WO2021179209A1 - 多自由度并联机构和并联机构组件 - Google Patents

多自由度并联机构和并联机构组件 Download PDF

Info

Publication number
WO2021179209A1
WO2021179209A1 PCT/CN2020/078821 CN2020078821W WO2021179209A1 WO 2021179209 A1 WO2021179209 A1 WO 2021179209A1 CN 2020078821 W CN2020078821 W CN 2020078821W WO 2021179209 A1 WO2021179209 A1 WO 2021179209A1
Authority
WO
WIPO (PCT)
Prior art keywords
freedom
guide
parallel mechanism
degree
follower
Prior art date
Application number
PCT/CN2020/078821
Other languages
English (en)
French (fr)
Inventor
周啸波
Original Assignee
苏州迈澜医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州迈澜医疗科技有限公司 filed Critical 苏州迈澜医疗科技有限公司
Priority to PCT/CN2020/078821 priority Critical patent/WO2021179209A1/zh
Priority to CN202080096358.2A priority patent/CN115175789B/zh
Publication of WO2021179209A1 publication Critical patent/WO2021179209A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators

Definitions

  • the invention relates to the field of robots, in particular to a multi-degree-of-freedom parallel mechanism and a parallel mechanism assembly of a parallel robot.
  • robots can be divided into two categories: series robots and parallel robots.
  • parallel robots Compared with series robots, parallel robots have the advantages of greater rigidity, strong carrying capacity, high precision, and low end piece inertia.
  • the most common parallel robots are mostly six degrees of freedom.
  • the patent publication US3295224A discloses a parallel robot for motion simulation.
  • the cost of a parallel robot with full six degrees of freedom is often that the motion space of each degree of freedom is roughly equally divided, and the demand for greater motion space in certain directions cannot be well satisfied.
  • Patent application CN201810316148.4 provides a guiding mechanism with at least two degrees of freedom for translation and two rotations.
  • the guide mechanism includes two movable components for supporting and positioning the bridge components.
  • the motor that controls the movement is also integrated in the movable components.
  • the movement inertia of the component is relatively large.
  • the purpose of the present invention is to overcome or at least alleviate the above-mentioned shortcomings of the prior art, and to provide a multi-degree-of-freedom parallel mechanism and a parallel mechanism assembly.
  • a multi-degree-of-freedom parallel mechanism which includes a guide and a supporting assembly, wherein:
  • the supporting assembly includes two supporting platforms, a positioning member and a plurality of connecting rods,
  • the supporting platform includes two main moving parts and a follower
  • the follower is provided with a first guide bar and a second guide bar, and the first guide bar, the second guide bar and the guide member are not parallel to each other,
  • Both of the followers are rotatably connected with the positioning member through the connecting rod, and
  • At least one of the follower is rotatably connected to the positioning member through two connecting rods, wherein both ends of the first connecting rod are rotatably connected to the follower and the positioning member at a first point and At the second point, the two ends of the second link are respectively rotatably connected to the third point and the fourth point with the follower and the positioning part, and sequentially connect the first point, the second point, and the second point.
  • the quadrilateral obtained by the fourth point and the third point is a parallelogram
  • the positioning part By driving each of the main movable parts to reciprocate along the guide part, the positioning part has at least three translational degrees of freedom.
  • the first guide bar, the second guide bar, and the guide member are all parallel to a reference plane, and the plane on which the parallelogram is located is not parallel to the reference plane.
  • the follower includes a follower base and a follower turntable, and the follower turntable can rotate relative to the follower base around a follower rotation axis,
  • the first guide bar and the second guide bar are installed on the follower base, and the connecting rod is connected to the follower turntable.
  • the first guide bar, the second guide bar and the guide member are all parallel to a reference plane, and the rotation axis of the follower is perpendicular to the reference plane.
  • the main movable part includes a main movable part base and a main movable part turntable, and the main movable part turntable can rotate relative to the main movable part base around a rotation axis of the main movable part,
  • the main movable member turntable is used for reciprocating movement along the first guide bar or the second guide bar
  • the main movable member base table is used for reciprocating movement along the guide member.
  • the first guide bar, the second guide bar and the guide member are all parallel to a reference plane, and the rotation axis of the main movable member is perpendicular to the reference plane.
  • each follower is rotatably connected with the positioning member through two connecting rods.
  • the positioning member includes a terminal positioning member and two rotating positioning members.
  • the rotating positioning member can rotate relative to the terminal positioning member about a rotation axis of the positioning member.
  • the positioning parts are connected,
  • the terminal positioning member has at least three translational degrees of freedom and one rotational degree of freedom.
  • the first guide bar, the second guide bar and the guide member are all parallel to a reference plane
  • the rotation axis of the positioning member is perpendicular to the reference plane
  • the positioning member rotates The axis is parallel to the reference plane.
  • the guide member extends along a straight line.
  • a parallel mechanism assembly which is characterized in that it comprises a bridge assembly and two multi-degree-of-freedom parallel mechanisms according to the present invention, and each of the positioning members of the multi-degree-of-freedom parallel mechanism is Is rotatably connected with the bridge assembly so that the bridge assembly can rotate about two non-parallel axes relative to any one of the positioning members,
  • the bridge assembly has at least three translational degrees of freedom and two rotational degrees of freedom.
  • a parallel mechanism assembly which is characterized by comprising a bridge assembly and two multi-degree-of-freedom parallel mechanisms according to the present invention, and the terminal positioning member of each of the multi-degree-of-freedom parallel mechanisms Both are rotatably connected with the bridge assembly, so that the bridge assembly can rotate relative to any one of the terminal positioning parts around two axes that are not parallel to each other,
  • the bridge assembly has at least three translational degrees of freedom and three rotational degrees of freedom.
  • the two followers belonging to the same support assembly are arranged opposite to each other.
  • the two axes on which the bridge assembly rotates relative to each of the positioning members are perpendicular to each other.
  • the multi-degree-of-freedom parallel mechanism according to the present invention has simple structure and convenient operation. By driving the main movable part to reciprocate along the guide part, the positioning part can be moved in three directions and even the terminal positioning part can be rotated.
  • the control accuracy is high and the arrangement mode is flexible, which can realize that the bridge assembly has three translational degrees of freedom and at least two rotational degrees of freedom.
  • Fig. 1 is a schematic diagram of a first embodiment of a multi-degree-of-freedom parallel mechanism according to the present invention.
  • Fig. 2 is a schematic diagram of the supporting assembly of the second embodiment of the multi-degree-of-freedom parallel mechanism according to the present invention.
