WO2021177272A1 - 血液処理フィルター - Google Patents

血液処理フィルター Download PDF

Info

Publication number
WO2021177272A1
WO2021177272A1 PCT/JP2021/007838 JP2021007838W WO2021177272A1 WO 2021177272 A1 WO2021177272 A1 WO 2021177272A1 JP 2021007838 W JP2021007838 W JP 2021007838W WO 2021177272 A1 WO2021177272 A1 WO 2021177272A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
thickness
filter medium
blood
blood treatment
Prior art date
Application number
PCT/JP2021/007838
Other languages
English (en)
French (fr)
Inventor
揚子 吉田
中村 和彦
朋久 横溝
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to EP21764736.1A priority Critical patent/EP4115967A4/en
Priority to AU2021230179A priority patent/AU2021230179B2/en
Priority to JP2022504380A priority patent/JP7457101B2/ja
Priority to KR1020227030068A priority patent/KR20220128447A/ko
Priority to CN202180018014.4A priority patent/CN115209928A/zh
Priority to CA3169483A priority patent/CA3169483A1/en
Priority to US17/802,733 priority patent/US20230099894A1/en
Publication of WO2021177272A1 publication Critical patent/WO2021177272A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0209Multiple bag systems for separating or storing blood components
    • A61M1/0218Multiple bag systems for separating or storing blood components with filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1692Other shaped material, e.g. perforated or porous sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/18Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being cellulose or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1266Solidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters

Definitions

  • the present invention relates to a blood treatment filter.
  • Whole blood collected from donors is used as a raw material for blood component preparations such as erythrocyte preparations, platelet preparations, and plasma preparations.
  • Whole blood includes microaggregates, leukocytes, etc. that cause various transfusion side effects. Contains undesired components of. Therefore, in general, undesired components are removed after blood collection or before use of the blood component preparation.
  • the mechanism of leukocyte removal by the filter method is mainly due to the leukocytes in contact with the surface of the filter medium being adhered or adsorbed on the surface of the filter medium. Therefore, in order to enhance the leukocyte removal ability, the frequency of contact between the filter medium and the leukocyte is increased, specifically, the fiber diameter of the fibers constituting the filter medium and the pore diameter of the porous structure are reduced, and the bulk density is increased. By doing so, the surface area per unit volume of the filter medium is increased to enhance the leukocyte removing ability (Patent Document 1). However, although these methods can increase the leukocyte-removing ability, the pressure loss due to the filter medium when processing blood increases, so that the flow velocity decreases and the filtration time becomes long.
  • Patent Document 2 As a means for reducing pressure loss, it has been studied to improve the blood wettability of the filter medium by subjecting the filter medium to surface modification or surface processing (Patent Document 2). However, with this method, although the extension of the filtration time due to the reduction of the pressure loss can be suppressed, it is difficult to maintain the leukocyte depletion ability well.
  • refrigerated blood when trying to remove an unfavorable component from refrigerated blood (hereinafter referred to as "refrigerated blood"), the viscosity of the refrigerated blood increases, so that the filtration flow rate becomes slow and leukocytes appear in the filter medium. It tends to be easily adsorbed.
  • agglomerates may form in the refrigerated blood during storage, which may block the flow path of the filter medium and slow down the filtration rate.
  • an object of the present invention is to provide a blood treatment filter having an excellent filtration rate.
  • the present invention includes the following embodiments.
  • the average thickness of the filter medium is 7 to 12 mm.
  • the standard deviation of the thickness of the filter medium is 0.30 to 0.80 mm.
  • [1-1A] The blood treatment filter according to [1], wherein the standard deviation of the thickness of the filter element is 0.002 to 0.015 mm.
  • [1-2A] The blood treatment filter according to any one of [1] to [1-1B], wherein the filter element has a basis weight of 45 to 150 g / m 2.
  • [1-2B] The blood treatment filter according to any one of [1] to [1-2A], wherein the filter element has a basis weight of 53 to 150 g / m 2.
  • [1-2C] The blood treatment filter according to any one of [1] to [1-2B], wherein the filter element has a basis weight of 68 to 150 g / m 2.
  • [1-2D] The blood treatment filter according to any one of [1] to [1-2C], wherein the filter element has a basis weight of 85 to 95 g / m 2.
  • the container is composed of an inlet-side container material having the inlet portion and an outlet-side container material having the outlet portion. The inlet side container material and the outlet side container material are welded at the peripheral edge thereof with the filter medium sandwiched between them.
