes the steps of the foregoing method in combination with its hardware.
  • the embodiments described in this application can be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the described technology can be implemented by modules (for example, procedures, functions, etc.) that execute the functions described in the embodiments of the present application.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the processor 701 is further configured to:
  • the determining the beam database or beam model used for beam recommendation includes:
  • Second beam information Acquiring second beam information reported by all terminals in a designated area within a designated time period, where the second beam information includes beam quality information and/or beam identification information;
  • the beam database or beam model is determined according to the second beam information.
  • the processor 701 is further configured to:
  • the beam database or beam model includes one or more of the following beam mapping relationships:
  • a first mapping relationship where the first mapping relationship is used to characterize a change in beam identification information and a mapping relationship with a recommended beam and/or a change trend of the recommended beam;
  • a second mapping relationship where the second mapping relationship is used to characterize the beam identification information, the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a third mapping relationship where the third mapping relationship is used to characterize the movement direction of the terminal, the beam identification information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a fourth mapping relationship where the fourth mapping relationship is used to characterize the mapping relationship between the motion trajectory of the terminal, the beam identification information and the recommended beam and/or the change trend of the recommended beam;
  • a fifth mapping relationship where the fifth mapping relationship is used to characterize the AOD change of the terminal's azimuth angle, the mapping relationship between the beam identification information and the recommended beam and/or the change trend of the recommended beam;
  • a sixth mapping relationship where the sixth mapping relationship is used to characterize a change in beam quality information, a mapping relationship with a recommended beam and/or a change trend of the recommended beam;
  • a seventh mapping relationship where the seventh mapping relationship is used to characterize the beam quality information ratio change, the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • An eighth mapping relationship where the eighth mapping relationship is used to characterize the movement direction of the terminal, beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a ninth mapping relationship where the ninth mapping relationship is used to characterize the motion trajectory of the terminal, beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam;
  • a tenth mapping relationship where the tenth mapping relationship is used to characterize the AOD change of the terminal, the beam quality information, and the mapping relationship with the recommended beam and/or the change trend of the recommended beam.
  • the processor 701 is further configured to:
  • the first beam information includes an uplink signal used for beam quality measurement
  • the first beam information used for beam recommendation sent by the receiving terminal includes:
  • the processor 701 is further configured to:
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model includes:
  • the third beam information includes beam quality information and/or beam identification information corresponding to the uplink signal
  • a recommended beam used for signal transmission and/or a change trend of the recommended beam is determined.
  • the processor 701 is further configured to:
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the third beam information and the beam database or beam model includes:
  • first historical beam information Acquiring first historical beam information within a specified time period, where the first historical beam information includes beam quality information and/or beam identification information;
  • a recommended beam for signal transmission and/or a change trend of the recommended beam is determined.
  • the processor 701 is further configured to:
  • the first beam information includes beam quality information and/or beam identification information corresponding to the downlink signal
  • the first beam information used for beam recommendation sent by the receiving terminal includes:
  • the processor 701 is further configured to:
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model includes:
  • the second historical beam information includes beam quality information and/or beam identification information
  • a recommended beam for signal transmission and/or a change trend of the recommended beam is determined.
  • the processor 701 is further configured to:
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model includes:
  • the recommended beam used for signal transmission and/or the change trend of the recommended beam is determined according to the moving direction of the terminal and the beam mapping relationship.
  • the processor 701 is further configured to:
  • the beam database or beam model includes track information or road information
  • the determining a recommended beam for signal transmission and/or a change trend of the recommended beam according to the first beam information and the beam database or beam model includes:
  • the recommended beam used for signal transmission and/or the change trend of the recommended beam is determined according to the moving direction of the terminal and the beam mapping relationship.
  • the processor 701 is further configured to:
  • the beam database or beam model is updated according to the first beam information to obtain an updated beam database or beam model.
  • the network-side device provided in the embodiment of the present application can implement the various processes implemented by the network-side device in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the network-side device provided in the embodiments of the present application includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections between devices or units through some interfaces.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of a software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions to enable a computer device (which can be a personal computer, a server, Or a network device, etc.) or a processor executes all or part of the steps of the method described in each embodiment of the present application.
