WO2022261934A1 - 多自由度导向机构和多自由度导向装置 - Google Patents

多自由度导向机构和多自由度导向装置 Download PDF

Info

Publication number
WO2022261934A1
WO2022261934A1 PCT/CN2021/100891 CN2021100891W WO2022261934A1 WO 2022261934 A1 WO2022261934 A1 WO 2022261934A1 CN 2021100891 W CN2021100891 W CN 2021100891W WO 2022261934 A1 WO2022261934 A1 WO 2022261934A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
degree
freedom
guide
guiding
Prior art date
Application number
PCT/CN2021/100891
Other languages
English (en)
French (fr)
Inventor
周啸波
Original Assignee
苏州迈澜科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州迈澜科技有限公司 filed Critical 苏州迈澜科技有限公司
Priority to CN202180101457.XA priority Critical patent/CN117940253A/zh
Priority to PCT/CN2021/100891 priority patent/WO2022261934A1/zh
Publication of WO2022261934A1 publication Critical patent/WO2022261934A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions

Definitions

  • the invention relates to the field of motion mechanisms, and in particular to a multi-degree-of-freedom guiding mechanism and a multi-degree-of-freedom guiding device.
  • kinematic mechanism In some kinematic mechanisms used to realize complex operations, it is required that the kinematic mechanism has more degrees of freedom, greater rigidity, speed, and higher precision, etc., and these requirements are usually not easy to meet.
  • the purpose of the present invention is to overcome or at least alleviate the shortcomings of the above-mentioned prior art, and provide a multi-degree-of-freedom guiding mechanism and a multi-degree-of-freedom guiding device.
  • a multi-degree-of-freedom guiding mechanism which includes a basic guide piece, a terminal piece and two differential assemblies, the differential assembly connects the basic guide piece and the terminal piece, and the terminal piece has at least Three translational degrees of freedom in pairs perpendicular to the first, second, and third directions,
  • Each differential assembly can be displaced in the first direction and the second direction, and the two differential assemblies respectively include a terminal first guide piece and a terminal second guide piece, and the terminal piece includes a terminal first fitting piece and a terminal second guide piece.
  • Two fitting parts, the first fitting part of the terminal can reciprocate in the first guiding direction under the guidance of the first guiding part of the terminal, and the second fitting part of the terminal can move in the second direction under the guidance of the second guiding part of the terminal reciprocating motion in two guiding directions, the first guiding direction and the second guiding direction are not parallel to each other and not parallel to the third direction,
  • Each differential assembly includes two primary movable parts and a secondary movable part.
  • the primary movable part can move in translation relative to the basic guide in the first direction under the guidance of the basic guide.
  • the first-level movable parts include a first-level movable part and a second-level movable part.
  • the first-level first movable part is formed with a first-level first guide part
  • the second-level movable part is formed with a first-level second guide part.
  • the movable part is formed with a second-level first matching part and a second-level second matching part.
  • the second-level first matching part can reciprocate in the third guiding direction along the first-level first guide part, and the second-level second matching part can The second guide along the first stage reciprocates in the fourth guiding direction, the third guiding direction and the fourth guiding direction are not parallel to each other, the third guiding direction and the fourth guiding direction are not parallel to the first direction , at least one of the third guiding direction and the fourth guiding direction is not parallel to the second direction,
  • Control of the position of the terminal member can be achieved by driving at least three of the four primary movable members.
  • the end piece includes a first end piece, a second end piece and a third end piece,
  • Both the first terminal piece and the second terminal piece are rotatably connected with the third terminal piece relative to the third terminal piece,
  • a terminal first fitting is formed on the first terminal and a terminal second fitting is formed on the second terminal.
  • the rotation axes of the first terminal piece and the second terminal piece relative to the third terminal piece are parallel to the third direction, or
  • the axes of rotation of the first terminal piece and the second terminal piece relative to the third terminal piece are both parallel to the second direction, or
  • Rotation axes of the first terminal piece and the second terminal piece relative to the third terminal piece are parallel to the first direction.
  • each differential assembly includes a first portion of a differential member and a second portion of a differential member capable of relative rotation
  • the terminal first guide or the terminal second guide is formed at the first portion of the differential, and the secondary first fitting and the secondary second fitting are formed at the second portion of the differential.
  • the axis of rotation of the first portion of the differential relative to the second portion of the differential is parallel to the third direction, or
  • the axis of rotation of the first portion of the differential relative to the second portion of the differential is parallel to the second direction
  • An axis of rotation of the first portion of the differential relative to the second portion of the differential is parallel to the first direction.
  • all primary movable parts move under the guidance of the same basic guide.
  • the two base guides are spaced apart in the second direction, and/or
  • the two base guides are spaced apart in a third direction.
  • the guiding directions of the two base guides are parallel to each other
  • an end piece is sandwiched between two base guides.
  • a multi-degree-of-freedom guiding device which includes a bridge assembly and two multi-degree-of-freedom guiding mechanisms according to the first aspect of the application,
  • the bridge assembly is respectively rotatably connected to the terminal pieces of the two multi-degree-of-freedom guide mechanisms at two connection positions, and at each connection position, the bridge assembly can rotate around two mutually non-parallel rotation axes relative to the terminal pieces.
  • the two rotational axes that are not parallel to each other are perpendicular to each other.
  • two MDOF guides at least partially overlap in the first direction.
  • the primary movable parts of the two multi-degree-of-freedom guide mechanisms all move under the guidance of the same basic guide.
  • the multi-degree-of-freedom guiding mechanism according to the present application has simple structure, convenient control and can provide multiple degrees of freedom of movement.
  • the multi-degree-of-freedom guide according to the present application has the same advantages.
  • Fig. 1 is a schematic diagram of a first embodiment of a multi-degree-of-freedom guiding mechanism according to the present application.
  • Fig. 2 is a schematic diagram of the working principle of the differential assembly according to the first embodiment of the multi-degree-of-freedom guiding mechanism of the present application.
  • Fig. 3 is a schematic diagram of a second embodiment of a multi-degree-of-freedom guiding mechanism according to the present application.
  • Fig. 4 is a schematic diagram of a third embodiment of a multi-degree-of-freedom guiding mechanism according to the present application.
  • 5 and 6 are schematic diagrams of a fourth embodiment of a multi-degree-of-freedom guiding mechanism according to the present application.
  • Fig. 7 is a schematic diagram of a fifth embodiment of a multi-degree-of-freedom guiding mechanism according to the present application.
  • Fig. 8 is a schematic diagram of a sixth embodiment of a multi-degree-of-freedom guiding mechanism according to the present application.
  • FIGS. 9 and 10 are schematic diagrams of a seventh embodiment of a multi-degree-of-freedom guiding mechanism according to the present application.
  • 11 and 12 are schematic diagrams of an eighth embodiment of the multi-degree-of-freedom guiding mechanism according to the present application.
  • FIGS. 13 to 15 are schematic diagrams of a ninth embodiment of a multi-degree-of-freedom guiding mechanism according to the present application.
  • 16 to 18 are schematic diagrams of first to third embodiments of the multi-degree-of-freedom guide device according to the present application.
  • B basic guide A differential assembly; A1 first part of differential; A2 second part of differential; Eg1 terminal first guide; Eg2 terminal second guide;
