WO2021081978A1 - 多自由度并联机构 - Google Patents

多自由度并联机构 Download PDF

Info

Publication number
WO2021081978A1
WO2021081978A1 PCT/CN2019/114989 CN2019114989W WO2021081978A1 WO 2021081978 A1 WO2021081978 A1 WO 2021081978A1 CN 2019114989 W CN2019114989 W CN 2019114989W WO 2021081978 A1 WO2021081978 A1 WO 2021081978A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide bar
movable part
movable
bridge
freedom
Prior art date
Application number
PCT/CN2019/114989
Other languages
English (en)
French (fr)
Inventor
周啸波
Original Assignee
苏州迈澜医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州迈澜医疗科技有限公司 filed Critical 苏州迈澜医疗科技有限公司
Priority to PCT/CN2019/114989 priority Critical patent/WO2021081978A1/zh
Priority to CN201980101874.7A priority patent/CN114786882B/zh
Publication of WO2021081978A1 publication Critical patent/WO2021081978A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators

Definitions

  • the invention relates to the field of robots, in particular to a multi-degree-of-freedom parallel mechanism of a parallel robot.
  • robots can be divided into two categories: series robots and parallel robots.
  • parallel robots Compared with series robots, parallel robots have the advantages of greater rigidity, strong carrying capacity, high precision, and low end piece inertia.
  • the most common parallel robots are mostly six degrees of freedom.
  • the patent publication US3295224A discloses a parallel robot for motion simulation.
  • the cost of a parallel robot with full six degrees of freedom is often that the motion space of each degree of freedom is roughly equally divided, and the demand for greater motion space in certain directions cannot be well satisfied. Therefore, people limit the degree of freedom in certain directions according to specific needs, in exchange for greater movement space in other directions.
  • the most widely used in this regard is the parallel robot used for picking operations, most of which provide three degrees of freedom for translation and one rotation.
  • Patent Publication WO2009053506A1 discloses a four-degree-of-freedom parallel robot. Its support part uses multiple non-coplanar four-bar linkage mechanisms. The motions of these non-coplanar four-bar linkage mechanisms restrict each other, making the terminal The moving platform cannot realize the degree of freedom of two translational and two rotations.
  • Patent application CN201810316148.4 provides a guiding mechanism with at least two degrees of freedom for translation and two rotations.
  • the guide mechanism includes two movable components for supporting and positioning the bridge components.
  • the motor that controls the movement is also integrated in the movable components.
  • the movement inertia of the component is large.
  • the purpose of the present invention is to overcome or at least alleviate the above-mentioned shortcomings of the prior art and provide a multi-degree-of-freedom parallel mechanism.
  • the present invention provides a multi-degree-of-freedom parallel mechanism, which includes a bridge assembly and two supporting assemblies, wherein:
  • Each of the supporting components includes a positioning plate, a first movable part, a second movable part and a bracket,
  • the positioning plate includes a first guide bar and a second guide bar that are not parallel, and the bracket includes a first paired guide bar and a second paired guide bar that are not parallel,
  • the first movable part connects the first guide bar and the first mating guide bar
  • the second movable part connects the second guide bar and the second mating guide bar
  • the first movable part can be driven to move along the first mating guide bar
  • the second movable part can be driven to move along the second mating guide bar
  • the first movable part is in contact with the
  • the positioning plate is guided by the first guide bar during the relative movement
  • the second movable part is guided by the second guide bar during the relative movement with the positioning plate, so
  • the first guide bar has a non-parallel state with the first paired guide bar during the movement
  • the second guide bar has a non-parallel state with the second paired guide bar during the movement
  • the two positioning plates are spaced apart in the first direction, and each positioning plate is rotatably connected with the bridge assembly, so that the bridge assembly can rotate relative to any positioning plate around two non-parallel axes, and the axis is not parallel to the first direction
  • the bridge assembly can rotate about two mutually perpendicular axes relative to any positioning plate
  • the bridge assembly has at least two translational degrees of freedom and two rotational degrees of freedom.
  • the first guide bar is parallel to the second mating guide bar, and the second guide bar is parallel to the first mating guide bar.
  • the first guide bar is perpendicular to the second guide bar.
  • the first movable part includes a first movable part first part and a first movable part second part, and the first movable part first part and the first movable part second part can be Driven to rotate relative to each other,
  • the second movable part includes a first part of a second movable part and a second part of a second movable part, and the first part of the second movable part and the second part of the second movable part can rotate relatively,
  • the first mating guide bar and the first movable part are connected to the first movable part, and the first guide bar and the first movable part are connected to the first movable part and the second part ,
  • the second mating guide bar and the second movable part are connected to the second movable part first part, and the second guide bar and the second movable part are connected to the second movable part second part ,
  • the bridge assembly has at least two translational degrees of freedom and three rotational degrees of freedom.
  • the support assembly further includes a third movable part
  • the positioning plate further includes a third guide bar
  • the bracket further includes a third paired guide bar
  • the first movable part includes a first movable part, a first part and a first movable part, a second part.
  • the first movable part and the first movable part can rotate relative to each other.
  • the mating guide bar and the first movable part are slidably connected to the first movable part, and the first guide bar and the first movable part are slidably connected to the first movable part and the second part,
  • the second movable part includes a first part of a second movable part and a second part of a second movable part.
  • the first part of the second movable part and the second part of the second movable part are capable of relative rotation.
  • the mating guide bar and the second movable part are slidably connected to the first part of the second movable part, and the second guide bar and the second movable part are slidably connected to the second part of the second movable part,
  • the third movable part includes a first part of a third movable part and a second part of a third movable part.
  • the first part of the third movable part and the second part of the third movable part can rotate relative to each other.
  • the mating guide bar and the third movable part are slidably connected to the first part of the third movable part, and the third guide bar and the third movable part are slidably connected to the second part of the third movable part,
  • the bridge assembly has at least two translational degrees of freedom and three rotational degrees of freedom.
  • the first guide bar is located at an intermediate position of the positioning plate, so that the positioning plate is axisymmetric with respect to the extension axis where the first guide bar is located.
  • the first guide bar, the second guide bar, the first paired guide bar, and the second paired guide bar are all parallel to a virtual plane.
  • the mechanism further includes a guide member, the extending direction of the guide member is perpendicular to the virtual plane, and the two brackets are both slidably connected to the guide member.
  • the distance between the two brackets can be adjusted.
  • the bridge assembly includes a bridge first part and a bridge second part that are connected to each other,