  • FIG. 1 It is a schematic diagram of the blood treatment filter which is one Embodiment of this invention. It is sectional drawing of the schematic view of FIG. It is sectional drawing (cross-sectional view in the thickness direction) of the blood processing filter which is one Embodiment of this invention. It has been shown that a plurality of filter elements exist in a bent state in the container, and voids are unevenly present between the filter elements. The part used for measuring the average thickness of the filter medium and the standard deviation of the thickness is shown. It is the schematic of the experimental apparatus used for the test in an Example.
  • blood shall include blood and liquids containing blood components.
  • the blood component-containing liquid include blood products.
  • blood products include whole blood products, red blood cell products, platelet products, and plasma products.
  • One embodiment of the present invention is a blood treatment filter including a container having an inlet and an outlet for blood and a filter medium arranged between the inlet and the outlet in the container.
  • the present invention relates to the blood treatment filter, wherein the filter medium contains a filter element, the average thickness of the filter medium is 7 to 12 mm, and the standard deviation of the thickness of the filter medium is 0.30 to 0.80 mm.
  • the blood treatment filter of the present embodiment contains a filter medium having a variation in thickness, and the variation is expressed by a standard deviation of the thickness.
  • An excellent filtration rate can be achieved by using a filter medium having a variation in thickness.
  • the reason why such an effect can be obtained is that, for example, it is assumed that a flow path through which blood flows is secured due to variation in thickness, but the present invention is limited by such an assumed mechanism. is not it.
  • the filter medium may be arranged so as to pass through the filter medium before the blood entering from the inlet portion of the container exits from the outlet portion.
  • FIG. 1 is a schematic view showing an example of the blood treatment filter of the present embodiment
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • the blood treatment filter 10 includes a flat container 1 and a filter medium 4 housed therein.
  • the container 1 accommodating the filter medium 4 is composed of an inlet side container material having an inlet portion 2 and an outlet side container material having an outlet portion 3.
  • the space inside the flat container 1 is divided into a space 5 on the inlet side and a space 6 on the outlet side by the filter medium 4.
  • the inlet side container material and the outlet side container material are arranged so as to sandwich the filter medium 4, and the two container materials are the outer edge of the filter medium 4 at the grip portion provided in a part of each.
  • the part peripheral part
  • the gripping portion may be a welding portion or the like.
  • the container of the blood treatment filter of the present embodiment has an inlet portion of untreated blood and an outlet portion of treated blood.
  • the container is not particularly limited, and a container used for a general blood treatment filter can be adopted.
  • the shape of the container is not particularly limited, and the shape may be adjusted according to the shape of the filter medium.
  • the container can be polygonal (for example, quadrangular and hexagonal), circular, oval, or the like according to the shape.
  • the container can also have a cylindrical shape.
  • the material of the container is not particularly limited, and the material used for the container of a general blood treatment filter can be adopted.
  • the material of the container a flexible resin and a hard resin can be mentioned.
  • the flexible resin examples include soft polyvinyl chloride, polyurethane, ethylene-vinyl acetate copolymer, polyolefin (for example, polyethylene and polypropylene), styrene-butadiene-styrene copolymer hydrogenated product, and styrene-isoprene-.
  • the flexible resin examples include soft polyvinyl chloride, polyurethane, ethylene-vinyl acetate copolymer, polyolefin (for example, polyethylene and polypropylene), styrene-butadiene-styrene copolymer hydrogenated product, and styrene-isoprene-.
  • examples thereof include a styrene copolymer or a hydrogenated product thereof.
  • the rigid resin examples include phenol resin, acrylic resin, epoxy resin, formaldehyde resin, urea resin, silicon resin, ABS resin, nylon, polyurethane, polycarbonate, vinyl chloride, polyethylene, polypropylene, polyester, and styrene-butadiene copolymer. And so on.
  • the average thickness of the filter medium of the blood treatment filter of the present embodiment is 7 to 12 mm, preferably 8 to 11 mm, and more preferably 9 to 10 mm.
  • the average thickness of the filter medium can be appropriately adjusted by, for example, changing the number and thickness of the filter elements constituting the filter medium.
  • the average thickness of the filter medium can be measured by the method described in Examples.
  • the standard deviation of the thickness of the filter medium of the blood treatment filter of the present embodiment is 0.30 to 0.80 mm, preferably 0.40 to 0.70 mm.
  • the present invention is not limited by the following assumed mechanism, but by setting the standard deviation to 0.30 mm or more, the variation in the thickness of the filter medium becomes large, a new flow path through which blood flows is formed, and the filtration rate is increased. Is expected to improve. Further, by setting the standard deviation to 0.80 mm or less, it is assumed that a decrease in filtration efficiency due to an excessively large flow path can be avoided.