  • the computer storage medium is a nontransitory (English: nontransitory) medium, including: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the embodiments of the present application also provide a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the methods provided in the foregoing embodiments, including:
  • the first beam information and the beam database or beam model determine a recommended beam for signal transmission and/or a change trend of the recommended beam; wherein, the signal transmission includes uplink signal transmission or downlink signal transmission .
  • the embodiments of the present application also provide a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the methods provided in the foregoing embodiments, including:
  • the first beam information is sent to the network side device, so that the network side device determines the recommended beam and/or the recommended beam for signal transmission according to the first beam information and the beam database or beam model The trend of change; wherein, the signal transmission includes uplink signal transmission or downlink signal transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种波束推荐方法、装置、网络侧设备、终端及存储介质,该方法包括:确定用于波束推荐的波束数据库或波束模型;接收终端发送的用于波束推荐的第一波束信息;根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。因此,本申请实施例解决了高速场景下频繁进行波束扫描过程带来的大开销与时延问题,节省了波束扫描时间和波束开销,还提高了波束推荐的效率和准确性。

Description

波束推荐方法、装置、网络侧设备、终端及存储介质
相关申请的交叉引用
本申请要求于2020年03月06日提交的申请号为2020101540182,申请名称为“波束推荐方法、装置、网络侧设备、终端及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束推荐方法、装置、网络侧设备、终端及存储介质。
背景技术
随着低频段资源的变得稀缺,而毫米波频段具有更多的频谱资源,能够提供更大带宽,成为了移动通信系统未来应用的重要频段。
目前,在高频段传输的系统中,采用波束赋形传输可以实现更高赋形增益和更大覆盖。基站或终端通常以波束扫描的方式获得较优的波束赋形方向。波束扫描通过测量不同波束方向上的信号来获得较优的波束赋形方向。波束扫描的过程通常包括发送不同波束方向上的参考信号、信号质量测量、波束选择等过程。
但是,现有的波束扫描技术,要想获得多个波束方向上的最优波束,需要在多个波束方向分别发送参考信号,分别测量信号质量后选择最优的波束。天线数目越多,波束的方向性越强,波束方向越多,则需要的参考信号数目越多,开销越大,计算的复杂度也越高。
发明内容
针对现有技术存在的问题,本申请实施例提供一种波束推荐方法、装置、网络侧设备、终端及存储介质。
本申请实施例提供一种波束推荐方法,所述波束推荐方法用于网络侧设备,包括:
确定用于波束推荐的波束数据库或波束模型;
接收终端发送的用于波束推荐的第一波束信息;
根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
可选地,所述确定用于波束推荐的波束数据库或波束模型,包括:
在指定时间段内获取指定区域内的所有终端上报的第二波束信息,所述第二波束信息中包括波束质量信息和/或波束标识信息;
根据所述第二波束信息确定所述波束数据库或波束模型。
可选地,所述波束数据库或波束模型中包括以下一项或多项波束映射关系:
第一映射关系,所述第一映射关系用于表征波束标识信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第二映射关系,所述第二映射关系用于表征波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第三映射关系,所述第三映射关系用于表征终端的运动方向、波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第四映射关系,所述第四映射关系用于表征终端的运动轨迹、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第五映射关系,所述第五映射关系用于表征终端的方位角AOD变化、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第六映射关系,所述第六映射关系用于表征波束质量信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第七映射关系,所述第七映射关系用于表征波束质量信息比变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第八映射关系,所述第八映射关系用于表征终端的运动方向、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第九映射关系,所述第九映射关系用于表征终端的运动轨迹、波束质量 信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第十映射关系,所述第十映射关系用于表征终端的AOD变化、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系。
可选地,所述第一波束信息中包括用于波束质量测量的上行信号;
所述接收终端发送的用于波束推荐的第一波束信息,包括:
向终端发送网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
接收所述终端发送的用于波束质量测量的上行信号。
可选地,所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
对所述上行信号的质量进行测量,并根据测量结果确定第三波束信息,所述第三波束信息包括所述上行信号对应的波束质量信息和/或波束标识信息;
根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,所述根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
获取在指定时间段内的第一历史波束信息,所述第一历史波束信息包括波束质量信息和/或波束标识信息;
根据所述第一历史波束信息、所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,所述第一波束信息中包括下行信号对应的波束质量信息和/或波束标识信息;
所述接收终端发送的用于波束推荐的第一波束信息,包括:
向终端发送用于波束质量测量的下行信号,以使所述终端对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
接收所述终端上报的所述下行信号对应的波束质量信息和/或波束标识 信息。
可选地,所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
获取在指定时间段内的第二历史波束信息,所述第二历史波束信息包括波束质量信息和/或波束标识信息;
根据所述第二历史波束信息、所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
根据所述第一波束信息中的AOD信息确定终端的运动方向;
根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,所述波束数据库或波束模型中包括轨道信息或道路信息;
所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
根据所述第一波束信息和所述轨道信息或道路信息确定终端的运动方向;
根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,还包括:
根据所述第一波束信息对所述波束数据库或波束模型进行更新,得到更新后的波束数据库或波束模型。
本申请实施例提供一种波束推荐方法,所述波束推荐方法用于终端,包括:
确定用于波束推荐的第一波束信息;
将所述第一波束信息发送至网络侧设备,以使所述网络侧设备根据所述第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
可选地,所述确定用于波束推荐的第一波束信息,包括:
接收所述网络侧设备发送的网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
将所述用于波束质量测量的上行信号确定为所述第一波束信息。
可选地,所述确定用于波束推荐的第一波束信息,包括:
接收所述网络侧设备发送的用于波束质量测量的下行信号;
对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
将所述下行信号对应的波束质量信息和/或波束标识信息确定为所述第一波束信息。
本申请实施例提供一种波束推荐装置,所述波束推荐装置用于网络侧设备,包括:
确定模块,用于确定用于波束推荐的波束数据库或波束模型;
接收模块,用于接收终端发送的用于波束推荐的第一波束信息;
推荐模块,用于根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
本申请实施例提供一种波束推荐装置,所述波束推荐装置用于终端,包括:
信息确定模块,用于确定用于波束推荐的第一波束信息;
信息发送模块,用于将所述第一波束信息发送至网络侧设备,以使所述网络侧设备根据所述第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
本申请实施例提供一种网络侧设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
确定用于波束推荐的波束数据库或波束模型;
接收终端发送的用于波束推荐的第一波束信息;
根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
可选地,所述确定用于波束推荐的波束数据库或波束模型,包括:
在指定时间段内获取指定区域内的所有终端上报的第二波束信息,所述第二波束信息中包括波束质量信息和/或波束标识信息;
根据所述第二波束信息确定所述波束数据库或波束模型。
可选地,所述波束数据库或波束模型中包括以下一项或多项波束映射关系:
第一映射关系,所述第一映射关系用于表征波束标识信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第二映射关系,所述第二映射关系用于表征波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第三映射关系,所述第三映射关系用于表征终端的运动方向、波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第四映射关系,所述第四映射关系用于表征终端的运动轨迹、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第五映射关系,所述第五映射关系用于表征终端的方位角AOD变化、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第六映射关系,所述第六映射关系用于表征波束质量信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第七映射关系,所述第七映射关系用于表征波束质量信息比变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第八映射关系,所述第八映射关系用于表征终端的运动方向、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第九映射关系,所述第九映射关系用于表征终端的运动轨迹、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第十映射关系,所述第十映射关系用于表征终端的AOD变化、波束质量 信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系。
可选地,所述第一波束信息中包括用于波束质量测量的上行信号;
所述接收终端发送的用于波束推荐的第一波束信息,包括:
向终端发送网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