  • One of the two positioning plates is connected to the first part of the bridge, and the other is connected to the second part of the bridge,
  • the first part of the bridge and the second part of the bridge can move relative to each other so as to change the distance between the connection points of the two positioning plates and the bridge assembly.
  • the first part of the bridge includes an extension guide, and the second part of the bridge can be guided by the extension guide to slide relative to the first part of the bridge.
  • the first part of the bridge is rotatably connected to the second part of the bridge.
  • two of the brackets are rigidly connected together or integrally formed.
  • a driving member for driving the first movable member and the second movable member to move is installed on the bracket.
  • a driving member for driving the first movable member, the second movable member, and the third movable member to move is mounted on the bracket.
  • the first paired guide bar, the second paired guide bar, and the third paired guide bar form a ring shape, and preferably form a circular ring or an elliptical ring, or
  • the first guide bar, the second guide bar and the third guide bar form a ring shape, and preferably form a circular ring shape or an elliptical ring shape.
  • the structure is compact, the moving inertia of the moving parts connected with the bridge assembly is small, and precise positioning can be realized in a limited space.
  • Fig. 1 shows a multi-degree-of-freedom parallel mechanism according to the first embodiment of the present invention.
  • Figures 2 and 3 show two variations of the multi-degree-of-freedom parallel mechanism according to the first embodiment of the present invention.
  • Fig. 4 shows a multi-degree-of-freedom parallel mechanism according to the second embodiment of the present invention.
  • Fig. 5 shows a multi-degree-of-freedom parallel mechanism according to a third embodiment of the present invention.
  • Fig. 6 shows a modification of the multi-degree-of-freedom parallel mechanism according to the third embodiment of the present invention.
  • 3 supporting components 30 positioning plate; 301 first guide bar; 302 second guide bar; 303 third guide bar;
  • the present invention uses the three-dimensional coordinate system shown in FIG. 1 to illustrate the positional relationship of each component. It should be understood that the position relationship defined according to the x, y, and z axes in the present invention is relative, and the coordinate axis can be rotated in space according to the actual application of the device.
  • the parallel mechanism according to the first embodiment of the present invention includes two support assemblies 3, a bridge assembly 2 connecting the two support assemblies 3 and a guide 1.
  • Each support assembly 3 includes a positioning plate 30, a first movable part 31, a second movable part 32 and a bracket 34.
  • the first movable part 31 and the second movable part 32 are used to connect the positioning plate 30 and the bracket 34 so that the position of the positioning plate 30 relative to the bracket 34 can be adjusted in a controlled manner.
  • the guide 1 is a guide rail extending in the z direction (also referred to as the first direction).
  • the two support assemblies 3 are spaced apart in the z direction.
  • the bracket 34 is slidably mounted on the guide 1.
  • the bracket 34 includes a first paired guide bar 341 extending in the y direction and a second paired guide bar 342 extending in the x direction.
  • the guide 1 may also be a guide with an extension component in the z-direction, and the first mating bar 341 may not extend in the y-direction but with an extension component in the y-direction, and the second mating bar 342 may also have an extension component in the y direction. It may not extend in the x direction but have an extension component in the x direction.
  • the first paired guide bar 341 and the second paired guide bar 342 are not parallel.
  • the positioning plate 30 includes a first guide bar 301 and a second guide bar 302, the first guide bar 301 is parallel to the second mating guide bar 342, and the second guide bar 302 is parallel to the first mating guide bar 341.
  • first movable part 31 is slidably connected to the first mating guide bar 341, the other end is slidably connected to the first guide bar 301, one end of the second movable part 32 is slidably connected to the second mating guide bar 342, and the other end is slidably connected to The second guide bar 302.
  • the displacement of the first movable part 31 and the second movable part 32 will pass through the first movable part 31 and the second movable part 32.
  • the guide bar 301 and the second guide bar 302 are transmitted to the positioning plate 30 to determine the position of the positioning plate 30 on the xoy plane, so that the positioning plate 30 has translational freedom in the x direction and translational freedom in the y direction.
  • two driving parts (such as linear motors, air cylinders or hydraulic cylinders) that drive the movement of the first movable part 31 and the second movable part 32 are mounted on the bracket 34 instead of the positioning plate 30, so as to reduce the movement inertia of the positioning plate 30.
  • the first guide bar 301 is located at the middle position of the positioning plate 30 so that the positioning plate 30 is axisymmetric with respect to the extension axis where the first guide bar 301 is located. This enables the positioning plate 30 to have a larger range of motion, and the stability of the support assembly 3 is good.
  • the bridge assembly 2 is rotatably connected with each positioning plate 30, so that the bridge assembly 2 rotates relative to each positioning plate 30 around two non-parallel axes a1 and a2, and the axis a1 and the axis a2 are not parallel to the z direction.
  • These two non-parallel rotation axes enable the bridge assembly 2 to have a degree of freedom of rotation about the x direction and a degree of freedom of rotation about the y direction.
  • the axis a1 is perpendicular to the axis a2.
  • the axis a1 is parallel to the x axis and the axis a2 is parallel to the y axis.
  • the two brackets 34 in this embodiment are located at The position of the guide 1 can be changed individually.
  • the meaning of "single change” here is that the distance between the two brackets 34 in the z direction can be changed.
  • the control method of this individual change may be, for example, determining that one of the brackets 34 is located at the position of the guide 1 and the other bracket 34 is used as a follower.
  • brackets 34 can also move along the guide 1 so that the bridge assembly 2 has a degree of freedom of translation along the z direction.
  • FIG. 2 shows a modification of the first embodiment, and the change mainly lies in the arrangement of the bridge assembly 2.
  • the bridge assembly 2 includes a bridge first part 21 and a bridge second part 22.
  • One of the two positioning plates 30 is rotatably connected with the bridge first part 21, and the other is connected with the bridge second part. 22 Rotate the connection.
  • the first part 21 of the bridge includes, for example, an extension guide 211 in the form of a rail, and the second part 22 can slide along the extension guide 211.
  • the bridge first member 21 and the bridge second member 22 can slide relative to each other to change the distance in the z direction between the connection points of the two positioning plates 30 and the bridge assembly 2, in this embodiment, between the two brackets 34
  • the distance between the two brackets in the z direction may be determined, and the two brackets 34 may be connected together by rigid parts or formed integrally, so as to increase the structural strength of the bracket 34.
  • FIG. 3 shows another modification of the bridge assembly 2 of the first embodiment.
  • the bridge assembly 2 includes a first bridge part 21 and a second bridge part 22 that can rotate with each other.
  • One of the two positioning plates 30 is rotatably connected with the bridge first part 21, and the other is rotatably connected with the bridge second part 22.
  • the second embodiment of the multi-degree-of-freedom parallel mechanism of the present invention will be described with reference to FIG. 4.