  • the standard deviation of the filter media thickness can be measured by the method described in the Examples.
  • whole blood stored at room temperature or refrigerated is preferably collected within 72 hours, more preferably within 48 hours, particularly preferably within 24 hours, and most preferably within 12 hours. Centrifugation can be performed. Blood at room temperature or refrigerated within 120 hours, more preferably 72 hours, particularly preferably within 24 hours, most preferably within 12 hours after blood collection from plasma products stored at room temperature or refrigerated.
  • a leukocyte-depleted plasma preparation can be obtained by removing leukocytes using the treatment filter F.
  • a leukocyte depleted plasma preparation is obtained by removing leukocytes from a plasma product stored at room temperature, refrigeration or freezing within 24 hours before use using a blood treatment filter F. be able to.
  • FFP fresh frozen plasma
  • the filtration time is extended and exceeds the specified time, it has to be used for another purpose such as raw material plasma, and the work efficiency is significantly reduced. Therefore, it is important to properly complete the filtration time in order to improve the work efficiency.
  • the new filter succeeds in reducing the total blood loss amount by 0.1 mL compared to the whole blood filter with a blood loss amount of 35 mL in the filter, 1/10 of the annual blood collection frequency, that is, 500 In the case of 10,000 times, the annual reduction of whole blood loss is as follows.
  • the standard deviation of the thickness of the filter medium can be adjusted as appropriate by changing the basis weight of the filter element, for example. More specifically, when a filter medium in which only high basis weight filter elements are laminated is sandwiched between an inlet side container material and an outlet side container material, and the filter material and the two container materials are welded at these outer edges. , The standard deviation of the thickness of the filter medium tends to be large. On the contrary, when a low basis weight filter element is used for at least a part, the standard deviation of the thickness of the filter medium tends to be small. The reason for this difference is that the high basis weight filter element is more taut than the low basis weight filter element, so that it will bend when welded to the container material, and this deflection will cause variations in the thickness of the filter medium.
  • the processed filter elements are laminated and sandwiched between the inlet side container material and the outlet side container material.
  • the filter medium and the two container materials are welded at these outer edges, the standard deviation of the thickness of the filter medium tends to increase.
  • the container is composed of an inlet-side container material having an inlet portion and an outlet-side container material having an outlet portion, and the inlet-side container material and the outlet-side container material are formed at a peripheral portion thereof.
  • the deflection can be adjusted and the standard deviation of the thickness of the filter medium can be adjusted.
  • the magnitude of deflection can be controlled by adjusting the welding current and welding time when oscillating a high frequency.
  • the welding conditions may be appropriately adjusted according to the target standard deviation.
  • the thickness of the welded portion As an index for determining the strength of the welded portion, for example, there is the thickness of the welded portion. If the thickness of the welded portion is thick, the welding tends to be weak, and if the thickness of the welded portion is thin, the welding tends to be strong. Usually, when the thickness of the welded portion is 1.2 to 1.8 mm, it sufficiently functions as a filter, and more preferably 1.3 to 1.6 mm.
  • the standard deviation of the thickness of the filter medium can also be adjusted by fitting the filter medium into a small mold and welding it in a slackened state, or by sandwiching a spacer between the filter elements.
  • the container does not bend. That is, it is preferable that the blood treatment filter is not curved as a whole.
  • the container is composed of an inlet side container material having an inlet portion and an outlet side container material having an outlet portion, and the inlet side container material and the outlet side container material are on the peripheral portion thereof. All of the welded parts on the line connecting the two welded parts that are welded with the filter medium sandwiched between them and intersect with an arbitrary direction (hereinafter referred to as the "first direction") orthogonal to the thickness direction of the blood treatment filter.
  • the blood treatment filter is present at the position, and the blood treatment filter is present at all positions on the line connecting the two welding portions intersecting the second direction orthogonal to the first direction.
  • FIG. 2 is a cross section of a blood treatment filter cut in the longitudinal direction
  • FIG. 3 is a cross section of the blood treatment filter cut in the lateral direction, but when the longitudinal direction is the first direction, it is orthogonal to this.
  • the short direction is the second direction.
  • blood treatment filters are present at all positions on the line connecting the upper welding portion and the lower welding portion intersecting the longitudinal direction (first direction)
  • the blood processing filter is present in the lateral direction (second direction).
  • the blood treatment filter is not curved as a whole because the blood treatment filter is present at all positions on the line connecting the welding portion on the left side and the welding portion on the right side intersecting with the direction of).