接收所述终端发送的用于波束质量测量的上行信号。
可选地,所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
对所述上行信号的质量进行测量,并根据测量结果确定第三波束信息,所述第三波束信息包括所述上行信号对应的波束质量信息和/或波束标识信息;
根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,所述根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
获取在指定时间段内的第一历史波束信息,所述第一历史波束信息包括波束质量信息和/或波束标识信息;
根据所述第一历史波束信息、所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,所述第一波束信息中包括下行信号对应的波束质量信息和/或波束标识信息;
所述接收终端发送的用于波束推荐的第一波束信息,包括:
向终端发送用于波束质量测量的下行信号,以使所述终端对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
接收所述终端上报的所述下行信号对应的波束质量信息和/或波束标识信息。
可选地,所述根据所述第一波束信息、以及所述波束数据库或波束模型, 确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
获取在指定时间段内的第二历史波束信息,所述第二历史波束信息包括波束质量信息和/或波束标识信息;
根据所述第二历史波束信息、所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
根据所述第一波束信息中的AOD信息确定终端的运动方向;
根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,所述波束数据库或波束模型中包括轨道信息或道路信息;
所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
根据所述第一波束信息和所述轨道信息或道路信息确定终端的运动方向;
根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,还包括:
根据所述第一波束信息对所述波束数据库或波束模型进行更新,得到更新后的波束数据库或波束模型。
本申请实施例提供一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
确定用于波束推荐的第一波束信息;
将所述第一波束信息发送至网络侧设备,以使所述网络侧设备根据所述第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
可选地,所述确定用于波束推荐的第一波束信息,包括:
接收所述网络侧设备发送的网络侧配置信息或指示信息,所述网络侧配 置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
将所述用于波束质量测量的上行信号确定为所述第一波束信息。
可选地,所述确定用于波束推荐的第一波束信息,包括:
接收所述网络侧设备发送的用于波束质量测量的下行信号;
对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
将所述下行信号对应的波束质量信息和/或波束标识信息确定为所述第一波束信息。
本申请实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现用于网络侧设备的波束推荐方法的步骤。
本申请实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现用于终端的波束推荐方法的步骤。
本申请实施例提供一种波束推荐方法、装置、网络侧设备、终端及存储介质,通过确定用于波束推荐的波束数据库或波束模型,在接收到终端发送的用于波束推荐的第一波束信息时,可以根据第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,从而解决了高速场景下频繁进行波束扫描过程带来的大开销与时延问题,节省了波束扫描时间和波束开销,还提高了波束推荐的效率和准确性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种波束推荐方法的流程图;
图2为本申请实施例提供的一种波束推荐方法的流程图;
图3为本申请实施例提供的一种波束推荐装置的模块框图;
图4为本申请实施例提供的一种波束推荐装置的模块框图;
图5为本申请实施例提供的一种终端的结构示意图;
图6为本申请实施例提供的另一种终端的结构示意图;
图7为本申请实施例提供的一种网络侧设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了便于清楚描述本申请实施例的技术方案,在本申请的各实施例中,若采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
随着低频段资源的变得稀缺,而毫米波频段具有更多的频谱资源,能够提供更大带宽,成为了移动通信系统未来应用的重要频段。毫米波频段由于波长较短,具有与传统低频段频谱不同的传播特性,例如更高传播损耗,反射和衍射性能差等。因此通常会采用更大规模的天线阵列,以形成增益更大的赋形波束,克服传播损耗、确保系统覆盖。对于毫米波天线阵列,由于波长更短,天线阵子间距以及孔径更小,使得可以让更多的物理天线阵子集成在一个有限大小的二维天线阵列中;同时,由于毫米波天线阵列的尺寸有限,从硬件复杂度、成本开销以及功耗等因素考虑,无法采用低频段所采用的数字波束赋形方式,而是通常采用模拟波束与有限数字端口相结合的混合波束赋形方式。
对于一个多天线阵列,其每根天线都有独立的射频链路通道,但共享同一个数字链路通道,每条射频链路允许对所传输信号进行独立的幅度和相位调整,所形成的波束主要通过在射频通道的相位和幅度调整来实现,称为模 拟波束赋形信号。而全数字波束赋形的天线阵列,每根天线都有独立的数字链路通道,可以在基带控制每路信号的幅度和相位。
目前,在高频段传输的系统中,采用波束赋形传输可以实现更高赋形增益和更大覆盖。基站或终端通常以波束扫描的方式获得较优的波束赋形方向。波束扫描通过测量不同波束方向上的信号来获得较优的波束赋形方向。波束扫描的过程通常包括发送不同波束方向上的参考信号、信号质量测量、波束选择等过程。
但是,现有的波束扫描技术,要想获得多个波束方向上的最优波束,需要在多个波束方向分别发送参考信号,分别测量信号质量后选择最优的波束。天线数目越多,波束的方向性越强,波束方向越多,则需要的参考信号数目越多,开销越大,计算的复杂度也越高。因此,在部署了超大规模天线的场景下,如何进行低开销、低复杂度的波束扫描是一个急需解决的问题。
由于模拟波束赋形时每根天线发送的信号一般通过移相器改变其相位,受限于器件能力的限制,模拟波束赋形都是整个带宽上进行赋形,无法像数字波束赋形针对部分子带单独进行赋形,因此,模拟波束赋形间需要通过TDM(Time Division Multiplexing,时分复用)方式进行复用。波束方向多意味着需要进行波束扫描的时间长。在高速移动场景下,信道环境变化快,最优的波束方向和服务站点变化也很快。如果仍然采用传统的波束扫描技术,有可能无法及时跟踪波束的变化情况,从而导致波束失败或无线链路失败,影响性能。
针对上述问题,本申请实施例提供一种波束推荐方法、装置、网络侧设备、终端及存储介质,以降低波束扫描的时间和开销。
本申请实施例提供的波束推荐方法、装置、网络侧设备、终端及存储介质可以应用在无线通信系统或无线与有线结合的系统。包括但不限于5G系统(如NR系统)、6G系统、卫星系统、车联网系统、演进型长期演进(Long Term Evolution,LTE)系统,上述系统的后续演进通信系统等。
本申请实施例提供的网络侧设备可以包含但不限于以下中的一种或多种:通常所用的基站、演进型基站(evolved node base station,eNB)、5G系统中 的网络侧设备(例如下一代基站(next generation node base station,gNB)、发送和接收点(transmission and reception point,TRP))等设备。
本申请实施例提供的终端有可以被称为用户设备等。终端包括单不限于手持设备、车载设备。例如,可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
下面通过具体实施例进行说明。
图1为本申请实施例提供的一种波束推荐方法的流程图,该波束推荐方法可以用于网络侧设备,比如,基站。如图1所示,该波束推荐方法包括如下步骤:
步骤110:确定用于波束推荐的波束数据库或波束模型。
具体地,在轨道交通或者城市道路交通场景下,由于轨道和道路的分布具有一定的规律性,其上的用户的活动局限于轨道或者道路规律,同样也具有一定规律性。用户运动的规律性会导致测量信息的规律变化。基站根据小区内所有用户上报的历史信息,可以得到这一规律。根据这一规律可以对当前用户进行波束推荐,从而达到节省开销的目的。
网络侧设备(比如:基站)基于网络所服务的用户上报的波束信息建立一个波束数据库或波束模型,当一个用户上报了波束质量信息时,网络侧可以根据用户的波束质量信息与数据库进行匹配,或者将用户的波束质量信息输入至数学模型,获得下行传输或上行传输的较优波束方向。其中,波束信息可以包括波束质量信息(如RSRP、BLER等)和/或波束标识信息。这里的参考信号质量信息可以为RSRP(Reference Signal Receiving Power,参考信号接收功率)、BLER(BLock Error Rate,误块率)等。
其中,网络侧设备可以针对每个终端分别建立波束数据库或波束模型;也可以建立适用于多个终端的波束数据库或波束模型。
步骤120:接收终端发送的用于波束推荐的第一波束信息。
具体地,第一波束信息可以包括终端采用上行传输方式得到的信息,比如:终端根据网络侧设备的配置或指示发送的用于波束质量测量的上行信号; 还可以包括采用下行传输方式得到的信息,比如:终端根据网络侧设备发送的下行信号进行测量,得到的下行信号对应的波束质量信息。
步骤130:根据第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。其中,所述信号传输包括上行信号传输或下行信号传输。
具体地,网络侧设备(比如:基站)可以将根据第一波束信息确定的波束质量信息与数据库进行匹配、比对、拟合、检索等操作,得到用于信号传输的推荐波束和/或所述推荐波束的变化趋势;也可以将根据第一波束信息确定的波束质量信息输入至波束模型,获得用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
其中,推荐波束可以是根据第一波束信息、以及所述波束数据库或波束模型确定的较优波束。推荐波束的变化趋势可能是终端所在位置上推荐的多个波束的波束质量变化,也可能是终端在后续运动方向上的一个可能的波束变化,也可能包含终端在后续运动轨迹上一个或多个不同位置的较优波束。推荐波束的数量可能是一个或多个。当前确定的推荐波束可能与之前信号传输使用的推荐波束相同或不同。
另外,网络侧设备(比如:基站)根据终端上报的第一波束信息、与波束数据库或者波束模型确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势的过程可以是一个迭代的过程。
当网络侧设备(比如:基站)初次根据终端上报的波束信息与波束数据库或者波束模型确定终端的一个或多个推荐波束,网络侧设备(比如:基站)在上述一个或多个波束上发送参考信号,比如:CRS(Cell Reference Signal,小区参考信号),并指示给终端,终端监测这多个波束上的参考信号质量,比如:RSRP,并根据预定义准则将符合要求的波束信息上报给基站。网络侧设备(比如:基站)再次根据终端上报的信息与波束数据库或波束推荐模型确定推荐波束。重复上述过程。其中,预定义准则包括RSRP质量最好,或者接收质量大于一定门限值等。
比如:网络侧设备(比如:基站)可以在推荐的波束和该网络侧设备上 一次给终端发送用于测量的下行信号的波束上发送下行信号;终端接收上述波束上发送的参考信号,并根据预定义准则(比如:RSRP质量最好)将最优波束信息上报给网络侧设备;网络侧设备根据终端上报的波束信息选择较优波束。
由上述实施例可见,通过确定用于波束推荐的波束数据库或波束模型,在接收到终端发送的用于波束推荐的第一波束信息时,可以根据第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,从而解决了高速场景下频繁进行波束扫描过程带来的大开销与时延问题,节省了波束扫描时间和波束开销,还提高了波束推荐的效率和准确性。
进一步地,建立在上述方法的基础上,所述步骤110中的确定用于波束推荐的波束数据库或波束模型,可以采用但不限于以下实现方式:
(1-1-1)在指定时间段内获取指定区域内的所有终端上报的第二波束信息,所述第二波束信息中包括波束质量信息和/或波束标识信息;
(1-1-2)根据所述第二波束信息确定所述波束数据库或波束模型。
具体地,网络侧设备建立波束数据库时,可以对小区内所有终端采用下述过程。
下行过程:网络侧设备在一个或者多个波束上分别发送用于波束测量的下行信号,比如CRS、CSI-RS(Channel State Indication-Reference Signal,信道状态指示参考信号)等),终端检测上述一个或者多个波束上发送的信号,并根据预设的准则将符合要求的波束信息上报给网络侧设备。网络侧设备将终端上报的波束信息存入波束数据库和/或根据终端上报的波束信息进行波束选择,将所选波束的信息存入波束数据库。
上行过程:网络侧设备配置或指示终端在一个或者多个波束上分别发送上行信号,比如:SRS(Sounding Reference Signal,上行探测参考信号)、PRACH(Physical Random Access Channel,物理随机接入信道)等,网络侧设备测量终端发送的所述上行信号,网络侧设备根据预设的准则向波束数据库存储测量结果和/或网络侧设备根据测量结果进行波束选择,将所选波束的 信息存入波束数据库。
其中,波束数据库中存储终端上报的波束信息的变化趋势(终端的运动轨迹和/或位置与波束质量信息和/或波束标识信息的关系)。可选地,网络侧设备还利用波束测量结果进行终端的位置和/或运动轨迹的估计,将终端的位置和/或运动轨迹存入波束数据库。可选地,波束数据库中存储着终端的位置和/或运动轨迹与波束测量信息的关系。
另外,网络侧设备建立波束模型时,可以对小区内所有终端重复采用建立波束数据库的过程进行信息收集,利用收集到的信息建立波束模型。比如:根据收集的信息数据确定用户的轨迹,根据轨迹信息确定波束模型。