  • Fig. 3 is a schematic diagram of a part of the supporting assembly of the third embodiment of the multi-degree-of-freedom parallel mechanism according to the present invention.
  • Fig. 4 is a schematic diagram of a fourth embodiment of the multi-degree-of-freedom parallel mechanism according to the present invention.
  • Fig. 5 is a schematic diagram of a fifth embodiment of the multi-degree-of-freedom parallel mechanism according to the present invention.
  • Fig. 6 is a schematic diagram of a sixth embodiment of the multi-degree-of-freedom parallel mechanism according to the present invention.
  • Fig. 7 is a schematic diagram of the first embodiment of the parallel mechanism assembly according to the present invention.
  • Fig. 8 is a schematic diagram of a second embodiment of the parallel mechanism assembly according to the present invention.
  • Fig. 9 is a schematic diagram of a third embodiment of the parallel mechanism assembly according to the present invention.
  • the present invention uses the illustrated three-dimensional coordinate system to illustrate the positional relationship of the components. It should be understood that the position relationship defined according to the x, y, and z axes in the present invention is relative, and the coordinate axis can be rotated in space according to the actual application of the device.
  • the parallel mechanism according to the first embodiment of the present invention includes a guide 1 and a support assembly 2.
  • the support assembly 2 includes two support platforms 20, a positioning member 23, and a number of connecting rods. Both ends of the connecting rods (including the first connecting rod L1 and the second connecting rod L2 in this embodiment) are respectively connected to the positioning member 23 and the support platform. 20 Rotate the connection.
  • Each supporting platform 20 includes a main movable part 21 and a follower 22.
  • the guide 1 is a linear guide, which extends in the x direction.
  • the main movable part 21 is used to reciprocate along the guide 1.
  • the main movable part 21 is provided with a linear drive device (such as a linear motor, an electric screw, etc.).
  • the two main movable parts 21 belonging to the same supporting platform 20 share a guide 1.
  • the two guides 1 used to provide guidance for the two support platforms 20 of the same support assembly 2 are spaced apart in the y direction, and the support assembly 2 is located between the two guides 1.
  • the two main movable parts 21 belonging to the same supporting platform 20 may also use an independent guide part, and the two guide parts are parallel to each other.
  • the main movable part 21 is also used to cooperate with the first guide bar 22 a or the second guide bar 22 b provided on the follower 22, so the main movable part 21 connects the guide 1 and the follower 22 at the same time.
  • the follower 22 has a substantially flat plate shape, which is parallel to the xoz plane (also referred to as a reference plane), and the two followers 22 belonging to the same support assembly 2 are arranged opposite to each other.
  • Each follower 22 is provided with a first guide bar 22a and a second guide bar 22b, and the first guide bar 22a and the second guide bar 22b are both parallel to the xoz plane.
  • the first guide bar 22a, the second guide bar 22b and the guide 1 are all non-parallel.
  • the first guide bar 22a and the second guide bar 22b are not parallel, and in the example shown in the figure, they are in a figure eight shape.
  • the follower 22 When driving any one or two of the two main movable parts 21 belonging to the same support platform 20 to move along the guide 1, subject to the restriction of the first guide bar 22a and the second guide bar 22b, the follower 22 will face each other The movement of the main movable member 21 causes the follower 22 to produce displacements in the x direction and the z direction.
  • the two ends of the first link L1 are rotatably connected to the follower 22 and the positioning member 23 at points O1 and O2, and the two ends of the second link L2 are rotatably connected to the follower 22 and the positioning member 23 at the point O3.
  • point O4 the rotating shafts of the above-mentioned rotating connectors are all parallel to the z-axis.
  • the quadrilateral obtained by sequentially connecting points O1, O2, O4, and O3 is a parallelogram (hereinafter also referred to as the parallelogram structure formed in the support assembly 2), and the plane of the parallelogram is different from the xoz plane. Parallel; In this embodiment, the plane on which the parallelogram is located is the xoy plane.
  • the parallelogram structure enables the translation of the follower 22 in the x direction and the z direction to be transmitted to the positioning member 23, thereby determining the position of the positioning member 23 in the x direction and the z direction.
  • Each positioning member 23 is connected to two groups of support platforms 20. Since the two followers 22 belonging to the same support assembly 2 are spaced apart in the y direction, when driving the four main moving parts belonging to the same support assembly 2 respectively At 21 o'clock, the position of the positioning member 23 in the y direction can also be determined.
  • each support assembly 2 may only form a parallelogram structure connected to one support platform 20 in the support assembly 2, and the other support platform 20 in the support assembly 2 may only pass through one rod. (For example, only the first link L1 but not the second link L2) is connected to the positioning member 23.
  • the positioning part 23 of the support assembly 2 can be controlled in the x direction
  • the translation in the up, y and z directions in turn controls the position of the positioning member 23 in the x, y, and z directions. Therefore, it is also said that the multi-degree-of-freedom parallel mechanism according to this embodiment has three translational degrees of freedom.
  • the second embodiment is a modification of the first embodiment.
  • the difference from the first embodiment mainly includes: the follower 22 includes a follower base 221 and a follower turntable 222, and the main movable member 21 and the follower base
  • the table 221 is connected, and the first link L1 and the second link L2 are both rotatably connected with the follower turntable 222.
  • the guide 1 extends along the z direction, which is different from the guide 1 extends along the x direction in the first embodiment.
  • the present invention does not limit the extension direction of the guide 1. It is only necessary to ensure that the guide 1, the first guide bar 22a and the second guide bar 22b are not parallel to each other, and the guide 1 is parallel to the reference plane (xoz plane), and the parallelogram structure is not parallel to the reference plane.
  • the follower base 221 and the follower turntable 222 are rotatably connected.
  • the relative rotation axis b1 of the follower base 221 and the follower turntable 222 is parallel to the y direction, or The rotation axis b1 is perpendicular to the reference plane.
  • the positioning member 23 of the multi-degree-of-freedom parallel mechanism not only has translational freedom in the three directions of x, y, and z, but also has a rotational freedom of rotation around the y direction.
  • the third embodiment of the multi-degree-of-freedom parallel mechanism of the present invention will be described with reference to FIG. 3.
  • the third embodiment is a modification of the second embodiment.
  • the positioning member 23 also has a degree of freedom of rotation around the y direction, and the degree of freedom of rotation is realized by the degree of freedom of rotation on the main movable member 21.