  • the effective filtration area of the filter medium of the blood treatment filter of the present embodiment is 40 to 50 cm 2 , preferably 40 to 45 cm 2 .
  • the effective filtration area is the actual area used for filtration.
  • the effective filtration area of the filter medium can be appropriately adjusted by changing, for example, the number of filter elements constituting the filter medium, the specific surface area, the mass per unit area, and the like.
  • the effective filtration area of the filter medium can be measured by the method described in Examples.
  • the filter medium preferably has a structure in which a plurality of filter elements are laminated.
  • the number of filter elements to be laminated is not particularly limited, and may be appropriately determined according to the desired thickness of the filter medium.
  • each filter element may be the same or different.
  • the average thickness of the filter element is preferably 0.38 to 0.50 mm, more preferably 0.40 to 0.45 mm. By setting the average thickness of the filter elements within the above range, the blood recovery rate can be improved.
  • the average thickness of the filter elements can be measured by the method described in the examples.
  • the thickness of the filter element has little variation.
  • the standard deviation of the thickness of the filter element is preferably 0.002 to 0.015 mm, more preferably 0.002 to 0.010 mm.
  • the standard deviation of the thickness of the filter element can be measured by the method described in the examples.
  • the filter medium is composed of laminated filter elements with little variation in thickness
  • the reason why the variation in thickness is large is that, for example, voids are unevenly present between the filter elements. Can be mentioned. That is, the filter medium becomes thicker in a place where large voids exist, whereas the filter medium becomes thinner in a place where there are few voids. This causes variations in the thickness of the filter medium. Since the void can function as a blood flow path, it contributes to the improvement of the filtration rate.
  • the bulk density of the filter element is preferably 0.14 to 0.30 g / cm 3 , and more preferably 0.18 to 0.30 g / cm 3 .
  • the bulk density of the filter element can be measured by the method described in the examples.
  • the form of the filter element is not particularly limited as long as it is suitable for blood treatment.
  • examples of the form of the filter element include a woven fabric, a non-woven fabric, and a porous membrane.
  • the material of the filter element is not particularly limited as long as it does not adversely affect blood.
  • filter element materials polyester, polyolefin, polyacrylonitrile, polyamide, polystyrene, polymethylpolymer acrylate, polyfluorovinyl, polyurethane, polyvinyl alcohol, polyvinyl acetal, polysulfone, polyfluorinated vinylidene, polytrifluorochlorovinyl, Examples thereof include vinylidene fluoride-tetrafluoroethylene copolymer, polyethersulfone, polyacrylate, butadiene-acrylonitrile copolymer, polyether-polycarbonate block copolymer, ethylene-vinyl alcohol copolymer, cellulose, cellulose acetate and the like. ..
  • the thickness and bulk density of the non-woven fabric can be arbitrarily adjusted by adjusting the conditions at the time of manufacturing the non-woven fabric.
  • An example of a method for producing a non-woven fabric in which the fiber structure of the non-woven fabric can be easily adjusted is the melt blow method, which includes resin viscosity, melting temperature, discharge amount per hole, heated gas temperature, heated gas pressure, and spinner. By examining the spinning factors such as the distance between the integrated net and the non-woven fabric, a non-woven fabric having a desired thickness and bulk density can be obtained.
  • Non-Patent Document "Basics and Applications of Nonwoven Fabric", P.119-127, published on August 25, 1993. , Japan Textile Machinery Association, etc.), and by taking into consideration the above technical concept and manufacturing process options, appropriate manufacturing conditions can be determined.
  • polybutylene terephthalate (PBT) nonwoven fabrics having different bulk densities and thicknesses can be obtained by adjusting the following conditions.
  • Spinning conditions in the melt blow method include the number of melt blow die spinners, the amount of single-hole discharge, the amount of heated air, and the like, which can be arbitrarily set.
  • the number of melt blow die spines may usually be set to 5 hole / cm or more and 30 hole / cm or less.
  • the single-hole discharge amount is usually set to 0.12 g / (min ⁇ hole) or more and 0.20 g / (min ⁇ hole) or less.
  • Heating air amount may be set below the normal 100 Nm 3 / hr or more 400 Nm 3 / hr.
  • the basis weight of the filter element is not particularly limited, but is preferably 45 to 150 g / m 2 , more preferably 53 to 150 g / m 2 , still more preferably 68 to 150 g / m 2 , and particularly preferably 85. It is ⁇ 95 g / m 2 . It is preferable that the basis weight of all the filter elements contained in the filter medium is within the above range. By setting the basis weight of the filter element within the above range, the leukocyte removal performance can be improved.