  • the second embodiment is a modification of the first embodiment, and the bridge assembly 2 of the multi-degree-of-freedom parallel mechanism according to the second embodiment may also have a degree of freedom to rotate around the z-axis.
  • the following mainly introduces the differences between the second embodiment and the first embodiment.
  • the first movable part 31 includes a first movable part first part 311 that can relatively rotate around the z-axis and a first movable part second part 312, and the second movable part 32 includes a first movable part that can relatively rotate around the z-axis.
  • the first movable part, the first part 311 is configured to slide along the first mating guide bar 341
  • the first movable part, the second part 312 is configured to slide along the first guide bar 301
  • the second movable part, the first part 321 is configured to Sliding along the second mating guide bar 342
  • the second movable member second part 322 is configured to slide along the second guide bar 302.
  • the two sub-components of the movable part can rotate relatively, in this embodiment, it is not necessary to make the first guide bar 301 parallel to the second paired guide bar 342, and it is not necessary to make the second guide bar 302 parallel to the first paired guide bar 342.
  • Bar 341 only needs to meet: the first guide bar 301 has a non-parallel state with the first paired guide bar 341 during the movement, and the second guide bar 302 has a non-parallel state with the second paired guide bar 342 during the movement .
  • the first movable part and the second part 312 are driven (for example, a drive motor is installed between the first movable part and the second part 312 and the first movable part 311) to rotate relative to the first movable part and the first part 311.
  • the second movable part 322 rotates with respect to the first part 321 of the second movable part (the driving part may not be provided between the second movable part 322 and the first movable part 321).
  • the active mechanism in the multi-degree-of-freedom parallel mechanism includes: any one of the two brackets 34 moves in translation along the guide 1, each first movable part 31 of the two support assemblies 3 moves in translation along the first paired guide bar 341, and each first movable part 31 moves in translation along the first paired guide bar 341.
  • the two movable parts 32 move in translation along the second mating guide bar 342, and the second part of any movable part in each support assembly 3 rotates relative to the first part of the movable part (for example, the first movable part and the second part 312 rotates relative to the first movable part 311).
  • the third embodiment of the multi-degree-of-freedom parallel mechanism of the present invention will be described with reference to FIGS. 5 to 6.
  • the third embodiment is a modification of the second embodiment, and the bridge assembly 2 of the multi-degree-of-freedom parallel mechanism according to the third embodiment has a degree of freedom to rotate around the z-axis.
  • the following mainly introduces the difference between the third embodiment and the second embodiment.
  • the support assembly 3 further includes a third movable member 33
  • the positioning plate 30 further includes a third guide bar 303
  • the bracket 34 further includes a third matching guide bar 343.
  • At least two of the first guide bar 301, the second guide bar 302, and the third guide bar 303 are not parallel, and at least two of the first paired guide bar 341, the second paired guide bar 342, and the third paired guide bar 343 Not parallel.
  • the third movable member 33 includes a third movable member first member 331 and a third movable member second member 332 that can relatively rotate around the z-axis, and the third movable member first member 331 is configured to slide along the third mating guide bar 343 , The third movable part and the second part 332 are configured to slide along the third guide bar 303.
  • the rotation of the first part 331 relative to the third movable part does not require a separate rotation driving part. These three rotations follow the translation of the first movable part 31, the second movable part 32 and the third movable part 33. Ground.
  • the three guide bars (301, 302, 303) and the three mating guide bars (341, 342, 343) do not have to be parallel.
  • the first paired guide bar 341, the second paired guide bar 342, and the third paired guide bar 343 may be formed in a ring shape (including, for example, polygonal, circular, or elliptical);
  • the first guide bar 301, the second guide bar 302, and the third guide bar 303 may form a ring shape.
  • the first guide bar 301 has a non-parallel state with the first paired guide bar 341 during the movement
  • the second guide bar 302 has a non-parallel state with the second paired guide bar 342 during the movement.
  • the active mechanism in the multi-degree-of-freedom parallel mechanism includes: any one of the two brackets 34 moves in translation along the guide 1, each first movable member 31 of the two support assemblies 3 moves in translation along the first paired guide bar 341, and each second The movable parts 32 move in translation along the second paired guide bar 342, and each third movable part 33 moves in translation along the third paired guide bar 343.
  • the present invention realizes at least two translational and two rotational degrees of freedom of the bridge assembly 2 connected with the translational assembly through two support assemblies 3 that realize the translational function; when the movable parts (the first movable part 31, the second movable part 32 and the third movable part 33) when one part can rotate relative to the other part, the bridge assembly 2 has two translational and three rotation degrees of freedom; when the two brackets 34 can still slide along the guide 1, the bridge assembly 2 has three degrees of freedom of translation and three rotations.
  • the structure of the parallel mechanism is simple, does not need to be symmetrical, and has strong space adaptability.
  • the moving drive especially the drive that drives the movement of the first moving piece 31, the second moving piece 32 and the third moving piece 33, may not be fixed to the positioning plate 30 that realizes complex movement, reducing the movement of the mechanism
  • the movement inertia of the components helps to improve the control of the movement accuracy of the bridge assembly 2.
  • the support assembly 3 and the bridge assembly 2 of the parallel mechanism according to the present invention have multiple alternative implementation structures, which can adapt to different installation environments.
  • the parallel mechanism according to the present invention is preferably used as a part of a surgical robot.
  • the z direction preferably represents the vertical direction, and surgical instruments can be added to the bridge assembly 2; however, the present invention is not limited to this, according to The parallel mechanism of the present invention can also provide guidance for other instruments.
  • the terminal piece When a terminal piece such as a surgical instrument is added to the bridge assembly 2, the terminal piece can also be displaced in the z direction relative to the bridge assembly 2. At this time, the translational freedom of the terminal piece in the z direction does not need to pass The sliding of the bracket 34 relative to the guide 1 is obtained.
  • the guide 1, the guide bar (301, 302, 303), the mating guide bar (341, 342, 343) and the extension guide of the bridge assembly 2 of the present invention are not limited to the form of the guide rail as shown in the figure , It can also be other forms of guides such as guide grooves or guide rods.
  • bracket 34 and the positioning plate 30 of the same supporting assembly 3 may be non-parallel, or the brackets 34 or positioning plates 30 of the two supporting assemblies 3 may be non-parallel.
  • the bridge assembly 2 can be It has better adaptability at certain angles, and in this case, the parallel mechanism may include two non-parallel guide members, and the two brackets 34 may be respectively arranged on one guide member.