  • E terminal piece E1 first terminal piece; E2 second terminal piece; E3 third terminal piece; Em1 terminal first matching piece; Em2 terminal second matching piece;
  • first-level movable parts 10 first-level movable parts; 11 first-level first movable parts; 12 first-level second movable parts; 11g first-level first guide parts; 12g first-level second guide parts;
  • the present application uses the three-dimensional coordinate system shown in the figure to describe the positional relationship of each component. It should be understood that the positional relationship defined according to the x, y and z directions in the present invention is relative, and the coordinate axes can be rotated in space according to the actual application of the device.
  • the present application uses the up-down relationship shown in the figure to describe the positional relationship of each component. It should be understood that the upper-lower relationship is not absolute, and the spatial orientations corresponding to the components may change accordingly with different product application scenarios and working postures.
  • the multi-degree-of-freedom guiding mechanism M can provide at least three translational degrees of freedom in the first direction x, the second direction y and the third direction z; according to different implementations, according to some implementations of the application
  • the multi-degree-of-freedom guide mechanism M can provide a rotational degree of freedom in one direction in addition to the above-mentioned three translational degrees of freedom.
  • the multi-degree-of-freedom guiding device includes two above-mentioned multi-degree-of-freedom guiding mechanisms M, and can provide at least three translational degrees of freedom in the first direction x, the second direction y and the third direction z, and At least two rotational degrees of freedom out of three rotational degrees of freedom about an axis of rotation parallel to the first direction x, about an axis of rotation parallel to the second direction y, and about an axis of rotation parallel to the third direction z.
  • a first embodiment of the multi-degree-of-freedom guiding mechanism M according to the present application is introduced.
  • the multi-degree-of-freedom guiding mechanism M includes a basic guiding piece B, an end piece E and two differential assemblies A.
  • Two differential assemblies A connect the terminal piece E and the basic guide piece B at one end of the terminal piece E respectively.
  • the basic guide B provides the differential assembly A with a guiding device (for example a guide rail) arranged along the first direction x.
  • a guiding device for example a guide rail
  • each differential assembly A includes two primary movable parts 10 (respectively, a primary first movable part 11 and a primary second movable part 12 ) and a secondary movable part 20 .
  • the primary movable part 10 connects the basic guide B and the secondary movable part 20, and by driving the two primary movable parts 10 in the first direction x, the secondary movable part 20 can move in the first direction x and the second direction x. translation on y.
  • the one-stage first movable part 11 is formed with one-stage first guide part 11g
  • the one-stage second movable part 12 is formed with one-stage second guide part 12g
  • the secondary movable part 20 is formed with a secondary first fitting part 20a and a secondary second fitting part 20b.
  • the second-level first fitting 20a can reciprocate along the first-level first guide 11g in the third guiding direction D3, and the second-level second fitting 20b can move along the first-level second guide 12g in the fourth guide reciprocating motion in the direction D4, the third guiding direction D3 and the fourth guiding direction D4 are not parallel to each other, and are not parallel to the first direction x, in addition, the third guiding direction D3 and the fourth guiding direction D4 At least one of them is not parallel to the second direction y.
  • the first-level first guide 11g and the second-level guide 12g can be, for example, guide rails or guide rods, or sliders; correspondingly, the second-level first fitting 20a and the second-level second fitting 20b, for example It can be a slider, or a guide rail or a guide rod.
  • the secondary movable part 20 is formed with a terminal guide part at a portion connected to the terminal part E. As shown in FIG.
  • the terminal guides formed by the two secondary movable components 20 are called the terminal first guide Eg1 and the terminal second guide Eg2 respectively.
  • the terminal piece E includes a first terminal piece E1 , a second terminal piece E2 and a third terminal piece E3 .
  • the first end piece E1 and the second end piece E2 are respectively rotatably connected to the third end piece E3.
  • the rotation axes of the above-mentioned rotational connections are all parallel to the third direction z.
  • Arrow ⁇ in Fig. 1 shows the direction of rotation.
  • the first terminal E1 is formed with a terminal first fitting Em1 connected to the terminal first guide Eg1
  • the second terminal E2 is formed with a terminal second fitting Em2 connected to the terminal second guide Eg2 .
  • the first fitting part Em1 of the terminal can reciprocate in the first guiding direction D1 under the guidance of the first guiding part Eg1 of the terminal, and the second fitting part Em2 of the terminal can move in the direction D1 under the guidance of the second guiding part Eg2 of the terminal.
  • the reciprocating movement in the second guiding direction D2, the first guiding direction D1 and the second guiding direction D2 are not parallel to each other and not parallel to the third direction z.
  • a plane parallel to the first guiding direction D1 and the second guiding direction D2 is perpendicular to the xoy plane.
  • the terminal first guide piece Eg1 and the terminal second guide piece Eg2 may be, for example, guide rails or guide rods, or sliders; correspondingly, the terminal first fitting Em1 and the terminal second fitting Em2 may be, for example, sliders , can also be rails or guide rods.
  • the terminal first guide piece Eg1 and the terminal first matching piece Em1 (or the terminal second guide piece Eg2 and the terminal second matching piece Em2) may be a pair of crossed roller guides.
  • the first guiding direction D1 and the second guiding direction D2 may be straight lines or curved lines.
  • the third terminal member E3 can be controlled in the first direction x, the second direction y and the third direction translation in direction z and rotation about a rotation axis parallel to the third direction z.
  • a second embodiment of the multi-degree-of-freedom guide mechanism M according to the present application will be described below with reference to FIG. 3 .
  • the second embodiment is a modification of the first embodiment, and components having the same or similar structures or functions as those in the first embodiment are given the same reference numerals, and detailed descriptions of these components are omitted.
  • the rotation connection structure of the multi-degree-of-freedom guide mechanism M is arranged closer to the basic guide B than to the terminal E, or in other words, the entire terminal E itself does not include a relative Instead of the rotating part, two rotating connection structures are arranged in the differential assembly A.
  • each differential assembly A includes a first portion A1 of a differential element and a second portion A2 of a differential element capable of relative rotation.
  • the terminal guide (the terminal first guide Eg1 or the terminal second guide Eg2) is formed on the differential first part A1, and the secondary first fitting 20a and the secondary second fitting 20b are formed on the differential Part II A2.
  • a third embodiment of the multi-degree-of-freedom guide mechanism M according to the present application will be described below with reference to FIG. 4 .
  • the third embodiment is a modification of the first embodiment, and components having the same or similar structure or function as those in the first embodiment are assigned the same reference numerals, and detailed descriptions of these components are omitted.
  • the rotation axis of the first terminal E1 relative to the third terminal E3 and the rotation axis of the second terminal E2 relative to the third terminal E3 are both parallel to the second direction y, so that the third terminal E E3 has translation degrees of freedom in a first direction x, a second direction y, and a third direction z, and a degree of freedom of rotation about a rotational axis parallel to the second direction y.
  • the present application does not limit the specific shape of the third terminal E3.
  • the third terminal E3 in order to facilitate the connection of the third terminal E3 with the first terminal E1 and the second terminal E2, the third terminal The element E3 may be formed in a bent plate shape.