  • the blood treatment filter of this embodiment can be used to treat blood.
  • Treatment means removing unwanted components (eg, white blood cells) from the blood.
  • the blood treatment filter of the present embodiment is particularly suitable for treating refrigerated blood. As described above, when filtering refrigerated blood, the filtration rate tends to be slow, but by using the blood treatment filter of the present embodiment, even refrigerated blood can be quickly processed. ..
  • the method for producing the blood treatment filter may be carried out so that the thickness of the filter medium varies, and is not particularly limited.
  • a method of causing variation in the thickness of the filter medium for example, a filter medium in which high basis weight filter elements are laminated is sandwiched between an inlet side container material and an outlet side container material, and the filter medium and 2 are formed at the outer edges thereof. Welding with two container materials can be mentioned.
  • the high basis weight filter elements tend to have a flexible shape in the formed container, which causes uneven voids between the filter elements and variations in the thickness of the filter medium (see, for example, FIG. 3). ..
  • ⁇ Measurement method> [Average thickness of filter media] Remove the housing inside the joint (welding part) of the blood treatment filter (product) to expose the filter medium. As shown in FIG. 4, two center lines (solid lines) intersecting at the center of the filter medium 11 are drawn, and four lines (dotted lines) that equally divide each center line to the inside of the welded portion 12 are drawn on both sides of the center line. The thickness at 9 points where these lines intersect is measured with a thickness gauge (model number: SM-114, manufacturer: TECLOCK) with a measuring force of 3.2 N / cm 2 , and the average is measured as a filter medium. Was taken as the average thickness of.
  • a thickness gauge model number: SM-114, manufacturer: TECLOCK
  • the object to be measured takes 2.5 N, and the area where the thickness gauge contacts the non-woven fabric (circle with a diameter of 1 cm) is 0.785 cm 2 , so the measurement is performed.
  • the stoppage of the mass increase of the recovery bag means the time when the mass of the recovery bag is measured every minute from the start of filtration and the mass change of the recovery bag becomes 0.1 g or less. In this example, the final 1 minute determined to stop the mass increase was included in the filtration time for calculation.
  • the evaluation criteria are as follows. [Evaluation criteria] A: The filtration time is less than 25 minutes, which is excellent in shortening the filtration time. B: The filtration time is more than 25 minutes and 30 minutes or less, and the reduction of the filtration time is good. C: The filtration time exceeds 30 minutes, and the reduction of the filtration time is not excellent.
  • Residual white blood cell count after filtration log (white blood cell concentration in blood product after filtration x amount of blood product after filtration)
  • the white blood cell concentration in the blood product before and after filtration was measured using a white blood cell count measurement kit "LeucoCOUNT" manufactured by Becton Deckonson (BD) and a flow cytometer FACS Canto II manufactured by BD.
  • the evaluation criteria are as follows. [Evaluation criteria] A: The residual white blood cell count is less than 5.0, and the leukocyte removal ability is excellent. B: The residual white blood cell count is 5.0 or more and less than 5.5, and the leukocyte removal ability is good. C: The residual white blood cell count is 5.5 or more, and the leukocyte depletion ability is low.
  • Example 1 Twenty-three laminated non-woven fabrics with a filter element thickness of 0.42 (mm), a filter element bulk density of 0.21 (g / cm 3 ), and a filter element basis weight of 88.2 (g / m 2). Then, a filter medium was prepared by cutting into a size of 91 mm ⁇ 74 mm using a laser cutter. This filter medium is sandwiched between two flexible polyvinyl chloride resin sheets having ports that serve as blood inlets or outlets, and the peripheral portion of the filter medium and the flexible sheet is welded using a high-frequency welder. , Integrated.
  • the inside of the welded portion was a rectangular effective filtration portion having a vertical dimension of 74 mm and a horizontal dimension of 57 mm and curved corners, and the effective filtration area was 42 cm 2 .
  • the thickness of the filter medium of the effective filter part was 8.00 mm, and the standard deviation was 0.30 mm.
  • the peripheral portion of the flexible sheet was welded and integrated to prepare a blood treatment filter having a welded portion thickness of 1.45 mm.
  • the blood treatment filter was subjected to high-pressure steam sterilization at 115 ° C. for 59 minutes, and then the above-mentioned various tests were performed.
  • Example 2 A blood treatment filter was produced in the same manner as in Example 1 except that the number of laminated filter elements was increased by 2 and the welding conditions of the peripheral portion of the filter medium and the flexible sheet were changed.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.43 mm, and the thickness of the welded portion was 1.45 mm.