  • the main movable part 21 includes a main movable part base 211 and a main movable part turntable 212, the main movable part turntable 212 can rotate relative to the main movable part base 211 about a rotation axis b2, preferably, the rotation axis b2 is parallel to the y direction, or It is said that the axis of rotation b2 is perpendicular to the reference plane.
  • the main movable part turntable 212 is used to reciprocate along the first guide bar 22a or the second guide bar 22b, and the main movable part base 211 is used to reciprocate along the guide 1.
  • the fourth embodiment of the multi-degree-of-freedom parallel mechanism of the present invention will be described with reference to FIG. 4.
  • the fourth embodiment is a modification of the first embodiment.
  • each positioning member 23 includes a terminal positioning member 231 and two rotating positioning members 232.
  • Both the first link L1 and the second link L2 are rotatably connected with the rotation positioning member 232 to form a parallelogram structure.
  • the rotating positioning member 232 is rotatably connected with the terminal positioning member 231, so that the rotating positioning member 232 can rotate relative to the terminal positioning member 231 about the rotation axis b3.
  • the rotation axis b3 is parallel to the y direction.
  • the terminal positioning member 232 of the multi-degree-of-freedom parallel mechanism has translational degrees of freedom in the three directions of x, y, and z, and also has a degree of freedom of rotation around the y direction.
  • the fifth embodiment of the multi-degree-of-freedom parallel mechanism of the present invention will be described with reference to FIG. 5.
  • the fifth embodiment is a modification of the fourth embodiment.
  • the rotation positioning member 232 can rotate relative to the terminal positioning member 231 about the rotation axis b3, and the rotation axis b3 is parallel to the x direction.
  • the terminal positioning member 232 of the multi-degree-of-freedom parallel mechanism has translational freedom in the three directions of x, y, and z, and also has a rotational freedom of rotation around the x direction.
  • the two rotating positioning members 232 can be spaced apart by a certain distance in the x direction, so that the two rotating positioning members 232 and the connecting rods connected thereto will not interfere during the rotation. In other words, this allows the terminal positioning member 231 to have a larger rotation range.
  • the sixth embodiment of the multi-degree-of-freedom parallel mechanism of the present invention will be described with reference to FIG. 6.
  • the sixth embodiment is another modification of the fourth embodiment.
  • the rotation positioning member 232 can rotate relative to the terminal positioning member 231 about the rotation axis b3, and the rotation axis b3 is parallel to the z direction.
  • the terminal positioning member 232 of the multi-degree-of-freedom parallel mechanism has translational freedom in the three directions of x, y, and z, and also has a rotational freedom of rotation around the z direction.
  • the positioning member 23 (or more specifically the terminal positioning member 231) of the multi-degree-of-freedom parallel mechanism according to the present invention may be provided with a terminal operating member M, and the terminal operating member M is, for example, a surgical instrument.
  • the present invention does not limit the position and direction of the terminal operating part M on the positioning part 23.
  • the parallel mechanism assembly includes a bridge assembly 3 and two multi-degree-of-freedom parallel mechanisms according to the present invention.
  • the positioning parts 23 of the two multi-degree-of-freedom parallel mechanisms are both rotatably connected with the bridge assembly 3, and the bridge assembly 3 can rotate about two non-parallel (preferably mutually perpendicular) rotation axes a1 and a2 rotates.
  • the rotation axis a1 is parallel to the x direction
  • the rotation axis a2 is parallel to the y direction.
  • the positions of the eight main moving parts 21 of the two multi-degree-of-freedom parallel mechanisms on the respective guide parts 1 can be controlled, thereby realizing the bridge assembly 3 in the
  • the translation in the x direction, the translation in the y direction, the translation in the z direction, the rotation around the x direction and the rotation around the y direction make the bridge assembly 3 have at least five degrees of freedom.
  • This embodiment is a modification of the first embodiment of the parallel mechanism assembly, and the difference from the first embodiment mainly includes the arrangement of the guide 1.
  • the guide 1 is two linear guides spaced apart in the z direction, and the four main movable parts 21 belonging to the same support assembly 2 share the same guide 1.
  • the third embodiment of the parallel mechanism assembly of the present invention will be described with reference to FIG. 9.
  • This embodiment is a modification of the first embodiment of the parallel mechanism assembly, and the difference from the first embodiment mainly includes the arrangement of the guide 1.
  • the multi-degree-of-freedom parallel mechanism has only one guide 1 which is a linear guide rail extending in the x direction.
  • the eight main movable members 21 of the multi-degree of freedom parallel mechanism share the guide 1.
  • the second embodiment and the third embodiment of the parallel mechanism assembly reduce the number of parts and components, simplify the structure of the parallel mechanism, and reduce the cost by reducing the number of guides 1.
  • the parallel mechanism assembly including the multi-degree-of-freedom parallel mechanism may have translational degrees of freedom in three directions and three directions of rotation. The degree of freedom of rotation.
  • the positioning member 23 can have three translational degrees of freedom or three translational degrees of freedom plus one rotational degree of freedom, so that the bridge assembly 3 has three degrees of freedom. Translational degrees of freedom plus two rotational degrees of freedom or three translational degrees of freedom plus three rotational degrees of freedom.
  • the driving member used to move the main movable member 21 can be installed on the main movable member 21 or the guide member 1, and the follower 22, the connecting rod and the positioning member 23 do not need to be provided with a driving member.
  • the movement of the whole mechanism The movement inertia of the components is small, and the control accuracy is high.
  • the arrangement of the guide 1 is diverse, and even the entire mechanism can have only one guide 1, which is compact in structure and can adapt to a small installation space.
  • the parallel mechanism according to the present invention is preferably used as a part of a surgical robot, but the present invention is not limited to this.
  • the parallel mechanism according to the present invention can also provide guidance and manipulation functions for other instruments.
  • the terminal operating member M When a terminal operating member M is added to the positioning member 23 or the bridge assembly 3, the terminal operating member M may have an additional degree of freedom relative to the positioning member 23 or the bridge assembly 3.
  • the guide 1, the first guide bar 22a, and the second guide bar 22b of the present invention are not limited to the form of a guide rail as shown in the figure, and may also be guide members of other forms such as a guide groove or a screw rod.
  • the guide 1, the first guide bar 22a and the second guide bar 22b may not extend along a straight line, for example, may have a curved guide path.
  • the supporting platforms 20 of the parallel mechanism according to the present invention may not be symmetrical, and the lengths of the connecting rods connecting different supporting platforms 20 and positioning members 23 may also be different.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