Abstract

一种多自由度并联机构,其包括桥组件(2)和两个支撑组件(3),每个支撑组件(3)均包括定位板(30)、第一活动件(31)、第二活动件(32)和支架(34),定位板(30)包括第一导条(301)和第二导条(302),支架(34)包括第一配对导条(341)和第二配对导条(342),第一活动件(31)连接第一导条(301)和第一配对导条(341),第二活动件(32)连接第二导条(302)和第二配对导条(342),每个定位板(30)均与桥组件(2)转动连接、使桥组件(2)能够相对于任一个定位板(30)绕两个彼此不平行的轴线转动。所述多自由度并联机构结构紧凑、与桥组件相连的运动部件的运动惯量小,能在有限空间内实现精准的定位。

Description

多自由度并联机构 技术领域
本发明涉及机器人领域,尤其涉及并联机器人的多自由度并联机构。
背景技术
从机构学的角度可以将机器人分为串联机器人和并联机器人两大类,相比于串联机器人,并联机器人具有刚度大、承载能力强、精度高和末端件惯性小等优势。
现有的并联机器人多采用完全对称设计,导致机器人整体体积较大,不能较好地适应较小的操作空间、或是不能使多台机器人在有限空间内同时布置。
最常见的并联机器人多为六自由度,例如专利公开US3295224A公开了一种用于运动模拟的并联机器人。然而并联机器人具有完全六自由度的代价往往是每个自由度的运动空间被大致均分了,对于某些在特定方向具有更大运动空间的需求则不能很好满足。因此,人们根据特定需求限制了某些方向的自由度,换取其他方向更大的运动空间,这方面应用最广的是用于拾取操作的并联机器人,多数提供了三平动一转动的自由度,例如,专利CN105729450B公开了一种四自由度并联机构,该机构能实现动平台的三平动一转动的自由度,而不能实现动平台绕y轴或绕x轴的转动。又如,专利公开WO2009053506A1公开了一种四自由度的并联机器人,其支撑部使用了多个不共面的四连杆机构,这些不共面的四连杆机构的运动互相制约,使得终端的动平台不能实现两平动两转动的自由度。
然而,在例如手术机器人或者机床等应用中,需要控制刀具至少两平动两转动的自由度,上述提供三平动一转动的并联机构并不适用。
专利申请CN201810316148.4提供了一种具有至少两平动两转动的自由 度的导向机构。该导向机构包括两个用于支撑桥组件并给桥组件定位的活动组件,然而,由于活动组件将两个不同方向上的运动叠加在一起,控制运动的电机也被集成于活动组件,因此活动组件的运动惯量较大。
发明内容
本发明的目的在于克服或至少减轻上述现有技术存在的不足,提供一种多自由度并联机构。
本发明提供一种多自由度并联机构,其包括桥组件和两个支撑组件,其中,
每个所述支撑组件均包括定位板、第一活动件、第二活动件和支架,
所述定位板包括不平行的第一导条和第二导条,所述支架包括不平行的第一配对导条和第二配对导条,
所述第一活动件连接所述第一导条和所述第一配对导条,所述第二活动件连接所述第二导条和所述第二配对导条,
所述第一活动件能够受驱动地沿所述第一配对导条运动,所述第二活动件能够受驱动地沿所述第二配对导条运动,且所述第一活动件在与所述定位板发生相对运动的过程中受所述第一导条的导引,所述第二活动件在与所述定位板发生相对运动的过程中受所述第二导条的导引,所述第一导条在运动过程中具有与所述第一配对导条不平行的状态,所述第二导条在运动过程中具有与所述第二配对导条不平行的状态,
两个定位板在第一方向上间隔开,每个定位板均与桥组件转动连接、使得桥组件能够相对于任一个定位板绕两个彼此不平行的轴线转动,轴线与第一方向不平行,优选地,桥组件能够相对于任一个定位板绕两个互相垂直的轴线转动,
所述桥组件具有至少两个平动自由度和两个转动自由度。
在至少一个实施方式中,所述第一导条平行于所述第二配对导条,所述第二导条平行于所述第一配对导条。
在至少一个实施方式中,所述第一导条垂直于所述第二导条。
在至少一个实施方式中,所述第一活动件包括第一活动件第一部件和第一活动件第二部件,所述第一活动件第一部件和所述第一活动件第二部件能够受驱动地相对转动,
所述第二活动件包括第二活动件第一部件和第二活动件第二部件,所述第二活动件第一部件和所述第二活动件第二部件能够相对转动,
所述第一配对导条与所述第一活动件连接于所述第一活动件第一部件,所述第一导条与所述第一活动件连接于所述第一活动件第二部件,
所述第二配对导条与所述第二活动件连接于所述第二活动件第一部件,所述第二导条与所述第二活动件连接于所述第二活动件第二部件,
所述桥组件具有至少两个平动自由度和三个转动自由度。
在至少一个实施方式中,所述支撑组件还包括第三活动件,所述定位板还包括第三导条,所述支架还包括第三配对导条,
所述第一活动件包括第一活动件第一部件和第一活动件第二部件,所述第一活动件第一部件和所述第一活动件第二部件能够相对转动,所述第一配对导条与所述第一活动件滑动连接于所述第一活动件第一部件,所述第一导条与所述第一活动件滑动连接于所述第一活动件第二部件,
所述第二活动件包括第二活动件第一部件和第二活动件第二部件,所述第二活动件第一部件和所述第二活动件第二部件能够相对转动,所述第二配对导条与所述第二活动件滑动连接于所述第二活动件第一部件,所述第二导条与所述第二活动件滑动连接于所述第二活动件第二部件,
所述第三活动件包括第三活动件第一部件和第三活动件第二部件,所述 第三活动件第一部件和所述第三活动件第二部件能够相对转动,所述第三配对导条与所述第三活动件滑动连接于所述第三活动件第一部件,所述第三导条与所述第三活动件滑动连接于所述第三活动件第二部件,
所述桥组件具有至少两个平动自由度和三个转动自由度。
在至少一个实施方式中,所述第一导条位于所述定位板的中间位置、使得所述定位板相对于所述第一导条所在的延伸轴线呈轴对称。
在至少一个实施方式中,所述第一导条、所述第二导条、所述第一配对导条和所述第二配对导条均平行于一个虚拟平面。
在至少一个实施方式中,所述机构还包括导向件,所述导向件的延伸方向垂直于所述虚拟平面,两个所述支架均滑动连接于所述导向件。
在至少一个实施方式中,两个所述支架之间的距离能够被调整。
在至少一个实施方式中,所述桥组件包括互相连接的桥第一部件和桥第二部件,
两个所述定位板中的一个与所述桥第一部件相连、另一个与所述桥第二部件相连,