  • Example 3 A blood treatment filter was produced in the same manner as in Example 1 except that the number of laminated filter elements was increased by 4 and the welding conditions of the peripheral portion of the filter medium and the flexible sheet were changed.
  • the thickness of the filter medium was 11.00 mm
  • the standard deviation was 0.80 mm
  • the thickness of the welded portion was 1.30 mm.
  • Example 4 A filter medium similar to that of Example 2 was prepared except that the bulk density of the filter element was 0.16 (g / cm 3 ) and the basis weight was 67.2 (g / m 2).
  • the filter medium is placed in a 91 mm ⁇ 73.9 mm mold, and the peripheral portion of the filter medium and the flexible sheet is welded and integrated. I let you.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.43 mm, and the thickness of the welded portion was 1.45 mm.
  • Example 5 A filter medium similar to that of Example 2 was prepared except that the bulk density of the filter element was 0.12 (g / cm 3 ) and the basis weight was 50.4 (g / m 2).
  • this filter medium is welded to the peripheral portion of the filter medium and the flexible sheet using a high-frequency welder, the laser-cut filter medium is placed in a 91 mm ⁇ 73.8 mm mold, and the peripheral edge of the filter medium and the flexible sheet is placed. The parts were welded and integrated.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.43 mm, and the thickness of the welded portion was 1.45 mm.
  • Example 6 A blood treatment filter was produced in the same manner as in Example 2 except that a filter element having a thickness of 0.35 (mm) and a basis weight of 73.5 (g / m 2) was used and the number of laminated sheets was increased by three.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.43 mm, and the thickness of the welded portion was 1.45 mm.
  • Example 7 A blood treatment filter was produced in the same manner as in Example 2 except that a filter element having a thickness of 0.55 (mm) and a basis weight of 115.5 (g / m 2) was used and the number of laminated sheets was reduced by three.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.43 mm, and the thickness of the welded portion was 1.45 mm.
  • Example 8 A blood treatment filter was produced in the same manner as in Example 2 except that the effective filtration area was 35 cm 2. The thickness of the filter medium was 9.60 mm, the standard deviation was 0.43 mm, and the thickness of the welded portion was 1.45 mm.
  • Example 9 A blood treatment filter was produced in the same manner as in Example 2 except that the effective filtration area was 55 cm 2. The thickness of the filter medium was 9.60 mm, the standard deviation was 0.43 mm, and the thickness of the welded portion was 1.45 mm.
  • Example 10 Using pleated filter elements with a bulk density of 0.18 (g / cm 3 ), a thickness of 0.25 (mm), and a grain size of 45 (g / m 2 ), the number of laminated sheets was increased by 10.
  • a blood treatment filter was produced in the same manner as in Example 2 except for the above.
  • the thickness of the filter medium was 8.00 mm, the standard deviation was 0.30 mm, and the thickness of the welded portion was 1.50 mm.
  • Example 11 A filter medium was produced in the same manner as in Example 1. The peripheral portion of the filter medium and the flexible sheet was welded and integrated in the same manner as in Example 5. The thickness of the filter medium was 8.00 mm, the standard deviation was 0.35 mm, and the thickness of the welded portion was 1.45 mm.
  • Example 12 A filter medium was produced in the same manner as in Example 2. The peripheral portion of the filter medium and the flexible sheet was welded and integrated in the same manner as in Example 5. The thickness of the filter medium was 9.60 mm, the standard deviation was 0.50 mm, and the thickness of the welded portion was 1.40 mm.
  • Example 13 A filter medium was produced in the same manner as in Example 2. When welding the peripheral portion of the filter medium and the flexible sheet using a high-frequency welding machine, the filter medium is placed in a 91 mm ⁇ 73.5 mm mold, and the peripheral portion of the filter medium and the flexible sheet is welded and integrated. I let you. The thickness of the filter medium was 9.60 mm, the standard deviation was 0.70 mm, and the thickness of the welded portion was 1.30 mm.
  • Example 14 A blood treatment filter was produced in the same manner as in Example 5 except that the bulk density of the filter element was 0.18 (g / cm 3 ) and the grain size was 75.6 (g / m 2). The thickness of the filter medium was 9.60 mm, the standard deviation was 0.43 mm, and the thickness of the welded portion was 1.45 mm.
  • Example 15 A blood treatment filter was produced in the same manner as in Example 2 except that the bulk density of the filter element was 0.28 (g / cm 3 ) and the basis weight was 117.6 (g / m 2). The thickness of the filter medium was 9.60 mm, the standard deviation was 0.43 mm, and the thickness of the welded portion was 1.45 mm.
