WO2021179458A1 - 无机固体硅基磺酸和/或磷酸催化剂及其制备方法和应用 - Google Patents

无机固体硅基磺酸和/或磷酸催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2021179458A1
WO2021179458A1 PCT/CN2020/095190 CN2020095190W WO2021179458A1 WO 2021179458 A1 WO2021179458 A1 WO 2021179458A1 CN 2020095190 W CN2020095190 W CN 2020095190W WO 2021179458 A1 WO2021179458 A1 WO 2021179458A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
reaction
solid
silicon
catalyst
Prior art date
Application number
PCT/CN2020/095190
Other languages
English (en)
French (fr)
Inventor
罗和安
游奎一
曾伊白
文敬滨
张雅晴
袁欣雅
艾秋红
Original Assignee
湘潭大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湘潭大学 filed Critical 湘潭大学
Priority to KR1020227035420A priority Critical patent/KR20220146658A/ko
Priority to JP2022555705A priority patent/JP7483916B2/ja
Priority to EP20924025.8A priority patent/EP4119223A4/en
Priority to US17/911,214 priority patent/US20230104925A1/en
Priority to CA3171435A priority patent/CA3171435A1/en
Publication of WO2021179458A1 publication Critical patent/WO2021179458A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/182Phosphorus; Compounds thereof with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/02Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D223/06Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D223/08Oxygen atoms
    • C07D223/10Oxygen atoms attached in position 2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a pure inorganic solid silicon-based sulfonic acid and/or phosphoric acid catalytic material with high acid content, and a preparation method and application thereof.
  • the solid acid catalyst Compared with the metal organic complex catalyst, the solid acid catalyst has an easier preparation process, is easily separated from the reaction system after the reaction, and the catalyst can be recycled and reused.
  • some solid sulfonic acid catalysts have special structure and high acid strength and acid content, which endow solid sulfonic acid catalysts with good activity and selectivity, making them have special properties and are widely used in ketoximes or aldoximes. Mann rearrangement reaction, esterification reaction, alkylation reaction, olefin hydroamination reaction, condensation reaction, nitration reaction, etherification reaction, multi-component reaction and oxidation reaction and many other acid-catalyzed organic reaction fields. Therefore, the development and research of solid sulfonic acid catalytic materials to catalyze organic reactions has important academic research value and broad application prospects.
  • organic solid sulfonic acid catalyst materials such as polystyrene sulfonic acid resin, perfluorosulfonic acid resin, aliphatic sulfonic acid group strong acid cation exchange resin and so on.
  • the sulfonic acid group is directly connected to the benzene ring, resulting in poor freedom of the functional group, and the reverse sulfonation reaction of the aromatic sulfonic acid resin reduces the service life of the resin.
  • this type of sulfonic acid resin is easily swollen and broken, the sulfonic acid group is easy to fall off, and the catalyst is easy to deactivate, which limits its practical application in industry.
  • silica gel ⁇ sulfonic acid is an inorganic solid proton acid.
  • silica gel silica gel with a relatively small number of surface hydroxyl groups is used as a raw material, and a limited number of hydroxyl groups on the surface of the silica gel react with chlorosulfonic acid to prepare silica-sulfonic acid (SiO 2 -SO 3 H) Catalyst.
  • This kind of solid acid catalyzed material has high reaction activity and good selectivity for acid-catalyzed reactions (such as condensation reaction, substitution reaction, esterification reaction, oxidation reaction, etc.).
  • the unwashed silica-sulfonic acid particles (SiO 2 -SO 3 H, referred to as silicon sulfonic acid) prepared by reacting silica gel (silica gel or silicon dioxide) with a sulfonating agent have a relatively high acid content, however, in fact, a large amount of acid is adsorbed on the surface of silica gel or silica, and the adsorbed acid is not covalently connected to the silica particles. Since the number of hydroxyl groups on the surface of the silica gel is too small, the amount of sulfonic acid groups bonded to the surface of the silica gel particles is limited, and the acid content of the silica sulfonic acid particles is very low.
  • the acid content of the silica-sulfonic acid particles is usually less than 0.14 mmol/g, and the acid content is difficult to reach 0.15 mmol/g. g, it is more difficult to reach 0.18mmol/g, and it is almost difficult to reach 0.20mmol/g.
  • US3929972A discloses a method for preparing silico-dihydrogen sulphate by sulfonating particulate alkali metal metasilicates (such as sodium or potassium metasilicate pentahydrate) with concentrated sulfuric acid.
  • alkali metal metasilicates such as sodium or potassium metasilicate pentahydrate
  • a soft skin-rigid core type soft skin-rigid core type
  • the soft skin is made of silicon
  • the hard core is sodium metasilicate crystals.
  • the primary sulfonated particles are muddy, and their mechanical strength is very low.
  • silicon-based sulfonic acid (SiO(HSO 4 ) 2 ) molecules continuously detach from the surface of the particles and enter the sulfuric acid solution, causing the size of the hard core to gradually shrink and eventually disappear (ie, alkaline
  • the sodium metasilicate crystal matrix is dissolved by sulfuric acid), and a mixture containing the compound SiO(HSO 4 ) 2 in the form of single molecules or small particles of nanometer size is obtained.
  • the particles obtained by the calcination of the above-mentioned primary sulfonated particles cannot be used as a catalyst in an acidic reaction system because the basic sodium metasilicate matrix is not resistant to acid corrosion.
  • alkyl-modified silicon sulfonic acid catalyst materials such as silica gel propyl sulfonic acid, and silica gel benzene sulfonic acid.
  • the preparation of this type of catalytic material requires the addition of a certain amount of templating agent, such as cetyltrimethylammonium bromide, and silylation reagents, such as ⁇ -mercaptopropyltrimethoxysilane, monophenyltrichlorosilane, and dichloromethane. Phenyldichlorosilane, chloropropyltrichlorosilane, octadecyltrichlorosilane, etc.
  • the purpose of the present invention is to provide pure inorganic solid silicon-based sulfonic acid and/or phosphoric acid (silicon-based sulfonic acid and/or phosphoric acid) catalytic materials and preparation methods thereof.
  • the method includes using a metasilicic acid solid with a surface rich in hydroxyl groups as the starting material, and bonding the sulfonic acid group and/or phosphoric acid group to the inorganic silicon material in the form of a sulfonating agent and/or phosphorylating agent through chemical bonding, Obtain pure inorganic solid silico-sulfonic acid/phosphoric acid catalyst material (h-SSA) with high acid content, namely: solid silico-sulfonic acid and/or phosphoric acid (solid silico-sulfonic acid and/or-phosphoric acid) .
  • h-SSA pure inorganic solid silico-sulfonic acid/phosphoric acid catalyst material
  • the inventor of the present application unexpectedly discovered that by using a sulfonating agent and/or phosphorylating agent to sulfonate and/or phosphorylate a solid metasilicic acid rich in hydroxyl groups on the surface, not only a sulfonated with a high acid content can be obtained. And/or phosphorylated particulate metasilicic acid solids, and does not destroy the structure and particle shape of the particulate metasilicic acid solid particles, nor does it change or hardly change the size of the metasilicic acid particles. Then, by further drying and roasting, solid silicon-based sulfonic acid and/or phosphoric acid particles or powders with high acid content and high mechanical strength are obtained.
  • the sulfonated and/or phosphorylated granular metasilicic acid particles are only dried at a higher temperature (for example, higher than 200°C) without being calcined, it may be the metasilicic acid matrix inside the particles Converted to a silica gel matrix (which contains water), but the solid sulfonic acid and/or phosphoric acid particles containing the silica gel matrix still have a high acid content.
  • the inorganic solid silicic acid and/or phosphoric acid catalyst can be referred to as (inorganic) solid acid catalyst or (inorganic) solid silicic acid with high acid content. surface-acidity, h-SSA for short).
  • the silico-acid component includes silico-sulfonic acid and/or phosphoric acid (silico-sulfonic acid and/or phosphoric acid catalyst, or silicon-based sulfonic acid and/or phosphoric acid catalyst).
  • the present invention provides inorganic solid silico-sulfonic acid and/or phosphoric acid catalyst (h-SSA) (silico-sulfonic acid and/or-phosphoric acid catalyst), and the solid acid catalyst (h-SSA) SSA) includes:
  • the matrix component (A) in the above-mentioned silicon-based sulfonic acid and/or phosphoric acid catalyst (h-SSA) includes or is selected from one or two or three of the following silicon-containing matrix components: (1 ) Metasilicic acid (ie, transparent glassy solid); (2) silica gel, and (3) silica.
  • the solid acid catalyst (h-SSA) is in the form of particles or powder.
  • the silicic acid component (B) is located on the surface of the catalyst particles, and the silicon matrix component (A) is located inside the catalyst particles.
  • the silicic acid component (B) includes a compound having the general formula (I), a compound having the general formula (II), and The compound having the general formula (III), or the silicic acid component (B) is selected from a compound having the general formula (I), a compound having the general formula (II), and a compound having the general formula (III)
  • One or more of, or the silicic acid component (B) (mainly) consists of a compound of the general formula (I), a compound of the general formula (II) and a compound of the general formula (III)
  • -AG 1 and -AG 2 are each independently -O-SO 3 H, -O-PO 3 H 2 or -OH, and -AG 1 and -AG 2 are not -OH at the same time.
  • -AG 1 and -AG 2 are each independently -O-SO 3 H or -OH, or -O-PO 3 H 2 or -OH, and -AG 1 and -AG 2 are not simultaneously -OH.
  • a silicon-containing substrate and a silicon substrate have the same meaning.
  • the acid amount of the solid acid catalyst (h-SSA) (the molar amount of hydrogen ions per catalyst mass) is 0.25-8.4 mmol/g, preferably 0.3-8.2, preferably 0.35-8, preferably 0.4-7.8, preferably 0.5-7.6, Preferably 0.6-7.5, preferably 0.7-7.3, preferably 0.8-7.0, preferably 0.9-6.8, preferably 1.0-6.5, preferably 1.1-6.3, preferably 1.2-6.0, preferably 1.3-5.8, preferably 1.4-5.6, preferably 1.5-5.4, Preferably 1.6-5.2, preferably 1.8-5.3, preferably 2.0-5.1, preferably 2.2-5.0, preferably 2.4-4.8, for example 3 or 4 mmol/g.
  • the average particle size of the solid acid catalyst (h-SSA) is 1 ⁇ m-10mm, preferably 3 ⁇ m-5mm, preferably 5 ⁇ m-1mm, preferably 7-800 ⁇ m, preferably 10-750 ⁇ m, more preferably 15-700 ⁇ m, more preferably 20-650 ⁇ m, more Preferably 25-600 ⁇ m, more preferably 30-550 ⁇ m, more preferably 35-500 ⁇ m, more preferably 40-450 ⁇ m, more preferably 45-400 ⁇ m, more preferably 50-350 ⁇ m, more preferably 55-320 ⁇ m, such as 60, 70, 80, 90, 100, 110, 120, 130, 150, 170, 180, 190, 200, 220, 240, 260, 280 or 300 ⁇ m.
  • the particle size of the catalyst is too small, it is not conducive to filtration recovery and reuse.
  • the particle size of the solid acid catalyst is too small (for example, nano-scale particle size), it will block the outlet and pipeline of the reactor, increase the pressure in the reactor, and cause an explosion accident.
  • its average particle size is greater than 40 ⁇ m or 50 ⁇ m or 60 ⁇ m.
  • the solid metasilicic acid and/or phosphoric acid powder or particles as the starting material have the same or similar average particle size as the solid silicon-based sulfonic acid and/or phosphoric acid catalyst product (h-SSA).
  • the amount of acid refers to: the molar amount of hydrogen ions per unit of inorganic solid silicon-based sulfonic acid and/the mass of phosphoric acid catalyst (h-SSA).
  • the acid content of the solid acid catalyst (h-SSA) is 1.0-7.2 mmol/g, preferably 1.3-6.8, preferably 2.0-6.5, preferably 2.1-6.3, preferably 2.2-6.0, preferably 2.3-5.8, preferably 2.4-5.6, preferably 2.5-5.4, preferably 2.6-5.2, preferably 2.7-5.3, preferably 2.8-5.1, preferably 2.9-5.0, preferably 3.0-4.8, such as 3.4, 3.6, 4 or 4.4 mmol/g, and the solid
  • the average particle size of the acid catalyst (h-SSA) is 20-600 ⁇ m, preferably 35-550 ⁇ m, preferably 40-500 ⁇ m, preferably 45-450 ⁇ m, preferably 50-400 ⁇ m, preferably 55-320 ⁇ m, preferably 60-320 ⁇ m, such as 70, 80 , 90, 100, 110, 120, 130, 150, 170, 180, 190, 200, 220, 240, 260, 280 or 300 ⁇ m.
  • the average particle size of the solid acid catalyst is 50-400um, more preferably 55-350um, such as 60, 70, 80, 90, 100, 110, 120, 130, 150, 180, 200, 230 , 250, 280 or 300um, and its acid content is 1.0-6.5mmol/g, preferably 1.1-6.3, preferably 1.2-6.0, preferably 1.3-5.8, preferably 1.4-5.6, preferably 1.5-5.4, preferably 1.6-5.2, Preferably 1.8-5.3, preferably 2.0-5.1, preferably 2.2-5.0, preferably 2.4-4.8 mmol/g, for example 3 or 4 mmol/g.
  • the acid amount of the solid acid catalyst (h-SSA) is 0.25-7.6 mmol/g, preferably 0.3 -7.5, more preferably 0.35-7.4, more preferably 0.4-7.2, more preferably 0.45-7.0, preferably 0.5-6.8, preferably 0.55-6.6, preferably 0.6-6.2, preferably 0.65-5.8, preferably 0.7-5.4, preferably 0.75- 5.0, preferably 0.8-4.8.
  • the acid amount of the solid acid catalyst (h-SSA) is 0.25-8.2 mmol/g, preferably 0.3-8.0 mmol/g, preferably 0.35-7.8 mmol/g g, more preferably 0.4-7.6mmol/g, more preferably 0.45-7.4mmol/g, more preferably 0.5-7.2mmol/g, preferably 0.55-7.0, preferably 0.6-6.8, preferably 0.65-6.6, preferably 0.7-6.2, preferably 0.75-5.8, preferably 0.8-5.4, preferably 0.85-5.2, preferably 0.9-5.0.
  • the solid acid catalyst (h-SSA) is made of sulfonated and/or phosphorylated metasilicic acid particles through What is obtained by calcination, more preferably, it is obtained by drying and calcination of the sulfonated and/or phosphorylated metasilicic acid particles.
  • the sum of the weight of (A) and (B) is 80-100wt% of the total weight of the catalyst (h-SSA), preferably 83-100wt%, preferably 85-100wt%, preferably 87-100wt%, preferably 90-100wt %, such as 93, 95, 97 or 98 or 99wt%.
  • the particulate catalyst (h-SSA) also includes a small amount (for example, 0-20wt%, 0-15wt%, 0-10wt%, 0-5wt% or 1-3wt%) in addition to (A ) And (B) other substances or impurities.
  • the weight ratio of the silico-acid component (B) to the matrix component (A) is: 0.02-20:1, preferably 0.04-18:1, preferably 0.08-15:1, Preferably 0.15-12:1, preferably 0.2-10:1, preferably 0.25-9.5:1, preferably 0.3-9:1, preferably 0.35-8.5:1, preferably 0.4-8:1, preferably 0.5-7.5:1, preferably 0.6-7:1, such as 0.8:1, 0.9:1, 1:1, 1.2:1, 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1 , 5:1, 5.5:1, 6:1, 6.5:1.
  • the silicic acid component (B) includes:
  • the weight percentage is based on the total weight of the silicic acid component (B).
  • the sum of the weight of the compound having the general formula (I), the compound having the general formula (II) and the compound having the general formula (III) is 80-100 wt% based on the total weight of the silicic acid component (B) , Preferably 83-100wt%, preferably 85-100wt%, preferably 87-100wt%, preferably 90-100wt%, for example 93, 95, 97 or 98 or 99wt%.
  • the silicic acid component (B) also includes a small amount (for example, 0-20wt%, 0-15wt%, 0-10wt%, 0-5wt% or 1-3wt%) except for the general formula (I), (II) and (III) polysilicic acid components and/or impurities other than compounds.
  • the molar ratio of the compound of general formula (I), the compound of general formula (II) and the compound of general formula (III) is 1:(0-0.7):(0-0.3), preferably 1:(0.01-0.6):( 0-0.25), preferably 1:(0.05-0.55):(0-0.20), preferably 1:(0.08-0.5):(0-0.17), preferably 1:(0.1-0.45):(0.002-0.15), Preferably 1:(0.12-0.4):(0.005-0.10).
  • the crushing strength of the solid acid catalyst particles (h-SSA) of the present invention is greater than 60N, preferably 60-260N, preferably 70-250N, preferably 80-240N, preferably 90-230N, such as 100N, 110N, 120N, 130N, 140N, 150N, 160N, 165N, 170N, 173N, 175N or 180N.
  • the metasilicic acid matrix is dry metasilicic acid solids and the silica gel matrix is dry silica gel, or, preferably, the silica matrix is amorphous silica (ie, calcined silica).
  • the crushing strength of the calcined solid acid catalyst (h-SSA) particles is greater than 165N, preferably in the range of 165-260N, more preferably in the range of 170-260N, preferably 173-250N, preferably 175-240N or 178- 230N or 180-230N.
  • the matrix component (A) may be a mixture or combination of any two or three of the aforementioned (1), (2) and (3) matrixes.
  • the silica matrix may contain a small amount (for example, 0-20 wt%, preferably 0-10 wt%, preferably 1-5 wt%) of impurities (such as silica gel).
  • the amount of acid mentioned here refers to the amount of acid measured against the sulfonic acid group and/or phosphoric acid group covalently linked in the solid acid catalyst (h-SSA or h-SSA-1), that is, the solid acid catalyst ( h-SSA or h-SSA-1) contains no or almost no adsorbed sulfonating agent (sulfuric acid or chlorosulfonic acid) and/or phosphorylating agent (phosphoric acid).
  • the (dry) metasilicic acid matrix refers to a silicon matrix containing 80-100wt% (preferably 85-100wt%, preferably 90-100wt%, such as 92 or 95 or 97 or 99wt%) of metasilicic acid .
  • the metasilicic acid matrix may also contain impurities, such as sodium metasilicate; preferably, the content of alkali metals (such as sodium and potassium) in the metasilicic acid matrix is 0-300 ppm, preferably 0-200 ppm, preferably 0-100 ppm, Preferably 0-50 ppm, preferably 0-10 ppm.
  • the silica matrix in the (calcined) solid acid catalyst particles refers to an amorphous material containing 80-100% by weight (preferably 85-100% by weight, preferably 90-100% by weight, such as 92 or 95 or 97 or 99% by weight)
  • the silicon matrix of silicon dioxide makes the crushing strength higher than 170N, such as 170-240N.
  • the silica matrix may also contain small amounts of impurities, such as silica gel.
  • the silica gel matrix can also contain a small amount of impurities, such as metasilicic acid.
  • the content of alkali metals (such as sodium and potassium) in the silica matrix is 0-300 ppm, preferably 0-200 ppm, preferably 0-100 ppm, preferably 0-50 ppm, preferably 0-10 ppm.
  • Dry metasilicic acid refers to solid metasilicic acid dried at room temperature (20°C) to 150°C (preferably 60 to 120°C, more preferably 70-90°C). Preferably, drying is performed under reduced pressure or Carry out under vacuum. It should be pointed out that when the drying temperature is higher (for example, 120-150°C), the drying time should be reduced (for example, generally 0.5-6 hours, such as 0.5-2 hours) to prevent most of the metasilicic acid from being converted into Silica gel.
  • the calcined silica refers to the dried sulfonated/phosphorylated metasilicic acid particles after being calcined at a temperature higher than 120°C (for example, 120-600°C, preferably 150-500°C, more preferably 200-480°C)
  • the silica matrix formed from the metasilicic acid matrix is preferably calcined in an inert atmosphere.
  • the silica matrix in the calcined solid acid catalyst has higher strength (for example, crush strength or abrasion resistance).
  • silico-sulfonic acid and/or phosphoric acid catalyst (silico-sulfonic acid and/or-phosphoric acid catalyst) is also referred to as silico-sulfonic acid and/or silico-sulfonic acid catalyst (silico-sulfonic acid and/or silico-sulfonic acid catalyst).
  • -phosphoric acid catalyst Silicon-based sulfonic acid and/or phosphoric acid represent the following three substances: silicon-based sulfonic acid, silicon-based phosphoric acid, and silicon-based sulfonic acid + phosphoric acid.
  • a silicon-containing matrix that does not contain a sulfonic acid group and/or a phosphoric acid group refers to a silicon-containing matrix that does not contain a sulfonic acid group (or a sulfuric acid group) and a phosphoric acid group.
  • the compound of general formula (I) includes or is one or more of the following compounds:
  • the compound of general formula (II) is a condensate of the compound of general formula (I).
  • the compound of general formula (II) includes or is one or more of the following compounds:
  • the compound of general formula (III) is a dicondensate of the compound of general formula (I).
  • the compound of general formula (III) includes or one or more of the following diacid compounds and monoacid compounds:
  • the silyl sulfonic acid compound includes or is a compound of general formula (Ia), (Ib), (IIa), (IIb), (IIIa) and (IIIb).
  • the silyl phosphate compound includes or is the general formula (Ic), (Id), (IIc), (IId), (IIIc) and (IIId) compounds.
  • Silicon-based sulfonic acid/phosphoric acid compounds include or are compounds of general formula (Ie), (IIe), and (IIIe).
  • the silicic acid component (B) of the resulting solid acid catalyst (h-SSA) includes all the compounds of the general formulas (I), (II) and (III).
  • the BET surface area of the solid acid catalyst is 50-800 m 2 /g, preferably 100-600 m 2 /g, preferably 150-500 cm 3 /g, preferably 200-400 m 2 /g.
  • the pore volume of the solid acid catalyst is 50-700 cm 3 /g, preferably 100-600 cm 3 /g, preferably 130-550 cm 3 /g, preferably 150-500 cm 3 /g, Preferably 160-400 cm 3 /g, preferably 180-300 cm 3 /g.
  • the average pore diameter of the solid acid catalyst (h-SSA) is 4-100 nm, preferably 5-50 nm, more preferably 6-30 nm, more preferably 7-20 nm, and more preferably 8-13 nm.
  • the solid acid catalyst (h-SSA) of the present invention is prepared by the following process: ion exchange reaction or hydrolysis reaction between a silicon source and an inorganic acid (preferably, the pH of the reaction mixture is controlled to be 4.5-6.5 during the reaction , Preferably 5 ⁇ 6), to obtain orthosilicic acid (H 4 SiO 4 ) gel or sol; allow the orthosilicic acid gel or sol to stand still for crystallization (promoting structural reorganization) to obtain granular orthosilicic acid ( H 4 SiO 4 ) gel solution, the solution is filtered and the filter cake is washed with water until the filtrate is neutral, and the separated gel is dried (more preferably, vacuum dried) to obtain dry particles Or powdered metasilicic acid (H 2 SiO 3 ) raw material; then, the dried particulate metasilicic acid (H 2 SiO 3 ) raw material is sulfonated and/or phosphoricated with a sulfonating agent and/or phosphoricating agent The resulting reaction mixture is filtered