  • connection positions of the third terminal piece E3 and the first terminal piece E1 and the second terminal piece E2 can be respectively located at the ends of the third terminal piece E3 in the second direction y. ends.
  • a fourth embodiment of the multi-degree-of-freedom guide mechanism M according to the present application will be described below with reference to FIGS. 5 and 6 .
  • the fourth embodiment is a modification of the second embodiment, and components having the same or similar structures or functions as those in the second embodiment are assigned the same reference numerals, and detailed descriptions of these components are omitted.
  • the rotational axis of the first differential part A1 relative to the second differential part A2 is parallel to the second direction y, so that the terminal part E has a rotation axis in the first direction x, the second direction y and the third direction
  • a fifth embodiment of the multi-degree-of-freedom guide mechanism M according to the present application will be described with reference to FIG. 7 .
  • the fifth embodiment is a modification of the first embodiment.
  • the four primary moving parts 10 in the two differential assemblies A all move under the guidance of the same basic guide B. In this embodiment, however, the primary moving parts 10 belonging to the two differential assemblies A move under the guidance of two different basic guide parts B respectively.
  • two basic guides B are arranged spaced apart in the second direction y, and/or two basic guides B are arranged spaced apart in the third direction z.
  • the guiding directions of the two base guides B are parallel to each other.
  • This arrangement makes the volume occupied by the multi-degree-of-freedom guiding mechanism M smaller in the first direction x, or in the same space, the multi-degree-of-freedom guiding mechanism M has a larger movable space in the first direction x .
  • the following sixth to eighth embodiments of the multi-degree-of-freedom guide mechanism M respectively make modifications to the disposition manners of the differential assembly A on the basic guide member B in the foregoing embodiments.
  • FIG. 8 shows a sixth embodiment of the multi-degree-of-freedom guide mechanism M, which is a modification of the second embodiment.
  • FIGS. 9 and 10 show a seventh embodiment of the multi-degree-of-freedom guide mechanism M, which is a modification of the third embodiment.
  • the rotation axis of the first terminal piece E1 and the second terminal piece E2 relative to the third terminal piece E3 is parallel to the first direction x, so that the third terminal piece
  • the element E3 has translational degrees of freedom in a first direction x, a second direction y and a third direction z, and a rotational degree of freedom about an axis of rotation parallel to the first direction x.
  • FIG. 11 and 12 show an eighth embodiment of the multi-degree-of-freedom guide mechanism M, which is a modification of the fourth embodiment.
  • the rotation axis of the first part A1 of the differential part relative to the second part A2 of the differential part is parallel to the first direction x, so that the terminal part E has a A degree of freedom of translation in a direction x, a second direction y and a third direction z, and a degree of freedom in rotation around a rotation axis parallel to the first direction x.
  • the ninth embodiment is a modification of the first embodiment, and components having the same or similar structures or functions as those in the first embodiment are given the same reference numerals, and detailed descriptions of these components are omitted.
  • the terminal piece E has three translational degrees of freedom in the first direction x, the second direction y and the third direction z.
  • the primary moving parts 10 belonging to the two differential assemblies A move under the guidance of two different basic guides B respectively, and the terminal part E is clamped between the two Between base guides B.
  • all four primary moving parts 10 of the two differential assemblies A can also move on the same basic guide B.
  • the multi-degree-of-freedom guide device formed by the above-mentioned multi-degree-of-freedom guide mechanism M will be introduced.
  • a first embodiment of the multi-degree-of-freedom guide device according to the present application will be described with reference to FIG. 16 .
  • the multi-degree-of-freedom guiding device includes two multi-degree-of-freedom guiding mechanisms M according to the present application (specifically, the ninth embodiment of the multi-degree-of-freedom guiding mechanism M in this embodiment), and a bridge assembly C. Two multi-degree-of-freedom guide mechanisms M are arranged spaced apart in the second direction y.
  • the bridge assembly C is rotatably connected with the two end pieces E of the above two multi-degree-of-freedom guide mechanisms M. At each rotational connection, the bridge assembly C can rotate around two non-parallel rotational axes relative to the terminal piece E connected thereto, and the arrows ⁇ 1 and ⁇ 2 in the figure respectively show the two rotational directions.
  • the above two non-parallel rotating axes are perpendicular to each other.
  • the four basic guides B in this embodiment are fixed on the same platform.
  • the bridge assembly of the multi-degree-of-freedom guide device has three translational degrees of freedom in the first direction x, the second direction y and the third direction z, and a rotation axis parallel to the first direction x and a rotation axis parallel to the first direction x. Rotational degrees of freedom of the axis of rotation parallel to the third direction z.
  • Fig. 17 shows a second embodiment of a multi-degree-of-freedom guide device according to the present application.
  • each multi-degree-of-freedom guide mechanism M uses one base guide B, and two base guides B are spaced apart in the second direction y.
  • Fig. 18 shows a third embodiment of a multi-degree-of-freedom guide device according to the present application.
  • two multi-degree-of-freedom guide mechanisms M use the same base guide B.
  • the two multi-degree-of-freedom guides M at least partially overlap in the first direction x, and the end pieces E of the multi-degree-of-freedom guides M are spaced apart in the second direction y.
  • two differential assemblies A belonging to one multi-degree-of-freedom guiding mechanism M surround two differential assemblies A belonging to another multi-degree-of-freedom guiding mechanism M, or in other words, in the first direction On x, the two differential assemblies A belonging to one multi-degree-of-freedom guiding mechanism M are respectively located on both sides of the two differential assemblies A belonging to another multi-degree-of-freedom guiding mechanism M.
  • This arrangement makes the layout of the multi-degree-of-freedom guiding device compact in the first direction x and occupies less space.
  • the at least partial overlap of two multi-degree-of-freedom guide mechanisms M in the first direction x is not limited to one multi-degree-of-freedom guide mechanism M being interposed between another multi-degree-of-freedom guide mechanism M, and may also be both intertwined forms.
  • the bridge assembly C can also have a third rotational degree of freedom, that is, the bridge assembly C has three translational degrees of freedom and three rotational degrees of freedom.
  • Both the multi-degree-of-freedom guiding mechanism M and the multi-degree-of-freedom guiding device according to the present application can realize multiple degrees of freedom of the terminal by driving in one direction, and the structure of the mechanism and device is stable, the driving is simple, and the control accuracy is high. High reliability.
  • the multi-degree-of-freedom guiding mechanism M and the multi-degree-of-freedom guiding device according to the present application have many variations and can be adapted to different operating spaces.
  • the terminal E described in this application does not represent the final output of the mechanism or device. According to the specific application of the mechanism or device, the terminal E can also be used as a platform for installing other execution components. For example, it can be installed on the terminal E Install manipulators or medical devices on it.
  • the first guiding direction D1, the second guiding direction D2, the third guiding direction D3, the fourth guiding direction D4 and the guiding direction of the basic guide B can be a straight line direction or a curved direction .
  • the translation referred to in this application is relative to the rotation, and the translation may be a translation along a straight line or a curve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