  • Example 16 A blood treatment filter was produced in the same manner as in Example 1 except that a filter element having a thickness of 0.50 (mm) and a basis weight of 105.0 (g / m 2) was used and the number of laminated sheets was reduced by one.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.43 mm, and the thickness of the welded portion was 1.45 mm.
  • Example 17 A blood treatment filter was produced in the same manner as in Example 1.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.35 mm, and the thickness of the welded portion was 1.50 mm.
  • Example 18 A blood treatment filter was produced in the same manner as in Example 1 except that a filter element having a thickness of 0.38 (mm) and a basis weight of 79.8 (g / m 2) was used.
  • the thickness of the filter medium was 7.00 mm, the standard deviation was 0.30 mm, and the thickness of the welded portion was 1.45 mm.
  • Example 19 A blood treatment filter was produced in the same manner as in Example 2 except that a filter element having a thickness of 0.50 (mm) and a basis weight of 105.0 (g / m 2) was used and the number of laminated sheets was reduced by three.
  • the thickness of the filter medium was 12.00 mm, the standard deviation was 0.70 mm, and the thickness of the welded portion was 1.40 mm.
  • a blood treatment filter was produced in the same manner as in Example 2 except that the welding conditions of the peripheral portion of the filter medium and the flexible sheet were changed.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.26 mm, and the thickness of the welded portion was 1.85 mm.
  • a blood treatment filter was produced in the same manner as in Example 2 except that the welding conditions of the peripheral portion of the filter medium and the flexible sheet were changed.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.85 mm, and the thickness of the welded portion was 1.20 mm.
  • Example 3 A blood treatment filter was produced in the same manner as in Example 4 except that the same welding conditions as in Comparative Example 1 were adopted.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.26 mm, and the thickness of the welded portion was 1.85 mm.
  • a blood treatment filter was produced in the same manner as in Comparative Example 1 except that a filter element having a bulk density of 0.32 (g / cm 3 ) and a basis weight of 134.4 (g / m 2) was used.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.26 mm, and the thickness of the welded portion was 1.85 mm.
  • Comparative Example 5 A blood treatment filter was produced in the same manner as in Comparative Example 1 except that the same filter medium as in Example 6 was used.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.26 mm, and the thickness of the welded portion was 1.85 mm.
  • a blood treatment filter was produced in the same manner as in Comparative Example 1 except that the same filter medium as in Example 7 was used.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.26 mm, and the thickness of the welded portion was 1.85 mm.
  • Comparative Example 7 A blood treatment filter was produced in the same manner as in Comparative Example 1 except that the same filter medium as in Example 8 was used.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.26 mm, and the thickness of the welded portion was 1.85 mm.
  • Comparative Example 8 A blood treatment filter was produced in the same manner as in Comparative Example 1 except that the same filter medium as in Example 9 was used.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.26 mm, and the thickness of the welded portion was 1.85 mm.
  • a blood treatment filter was produced in the same manner as in Comparative Example 1 except that the same filter medium as in Example 1 was used.
  • the thickness of the filter medium was 8.00 mm, the standard deviation was 0.18 mm, and the thickness of the welded portion was 1.85 mm.
  • the bulk density of the filter element is 0.21 (g / cm 3), and two filter elements having a basis weight 88.2 (g / m 2), the bulk density of the filter element is 0.21 (g / cm 3),
  • a blood treatment filter was produced in the same manner as in Example 2 except that 26 filter elements having a grain size of 42.0 (g / m 2) were laminated.
  • the thickness of the filter medium was 9.60 mm, the standard deviation was 0.20 mm, and the thickness of the welded portion was 1.45 mm.