  • the present invention provides inorganic solid silicon-based sulfonic acid (ie, solid silicon-based sulfonic acid catalyst h-SSA-1), which includes or mainly includes one or more inorganic silicon sulfonic acids of the following chemical formula (I), or It (mainly) consists of one or more inorganic silicon sulfonic acids of the following chemical formula (I):
  • the inorganic solid silicon-based sulfonic acid (ie, solid silicon-based sulfonic acid catalyst h-SSA-1) of the present invention includes or mainly includes the inorganic silicon sulfonic acid of the following chemical formula (Ia) and/or (Ib), or It includes or mainly includes one or two of the inorganic silicon sulfonic acids of the following chemical formulas (Ia) and (Ib), or it (mainly) consists of inorganic silicon sulfonic acids of the following chemical formulas (Ia) and/or (Ib), Or it (mainly) consists of one or two of the inorganic silicon sulfonic acids of the following chemical formulas (Ia) and (Ib):
  • the inorganic solid silicon-based sulfonic acid (ie, solid silicon-based sulfonic acid catalyst h-SSA-1) of the present invention includes or mainly includes the inorganic silicon sulfonic acid of formula (Ia) and/or (Ib) and optionally Sulfonated metasilicic acid (also called silicic acid) or silicon dioxide (because metasilicic acid becomes silicon dioxide after calcination), or it is mainly composed of inorganic silicon sulfonates of formula (Ia) and/or (Ib) It consists of acid and optionally unsulfonated metasilicic acid or silicon dioxide. Wherein, the content of unsulfonated metasilicic acid or silicon dioxide may be 0 wt%.
  • Optional means presence or absence.
  • the molecular weight of the inorganic silicon sulfonic acid compound of chemical formula (Ia) is 238, and the molecular weight of the inorganic silicon sulfonic acid compound of chemical formula (Ib) is 158.
  • the inorganic solid silicon-based sulfonic acid (ie, solid silicon-based sulfonic acid catalyst h-SSA-1) of the present invention is in the form of particles or in the form of powder. Generally, it also includes unsulfonated metasilicic acid (H 2 SiO 3 ) or silicon dioxide located inside the particles.
  • the inorganic solid silicic acid ie, solid silicic acid catalyst h-SSA-1
  • the average particle size is 50nm-5mm, preferably 80nm-1000um, more preferably 150nm-800um, more preferably 250nm-600um, more preferably 450nm-500um, more preferably 600nm-300um, more preferably 800nm-250um, more preferably 1um- 200um, more preferably 10um-170um, more preferably 20um-150um, such as 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 or 130um.
  • the solid metasilicic acid (powder or particulate) as the starting material has the same or similar average particle size as the solid silicon-based sulfonic acid catalyst product (h-SSA-1).
  • the acid amount of the inorganic solid silicon-based sulfonic acid (ie, the solid silicon-based sulfonic acid catalyst h-SSA-1) (the molar amount of hydrogen ions per catalyst mass) is 0.05-8.4 mmol/g, preferably 0.7-8.2 mmol /g, preferably 0.1-8mmol/g, preferably 0.3-7.8, preferably 0.5-7.6, preferably 0.6-7.5, preferably 0.7-7.3, preferably 0.8-7.0, preferably 0.9-6.8, preferably 1.0-6.5, preferably 1.1-6.3, Preferably 1.2-6.0, preferably 1.3-5.8, preferably 1.4-5.6, preferably 1.5-5.4, preferably 1.6-5.2, preferably 1.8-5.3, preferably 2.0-5.1, preferably 2.2-5.0, preferably 2.4-4.8 mmol/g, for example 3 Or 4mmol/g.
  • the acid amount of the catalyst is 0.1-8 mmol/g, more preferably 0.3-7.8, more preferably 0.5-7.5, more preferably 0.7-7.0, preferably 0.8-6.5 mmol/g, more preferably 1-6.0 mmol/g.
  • the amount of acid refers to the molar amount of hydrogen ions per unit of the mass of inorganic solid silicon-based sulfonic acid (or solid silicon-based sulfonic acid catalyst h-SSA-1).
  • the average particle size of the inorganic solid silicon-based sulfonic acid is 10um-170um, more preferably 20um-150um, such as 30, 40, 50, 60, 70, 80 , 90, 100, 110, 120 or 130um, and its acid content is 1.0-6.5mmol/g, preferably 1.1-6.3, preferably 1.2-6.0, preferably 1.3-5.8, preferably 1.4-5.6, preferably 1.5-5.4, preferably 1.6-5.2, preferably 1.8-5.3, preferably 2.0-5.1, preferably 2.2-5.0, preferably 2.4-4.8 mmol/g, for example 3 or 4 mmol/g.
  • the obtained inorganic solid silicon-based sulfonic acid includes the two inorganic silicon sulfonic acids of the above chemical formulas (Ia) and (Ib) and Unsulfonated metasilicic acid (H 2 SiO 3 ), or consists of these three compounds, or mainly consists of these three compounds.
  • the inorganic solid silicon-based sulfonic acid (ie, solid silicon-based sulfonic acid catalyst h-SSA-1) of the present invention comprises 1-100% by weight (preferably 2-96% by weight, more preferably 4-92% by weight, more preferably 6 -88wt%, more preferably 8-84wt%, more preferably 10-80wt%, more preferably 15-75wt%, more preferably 20-70wt%, more preferably 25-65wt%, more preferably 30-60wt%, for example 40wt%)
  • the inorganic solid silicon-based sulfonic acid (h-SSA-1) of the present invention comprises 0.5-90wt% (preferably 1-85wt%, preferably 2-80wt%, preferably 3-75wt%, preferably 4-70wt%, preferably 5 -65wt%, such as 15, 20, 30, 35, 40, 42, 44, 46, 48, 50, 55wt% or 60wt%) of the inorganic silicon sulfonic acid of the above chemical formula (Ia), 0.5-90wt% (preferably 1 -85wt%, preferably 2-80wt%, preferably 3-75wt%, preferably 4-70wt%, preferably 5-65wt%, such as 15, 20, 30, 35, 40, 42, 44, 46, 48, 50, 55wt % Or 60wt%) of the inorganic silicon sulfonic acid of the above chemical formula (Ib) and 0-99wt% (preferably 4-98wt%, more preferably 8-96wt%, more preferably 12-
  • the acid content of the inorganic solid silicic acid ie, solid silicic acid catalyst h-SSA-1
  • the content of an inorganic silicon sulfonic acid in the inorganic solid silicon-based sulfonic acid is about 0.6 wt% or 1.2 wt%, and the acidity of the catalyst is sufficient to make it have a good catalytic effect.
  • the acid content of the inorganic solid silicon-based sulfonic acid ie, the solid silicon-based sulfonic acid catalyst h-SSA-1
  • the two inorganic silicon sulfonic acids of chemical formula (Ia) and/or (Ib) are in the inorganic solid
  • the content of silicic acid (catalyst) is about 71-95% by weight, for example 83, 85, 88% by weight.
  • the balance is unsulfonated metasilicic acid (or silicon dioxide) and impurities or other dopants.
  • inorganic silicon sulfonic acid compounds and unsulfonated metasilicic acid or silica are distributed in inorganic solid silicon-based sulfonic acid (ie, solid silicon-based sulfonic acid catalyst h-SSA-1) particles, so the solid
  • the amount of sulfonic acid in the silicic acid catalyst depends on the degree of sulfonation of metasilicic acid.
  • the surface area of the inorganic solid silicon-based sulfonic acid is 50-800 m 2 /g, preferably 100-600 m 2 /g, preferably 150-500 cm 3 / g, preferably 200-400m 2 /g.
  • the pore volume of the inorganic solid silicon-based sulfonic acid is 100-600 cm 3 /g, preferably 130-550 cm 3 /g, preferably 150-500 cm 3 /g, preferably 160-400cm 3 /g.
  • the average pore diameter of the inorganic solid silicic acid is 4-100nm, preferably 5-50nm, more preferably 6-30nm, more preferably 7-20nm , More preferably 8-13nm.
  • the crushing strength of the solid acid catalyst (ie, h-SSA-1, calcined) of the present invention is greater than 165N, preferably 165-260N, 170-250N, 173-240N, 175-230N or 180-230N.
  • the present invention also provides a method for preparing the above-mentioned inorganic solid silicon-based sulfonic acid and/or phosphoric acid catalyst (h-SSA), the method comprising:
  • (B) Sulfonation and/or phosphorylation of metasilicic acid Let the (dry) granular metasilicic acid (H 2 SiO 3 ) raw material react with the sulfonating agent and/or phosphorylating agent to separate (preferably, filter The filter cake is separated) and washed with water or organic solvent (preferably, the filter cake is washed with water until the filtrate becomes neutral), and then dried to obtain dry inorganic solid silicic acid and/or phosphoric acid particles (ie, sulfonated and/ Or phosphorylated metasilicic acid powder or granules). That is, a dried but uncalcined inorganic solid silicon-based sulfonic acid and/or phosphoric acid catalyst (h-SSA) in which the silicon-containing matrix is a solid metasilicic acid is obtained.
  • h-SSA dried but uncalcined inorganic solid silicon-based sulfonic acid and/or phosphoric acid catalyst
  • the amount of sulfonating agent and/or phosphorylating agent relative to metasilicic acid is sufficient to make the dry but uncalcined solid acid catalyst (h-SSA) have an acid amount of 0.25-7.6 mmol/g, preferably 0.3-7.5 , More preferably 0.35-7.4, more preferably 0.4-7.2, more preferably 0.45-7.0, preferably 0.5-6.8, preferably 0.55-6.6, preferably 0.6-6.2, preferably 0.65-5.8, preferably 0.7-5.4, preferably 0.75-5.0, Preferably 0.8-4.8.
  • the present invention also provides a method for preparing the above-mentioned inorganic solid silicon-based sulfonic acid catalyst (h-SSA-1), the method comprising:
  • h-SSA-1 dried but uncalcined inorganic solid silicon-based sulfonic acid catalyst
  • the amount of sulfonating agent relative to metasilicic acid is sufficient to make the dry but uncalcined solid acid catalyst (h-SSA-1) have an acid content of 0.25-7.6 mmol/g, preferably 0.3-7.5, more preferably 0.35 -7.4, more preferably 0.4-7.2, more preferably 0.45-7.0, preferably 0.5-6.8, preferably 0.55-6.6, preferably 0.6-6.2, preferably 0.65-5.8, preferably 0.7-5.4, preferably 0.75-5.0, preferably 0.8-4.8 .
  • the particulate metasilicic acid (H 2 SiO 3 ) raw material is obtained by crystallization or crystallization of orthosilicic acid gel, which is obtained (not dried or dried)
  • the crystal structure and pore structure of the metasilicate solid have been improved and its specific surface area has been significantly increased. Therefore, the metasilicate solid is a mesoporous material.
  • the particulate metasilicic acid (H 2 SiO 3 ) raw material refers to particulate metasilicic acid solids.
  • the obtained sulfonated metasilicic acid wet solid or silicic acid and/or phosphoric acid wet solid can be directly used as a catalyst in some reactions.
  • the wet solid of sulfonated metasilicic acid or the wet solid of silicon-based sulfonic acid and/or phosphoric acid is further dried or vacuum dried to obtain a dry sulfonated metasilicic acid solid (in the form of powder or granules) or a dry silicon-based solid.
  • Sulfonic acid and/or phosphoric acid solids in powder or granular form).
  • the sulfonating agent is one or more selected from sulfonating agents: fuming sulfuric acid, sulfuric acid (preferably, concentrated sulfuric acid; preferably, concentrated sulfuric acid with a concentration of 65-100 wt%, for example: Concentrated sulfuric acid with a concentration or mass fraction of 70-100wt% or 75-100wt%; such as 95-99wt% concentrated sulfuric acid), chlorosulfonic acid, sulfur trioxide, sulfuryl chloride, a mixture of sulfur dioxide and chlorine, a mixture of sulfur dioxide and oxygen , A mixture of sulfur dioxide and ozone, sulfamic acid, and sulfite; more preferably, the sulfonating agent is fuming sulfuric acid, concentrated sulfuric acid (preferably, the concentration or mass fraction is 70-100wt% or 75-100wt% concentrated One or more of sulfuric acid), chlorosulfonic acid or sulfur trioxide.
  • sulfonating agents is fuming sulfuric acid, sulfuric acid (preferably,
  • the phosphorylating agent is phosphoric acid, phosphoryl monochloride and/or phosphoryl dichloride, preferably concentrated phosphoric acid, such as concentrated phosphoric acid with a concentration of 75 wt% to 85 wt%.
  • the metasilicic acid (H 2 SiO 3 ) raw material is a powdered or granular solid (ie, a dry solid or a wet solid).
  • the solid metasilicic acid raw material is porous metasilicic acid or metasilicic acid with pores or foamed metasilicic acid.
  • metasilicic acid is also referred to as silicic acid.
  • the obtained dry particulate silicon-based sulfonic acid and/or phosphoric acid solids are calcined to increase the strength of the particles, so as to obtain calcined silicon-based sulfonic acid and/or phosphoric acid solids (in the form of powder or granules), That is, the catalyst h-SSA in which the silicon substrate is silica.
  • the obtained sulfonated metasilicic acid wet solid or the obtained dried sulfonated metasilicic acid solid is calcined to obtain the calcined sulfonated metasilicic acid solid (it is in the form of powder or granule), that is, the catalyst h- SSA-1.
  • the method further includes the following steps:
  • step (C) Calcination: calcining the dried particulate silicic acid and/or phosphoric acid (solid powder) obtained in step (B) to obtain an inorganic solid silicic acid and/or phosphoric acid catalyst (ie, the calcined Silicon-based sulfonic acid and/or phosphoric acid solid h-SSA, which is generally in the form of powder or granules). That is, the solid acid catalyst h-SSA in which the silicon-containing substrate is silica is obtained.
  • an inorganic solid silicic acid and/or phosphoric acid catalyst ie, the calcined Silicon-based sulfonic acid and/or phosphoric acid solid h-SSA, which is generally in the form of powder or granules. That is, the solid acid catalyst h-SSA in which the silicon-containing substrate is silica is obtained.
  • the method further includes the following steps:
  • step (C) Calcining: calcining the sulfonated metasilicic acid solid obtained in step (B) to obtain the inorganic solid silicic acid of the present invention (that is, the calcined sulfonated metasilicic acid solid h-SSA-1, It is generally in powder or granular form).
  • the acid content of the calcined solid acid catalyst is 0.25-8.4 mmol/g, preferably 0.3-8.4 mmol/g, preferably 0.32-8.4 mmol/g, preferably 0.33-8.4 mmol/g g, preferably 0.35-8.2mmol/g, preferably 0.36-8.0mmol/g, preferably 0.38-7.8mmol/g, preferably 0.38-7.6mmol/g, more preferably 0.4-7.6mmol/g, more preferably 0.45-7.4mmol/ g, more preferably 0.5-7.2mmol/g, preferably 0.55-7.0, preferably 0.6-6.8, preferably 0.65-6.6, preferably 0.7-6.2, preferably 0.75-5.8, preferably 0.8-5.4, preferably 0.85-5.2, preferably 0.9-5.0 .
  • the method further includes the following steps:
  • the method further includes the following steps:
  • Crystallization refers to static crystallization. Orthosilicic acid gel is not very stable and forms a metasilicic acid solid by drying.
  • Metasilicic acid is prepared by using the liquid phase precipitation method.
  • the silicon source in the step (A) is one or more of silicate, silicate or silica gel.
  • the cation of the silicate is one or more of metal ions (for example, alkali metal ions, such as potassium or sodium ions) or ammonium ions.
  • the silicate is a tetra C 1 -C 15 hydrocarbyl orthosilicate, preferably a tetra C 1 -C 10 hydrocarbyl orthosilicate.
  • the silicate is tetra C 1 -C 7 alkyl orthosilicate, tetra C 3 -C 8 cycloalkyl orthosilicate or tetraaryl orthosilicate, such as tetramethyl orthosilicate, Tetraethyl orthosilicate, tetrapropyl orthosilicate, tetrabutyl orthosilicate and tetraphenyl orthosilicate).
  • the inorganic acid used in the step (A) is one or more of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid.
  • step (B) or step (A) is carried out under stirring or under the action of stirring plus ultrasonic waves or microwaves, so as to obtain particles with uniform particle size.
  • step (A) the concentration of orthosilicic acid in the formed orthosilicic acid gel solution, and the temperature and time of crystallization determine the particle size of the particulate metasilicic acid solid.
  • the above step (B) is carried out as follows: under stirring conditions or under the action of stirring plus ultrasonic waves or microwaves, the sulfonating agent, or, the sulfonating agent and/or the phosphorylating agent, is added to the metasilicic acid Carry out sulfonation in medium, then cool (for example, to room temperature), and filter. The obtained filter cake is washed with deionized water until the filtrate becomes neutral. The obtained white solid powder is dried (for example, vacuum drying) and calcined to obtain inorganic solid silicon.
  • the molar ratio of the metasilicic acid to the sulfonating agent, or the molar ratio of the metasilicic acid to the sulfonating agent and/or phosphorylating agent is 0.01 to 4.0 :1, preferably 0.03 to 3.0:1, preferably 0.04 to 2.0:1, preferably 0.05 to 1:1, more preferably 0.1 to 0.9:1, more preferably 0.2 to 0.8:1, more preferably 0.3 to 0.7:1.
  • the temperature of the sulfonation reaction is room temperature (20°C) to 200°C, preferably 40 to 180°C, preferably 60 to 150°C, more preferably 80 to 130°C.
  • the drying of the solid powder can be carried out under an air or inert gas atmosphere; more preferably, it is carried out under a pressure (absolute pressure) of 5 to 150 kPa, preferably 10 to 120 kPa; the drying temperature is room temperature (20°C). ) ⁇ 150°C, preferably 60 ⁇ 120°C.
  • the solid calcination is performed under an inert gas atmosphere; preferably, the calcination temperature is 120-600°C, preferably 150-500°C, more preferably 200-480°C.
  • the inorganic acid solution is slowly added dropwise to the solution containing the silicon source (for ion exchange reaction or hydrolysis reaction) , Maintain the pH value of the solution (for example, 4.5 to 6.5, preferably 5 to 6) to obtain
  • ion exchange or hydrolysis is carried out under stirring or under the action of stirring and ultrasonic waves or microwaves.
  • the molar ratio of the silicon source material (silicate or silicate or silica gel) to the inorganic acid is 0.01 to 2.0:1, preferably 0.05 to 1.0:1, more preferably 0.1 to 0.8:1, more preferably 0.3 ⁇ 0.7:1, for example, 0.05-0.7:1, preferably 0.1-0.65:1, preferably 0.15-0.6:1, preferably 0.2-0.5:1.
  • the temperature of ion exchange or hydrolysis is 0 to 100°C, preferably room temperature (20°C) to 80°C.
  • the crystallization conditions of the orthosilicic acid gel are: the pH of the gel solution is 1-9, preferably 2-7; the crystallization temperature is 0-100°C, preferably 10-90 °C, more preferably room temperature (20°C) to 80°C, more preferably 30°C to 70°C.
  • the drying of the gel solid is performed under an air or inert gas atmosphere.
  • the drying of the orthosilicic acid gel solid is performed under a pressure (absolute pressure) of 5 to 150 kPa, preferably 10 to 120 kPa.
  • the drying temperature is room temperature (20°C) to 200°C, preferably 60 to 150°C, more preferably 60 to 110°C.
  • the drying time should be shortened accordingly, for example to 10 minutes to 4 hours, in order to avoid the formation of silica gel.
  • the drying of orthosilicic acid gel is to form particulate metasilicic acid solids and completely remove the moisture in the metasilicic acid solid particles.
  • the sulfonated and/or phosphorylated solid particles are dried and later calcined, which is beneficial to obtain a solid acid catalyst (h-SSA or h-SSA-1) with stable structure and high strength.
  • the sulfonated and/or phosphorylated solid particles are dried in an inert atmosphere and then calcined in an inert atmosphere to form a pure silica matrix in the interior of the particles.
  • the orthosilicate gel is dried at a higher temperature (for example, higher than 200°C, such as 200-400°C) and the resulting sulfonated and/or phosphorylated solid particles are not calcined, it may be A silica gel matrix is formed in the inside of the particles.
  • the silicon substrate of the catalyst of the present invention is silica gel.
  • this solid acid catalyst including a silica gel matrix also has a high acid content, it is not a preferred technical solution of the present invention.
  • the present invention also provides a method for preparing inorganic solid sulfonic acid and/or phosphoric acid catalyst (h-SSA), the method includes the following process: the silicon source and the inorganic acid are subjected to ion exchange reaction or hydrolysis reaction (preferably, the reaction mixture is controlled during the reaction The pH value is 4.5-6.5, preferably 5-6) to obtain orthosilicic acid (H 4 SiO 4 ) gel or sol; allow the orthosilicic acid gel or sol to stand still for crystallization (promoting structural reorganization) to obtain A solution containing granular orthosilicic acid (H 4 SiO 4 ) gel, and then the solution is filtered and the filter cake is washed with water until the filtrate is neutral, and the separated gel is dried (more preferably, vacuum Drying) to obtain dry granular or powdered metasilicic acid (H 2 SiO 3 ) raw material; then, dry granular metasilicic acid (H 2 SiO 3 ) raw material with sulfonating agent and/or phosphorylation agent Carr
  • the present invention provides inorganic solid silicon-based sulfonic acid and/or phosphoric acid (ie, solid silicon-based sulfonic acid and/or phosphoric acid catalyst h-SSA) or inorganic solid silicon-based sulfonic acid (ie, solid silicon-based sulfonic acid) prepared by the above method.
  • Acid catalyst h-SSA-1 Inorganic solid silicon-based sulfonic acid and/or phosphoric acid catalyst (h-SSA), or the said inorganic solid silicon-based sulfonic acid catalyst h-SSA-1 (or catalytic material), can also be a supported catalyst or catalytic material .
  • the support for the supported inorganic solid silicic acid and/or phosphoric acid catalyst or the supported inorganic solid silicic acid catalyst is selected from molecular sieves with a large specific surface, ⁇ -alumina, activated carbon, silica gel, One or more of the carriers such as clay.
  • the molecular sieve is MCM-41, MCM-22, SBA-15, HZSM-5, mordenite, Y-type zeolite or ⁇ -zeolite, etc.
  • the present invention also provides the use of the above-mentioned inorganic solid silicon-based sulfonic acid and/or phosphoric acid catalyst (h-SSA) or the above-mentioned inorganic solid silicon-based sulfonic acid (h-SSA-1) as a catalyst.
  • the inorganic solid silicon-based sulfonic acid catalytic material has four obvious infrared characteristic absorption peaks in the wavelength range of 1400 to 1640 cm -1.
  • the infrared absorption peaks at 1454 cm -1 and 1622 cm -1 are the characteristic absorption peaks of pyridine adsorbed on the center of Lewis acid; the infrared absorption peak at 1546 cm -1 is the characteristic absorption peaks of pyridine adsorbed on the center of Bronsted acid.
  • the acid component (B) in the silicon-based sulfonic acid catalyst includes a major amount of the compound of the general formula (I) and a small amount of the silicon-based sulfonic acid compound of the general formula (II).