由上述实施例可见,通过在指定时间段内获取指定区域内的所有终端上报的第二波束信息,所述第二波束信息中包括波束质量信息和/或波束标识信息,并根据所述第二波束信息确定所述波束数据库或波束模型,从而保证了的波束数据库或波束模型的可靠性。
可选地,所述波束数据库或波束模型中包括以下一项或多项波束映射关系:
第一映射关系,所述第一映射关系用于表征波束标识信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第二映射关系,所述第二映射关系用于表征波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第三映射关系,所述第三映射关系用于表征终端的运动方向、波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第四映射关系,所述第四映射关系用于表征终端的运动轨迹、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第五映射关系,所述第五映射关系用于表征终端的AOD(Azimuth angle Of Departure,离开方位角)变化、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第六映射关系,所述第六映射关系用于表征波束质量信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第七映射关系,所述第七映射关系用于表征波束质量信息比变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第八映射关系,所述第八映射关系用于表征终端的运动方向、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第九映射关系,所述第九映射关系用于表征终端的运动轨迹、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第十映射关系,所述第十映射关系用于表征终端的AOD变化、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系。
进一步地,建立在上述方法的基础上,所述第一波束信息中包括用于波束质量测量的上行信号;所述步骤120中的接收终端发送的用于波束推荐的第一波束信息,可以采用但不限于以下实现方式:
(1-2-1)向终端发送网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号。
具体地,用于波束质量测量的上行信号可以有很多种,比如:SRS、PRACH等。
(1-2-2)接收所述终端发送的用于波束质量测量的上行信号。
与此对应的,所述步骤130中的根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,可以采用但不限于以下实现方式:
(1-3-1)对所述上行信号的质量进行测量,并根据测量结果确定第三波束信息,所述第三波束信息包括所述上行信号对应的波束质量信息和/或波束标识信息。
具体地,网络侧设备对上行信号的质量进行测量,可以获得上行信号中的一个或多个波束对应的波束质量信息。其中,波束质量信息可根据需求包含测量的参考信号质量信息和/或波束标识、上行信号标识等。这里的参考信号质量信息可以为RSRP、BLER(BLock Error Rate,误块率)等。
(1-3-2)根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
由上述实施例可见,通过指示终端发送用于波束质量测量的上行信号,并对上行信号的质量进行测量,得到上行信号对应的波束质量信息和/或波束标识信息,进而根据上行信号对应的波束质量信息和/或波束标识信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,从而节省了波束扫描时间和信令开销,降低了波束扫描过程带来的时延。
可选地,所述(1-3-2)中的根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,可以采用但不限于以下实现方式:
(1-4-1)获取在指定时间段内的第一历史波束信息,所述第一历史波束信息包括波束质量信息和/或波束标识信息。
具体地,网络侧设备接收到某一终端上报的第一波束信息后,可以采用该终端在过去一段时间T 0内的波束质量信息和/或波束标识信息、以及根据第一波束信息确定的上行信号对应的波束质量信息和/或波束标识信息、与波束数据库或波束模型共同确定该终端当前的确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,比如:最优波束信息。
(1-4-1)根据所述第一历史波束信息、所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
由上述实施例可见,通过根据终端在指定时间段内的第一历史波束信息、当前的第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,从而进一步提高了波束推荐的准确性。
进一步地,建立在上述方法的基础上,所述第一波束信息中包括下行信号对应的波束质量信息和/或波束标识信息;所述步骤120中的接收终端发送的用于波束推荐的第一波束信息,可以采用但不限于以下实现方式:
(1-5-1)向终端发送用于波束质量测量的下行信号,以使所述终端对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束 质量信息和/或波束标识信息。
具体地,用于波束质量测量的下行信号可以有很多种,比如:CSI-RS等。
终端对下行信号的质量进行测量,可以获得下行信号中的一个或多个波束对应的波束质量信息。
其中,波束质量信息可根据需求包含测量的参考信号质量信息和/或波束标识、下行信号标识等。这里的参考信号质量信息可以为RSRP、BLER等。
(1-5-2)接收所述终端上报的所述下行信号对应的波束质量信息和/或波束标识信息。
与此对应的,所述步骤130中的根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,可以采用但不限于以下实现方式:
(1-5-3)根据所述下行信号对应的波束质量信息和/或波束标识信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
由上述实施例可见,通过向终端发送用于波束质量测量的下行信号,并接收所述终端上报的所述下行波束信息,所述下行波束信息中包括所述下行信号对应的波束质量信息和/或终端位置信息,进而根据该波束质量信息和网络部署信息确定用于信号传输的发送波束和/或所述发送波束的变化趋势,从而节省了波束扫描时间和波束开销,降低了波束扫描过程带来的时延。
可选地,所述步骤130中的根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,可以采用但不限于以下实现方式:
(1-6-1)获取在指定时间段内的第二历史波束信息,所述第二历史波束信息包括波束质量信息和/或波束标识信息。
具体地,网络侧设备接收到某一终端上报的第一波束信息后,可以采用该终端在过去一段时间T 0内的波束质量信息和/或波束标识信息、以及下行信号对应的波束质量信息和/或波束标识信息、与波束数据库或波束模型共同确 定该终端当前的确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,比如:最优波束信息。
(1-6-2)根据所述第二历史波束信息、所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
由上述实施例可见,通过根据终端在指定时间段内的第二历史波束信息、当前的第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,从而进一步提高了波束推荐的准确性。
进一步地,建立在上述方法的基础上,所述步骤130中的根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,可以采用但不限于以下实现方式:
(1-7-1)根据所述第一波束信息中的AOD信息确定终端的运动方向。
具体地,若网络侧设备预先存入了轨道或道路信息,该网络侧设备可根据终端上报的第一波束信息中的AOD信息推测确定终端的运动方向,并根据终端的运动方向、及波束数据库或波束模型中包括的各项波束映射关系确定该终端用于信号传输的推荐波束和/或所述推荐波束的变化趋势,比如:当前的最优波束信息。
(1-7-2)根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
由上述实施例可见,可以根据所述第一波束信息中的AOD信息确定终端的运动方向,并根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,从而提高了波束推荐的效率和准确性。
进一步地,建立在上述方法的基础上,所述波束数据库或波束模型中包括轨道信息或道路信息;所述步骤130中的根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,可以采用但不限于以下实现方式:
(1-8-1)根据所述第一波束信息和所述轨道信息或道路信息确定终端的运动方向。
具体地,若网络侧设备预先存入了轨道或道路信息,该网络侧设备可根据终端上报的第一波束信息、以及轨道信息或道路信息确定终端的运动方向,根据终端的运动方向、及波束数据库或波束模型中包括的各项波束映射关系确定该终端用于信号传输的推荐波束和/或所述推荐波束的变化趋势,比如:当前的最优波束信息。
(1-8-2)根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
由上述实施例可见,由于波束数据库或波束模型中包括轨道信息或道路信息,可以根据第一波束信息和该轨道信息或道路信息确定终端的运动方向,再根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,从而丰富了确定终端的运动方向的实现方式,提高了确定终端的运动方向的灵活性。
进一步地,建立在上述方法的基础上,该波束推荐方法还包括如下步骤:
(1-9-1)根据所述第一波束信息对所述波束数据库或波束模型进行更新,得到更新后的波束数据库或波束模型。
具体地,网络侧设备可对波束数据库或波束模型进行更新。网络侧设备在接收到终端上报的第一波束信息时,若第一波束信息中包括用于波束质量测量的上行信号,则对该上行信号的质量进行测量,得到该上行信号对应的波束质量信息和/或波束标识信息,再使用该上行信号对应的波束质量信息和/或波束标识信息更新波束数据库或波束模型;若第一波束信息中包括下行信号对应的波束质量信息和/或波束标识信息,则可以直接使用该下行信号对应的波束质量信息和/或波束标识信息更新波束数据库或波束模型。
由上述实施例可见,通过根据所述第一波束信息对所述波束数据库或波束模型进行更新,得到更新后的波束数据库或波束模型,便于后续使用更新后的波束数据库或波束模型进行波束推荐,从而保证了波束数据库或波束模型的准确性和实时性,进而提高了波束推荐的可靠性。
图2为本申请实施例提供的一种波束推荐方法的流程图,该波束推荐方法可以用于终端;如图2所示,该波束推荐方法包括如下步骤:
步骤210:确定用于波束推荐的第一波束信息。
具体地,第一波束信息可以包括终端采用上行传输方式得到的信息,比如:终端根据网络侧设备的配置或指示发送的用于波束质量测量的上行信号;还可以包括采用下行传输方式得到的信息,比如:终端根据网络侧设备发送的下行信号进行测量,得到的下行信号对应的波束质量信息。
步骤220:将第一波束信息发送至网络侧设备,以使网络侧设备根据第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。其中,信号传输包括上行信号传输或下行信号传输。
具体地,推荐波束可以是根据第一波束信息、以及所述波束数据库或波束模型确定的较优波束。推荐波束的变化趋势可能是终端所在位置上推荐的多个波束的波束质量变化,也可能是终端在后续运动方向上的一个可能的波束变化,也可能包含终端在后续运动轨迹上一个或多个不同位置的较优波束。推荐波束的数量可能是一个或多个。当前确定的推荐波束可能与之前信号传输使用的推荐波束相同或不同。
由上述实施例可见,通过确定用于波束推荐的第一波束信息,将第一波束信息发送至网络侧设备,这样网络侧设备就可以根据第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,信号传输包括上行信号传输或下行信号传输,从而解决了高速场景下频繁进行波束扫描过程带来的大开销与时延问题,节省了波束扫描时间和波束开销,还提高了波束推荐的效率和准确性。
进一步地,建立在上述方法的基础上,所述步骤210中的所述确定用于波束推荐的第一波束信息,可以采用但不限于以下实现方式:
(2-1-1)接收所述网络侧设备发送的网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号。
具体地,用于波束质量测量的上行信号可以有很多种,比如:SRS、PRACH等。
(2-1-2)将所述用于波束质量测量的上行信号确定为所述第一波束信息。
由上述实施例可见,通过向网络侧设备发送用于波束质量测量的上行信号,这样网络侧设备就可以对上行信号的质量进行测量,得到上行信号对应的波束质量信息,进而根据该波束质量信息和波束数据库或波束模型用于信号传输的推荐波束和/或所述推荐波束的变化趋势,从而节省了波束扫描时间和波束开销。
进一步地,建立在上述方法的基础上,所述步骤210中的所述确定用于波束推荐的第一波束信息,可以采用但不限于以下实现方式:
(2-2-1)接收所述网络侧设备发送的用于波束质量测量的下行信号;。
具体地,用于波束质量测量的下行信号可以有很多种,比如:CSI-RS等。
(2-2-2)对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息。
具体地,终端对下行信号的质量进行测量,可以获得下行信号中的一个或多个波束对应的波束质量信息。
其中,波束质量信息可根据需求包含测量的参考信号质量信息和/或波束标识、下行信号标识等。这里的参考信号质量信息可以为RSRP、BLER等。
(2-2-3)将所述下行信号对应的波束质量信息和/或波束标识信息确定为所述第一波束信息。
由上述实施例可见,通过接收网络侧设备发送的用于波束质量测量的下行信号,并对所述下行信号的质量进行测量,得到所述下行信号对应的波束质量信息,以及将所述下行信号对应的波束质量信息和/或波束标识信息发送至网络侧设备,这样网络侧设备就可以该波束质量信息和波束数据库或波束模型用于信号传输的推荐波束和/或所述推荐波束的变化趋势,从而节省了波束扫描时间和波束开销,降低了波束扫描过程带来的时延。
下面针对图1和图2所示的波束推荐方法,通过具体示例进行说明。