一种多自由度导向机构(M)以及包括桥组件(C)和两个多自由度导向机构(M)的多自由度导向装置,其中,多自由度导向机构(M)包括基础导引件(B)、终端件(E)和两个差动组件(A),差动组件(A)连接基础导引件(B)和终端件(E),终端件(E)至少具有在两两垂直的第一方向(x)、第二方向(y)和第三方向(z)上的三个平动自由度,每个差动组件(A)包括两个一级活动件(10)和一个二级活动件(20),一级活动件(10)能在基础导引件(B)的导引下在第一方向(x)上平动,通过驱动每个差动组件(A)的一级活动件(10),能实现对终端件(E)的位置的控制。

Description

多自由度导向机构和多自由度导向装置 技术领域
本发明涉及运动机构领域,且特别地涉及一种多自由度导向机构和多自由度导向装置。
背景技术
在一些用于实现复杂作业的运动机构中,需要运动机构具有较多的自由度,较大的刚性、速度、以及较高的精度等,这些方面的要求通常不易兼顾。
发明内容
本发明的目的在于克服或至少减轻上述现有技术存在的不足,提供一种多自由度导向机构和多自由度导向装置。
根据本申请的第一方面,提供一种多自由度导向机构,其中,包括基础导引件、终端件和两个差动组件,差动组件连接基础导引件和终端件,终端件至少具有在两两垂直的第一方向、第二方向和第三方向上的三个平动自由度,
每个差动组件能在第一方向和第二方向上发生位移,两个差动组件分别包括终端第一导引件和终端第二导引件,终端件包括终端第一配合件和终端第二配合件,终端第一配合件能在终端第一导引件的导引下在第一导引方向上往复运动,终端第二配合件能在终端第二导引件的导引下在第二导引方向上往复运动,第一导引方向和第二导引方向彼此不平行且与第三方向也不平行,
每个差动组件包括两个一级活动件和一个二级活动件,一级活动件能在基础导引件的导引下相对于基础导引件在第一方向上平动,两个一级活动件包括一级第一活动件和一级第二活动件,一级第一活动件形成有一级第一导引件,一级第二活动件形成有一级第二导引件,二级活动件形成有二级第一配合件和二级第二配合件,二级第一配合件能沿一级第一导引件在第三导引方向上往复运动,二级第二配合件能沿一级第二导引件在第四导引方向上往复运动,第三导引方向和第四导引方向彼此不平行,第三导引方向和第四导引方向与第一方向不平行,第三导引方向和第四导引方向中的至少一者与第二方向不平行,
通过驱动四个一级活动件中的至少三个,能实现对终端件的位置的控制。
在至少一个实施方式中,终端件包括第一终端件、第二终端件和第三终端件,
第一终端件和第二终端件均能相对于第三终端件转动地与第三终端件连接,
终端第一配合件形成于第一终端件,终端第二配合件形成于第二终端件。
在至少一个实施方式中,第一终端件和第二终端件相对于第三终端件的转动轴线均与第三方向平行,或者
第一终端件和第二终端件相对于第三终端件的转动轴线均与第二方向平行,或者
第一终端件和第二终端件相对于第三终端件的转动轴线均与第一方向平行。
在至少一个实施方式中,每个差动组件包括能相对转动的差动件第一部分和差动件第二部分,
终端第一导引件或终端第二导引件形成于差动件第一部分,二级第一配合件和二级第二配合件形成于差动件第二部分。
在至少一个实施方式中,差动件第一部分相对于差动件第二部分的转动轴线与第三方向平行,或者
差动件第一部分相对于差动件第二部分的转动轴线与第二方向平行,或者
差动件第一部分相对于差动件第二部分的转动轴线与第一方向平行。
在至少一个实施方式中,所有的一级活动件均在同一个基础导引件的引导下运动。
在至少一个实施方式中,基础导引件有两个,属于两个差动组件中一者的两个一级活动件在一个基础导引件的导引下运动,属于两个差动组件中另一者的两个一级活动件在另一个基础导引件的导引下运动。
在至少一个实施方式中,两个基础导引件在第二方向上间隔开,和/或
两个基础导引件在第三方向上间隔开。
在至少一个实施方式中,两个基础导引件的导引方向彼此平行,
在至少一个实施方式中,终端件被夹设在两个基础导引件之间。
根据申请的第二方面,提供一种多自由度导向装置,其中,包括桥组件和两个根据本申请的第一方面的多自由度导向机构,
桥组件在两个连接位置分别与两个多自由度导向机构的终端件转动连接,且在每个连接位置处,桥组件均能相对于终端件绕两个彼此不平行的转动轴线转动。
在至少一个实施方式中,两个彼此不平行的转动轴线互相垂直。
在至少一个实施方式中,两个多自由度导向机构在第一方向上至少部分地重叠。
在至少一个实施方式中,两个多自由度导向机构的一级活动件均在同一个基础导引件的引导下运动。
根据本申请的多自由度导向机构结构简单、控制方便且能提供多个运动自由度。根据本申请的 多自由度导向装置具有同样的优点。
附图说明
图1是根据本申请的多自由度导向机构的第一实施方式的示意图。
图2是根据本申请的多自由度导向机构的第一实施方式的差动组件的工作原理的示意图。
图3是根据本申请的多自由度导向机构的第二实施方式的示意图。
图4是根据本申请的多自由度导向机构的第三实施方式的示意图。
图5和图6是根据本申请的多自由度导向机构的第四实施方式的示意图。
图7是根据本申请的多自由度导向机构的第五实施方式的示意图。
图8是根据本申请的多自由度导向机构的第六实施方式的示意图。
图9和图10是根据本申请的多自由度导向机构的第七实施方式的示意图。
图11和图12是根据本申请的多自由度导向机构的第八实施方式的示意图。
图13至图15是根据本申请的多自由度导向机构的第九实施方式的示意图。
图16至图18是根据本申请的多自由度导向装置的第一至第三实施方式的示意图。
附图标记说明:
B基础导引件;A差动组件;A1差动件第一部分;A2差动件第二部分;Eg1终端第一导引件;Eg2终端第二导引件;
E终端件;E1第一终端件;E2第二终端件;E3第三终端件;Em1终端第一配合件;Em2终端第二配合件;
10一级活动件;11一级第一活动件;12一级第二活动件;11g一级第一导引件;12g一级第二导引件;
20二级活动件;20a二级第一配合件;20b二级第二配合件;C桥组件;
D1第一导引方向;D2第二导引方向;D3第三导引方向;D4第四导引方向。
具体实施方式