一种多自由度并联机构以及并联机构组件,其中多自由度并联机构包括导向件(1)和支撑组件(2),支撑组件(2)包括两个支撑平台(20)、定位件(23)和多个连杆,支撑平台(20)包括两个主活动件(21)和一个随动件(22),随动件(22)上设有第一导条(22a)和第二导条(22b),第一导条(22a)、第二导条(22b)和导向件(1)互相不平行,两个随动件(22)均通过连杆与定位件(23)转动连接,且至少一个随动件(22)通过两个连杆与定位件(23)转动连接,并形成平行四边形,通过驱动各主活动件(21)沿导向件(1)往复运动,定位件(23)具有至少三个平动自由度。

Description

多自由度并联机构和并联机构组件 技术领域
本发明涉及机器人领域,尤其涉及并联机器人的多自由度并联机构和并联机构组件。
背景技术
从机构学的角度可以将机器人分为串联机器人和并联机器人两大类,相比于串联机器人,并联机器人具有刚度大、承载能力强、精度高和末端件惯性小等优势。
现有的并联机器人多采用完全对称设计,导致机器人整体体积较大,不能较好地适应较小的操作空间、或是不能使多台机器人在有限空间内同时布置。
最常见的并联机器人多为六自由度,例如专利公开US3295224A公开了一种用于运动模拟的并联机器人。然而并联机器人具有完全六自由度的代价往往是每个自由度的运动空间被大致均分了,对于某些在特定方向具有更大运动空间的需求则不能很好满足。
专利申请CN201810316148.4提供了一种具有至少两平动两转动的自由度的导向机构。该导向机构包括两个用于支撑桥组件并给桥组件定位的活动组件,然而,由于活动组件将两个不同方向上的运动叠加在一起,控制运动的电机也被集成于活动组件,因此活动组件的运动惯量较大。
发明内容
本发明的目的在于克服或至少减轻上述现有技术存在的不足,提供一种多自由度并联机构和并联机构组件。
根据本发明的第一方面,提供一种多自由度并联机构,其包括导向件和 支撑组件,其中,
所述支撑组件包括两个支撑平台、定位件和多个连杆,
所述支撑平台包括两个主活动件和一个随动件,
所述随动件上设有第一导条和第二导条,所述第一导条、所述第二导条和所述导向件互相不平行,
两个所述随动件均通过所述连杆与所述定位件转动连接,且
至少一个所述随动件通过两个所述连杆与所述定位件转动连接,其中的第一连杆的两端分别与所述随动件和所述定位件转动连接于第一点和第二点,第二连杆的两端分别与所述随动件和所述定位件转动连接于第三点和第四点,顺次连接所述第一点、所述第二点、所述第四点和所述第三点得到的四边形为平行四边形,
通过驱动各所述主活动件沿所述导向件往复运动,所述定位件具有至少三个平动自由度。
在至少一个实施方式中,所述第一导条、所述第二导条和所述导向件均平行于基准平面,所述平行四边形所在的平面与所述基准平面不平行。
在至少一个实施方式中,所述随动件包括随动件基台和随动件转台,所述随动件转台能相对于所述随动件基台绕随动件转动轴线转动,
所述第一导条和所述第二导条安装于所述随动件基台,所述连杆与所述随动件转台相连。
在至少一个实施方式中,所述第一导条、所述第二导条和所述导向件均平行于基准平面,所述随动件转动轴线垂直于所述基准平面。
在至少一个实施方式中,所述主活动件包括主活动件基台和主活动件转台,所述主活动件转台能相对于所述主活动件基台绕主活动件转动轴线转动,
所述主活动件转台用于沿所述第一导条或所述第二导条往复运动,所述主活动件基台用于沿所述导向件往复运动。
在至少一个实施方式中,所述第一导条、所述第二导条和所述导向件均平行于基准平面,所述主活动件转动轴线垂直于所述基准平面。
在至少一个实施方式中,每一个所述随动件均通过两个所述连杆与所述定位件转动连接。
在至少一个实施方式中,所述定位件包括终端定位件和两个转动定位件,所述转动定位件能够相对于所述终端定位件绕定位件转动轴线转动,所述连杆与所述转动定位件相连,
所述终端定位件具有至少三个平动自由度和一个转动自由度。
在至少一个实施方式中,所述第一导条、所述第二导条和所述导向件均平行于基准平面,所述定位件转动轴线与所述基准平面垂直,或所述定位件转动轴线与所述基准平面平行。
在至少一个实施方式中,所述导向件沿直线延伸。
根据本发明的第二方面,提供一种并联机构组件,其特征在于,包括桥组件和两个根据本发明的多自由度并联机构,每个所述多自由度并联机构的所述定位件均与所述桥组件转动连接、使所述桥组件能够相对于任一个所述定位件绕两个彼此不平行的轴线转动,
所述桥组件具有至少三个平动自由度和两个转动自由度。
根据本发明的第三方面,提供一种并联机构组件,其特征在于,包括桥组件和两个根据本发明的多自由度并联机构,每个所述多自由度并联机构的所述终端定位件均与所述桥组件转动连接、使所述桥组件能够相对于任一个所述终端定位件绕两个彼此不平行的轴线转动,
所述桥组件具有至少三个平动自由度和三个转动自由度。
在至少一个实施方式中,所述导向件有四个,属于同一个所述支撑平台的两个所述主活动件共用一个所述导向件。
在至少一个实施方式中,属于同一个所述支撑组件的两个所述随动件彼此相对地设置。
在至少一个实施方式中,所述导向件有两个,属于同一个所述支撑组件的四个所述主活动件共用一个所述导向件。
在至少一个实施方式中,所述导向件为一个,所有的所述主活动件共用一个所述导向件。
在至少一个实施方式中,所述桥组件相对于每个所述定位件转动的两个所述轴线互相垂直。
根据本发明的多自由度并联机构结构简单、操作方便,通过驱动主活动件沿导向件作往复运动,便能使定位件在三个方向上进行平动、甚至能使终端定位件进行转动。
根据本发明的并联机构组件,控制精度高且布置方式灵活,能实现桥组件具有三个平动自由度加至少两个转动自由度。
附图说明
图1是根据本发明的多自由度并联机构的第一实施方式的示意图。
图2是根据本发明的多自由度并联机构的第二实施方式的支撑组件的示意图。