所述桥第一部件和所述桥第二部件能相对运动从而改变两个所述定位板与所述桥组件的连接点之间的距离。
在至少一个实施方式中,所述桥第一部件包括伸展导引件,所述桥第二部件能受所述伸展导引件导引地相对于所述桥第一部件滑动。
在至少一个实施方式中,所述桥第一部件与所述桥第二部件转动连接。
在至少一个实施方式中,两个所述支架刚性地连接在一起或一体形成。
在至少一个实施方式中,用于驱动所述第一活动件和所述第二活动件运动的驱动件安装于所述支架。
在至少一个实施方式中,用于驱动所述第一活动件、所述第二活动件和 所述第三活动件运动的驱动件安装于所述支架。
在至少一个实施方式中,所述第一配对导条、所述第二配对导条和所述第三配对导条形成环形、且优选地形成圆环形或椭圆环形,或者
所述第一导条、所述第二导条和所述第三导条形成环形、且优选地形成圆环形或椭圆环形。
根据本发明的多自由度并联机构,其结构紧凑、与桥组件相连的运动部件的运动惯量小,能在有限空间内实现精准的定位。
附图说明
图1示出了根据本发明的第一实施方式的多自由度并联机构。
图2和图3示出了根据本发明的第一实施方式的多自由度并联机构的两个变型。
图4示出了根据本发明的第二实施方式的多自由度并联机构。
图5示出了根据本发明的第三实施方式的多自由度并联机构。
图6示出了根据本发明的第三实施方式的多自由度并联机构的一个变型。
附图标记说明
1导向件;2桥组件;21桥第一部件;22桥第二部件;211伸展导引件;
3支撑组件;30定位板;301第一导条;302第二导条;303第三导条;
31第一活动件;311第一活动件第一部件;312第一活动件第二部件;
32第二活动件;321第二活动件第一部件;322第二活动件第二部件;
33第三活动件;331第三活动件第一部件;332第三活动件第二部件;
34支架;341第一配对导条;342第二配对导条;343第三配对导条;
a1、a2转动轴线。
具体实施方式
下面参照附图描述本发明的示例性实施方式。应当理解,这些具体的说明仅用于示教本领域技术人员如何实施本发明,而不用于穷举本发明的所有可行的方式,也不用于限制本发明的范围。
若非特殊说明,本发明以图1所示的三维坐标系来说明各部件的位置关系。应当理解,本发明中根据x、y和z轴定义的位置关系是相对的,根据装置的实际应用场合,坐标轴可在空间内旋转。
(第一实施方式)
参照图1至3首先介绍本发明的多自由度并联机构的第一实施方式及其相关的变型方式。
参照图1,根据本发明的第一实施方式的并联机构包括两个支撑组件3、连接两个支撑组件3的桥组件2和导向件1。
每一个支撑组件3包括定位板30、第一活动件31、第二活动件32和支架34。第一活动件31和第二活动件32用于连接定位板30和支架34,使得定位板30相对于支架34的位置能被受控地调节。
在本实施方式中,导向件1为沿z方向(也称第一方向)延伸的导轨。两个支撑组件3在z方向上间隔开。支架34滑动安装于导向件1。支架34包括沿y方向延伸的第一配对导条341和沿x方向延伸的第二配对导条342。应当理解,导向件1也可以是在z方向上具有延伸分量的导向件,第一配对导条341也可以不沿y方向延伸而是在y方向上具有延伸分量,第二配对导条342也可以不沿x方向延伸而是在x方向上具有延伸分量。第一配对导条341与第二配对导条342不平行。
定位板30包括第一导条301和第二导条302,第一导条301平行于第二配对导条342,第二导条302平行于第一配对导条341。
第一活动件31的一端滑动连接于第一配对导条341、另一端滑动连接于第一导条301,第二活动件32的一端滑动连接于第二配对导条342、另一端滑动连接于第二导条302。
当分别驱动第一活动件31沿第一配对导条341运动、驱动第二活动件32沿第二配对导条342运动时,第一活动件31和第二活动件32的位移将通过第一导条301和第二导条302传递给定位板30,从而确定定位板30在xoy平面的位置,使得定位板30具有在x方向上的平动自由度和y方向上的平动自由度。
优选地,驱动第一活动件31和第二活动件32运动的两个驱动件(例如直线电机、气缸或液压缸)安装于支架34而非定位板30,从而减轻定位板30的运动惯量。
优选地,第一导条301位于定位板30的中间位置,使得定位板30相对于第一导条301所在的延伸轴线呈轴对称。这使得定位板30能有较大的运动范围,且使支撑组件3的稳定性好。
桥组件2与每一个定位板30转动连接,使得桥组件2相对于每个定位板30绕两个彼此不平行的轴线a1和a2转动,且轴线a1和轴线a2均不与z方向平行。这两个不平行的转动轴线使得桥组件2具有绕x方向的转动自由度和绕y方向的转动自由度。优选地,轴线a1垂直于轴线a2。优选地,当两个定位板30的运动位置同步时、即两个定位板30的在xoy平面内的位置相同时,轴线a1平行于x轴、轴线a2平行于y轴。
由于在两个定位板30的平动过程中,两个定位板30与桥组件2的连接点之间的距离会发生变化,为了适应该距离的变化,本实施方式中的两个支架34位于导向件1的位置能被单独改变。此处“单独改变”的含义在于,两个 支架34之间的在z方向上的距离是可以变化的。这种单独改变的控制方法例如可以是确定其中一个支架34位于导向件1的位置而使另一个支架34作为随动件。
应当理解,两个支架34还可以沿导向件1运动以使得桥组件2具有沿z方向平动的自由度。
图2示出了第一实施方式的一种变型方式,改变主要在于桥组件2的设置方式。
在图2所示的实施方式中,桥组件2包括桥第一部件21和桥第二部件22,两个定位板30中的一个与桥第一部件21转动连接、另一个与桥第二部件22转动连接。桥第一部件21包括例如导轨形式的伸展导引件211,第二部件22能够沿伸展导引件211滑动。
由于桥第一部件21和桥第二部件22能够相对滑动从而改变两个定位板30与桥组件2的连接点之间在z方向上的距离,因此在该实施方式中,两个支架34之间在z方向上的距离可以是确定的,两个支架34例如可以由刚性件连接在一起或是一体形成,从而增加支架34的结构强度。
图3示出了第一实施方式的桥组件2的另一种变型方式。
在图3所示的实施方式中,桥组件2包括能互相转动的桥第一部件21和桥第二部件22。
两个定位板30中的一个与桥第一部件21转动连接、另一个与桥第二部件22转动连接。当两个定位板30在xoy平面内的位置改变,两个定位板30与桥组件2的两个连接点之间的距离发生变化,桥第一部件21与桥第二部件22可以通过随动地转动来适应这种距离的变化。