下面参照附图描述本发明的示例性实施方式。应当理解,这些具体的说明仅用于示教本领域技 术人员如何实施本发明,而不用于穷举本发明的所有可行的方式,也不用于限制本发明的范围。
若非特殊说明,本申请以图中所示的三维坐标系来说明各部件的位置关系。应当理解,本发明中根据x、y和z方向定义的位置关系是相对的,根据装置的实际应用场合,坐标轴可进行空间旋转。
若非特殊说明,本申请以图中所示的上下关系来说明各部件的位置关系。应当理解,该上下关系并不是绝对的,随着产品应用场景和工作姿态的不同,部件对应的空间方位可以相应地变化。
根据本申请的多自由度导向机构M能至少提供在第一方向x、第二方向y和第三方向z上的三个平动自由度;根据不同的实施方式,根据本申请的部分实施方式的多自由度导向机构M除能提供上述三个平动自由度外,还能提供一个方向上的转动自由度。
根据本申请的多自由度导向装置包括两个上述多自由度导向机构M,并能至少提供在第一方向x、第二方向y和第三方向z上的三个平动自由度,以及绕平行于第一方向x的转轴、绕平行于第二方向y的转轴和绕平行于第三方向z的转轴的三个转动自由度中的至少两个转动自由度。
首先,参照图1至图15,介绍根据本申请的多自由度导向机构M。
(多自由度导向机构M的第一实施方式)
参照图1和图2,介绍根据本申请的多自由度导向机构M的第一实施方式。
多自由度导向机构M包括基础导引件B、终端件E和两个差动组件A。
两个差动组件A分别在终端件E的一个端部连接终端件E和基础导引件B。基础导引件B为差动组件A提供了沿第一方向x设置的导向装置(例如导轨)。通过在第一方向x上驱动差动组件A,能实现终端件E在第一方向x、第二方向y和第三方向z上的平动和绕平行于第三方向z的转轴的转动。
具体地,每个差动组件A包括两个一级活动件10(分别为一级第一活动件11和一级第二活动件12)和一个二级活动件20。一级活动件10连接基础导引件B和二级活动件20,通过在第一方向x上驱动两个一级活动件10,能实现二级活动件20在第一方向x和第二方向y上的平动。
一级第一活动件11形成有一级第一导引件11g,一级第二活动件12形成有一级第二导引件12g。二级活动件20形成有二级第一配合件20a和二级第二配合件20b。二级第一配合件20a能沿一级第一导引件11g在第三导引方向D3上往复运动,二级第二配合件20b能沿一级第二导引件12g在第四导引方向D4上往复运动,第三导引方向D3和第四导引方向D4彼此不平行、且与第一方向x也不平行,此外,第三导引方向D3和第四导引方向D4中的至少一者与第二方向y不平行。
一级第一导引件11g和一级第二导引件12g例如可以是导轨或导杆,也可以是滑块;对应地,二级第一配合件20a和二级第二配合件20b例如可以是滑块,也可以是导轨或导杆。
二级活动件20在与终端件E相连接的部位形成有终端导引件。为描述方便,把两个二级活动件20所形成的终端导引件分别称为终端第一导引件Eg1和终端第二导引件Eg2。
终端件E包括第一终端件E1、第二终端件E2和第三终端件E3。第一终端件E1和第二终端件E2分别与第三终端件E3转动连接。在本实施方式中,上述转动连接的转轴均平行于第三方向z。图1中的箭头ω示出了转动方向。
第一终端件E1形成有与终端第一导引件Eg1相连的终端第一配合件Em1,第二终端件E2形成有与终端第二导引件Eg2相连的终端第二配合件Em2。
终端第一配合件Em1能在终端第一导引件Eg1的导引下在第一导引方向D1上往复运动,终端第二配合件Em2能在终端第二导引件Eg2的导引下在第二导引方向D2上往复运动,第一导引方向D1和第二导引方向D2彼此不平行且与第三方向z也不平行。
可选地,平行于第一导引方向D1和第二导引方向D2的平面垂直于xoy平面。
终端第一导引件Eg1和终端第二导引件Eg2例如可以是导轨或导杆,也可以是滑块;对应地,终端第一配合件Em1和终端第二配合件Em2例如可以是滑块,也可以是导轨或导杆。又例如,终端第一导引件Eg1和终端第一配合件Em1(或终端第二导引件Eg2和终端第二配合件Em2)可以是成对的交叉滚子导轨。
第一导引方向D1和第二导引方向D2可以是直线方向,也可以是曲线方向。
由此,通过在第一方向x上驱动四个一级活动件10中的至少三个(优选为四个),可以控制第三终端件E3在第一方向x、第二方向y和第三方向z的平动以及绕平行于第三方向z的转轴的转动。
(多自由度导向机构M的第二实施方式)
下面参照图3说明根据本申请的多自由度导向机构M的第二实施方式。第二实施方式是第一实施方式的变型,对于与第一实施方式中的部件结构或功能相同或相似的部件标注相同的附图标记,并省略对这些部件的具体说明。
相比于第一实施方式,在本实施方式中,多自由度导向机构M的转动连接结构更靠近基础导引件B而非终端件E设置,或者说,整个终端件E本身不包括可以相对转动的部分,而是将两个转动连接 结构设置在差动组件A内。
在本实施方式中,每个差动组件A包括能相对转动的差动件第一部分A1和差动件第二部分A2。终端导引件(终端第一导引件Eg1或终端第二导引件Eg2)形成于差动件第一部分A1,二级第一配合件20a和二级第二配合件20b形成于差动件第二部分A2。
(多自由度导向机构M的第三实施方式)
下面参照图4说明根据本申请的多自由度导向机构M的第三实施方式。第三实施方式是第一实施方式的变型,对于与第一实施方式中的部件结构或功能相同或相似的部件标注相同的附图标记,并省略对这些部件的具体说明。
在本实施方式中,第一终端件E1相对于第三终端件E3的转动轴线以及第二终端件E2相对于第三终端件E3的转动轴线均与第二方向y平行,使得第三终端件E3具有在第一方向x、第二方向y和第三方向z的平动自由度以及绕平行于第二方向y的转轴的转动自由度。
应当理解,本申请对第三终端件E3的具体形状不作限制,例如,在本实施方式中,为了方便第三终端件E3与第一终端件E1和第二终端件E2的连接,第三终端件E3可以形成为折弯的板状。
可选地,为使得终端件E具有较稳定的结构,第三终端件E3与第一终端件E1和第二终端件E2的连接位置在第二方向y上可以分别位于第三终端件E3的两端。
(多自由度导向机构M的第四实施方式)
下面参照图5和图6说明根据本申请的多自由度导向机构M的第四实施方式。第四实施方式是第二实施方式的变型,对于与第二实施方式中的部件结构或功能相同或相似的部件标注相同的附图标记,并省略对这些部件的具体说明。