图3是根据本发明的多自由度并联机构的第三实施方式的支撑组件的一部分的示意图。
图4是根据本发明的多自由度并联机构的第四实施方式的示意图。
图5是根据本发明的多自由度并联机构的第五实施方式的示意图。
图6是根据本发明的多自由度并联机构的第六实施方式的示意图。
图7是根据本发明的并联机构组件的第一实施方式的示意图。
图8是根据本发明的并联机构组件的第二实施方式的示意图。
图9是根据本发明的并联机构组件的第三实施方式的示意图。
附图标记说明:
1导向件;2支撑组件;20支撑平台;21主活动件;211主活动件基台;212主活动件转台;22随动件;221随动件基台;222随动件转台;22a第一导条;22b第二导条;L1第一连杆;L2第二连杆;23定位件;231终端定位件;232转动定位件;3桥组件;M终端作业件;a1、a2、b1、b2、b3转动轴线。
具体实施方式
下面参照附图描述本发明的示例性实施方式。应当理解,这些具体的说明仅用于示教本领域技术人员如何实施本发明,而不用于穷举本发明的所有可行的方式,也不用于限制本发明的范围。
若非特殊说明,本发明以图示的三维坐标系来说明各部件的位置关系。应当理解,本发明中根据x、y和z轴定义的位置关系是相对的,根据装置的实际应用场合,坐标轴可在空间内旋转。
首先参照图1至图6介绍根据本发明的多自由度并联机构。
(多自由度并联机构的第一实施方式)
参照图1介绍本发明的多自由度并联机构的第一实施方式。
根据本发明的第一实施方式的并联机构包括导向件1和支撑组件2。
支撑组件2包括两个支撑平台20、一个定位件23和若干连杆,连杆(本实施方式中包括第一连杆L1和第二连杆L2)的两端分别与定位件23和支撑平台20转动连接。每个支撑平台20包括主活动件21和随动件22。
在本实施方式中,导向件1为直线导轨,其沿x方向延伸。主活动件21用于沿导向件1往复运动。例如,主活动件21上设有直线驱动装置(例如直线电机、电动丝杆等)。属于同一个支撑平台20的两个主活动件21共用一个导向件1。而用于为同一个支撑组件2的两个支撑平台20提供导引的两个导向件1在y方向上间隔开,支撑组件2位于两个导向件1之间。
应当理解,此处属于同一个支撑平台20的两个主活动件21也可以分别使用一个独立的导向件、这两个导向件互相平行。
主活动件21还用于与设于随动件22的第一导条22a或第二导条22b配合,因此主活动件21同时连接导向件1和随动件22。
在本实施方式中,随动件22呈大致平板状,其与xoz平面(也称基准平面)平行,属于同一个支撑组件2的两个随动件22彼此相对地设置。每个随动件22上均设有第一导条22a和第二导条22b,且第一导条22a和第二导条22b均平行于xoz平面。第一导条22a、第二导条22b和导向件1均不平行。特别地,第一导条22a、第二导条22b不平行,在图示的示例中,二者呈八字形。
当驱动属于同一个支撑平台20的两个主活动件21中的任一个或两个沿导向件1运动时,受第一导条22a和第二导条22b的限制,随动件22会相对于主活动件21运动,导致随动件22产生在x方向上和z方向上的位移。
第一连杆L1的两端分别与随动件22和定位件23转动连接于点O1和点O2,第二连杆L2的两端分别与随动件22和定位件23转动连接于点O3和点O4。在本实施方式中,上述转动连接件的转轴均与z轴平行。顺次连接点O1、点O2、点O4和点O3得到的四边形为平行四边形(以下也把这种结构简称为支撑组件2中形成的平行四边形结构),该平行四边形所在的平面与xoz平面不平行;在本实施方式中,该平行四边形所在的平面为xoy平面。平行四边形结构使得随动件22在x方向上和z方向上的平动被传递给定位件23,从而确定 了定位件23在x方向上和z方向上的位置。
每个定位件23与两组支撑平台20相连,由于属于同一个支撑组件2两个随动件22在y方向上被间隔开,因此当分别驱动属于同一个支撑组件2的四个主活动件21时,定位件23在y方向上的位置也能被确定。
值得说明的是,每个支撑组件2中可以只形成一个与该支撑组件2中的一个支撑平台20相连的平行四边形结构,而该支撑组件2中的另一个支撑平台20可以仅通过一个杆件(例如只有第一连杆L1而没有第二连杆L2)连接到定位件23。
综上,对于一个支撑组件2,通过控制支撑组件2的四个主活动件21在导向件1上的位置(即在x方向上的位置),可以控制支撑组件2的定位件23在x方向上、y方向上和z方向上的平动,进而控制定位件23在x、y和z方向上的位置。因此,也称根据本实施方式的多自由度并联机构具有三个平动自由度。
(多自由度并联机构的第二实施方式)
接下来参照图2介绍本发明的多自由度并联机构的第二实施方式。第二实施方式是第一实施方式的变型,其与第一实施方式的区别主要包括:随动件22包括随动件基台221和随动件转台222,主活动件21与随动件基台221相连,第一连杆L1和第二连杆L2均与随动件转台222转动连接。
值得说明的是,在本实施方式中,导向件1沿z方向延伸、与第一实施方式中导向件1沿x方向延伸不同,本发明对导向件1的延伸方向并不作限制。只需要保证导向件1、第一导条22a和第二导条22b互相不平行,且导向件1平行于基准平面(xoz平面),平行四边形结构不平行于基准平面。
在本实施方式中,随动件基台221和随动件转台222转动连接,优选地,随动件基台221和随动件转台222的相对转动的转动轴线b1与y方向平行,或者说转动轴线b1垂直于基准平面。
根据本实施方式的多自由度并联机构的定位件23除了具有x、y和z三个方向上的平动自由度外,还具有绕y方向转动的转动自由度。
(多自由度并联机构的第三实施方式)
参照图3介绍本发明的多自由度并联机构的第三实施方式,第三实施方式是第二实施方式的变型。
在该实施方式中,定位件23也具有绕y方向的转动自由度,该转动自由度是依靠主活动件21上的转动自由度而实现的。