  • the inorganic solid silicon-based sulfonic acid and/or phosphoric acid catalyst or inorganic solid silicon-based sulfonic acid catalyst of the present invention has high acid content, high activity, good hydrothermal stability, no swelling, simple preparation process of the catalyst, low cost, pollution-free, and no It has the advantages of corrosion, easy separation and reusability. It is an environmentally friendly solid acid catalytic material with a wide range of application prospects.
  • the catalytic material can be widely used in many acid-catalyzed reactions such as isomerization reaction, esterification reaction, alkylation reaction, olefin hydrogen amination reaction, condensation reaction, nitration reaction, etherification reaction, multi-component reaction and oxidation reaction. Organic reaction field.
  • solid acid catalysts are used in the esterification reaction of gallic acid and C1-C8 fatty alcohols, and can achieve a high yield of 96-99% in the reversible reaction. This may be due to the steric effect of the catalyst particles, which makes The reverse reaction of water attacking the ester product is difficult to occur.
  • the particulate metasilicic acid solids before and after drying and the final silicic acid particles are all mesoporous materials. These materials have high mechanical strength, for example, their crushing strength is greater than 60N (preferably, 60-260N, 80-250N, 100-240N, such as 120N, 150N, 160N, 165N, 170N, 175N or 180N), Its wear resistance is significantly improved.
  • the solid acid catalyst of the present invention does not contain adsorbed sulfonic acid or phosphoric acid. It is continuously used in the reaction in a fluidized bed reactor, for example, for more than 400 hours, and its acid content remains unchanged.
  • the solid acid catalyst of the present invention is resistant to corrosion by strong acids.
  • the sulfonated granular product is first dried to remove moisture, and then roasted. This can prevent the catalyst particles from cracking during calcination, thereby helping to maintain the structure and size of the catalyst particles.
  • Fig. 1 is an FT-IR chart of the infrared characterization of the inorganic solid silicic acid catalyst of Example 1 of the present invention. Among them, 1: metasilicic acid; 2: silicic acid.
  • Example 2 is the N 2 adsorption-desorption diagram (A) and the pore size distribution diagram (B) of the inorganic solid silicon-based sulfonic acid catalyst of Example 1 of the present invention.
  • 1 metasilicic acid
  • 2 silicic acid.
  • Fig. 3 is an infrared spectrogram of pyridine adsorption of the inorganic solid silicon-based sulfonic acid catalyst of Example 1 of the present invention. Among them, 1: metasilicic acid; 2: silicic acid.
  • Example 4 is a NH 3 ⁇ TPD (ammonia temperature programmed desorption) spectrum of the inorganic solid silicon-based sulfonic acid catalyst of Example 1 of the present invention. Among them, 1: metasilicic acid; 2: silicic acid.
  • Figure 5 is a thermogravimetric diagram of the inorganic solid silicic acid catalyst of Example 1 of the present invention. Among them, 1: metasilicic acid; 2: silicic acid.
  • Figure 6 is the reaction process for the preparation of silicic acid.
  • a silicate
  • b silicate
  • c silica gel
  • 1 metasilicic acid
  • 2 solid silicon-based sulfonic acid catalyst material
  • 3 inorganic acid
  • 4 sulfonation reagent.
  • FIG. 7 is an XRD spectrum of the dried but uncalcined solid acid catalyst of Example 1.
  • 1 silicic acid powder (not calcined); 2: metasilicic acid powder (not calcined).
  • FIG. 8 is an XRD spectrum of the calcined solid acid catalyst of Example 1.
  • 1 calcined metasilicic acid powder
  • 2 calcined silicon-based sulfonic acid powder.
  • 9 and 10 are the particle size distributions of metasilicic acid and silicic acid obtained in Example 1, respectively.
  • FIG. 11 is a scanning electron microscope (SEM) photograph of the calcined inorganic solid silicic acid particle product of Example 1.
  • SEM scanning electron microscope
  • FIG. 12 is an FT-IR spectrum of dried metasilicic acid and calcined inorganic solid silicic acid particles in Example 2.
  • Fig. 13 is an FT-IR spectrum of the phosphorylated inorganic solid metasilicic acid powder of Example 20 and the sulfonated/phosphorylated inorganic solid metasilicic acid powder of Example 21. Among them, 1: metasilicic acid powder, 2: phosphorylated metasilicic acid powder, 3: sulfonated/phosphorylated metasilicic acid powder.
  • FIG. 14 is the particle size distribution of powdered silicon-based sulfonic acid particles (T2B) of Comparative Example 3.
  • T2B powdered silicon-based sulfonic acid particles
  • FIG. 15 is an XRD spectrum of the solid silicic acid of Comparative Example 3.
  • FIG. 15 is an XRD spectrum of the solid silicic acid of Comparative Example 3.
  • the Chinese national standard GB/T 3780.16-1983 method is used to determine the crushing strength of solid acid catalyst particles.
  • the equipment used is the DL5 intelligent particle strength tester.
  • Measurement steps measure the particle diameter of the prepared sample particles one by one, and then place them on the sample platform of the DL5 intelligent particle strength tester, apply force to them to break them, record the applied load when the particles are crushed, and determine their Crush strength result.
  • the dried sulfonated solid powder was calcined in a nitrogen atmosphere for 3 hours at a calcining temperature of 200°C to obtain an inorganic solid silicon-based sulfonic acid catalyst material (calcined inorganic solid silicon-based sulfonic acid) (crushing strength 185N). Its acid content is 3.419 mmol/g, and its BET specific surface area is measured to be 286 m 2 /g.
  • the structural characterization of the catalytic material is shown in Figures 1 to 5.
  • the silica gel sulfonic acid catalyst material is prepared by the direct sulfonation method of silica gel. Add 5g of 90 ⁇ m silica gel to 100mL of concentrated sulfuric acid for direct sulfonation, stir and sulfonate at 130°C for 6h, then cool to room temperature, filter, and wash the filter cake with deionized water until the filtrate becomes neutral. The solid powder was vacuum dried at 110°C for 5 hours. Finally, the dried sulfonated solid powder was calcined in a nitrogen atmosphere for 3 hours at a temperature of 200°C to obtain an inorganic solid silica gel (Silica gel) sulfonic acid catalyst material, and its acid content was measured Only 0.133mmol/g. Its BET specific surface area is 185m 2 /g, its average particle size is 85 ⁇ m, and its crushing strength is 165N.
  • Example 1 of the present invention Investigation on the stability of inorganic solid silicon-based sulfonic acid catalytic materials.
  • the inorganic solid silicon-based sulfonic acid catalytic material in Example 1 of the present invention was selected for the liquid-phase Beckmann rearrangement reaction system of cyclohexanone oxime, and its service life was investigated.
  • the catalytic material had a reaction temperature of 130°C. After running for 136 hours, there was no significant decrease in the conversion rate of cyclohexanone oxime and the selectivity of caprolactam, the conversion rate of cyclohexanone oxime was maintained at 98%, the selectivity of caprolactam was maintained at 99%, and the acid content measured after the reaction hardly decreased.
  • the experimental procedure is the same as in Example 1, except that a microwave field is added during the ion exchange reaction.
  • the obtained inorganic solid silicon-based sulfonic acid catalyst material has an acid content of 4.215 mmol/g.
  • the average particle size of the silicon-based sulfonic acid particles is 103um, and the crushing strength is 198N.
  • the experimental procedure is the same as that of Example 1, except that a microwave field is added during the sulfonation of metasilicic acid.
  • the obtained inorganic solid silicon-based sulfonic acid catalyst material has an acid content of 4.932 mmol/g.
  • the average particle size of the particles is 96um, and the crushing strength is 201N.
  • the preparation steps are the same as in Example 1, except that the molar ratio of sodium silicate nonahydrate to hydrochloric acid is 1.0, and the acid content of the inorganic solid silicic acid catalyst material obtained is 2.986 mmol/g.
  • the average particle size of the particles is 101um, and the crushing strength is 195N.
  • the preparation steps are the same as in Example 2, except that the molar ratio of silicate to hydrochloric acid is 1.0, and the acid content of the inorganic solid silicic acid catalyst material obtained is 3.215 mmol/g.
  • the average particle size of the particles is 97um, and the crushing strength is 209N.
  • the preparation steps are the same as in Example 2, except that the temperature of the ion exchange reaction is 60° C., and the acid content of the inorganic solid silicic acid catalyst material obtained is 3.053 mmol/g.
  • the average particle size of the particles is 96um, and the crushing strength is 198N.
  • the preparation steps are the same as in Example 2, except that the temperature of the hydrolysis reaction is 50° C., and the acid content of the inorganic solid silicic acid catalyst material is 3.648 mmol/g.
  • the average particle size of the particles is 102um, and the crushing strength is 188N.
  • the preparation steps are the same as in Example 1, except that the inorganic acid used is nitric acid, and the acid content of the inorganic solid silicon-based sulfonic acid catalyst material obtained is 3.421 mmol/g.
  • the average particle size of the particles is 99um, and the crushing strength is 185N.
  • the preparation steps are the same as in Example 1, except that the metasilicic acid sulfonation reagent is chlorosulfonic acid, and the obtained inorganic solid silicon-based sulfonic acid catalyst material has an acid content of 3.515 mmol/g.
  • the average particle size of the particles is 84um, and the crushing strength is 179N.
  • the preparation steps are the same as in Example 1, except that the metasilicate sulfonation reagent is sulfur trioxide, and the acid content of the inorganic solid silicic acid catalyst material obtained is 3.815 mmol/g.
  • the average particle size of the particles is 78um, and the crushing strength is 168N.
  • the preparation steps are the same as in Example 1, except that the pH of the gel solution is maintained at 8, and the acid content of the inorganic solid silicon-based sulfonic acid catalyst material is 2.056 mmol/g.
  • the average particle size of the particles is 88um, and the crushing strength is 205N.
  • the preparation steps are the same as in Example 1, except that the temperature of the gel crystallization is 80° C., and the acid content of the inorganic solid silicon-based sulfonic acid catalyst material is 1.988 mmol/g.
  • the average particle size of the particles is 92um, and the crushing strength is 187N.
  • the preparation steps are the same as in Example 1, except that the gel drying temperature is changed to 120° C., and the acid content of the inorganic solid silicon-based sulfonic acid catalyst material is 1.885 mmol/g.
  • the average particle size of the particles is 99um, and the crushing strength is 194N.
  • the preparation steps are the same as in Example 1, except that the temperature of metasilicic acid sulfonation is 100°C, and the acid content of the inorganic solid silicic acid catalyst material is 2.568 mmol/g.
  • the average particle size of the calcined catalyst particles is 108um, and the crushing strength is 198N.
  • the preparation steps are the same as in Example 1, except that the temperature of metasilicic acid sulfonation is 140° C., and the acid content of the inorganic solid silicic acid catalyst material is 3.058 mmol/g.
  • the average particle size of the particles is 95um, and the crushing strength is 191N.
  • the preparation procedure is the same as that of Example 1, except that the drying temperature of the solid silicic acid catalyst material is 90° C., and the acid content of the inorganic solid silicic acid catalyst material is 3.357 mmol/g.
  • the average particle size of the particles is 96um, and the crushing strength is 188N.
  • the inorganic solid silicon-based sulfonic acid catalyst material of Example 1 of the present invention can also be used in other acid-catalyzed reactions, such as: isomerization reaction, hydroamination reaction, alkylation reaction, multi-component reaction, esterification reaction, Etherification reaction, nitration reaction, oxidation reaction, addition reaction and other reaction systems can achieve excellent results, as shown in Table 1.
  • the upper catalyst was taken out and placed in a vacuum drying oven at 110°C for 12 hours to dry to obtain phosphorylated inorganic solid metasilicic acid powder (its FT-IR spectrum is shown in Figure 13, curve 2). Finally, the dried solid powder was calcined in a nitrogen atmosphere for 3 hours at a calcining temperature of 200°C to obtain an inorganic solid silicon-based phosphoric acid catalyst.
  • the acid content was measured to be 2.885 mmol/g, the specific surface area was 268 m 2 /g, and the average particle size was about 89.7 ⁇ m, crushing strength 185N.
  • the content of alkali metals such as sodium and potassium
  • the detection limit less than 3 ppm
  • the content of alkaline earth metals such as calcium and magnesium
  • the average particle size is about 89.3 ⁇ m, and the crushing strength is 186N.
  • the content of alkali metals such as sodium and potassium
  • the content of alkaline earth metals such as calcium and magnesium
  • the peak at 464cm -1 is the bending vibration bond Si-O-Si peak of the absorption peak at 1107cm -1 vibration absorption peak of Si-O bond
  • a peak at 3450cm -1 is a hydroxyl absorption peak
  • curve 2 and 3 it appears at 977cm -1 OPO antisymmetric stretching the peak, broadening the absorption peak at 1330cm -1, attributable to the stretching vibration peak PO bond
  • S O bond of the asymmetric stretching vibration
  • the superimposed effect of the antisymmetric stretching vibration of the Si-O-Si bond is caused by the stretching vibration of the PO group in the framework of metasilicic acid-phosphoric acid.
  • curve 1 dry solid metasilicic acid powder
  • these two peaks did not appear. Therefore, it shows that in phosphorylated or sulfonated/phosphorylated metasilicic acid particles, the phosphate and sulfonate groups are covalently bonded to the metasilicic acid molecule.
  • the solid acid catalyst of the present invention can also be used in catalytic cracking reactions and (olefin and paraffin) alkylation reactions in the oil refining field.
  • the catalyst is used in the reaction of 2-butene and isobutane to obtain 2,2,3-trimethylpentane.
  • This Example 22 illustrates that the solid acid catalyst can be ideally used in the alkylation reaction in the oil refining field.
  • the residue was purified with a chromatographic column (3:1 petroleum ether/ethyl acetate) to obtain a yellow oily liquid.
  • the target product was 4-cyclohexylamino-pent-3-en-2-one with a yield of 96%.
  • the matrix of the calcined catalyst particles is a silica matrix in the form of an amorphous form or an amorphous-ordered structure mixture.
  • Example 1 The FT-IR diagrams of metasilicic acid and the inorganic solid silicic acid catalyst material (abbreviated as the catalyst) of Example 1 are shown in FIG. 1.
  • the graph (A) and the pore size distribution graph (B) of the N2 adsorption-desorption of metasilicic acid and the inorganic solid silicic acid catalyst material of Example 1 are shown in FIG. 2.
  • the N 2 adsorption-desorption isotherms of metasilicic acid and inorganic solid silicon-based sulfonic acid catalytic materials all present typical Langmuir type IV adsorption isotherms, and there is an obvious H1 type back.
  • Hysteresis which is a typical feature of mesoporous materials.
  • metasilicic acid is sulfonated, its specific surface area and pore structure remain basically unchanged.
  • the metasilicic acid sample has no obvious infrared absorption peak in the wavelength range of 1400 to 1640 cm -1.
  • the inorganic solid silicon-based sulfonic acid catalytic material has four obvious infrared characteristic absorption peaks in the wavelength range of 1400 to 1640 cm -1.
  • the infrared absorption peaks at 1454 cm -1 and 1622 cm -1 are the characteristic absorption peaks of pyridine adsorbed on the center of Lewis acid;
  • the infrared absorption peak at 1546 cm -1 is the characteristic absorption peaks of pyridine adsorbed on the center of Bronsted acid.
  • the infrared absorption peak at 1491 cm -1 is the characteristic absorption peak produced by the simultaneous adsorption of pyridine on the centers of Lewis acid and Bronsted acid.
  • the inorganic solid silicon-based sulfonic acid catalyst material obtained after metasilicic acid sulfonation has three obvious TPD curves in the range of 50 ⁇ 200°C, 200 ⁇ 400°C and 400 ⁇ 800°C.
  • NH 3 desorption peaks respectively adsorbed NH 3 on the surface of weak acid sites, the desorption peaks of strong acid sites and strong acid sites, and the presence of only small amounts of surface metasilicate weak acid sites.
  • thermogravimetric diagram of metasilicic acid and the inorganic solid silicic acid catalyst material of Example 1 is shown in FIG. 5.
  • metasilicic acid only has an obvious weight loss peak before 100°C, which is caused by the desorption of water physically adsorbed on the surface of metasilicic acid. After metasilicic acid sulfonation, there is no obvious thermal weight loss, which indicates that the prepared inorganic solid silicon-based sulfonic acid catalytic material has good thermal stability.
  • metasilicate gel or crystals in which the crystal structure and pore structure are improved and the specific surface area is significantly increased are obtained.
  • the metasilicate gels or crystals before and after drying and the final silicon-based sulfonic acid particles are all mesoporous materials.
  • the structural characteristics of these mesoporous materials are not significantly different, and their pore volume (pore volume) is about 0.9 cm 2 /g and the pore diameter is about 0.87 nm.
  • the XRD spectrum of the sample was obtained using a D/Max-2550VB+18KW X-ray powder diffraction spectrum analyzer of Japan Rigaku.
  • the XRD spectra of the dried and uncalcined solid metasilicic acid powder and the dried and uncalcined solid silicic acid powder are shown in FIG. 7.
  • the XRD spectra of the dried and calcined solid metasilicic acid powder and the dried and calcined solid silicon-based sulfonic acid powder are shown in FIG. 8.
  • the peak at a 2 ⁇ angle of 22° represents the characteristic diffraction peaks of metasilicic acid and silicon sulfonic acid.
  • the particle size distributions of metasilicic acid and silicic acid obtained in Example 1 were measured by using a Malvern laser particle size analyzer, as shown in FIGS. 9 and 10.
  • the average particle size of the metasilicic acid particles and the silicon-based sulfonic acid particles are both about 95 ⁇ m, which indicates that the sulfonation reaction does not change the size of the metasilicic acid particles.
  • the scanning electron microscope (SEM) photograph of the calcined inorganic solid silicon-based sulfonic acid particle product of Example 1 is shown in FIG. 11.
  • silica is a commercially available control sample. It can be seen from the SEM photos that the average particle size of the particles is about 90 ⁇ m, and it has good crushing strength.
  • the elemental analysis of the catalyst of the example showed that the content of alkali metals (such as sodium and potassium) was below the detection limit (less than 3 ppm), and the content of alkaline earth metals (such as calcium and magnesium) was below the detection limit.
  • alkali metals such as sodium and potassium
  • alkaline earth metals such as calcium and magnesium
  • At 476 cm -1 is the bending vibration absorption peak of the Si-O bond.
  • At 800 cm -1 is the symmetric stretching vibration absorption peak of the Si-O-Si bond.
  • the absorption peak at 965 cm -1 is the weak absorption peak for bending vibration of the Si-OH bond (silica does not have this peak).
  • the absorption peak at 3421 cm -1 is the infrared absorption peak of the surface hydroxyl group.
  • the commercially available silica sample has a very weak HO peak, indicating that it has adsorbed a small amount of water from the air during storage.
  • Example I of US3929972 except that the obtained intermediate product (ie, "sol-gel” soft skin-"sodium metasilicate” hard core form particles) is further dried and calcined.
  • the particle size of sodium metasilicate is not disclosed in Example I of the US patent.
  • the resulting reaction mixture was filtered with a sand filter, and the filter cake was washed with deionized water until the filtrate became neutral.
  • the fine raw material (M1) and the coarse raw material (M2) obtain white granular compounds (T1) and (T2), respectively.
  • These compounds (T1) and (T2) look like mud, and the average particle sizes of the compounds (T1) and (T2) are about 27 ⁇ m and about 45 ⁇ m, respectively. Since the particle size of the sulfonated compound particles has become significantly smaller, this indicates that the formed sulfonated compound particles are not acid-resistant. Leaving into the sulfuric acid solution (liquid phase). Grab the granular compound (T1) or (T2) in the palm of your hand and rub it, and feel that it is soft and has no sandy touch.
  • the structure of the particle (T1) or (T2) is a rigid core-soft skin structure, in which the hard core It is sodium metasilicate as the matrix part of particles (T1) or (T2).
  • the soft skin is a relatively soft sol-gel mixture composed of metasilicic acid and silicon-based sulfonic acid.
  • the particulate compounds (T1) and (T2) were vacuum dried at 110° C. for 5 hours to obtain dried inorganic solid silicon-based sulfonic acid powders (T1A) and (T2A). Then, the dried sulfonated solid powder was calcined in a nitrogen atmosphere for 3 hours at a calcining temperature of 200° C. to obtain calcined powdery silicon-based sulfonic acid particles (T1B) and (T2B).
  • the sodium metasilicate matrix inside the calcined particles (T1B or T2B) is an alkaline compound, therefore, the particles (T1B or T2B) are not acid resistant.
  • the calcined particles (T1B or T2B) are used as a catalyst in an acidic reaction system, it will gradually decompose.
  • Silica gel (silica) direct sulfonation method is used to prepare silica gel sulfonic acid catalyst material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)