示例1:网络侧收集多个终端的波束质量测量信息,根据这些用户的信息建立终端的波束变化趋势数据库。通过一次或多次获得的波束质量信息和/或波束标识信息,获得终端的波束变化趋势,将该变化趋势与数据库进行比对后获得较优波束,从而提高了推荐波束的准确性。
示例2:网络侧收集多个终端的波束质量测量信息,根据这些用户的信息建立终端的波束模型。网络侧将一次或多次获得的波束质量信息和/或波束标识信息输入波束模型,获得较优波束和/或较优波束的变化趋势。
示例2的一种具体实现:终端在两次上报中分别上报了质量最好的M个波束的波束标识信息,网络侧存储了波束标识信息变化与较优波束/较优波束变化趋势的映射关系。网络侧根据该映射关系可以获得较优波束和/或较优波束的变化趋势。如表1:在这种映射关系下,假如终端第一次上报的波束标识为波束1、2、3,第二次上报的波束标识为波束2、3、4,则网络侧获知当前最优的波束为波束2,随着终端的移动,一定时间后最优的波束将变为波束3。
表1
Figure PCTCN2020142360-appb-000001
示例3:基于数据库的下行波束确定方案
假定系统下行采用CRS作为参考信号,CRI作为波束指示,将参考信号的RSRP作为评价波束质量的指标,则下行波束确定方案如下。
过程一:网络侧建立波束数据库
网络侧设备服务的所有用户(终端)上进行如下过程。网络侧设备在多个波束上给终端发送参考信号CRS,终端测量各波束上发送的CRS的质量(例如RSRP),将RSRP最好的一个或多个波束的波束信息上报给网络侧设备, 上报的波束信息可以包含波束质量信息(如RSRP)和波束标识信息(如CSI-RI)等。网络侧设备接收终端上报的波束信息,根据预设准则(RSRP最好)选择最优波束,将波束信息存入波束数据库。
过程二:利用波束数据库进行波束确定
S1:网络侧(网络侧设备)向终端发送用于波束质量测量的下行信号(例如CSI-RS);
S2:终端监测用于波束信息测量的参考信号(例如CRS、CSI-RS等)的RSRP,并将波束信息(例如RSRP、CRI)上报给网络侧设备。网络侧设备将终端上报的波束信息存入波束数据库。
S3:网络侧设备根据终端上报的波束信息与数据库中的信息确定该波束信息对应的推荐波束,在推荐波束上发送下行参考信号。确定推荐波束的过程如下:根据终端上报的波束信息及波束数据库信息确定该终端的轨迹,并与波束数据库中信息拟合的具有相同或类似轨迹的终端进行波束信息匹配,确定波束信息对应的推荐波束。
示例4:一种上行波束确定方案
假定系统上行采用SRS作为参考信号,CRI作为波束指示,将参考信号的RSRP作为评价波束质量的指标,则上行波束确定方案如下。
过程一:波束数据库建立
网络侧设备配置或指示终端在一个或者多个波束上分别发送上行参考信号SRS,网络侧设备测量终端发送的所述上行参考信号SRS,获得测量结果(如SRS的RSRP值)。网络侧设备根据预设的准则(RSRP最高)往数据库存储测量结果(波束质量信息RSRP和波束标识信息CRI)。
过程二:利用波束数据库进行波束确定
S0:网络侧设备配置或指示终端发送用于波束质量测量的上行参考信号SRS;
S1:终端根据指示给网络侧设备侧发送上行参考信号SRS;
S2:网络侧设备测量上行参考信号SRS的质量(如RSRP),确定所述上行信号中的一个或多个信号对应的波束质量信息RSRP和波束标识信息 CRI;
S3:网络侧将所述波束质量信息RSRP和波束标识信息CRI与数据库对比,确定上行传输的较优波束。确定较优波束过程:根据测量结果(波束质量信息和波束标识信息)确定终端的运动轨迹,根据终端的运动轨迹与数据库中拟合的同类轨迹的终端的波束信息进行波束信息匹配,确定波束信息对应的较优波束。
图3为本申请实施例提供的一种波束推荐装置的模块框图,该波束推荐装置可以用于网络侧设备;如图3所示,该波束推荐装置可以包括:
确定模块31,用于确定用于波束推荐的波束数据库或波束模型;
接收模块32,用于接收终端发送的用于波束推荐的第一波束信息;
推荐模块33,用于根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
进一步地,建立在上述装置的基础上,所述确定模块31可以包括:
获取子模块,用于在指定时间段内获取指定区域内的所有终端上报的第二波束信息,所述第二波束信息中包括波束质量信息和/或波束标识信息;
确定子模块,用于根据所述第二波束信息确定所述波束数据库或波束模型。
进一步地,建立在上述装置的基础上,所述波束数据库或波束模型中包括以下一项或多项波束映射关系:
第一映射关系,所述第一映射关系用于表征波束标识信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第二映射关系,所述第二映射关系用于表征波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第三映射关系,所述第三映射关系用于表征终端的运动方向、波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第四映射关系,所述第四映射关系用于表征终端的运动轨迹、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第五映射关系,所述第五映射关系用于表征终端的方位角AOD变化、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第六映射关系,所述第六映射关系用于表征波束质量信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第七映射关系,所述第七映射关系用于表征波束质量信息比变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第八映射关系,所述第八映射关系用于表征终端的运动方向、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第九映射关系,所述第九映射关系用于表征终端的运动轨迹、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第十映射关系,所述第十映射关系用于表征终端的AOD变化、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系。
进一步地,建立在上述装置的基础上,所述第一波束信息中包括用于波束质量测量的上行信号;所述接收模块32可以包括:
第一发送子模块,用于向终端发送网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
第一接收子模块,用于接收所述终端发送的用于波束质量测量的上行信号。
与此对应的,所述推荐模块33可以包括:
第一测量子模块,用于对所述上行信号的质量进行测量,并根据测量结果确定第三波束信息,所述第三波束信息包括所述上行信号对应的波束质量信息和/或波束标识信息;
第一确定子模块,用于根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
进一步地,建立在上述装置的基础上,所述第一确定子模块可以包括:
获取单元,用于获取在指定时间段内的第一历史波束信息,所述第一历史波束信息包括波束质量信息和/或波束标识信息;
确定单元,用于获取在指定时间段内的第一历史波束信息,所述第一历史波束信息包括波束根据所述第一历史波束信息、所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
进一步地,建立在上述装置的基础上,所述第一波束信息中包括下行信号对应的波束质量信息和/或波束标识信息;所述接收模块32可以包括:
第二发送子模块,用于向终端发送用于波束质量测量的下行信号,以使所述终端对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
第二发送子模块,用于接收所述终端上报的所述下行信号对应的波束质量信息和/或波束标识信息。
与此对应的,所述推荐模块33可以包括:
获取子模块,用于获取在指定时间段内的第二历史波束信息,所述第二历史波束信息包括波束质量信息和/或波束标识信息;
第二确定子模块,用于根据所述第二历史波束信息、所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
进一步地,建立在上述装置的基础上,所述推荐模块33可以包括:
第三确定子模块,用于根据所述第一波束信息中的AOD信息确定终端的运动方向;
第四确定子模块,用于根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
进一步地,建立在上述装置的基础上,所述波束数据库或波束模型中包括轨道信息或道路信息;所述推荐模块33可以包括:
第五确定子模块,用于根据所述第一波束信息和所述轨道信息或道路信息确定终端的运动方向;
第六确定子模块,用于根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
进一步地,建立在上述装置的基础上,还包括:
更新模块,用于根据所述第一波束信息对所述波束数据库或波束模型进行更新,得到更新后的波束数据库或波束模型。
在此需要说明的是,本实施例提供的装置能够实现上述方法实施例所能够实现的所有方法步骤,并能够达到相同的有益效果,在此不再对本装置实施例中与上述方法实施例中的相同内容以及有益效果进行赘述。
图4为本申请实施例提供的一种波束推荐装置的模块框图,该波束推荐装置可以用于终端;如图4所示,该波束推荐装置可以包括:
信息确定模块41,用于确定用于波束推荐的第一波束信息;
信息发送模块42,用于将所述第一波束信息发送至网络侧设备,以使所述网络侧设备根据所述第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
进一步地,建立在上述装置的基础上,所述信息确定模块41可以包括:
第一信息接收子模块,用于接收所述网络侧设备发送的网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
第一信息确定子模块,用于将所述用于波束质量测量的上行信号确定为所述第一波束信息。
进一步地,建立在上述装置的基础上,所述信息确定模块41可以包括:
第二信息接收子模块,用于接收所述网络侧设备发送的用于波束质量测量的下行信号;
第二测量子模块,用于对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
第二信息确定子模块,用于将所述下行信号对应的波束质量信息和/或波束标识信息确定为所述第一波束信息。
在此需要说明的是,本实施例提供的装置能够实现上述方法实施例所能够实现的所有方法步骤,并能够达到相同的有益效果,在此不再对本装置实 施例中与上述方法实施例中的相同内容以及有益效果进行赘述。
图5为本申请实施例提供的一种终端的结构示意图,如图5所示,该终端500可以包括:至少一个处理器501、存储器502、至少一个网络接口504和其他的用户接口503。终端500中的各个组件通过总线系统505耦合在一起。可理解,总线系统505用于实现这些组件之间的连接通信。总线系统505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图5中将各种总线都标为总线系统505。
其中,用户接口503可以包括显示器、键盘或者点击设备,例如鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本申请实施例中的存储器502可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请各实施例所描述的系统和方法的存储器502旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器502存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集,例如:操作系统5021和应用程序5022。
其中,操作系统5021,包含各种系统程序,例如框架层、核心库层、驱 动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序5022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本申请实施例方法的程序可以包含在应用程序5022中。
在本申请实施例中,通过调用存储器502存储的计算机程序或指令,具体的,可以是应用程序5022中存储的计算机程序或指令,处理器501用于:
确定用于波束推荐的第一波束信息;
将所述第一波束信息发送至网络侧设备,以使所述网络侧设备根据所述第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
上述本申请实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本申请描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处 理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本申请实施例中所述功能的模块(例如过程、函数等)来实现所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,作为另一个实施例,处理器501还用于:
所述确定用于波束推荐的第一波束信息,包括:
接收所述网络侧设备发送的网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
将所述用于波束质量测量的上行信号确定为所述第一波束信息。
可选地,作为另一个实施例,处理器501还用于:
接收所述网络侧设备发送的用于波束质量测量的下行信号;
对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
将所述下行信号对应的波束质量信息和/或波束标识信息确定为所述第一波束信息。
本申请实施例提供的终端能够实现前述实施例中终端实现的各个过程,为避免重复,此处不再赘述。
由上述实施例可见,通过确定用于波束推荐的第一波束信息,将第一波束信息发送至网络侧设备,这样网络侧设备就可以根据第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,信号传输包括上行信号传输或下行信号传输,从而解决了高速场景下频繁进行波束扫描过程带来的大开销与时延问题,节省了波束扫描时间和波束开销,还提高了波束推荐的效率和准确性。
图6为本申请实施例提供的另一种终端的结构示意图,图6中的终端可以为手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、 或、电子阅读器、手持游戏机、销售终端(Point of Sales,POS)、车载电子设备(车载电脑)等。如图6所示,该终端包括射频(Radio Frequency,RF)电路610、存储器620、输入单元630、显示单元640、处理器660、音频电路670、WiFi(Wireless Fidelity)模块680和电源690。本领域技术人员可以理解,图6中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