主活动件21包括主活动件基台211和主活动件转台212,主活动件转台212能够相对于主活动件基台211绕转动轴线b2转动,优选地,转动轴线b2与y方向平行,或者说转动轴线b2垂直于基准平面。主活动件转台212用于沿第一导条22a或第二导条22b往复运动,主活动件基台211用于沿导向件1往复运动。
(多自由度并联机构的第四实施方式)
参照图4介绍本发明的多自由度并联机构的第四实施方式,第四实施方式是第一实施方式的变型。
在该实施方式中,每个定位件23包括一个终端定位件231和两个转动定位件232。
第一连杆L1和第二连杆L2均与转动定位件232转动连接以形成平行四边形结构。转动定位件232与终端定位件231转动连接,使得转动定位件232能够相对于终端定位件231绕转动轴线b3转动。在本实施方式中,转动轴线b3与y方向平行。
根据本实施方式的多自由度并联机构的终端定位件232具有在x、y和z三个方向上的平动自由度,还具有绕y方向转动的转动自由度。
(多自由度并联机构的第五实施方式)
参照图5介绍本发明的多自由度并联机构的第五实施方式,第五实施方式是第四实施方式的变型。
在本实施方式中,转动定位件232能够相对于终端定位件231绕转动轴线b3转动,转动轴线b3与x方向平行。
根据本实施方式的多自由度并联机构的终端定位件232具有在x、y和z三个方向上的平动自由度,还具有绕x方向转动的转动自由度。
值得说明的是,在本实施方式中,两个转动定位件232可以在x方向上间隔开一定的距离,使得两个转动定位件232及与其相连的连杆在转动过程中,不会发生干涉,换言之,这使得终端定位件231具有更大的转动幅度。
(多自由度并联机构的第六实施方式)
参照图6介绍本发明的多自由度并联机构的第六实施方式,第六实施方式是第四实施方式的又一变型。
在本实施方式中,转动定位件232能够相对于终端定位件231绕转动轴线b3转动,转动轴线b3与z方向平行。
根据本实施方式的多自由度并联机构的终端定位件232具有在x、y和z三个方向上的平动自由度,还具有绕z方向转动的转动自由度。
应当理解,根据本发明的多自由度并联机构的定位件23(或者更具体地为终端定位件231)上可以设置终端作业件M,终端作业件M例如为手术用的器械。本发明对终端作业件M在定位件23上的设置位置和方向不作限制。
接下来,参照图7至图9介绍根据本发明的并联机构组件。
(并联机构组件的第一实施方式)
参照图7,在本实施方式中,并联机构组件包括桥组件3和两个根据本发明的多自由度并联机构。
两个多自由度并联机构的定位件23均与桥组件3转动连接,且使得桥组 件3相对于每个定位件23均能绕两个不平行的(优选为互相垂直的)转动轴线a1和a2转动。在本实施方式中,当两个定位件23的运动同步时、即两个定位件23在xoy平面内的位置相同时,转动轴线a1与x方向平行,转动轴线a2与y方向平行。
通过控制两个多自由度并联机构的八个主活动件21在各自的导向件1上的位置,可以控制两个定位件23在x、y和z方向上的位置,进而实现桥组件3在x方向上的平动、在y方向上的平动、在z方向上的平动、绕x方向的转动和绕y方向的转动,使得桥组件3具有至少五个自由度。
(并联机构组件的第二实施方式)
参照图8介绍本发明的并联机构组件的第二实施方式。该实施方式是并联机构组件的第一实施方式的变型,其与第一实施方式的区别主要包括导向件1的设置方式。
在本实施方式中,导向件1为两个在z方向上间隔开的直线导轨,属于同一个支撑组件2的四个主活动件21共用一个导向件1。
(并联机构组件的第三实施方式)
参照图9介绍本发明的并联机构组件的第三实施方式。该实施方式是并联机构组件的第一实施方式的变型,其与第一实施方式的区别主要包括导向件1的设置方式。
在本实施方式中,多自由度并联机构只具有一个导向件1,导向件1为沿x方向延伸的直线导轨,多自由度并联机构的八个主活动件21共用该导向件1。
并联机构组件的第二实施方式和第三实施方式通过减少导向件1的数量,减少了零部件的数量,简化并联机构的结构、降低成本。
应当理解,上述实施方式及其部分方面或特征可以适当地组合。
应当理解,当根据本发明的多自由度并联机构具有绕z方向的转动自由度时,包括该多自由度并联机构的并联机构组件可以具有三个方向上的平动自由度和绕三个方向的转动自由度。
下面简单说明本发明的上述实施方式的部分有益效果。
(i)通过控制主活动件21在导向件1上的往复运动,能使定位件23具有三个平动自由度或三个平动自由度加一个转动自由度,使桥组件3具有三个平动自由度加两个转动自由度或三个平动自由度加三个转动自由度。
(ii)用于使主活动件21运动的驱动件可以安装于主活动件21或导向件1,而随动件22、连杆和定位件23上均不需要设置驱动件,整个机构的活动部件的运动惯量小,控制精度高。
(iii)导向件1的布置形式多样,甚至整个机构可以只具有一个导向件1,结构紧凑,能够适应较小的安装空间。
应当理解,上述实施方式仅是示例性的,不用于限制本发明。本领域技术人员可以在本发明的教导下对上述实施方式做出各种变型和改变,而不脱离本发明的范围。例如,
(i)根据本发明的并联机构优选用作手术机器人的一部分,然而本发明不限于此,根据本发明的并联机构也可以为其他器械提供导向和操控功能。
当给定位件23或桥组件3加设终端作业件M时,终端作业件M可以相对于定位件23或桥组件3具有额外的自由度。
(ii)本发明的导向件1、第一导条22a和第二导条22b不限于是如图所示的导轨的形式,也可以是例如导槽或丝杆等其它形式的导引件。
(iii)导向件1、第一导条22a和第二导条22b也可以不是沿直线延伸的,例如可以是具有曲线形式的导引路径。
(iv)根据本发明的并联机构的各支撑平台20可以不是对称的,并且连 接不同的支撑平台20和定位件23的各连杆的长度也可以是不一样的。