(第二实施方式)
参照图4介绍本发明的多自由度并联机构的第二实施方式。第二实施方 式是第一实施方式的变型,根据第二实施方式的多自由度并联机构的桥组件2还可以具有绕z轴转动的自由度。以下主要介绍第二实施方式与第一实施方式的不同之处。
在本实施方式中,第一活动件31包括能绕z轴相对转动的第一活动件第一部件311和第一活动件第二部件312,第二活动件32包括能绕z轴相对转动的第二活动件第一部件321和第二活动件第二部件322。第一活动件第一部件311被配置为沿第一配对导条341滑动,第一活动件第二部件312被配置为沿第一导条301滑动,第二活动件第一部件321被配置为沿第二配对导条342滑动,第二活动件第二部件322被配置为沿第二导条302滑动。
由于活动件的两个子部件能相对转动,因此在本实施方式中,不必须使第一导条301平行于第二配对导条342,且不必须使第二导条302平行于第一配对导条341,只需要满足:第一导条301在运动过程中具有与第一配对导条341不平行的状态,第二导条302在运动过程中具有与第二配对导条342不平行的状态。
第一活动件第二部件312受驱动地(例如在第一活动件第二部件312和第一活动件第一部件311之间安装驱动电机)相对于第一活动件第一部件311转动,第二活动件第二部件322随动地(第二活动件第二部件322和第二活动件第一部件321之间可以不设置驱动件)相对于第二活动件第一部件321转动。
总结而言,在本实施方式中,为了实现桥组件2在x、y和z三个方向上的平动自由度和绕这三个方向的转动自由度,该多自由度并联机构中的主动件及其运动方式包括:两个支架34中的任一个沿导向件1平动,两个支撑组件3中的每一个第一活动件31沿第一配对导条341的平动、每一个第二活动件32沿第二配对导条342平动,以及每个支撑组件3中的任一个活动部件的第二部件相对于该活动部件的第一部件的转动(例如第一活动件第二部件312相对 于第一活动件第一部件311转动)。
(第三实施方式)
参照图5至6介绍本发明的多自由度并联机构的第三实施方式。第三实施方式是第二实施方式的变型,根据第三实施方式的多自由度并联机构的桥组件2具有绕z轴转动的自由度。以下主要介绍第三实施方式与第二实施方式的区别。
在本实施方式中,支撑组件3还包括第三活动件33,定位板30还包括第三导条303,支架34还包括第三配对导条343。
第一导条301、第二导条302和第三导条303中的至少两者不平行,第一配对导条341、第二配对导条342和第三配对导条343中的至少两者不平行。
第三活动件33包括能绕z轴相对转动的第三活动件第一部件331和第三活动件第二部件332,第三活动件第一部件331被配置为沿第三配对导条343滑动,第三活动件第二部件332被配置为沿第三导条303滑动。
第一活动件第二部件312相对于第一活动件第一部件311的转动、第二活动件第二部件322相对于第二活动件第一部件321的转动以及第三活动件第二部件332相对于第三活动件第一部件331的转动均不需单独的转动驱动件,这三个转动是跟着第一活动件31、第二活动件32和第三活动件33的平动而随动地进行的。
由于每一个活动件的两个子部件能够相对转动,因此在本实施方式中,三个导条(301、302、303)与三个配对导条(341、342、343)之间不必须满足平行配对的设置方式,例如参照图6。应当理解,为了提高支架34的结构强度并节约空间,第一配对导条341、第二配对导条342和第三配对导条343可以形成环形(包括例如多边形,圆形或椭圆形);又或者,第一导条301、第二导条302和第三导条303可以形成环形。需要满足的是:第一导条301在 运动过程中具有与第一配对导条341不平行的状态,第二导条302在运动过程中具有与第二配对导条342不平行的状态。
总结而言,在本实施方式中,为了实现桥组件2在x、y和z三个方向上的平动自由度和绕这三个方向的转动自由度,该多自由度并联机构中的主动件及其运动方式包括:两个支架34中的任一个沿导向件1平动,两个支撑组件3中的每一个第一活动件31沿第一配对导条341平动、每一个第二活动件32沿第二配对导条342平动、每一个第三活动件33沿第三配对导条343平动。
应当理解,上述实施方式及其部分方面或特征可以适当地组合。
下面简单说明本发明的上述实施方式的部分有益效果。
(i)本发明通过两个实现平移功能的支撑组件3,实现了连接平移组件的桥组件2的至少两平动两转动的自由度;当活动件(第一活动件31、第二活动件32和第三活动件33)的一个部件相对于另一个部件能够转动时,桥组件2具有两平动和三转动的自由度;当两个支架34还能够沿导向件1滑动时,桥组件2具有三平动和三转动的自由度。并联机构的结构简单,且不需是对称的,空间适应能力强。
(ii)运动的驱动件,特别是驱动第一活动件31、第二活动件32和第三活动件33运动的驱动件可以不固定于实现复杂运动的定位板30,减小了机构的运动部件的运动惯量,有助于提高对桥组件2的运动精度的控制。
(iii)根据本发明的并联机构的支撑组件3和桥组件2均有多种可替代的实现结构,能够适应不同的安装环境。
应当理解,上述实施方式仅是示例性的,不用于限制本发明。本领域技术人员可以在本发明的教导下对上述实施方式做出各种变型和改变,而不脱离本发明的范围。例如,
(i)根据本发明的并联机构优选用作手术机器人的一部分,在这种应用下,z方向优选代表竖直方向,并且可以在桥组件2加设手术器械;然而本 发明不限于此,根据本发明的并联机构也可以为其他器械提供导向。
当给桥组件2加设例如手术器械的终端件时,终端件也可以是相对于桥组件2能够在z方向上发生位移,此时终端件在z方向上的平动自由度可以不需要通过支架34相对于导向件1的滑动获得。
(ii)本发明的导向件1、导条(301、302、303)、配对导条(341、342、343)和桥组件2的伸展导引件不限于是如图所示的导轨的形式,也可以是例如导槽或导杆等其它形式的导引件。
(iii)同一个支撑组件3的支架34和定位板30可以是不平行的,或者两个支撑组件3的支架34或定位板30可以是不平行的,这种特殊情况下,桥组件2可以在某些角度下具有更好的适应性,且这种情况下,并联机构可以包括两个不平行的导向件,两个支架34可以分别设置于一个导向件。