在本实施方式中,差动件第一部分A1相对于差动件第二部分A2的转动轴线与第二方向y平行,使得终端件E具有在第一方向x、第二方向y和第三方向z的平动自由度以及绕平行于第二方向y的转轴的转动自由度。
(多自由度导向机构M的第五至第八实施方式)
参照图7说明根据本申请的多自由度导向机构M的第五实施方式。第五实施方式是第一实施方式的变型。
在第一实施方式中,两个差动组件A中的四个一级活动件10均在同一个基础导引件B的导引下运 动。而在本实施方式中,属于两个差动组件A的一级活动件10分别在两个不同的基础导引件B的导引下运动。
可选地,两个基础导引件B在第二方向y上间隔开地设置,和/或两个基础导引件B在第三方向z上间隔开地设置。
可选地,两个基础导引件B的导引方向彼此平行。
这种设置方式使得多自由度导向机构M在第一方向x上所占用的体积较小,或者说在同样的空间内,多自由度导向机构M在第一方向x上具有较大的活动空间。
类似地,下述的多自由度导向机构M的第六至第八实施方式分别对前述实施方式中的差动组件A在基础导引件B上的设置方式作了变型。
图8示出了多自由度导向机构M的第六实施方式,该实施方式是第二实施方式的变形。
图9和图10示出了多自由度导向机构M的第七实施方式,该实施方式是第三实施方式的变形。除了基础导引件B的设置方式不同之外,在该实施方式中,第一终端件E1和第二终端件E2相对于第三终端件E3的转轴与第一方向x平行,使得第三终端件E3具有在第一方向x、第二方向y和第三方向z的平动自由度以及绕平行于第一方向x的转轴的转动自由度。
图11和图12示出了多自由度导向机构M的第八实施方式,该实施方式是第四实施方式的变形。除了基础导引件B的设置方式不同之外,在该实施方式中,差动件第一部分A1相对于差动件第二部分A2的转轴与第一方向x平行,使得终端件E具有在第一方向x、第二方向y和第三方向z的平动自由度以及绕平行于第一方向x的转轴的转动自由度。
(多自由度导向机构M的第九实施方式)
下面参照图13至图15说明根据本申请的多自由度导向机构M的第九实施方式。第九实施方式是第一实施方式的变型,对于与第一实施方式中的部件结构或功能相同或相似的部件标注相同的附图标记,并省略对这些部件的具体说明。
在本实施方式中,多自由度导向机构M内部不设置转动结构,终端件E具有在第一方向x、第二方向y和第三方向z上的三个平动自由度。
可选地,在本实施方式中,属于两个差动组件A的一级活动件10分别在两个不同的基础导引件B的导引下运动,且终端件E被夹设在两个基础导引件B之间。
应当理解,在其它可能的实施方式中,两个差动组件A的所有四个一级活动件10也可以在同一个基础导引件B上运动。
接下来,参照图16至图18,介绍由上述多自由度导向机构M所形成的多自由度导向装置。
(多自由度导向装置的第一实施方式)
参照图16说明根据本申请的多自由度导向装置的第一实施方式。
多自由度导向装置包括两个根据本申请的多自由度导向机构M(本实施方式中具体为多自由度导向机构M的第九实施方式),以及包括一个桥组件C。两个多自由度导向机构M在第二方向y上间隔开地设置。
桥组件C与上述两个多自由度导向机构M的两个终端件E转动连接。在每个转动连接处,桥组件C能相对于与之连接的终端件E绕两个彼此不平行的转轴转动,图中的箭头ω1和箭头ω2分别示出了两个转动方向。
可选地,上述两个彼此不平行的转轴互相垂直。
可选地,本实施方式中的四个基础导引件B被固定于同一个平台。
根据本实施方式的多自由度导向装置的桥组件具有在第一方向x、第二方向y和第三方向z上的三个平动自由度,以及绕平行于第一方向x的转轴和绕平行于第三方向z的转轴的转动自由度。
(多自由度导向装置的第二实施方式)
图17示出了根据本申请的多自由度导向装置的第二实施方式。
在本实施方式中,每个多自由度导向机构M使用一个基础导引件B,两个基础导引件B在第二方向y上间隔开地设置。
(多自由度导向装置的第三实施方式)
图18示出了根据本申请的多自由度导向装置的第三实施方式。
在本实施方式中,两个多自由度导向机构M使用同一个基础导引件B。
两个多自由度导向机构M在第一方向x上至少部分地重叠,且多自由度导向机构M的终端件E在第二方向y上间隔开。
可选地,如图所示,属于一个多自由度导向机构M的两个差动组件A将属于另一个多自由度导向机构M的两个差动组件A包围,或者说,在第一方向x上,属于一个多自由度导向机构M的两个差动组件A分别位于属于另一个多自由度导向机构M的两个差动组件A的两侧。这种设置方式使得多自由度导向装置在第一方向x上的布局紧凑,占用空间小。
应当理解,两个多自由度导向机构M在第一方向x上至少部分地重叠不限于是一个多自由度导向机构M夹设在另一个多自由度导向机构M之间,也可以是两者彼此交错的形式。
应当理解,上述多自由度导向机构M的各实施方式以及多自由度导向装置的各实施方式及其部分方面或特征可以适当地组合。例如,当多自由度导向装置中的多自由度导向机构M使用前述的第一至第八实施方式的情况下,桥组件C还可以具有第三个转动自由度,即,桥组件C具有三个平动自由度和三个转动自由度。
下面简单说明本申请的上述实施方式的部分有益效果。
(i)根据本申请的多自由度导向机构M和多自由度导向装置均能通过在一个方向上的驱动而实现终端的多个自由度,机构和装置结构稳定、驱动简单、控制精度高,可靠性高。
(ii)根据本申请的多自由度导向机构M和多自由度导向装置具有多种变型,能适应于不同的操作空间。
应当理解,上述实施方式仅是示例性的,不用于限制本申请。本领域技术人员可以在本申请的教导下对上述实施方式做出各种变型和改变,而不脱离本申请的范围。例如,
(i)本申请所述的终端件E不表示是机构或装置的最终输出端,根据机构或装置的具体应用,该终端件E也可以作为安装其它执行部件的平台,例如可以在终端件E上安装机械手或医疗器械等。
(ii)第一导引方向D1、第二导引方向D2、第三导引方向D3、第四导引方向D4以及基础导引件B的导引方向可以是直线方向,也可以是曲线方向。
(iii)本申请所称的平动是相对转动而言的,平动可以是沿直线方向的平动,也可以是沿曲线的平动。