Claims (17)

  1. 一种多自由度并联机构,其包括导向件(1)和支撑组件(2),其中,
    所述支撑组件(2)包括两个支撑平台(20)、定位件(23)和多个连杆,
    所述支撑平台(20)包括两个主活动件(21)和一个随动件(22),
    所述随动件(22)上设有第一导条(22a)和第二导条(22b),所述第一导条(22a)、所述第二导条(22b)和所述导向件(1)互相不平行,
    两个所述随动件(22)均通过所述连杆与所述定位件(23)转动连接,且
    至少一个所述随动件(22)通过两个所述连杆与所述定位件(23)转动连接,其中的第一连杆(L1)的两端分别与所述随动件(22)和所述定位件(23)转动连接于第一点(O1)和第二点(O2),第二连杆(L2)的两端分别与所述随动件(22)和所述定位件(23)转动连接于第三点(O3)和第四点(O4),顺次连接所述第一点(O1)、所述第二点(O2)、所述第四点(O4)和所述第三点(O3)得到的四边形为平行四边形,
    通过驱动各所述主活动件(21)沿所述导向件(1)往复运动,所述定位件(23)具有至少三个平动自由度。
  2. 根据权利要求1所述的多自由度并联机构,其特征在于,所述第一导条(22a)、所述第二导条(22b)和所述导向件(1)均平行于基准平面(xoz),所述平行四边形所在的平面与所述基准平面(xoz)不平行。
  3. 根据权利要求1所述的多自由度并联机构,其特征在于,所述随动件(22)包括随动件基台(221)和随动件转台(222),所述随动件转台(222)能相对于所述随动件基台(221)绕随动件转动轴线(b1)转动,
    所述第一导条(22a)和所述第二导条(22b)安装于所述随动件基台(221),所述连杆与所述随动件转台(222)相连。
  4. 根据权利要求3所述的多自由度并联机构,其特征在于,所述第一导 条(22a)、所述第二导条(22b)和所述导向件(1)均平行于基准平面(xoz),所述随动件转动轴线(b1)垂直于所述基准平面(xoz)。
  5. 根据权利要求1所述的多自由度并联机构,其特征在于,所述主活动件(21)包括主活动件基台(211)和主活动件转台(212),所述主活动件转台(212)能相对于所述主活动件基台(211)绕主活动件转动轴线(b2)转动,
    所述主活动件转台(212)用于沿所述第一导条(22a)或所述第二导条(22b)往复运动,所述主活动件基台(211)用于沿所述导向件(1)往复运动。
  6. 根据权利要求5所述的多自由度并联机构,其特征在于,所述第一导条(22a)、所述第二导条(22b)和所述导向件(1)均平行于基准平面(xoz),所述主活动件转动轴线(b2)垂直于所述基准平面(xoz)。
  7. 根据权利要求1至6中任一项所述的多自由度并联机构,其特征在于,每一个所述随动件(22)均通过两个所述连杆与所述定位件(23)转动连接。
  8. 根据权利要求1所述的多自由度并联机构,其特征在于,所述定位件(23)包括终端定位件(231)和两个转动定位件(232),所述转动定位件(232)能够相对于所述终端定位件(231)绕定位件转动轴线(b3)转动,所述连杆与所述转动定位件(232)相连,
    所述终端定位件(231)具有至少三个平动自由度和一个转动自由度。
  9. 根据权利要求8所述的多自由度并联机构,其特征在于,所述第一导条(22a)、所述第二导条(22b)和所述导向件(1)均平行于基准平面(xoz),所述定位件转动轴线(b3)与所述基准平面(xoz)垂直,或所述定位件转动轴线(b3)与所述基准平面(xoz)平行。
  10. 根据权利要求1至6中任一项所述的多自由度并联机构,其特征在于, 所述导向件(1)沿直线延伸。
  11. 一种并联机构组件,其特征在于,包括桥组件(3)和两个根据权利要求1至7、10中任一项所述的多自由度并联机构,每个所述多自由度并联机构的所述定位件(23)均与所述桥组件(3)转动连接、使所述桥组件(3)能够相对于任一个所述定位件(23)绕两个彼此不平行的轴线(a1,a2)转动,
    所述桥组件(3)具有至少三个平动自由度和两个转动自由度。
  12. 一种并联机构组件,其特征在于,包括桥组件(3)和两个根据权利要求8或9所述的多自由度并联机构,每个所述多自由度并联机构的所述终端定位件(231)均与所述桥组件转动连接、使所述桥组件(3)能够相对于任一个所述终端定位件(231)绕两个彼此不平行的轴线(a1,a2)转动,
    所述桥组件(3)具有至少三个平动自由度和三个转动自由度。
  13. 根据权利要求11或12所述的并联机构组件,其特征在于,所述导向件(1)有四个,属于同一个所述支撑平台(20)的两个所述主活动件(21)共用一个所述导向件(1)。
  14. 根据权利要求13所述的并联机构组件,其特征在于,属于同一个所述支撑组件(2)的两个所述随动件(22)彼此相对地设置。
  15. 根据权利要求11或12所述的并联机构组件,其特征在于,所述导向件(1)有两个,属于同一个所述支撑组件(2)的四个所述主活动件(21)共用一个所述导向件(1)。
  16. 根据权利要求11或12所述的并联机构组件,其特征在于,所述导向件(1)为一个,所有的所述主活动件(21)共用一个所述导向件(1)。
  17. 根据权利要求11或12所述的并联机构组件,其特征在于,所述桥组件(3)相对于每个所述定位件(23)转动的两个所述轴线(a1,a2)互相 垂直。
PCT/CN2020/078821 2020-03-11 2020-03-11 多自由度并联机构和并联机构组件 WO2021179209A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/078821 WO2021179209A1 (zh) 2020-03-11 2020-03-11 多自由度并联机构和并联机构组件
CN202080096358.2A CN115175789B (zh) 2020-03-11 2020-03-11 多自由度并联机构和并联机构组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078821 WO2021179209A1 (zh) 2020-03-11 2020-03-11 多自由度并联机构和并联机构组件