Claims (16)

  1. 一种多自由度并联机构,其包括桥组件(2)和两个支撑组件(3),其中,
    每个所述支撑组件(3)均包括定位板(30)、第一活动件(31)、第二活动件(32)和支架(34),
    所述定位板(30)包括不平行的第一导条(301)和第二导条(302),所述支架(34)包括不平行的第一配对导条(341)和第二配对导条(342),
    所述第一活动件(31)连接所述第一导条(301)和所述第一配对导条(341),所述第二活动件(32)连接所述第二导条(302)和所述第二配对导条(342),
    所述第一活动件(31)能够受驱动地沿所述第一配对导条(341)运动,所述第二活动件(32)能够受驱动地沿所述第二配对导条(342)运动,且所述第一活动件(31)在与所述定位板(30)发生相对运动的过程中受所述第一导条(301)的导引,所述第二活动件(32)在与所述定位板(30)发生相对运动的过程中受所述第二导条(302)的导引,所述第一导条(301)在运动过程中具有与所述第一配对导条(341)不平行的状态,所述第二导条(302)在运动过程中具有与所述第二配对导条(342)不平行的状态,
    两个所述定位板(30)在第一方向(z)上间隔开,每个所述定位板(30)均与所述桥组件(2)转动连接、使得所述桥组件(2)能够相对于任一个所述定位板(30)绕两个彼此不平行的轴线(a1,a2)转动,所述轴线(a1,a2)与所述第一方向(z)不平行,优选地,所述桥组件(2)能够相对于任一个所述定位板(30)绕两个互相垂直的轴线(a1,a2)转动,
    所述桥组件(2)具有至少两个平动自由度和两个转动自由度。
  2. 根据权利要求1所述的多自由度并联机构,其特征在于,所述第一导条(301)平行于所述第二配对导条(342),所述第二导条(302)平行于所 述第一配对导条(341)。
  3. 根据权利要求2所述的多自由度并联机构,其特征在于,所述第一导条(301)垂直于所述第二导条(302)。
  4. 根据权利要求1所述的多自由度并联机构,其特征在于,所述第一活动件(31)包括第一活动件第一部件(311)和第一活动件第二部件(312),所述第一活动件第一部件(311)和所述第一活动件第二部件(312)能够受驱动地相对转动,
    所述第二活动件(32)包括第二活动件第一部件(321)和第二活动件第二部件(322),所述第二活动件第一部件(321)和所述第二活动件第二部件(322)能够相对转动,
    所述第一配对导条(341)与所述第一活动件(31)连接于所述第一活动件第一部件(311),所述第一导条(301)与所述第一活动件(31)连接于所述第一活动件第二部件(312),
    所述第二配对导条(342)与所述第二活动件(32)连接于所述第二活动件第一部件(321),所述第二导条(302)与所述第二活动件(32)连接于所述第二活动件第二部件(322),
    所述桥组件(2)具有至少两个平动自由度和三个转动自由度。
  5. 根据权利要求1所述的多自由度并联机构,其特征在于,所述支撑组件(3)还包括第三活动件(33),所述定位板(30)还包括第三导条(303),所述支架(34)还包括第三配对导条(343),
    所述第一活动件(31)包括第一活动件第一部件(311)和第一活动件第二部件(312),所述第一活动件第一部件(311)和所述第一活动件第二部件(312)能够相对转动,所述第一配对导条(341)与所述第一活动件(31)滑动连接于所述第一活动件第一部件(311),所述第一导条(301)与所述 第一活动件(31)滑动连接于所述第一活动件第二部件(312),
    所述第二活动件(32)包括第二活动件第一部件(321)和第二活动件第二部件(322),所述第二活动件第一部件(321)和所述第二活动件第二部件(322)能够相对转动,所述第二配对导条(342)与所述第二活动件(32)滑动连接于所述第二活动件第一部件(321),所述第二导条(302)与所述第二活动件(32)滑动连接于所述第二活动件第二部件(322),
    所述第三活动件(33)包括第三活动件第一部件(331)和第三活动件第二部件(332),所述第三活动件第一部件(331)和所述第三活动件第二部件(332)能够相对转动,所述第三配对导条(343)与所述第三活动件(33)滑动连接于所述第三活动件第一部件(331),所述第三导条(303)与所述第三活动件(33)滑动连接于所述第三活动件第二部件(332),
    所述桥组件(2)具有至少两个平动自由度和三个转动自由度。
  6. 根据权利要求1至5中任一项所述的多自由度并联机构,其特征在于,所述第一导条(301)位于所述定位板(30)的中间位置、使得所述定位板(30)相对于所述第一导条(301)所在的延伸轴线呈轴对称。
  7. 根据权利要求1至5中任一项所述的多自由度并联机构,其特征在于,所述第一导条(301)、所述第二导条(302)、所述第一配对导条(341)和所述第二配对导条(342)均平行于一个虚拟平面(xoy)。
  8. 根据权利要求7所述的多自由度并联机构,其特征在于,所述机构还包括导向件(1),所述导向件(1)的延伸方向垂直于所述虚拟平面(xoy),两个所述支架(34)均滑动连接于所述导向件(1)。
  9. 根据权利要求1至5中任一项所述的多自由度并联机构,其特征在于,两个所述支架(34)之间的距离能够被调整。
  10. 根据权利要求1至5中任一项所述的多自由度并联机构,其特征在于, 所述桥组件(2)包括互相连接的桥第一部件(21)和桥第二部件(22),
    两个所述定位板(30)中的一个与所述桥第一部件(21)相连、另一个与所述桥第二部件(22)相连,
    所述桥第一部件(21)和所述桥第二部件(22)能相对运动从而改变两个所述定位板(30)与所述桥组件(2)的连接点之间的距离。
  11. 根据权利要求10所述的多自由度并联机构,其特征在于,所述桥第一部件(21)包括伸展导引件(211),所述桥第二部件(22)能受所述伸展导引件(211)导引地相对于所述桥第一部件(21)滑动。
  12. 根据权利要求10所述的多自由度并联机构,其特征在于,所述桥第一部件(21)与所述桥第二部件(22)转动连接。
  13. 根据权利要求10所述的多自由度并联机构,其特征在于,两个所述支架(34)刚性地连接在一起或一体形成。
  14. 根据权利要求1至4中任一项所述的多自由度并联机构,其特征在于,用于驱动所述第一活动件(31)和所述第二活动件(32)运动的驱动件安装于所述支架(34)。
  15. 根据权利要求5所述的多自由度并联机构,其特征在于,用于驱动所述第一活动件(31)、所述第二活动件(32)和所述第三活动件(33)运动的驱动件安装于所述支架(34)。
  16. 根据权利要求5所述的多自由度并联机构,其特征在于,所述第一配对导条(341)、所述第二配对导条(342)和所述第三配对导条(343)形成环形、且优选地形成圆环形或椭圆环形,或者
    所述第一导条(301)、所述第二导条(302)和所述第三导条(303)形成环形、且优选地形成圆环形或椭圆环形。
PCT/CN2019/114989 2019-11-01 2019-11-01 多自由度并联机构 WO2021081978A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/114989 WO2021081978A1 (zh) 2019-11-01 2019-11-01 多自由度并联机构
CN201980101874.7A CN114786882B (zh) 2019-11-01 2019-11-01 多自由度并联机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114989 WO2021081978A1 (zh) 2019-11-01 2019-11-01 多自由度并联机构