其中,输入单元630可用于接收用户输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的信号输入。具体地,本申请实施例中,该输入单元630可以包括触控面板6301。触控面板6301,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板6301上的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板6301可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器660,并能接收处理器660发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板6301。除了触控面板6301,输入单元630还可以包括其他输入设备6302,其他输入设备6302可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,其他输入设备6302可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。
其中,显示单元640可用于显示由用户输入的信息或提供给用户的信息以及终端的各种菜单界面。显示单元640可包括显示面板6401。其中显示面板8401可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板 6401。
应注意,触控面板6301可以覆盖显示面板6401,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器660以确定触摸事件的类型,随后处理器660根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
RF电路610可用于收发信息或通话过程中,信号的接收和发送,特别地,将网络侧的下行信息接收后,给处理器660处理;另外,将设计上行的数据发送给网络侧。通常,RF电路610包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路610还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器620用于存储软件程序以及模块,处理器660通过运行存储在存储器620的软件程序以及模块,从而执行终端的各种功能应用以及数据处理。存储器620可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据终端的使用所创建的数据(比 如音频数据、电话本等)等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其中处理器660是终端的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器6201内的软件程序和/或模块,以及调用存储在第二存储器6202内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。可选的,处理器660可包括一个或多个处理单元。
在本申请实施例中,通过调用存储该第一存储器6201内的软件程序和/或模块和/或该第二存储器6202内的数据,处理器660用于:
确定用于波束推荐的第一波束信息;
将所述第一波束信息发送至网络侧设备,以使所述网络侧设备根据所述第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
可选地,作为另一个实施例,处理器660还用于:
所述确定用于波束推荐的第一波束信息,包括:
接收所述网络侧设备发送的网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
将所述用于波束质量测量的上行信号确定为所述第一波束信息。
可选地,作为另一个实施例,处理器660还用于:
所述确定用于波束推荐的第一波束信息,包括:
接收所述网络侧设备发送的用于波束质量测量的下行信号;
对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
将所述下行信号对应的波束质量信息和/或波束标识信息确定为所述第一波束信息。
本申请实施例提供的终端能够实现前述实施例中终端实现的各个过 程,为避免重复,此处不再赘述。
由上述实施例可见,通过确定用于波束推荐的第一波束信息,将第一波束信息发送至网络侧设备,这样网络侧设备就可以根据第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,信号传输包括上行信号传输或下行信号传输,从而解决了高速场景下频繁进行波束扫描过程带来的大开销与时延问题,节省了波束扫描时间和波束开销,还提高了波束推荐的效率和准确性。
图7为本申请实施例提供的一种网络侧设备的结构示意图,如图7所示,该网络侧设备700可以包括至少一个处理器701、存储器702、至少一个其他的用户接口703,以及收发机704。网络侧设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统705,总线系统可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器702代表的存储器的各种电路链接在一起。总线系统还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本申请实施例不再对其进行进一步描述。总线接口提供接口。收发机704可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口703还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
可以理解,本申请实施例中的存储器702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可 用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请各实施例所描述的系统和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
处理器701负责管理总线系统和通常的处理,存储器702可以存储处理器701在执行操作时所使用的计算机程序或指令,具体地,处理器701可以用于:
确定用于波束推荐的波束数据库或波束模型;
接收终端发送的用于波束推荐的第一波束信息;
根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程 存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本申请描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本申请实施例中所述功能的模块(例如过程、函数等)来实现所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,作为另一个实施例,处理器701还用于:
所述确定用于波束推荐的波束数据库或波束模型,包括:
在指定时间段内获取指定区域内的所有终端上报的第二波束信息,所述第二波束信息中包括波束质量信息和/或波束标识信息;
根据所述第二波束信息确定所述波束数据库或波束模型。
可选地,作为另一个实施例,处理器701还用于:
所述波束数据库或波束模型中包括以下一项或多项波束映射关系:
第一映射关系,所述第一映射关系用于表征波束标识信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第二映射关系,所述第二映射关系用于表征波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第三映射关系,所述第三映射关系用于表征终端的运动方向、波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第四映射关系,所述第四映射关系用于表征终端的运动轨迹、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第五映射关系,所述第五映射关系用于表征终端的方位角AOD变化、波 束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第六映射关系,所述第六映射关系用于表征波束质量信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第七映射关系,所述第七映射关系用于表征波束质量信息比变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第八映射关系,所述第八映射关系用于表征终端的运动方向、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第九映射关系,所述第九映射关系用于表征终端的运动轨迹、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
第十映射关系,所述第十映射关系用于表征终端的AOD变化、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系。
可选地,作为另一个实施例,处理器701还用于:
所述第一波束信息中包括用于波束质量测量的上行信号;
所述接收终端发送的用于波束推荐的第一波束信息,包括:
向终端发送网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
接收所述终端发送的用于波束质量测量的上行信号。
可选地,作为另一个实施例,处理器701还用于:
所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
对所述上行信号的质量进行测量,并根据测量结果确定第三波束信息,所述第三波束信息包括所述上行信号对应的波束质量信息和/或波束标识信息;
根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,作为另一个实施例,处理器701还用于:
所述根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
获取在指定时间段内的第一历史波束信息,所述第一历史波束信息包括波束质量信息和/或波束标识信息;
根据所述第一历史波束信息、所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,作为另一个实施例,处理器701还用于:
所述第一波束信息中包括下行信号对应的波束质量信息和/或波束标识信息;
所述接收终端发送的用于波束推荐的第一波束信息,包括:
向终端发送用于波束质量测量的下行信号,以使所述终端对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
接收所述终端上报的所述下行信号对应的波束质量信息和/或波束标识信息。
可选地,作为另一个实施例,处理器701还用于:
所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
获取在指定时间段内的第二历史波束信息,所述第二历史波束信息包括波束质量信息和/或波束标识信息;
根据所述第二历史波束信息、所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,作为另一个实施例,处理器701还用于:
所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
根据所述第一波束信息中的AOD信息确定终端的运动方向;
根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,作为另一个实施例,处理器701还用于:
所述波束数据库或波束模型中包括轨道信息或道路信息;
所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
根据所述第一波束信息和所述轨道信息或道路信息确定终端的运动方向;
根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
可选地,作为另一个实施例,处理器701还用于:
根据所述第一波束信息对所述波束数据库或波束模型进行更新,得到更新后的波束数据库或波束模型。
本申请实施例提供的网络侧设备能够实现前述实施例中网络侧设备实现的各个过程,为避免重复,此处不再赘述。
由上述实施例可见,通过确定用于波束推荐的波束数据库或波束模型,在接收到终端发送的用于波束推荐的第一波束信息时,可以根据第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,从而解决了高速场景下频繁进行波束扫描过程带来的大开销与时延问题,节省了波束扫描时间和波束开销,还提高了波束推荐的效率和准确性。
上述主要从网络侧设备的角度对本申请实施例提供的方案进行了介绍。可以理解的是,本申请实施例提供的网络侧设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。
某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络侧设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现, 也可以采用软件功能模块的形式实现。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。所述计算机存储介质是非短暂性(英文:nontransitory)介 质,包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的方法,包括:
确定用于波束推荐的波束数据库或波束模型;
接收终端发送的用于波束推荐的第一波束信息;
根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
另一方面,本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的方法,包括:
确定用于波束推荐的第一波束信息;
将所述第一波束信息发送至网络侧设备,以使所述网络侧设备根据所述第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (44)