Abstract

一种纯无机固体硅基磺酸和/或磷酸催化材料的制备方法及其应用。采用表面富羟基的偏硅酸为原料,以磺化试剂和/或磷酸通过化学键合的方法将磺酸基和/或磷酸基键合到无机硅材料上,得到纯无机型的固体硅基磺酸和/或磷酸催化材料。该催化材料可广泛应用于异构化反应、酯化反应、烷基化反应、烯烃的氢胺化反应、缩合反应、硝化反应、醚化反应、多组分反应以及氧化反应等许多酸催化的有机反应领域。该无机固体硅基磺酸和/或磷酸催化材料具有酸量高、活性高、水热稳定性好、不溶胀、制备过程简单、廉价、无污染、无腐蚀、易分离和可重复使用等优点。

Description

无机固体硅基磺酸和/或磷酸催化剂及其制备方法和应用 技术领域
本发明涉及一种具有高酸量的纯无机固体硅基磺酸和/或磷酸催化材料,及其制备方法和应用。
背景技术
据统计,约有85%的化学品是通过催化工艺生产的,大量的催化材料的开发和应用,使化工工业得到了快速的发展。过去在研制新催化材料的制造工艺、活性、寿命及成本等,却极少考虑环境等隐性因素。进入21世纪以来,实现科技创新与环境保护相结合,实现企业高效和社会高效益的同步增长和可持续发展,逐渐成为人们追逐的目标,因此绿色催化工艺以及环境有好催化材料的开发,逐渐成为研究热点。以固体酸代替液体酸催化剂是实现环境友好催化应用的一条最重要的途径。固体酸催化剂相对金属有机配合物催化剂来说,其制备过程更容易,反应后易与反应体系分离,催化剂可回收和重复使用。特别是有些固体磺酸催化剂具有特殊的结构和高的酸强度和酸量,赋予固体磺酸催化剂很好的活性和选择性,使得其具有特殊的性能,广泛应用于酮肟或醛肟的贝克曼重排反应、酯化反应、烷基化反应、烯烃的氢胺化反应、缩合反应、硝化反应、醚化反应、多组分反应以及氧化反应等许多酸催化的有机反应领域。因此,发展、研究固体磺酸催化材料催化有机反应具有重要的学术研究价值和广阔的应用前景。
目前研究的比较多的是有机型的固体磺酸催化材料,如聚苯乙烯型磺酸树脂、全氟磺酸树脂、脂肪磺酸基强酸型阳离子交换树脂等。传统的制备方法因磺酸基直接接在苯环上,导致功能基团的自由度差,且芳香族磺酸树脂的磺化逆反应降低了树脂的使用寿命。同时,在很多有机溶剂反应体系中,这类磺酸树脂极易发生溶胀而破碎,磺酸基容易脱落,催化剂易失活,限制了其在工业中的实际应用。
另外一种无机型的固体磺酸催化材料,如硅胶~磺酸,缩写为SSA,它是一种无机固体质子酸。一般,通过采用表面羟基数量相对较少的硅胶(二氧化硅,silica gel)作为原料,由硅胶表面上有限数量的羟基与氯磺酸反应,制备二氧化硅-磺酸(SiO 2-SO 3H)催化剂。这种固体酸催化材料对于酸催化的反应(如缩合反应、取代反应、酯化反应、氧化反应等)均表现出较高的反应活性和较好的选择性。尽管由硅胶(silica gel或二氧化硅) 与磺化剂反应所制备的并且未洗涤的二氧化硅-磺酸颗粒(SiO 2-SO 3H,简称硅磺酸)具有较高的酸量,但是,实际上,在硅胶或二氧化硅的表面上吸附了大量的酸,吸附的酸不是以共价键连接于二氧化硅颗粒上。由于硅胶表面的羟基数量太少,使得键合到硅胶颗粒表面上的磺酸基的量受限制,硅石磺酸颗粒的酸量是很低的。在该二氧化硅-磺酸颗粒(SiO 2-SO 3H)用水洗涤以除去所吸附的酸之后,硅胶-磺酸颗粒的酸量通常低于0.14mmol/g,酸量难以达到0.15mmol/g,更难以达到0.18mmol/g,几乎难以达到0.20mmol/g。
US3929972A公开了通过用浓硫酸将颗粒状碱金属偏硅酸盐(例如sodium or potassium metasilicate pentahydrate)磺化来制备硅基硫酸(Silico-dihydrogen sulphate)的方法。在磺化反应的早期,形成了软皮-硬芯型(soft skin-rigid core type)的初级磺化颗粒(它的酸量一般是低于0.50mmol/g),其中软皮是由偏硅酸和少量的硅基磺酸(SiO(HSO 4) 2)组成的溶胶-凝胶,硬芯是偏硅酸钠晶体。初级磺化颗粒呈现为泥浆状,它的机械强度很低。随着磺化反应的继续进行,硅基磺酸(SiO(HSO 4) 2)分子连续地从颗粒的表面脱离而进入到硫酸溶液中,导致硬芯的尺寸逐渐缩小并且最终消失(即碱性的偏硅酸钠晶体基质被硫酸溶解),获得了含有单分子形式或纳米级尺寸的小颗粒形式的化合物SiO(HSO 4) 2的混合物。由上述初级磺化颗粒的焙烧所获得的颗粒不能在酸性的反应体系中作为催化剂,因为碱性的偏硅酸钠基质不耐酸的腐蚀。
另外,近年来,也有一些研究者采用烷基改性的硅磺酸催化材料,如硅胶丙基磺酸、和硅胶苯磺酸等。该类催化材料的制备需要加入一定量的模板剂,如十六烷基三甲基溴化铵,和硅烷化试剂,如γ-巯丙基三甲氧基硅烷、一苯基三氯硅烷、二苯基二氯硅烷、氯丙基三氯硅烷、十八烷基三氯硅烷等。还需要加入一定量的成本较高的过氧化氢作为氧化剂,方可得到烷基改性的固体硅磺酸催化材料。该类催化材料制备过程复杂,成本较高,且其结构中仍然含有烷基链,在有机反应中具有一定的溶胀性能,使得其磺酸基不稳定,容易脱落而失活。
发明内容
本发明的目的是提供纯无机型的固体硅基磺酸和/或磷酸(silicon-based sulfonic acid and/or phosphoric acid)催化材料及其制备方法。该方法包括采用表面富含羟基的偏硅酸固体为起始原料,以磺化试剂和/或磷酸化剂通过化学键合的形式将磺酸基和/或磷酸基键合到无机硅材料上,得到具有高酸量的纯无机型的固体硅基磺酸/磷酸催化材料(h-SSA),即:固体硅基磺酸和/或磷酸(solid silico-sulfonic acid and/or-phosphoric acid)。
本申请的发明人意外地发现,通过使用磺化试剂和/或磷酸化剂将表面上富含羟基的偏硅酸固体进行磺化和/或磷酸化,不仅获得了具有高酸量的磺化和/或磷酸化的颗粒状偏硅酸固 体,而且不破坏颗粒状偏硅酸固体颗粒的结构和颗粒形状,也不改变或几乎不改变偏硅酸颗粒的尺寸。然后,通过进一步干燥和焙烧,获得高酸量和高机械强度的固体硅基磺酸和/或磷酸颗粒或粉末。如果磺化和/或磷酸化的颗粒状偏硅酸颗粒仅仅在较高的温度(例如高于200℃)下被干燥,而不进行焙烧,则,有可能的是颗粒内部的偏硅酸基质转化为硅胶基质(它含有水),但是包含硅胶基质的固体磺酸和/或磷酸颗粒仍然具有高酸量。
在本申请中,无机固体硅基磺酸和/或磷酸催化剂(h-SSA)可以称作具有高酸量的(无机)固体酸催化剂或(无机)固体硅基酸(solid siilico-acid with high surface-acidity,简称h-SSA)。
在本申请中,AG是acid group(酸基)的缩写。另外,硅基磺酸(silico-sulfonic acid)与硅基硫酸(silico-sulfuric acid)是等同的概念,并且两者可互换使用。硅基酸(silico-acid)组分包括硅基磺酸和/或磷酸(silico-sulfonic acid and/or-phosphoric acid catalyst,或silicon-based sulfonic acid and/or phosphoric acid catalyst)。
根据本发明的第一个实施方案,本发明提供无机固体硅基磺酸和/或磷酸催化剂(h-SSA)(silico-sulfonic acid and/or-phosphoric acid catalyst),该固体酸催化剂(h-SSA)包括:
基质组分(A):不含有磺酸基和/或磷酸基的含硅基质(Si-containing substrate);和
硅基酸组分(B):含有(以共价键连接的)磺酸基和/或磷酸基的无机硅基磺酸和/或磷酸(silico-sulfonic acid and/or-phosphoric acid),即,具有
Figure PCTCN2020095190-appb-000001
和/或
Figure PCTCN2020095190-appb-000002
基团的无机硅氧(silico-oxide)化合物类;
其中,上述硅基磺酸和/或磷酸催化剂(h-SSA)中的基质组分(A)包括或是选自于下列含硅基质组分中的一种或两种或三种:(1)偏硅酸(即,透明玻璃状固体);(2)硅胶,和(3)二氧化硅。
该固体酸催化剂(h-SSA)呈现为颗粒形式或粉末形式。硅基酸组分(B)位于催化剂颗粒的表面,而硅基质组分(A)位于催化剂颗粒的内部。
作为含有磺酸基和/或磷酸基的无机硅基磺酸和/或磷酸,所述硅基酸组分(B)包括具有通式(I)的化合物、具有通式(II)的化合物和具有通式(III)的化合物,或所述硅基酸组分(B)是选自于具有通式(I)的化合物、具有通式(II)的化合物和具有通式(III)的化合物 中的一种或多种,或所述硅基酸组分(B)(主要地)由具有通式(I)的化合物、具有通式(II)的化合物和具有通式(III)的化合物中的一种或多种所组成:
Figure PCTCN2020095190-appb-000003
式中,-AG 1和-AG 2各自独立地是-O-SO 3H,-O-PO 3H 2或-OH,并且-AG 1和-AG 2不同时是-OH。优选,-AG 1和-AG 2各自独立地是-O-SO 3H或-OH,或是-O-PO 3H 2或-OH,并且-AG 1和-AG 2不同时是-OH。
在本申请中,含硅基质与硅基质(silicon substrate or siliceous substrate or Si substrate)具有相同的意义。
固体酸催化剂(h-SSA)的酸量(单位催化剂质量的氢离子摩尔量)是0.25-8.4mmol/g,优选是0.3-8.2,优选0.35-8,优选0.4-7.8,优选0.5-7.6,优选0.6-7.5,优选0.7-7.3,优选0.8-7.0,优选0.9-6.8,优选1.0-6.5,优选1.1-6.3,优选1.2-6.0,优选1.3-5.8,优选1.4-5.6,优选1.5-5.4,优选1.6-5.2,优选1.8-5.3,优选2.0-5.1,优选2.2-5.0,优选2.4-4.8,例如3或4mmol/g。
固体酸催化剂(h-SSA)的平均粒径为1μm-10mm,优选3μm-5mm,优选5μm-1mm,优选7-800μm,优选10-750μm,更优选15-700μm,更优选20-650μm,更优选25-600μm,更优选30-550μm,更优选35-500μm,更优选40-450μm,更优选45-400μm,更优选50-350μm,更优选55-320μm,例如60、70、80、90、100、110、120、130、150、170、180、190、200、220、240、260、280或300μm。如果催化剂的粒度太小,则不利于过滤回收和再利用。另外,在某些连续反应中,如果固体酸催化剂的粒径太小(例如纳米级的粒径),它会堵塞反应器的出口和管道,增大反应器内的压力,引起爆炸事故。优选,它的平均粒径是大于40μm或50μm或60μm。
在本申请中,作为起始原料的固体偏硅酸和/或磷酸粉末或颗粒具有与固体硅基磺酸和/或磷酸催化剂产品(h-SSA)相同或类似的平均粒径。
酸量是指:氢离子摩尔量/每单位的无机固体硅基磺酸和/磷酸催化剂(h-SSA)质量。
优选的是,该固体酸催化剂(h-SSA)的酸量是1.0-7.2mmol/g,优选1.3-6.8,优选2.0-6.5,优选2.1-6.3,优选2.2-6.0,优选2.3-5.8,优选2.4-5.6,优选2.5-5.4,优选2.6-5.2,优选2.7-5.3,优选2.8-5.1,优选2.9-5.0,优选3.0-4.8,例如3.4、3.6、4或4.4mmol/g,并且,该固体酸催化剂(h-SSA)的平均粒径为20-600μm,优选35-550μm,优选40-500μm,优选45-450μm, 优选50-400μm,优选55-320μm,优选60-320μm,例如70、80、90、100、110、120、130、150、170、180、190、200、220、240、260、280或300μm。
更优选,固体酸催化剂(h-SSA)的平均粒径为50-400um,更优选55-350um,例如60、70、80、90、100、110、120、130、150、180、200、230、250、280或300um,并且它的酸量是1.0-6.5mmol/g,优选1.1-6.3,优选1.2-6.0,优选1.3-5.8,优选1.4-5.6,优选1.5-5.4,优选1.6-5.2,优选1.8-5.3,优选2.0-5.1,优选2.2-5.0,优选2.4-4.8mmol/g,例如3或4mmol/g。
优选,当基质组分(A)是偏硅酸固体(即,透明玻璃状固体)和/或硅胶时,该固体酸催化剂(h-SSA)的酸量是0.25-7.6mmol/g,优选0.3-7.5,更优选0.35-7.4,更优选0.4-7.2,更优选0.45-7.0,,优选0.5-6.8,优选0.55-6.6,优选0.6-6.2,优选0.65-5.8,优选0.7-5.4,优选0.75-5.0,优选0.8-4.8。
优选,当基质组分(A)是二氧化硅基质时,该固体酸催化剂(h-SSA)的酸量是0.25-8.2mmol/g,优选0.3-8.0mmol/g,优选0.35-7.8mmol/g,更优选0.4-7.6mmol/g,更优选0.45-7.4mmol/g,更优选0.5-7.2mmol/g,优选0.55-7.0,优选0.6-6.8,优选0.65-6.6,优选0.7-6.2,优选0.75-5.8,优选0.8-5.4,优选0.85-5.2,优选0.9-5.0。
当颗粒状催化剂(h-SSA)中的基质组分(A)包括或是二氧化硅基质时,该固体酸催化剂(h-SSA)是由磺酸化和/或磷酸化的偏硅酸颗粒通过焙烧所获得的,更优选,它是通过该磺酸化和/或磷酸化的偏硅酸颗粒的干燥和焙烧所获得的。
一般,(A)和(B)的重量之和是催化剂(h-SSA)总重量的80-100wt%,优选83-100wt%,优选85-100wt%,优选87-100wt%,优选90-100wt%,例如93、95、97或98或99wt%。还有可能的是,该颗粒状催化剂(h-SSA)还包括少量(例如,0-20wt%、0-15wt%、0-10wt%、0-5wt%或1-3wt%)的除(A)和(B)之外的其它物质或杂质。
优选的是,硅基酸(silico-acid)组分(B)与基质组分(A)的重量之比是:0.02-20:1,优选0.04-18:1,优选0.08-15:1,优选0.15-12:1,优选0.2-10:1,优选0.25-9.5:1,优选0.3-9:1,优选0.35-8.5:1,优选0.4-8:1,优选0.5-7.5:1,优选0.6-7:1,例如0.8:1,0.9:1,1:1,1.2:1,1.5:1,2:1,2.5:1,3:1,3.5:1,4:1,4.5:1,5:1,5.5:1,6:1,6.5:1。
优选,所述硅基酸组分(B)包括:
60-100wt%(优选63-100wt%,优选65-100wt%,优选68-100wt%,优选70-100wt%,优选75-100wt%,优选80-100wt%,例如85、90、95或98wt%)的具有通式(I)的化合物;
0-40wt%(优选0-37wt%,优选0-35wt%,优选0-32wt%,优选0-30wt%,优选0-25wt%,优选0-20wt%,例如15、10、5或2wt%)的具有通式(II)的化合物;和
0-30wt%(优选0-27wt%,优选0-25wt%,优选0-22wt%,优选0-20wt%,优选0-15wt%,优选0-10wt%,例如8、5或2wt%)的具有通式(III)的化合物;
其中该重量百分比是基于硅基酸组分(B)的总重量。
优选,具有通式(I)的化合物、具有通式(II)的化合物和具有通式(III)的化合物的重量之和是基于硅基酸组分(B)的总重量的80-100wt%,优选83-100wt%,优选85-100wt%,优选87-100wt%,优选90-100wt%,例如93、95、97或98或99wt%。还有可能的是,该硅基酸组分(B)还包括少量(例如,0-20wt%、0-15wt%、0-10wt%、0-5wt%或1-3wt%)的除通式(I)、(II)和(III)化合物之外的多聚硅基酸组分和/或杂质。
优选,通式(I)化合物、通式(II)化合物和通式(III)化合物的摩尔比是1:(0-0.7):(0-0.3),优选1:(0.01-0.6):(0-0.25),优选1:(0.05-0.55):(0-0.20),优选1:(0.08-0.5):(0-0.17),优选1:(0.1-0.45):(0.002-0.15),优选1:(0.12-0.4):(0.005-0.10)。
本发明的固体酸催化剂颗粒(h-SSA)的抗压碎强度是大于60N,优选60-260N,优选70-250N,优选80-240N,优选90-230N,例如100N、110N、120N、130N、140N、150N、160N、165N、170N、173N、175N或180N。
更具体地说,偏硅酸基质是干燥的偏硅酸固体,硅胶基质是干燥的硅胶,或,优选,二氧化硅基质是无定形的二氧化硅(即,焙烧过的二氧化硅)。优选,焙烧后的固体酸催化剂(h-SSA)颗粒的抗压碎强度是大于165N,优选是在165-260N范围,更优选在170-260N,优选173-250N,优选175-240N或178-230N或180-230N。
一般,基质组分(A)可以是由上述(1)、(2)和(3)基质中的任何两种或三种基质组成的混合物或结合物(combination)。另外,二氧化硅基质中可以含有少量(例如0-20wt%,优选0-10wt%,优选1-5wt%)的杂质(如硅胶)。
这里所述的酸量是指针对固体酸催化剂(h-SSA或h-SSA-1)中以共价键连接的磺酸基和/或磷酸基所测量的酸量,即,固体酸催化剂(h-SSA或h-SSA-1)不含或几乎不含所吸附的磺化剂(硫酸或氯磺酸)和/或磷酸化剂(磷酸)。
在本申请中,(干燥的)偏硅酸基质是指包含80-100wt%(优选85-100wt%,优选90-100wt%,如92或95或97或99wt%)的偏硅酸的硅基质。该偏硅酸基质还可以包含杂质,如偏硅酸钠;优选的是,偏硅酸基质中的碱金属(例如钠和钾)含量是0-300ppm,优选0-200ppm,优选0-100ppm,优选0-50ppm,优选0-10ppm。
另外,(焙烧过的)固体酸催化剂颗粒中的二氧化硅基质是指包含80-100wt%(优选85-100wt%,优选90-100wt%,如92或95或97或99wt%)的无定形二氧化硅的硅基质,使得的抗压碎强度高于170N,例如170-240N。该二氧化硅基质还可以包含少量的杂质,如硅胶。另外,硅胶基质还可以包含少量的杂质,如偏硅酸。优选的是,二氧化硅基质中的碱金属(例如钠和钾)含量是0-300ppm,优选0-200ppm,优选0-100ppm,优选0-50ppm,优选0-10ppm。