Publications (1)

Publication Number Publication Date
WO2021081978A1 true WO2021081978A1 (zh) 2021-05-06

Family

ID=75714761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114989 WO2021081978A1 (zh) 2019-11-01 2019-11-01 多自由度并联机构

Country Status (2)

Country Link
CN (1) CN114786882B (zh)
WO (1) WO2021081978A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669694A (zh) * 2005-03-31 2005-09-21 上海交通大学 具有回转工作台的并联式机器人包边系统
CN105058382A (zh) * 2015-08-04 2015-11-18 汕头大学 一种新型混联五轴联动智能焊接平台
US20160158934A1 (en) * 2013-04-23 2016-06-09 Jian Cao Translational parallel manipulators and methods of operating the same
CN105729450A (zh) * 2016-05-09 2016-07-06 中国科学院宁波材料技术与工程研究所 四自由度并联机构
WO2019196422A1 (zh) * 2018-04-10 2019-10-17 苏州迈澜医疗科技有限公司 多自由度并联机构
CN110355738A (zh) * 2018-04-10 2019-10-22 苏州迈澜医疗科技有限公司 多自由度导向机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669694A (zh) * 2005-03-31 2005-09-21 上海交通大学 具有回转工作台的并联式机器人包边系统
US20160158934A1 (en) * 2013-04-23 2016-06-09 Jian Cao Translational parallel manipulators and methods of operating the same
CN105058382A (zh) * 2015-08-04 2015-11-18 汕头大学 一种新型混联五轴联动智能焊接平台
CN105729450A (zh) * 2016-05-09 2016-07-06 中国科学院宁波材料技术与工程研究所 四自由度并联机构
WO2019196422A1 (zh) * 2018-04-10 2019-10-17 苏州迈澜医疗科技有限公司 多自由度并联机构
CN110355738A (zh) * 2018-04-10 2019-10-22 苏州迈澜医疗科技有限公司 多自由度导向机构

Also Published As

Publication number Publication date
CN114786882B (zh) 2023-06-30
CN114786882A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
US11484979B2 (en) Precision tripod motion system with six degrees of freedom
US9694501B2 (en) Parallel link robot
US7707907B2 (en) Planar parallel mechanism and method
CN110355737B (zh) 平移机构和具有该平移机构的多自由度导向机构
US10517683B2 (en) Parallel-type micro robot and surgical robot system having the same
JP2008506545A (ja) 2つのサブアセンブリ手段から構成される可動要素を移動させる手段を備えるパラレルロボット
CN109605339B (zh) 多自由度并联机构
CN115175790A (zh) 多自由度并联机构和并联机构组件
Richard et al. Concept of modular flexure-based mechanisms for ultra-high precision robot design
WO2021081978A1 (zh) 多自由度并联机构
CN110355738B (zh) 多自由度导向机构
WO2021179209A1 (zh) 多自由度并联机构和并联机构组件
WO2021109074A1 (zh) 多自由度并联机构
CN114888780A (zh) 一种三分支6+3自由度运动冗余并联机构
WO2022261934A1 (zh) 多自由度导向机构和多自由度导向装置
WO2020155040A1 (zh) 多自由度并联机构
WO2021109062A1 (zh) 多自由度并联机构
JP2000326272A (ja) ロボット装置
WO2023201612A1 (zh) 一种基于柔性机构的六自由度精密运动平台
JP2952458B2 (ja) Xyステージ装置
CN220348446U (zh) 一种操作手的关节结构
CN218247379U (zh) 手术机械臂
KR20000073215A (ko) 병렬 로봇의 제어방법 및 장치
JP7289644B2 (ja) 作業装置
JP2891335B2 (ja) 6自由度ステージ機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951099

Country of ref document: EP

Kind code of ref document: A1