Claims (14)

  1. 一种多自由度导向机构,其特征在于,包括基础导引件(B)、终端件(E)和两个差动组件
    (A),所述差动组件(A)连接所述基础导引件(B)和所述终端件(E),所述终端件(E)至少具有在两两垂直的第一方向(x)、第二方向(y)和第三方向(z)上的三个平动自由度,
    每个所述差动组件(A)能在所述第一方向(x)和所述第二方向(y)上发生位移,两个所述差动组件(A)分别包括终端第一导引件(Eg1)和终端第二导引件(Eg2),所述终端件(E)包括终端第一配合件(Em1)和终端第二配合件(Em2),所述终端第一配合件(Em1)能在所述终端第一导引件(Eg1)的导引下在第一导引方向(D1)上往复运动,所述终端第二配合件(Em2)能在所述终端第二导引件(Eg2)的导引下在第二导引方向(D2)上往复运动,所述第一导引方向(D1)和所述第二导引方向(D2)彼此不平行且与所述第三方向(z)也不平行,
    每个所述差动组件(A)包括两个一级活动件(10)和一个二级活动件(20),所述一级活动件(10)能在所述基础导引件(B)的导引下相对于所述基础导引件(B)在所述第一方向(x)上平动,所述两个一级活动件(10)包括一级第一活动件(11)和一级第二活动件(12),所述一级第一活动件(11)形成有一级第一导引件(11g),所述一级第二活动件(12)形成有一级第二导引件(12g),所述二级活动件(20)形成有二级第一配合件(20a)和二级第二配合件(20b),所述二级第一配合件(20a)能沿所述一级第一导引件(11g)在第三导引方向(D3)上往复运动,所述二级第二配合件(20b)能沿所述一级第二导引件(12g)在第四导引方向(D4)上往复运动,所述第三导引方向(D3)和所述第四导引方向(D4)彼此不平行,所述第三导引方向(D3)和所述第四导引方向(D4)与所述第一方向(x)不平行,所述第三导引方向(D3)和所述第四导引方向(D4)中的至少一者与所述第二方向(y)不平行,
    通过驱动四个所述一级活动件(10)中的至少三个,能实现对所述终端件(E)的位置的控制。
  2. 根据权利要求1所述的多自由度导向机构,其特征在于,所述终端件(E)包括第一终端件(E1)、第二终端件(E2)和第三终端件(E3),
    所述第一终端件(E1)和所述第二终端件(E2)均能相对于所述第三终端件(E3)转动地与所述第三终端件(E3)连接,
    所述终端第一配合件(Em1)形成于所述第一终端件(E1),所述终端第二配合件(Em2)形成于所述第二终端件(E2)。
  3. 根据权利要求2所述的多自由度导向机构,其特征在于,所述第一终端件(E1)和所述第二终端件(E2)相对于所述第三终端件(E3)的转动轴线均与所述第三方向(z)平行,或者
    所述第一终端件(E1)和所述第二终端件(E2)相对于所述第三终端件(E3)的转动轴线均与所述第二方向(y)平行,或者
    所述第一终端件(E1)和所述第二终端件(E2)相对于所述第三终端件(E3)的转动轴线均与所述第一方向(x)平行。
  4. 根据权利要求1所述的多自由度导向机构,其特征在于,每个所述差动组件(A)包括能相对转动的差动件第一部分(A1)和差动件第二部分(A2),
    所述终端第一导引件(Eg1)或所述终端第二导引件(Eg2)形成于所述差动件第一部分(A1),所述二级第一配合件(20a)和所述二级第二配合件(20b)形成于所述差动件第二部分(A2)。
  5. 根据权利要求4所述的多自由度导向机构,其特征在于,所述差动件第一部分(A1)相对于所述差动件第二部分(A2)的转动轴线与所述第三方向(z)平行,或者
    所述差动件第一部分(A1)相对于所述差动件第二部分(A2)的转动轴线与所述第二方向(y)平行,或者
    所述差动件第一部分(A1)相对于所述差动件第二部分(A2)的转动轴线与所述第一方向(x)平行。
  6. 根据权利要求1至5中任一项所述的多自由度导向机构,其特征在于,所有的所述一级活动件(10)均在同一个所述基础导引件(B)的引导下运动。
  7. 根据权利要求1至5中任一项所述的多自由度导向机构,其特征在于,所述基础导引件(B)有两个,属于两个所述差动组件(A)中一者的两个所述一级活动件(10)在一个所述基础导引件(B)的导引下运动,属于两个所述差动组件(A)中另一者的两个所述一级活动件(10)在另一个所述基础导引件(B)的导引下运动。
  8. 根据权利要求7所述的多自由度导向机构,其特征在于,两个所述基础导引件(B)在所述第二方向(y)上间隔开,和/或
    两个所述基础导引件(B)在所述第三方向(z)上间隔开。
  9. 根据权利要求8所述的多自由度导向机构,其特征在于,两个所述基础导引件(B)的导引方向彼此平行,
  10. 根据权利要求7所述的多自由度导向机构,其特征在于,所述终端件(E)被夹设在两个所述基础导引件(B)之间。
  11. 一种多自由度导向装置,其特征在于,包括桥组件(C)和两个根据权利要求1至10中任一项所述的多自由度导向机构(M),
    所述桥组件(C)在两个连接位置分别与两个所述多自由度导向机构(M)的所述终端件(E)转动连接,且在每个连接位置处,所述桥组件(C)均能相对于所述终端件(E)绕两个彼此不平行的转动轴线转动。
  12. 根据权利要求11所述的多自由度导向装置,其特征在于,所述两个彼此不平行的转动轴线互相垂直。
  13. 根据权利要求11或12所述的多自由度导向装置,其特征在于,两个多自由度导向机构(M)在所述第一方向(x)上至少部分地重叠。
  14. 根据权利要求13所述的多自由度导向装置,其特征在于,两个所述多自由度导向机构(M)的所述一级活动件(10)均在同一个所述基础导引件(B)的引导下运动。
PCT/CN2021/100891 2021-06-18 2021-06-18 多自由度导向机构和多自由度导向装置 WO2022261934A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180101457.XA CN117940253A (zh) 2021-06-18 2021-06-18 多自由度导向机构和多自由度导向装置
PCT/CN2021/100891 WO2022261934A1 (zh) 2021-06-18 2021-06-18 多自由度导向机构和多自由度导向装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100891 WO2022261934A1 (zh) 2021-06-18 2021-06-18 多自由度导向机构和多自由度导向装置