干燥的偏硅酸是指在室温(20℃)~150℃(优选60~120℃,更优选70-90℃)的温度下干燥的偏硅酸固体,优选的是,干燥是在减压或真空下进行。需要指出的是,当干燥温度是较高(例如120-150℃)时,干燥时间应该减少(例如,一般0.5-6小时,如0.5-2小时),以防止大部分的偏硅酸转化为硅胶。
焙烧过的二氧化硅是指由干燥的磺化/磷酸化偏硅酸颗粒在高于120℃的温度(例如120~600℃,优选150~500℃,更优选200-480℃)下焙烧之后从偏硅酸基质所形成的二氧化硅基质,优选的是,焙烧是在惰性气氛中进行。焙烧过的固体酸催化剂中二氧化硅基质具有较高的强度(例如压碎强度或耐磨损性能)。
在本申请中,硅基磺酸和/或磷酸催化剂(silico-sulfonic acid and/or-phosphoric acid catalyst)也称作硅基磺酸和/或硅基磷酸催化剂(silico-sulfonic acid and/or silico-phosphoric acid catalyst)。硅基磺酸和/或磷酸表示以下三种物质:硅基磺酸,硅基磷酸,和硅基磺酸+磷酸。
在本申请中,作为基质组分(A),不含有磺酸基和/或磷酸基的含硅基质是指不含磺酸基(或硫酸基)和磷酸基的含硅基质。
通式(I)的化合物包括或是下列化合物中的一种或多种:
Figure PCTCN2020095190-appb-000004
通式(II)的化合物是通式(I)的化合物的一缩合物。通式(II)的化合物包括或是下列化合物中的一种或多种:
Figure PCTCN2020095190-appb-000005
通式(III)的化合物是通式(I)的化合物的二缩合物。通式(III)的化合物包括或是下列二酸化合物和单酸化合物中的一种或多种:
Figure PCTCN2020095190-appb-000006
在本申请中,作为硅基酸组分(B),当-AG 1和-AG 2各自独立地是-O-SO 3H或-OH并且-AG 1和-AG 2不同时是-OH时,硅基磺酸化合物包括或是通式(Ia),(Ib),(IIa),(IIb),(IIIa)和(IIIb)的化合物。当-AG 1和-AG 2各自独立地是-O-PO 3H 2或-OH并且-AG 1和-AG 2不同时是-OH时,硅基磷酸化合物包括或是通式(Ic),(Id),(IIc),(IId),(IIIc)和(IIId)的化合物。硅基磺酸/磷酸化合物包括或是通式(Ie),(IIe),和(IIIe)的化合物。当同时使用磺化剂和磷酸化剂时,所得固体酸催化剂(h-SSA)的硅基酸组分(B)包括所有通式(I)、(II)和(III)的化合物。
将焙烧过的颗粒状催化剂(h-SSA)抓在手掌中揉搓,明显感觉到它具有砂质触感,并且颗粒是坚硬的。
该固体酸催化剂(h-SSA)的BET比表面积(BET surface area)为50-800m 2/g,优选100-600m 2/g,优选150-500cm 3/g,优选200-400m 2/g。
通常,该固体酸催化剂(h-SSA)的孔容积(pore volume)为50-700cm 3/g,优选100-600cm 3/g,优选130-550cm 3/g,优选150-500cm 3/g,优选160-400cm 3/g,优选180-300cm 3/g。
一般,该固体酸催化剂(h-SSA)的平均孔直径(pore diameter)为4-100nm,优选5-50nm,更优选6-30nm,更优选7-20nm,更优选8-13nm。
优选,本发明的固体酸催化剂(h-SSA)是通过如下过程所制备的:将硅源与无机酸进 行离子交换反应或水解反应(优选,在反应中控制反应混合物的pH值为4.5-6.5,优选5~6),得到原硅酸(H 4SiO 4)凝胶或溶胶;让原硅酸凝胶或溶胶静置以进行晶化(促进结构重组),获得含有颗粒状原硅酸(H 4SiO 4)凝胶的溶液,然后对该溶液进行过滤和滤饼用水洗涤至滤液为中性为止,对所分离出的凝胶进行干燥(更优选,进行真空干燥),得到干燥的颗粒状的或粉末状的偏硅酸(H 2SiO 3)原料;然后,干燥的颗粒状偏硅酸(H 2SiO 3)原料用磺化剂和/或磷酸化剂进行磺化和/或磷酸化,对所得反应混合物进行过滤和滤饼用水或有机溶剂洗涤至滤液为中性为止,对所分离出的颗粒状磺化和/或磷酸化固体进行干燥(优选真空干燥),获得干燥的无机固体酸粉末(即,其中硅基质为偏硅酸的固体酸颗粒);最后将无机固体酸粉末进行焙烧,获得固体酸催化剂(h-SSA)(即,其中硅基质为二氧化硅的固体酸颗粒)。
另外,本发明提供无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1),它包括或主要包括一种或多种的以下化学式(I)的无机硅磺酸,或它(主要)由一种或多种的以下化学式(I)的无机硅磺酸组成:
Figure PCTCN2020095190-appb-000007
式中,x=0或1,y=1或2,x+y=2。
具体来说,本发明的无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)包括或主要包括以下化学式(Ia)和/或(Ib)的无机硅磺酸,或它包括或主要包括以下化学式(Ia)和(Ib)的无机硅磺酸中一种或两种,或它(主要)由以下化学式(Ia)和/或(Ib)的无机硅磺酸组成,或它(主要)由以下化学式(Ia)和(Ib)的无机硅磺酸中一种或两种组成:
Figure PCTCN2020095190-appb-000008
另外,本发明的无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)包括或主要包括化学式(Ia)和/或(Ib)的无机硅磺酸和任选的未磺化的偏硅酸(也称作硅酸)或二氧化硅(因为偏硅酸在焙烧后变成二氧化硅),或它主要由化学式(Ia)和/或(Ib)的无机硅磺酸和任选的未磺化的偏硅酸或二氧化硅组成。其中,未磺化的偏硅酸或二氧化硅的含量可以为0wt%。
“任选的”表示有或没有。化学式(Ia)的无机硅磺酸化合物的分子量为238,化学式(Ib)的无机硅磺酸化合物的分子量为158。
一般,本发明的无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)呈现为颗粒 物形式或呈现为粉末形式。一般,它还包括位于颗粒内部的未磺化的偏硅酸(H 2SiO 3)或二氧化硅。
在本申请中,优选,无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)具有10nm-10mm的平均粒径。优选,该平均粒径为50nm-5mm,优选80nm-1000um,更优选150nm-800um,更优选250nm-600um,更优选450nm-500um,更优选600nm-300um,更优选800nm-250um,更优选1um-200um,更优选10um-170um,更优选20um-150um,例如30、40、50、60、70、80、90、100、110、120或130um。在本申请中,作为起始原料的固体偏硅酸(粉末或颗粒物)具有与固体硅基磺酸催化剂产品(h-SSA-1)相同或类似的平均粒径。
优选,无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)的酸量(单位催化剂质量的氢离子摩尔量)是0.05-8.4mmol/g,优选是0.7-8.2mmol/g,优选0.1-8mmol/g,优选0.3-7.8,优选0.5-7.6,优选0.6-7.5,优选0.7-7.3,优选0.8-7.0,优选0.9-6.8,优选1.0-6.5,优选1.1-6.3,优选1.2-6.0,优选1.3-5.8,优选1.4-5.6,优选1.5-5.4,优选1.6-5.2,优选1.8-5.3,优选2.0-5.1,优选2.2-5.0,优选2.4-4.8mmol/g,例如3或4mmol/g。例如,催化剂的酸量是0.1-8mmol/g,更优选0.3-7.8,更优选0.5-7.5,更优选0.7-7.0,优选0.8-6.5mmol/g,更优选1-6.0mmol/g。
酸量是指:氢离子摩尔量/每单位的无机固体硅基磺酸(或固体硅基磺酸催化剂h-SSA-1)质量。
优选,无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)的平均粒径为10um-170um,更优选20um-150um,例如30、40、50、60、70、80、90、100、110、120或130um,并且它的酸量是1.0-6.5mmol/g,优选1.1-6.3,优选1.2-6.0,优选1.3-5.8,优选1.4-5.6,优选1.5-5.4,优选1.6-5.2,优选1.8-5.3,优选2.0-5.1,优选2.2-5.0,优选2.4-4.8mmol/g,例如3或4mmol/g。
当固体颗粒状的偏硅酸用磺化剂进行磺化以便得到无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)时,由于在反应过程中会有部分偏硅酸没有被磺化,因此,所获得的无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)包括上述化学式(Ia)和(Ib)的两种无机硅磺酸和未磺化的偏硅酸(H 2SiO 3),或由这三种化合物组成,或主要由这三种化合物组成。
优选的是,本发明的无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)包括1-100wt%(优选2-96wt%,更优选4-92wt%,更优选6-88wt%,更优选8-84wt%,更优选10-80wt%,更优选15-75wt%,更优选20-70wt%,更优选25-65wt%,更优选30-60wt%,例如40wt%)的上述化学式(Ia)和/或(Ib)的无机硅磺酸和0-99wt%(优选4-98wt%,更优选 8-96wt%,更优选12-94wt%,更优选16-92wt%,更优选20-90wt%,更优选25-85wt%,更优选30-80wt%,更优选35-75wt%,更优选40-70wt%,例如60wt%)的未磺化的偏硅酸或二氧化硅,该百分比是基于无机固体硅基磺酸(催化剂h-SSA-1)的重量。还有可能的是,它还包括少量(例如,0-45wt%或0-30wt%或0-20wt%或0-10wt%)的其它物质或杂质或掺杂物质。
优选,本发明的无机固体硅基磺酸(h-SSA-1)包括0.5-90wt%(优选1-85wt%,优选2-80wt%,优选3-75wt%,优选4-70wt%,优选5-65wt%,例如15、20、30、35、40、42、44、46、48、50、55wt%或60wt%)的上述化学式(Ia)的无机硅磺酸,0.5-90wt%(优选1-85wt%,优选2-80wt%,优选3-75wt%,优选4-70wt%,优选5-65wt%,例如15、20、30、35、40、42、44、46、48、50、55wt%或60wt%)的上述化学式(Ib)的无机硅磺酸和0-99wt%(优选4-98wt%,更优选8-96wt%,更优选12-94wt%,更优选16-92wt%,更优选20-90wt%,更优选25-85wt%,更优选30-80wt%,更优选35-75wt%,更优选40-70wt%,例如50、60wt%)的未磺化的偏硅酸(或二氧化硅)。该百分比是基于无机固体硅基磺酸(催化剂h-SSA-1)的重量。
令人惊奇的是,当无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)的酸量是0.05或0.1mmol时,化学式(Ia)和/或(Ib)的两种无机硅磺酸在该无机固体硅基磺酸(催化剂h-SSA-1)中的含量是大约0.6wt%或1.2wt%,该催化剂的酸性足以使得它具有良好的催化效果。当无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)的酸量是6mmol时,化学式(Ia)和/或(Ib)的两种无机硅磺酸在该无机固体硅基磺酸(催化剂)中的含量是大约71-95wt%,例如83、85、88wt%。在催化剂中,余量是未磺化的偏硅酸(或二氧化硅)和杂质或其他掺杂物质。
理论上来说,对于实心颗粒状(例如实心球形)的无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)而言,在颗粒的表面上存在了大量的磺酸基团。当它的粒径(或粒度)是较大的时,它的酸量是较低的。但是,对于多孔型或具有孔隙的无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)而言,它的比表面积显著增大,因此,具有较大粒径的颗粒状催化剂也有可能具有较高的酸量。
通常,两种无机硅磺酸化合物和未磺化的偏硅酸或二氧化硅分布在无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)颗粒中,因此,固体硅基磺酸催化剂的磺酸量取决于偏硅酸的磺化程度。
无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)的比表面积(surface area)为 50-800m 2/g,优选100-600m 2/g,优选150-500cm 3/g,优选200-400m 2/g。
通常,无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)的孔容积(pore volume)为100-600cm 3/g,优选130-550cm 3/g,优选150-500cm 3/g,优选160-400cm 3/g。
无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)的平均孔直径(pore diameter)为4-100nm,优选5-50nm,更优选6-30nm,更优选7-20nm,更优选8-13nm。
本发明的固体酸催化剂(即,h-SSA-1,已焙烧过)的抗压碎强度大于165N,优选165-260N,170-250N,173-240N,175-230N或180-230N。
根据本发明的第二个实施方案,本发明还提供制备上述无机固体硅基磺酸和/或磷酸催化剂(h-SSA)的方法,该方法包括:
(B)偏硅酸的磺化和/或磷酸化:让(干燥的)颗粒状偏硅酸(H 2SiO 3)原料与磺化剂和/或磷酸化剂进行反应,分离(优选,过滤分离出滤饼)和用水或有机溶剂洗涤(优选,滤饼用水洗涤至滤液呈现中性为止),然后干燥,获得干燥的无机固体硅基磺酸和/或磷酸颗粒(即,磺化和/或磷酸化偏硅酸的粉末或颗粒)。也就是说,获得了其中含硅基质是偏硅酸固体的干燥但未焙烧的无机固体硅基磺酸和/或磷酸催化剂(h-SSA)。
其中磺化剂和/或磷酸化剂相对于偏硅酸而言的用量足以使得该干燥但未焙烧的固体酸催化剂(h-SSA)的酸量是0.25-7.6mmol/g,优选0.3-7.5,更优选0.35-7.4,更优选0.4-7.2,更优选0.45-7.0,,优选0.5-6.8,优选0.55-6.6,优选0.6-6.2,优选0.65-5.8,优选0.7-5.4,优选0.75-5.0,优选0.8-4.8。
另外,本发明还提供制备上述无机固体硅基磺酸催化剂(h-SSA-1)的方法,该方法包括:
(B)磺化:让颗粒状偏硅酸(H 2SiO 3)原料与磺化剂进行反应,分离(优选,过滤分离出滤饼),获得本发明的磺化偏硅酸固体(即,无机固体硅基磺酸的湿固体)。然后,用水或有机溶剂洗涤(优选用水洗涤滤饼至洗涤液为中性为止),和干燥(优选在真空下干燥)。获得干燥的无机固体硅基磺酸颗粒(即,磺化偏硅酸的粉末或颗粒)。也就是说,获得了其中含硅基质是偏硅酸固体的干燥但未焙烧的无机固体硅基磺酸催化剂(h-SSA-1)。
其中磺化剂相对于偏硅酸而言的用量足以使得该干燥但未焙烧的固体酸催化剂(h-SSA-1)的酸量是0.25-7.6mmol/g,优选0.3-7.5,更优选0.35-7.4,更优选0.4-7.2,更优选0.45-7.0,,优选0.5-6.8,优选0.55-6.6,优选0.6-6.2,优选0.65-5.8,优选0.7-5.4,优选0.75-5.0,优选0.8-4.8。
在本发明的上述两种制备方法,优选的是,颗粒状偏硅酸(H 2SiO 3)原料是通过原硅酸凝胶的晶化或结晶所获得的,所得(未干燥或已干燥)偏硅酸固体的晶型结构和孔隙结构都 得到了改进并且它的比表面积显著提高,因此,偏硅酸固体是一种介孔材料。
因此,在本申请,颗粒偏硅酸(H 2SiO 3)原料是指颗粒状偏硅酸固体。
另外,所获得的磺化偏硅酸湿固体或硅基磺酸和/或磷酸湿固体可以在某些反应中直接用作催化剂。优选的是,磺化偏硅酸湿固体或硅基磺酸和/或磷酸湿固体进一步干燥或真空干燥,获得干燥的磺化偏硅酸固体(它为粉末或颗粒物形式)或干燥的硅基磺酸和/或磷酸固体(粉末或颗粒物形式)。
在本申请中,所述磺化剂是选自于磺化剂中的一种或多种:发烟硫酸,硫酸(优选,浓硫酸;优选,浓度为65-100wt%的浓硫酸,例如:浓度或质量分数为70-100wt%或75-100wt%的浓硫酸;如95-99wt%的浓硫酸),氯磺酸,三氧化硫,硫酰氯,二氧化硫和氯气的混合物,二氧化硫和氧气的混合物,二氧化硫和臭氧的混合物,氨基磺酸,以及亚硫酸盐;更优选的是,磺化剂为发烟硫酸、浓硫酸(优选,浓度或质量分数为70-100wt%或75-100wt%的浓硫酸)、氯磺酸或三氧化硫等中的一种或多种。
磷酸化剂是磷酸,磷酰一氯和/或磷酰二氯,优选是浓磷酸,例如75wt%-85wt%浓度的浓磷酸。
所述偏硅酸(H 2SiO 3)原料是粉末状的或颗粒状的固体(即干燥固体或湿固体)。所述固体偏硅酸原料是多孔型的偏硅酸或具有孔隙的偏硅酸或泡沫状的偏硅酸。
这里,偏硅酸也称作硅酸。
优选,所获得的干燥的颗粒状硅基磺酸和/或磷酸固体进行焙烧,以便提高颗粒的强度,从而获得焙烧过的硅基磺酸和/或磷酸固体(它为粉末或颗粒物形式),即,其中硅基质为二氧化硅的催化剂h-SSA。
优选,所获得的磺化偏硅酸湿固体或所获得的干燥的磺化偏硅酸固体进行焙烧,获得焙烧过的磺化偏硅酸固体(它为粉末或颗粒物形式),即催化剂h-SSA-1。
在以上所述的制备硅基磺酸和/或磷酸的方法中,优选,所述方法还包括以下步骤:
(C)焙烧:将步骤(B)中获得的干燥的颗粒状硅基磺酸和/或磷酸(固体粉末)进行焙烧,获得无机固体硅基磺酸和/或磷酸催化剂(即,焙烧过的硅基磺酸和/或磷酸固体h-SSA,它一般为粉末或颗粒物形式)。也就是说,获得了其中含硅基质为二氧化硅的固体酸催化剂h-SSA。
在以上所述的制备硅基磺酸的方法中,优选,所述方法还包括以下步骤:
(C)焙烧:将步骤(B)中获得的磺化偏硅酸固体进行焙烧,获得本发明的无机固体硅基磺酸(即,焙烧过的磺化偏硅酸固体h-SSA-1,它一般为粉末或颗粒物形式)。