Publications (1)

Publication Number Publication Date
WO2021179209A1 true WO2021179209A1 (zh) 2021-09-16

Family

ID=77671672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078821 WO2021179209A1 (zh) 2020-03-11 2020-03-11 多自由度并联机构和并联机构组件

Country Status (2)

Country Link
CN (1) CN115175789B (zh)
WO (1) WO2021179209A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279176A (en) * 1992-07-20 1994-01-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Six-degree-of-freedom parallel "minimanipulator" with three inextensible limbs
DE19841243A1 (de) * 1998-09-09 2000-03-23 Siegfried Mache Industrieroboter
CN107498541A (zh) * 2017-09-20 2017-12-22 北京航空航天大学 一种两平动一转动三自由度并联机构
CN110170984A (zh) * 2019-05-13 2019-08-27 霸州市华硕汽车零部件有限公司 一种并联加工平台机器人
CN110355737A (zh) * 2018-04-10 2019-10-22 苏州迈澜医疗科技有限公司 平移机构和具有该平移机构的多自由度导向机构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1234632A1 (fr) * 2001-02-23 2002-08-28 Willemin Machines S.A. Dispositif cinématique du support et de déplacement programmable d'un élément terminal dans une machine ou un instrument
CN100488735C (zh) * 2007-08-16 2009-05-20 上海交通大学 二自由度平面并联机器人机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279176A (en) * 1992-07-20 1994-01-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Six-degree-of-freedom parallel "minimanipulator" with three inextensible limbs
DE19841243A1 (de) * 1998-09-09 2000-03-23 Siegfried Mache Industrieroboter
CN107498541A (zh) * 2017-09-20 2017-12-22 北京航空航天大学 一种两平动一转动三自由度并联机构
CN110355737A (zh) * 2018-04-10 2019-10-22 苏州迈澜医疗科技有限公司 平移机构和具有该平移机构的多自由度导向机构
CN110170984A (zh) * 2019-05-13 2019-08-27 霸州市华硕汽车零部件有限公司 一种并联加工平台机器人

Also Published As

Publication number Publication date
CN115175789A (zh) 2022-10-11
CN115175789B (zh) 2024-08-30

Similar Documents

Publication Publication Date Title
CN115175790B (zh) 多自由度并联机构和并联机构组件
US7707907B2 (en) Planar parallel mechanism and method
CN108555889B (zh) 含冗余约束的空间五自由度混联加工装备及其使用方法
WO2019196421A1 (zh) 多自由度并联机构
US10517683B2 (en) Parallel-type micro robot and surgical robot system having the same
JP2008506545A (ja) 2つのサブアセンブリ手段から構成される可動要素を移動させる手段を備えるパラレルロボット
EP3077162A1 (en) Redundant parallel positioning table device
WO2020155843A1 (zh) 多自由度并联机构
WO2021179209A1 (zh) 多自由度并联机构和并联机构组件
JP7140508B2 (ja) パラレルリンク機構を用いた作業装置およびその制御方法
JP2013107155A (ja) 小型多自由度の力覚提示マニピュレータ
CN109015602B (zh) 三平移2cpr-uru并联机构
WO2021081978A1 (zh) 多自由度并联机构
CN114888780B (zh) 一种三分支6+3自由度运动冗余并联机构
CN105997249A (zh) 一种可实现空间三维定位和二维定向的五自由度混联机构
WO2021109074A1 (zh) 多自由度并联机构
WO2022261934A1 (zh) 多自由度导向机构和多自由度导向装置
WO2021109062A1 (zh) 多自由度并联机构
CN100364724C (zh) 单层结构六自由度微动工作台及其并行控制方法
JP2000326272A (ja) ロボット装置
JP2891335B2 (ja) 6自由度ステージ機構
WO2022198588A1 (zh) 六自由度运动机构
WO2022198587A1 (zh) 六自由度运动机构
WO2023201612A1 (zh) 一种基于柔性机构的六自由度精密运动平台
KR20000073215A (ko) 병렬 로봇의 제어방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924869

Country of ref document: EP

Kind code of ref document: A1