Publications (1)

Publication Number Publication Date
WO2022261934A1 true WO2022261934A1 (zh) 2022-12-22

Family

ID=84526039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100891 WO2022261934A1 (zh) 2021-06-18 2021-06-18 多自由度导向机构和多自由度导向装置

Country Status (2)

Country Link
CN (1) CN117940253A (zh)
WO (1) WO2022261934A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101104272A (zh) * 2007-08-16 2008-01-16 上海交通大学 二自由度平面并联机器人机构
CN101259617A (zh) * 2008-03-31 2008-09-10 浙江理工大学 一种分岔四自由度并联机器人机构
US20080295637A1 (en) * 2007-06-01 2008-12-04 Lessard Simon Parallel manipulator
CN102152300A (zh) * 2011-02-25 2011-08-17 天津大学 线性驱动高速平面并联机械手
CN103273356A (zh) * 2013-04-28 2013-09-04 清华大学 一种基于四自由度并联机构的多轴联动混联装置
US20140311271A1 (en) * 2013-04-23 2014-10-23 Northwestern University Translational parallel manipulators and methods of operating the same
CN105729450A (zh) * 2016-05-09 2016-07-06 中国科学院宁波材料技术与工程研究所 四自由度并联机构
CN110355737A (zh) * 2018-04-10 2019-10-22 苏州迈澜医疗科技有限公司 平移机构和具有该平移机构的多自由度导向机构
CN110355738A (zh) * 2018-04-10 2019-10-22 苏州迈澜医疗科技有限公司 多自由度导向机构

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080295637A1 (en) * 2007-06-01 2008-12-04 Lessard Simon Parallel manipulator
CN101104272A (zh) * 2007-08-16 2008-01-16 上海交通大学 二自由度平面并联机器人机构
CN101259617A (zh) * 2008-03-31 2008-09-10 浙江理工大学 一种分岔四自由度并联机器人机构
CN102152300A (zh) * 2011-02-25 2011-08-17 天津大学 线性驱动高速平面并联机械手
US20140311271A1 (en) * 2013-04-23 2014-10-23 Northwestern University Translational parallel manipulators and methods of operating the same
CN103273356A (zh) * 2013-04-28 2013-09-04 清华大学 一种基于四自由度并联机构的多轴联动混联装置
CN105729450A (zh) * 2016-05-09 2016-07-06 中国科学院宁波材料技术与工程研究所 四自由度并联机构
CN110355737A (zh) * 2018-04-10 2019-10-22 苏州迈澜医疗科技有限公司 平移机构和具有该平移机构的多自由度导向机构
CN110355738A (zh) * 2018-04-10 2019-10-22 苏州迈澜医疗科技有限公司 多自由度导向机构
CN110573306A (zh) * 2018-04-10 2019-12-13 苏州迈澜医疗科技有限公司 多自由度并联机构

Also Published As

Publication number Publication date
CN117940253A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US7707907B2 (en) Planar parallel mechanism and method
US8245595B2 (en) Two-axis non-singular robotic wrist
WO2021179210A1 (zh) 多自由度并联机构和并联机构组件
CN105729450B (zh) 四自由度并联机构
CN102152314B (zh) 触感装置中的夹持力反馈系统
JP5190154B2 (ja) 平面3自由度ステージ
WO2019196421A1 (zh) 多自由度并联机构
CN103329258B (zh) 晶圆搬运机器人
JP2008506545A (ja) 2つのサブアセンブリ手段から構成される可動要素を移動させる手段を備えるパラレルロボット
JP6040057B2 (ja) 二次元移動閉リンク構造
Jin et al. A class of novel 4-DOF and 5-DOF generalized parallel mechanisms with high performance
JP5549716B2 (ja) ロボットシステムおよび教示方法
WO2021191054A1 (en) Translational parallel mechanism
CN100374244C (zh) 用于机器人操作的三维平移并联机构
WO2022261934A1 (zh) 多自由度导向机构和多自由度导向装置
Meng et al. A new six degree-of-freedom parallel robot with three limbs for high-speed operations
Kiselev et al. Parallel robots with a circular guide: Systematic review of kinematic schemes and methods of synthesis and analysis
JP2013107155A (ja) 小型多自由度の力覚提示マニピュレータ
WO2021179209A1 (zh) 多自由度并联机构和并联机构组件
CN113348055B (zh) 多自由度并联机构
Haouas et al. Kinematics, design and experimental validation of a novel parallel robot for two-fingered dexterous manipulation
WO2021081978A1 (zh) 多自由度并联机构
WO2021109074A1 (zh) 多自由度并联机构
CN108858159B (zh) 一种部分解耦的二自由度移动并联机构
WO2021109062A1 (zh) 多自由度并联机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202180101457.X

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21945519

Country of ref document: EP

Kind code of ref document: A1