焙烧的固体酸催化剂(h-SSA,或h-SSA-1)的酸量是0.25-8.4mmol/g,优选0.3-8.4mmol/g,优选0.32-8.4mmol/g,优选0.33-8.4mmol/g,优选0.35-8.2mmol/g,优选0.36-8.0mmol/g,优选0.38-7.8mmol/g,优选0.38-7.6mmol/g,更优选0.4-7.6mmol/g,更优选0.45-7.4mmol/g,更优选0.5-7.2mmol/g,优选0.55-7.0,优选0.6-6.8,优选0.65-6.6,优选0.7-6.2,优选0.75-5.8,优选0.8-5.4,优选0.85-5.2,优选0.9-5.0。
在上述的两种制备方法中,优选,所述方法还包括以下步骤:
(A)颗粒状偏硅酸H 2SiO 3原料的制备:将硅源与无机酸进行离子交换反应或水解反应(优选,在反应中控制反应混合物的pH值为4.5-6.5,优选5~6),得到原硅酸(H 4SiO 4)凝胶或溶胶;让原硅酸凝胶或溶胶静置以进行晶化(促进结构重组),获得含有颗粒状原硅酸(H 4SiO 4)凝胶的溶液,然后对该溶液进行过滤和滤饼用水洗涤至滤液为中性为止,对所分离出的凝胶进行干燥(更优选,进行真空干燥),得到干燥的颗粒状的或粉末状的偏硅酸(H 2SiO 3)原料。然后用于以上步骤(B)中。
优选,在以上所述的制备硅基磺酸的方法中,所述方法还包括以下步骤:
(A)偏硅酸H 2SiO 3原料的制备:将硅源与无机酸进行离子交换反应或水解反应,得到原硅酸(H 4SiO 4)凝胶(即,含硅溶液);原硅酸凝胶进行晶化,获得含有原硅酸(H 4SiO 4)凝胶的溶液,然后分离出凝胶和干燥(即,固液分离、固体洗涤和干燥),得到偏硅酸(H 2SiO 3)原料(粉末状的或颗粒状的固体)。
在上述的两种制备方法中,还可以采用以下优选的条件:
晶化是指静置晶化。原硅酸凝胶是不太稳定的,并且通过干燥而形成偏硅酸固体。
偏硅酸是通过采用液相沉淀法来制备的。
所述步骤(A)中的硅源为硅酸盐、硅酸酯或硅胶中的一种或多种。其中所述硅酸盐的阳离子为金属离子(例如碱金属离子,如钾或钠离子)或铵离子中的一种或多种。其中所述硅酸酯为正硅酸四C 1-C 15烃基酯,优选正硅酸四C 1-C 10烃基酯。所述硅酸酯为正硅酸四C 1-C 7烷基酯、正硅酸四C 3-C 8环烷基酯或正硅酸四芳基酯,如正硅酸四甲基酯、正硅酸四乙基酯、正硅酸四丙基酯、正硅酸四丁基酯和正硅酸四苯基酯)。
所述步骤(A)中使用的无机酸是盐酸、硫酸、硝酸和磷酸中的一种或多种。
优选,上述步骤(B)或步骤(A)是在搅拌下或在搅拌加上超声波或微波的作用下进行的,以便获得粒度均匀的颗粒。在步骤(A)中,在所形成的原硅酸凝胶溶液中的原硅酸浓度,以及晶化的温度和时间决定了颗粒状偏硅酸固体的粒度。
优选,上述步骤(B)是如下进行的:在搅拌条件下或在搅拌加上超声波或微波的作用下, 将磺化试剂,或,磺化剂和/或磷酸化剂,加入到偏硅酸中进行磺化,然后冷却(例如冷却至室温),过滤,所得滤饼用去离子水洗涤至滤液成中性,将获得的白色固体粉末进行干燥(例如真空干燥)和焙烧,得到无机固体硅基磺酸催化材料,或无机固体硅基磺酸和/或磷酸催化材料。
优选,在步骤(B)中,所述偏硅酸与所述磺化剂的摩尔比,或所述偏硅酸与所述磺化剂和/或磷酸化剂的摩尔比,为0.01~4.0:1,优选0.03~3.0:1,优选0.04~2.0:1,优选0.05~1:1,更优选0.1~0.9:1,更优选0.2~0.8:1,更优选0.3~0.7:1。磺化反应的温度为室温(20℃)~200℃,优选40~180℃,优选60~150℃,更优选80~130℃。
优选,在步骤(B)中,固体粉末的干燥可在空气或惰性气氛围下进行;更优选在5~150kPa,优选10~120kPa的压力(绝压)下进行;干燥温度为室温(20℃)~150℃,优选60~120℃。
所述步骤(C)中,固体焙烧是在惰性气氛围下进行的;优选,焙烧温度为120~600℃,优选150~500℃,更优选200-480℃。
优选,上述步骤(A)是如下进行的:在搅拌下或在搅拌加上超声波或微波的作用下,在含有硅源的溶液中缓慢滴加无机酸溶液(以进行离子交换反应或水解反应),维持溶液的pH值(例如在4.5~6.5,优选5~6),得到原硅酸(H 4SiO 4)凝胶(湿的凝胶或凝胶溶液),然后将此凝胶(例如在室温~80℃的温度下)静置、晶化,再过滤、(例如用水)洗涤,直至滤液为中性(pH=7)为止,最后将获得的凝胶进行干燥(例如真空干燥),得到固体颗粒状或粉末状的偏硅酸(H 2SiO 3)。
进一步,所述步骤(A)中,离子交换或水解是在搅拌下或在搅拌加上超声波或微波的作用下进行的。其中所述硅源物质(硅酸盐或硅酸酯或硅胶)与所述无机酸的摩尔比为0.01~2.0:1,优选0.05~1.0:1,更优选0.1~0.8:1,更优选0.3~0.7:1,例如,0.05-0.7:1,优选0.1-0.65:1,优选0.15-0.6:1,优选0.2-0.5:1。离子交换或水解的温度为0~100℃,优选室温(20℃)~80℃。
进一步,所述步骤(A)中,原硅酸凝胶的晶化条件为:凝胶溶液的pH值为1~9,优选2~7;晶化温度为0~100℃,优选10~90℃,更优选室温(20℃)~80℃,更优选30℃~70℃。所述步骤(A)中,凝胶固体(即,经过洗涤后凝胶固体)的干燥是在空气或惰性气氛围下进行的。优选,原硅酸凝胶固体的干燥是在5~150kPa,优选10~120kPa的压力(绝压)下进行的。干燥温度为室温(20℃)~200℃,优选60~150℃,更优选 60-110℃。当原硅酸凝胶在较高的温度(例如150-200)下干燥时,干燥时间应该相应地缩短,例如缩短至10分钟-4小时,以便避免形成硅胶。
原硅酸凝胶的干燥(尤其在真空下的干燥)是为了形成颗粒状偏硅酸固体并且完全地除去偏硅酸固体颗粒中的水分。而磺化和/或磷酸化的固体颗粒先干燥和后焙烧,有利于获得结构稳定和高强度的固体酸催化剂(h-SSA或h-SSA-1)。优选的是,磺化和/或磷酸化的固体颗粒在惰性气氛中干燥和然后在惰性气氛中焙烧,在颗粒的内部中形成了纯的二氧化硅基质。
当然,如果原硅酸凝胶在较高的温度(例如高于200℃,如200-400℃)下干燥并且所得到的磺化和/或磷酸化的固体颗粒不进行焙烧,则有可能在颗粒的内部中形成了硅胶基质。在这种情况下,本发明的催化剂的硅基质为硅胶。尽管这种包括硅胶基质的固体酸催化剂也具有高的酸量,但它不是本发明的优选的技术方案。
本发明还提供制备无机固体磺酸和/或磷酸催化剂(h-SSA)的方法,该方法包括以下过程:将硅源与无机酸进行离子交换反应或水解反应(优选,在反应中控制反应混合物的pH值为4.5-6.5,优选5~6),得到原硅酸(H 4SiO 4)凝胶或溶胶;让原硅酸凝胶或溶胶静置以进行晶化(促进结构重组),获得含有颗粒状原硅酸(H 4SiO 4)凝胶的溶液,然后对该溶液进行过滤和滤饼用水洗涤至滤液为中性为止,对所分离出的凝胶进行干燥(更优选,进行真空干燥),得到干燥的颗粒状的或粉末状的偏硅酸(H 2SiO 3)原料;然后,干燥的颗粒状偏硅酸(H 2SiO 3)原料用磺化剂和/或磷酸化剂进行磺化和/或磷酸化,对所得反应混合物进行过滤和滤饼用水或有机溶剂洗涤至滤液为中性为止,对所分离出的颗粒状磺化和/或磷酸化固体进行干燥(优选真空干燥),获得干燥的无机固体酸粉末(即,其中硅基质为偏硅酸的固体酸颗粒);最后将无机固体酸粉末进行焙烧,获得固体酸催化剂(h-SSA)(即,硅基质为二氧化硅的固体酸颗粒)。
本发明提供由上述方法所制备的无机固体硅基磺酸和/或磷酸(即,固体硅基磺酸和/或磷酸催化剂h-SSA)或无机固体硅基磺酸(即,固体硅基磺酸催化剂h-SSA-1)。无机固体硅基磺酸和/或磷酸催化剂(h-SSA),或,所述的无机固体硅基磺酸催化剂h-SSA-1(或催化材料),也可以是负载型的催化剂或催化材料。优选,负载型无机固体硅基磺酸和/或磷酸催化剂或负载型无机固体硅基磺酸催化剂的载体是选自于具有较大的比表面的分子筛类、γ-氧化铝、活性炭、硅胶、粘土类等载体中的一种或多种。
优选,所述的分子筛为MCM-41、MCM-22、SBA-15、HZSM-5、丝光沸石、Y型沸石或β沸石等。
本发明还提供上述无机固体硅基磺酸和/或磷酸催化剂(h-SSA)或上述无机固体硅基磺酸(h-SSA-1)作为催化剂的用途。尤其,它应用于异构化反应、酯化反应、烷基化反应、烯烃的氢胺化反应、缩合反应、硝化反应、醚化反应、醇的胺化反应(例如用于由乙二醇的胺化制备乙二胺的反应中)、制备β-烯胺酮的反应、多组分反应以及氧化反应等许多酸催化的有机反应领域。
通过将硅酸(即偏硅酸)和本发明的无机固体硅基磺酸(即,固体硅基磺酸催化剂)两者的FT-IR红外谱图(图1)进行比较能够发现,在硅基磺酸的红外谱图中在1394cm -1处左右出现了新的红外特征吸收峰,该峰归属于O=S=O的伸缩振动。此外,与偏硅酸的位于1101cm -1处的红外特征信号峰的强度相比,硅基磺酸的位于1101cm -1处的红外特征信号峰的强度也明显增大,这是由于磺酸基中O-S-O的红外特征吸收峰与催化剂骨架主体Si-O-Si的不对称伸缩振动信号峰相重合所造成的。
同时,由图3可以看到,偏硅酸样品在1400到1640cm -1波长范围内没有出现明显的红外吸收峰。经过磺化后,无机固体硅基磺酸催化材料在1400~1640cm -1波长范围内出现了四个明显的红外特征吸收峰。其中,位于1454cm -1和1622cm -1处的红外吸收峰是吡啶吸附在Lewis酸中心上的特征吸收峰;位于1546cm -1处的红外吸收峰是吡啶吸附在Bronsted酸中心上的特征吸收峰,这主要由-SO 3H基团提供;位于1491cm -1处的红外吸收峰是由吡啶同时吸附在Lewis酸和Bronsted酸中心上共同作用产生的特征吸收峰。显然,硅基磺酸催化剂中的酸组分(B)包括主要量的通式(I)的化合物和少量的通式(II)的硅基磺酸化合物。
本发明的优点
本发明的无机固体硅基磺酸和/或磷酸催化剂或无机固体硅基磺酸催化剂具有酸量高、活性高、水热稳定性好、不溶胀、催化剂制备过程简单、廉价、无污染、无腐蚀、易分离和可重复使用等优点,是一种环境友好型固体酸催化材料,具有广泛的应用前景。该催化材料可广泛应用于异构化反应、酯化反应、烷基化反应、烯烃的氢胺化反应、缩合反应、硝化反应、醚化反应、多组分反应以及氧化反应等许多酸催化的有机反应领域。例如,固体酸催化剂用于没食子酸与C1-C8脂肪醇的酯化反应中,在可逆反应中能够达到96-99%的高收率,这可能是归因于催化剂颗粒的位阻效应,使得水进攻酯产物的逆反应难以发生。
尤其,通过原硅酸凝胶的晶化,获得了其中晶型结构和孔隙结构得到改进的并且比表面积显著提高的颗粒状偏硅酸固体。干燥之前和干燥之后的颗粒状偏硅酸固体以及最 终的硅基磺酸颗粒都是介孔材料。这些材料具有较高的机械强度,例如它的抗压碎强度均大于60N(优选,60-260N,80-250N,100-240N,例如120N、150N、160N、165N、170N、175N或180N),其耐磨损性显著提高。本发明的固体酸催化剂不含有吸附的磺酸或磷酸。它在流动床式反应器内的反应中连续使用例如400小时以上,其酸量仍然保持不变。
特别是,本发明的固体酸催化剂能够耐强酸的腐蚀。
磺化后的颗粒产品先干燥以除去水分,然后进行焙烧。这样能够防止在焙烧时催化剂颗粒发生崩裂,从而有利于维持催化剂颗粒的结构和尺寸。
附图说明
图1是本发明的实施例1的无机固体硅基磺酸催化剂的红外表征FT-IR图。其中,1:偏硅酸;2:硅基磺酸。
图2是本发明的实施例1的无机固体硅基磺酸催化剂的N 2吸附-脱附图(A)和孔径分布图(B)。其中,1:偏硅酸;2:硅基磺酸。
图3是本发明的实施例1的无机固体硅基磺酸催化剂的吡啶吸附红外光谱图。其中,1:偏硅酸;2:硅基磺酸。
图4是本发明的实施例1的无机固体硅基磺酸催化剂的NH 3~TPD(ammonia temperature programmed desorption)谱图。其中,1:偏硅酸;2:硅基磺酸。
图5是本发明的实施例1的无机固体硅基磺酸催化剂的热重图。其中,1:偏硅酸;2:硅基磺酸。
图6是制备硅基磺酸的反应过程。其中,a:硅酸盐;b:硅酸酯;c:硅胶;1:偏硅酸;2:固体硅基磺酸催化材料;3:无机酸;4:磺化试剂。
图7是实施例1的干燥但未焙烧的固体酸催化剂的XRD谱图。其中,1:硅基磺酸粉末(未焙烧);2:偏硅酸粉末(未焙烧)。
图8是实施例1的焙烧后的固体酸催化剂的XRD谱图。其中,1:焙烧后的偏硅酸粉末;2:焙烧后的硅基磺酸粉末。
图9和10分别是实施例1中所得偏硅酸和硅基磺酸的粒径分布。
图11是实施例1的焙烧的无机固体硅基磺酸颗粒产品的扫描电镜(SEM)照片。
图12是实施例2中的干燥偏硅酸和焙烧的无机固体硅基磺酸颗粒的FT-IR谱图。其中,1:二氧化硅粉末;2:偏硅酸粉末;3:焙烧后的硅基磺酸粉末。
图13是实施例20的磷酸化的无机固体偏硅酸粉末和实施例21的磺酸化/磷酸化的无机固 体偏硅酸粉末的FT-IR谱图。其中,1:偏硅酸粉末,2:磷酸化的偏硅酸粉末,3:磺酸化/磷酸化的偏硅酸粉末。
图14是对比实施例3的粉末状的硅基磺酸颗粒(T2B)的粒度分布。
图15是对比实施例3的固体硅基磺酸的XRD谱图。
具体实施方式
下面实施例描述了无机固体硅基磺酸催化材料(简称催化剂)的制备方法和应用,但本发明不限于这些实施例。
1、颗粒状硅基磺酸催化剂的酸量的测量方法
称取经过真空干燥的固体硅基磺酸催化剂(不含吸附的磺酸和/或磷酸)大约0.5g(精确至0.0001),加入到250mL锥形瓶中,然后添加25mL新配置的饱和NaCl溶液,振荡摇匀,用保鲜膜密封锥形瓶的口,然后每隔4h充分振荡摇匀,离子交换24h后,加入酚酞指示剂2~3滴,采用0.1mol/L NaOH标准溶液进行酸量滴定。对于每种固体酸,平行滴定至少3次,相对误差控制在1%以内。记录所消耗的NaOH的体积,根据下面的公式计算酸量,酸量的单位是mmol H+/g。
Figure PCTCN2020095190-appb-000009
2、抗压碎强度的测量方法
采用中国国家标准GB/T 3780.16-1983方法测定固体酸催化剂颗粒的抗压碎强度,使用的设备是DL5型智能颗粒强度测定仪。
测定步骤:将准备好的样品颗粒,逐一测量其粒经,然后放置于DL5型智能颗粒强度测定仪的样品平台上,对其施加力使其破碎,记录颗粒压碎时的外加负载,测定其抗压碎强度结果。
实施例1
将50g的九水合硅酸钠充分溶解在400mL的去离子水中,得到硅酸钠溶液。然后在硅酸钠溶液中加入1.8mol/L盐酸溶液200mL(硅酸钠与盐酸的摩尔比为0.5),在室温下进行离子交换反应,控制pH值为5~6,得到原硅酸(H 4SiO 4)凝胶。然后将此凝胶在60℃下静置、晶化12小时,再过滤、洗涤,直至滤液为中性。最后将获得的凝胶固体在110℃下真空干燥12h,得到固体粉末偏硅酸(H 2SiO 3),测其比表面积为293m 2/g。将5g的平均粒径为90μm的偏硅酸粉末加入到100mL浓硫酸(浓度98wt%)中,搅拌,在130℃下磺化6h,然后冷却至室温,过滤,滤饼用去离子水洗涤至滤液成中性,将获得的白色 固体粉末(湿固体)在110℃下真空干燥5h,获得干燥的无机固体硅基磺酸粉末(压碎强度105N)。最后,将干燥过的磺化固体粉末在氮气气氛下焙烧3h,焙烧温度为200℃,得到无机固体硅基磺酸催化材料(焙烧的无机固体硅基磺酸)(压碎强度185N),测其酸量为3.419mmol/g,测其BET比表面积为286m 2/g。催化材料的结构表征见图1~5。
实施例2
将280mL 1.8mol/L盐酸溶液滴入21g正硅酸四乙酯(0.1摩尔)的乙醇溶液中(硅酸酯与盐酸的摩尔比为0.2),在20℃进行水解反应,控制pH值为5~6,得到原硅酸(H 4SiO 4)凝胶。然后将此凝胶在60℃下静置、晶化12小时,再过滤、洗涤,直至滤液为中性。最后将获得的凝胶固体在110℃下真空干燥12h,得到固体粉末偏硅酸(H 2SiO 3),测其比表面积为305m 2/g。将5g的平均粒径为88μm的偏硅酸粉末加入到100mL浓硫酸中,搅拌,在130℃下磺化6h,然后冷却至室温,过滤,滤饼用去离子水洗涤至滤液成中性,将获得的白色固体粉末在110℃下真空干燥5h,最后,将干燥过的磺化固体粉末在氮气气氛下焙烧3h,焙烧温度为200℃,得到无机固体硅基磺酸催化材料,测其酸量为3.532mmol/g,测其BET比表面积为295m 2/g。
对比实施例1
采用硅胶直接磺化法制备硅胶磺酸催化材料。将5g的90μm的硅胶加入到100mL浓硫酸中直接磺化,搅拌,在130℃下磺化6h,然后冷却至室温,过滤,滤饼用去离子水洗涤至滤液成中性,将获得的白色固体粉末在110℃下真空干燥5h,最后,将干燥过的磺化固体粉末在氮气气氛下焙烧3h,焙烧温度为200℃,得到无机固体硅胶(Silica gel)磺酸催化材料,测其酸量仅为0.133mmol/g。其BET比表面积为185m 2/g,其平均粒径为85μm,抗压碎强度为165N。
实施例3(应用实施例-催化剂稳定性)
无机固体硅基磺酸催化材料稳定性考察。选用本发明所述实施例1中的无机固体硅基磺酸催化材料用于环己酮肟液相贝克曼重排反应体系,并对其使用寿命进行了考察,该催化材料在反应温度130℃下运行136h,未见环己酮肟转化率与己内酰胺选择性有明显下降,环己酮肟转化率维持在98%,己内酰胺选择性维持在99%,且反应后测其酸量几乎没有下降。
对比实施例2(应用实施例-催化剂稳定性)
有机型固体磺酸催化材料稳定性考察。选用商业化的742B型磺酸树脂用于环己酮肟液 相贝克曼重排反应体系。结果表明,该催化剂在130℃运行12小时后,该催化剂基本失去活性,且该类催化剂在反应溶液中明显溶胀,其结构受到破损,酸量下降明显,仅为0.05mmol/g。
实施例4
实验步骤同实施例1,不同之处在于离子交换反应过程中加入了微波场,所得的无机固体硅基磺酸催化材料,测其酸量为4.215mmol/g。硅基磺酸颗粒的平均粒径103um,抗压碎强度198N。
实施例5
实验步骤同实施例1,不同之处在于偏硅酸磺化过程中加入了微波场,所得的无机固体硅基磺酸催化材料,测其酸量为4.932mmol/g。颗粒的平均粒径96um,抗压碎强度201N。
实施例6
制备步骤同实施例1,不同之处在于九水合硅酸钠与盐酸的摩尔比为1.0,得到无机固体硅基磺酸催化材料酸量为2.986mmol/g。颗粒的平均粒径101um,抗压碎强度195N。
实施例7
制备步骤同实施例2,不同之处在于硅酸酯与盐酸的摩尔比为1.0,得到无机固体硅基磺酸催化材料酸量为3.215mmol/g。颗粒的平均粒径97um,抗压碎强度209N。
实施例8
制备步骤同实施例2,不同之处在于离子交换反应的温度为60℃,得到无机固体硅基磺酸催化材料酸量为3.053mmol/g。颗粒的平均粒径96um,抗压碎强度198N。