  1. 一种波束推荐方法,其特征在于,所述波束推荐方法用于网络侧设备,包括:
    确定用于波束推荐的波束数据库或波束模型;
    接收终端发送的用于波束推荐的第一波束信息;
    根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
  2. 根据权利要求1所述的波束推荐方法,其特征在于,所述确定用于波束推荐的波束数据库或波束模型,包括:
    在指定时间段内获取指定区域内的所有终端上报的第二波束信息,所述第二波束信息中包括波束质量信息和/或波束标识信息;
    根据所述第二波束信息确定所述波束数据库或波束模型。
  3. 根据权利要求1所述的波束推荐方法,其特征在于,所述波束数据库或波束模型中包括以下一项或多项波束映射关系:
    第一映射关系,所述第一映射关系用于表征波束标识信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第二映射关系,所述第二映射关系用于表征波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第三映射关系,所述第三映射关系用于表征终端的运动方向、波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第四映射关系,所述第四映射关系用于表征终端的运动轨迹、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第五映射关系,所述第五映射关系用于表征终端的方位角AOD变化、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第六映射关系,所述第六映射关系用于表征波束质量信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第七映射关系,所述第七映射关系用于表征波束质量信息比变化、与推 荐波束和/或所述推荐波束的变化趋势的映射关系;
    第八映射关系,所述第八映射关系用于表征终端的运动方向、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第九映射关系,所述第九映射关系用于表征终端的运动轨迹、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第十映射关系,所述第十映射关系用于表征终端的AOD变化、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系。
  4. 根据权利要求1所述的波束推荐方法,其特征在于,所述第一波束信息中包括用于波束质量测量的上行信号;
    所述接收终端发送的用于波束推荐的第一波束信息,包括:
    向终端发送网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
    接收所述终端发送的用于波束质量测量的上行信号。
  5. 根据权利要求4所述的波束推荐方法,其特征在于,所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
    对所述上行信号的质量进行测量,并根据测量结果确定第三波束信息,所述第三波束信息包括所述上行信号对应的波束质量信息和/或波束标识信息;
    根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  6. 根据权利要求5所述的波束推荐方法,其特征在于,所述根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
    获取在指定时间段内的第一历史波束信息,所述第一历史波束信息包括波束质量信息和/或波束标识信息;
    根据所述第一历史波束信息、所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  7. 根据权利要求1所述的波束推荐方法,其特征在于,所述第一波束信息中包括下行信号对应的波束质量信息和/或波束标识信息;
    所述接收终端发送的用于波束推荐的第一波束信息,包括:
    向终端发送用于波束质量测量的下行信号,以使所述终端对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
    接收所述终端上报的所述下行信号对应的波束质量信息和/或波束标识信息。
  8. 根据权利要求1或7所述的波束推荐方法,其特征在于,所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
    获取在指定时间段内的第二历史波束信息,所述第二历史波束信息包括波束质量信息和/或波束标识信息;
    根据所述第二历史波束信息、所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  9. 根据权利要求3所述的波束推荐方法,其特征在于,所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
    根据所述第一波束信息中的AOD信息确定终端的运动方向;
    根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  10. 根据权利要求3所述的波束推荐方法,其特征在于,所述波束数据库或波束模型中包括轨道信息或道路信息;
    所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
    根据所述第一波束信息和所述轨道信息或道路信息确定终端的运动方向;
    根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  11. 根据权利要求1所述的波束推荐方法,其特征在于,还包括:
    根据所述第一波束信息对所述波束数据库或波束模型进行更新,得到更新后的波束数据库或波束模型。
  12. 一种波束推荐方法,其特征在于,所述波束推荐方法用于终端,包括:
    确定用于波束推荐的第一波束信息;
    将所述第一波束信息发送至网络侧设备,以使所述网络侧设备根据所述第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
  13. 根据权利要求12所述的波束推荐方法,其特征在于,所述确定用于波束推荐的第一波束信息,包括:
    接收所述网络侧设备发送的网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
    将所述用于波束质量测量的上行信号确定为所述第一波束信息。
  14. 根据权利要求12所述的波束推荐方法,其特征在于,所述确定用于波束推荐的第一波束信息,包括:
    接收所述网络侧设备发送的用于波束质量测量的下行信号;
    对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
    将所述下行信号对应的波束质量信息和/或波束标识信息确定为所述第一波束信息。
  15. 一种波束推荐装置,其特征在于,所述波束推荐装置用于网络侧设备,包括:
    确定模块,用于确定用于波束推荐的波束数据库或波束模型;
    接收模块,用于接收终端发送的用于波束推荐的第一波束信息;
    推荐模块,用于根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所 述信号传输包括上行信号传输或下行信号传输。
  16. 根据权利要求15所述的波束推荐装置,其特征在于,所述确定模块包括:
    获取子模块,用于在指定时间段内获取指定区域内的所有终端上报的第二波束信息,所述第二波束信息中包括波束质量信息和/或波束标识信息;
    确定子模块,用于根据所述第二波束信息确定所述波束数据库或波束模型。
  17. 根据权利要求15所述的波束推荐装置,其特征在于,所述波束数据库或波束模型中包括以下一项或多项波束映射关系:
    第一映射关系,所述第一映射关系用于表征波束标识信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第二映射关系,所述第二映射关系用于表征波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第三映射关系,所述第三映射关系用于表征终端的运动方向、波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第四映射关系,所述第四映射关系用于表征终端的运动轨迹、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第五映射关系,所述第五映射关系用于表征终端的方位角AOD变化、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第六映射关系,所述第六映射关系用于表征波束质量信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第七映射关系,所述第七映射关系用于表征波束质量信息比变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第八映射关系,所述第八映射关系用于表征终端的运动方向、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第九映射关系,所述第九映射关系用于表征终端的运动轨迹、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第十映射关系,所述第十映射关系用于表征终端的AOD变化、波束质量 信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系。
  18. 根据权利要求15所述的波束推荐装置,其特征在于,所述第一波束信息中包括用于波束质量测量的上行信号;
    所述接收模块包括:
    第一发送子模块,用于向终端发送网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
    第一接收子模块,用于接收所述终端发送的用于波束质量测量的上行信号。
  19. 根据权利要求18所述的波束推荐装置,其特征在于,所述推荐模块包括:
    第一测量子模块,用于对所述上行信号的质量进行测量,并根据测量结果确定第三波束信息,所述第三波束信息包括所述上行信号对应的波束质量信息和/或波束标识信息;
    第一确定子模块,用于根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  20. 根据权利要求19所述的波束推荐装置,其特征在于,所述第一确定子模块包括:
    获取单元,用于获取在指定时间段内的第一历史波束信息,所述第一历史波束信息包括波束质量信息和/或波束标识信息;
    确定单元,用于根据所述第一历史波束信息、所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  21. 根据权利要求15所述的波束推荐装置,其特征在于,所述第一波束信息中包括下行信号对应的波束质量信息和/或波束标识信息;
    所述接收模块包括:
    第二发送子模块,用于向终端发送用于波束质量测量的下行信号,以使所述终端对所述下行信号的质量进行测量,并根据测量结果确定所述下行信 号对应的波束质量信息和/或波束标识信息;
    第二接收子模块,用于接收所述终端上报的所述下行信号对应的波束质量信息和/或波束标识信息。
  22. 根据权利要求15或21所述的波束推荐装置,其特征在于,所述推荐模块包括:
    获取子模块,用于获取在指定时间段内的第二历史波束信息,所述第二历史波束信息包括波束质量信息和/或波束标识信息;
    第二确定子模块,用于根据所述第二历史波束信息、所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  23. 根据权利要求17所述的波束推荐装置,其特征在于,所述推荐模块包括:
    第三确定子模块,用于根据所述第一波束信息中的AOD信息确定终端的运动方向;
    第四确定子模块,用于根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  24. 根据权利要求17所述的波束推荐装置,其特征在于,所述波束数据库或波束模型中包括轨道信息或道路信息;
    所述推荐模块包括:
    第五确定子模块,用于根据所述第一波束信息和所述轨道信息或道路信息确定终端的运动方向;
    第六确定子模块,用于根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  25. 根据权利要求15所述的波束推荐装置,其特征在于,
    更新模块,用于根据所述第一波束信息对所述波束数据库或波束模型进行更新,得到更新后的波束数据库或波束模型。
  26. 一种波束推荐装置,其特征在于,所述波束推荐装置用于终端,包括:
    信息确定模块,用于确定用于波束推荐的第一波束信息;
    信息发送模块,用于将所述第一波束信息发送至网络侧设备,以使所述网络侧设备根据所述第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
  27. 根据权利要求26所述的波束推荐装置,其特征在于,所述信息确定模块包括:
    第一信息接收子模块,用于接收所述网络侧设备发送的网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
    第一信息确定子模块,用于将所述用于波束质量测量的上行信号确定为所述第一波束信息。
  28. 根据权利要求26所述的波束推荐装置,其特征在于,所述信息确定模块包括:
    第二信息接收子模块,用于接收所述网络侧设备发送的用于波束质量测量的下行信号;
    第二测量子模块,用于对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
    第二信息确定子模块,用于将所述下行信号对应的波束质量信息和/或波束标识信息确定为所述第一波束信息。
  29. 一种网络侧设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    确定用于波束推荐的波束数据库或波束模型;
    接收终端发送的用于波束推荐的第一波束信息;
    根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下行信号传输。
  30. 根据权利要求29所述的网络侧设备,其特征在于,所述确定用于波 束推荐的波束数据库或波束模型,包括:
    在指定时间段内获取指定区域内的所有终端上报的第二波束信息,所述第二波束信息中包括波束质量信息和/或波束标识信息;
    根据所述第二波束信息确定所述波束数据库或波束模型。
  31. 根据权利要求29所述的网络侧设备,其特征在于,所述波束数据库或波束模型中包括以下一项或多项波束映射关系:
    第一映射关系,所述第一映射关系用于表征波束标识信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第二映射关系,所述第二映射关系用于表征波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第三映射关系,所述第三映射关系用于表征终端的运动方向、波束标识信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第四映射关系,所述第四映射关系用于表征终端的运动轨迹、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第五映射关系,所述第五映射关系用于表征终端的方位角AOD变化、波束标识信息与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第六映射关系,所述第六映射关系用于表征波束质量信息变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第七映射关系,所述第七映射关系用于表征波束质量信息比变化、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第八映射关系,所述第八映射关系用于表征终端的运动方向、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第九映射关系,所述第九映射关系用于表征终端的运动轨迹、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系;
    第十映射关系,所述第十映射关系用于表征终端的AOD变化、波束质量信息、与推荐波束和/或所述推荐波束的变化趋势的映射关系。
  32. 根据权利要求29所述的网络侧设备,其特征在于,所述第一波束信息中包括用于波束质量测量的上行信号;
    所述接收终端发送的用于波束推荐的第一波束信息,包括:
    向终端发送网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
    接收所述终端发送的用于波束质量测量的上行信号。
  33. 根据权利要求32所述的网络侧设备,其特征在于,所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
    对所述上行信号的质量进行测量,并根据测量结果确定第三波束信息,所述第三波束信息包括所述上行信号对应的波束质量信息和/或波束标识信息;
    根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  34. 根据权利要求33所述的网络侧设备,其特征在于,所述根据所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
    获取在指定时间段内的第一历史波束信息,所述第一历史波束信息包括波束质量信息和/或波束标识信息;
    根据所述第一历史波束信息、所述第三波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  35. 根据权利要求29所述的网络侧设备,其特征在于,所述第一波束信息中包括下行信号对应的波束质量信息和/或波束标识信息;
    所述接收终端发送的用于波束推荐的第一波束信息,包括:
    向终端发送用于波束质量测量的下行信号,以使所述终端对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
    接收所述终端上报的所述下行信号对应的波束质量信息和/或波束标识信息。
  36. 根据权利要求29或35所述的网络侧设备,其特征在于,所述根据 所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
    获取在指定时间段内的第二历史波束信息,所述第二历史波束信息包括波束质量信息和/或波束标识信息;
    根据所述第二历史波束信息、所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  37. 根据权利要求31所述的网络侧设备,其特征在于,所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
    根据所述第一波束信息中的AOD信息确定终端的运动方向;
    根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  38. 根据权利要求31所述的网络侧设备,其特征在于,所述波束数据库或波束模型中包括轨道信息或道路信息;
    所述根据所述第一波束信息、以及所述波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势,包括:
    根据所述第一波束信息和所述轨道信息或道路信息确定终端的运动方向;
    根据终端的运动方向和所述波束映射关系确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势。
  39. 根据权利要求29所述的网络侧设备,其特征在于,还包括:
    根据所述第一波束信息对所述波束数据库或波束模型进行更新,得到更新后的波束数据库或波束模型。
  40. 一种终端,包括存储器、处理器及存储在存储器上并可在处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现如下步骤:
    确定用于波束推荐的第一波束信息;
    将所述第一波束信息发送至网络侧设备,以使所述网络侧设备根据所述第一波束信息、以及波束数据库或波束模型,确定用于信号传输的推荐波束和/或所述推荐波束的变化趋势;其中,所述信号传输包括上行信号传输或下 行信号传输。
  41. 根据权利要求40所述的终端,其特征在于,所述确定用于波束推荐的第一波束信息,包括:
    接收所述网络侧设备发送的网络侧配置信息或指示信息,所述网络侧配置信息或指示信息用于指示所述终端发送用于波束质量测量的上行信号;
    将所述用于波束质量测量的上行信号确定为所述第一波束信息。
  42. 根据权利要求40所述的终端,其特征在于,所述确定用于波束推荐的第一波束信息,包括:
    接收所述网络侧设备发送的用于波束质量测量的下行信号;
    对所述下行信号的质量进行测量,并根据测量结果确定所述下行信号对应的波束质量信息和/或波束标识信息;
    将所述下行信号对应的波束质量信息和/或波束标识信息确定为所述第一波束信息。
  43. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至11任一项所述的波束推荐方法的步骤。
  44. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求12至14任一项所述的波束推荐方法的步骤。
PCT/CN2020/142360 2020-03-06 2020-12-31 波束推荐方法、装置、网络侧设备、终端及存储介质 WO2021174994A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010154018.2 2020-03-06
CN202010154018.2A CN113365352B (zh) 2020-03-06 2020-03-06 波束推荐方法、装置、网络侧设备、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2021174994A1 true WO2021174994A1 (zh) 2021-09-10

Family

ID=77524258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142360 WO2021174994A1 (zh) 2020-03-06 2020-12-31 波束推荐方法、装置、网络侧设备、终端及存储介质

Country Status (2)

Country Link
CN (1) CN113365352B (zh)
WO (1) WO2021174994A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116847368A (zh) * 2022-03-23 2023-10-03 维沃移动通信有限公司 人工智能模型的输入处理方法、装置及设备
WO2024031664A1 (zh) * 2022-08-12 2024-02-15 北京小米移动软件有限公司 性能指示发送、接收方法、装置、设备及存储介质
CN117896838A (zh) * 2022-09-30 2024-04-16 维沃移动通信有限公司 Ai模型推理方法、设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486775A (zh) * 2015-01-08 2015-04-01 西安电子科技大学 基于用户位置的跟踪预测的有源天线阵列波束优化方法
CN105830481A (zh) * 2013-12-18 2016-08-03 株式会社Ntt都科摩 无线基站、移动台以及无线通信方法
CN110301143A (zh) * 2016-12-30 2019-10-01 英特尔公司 用于无线电通信的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116321202A (zh) * 2017-03-08 2023-06-23 索尼公司 无线通信系统中的电子设备和方法
US10171150B1 (en) * 2017-06-26 2019-01-01 Sprint Communications Company L.P. Dynamic optimization of beamforming weights
US11490313B2 (en) * 2018-03-08 2022-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Managing communication in a wireless communications network
US10841819B2 (en) * 2018-08-31 2020-11-17 Intel Corporation Scenario adaptive downlink beam management scheduling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105830481A (zh) * 2013-12-18 2016-08-03 株式会社Ntt都科摩 无线基站、移动台以及无线通信方法
CN104486775A (zh) * 2015-01-08 2015-04-01 西安电子科技大学 基于用户位置的跟踪预测的有源天线阵列波束优化方法
CN110301143A (zh) * 2016-12-30 2019-10-01 英特尔公司 用于无线电通信的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master Thesis", 18 April 2019, BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS, CN, article YAN HAO: "Research on Beam Management Technology Based on Millimeter Wave Distributed Antenna Array", pages: 1 - 70, XP055844082 *

Also Published As

Publication number Publication date
CN113365352B (zh) 2023-09-01
CN113365352A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2021174994A1 (zh) 波束推荐方法、装置、网络侧设备、终端及存储介质
CN111162827B (zh) 波束管理方法、装置、网络侧设备、终端及存储介质
WO2018113593A1 (zh) 一种波束管理信息的配置、处理方法、终端及基站
US11882574B2 (en) Information transmission method, terminal device, and network device
EP3579441A1 (en) Beam recovery processing method, network side device and mobile terminal
CN111343643B (zh) 一种接入切换方法、网络侧设备及移动终端
WO2021175146A1 (zh) 频率补偿方法、装置、网络侧设备、终端及存储介质
CN110392374B (zh) 波束失败检测方法、信息配置方法、终端及网络设备
WO2020221301A1 (zh) 参考信号测量、参考信号资源配置方法和设备
WO2020143657A1 (zh) 信道和干扰测量方法和设备
WO2022012171A1 (zh) Csi反馈方法、装置、电子设备及存储介质
CN107889149B (zh) 一种上报信道质量信息的方法、装置及系统
WO2021179725A1 (zh) 上行信道传输方法、装置、基站、终端及存储介质
WO2021175149A1 (zh) 一种信号的传输方法、终端、网络设备和存储介质
EP3883138A1 (en) Uplink beam training method, terminal device and network side device
WO2022001946A1 (zh) 一种信号传输方法、装置、设备及存储介质
CN114070334B (zh) 一种频率配置方法、装置、设备及存储介质
CN113473607B (zh) Pucch传输方法、装置、终端、网络侧和存储介质
CN114096007A (zh) 一种业务传输方法、装置、服务器及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923227

Country of ref document: EP

Kind code of ref document: A1