实施例9
制备步骤同实施例2,不同之处在于水解反应的温度为50℃,得到无机固体硅基磺酸催化材料酸量为3.648mmol/g。颗粒的平均粒径102um,抗压碎强度188N。
实施例10
制备步骤同实施例1,不同之处在于采用的无机酸为硝酸,得到无机固体硅基磺酸催化材料酸量为3.421mmol/g。颗粒的平均粒径99um,抗压碎强度185N。
实施例11
制备步骤同实施例1,不同之处在于偏硅酸磺化试剂为氯磺酸,得到无机固体硅基磺酸催化材料酸量为3.515mmol/g。颗粒的平均粒径84um,抗压碎强度179N。
实施例12
制备步骤同实施例1,不同之处在于偏硅酸磺化试剂为三氧化硫,得到无机固体硅基磺酸催化材料酸量为3.815mmol/g。颗粒的平均粒径78um,抗压碎强度168N。
实施例13
制备步骤同实施例1,不同之处在于维持凝胶溶液的pH为8,得到无机固体硅基磺酸催化材料酸量为2.056mmol/g。颗粒的平均粒径88um,抗压碎强度205N。
实施例14
制备步骤同实施例1,不同之处在于凝胶晶化的温度为80℃,得到无机固体硅基磺酸催化材料酸量为1.988mmol/g。颗粒的平均粒径92um,抗压碎强度187N。
实施例15
制备步骤同实施例1,不同之处在于凝胶干燥温度改为120℃,得到无机固体硅基磺酸催化材料酸量为1.885mmol/g。颗粒的平均粒径99um,抗压碎强度194N。
实施例16
制备步骤同实施例1,不同之处在于偏硅酸磺化得温度为100℃,得到无机固体硅基磺酸催化材料酸量为2.568mmol/g。焙烧的催化剂颗粒的平均粒径108um,抗压碎强度198N。
实施例17
制备步骤同实施例1,不同之处在于偏硅酸磺化得温度为140℃,得到无机固体硅基磺酸催化材料酸量为3.058mmol/g。颗粒的平均粒径95um,抗压碎强度191N。
实施例18
制备步骤同实施例1,不同之处在于固体硅酸催化材料干燥的温度为90℃,得到无机固体硅基磺酸催化材料酸量为3.357mmol/g。颗粒的平均粒径96um,抗压碎强度188N。
实施例19(应用实施例)
本发明的实施例1的无机固体硅基磺酸催化材料还可用于其他的酸催化反应,如:异构化反应、氢胺化反应、烷基化反应、多组分反应、酯化反应、醚化反应、硝化反应、氧化反 应、加成反应等反应体系,均能取得优越的结果,见表1。
表1.无机固体硅基磺酸催化材料催化反应结果
Figure PCTCN2020095190-appb-000010
实施例20-无机固体硅基磷酸催化剂的制备
取3g固体粉末偏硅酸(平均粒度90μm)于50mL放有搅拌子的两口圆底烧瓶中,将圆底烧瓶固定在铁架台上,用恒压漏斗加入30mL磷酸(浓度85wt%),将温度计插入液面以下,烧瓶的另一口接冷凝回流装置,密封,置于恒温磁力搅拌器中,于100℃的温度下回流4h。反应完后,将圆底烧瓶中的溶液和催化剂倒入砂芯漏斗中抽滤,用蒸馏水洗涤至最后一滴滤液呈中性。将上层催化剂取出,放入110℃的真空干燥箱中干燥12小 时,获得磷酸化的无机固体偏硅酸粉末(它的FT-IR谱图示于图13中,曲线2)。最后,将干燥过的固体粉末在氮气气氛下焙烧3h,焙烧温度为200℃,得到无机固体硅基磷酸催化剂,测其酸量为2.885mmol/g,比表面积为268m 2/g,平均粒度大约89.7μm,压碎强度185N。对于催化剂进行元素分析,碱金属(例如钠和钾)的含量低于检测极限(低于3ppm),碱土金属(例如钙和镁)的含量低于检测极限。
实施例21-无机固体硅基磺酸/磷酸催化剂的制备
取3g固体粉末偏硅酸(平均粒度90μm)于50mL放有搅拌子的两口圆底烧瓶中,将圆底烧瓶固定在铁架台上,用恒压漏斗依次加入15mL磷酸(浓度85wt%)、15mL浓硫酸(浓度98wt%),将温度计插入液面以下,烧瓶的另一口接入冷凝回流装置,密封,置于恒温磁力搅拌器中,于100℃的温度下回流4h。反应完后,将圆底烧瓶中的溶液和催化剂倒入砂芯漏斗中抽滤,用蒸馏水洗涤至最后一滴滤液呈中性。将上层催化剂取出,放入110℃的真空干燥箱中干燥12小时,获得磺酸化/磷酸化的无机固体偏硅酸粉末(它的FT-IR谱图示于图13中,曲线3)。最后,将干燥过的固体粉末在氮气气氛下焙烧3h,焙烧温度为200℃,得到无机固体硅基磺酸和磷酸催化剂,测其酸量为3.685mmol/g,比表面积为305m 2/g,平均粒度大约89.3μm,压碎强度186N。对于催化剂进行元素分析,碱金属(例如钠和钾)的含量低于检测极限,碱土金属(例如钙和镁)的含量也低于检测极限。
在图13中,464cm -1处的峰是Si-O-Si键的弯曲振动吸收峰,1107cm -1处的峰是Si-O键的吸收振动峰,3450cm -1处的峰是羟基吸收峰。在曲线2和3中,在977cm -1处出现了O-P-O反对称伸缩峰,在1330cm -1处吸收峰变宽,可归属于P-O键的伸缩振动峰,S=O键的不对称伸缩振动与Si-O-Si键的反对称伸缩振动叠加的效果,这是由偏硅酸-磷酸的骨架中的P-O基团的拉伸振动引起的。而在曲线1(干燥偏硅酸固体粉末)中,没有出现这两个峰。因此,说明在磷酸化的或磺酸化/磷酸化的偏硅酸颗粒中,磷酸根和磺酸根以共价键连接于偏硅酸分子上。
另外,本发明的固体酸催化剂还能够用于炼油领域的催化裂化反应和(烯烃和链烷烃的)烷基化反应中。例如,该催化剂用于由2-丁烯和异丁烷反应中以获得2,2,3-三甲基戊烷。
实施例22(应用实施例)
将0.5kg硅基磺酸催化剂(来自实施例1),5kg 2-丁烯和35kg异丁烷加入高压反应釜,密封,保持反应压力1MPa,反应温度100℃,反应4小时,结果表明,2-丁烯的转化率为84%,目标产物2,2,3-三甲基戊烷(烷基化汽油,C8产物)的选择性为98%,该烷基化汽油具有高的辛烷值,其RON值达98。
本实施例22说明了固体酸催化剂能够理想地用于炼油领域的烷基化反应。
作为对比,重复以上过程,只是使用0.65kg硅基磷酸催化剂(来自实施例20)代替0.5kg硅基磺酸催化剂(来自实施例1)。2-丁烯的转化率为81%,和目标产物的选择性为93%。
另外,作为对比,重复以上过程,只是使用0.6kg硅基磺酸/磷酸催化剂(来自实施例21)代替0.5kg硅基磺酸催化剂(来自实施例1)。2-丁烯的转化率为82%,和目标产物的选择性为95%。
上述结果说明了,当用于需要强酸作为催化剂的反应中,需要使用更多量的硅基磷酸催化剂和硅基磺酸/磷酸催化剂才能达到与硅基磺酸催化剂接近的转化率和收率。
实施例23(应用实施例)
硅基磷酸催化剂用于制备β-烯胺酮
将乙酰丙酮(100.11mg,1.0mmol)和环己胺(92.19mg,1.0mmol)加入到500ml烧瓶中混合,添加实施例20的硅基磷酸催化剂(1.2mg),利用50℃油浴来加热混合物,同时搅拌混合物。TLC检测原料已消失,停止反应,在反应混合物中加入150ml的二氯甲烷稀释该混合物,过滤和用二氯甲烷洗涤固体。所得滤液进行减压蒸馏以除去溶剂。残留物用色谱柱提纯(3:1石油醚/乙酸乙酯),得到黄色油状液体,目标产物为4-环己基胺基-戊-3-烯-2-酮,收率96%。
1H NMR(400MHz,CDCl 3)δ:10.98(br s,1H,NH),4.90(s,1H,CH),3.36(t,J=4.5Hz,1H,CH),1.98(s,3H,CH 3),1.93(s,3H,CH 3),1.73-1.87(m,4H,CH 2),1.21-1.38(m,6H,CH 2); 13C NMR(100MHz,CDCl 3)δ:194.4(C=O),161.8(C),94.9(CH),51.5(CH),33.8(CH 2),28.7(CH 2),25.3(CH 2),24.4(CH 3),18.6(CH 3).MS(ESI)(m/z):182.3([M+H] +)。
作为对比,重复以上过程,只是使用等量的硅基磺酸催化剂(来自实施例1)。目标产物的收率为92%。这说明,硅基磷酸比硅基磺酸更适合用于制备β-烯胺酮。
分析和表征
1.实施例1的固体硅基磺酸催化剂颗粒的分析:
在实施例1的偏硅酸凝胶的干燥过程中,控制干燥温度和干燥时间,预先充分地除去偏硅酸颗粒的水分,然后进行焙烧,防止在焙烧过程中颗粒发生崩裂,从而有利于维持焙烧后的催化剂颗粒的结构和形状。焙烧后的催化剂颗粒(即,硅基磺酸)的基质是无定形形式或无定形-有序结构混合物形式的二氧化硅基质。
偏硅酸和实施例1的无机固体硅基磺酸催化材料(简称催化剂)的FT-IR图示于图1。
从图1可以看出,偏硅酸被磺化后,在1394cm -1处出现新的红外特征吸收峰,归属于O=S=O的伸缩振动。此外,位于1101cm -1处的红外特征信号峰的强度也明显增大,这是由于磺酸基中O-S-O的红外特征吸收峰与催化剂骨架主体Si-O-Si的不对称伸缩振动信号峰相重合所造成的。
偏硅酸和实施例1的无机固体硅基磺酸催化材料的N2吸附-脱附图(A)和孔径分布图(B)示于图2。
由图2(A)可知,根据IUPAC分类,偏硅酸和无机固体硅基磺酸催化材料的N 2吸附~脱附等温线均呈现典型的LangmuirⅣ型等温吸附线,且存在明显的H1型回滞环,这是介孔材料的典型特征。此外,偏硅酸被磺化后,其比表面积和孔结构基本保持不变。
偏硅酸和实施例1的无机固体硅基磺酸催化材料的吡啶吸附红外光谱图示于图3。
由图3可以看到,偏硅酸样品在1400到1640cm -1波长范围内没有出现明显的红外吸收峰。经过磺化后,无机固体硅基磺酸催化材料在1400~1640cm -1波长范围内出现了四个明显的红外特征吸收峰。其中,位于1454cm -1和1622cm -1处的红外吸收峰是吡啶吸附在Lewis酸中心上的特征吸收峰;位于1546cm -1处的红外吸收峰是吡啶吸附在Bronsted酸中心上的特征吸收峰,这主要由-SO 3H基团提供;位于1491cm -1处的红外吸收峰是由吡啶同时吸附在Lewis酸和Bronsted酸中心上共同作用产生的特征吸收峰。
偏硅酸和实施例1的无机固体硅基磺酸催化材料的的NH 3~TPD谱图示于图4。
由图4可以看到,偏硅酸经过磺化后得到的无机固体硅基磺酸催化材料,其TPD曲线在50~200℃、200~400℃和400~800℃范围内出现三个明显的NH 3脱附峰,分别对应NH 3吸附在其表面弱酸性位点、中强酸性位点和强酸性位点上的脱附峰,而偏硅酸表面仅存在少量弱酸性位点。
偏硅酸和实施例1的无机固体硅基磺酸催化材料的热重图示于图5。
从图5中可以看出,偏硅酸仅在100℃之前出现了一个明显的失重峰,这是由于偏硅酸表面物理吸附水脱附产生的。偏硅酸磺化后,没有明显的热失重,这说明制备得到的无机固体硅基磺酸催化材料具有良好的热稳定性。
从图2中的非常完美的峰可以看出,通过原硅酸凝胶的晶化,获得了其中晶型结构和孔隙结构得到改进的并且比表面积显著提高的偏硅酸凝胶或晶体。干燥之前和干燥之后的偏硅酸凝胶或晶体以及最终的硅基磺酸颗粒都是介孔材料。这些介孔材料的结构特征没有明显的差异,并且它们的孔容积(pore volume)均是大约0.9cm 2/g和孔径是大约0.87nm。
特别是,所有这些介孔材料能够耐强酸的腐蚀。
使用日本理学公司(Japan Rigaku)的D/Max-2550VB+18KW型号的X-射线粉末衍射光谱分析仪器获得样品的XRD谱图。已干燥和未焙烧的固体偏硅酸粉末,以及已干燥和未焙烧的固体硅基磺酸粉末的XRD谱图示于图7中。已干燥和焙烧过的固体偏硅酸粉末,以及已干燥和焙烧过的固体硅基磺酸粉末的XRD谱图示于图8中。在2θ角为22°处的峰代表了偏硅酸和硅磺酸的特征衍射峰。从图8可以看出,焙烧后衍射峰明显变得光滑,这表明在固体酸被焙烧后固体酸的强度已显著提高,也说明了焙烧后的固体酸的结晶度明显提高,它属于无定形形式的或短程有序排列-无定形混合形式的二氧化硅晶体。焙烧后的固体酸的基质不是硅胶。另外,偏硅酸被磺化后,其衍射峰的强度和结晶度基本上没发生变化,说明在磺化过程中,没有破坏偏硅酸的晶型结构。
实施例1中所得偏硅酸和硅基磺酸的粒径分布是通过使用马尔文激光粒度仪测定的,如图9和10中所示。偏硅酸颗粒和硅基磺酸颗粒的平均粒径都是大约95μm,这说明磺化反应不改变偏硅酸颗粒的尺寸。
实施例1的焙烧的无机固体硅基磺酸颗粒产品的扫描电镜(SEM)照片如图11所示。其中二氧化硅为商购的对照样品。从SEM照片中可以看出,颗粒的平均粒径是约90μm,并且它具有较好的抗压碎强度。
对于实施例的催化剂进行元素分析,碱金属(例如钠和钾)的含量低于检测极限(低于3ppm),碱土金属(例如钙和镁)的含量低于检测极限。
2.实施例2的硅基磺酸颗粒的FT-IR分析:
实施例2中的偏硅酸和焙烧的无机固体硅基磺酸颗粒的FT-IR谱图示于图12中。
1394cm -1处为S=O键的对称伸缩振动吸收峰。在476cm -1处是Si-O键的弯曲振动吸收峰。在800cm -1处是Si-O-Si键的对称伸缩振动吸收峰。在965cm -1处的吸收峰为Si-OH键的弯曲振动弱吸收峰(二氧化硅没有这一个峰)。在1091cm -1处的吸收峰变宽,这可归属为S=O键的不对称伸缩振动与Si-O-Si键的反对称伸缩振动叠加的效果。在3421cm -1处的吸收峰是表面羟基的红外吸收峰。商购的二氧化硅样品有一个非常弱的HO峰,说明在贮存过程中它从空气中吸附了微量的水。
对比实施例3
重复US3929972的实施例I,不同之处在于将所得到的中间产物(即,“溶胶-凝胶”软皮-“偏硅酸钠”硬芯形式的颗粒)进一步干燥和焙烧。在US专利的实施例I中没有公开偏硅酸钠的粒度。
将1kg的坚硬的五水偏硅酸钠(玻璃状)进行粉碎和研磨。研磨操作显得十分困难。所得颗粒物被分成2批,这2批颗粒物分别用筛孔尺寸为220μm和300μm的两个筛子进行筛分,获得粒径分别大于220μm和300μm的五水硅酸钠细颗粒(M1)(它的平均粒度为大约350μm)和五水硅酸钠粗颗粒(M2)(它的平均粒度为大约440μm)。从五水硅酸钠细颗粒(M1)和五水硅酸钠粗颗粒(M2)中分别称取60g的细颗粒原料和60g的粗颗粒原料,然后重复US3929972的实施例I中的操作,按照1:4的偏硅酸钠与硫酸的摩尔比使用浓硫酸(98wt%)在100℃下进行磺化反应。在磺化反应进行到大约25分钟之后,反应混合物变成粘稠的泥浆,搅拌它越来越困难,因此再次按照1:2的偏硅酸钠与硫酸的摩尔比添加浓硫酸,让磺化反应进行5小时。磺化反应混合物(即粒状混合物)用砂滤器进行过滤,滤饼用去离子水洗涤至滤液成中性为止。将获得的白色固体粉末(湿固体)在110℃下真空干燥5h,获得干燥的无机固体硅基磺酸粉末。然后向所得干燥粉末中添加另外的2mol的硫酸/每mol的偏硅酸钠以便让它们进一步反应,所得反应混合物用砂滤器进行过滤,滤饼用去离子水洗涤至滤液成中性为止,从细原料(M1)和粗原料(M2)分别获得白色粒状化合物(T1)和(T2)。
这些化合物(T1)和(T2)看起来像泥浆,化合物(T1)和(T2)的平均粒度分别是大约27μm和大约45μm。由于磺化化合物颗粒的粒度明显地变得更小,这说明所形成的磺化化合物颗粒不耐酸,硫酸逐渐腐蚀(即溶解)偏硅酸钠颗粒,所形成的硅基磺酸分子从颗粒上脱离而进入硫酸溶液(液相)中。将粒状化合物(T1)或(T2)抓在手掌中揉搓,感觉到它是柔软的,没有砂质触感。显然,粒状化合物(T1)或(T2)的表面上存在硅基磺酸分子,并且颗粒(T1)或(T2)的结构是硬芯-软皮(rigid core-soft skin)结构,其中硬芯是作为颗粒(T1)或(T2)的基质部分的偏硅酸钠,该软皮是由偏硅酸和硅基磺酸构成的相对柔软的溶胶-凝胶混合物。
从粒状化合物(T1)中称取3g的样品,加入到装有搅拌器的烧瓶中,然后在其中添加20ml的浓硫酸,在搅拌下加热到90℃进行磺化反应。随着磺化反应的进行,偏硅酸钠硬芯逐渐变小,最终软皮和硬芯都消失,它们被硫酸分解为单分子硅磺酸化合物和纳米级尺寸的微小颗粒状硅磺酸化合物。
为了对比,将颗粒状化合物(T1)和(T2)分别在110℃下真空干燥5h,获得干燥的无机固体硅基磺酸粉末(T1A)和(T2A)。然后,将干燥过的磺化固体粉末在氮气气氛下焙烧3h,焙烧温度为200℃,得到焙烧的粉末状的硅基磺酸颗粒(T1B)和(T2B)。
  T1A(未焙烧) T2A(未焙烧) T1B(焙烧) T2B(焙烧)
平均粒度,μm 27 45 27 45
BET比表面积,m 2/g 87.5 85.6 89.4 86.9
抗压碎强度(N) 易碎 易碎 55 58
酸量,mmol/g 未测 未测 0.465 0.425
测量粉末状的硅基磺酸颗粒(T2B)的粒度分布,结果如图14中所示。从附图14中可以看出,粒径分布是非常宽的。
对于硅基磺酸粉末(T1A)和(T2A)以及硅基磺酸颗粒(T1B)和(T2B)的样品进行XRD谱分析,结果示于图15中。从图15可以看出,硅基磺酸颗粒(T1B)和(T2B)的晶型结构属于无定形,结晶度低,强度较低。
在焙烧的颗粒(T1B或T2B)内部的偏硅酸钠基质是碱性化合物,因此,颗粒(T1B或T2B)不耐酸。当焙烧的颗粒(T1B或T2B)在酸性的反应体系中作为催化剂使用时,它将逐渐分解。
另外,使用以上五水硅酸钠细颗粒(M1),重复以上制备过程,只是磺化反应的温度分别是80℃、90℃、110℃和120℃,所得焙烧硅基磺酸颗粒产品的酸量分别是0.378、0.402、0.398和0.385mmol/g,这说明在US3929972的实施例I中,最佳的磺化反应温度是大约100℃。由于在磺化反应中所形成的硅基磺酸分子从偏硅酸钠颗粒上脱离,导致最终获得的颗粒(T1B)和(T2B)的酸量是很低的。
另外,根据我们的实验结果表明,当使用无水偏硅酸钠或九水偏硅酸钠原料代替五水偏硅酸钠原料来重复US专利的实施例I时,所获得的各种结果与以上结果几乎相同。
另外,从US专利的权利要求可以看出,US专利的目的是为了提供单分子化合物SiO(HSO 4) 2和纳米级尺寸的微小颗粒状化合物,而不是硅基磺酸颗粒或粉末。
对比实施例4
采用硅胶(二氧化硅)直接磺化法制备硅胶磺酸催化材料。
取200mL正硅酸乙酯、200mL异丙醇、200mL水,用浓硝酸调节pH=3,加入200mL水,搅拌下慢慢加热至80e,水解3h得淡绿色凝胶,老化24h后,在110e温度下干燥24h,研磨形成90μm的硅胶。
将5g的90μm的硅胶加入到25mL氯磺酸中直接磺化,搅拌,在130℃下磺化6h,然后冷却至室温,过滤,不用去离子水洗涤至滤液成中性。将获得的白色固体粉末在110℃ 下真空干燥5h,最后,得到无机固体硅胶磺酸催化材料,测其酸量为31.653mmol/g。
将磺化后所得的固体样品用去离子水洗涤至滤液成中性,然后将获得的白色固体粉末在110℃下真空干燥5h,最后,得到无机固体硅胶磺酸催化材料,测其酸量仅为0.128mmol/g。这表明,硅胶对于氯磺酸具有强的吸附作用。如果不用去离子水洗涤磺化颗粒,则会有很多氯磺酸被吸附在硅胶的表面,使得所测量的酸量大大提高。

Claims (14)

  1. 无机固体硅基磺酸和/或磷酸催化剂,它为颗粒形式或粉末形式,该无机固体硅基磺酸和/或磷酸催化剂(h-SSA)包括:
    基质组分(A):不含有磺酸基和/或磷酸基的含硅基质;和
    硅基酸组分(B):含有磺酸基和/或磷酸基的无机硅基磺酸和/或磷酸;
    其中,上述硅基磺酸和/或磷酸催化剂(h-SSA)中的基质组分(A)包括或是选自于下列含硅基质组分中的一种或两种或三种:(1)偏硅酸;(2)硅胶,和(3)二氧化硅;
    其中,含有磺酸基和/或磷酸基的无机硅基磺酸和/或磷酸包括具有通式(I)的化合物、具有通式(II)的化合物和具有通式(III)的化合物:
    Figure PCTCN2020095190-appb-100001
    式中,-AG 1和-AG 2各自独立地是-O-SO 3H,-O-PO 3H 2或-OH,并且-AG 1和-AG 2不同时是-OH;
    其中固体酸催化剂(h-SSA)的酸量是0.25-8.4mmol/g,优选是0.3-8.2,优选0.35-8,优选0.4-7.8,优选0.5-7.6,优选0.6-7.5,优选0.7-7.3,优选0.8-7.0,优选0.9-6.8,优选1.0-6.5,优选1.1-6.3,优选1.2-6.0,优选1.3-5.8,优选1.4-5.6,优选1.5-5.4,优选1.6-5.2,优选1.8-5.3,优选2.0-5.1,优选2.2-5.0,优选2.4-4.8。
  2. 根据权利要求1所述的催化剂,其中固体酸催化剂(h-SSA)的平均粒径为3μm-5mm,优选7-800μm,优选15-700μm,优选20-650μm,优选25-600μm,优选30-550μm,优选35-500μm,更优选40-450μm,更优选45-400μm,更优选50-350μm,更优选55-320μm,例如60、70、80、100、120、150、180、200、220、240、260、280或300μm。
  3. 根据权利要求1所述的催化剂,其中所述硅基酸组分(B)包括:
    60-100wt%(优选63-100wt%,优选65-100wt%,优选68-100wt%,优选70-100wt%,优选75-100wt%,优选80-100wt%,例如85、90、95或98wt%)的具有通式(I)的化合物;
    0-40wt%(优选0-37wt%,优选0-35wt%,优选0-32wt%,优选0-30wt%,优选0-25wt%,优选0-20wt%,例如15、10、5或2wt%)的具有通式(II)的化合物;和
    0-30wt%(优选0-27wt%,优选0-25wt%,优选0-22wt%,优选0-20wt%,优选0-15wt%,优选0-10wt%,例如8、5或2wt%)的具有通式(III)的化合物;
    其中该重量百分比是基于硅基酸组分(B)的总重量。
  4. 根据权利要求3所述的催化剂,其中通式(I)化合物、通式(II)化合物和通式(III)化合物的摩尔比是1:(0-0.7):(0-0.3),优选1:(0.01-0.6):(0-0.25),优选1:(0.05-0.55):(0-0.20),优选1:(0.08-0.5):(0-0.17),优选1:(0.1-0.45):(0.002-0.15),优选1:(0.12-0.4):(0.005-0.10)。
  5. 根据权利要求1-4中任何一项所述的催化剂,其特征在于:
    其中,具有通式(I)的化合物、具有通式(II)的化合物和具有通式(III)的化合物的重量之和是基于硅基酸组分(B)的总重量的80-100wt%,优选83-100wt%,优选85-100wt%,优选87-100wt%,优选90-100wt%,例如93、95、97或98或99wt%;和/或
    其中,组分(A)和(B)的重量之和是催化剂(h-SSA)总重量的80-100wt%,优选83-100wt%,85-100wt%,87-100wt%,90-100wt%,例如93、95、97或98或99wt%;和/或
    其中,硅基酸组分(B)与基质组分(A)的重量之比是:0.02-20:1,优选0.04-18:1,优选0.08-15:1,优选0.15-12:1,优选0.2-10:1,优选0.25-9.5:1,优选0.3-9:1,优选0.35-8.5:1,优选0.4-8:1,优选0.5-7.5:1,优选0.6-7:1。
  6. 根据权利要求1所述的催化剂,其特征在于:
    其中,-AG 1和-AG 2各自独立地是-O-SO 3H或-OH,或是-O-PO 3H 2或-OH,并且-AG 1和-AG 2不同时是-OH;和/或
    其中,该固体酸催化剂(h-SSA)的酸量是1.0-7.2mmol/g,优选1.3-6.8,优选2.0-6.5,优选2.1-6.3,优选2.2-6.0,优选2.3-5.8,优选2.4-5.6,优选2.5-5.4,优选2.6-5.2,优选2.7-5.3,优选2.8-5.1,优选2.9-5.0,优选3.0-4.8mmol/g;并且,该固体酸催化剂(h-SSA)的平均粒径为20-650μm,优选30-550μm,优选35-500μm,优选40-450μm,优选45-400μm,优选50-350μm,优选55-320μm,例如60、70、80、100、120、150、180、200、220、240、260、280或300μm。
  7. 根据权利要求1所述的催化剂,其特征在于:
    当基质组分(A)是偏硅酸和/或硅胶时,该固体酸催化剂(h-SSA)的酸量是0.25-7.6mmol/g,优选0.3-7.5,更优选0.35-7.4,更优选0.4-7.2,更优选0.45-7.0,,优选0.5-6.8,优选0.55-6.6,优选0.6-6.2,优选0.65-5.8,优选0.7-5.4,优选0.75-5.0,优选0.8-4.8;和/或
    当基质组分(A)是二氧化硅基质时,该固体酸催化剂(h-SSA)的酸量是0.25-8.2mmol/g,优选0.3-8.0,优选0.35-7.8,更优选0.4-7.6,更优选0.45-7.4,更优选0.5-7.2,优选0.55-7.0,优选0.6-6.8,优选0.65-6.6,优选0.7-6.2,优选0.75-5.8,优选0.8-5.4,优选0.85-5.2,优选0.9-5.0。
  8. 根据权利要求1或2所述的催化剂,其特征在于:其中硅基质是二氧化硅基质的固体酸催化剂颗粒(h-SSA)的抗压碎强度是大于165N,优选是在165-260N范围,更优选在170-260N,优选173-250N,优选175-240N或178-230N或180-230N;和/或
    其中固体酸催化剂(h-SSA)中二氧化硅基质的碱金属(例如钠和钾)含量是0-300ppm,优选 0-200ppm,优选0-100ppm,优选0-50ppm,优选0-10ppm;和/或
    该固体酸催化剂(h-SSA)的BET比表面积为50-800m 2/g,优选100-600m 2/g,优选150-500cm 3/g,优选200-400m 2/g;和/或
    该固体酸催化剂(h-SSA)的孔容积为50-700cm 3/g,优选100-600cm 3/g,优选130-550cm 3/g,优选150-500cm 3/g,优选160-400cm 3/g,优选180-300cm 3/g;和/或
    该固体酸催化剂(h-SSA)的平均孔直径为4-100nm,优选5-50nm,更优选6-30nm,更优选7-20nm,更优选8-13nm。
  9. 制备根据权利要求1所述的无机固体硅基磺酸和/或磷酸催化剂的方法,该方法包括:
    (B)偏硅酸的磺化和/或磷酸化:让颗粒状偏硅酸(H 2SiO 3)原料与磺化剂和/或磷酸化剂进行反应,分离(优选过滤分离出滤饼)和用水或有机溶剂洗涤(优选,滤饼用水洗涤至滤液呈现中性为止),然后干燥,获得干燥的无机固体硅基磺酸和/或磷酸颗粒(h-SSA);
    优选,磺化剂和/或磷酸化剂相对于偏硅酸而言的用量足以使得该干燥但未焙烧的固体酸催化剂(h-SSA)的酸量是0.25-7.6mmol/g,优选0.3-7.5,更优选0.35-7.4,更优选0.4-7.2,更优选0.45-7.0,,优选0.5-6.8,优选0.55-6.6,优选0.6-6.2,优选0.65-5.8,优选0.7-5.4,优选0.75-5.0,优选0.8-4.8;
    优选,所述干燥是在减压或真空下进行。
  10. 根据权利要求9所述的方法,其中所述方法还包括以下步骤:
    (C)焙烧:将步骤(B)中获得的干燥的颗粒状硅基磺酸和/或磷酸固体进行焙烧,获得无机固体硅基磺酸和/或磷酸催化剂(h-SSA);
    优选,焙烧温度为120~600℃,优选150~500℃,更优选200-480℃;
    优选,焙烧是在惰性气氛围下进行的。
  11. 根据权利要求9或10所述的方法,其中所述方法还包括以下步骤:
    (A)颗粒状偏硅酸H 2SiO 3原料的制备:将硅源与无机酸进行离子交换反应或水解反应(优选,在反应中控制反应混合物的pH值为4.5-6.5,优选5~6),得到原硅酸(H 4SiO 4)凝胶或溶胶;让原硅酸凝胶或溶胶静置以进行晶化,获得含有颗粒状原硅酸(H 4SiO 4)凝胶的溶液,然后对该溶液进行过滤和滤饼用水洗涤至滤液为中性为止,对所分离出的凝胶进行干燥(更优选,进行真空干燥),得到干燥的颗粒状的或粉末状的偏硅酸(H 2SiO 3)原料。
  12. 根据权利要求11所述的方法,其中步骤(A)中的硅源为硅酸盐、硅酸酯和硅胶中的一种或多种;和/或
    在步骤(A)中使用的无机酸是盐酸、硫酸、硝酸和磷酸中的一种或多种;和/或
    在步骤(A)中,硅源物质与无机酸的摩尔比一般是0.01~2.0:1,优选0.05~1.0:1,更优选0.1~0.8:1,更优选0.3~0.7:1;和/或
    在步骤(B)中,所述偏硅酸与所述磺化剂和/或磷酸化剂的摩尔比为0.01~4.0:1,优选0.03~3.0:1,优选0.04~2.0:1,优选0.05~1:1,更优选0.1~0.9:1,更优选0.2~0.8:1,更优选0.3~0.7:1;和/或
    在步骤(B)中,磺化反应的温度为20℃~200℃,优选40~180℃,优选60~150℃;和/或
    上述步骤(B)或步骤(A)是在搅拌下或在搅拌加上超声波或微波的作用下进行的。
  13. 制备根据权利要求1的无机固体硅基磺酸和/或磷酸催化剂的方法,该方法包括:
    将硅源与无机酸进行离子交换反应或水解反应(优选,在反应中控制反应混合物的pH值为4.5-6.5,优选5~6),得到原硅酸(H 4SiO 4)凝胶或溶胶;
    让原硅酸凝胶或溶胶静置以进行晶化(促进结构重组),获得含有颗粒状原硅酸(H 4SiO 4)凝胶的溶液,然后对该溶液进行过滤和滤饼用水洗涤至滤液为中性为止,对所分离出的凝胶进行干燥(优选,进行真空干燥),得到干燥的颗粒状的或粉末状的偏硅酸(H 2SiO 3)原料;
    然后,干燥的颗粒状偏硅酸(H 2SiO 3)原料用磺化剂和/或磷酸化剂进行磺化和/或磷酸化,对所得反应混合物进行过滤和滤饼用水或有机溶剂洗涤至滤液为中性为止,对所分离出的颗粒状磺化和/或磷酸化固体进行干燥(优选真空干燥),获得干燥的无机固体硅基磺酸和/或磷酸粉末;和
    最后将无机固体酸粉末进行焙烧,获得固体酸催化剂(h-SSA)。
  14. 权利要求1的无机固体硅基磺酸和/或磷酸催化剂的用途,其特征在于,所述催化剂用于异构化反应、酯化反应、烷基化反应、烯烃的氢胺化反应、缩合反应、硝化反应、醚化反应、醇的胺化反应、制备β-烯胺酮的反应、多组分反应以及氧化反应中。
PCT/CN2020/095190 2020-03-13 2020-06-09 无机固体硅基磺酸和/或磷酸催化剂及其制备方法和应用 WO2021179458A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227035420A KR20220146658A (ko) 2020-03-13 2020-06-09 무기 고체 규소기 술폰산 및/또는 인산 촉매제 및 그 제조방법과 응용
JP2022555705A JP7483916B2 (ja) 2020-03-13 2020-06-09 無機固体シリルスルホン酸及び/又はリン酸触媒及びその製造方法と応用
EP20924025.8A EP4119223A4 (en) 2020-03-13 2020-06-09 INORGANIC SOLID SILICON-BASED SULFONIC ACID AND/OR PHOSPHORIC ACID CATALYST, METHOD OF PRODUCTION THEREOF AND APPLICATION THEREOF
US17/911,214 US20230104925A1 (en) 2020-03-13 2020-06-09 Inorganic solid silicon-based sulfonic acid and/or phosphoric acid catalyst, preparation method therefor, and application thereof
CA3171435A CA3171435A1 (en) 2020-03-13 2020-06-09 Inorganic solid silicon-based sulfonic acid and/or phosphoric acid catalyst and preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010177579.4 2020-03-13
CN202010177579 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021179458A1 true WO2021179458A1 (zh) 2021-09-16

Family

ID=77616370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095190 WO2021179458A1 (zh) 2020-03-13 2020-06-09 无机固体硅基磺酸和/或磷酸催化剂及其制备方法和应用

Country Status (7)

Country Link
US (1) US20230104925A1 (zh)
EP (1) EP4119223A4 (zh)
JP (1) JP7483916B2 (zh)
KR (1) KR20220146658A (zh)
CN (1) CN113385191B (zh)
CA (1) CA3171435A1 (zh)
WO (1) WO2021179458A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117065766B (zh) * 2023-10-16 2023-12-26 昆明理工大学 一种微米级磺酸型硅基固体酸的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929972A (en) 1973-08-13 1975-12-30 David H Blount Production of silico-dihydrogen sulfate
US3941844A (en) * 1973-07-28 1976-03-02 Basf Aktiengesellschaft Continuous manufacture of N-alkylated arylamines
CN102172533A (zh) * 2011-02-26 2011-09-07 西陇化工股份有限公司 一种固体酸催化剂的制备方法以及该催化剂在二甘醇二苯甲酸酯合成反应中的应用
CN105209170A (zh) * 2013-05-13 2015-12-30 日商科莱恩触媒股份有限公司 固体磷酸催化剂、及使用其的三氧杂环己烷的制造方法
CN108947834A (zh) * 2018-07-17 2018-12-07 山东沾化永浩医药科技有限公司 一种三氟乙酸乙酯的合成方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045481B1 (en) 2005-04-12 2006-05-16 Headwaters Nanokinetix, Inc. Nanocatalyst anchored onto acid functionalized solid support and methods of making and using same
US20070098619A1 (en) * 2005-10-27 2007-05-03 Harmer Mark A Porous microcomposite of fluorinated sulfonic acid and a network of silica
CN1944443A (zh) * 2006-10-20 2007-04-11 山东大学 制备含磺酸基硅质材料的方法
WO2008123530A1 (ja) * 2007-03-27 2008-10-16 Nippon Oil Corporation スルホン酸基含有炭素質材料からなる固体酸触媒の製造方法およびその用途
CN102755902A (zh) * 2011-04-25 2012-10-31 南京大学 一种高比表面高酸量碳基固体酸及其制备方法与用途
US9068027B2 (en) * 2013-03-13 2015-06-30 Chevron Phillips Chemical Company Lp Methods of preparing a polymerization catalyst
RU2706241C2 (ru) * 2015-07-02 2019-11-15 Далянь Инститьют Оф Кемикал Физикс, Чайниз Академи Оф Сайенсез Катализатор и способ получения легких олефинов непосредственно из синтез-газа в результате осуществления одностадийного технологического процесса
CN108786846B (zh) * 2018-05-18 2021-07-13 南京工业大学 一种硅酸锆改性磺酸嫁接介孔氧化硅的催化剂及制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941844A (en) * 1973-07-28 1976-03-02 Basf Aktiengesellschaft Continuous manufacture of N-alkylated arylamines
US3929972A (en) 1973-08-13 1975-12-30 David H Blount Production of silico-dihydrogen sulfate
CN102172533A (zh) * 2011-02-26 2011-09-07 西陇化工股份有限公司 一种固体酸催化剂的制备方法以及该催化剂在二甘醇二苯甲酸酯合成反应中的应用
CN105209170A (zh) * 2013-05-13 2015-12-30 日商科莱恩触媒股份有限公司 固体磷酸催化剂、及使用其的三氧杂环己烷的制造方法
CN108947834A (zh) * 2018-07-17 2018-12-07 山东沾化永浩医药科技有限公司 一种三氟乙酸乙酯的合成方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ELGHNIJI KAIS, VIRLAN CONSTANTIN, ELALOUI ELIMAME, PUI AUREL: "Synthesis, characterization of SiO2 supported-industrial phosphoric acid catalyst for hydrolysis of NaBH4 solution", PHOSPHORUS, SULFUR, AND SILICON AND THE RELATED ELEMENTS, vol. 193, no. 12, 2 December 2018 (2018-12-02), pages 806 - 821, XP055846272, ISSN: 1042-6507, DOI: 10.1080/10426507.2018.1515946 *
See also references of EP4119223A4
SOUZA JOYCE D, NAGARAJU N: "Vapour phase transesterification over solid acids for the synthesis of isoamyl salicylate", INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, vol. 11, 31 May 2004 (2004-05-31), pages 401 - 409, XP055846269, ISSN: 0971-457X *
WANG JIN , GENG YAN-PU , ZHAO XIN-QIANG , GUO LIAN , AN HUA-JIANG , WANG YANJI: "Synthesis of 4,4’-Methylene Diphenyl Dimethylcarbamate Catalyzed by Silica-Supported Sulfuric Acid", PETROCHEMICAL TECHNOLOGY, vol. 38, no. 1, 15 January 2009 (2009-01-15), pages 82 - 85, XP055846271, ISSN: 1000-8144 *

Also Published As

Publication number Publication date
JP2023527501A (ja) 2023-06-29
JP7483916B2 (ja) 2024-05-15
KR20220146658A (ko) 2022-11-01
CN113385191A (zh) 2021-09-14
EP4119223A1 (en) 2023-01-18
CN113385191B (zh) 2022-11-18
EP4119223A4 (en) 2023-08-16
US20230104925A1 (en) 2023-04-06
CA3171435A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
Biz et al. Synthesis and characterization of mesostructured materials
Adam et al. The utilization of rice husk silica as a catalyst: review and recent progress
Parida et al. Amine functionalized MCM-41: An active and reusable catalyst for Knoevenagel condensation reaction
US5800800A (en) Crystalline inorganic oxide compositions prepared by neutral templating route
Yang et al. Catalytic application of sulfonic acid functionalized mesoporous benzene–silica with crystal-like pore wall structure in esterification
US5785946A (en) Crystalline inorganic oxide compositions prepared by neutral templating route
Zhang et al. Designed synthesis of sulfonated polystyrene/mesoporous silica hollow nanospheres as efficient solid acid catalysts
CN103561865A (zh) 大晶体、不含有机物的菱沸石以及制造和使用其的方法
Esquivel et al. Thermal behaviour, sulfonation and catalytic activity of phenylene-bridged periodic mesoporous organosilicas
ZA200504976B (en) Mesostructured aluminosilicate material
Li et al. Synthesis of SBA-15 type mesoporous organosilicas with diethylenebenzene in the framework and post-synthetic framework modification
Misran et al. Nonsurfactant route of fatty alcohols decomposition for templating of mesoporous silica
CN101830482A (zh) 一种小晶粒sapo-34分子筛的制备方法
KR20140063709A (ko) 균질한 무정질 실리카 알루미나로부터 제올라이트를 형성하는 방법
WO2021179458A1 (zh) 无机固体硅基磺酸和/或磷酸催化剂及其制备方法和应用
Gholamian et al. Synthesis of Pd immobilized on functionalized hexagonal mesoporous silica (HMS–CPTMS–Cy–Pd) for coupling Suzuki–Miyaura and Stille reactions
KR0158759B1 (ko) 중기공성 구조를 갖는 결정화합물의 제조방법
Yousatit et al. Selective synthesis of 5-hydroxymethylfurfural over natural rubber–derived carbon/silica nanocomposites with acid–base bifunctionality
CN103058208A (zh) Sapo-56分子筛的制备方法
JPH05254826A (ja) Mtt型のゼオライトの合成方法、得られた生成物、及びそれらの吸着及び触媒反応における用途
Alfawaz et al. Surface functionalization of mesoporous silica nanoparticles with brønsted acids as a catalyst for esterificatsion reaction
JP4524427B2 (ja) ヘテロポリ酸塩と無機酸化物とから成る組成物及びその製造法
KR101358666B1 (ko) 탄소-탄소 짝지음 반응용 전이금속-실리카 나노입자 촉매
KR101154326B1 (ko) 디우레아를 포함하는 유기-무기 혼성 실리카 중간세공 분자체 및 그 제조방법
Dabiri et al. Synthesis of gold nanoparticles decorated on sulfonated three‐dimensional graphene nanocomposite and application as a highly efficient and recyclable heterogeneous catalyst for Ullmann homocoupling of aryl iodides and reduction of p‐nitrophenol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3171435

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022555705

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227035420

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020924025

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020924025

Country of ref document: EP

Effective date: 20221013

NENP Non-entry into the national phase

Ref country code: DE