  • Table 1 shows the configuration and performance of the blood treatment filters produced in the above Examples and Comparative Examples.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • External Artificial Organs (AREA)
  • Centrifugal Separators (AREA)

Abstract

本発明は、濾過速度に優れた血液処理フィルターを提供することを課題とする。前記課題は、血液の入口部及び出口部を有する容器と、前記容器内の、前記入口部と前記出口部との間に配置された濾材と、を含む血液処理フィルターであって、前記濾材がフィルター要素を含み、前記濾材の平均厚みが7~12mmであり、前記濾材の厚みの標準偏差が0.30~0.80mmである、前記血液処理フィルターによって解決することができる。

Description

血液処理フィルター
 本発明は、血液処理フィルターに関する。
 赤血球製剤、血小板製剤、血漿製剤等の血液成分製剤の原料としては、ドナーから採血された全血が使用されるところ、全血には、種々の輸血副作用の原因となる微小凝集物や白血球等の好ましくない成分が含まれる。そのため、一般に、採血後や血液成分製剤の使用の前に、好ましくない成分の除去が行われる。
 全血や血液成分製剤から白血球等の好ましくない成分を除去する方法としては、操作が簡便であること、コストが安いこと等から、不織布等の繊維集合体や連続気孔を有する多孔構造体等からなる濾材を含む血液処理フィルターを用いるフィルター法が普及している。
 フィルター法による白血球除去の機構は、主として濾材表面と接触した白血球が、濾材表面に粘着又は吸着されることによると考えられている。したがって、白血球除去能力を高めるために、濾材と白血球との接触頻度を高めること、具体的には、濾材を構成する繊維の繊維径や多孔構造体の細孔径を小さくしたり、嵩密度を高めたりすること等により、濾材単位体積当たりの表面積を増やして白血球除去能を高めることが行われている(特許文献1)。しかし、これらの方法では、白血球除去能を高くすることはできるものの、それに伴って、血液を処理するときの濾材による圧力損失が大きくなるため、流速が低下し、濾過時間が長くなってしまう。
 圧力損失を軽減する手段としては、濾材に表面改質や表面加工等を施して、濾材の血液濡れ性を改良することが検討されている(特許文献2)。しかしながら、この方法では、圧力損失軽減による濾過時間延長は抑制できるが、白血球除去能を良好に保つことが難しい。
 ところで、冷蔵された血液(以下「冷蔵血」という。)から好ましくない成分を除去しようとする場合、冷蔵血はその粘度が上昇していることから、濾過の流速が遅くなり、濾材に白血球が吸着しやすくなる傾向にある。また、保管の間に冷蔵血中に凝集物が生じ、これが濾材の流路を塞いで濾過速度が遅くなってしまうことがある。
特開平2-203909号公報 特開2007-50013号公報
 上述の問題に鑑み、本発明は濾過速度に優れた血液処理フィルターを提供することを目的とする。
 本発明者等が鋭意検討した結果、厚みにばらつきのある濾材を使用することにより、前記課題を解決できることを見出した。
 本発明は以下の実施形態を含む。
[1]
 血液の入口部及び出口部を有する容器と、
 前記容器内の、前記入口部と前記出口部との間に配置された濾材と、
を含む血液処理フィルターであって、
 前記濾材がフィルター要素を含み、
 前記濾材の平均厚みが7~12mmであり、
 前記濾材の厚みの標準偏差が0.30~0.80mmである、
前記血液処理フィルター。
[1-1A]
 前記フィルター要素の厚みの標準偏差が0.002~0.015mmである、[1]に記載の血液処理フィルター。
[1-1B]
 前記フィルター要素の厚みの標準偏差が0.002~0.010mmである、[1]又は[1-1A]に記載の血液処理フィルター。
[1-2A]
 前記フィルター要素の目付が45~150g/m2である、[1]~[1-1B]のいずれかに記載の血液処理フィルター。
[1-2B]
 前記フィルター要素の目付が53~150g/m2である、[1]~[1-2A]のいずれかに記載の血液処理フィルター。
[1-2C]
 前記フィルター要素の目付が68~150g/m2である、[1]~[1-2B]のいずれかに記載の血液処理フィルター。
[1-2D]
 前記フィルター要素の目付が85~95g/m2である、[1]~[1-2C]のいずれかに記載の血液処理フィルター。
[2]
 前記濾材の厚みの標準偏差が0.40~0.70mmである、[1]~[1-2D]のいずれかに記載の血液処理フィルター。
[3]
 前記容器が、前記入口部を有する入口部側容器材と、前記出口部を有する出口部側容器材と、からなり、
 前記入口部側容器材と前記出口部側容器材とが、その周縁部にて、前記濾材を挟んだ状態で溶着されており、
 前記溶着部の厚みが1.2mm~1.8mmである、[1]~[2]のいずれかに記載の血液処理フィルター。
[3-1]
 前記溶着部の厚みが1.3~1.6mmである、[1]~[3]のいずれかに記載の血液処理フィルター。
[4]
 前記濾材の平均厚みが8~11mmである、[1]~[3-1]のいずれかに記載の血液処理フィルター。
[4-1]
 前記濾材の平均厚みが9~10mmである、[1]~[4]のいずれかに記載の血液処理フィルター。
[5]
 前記フィルター要素の嵩密度が0.14~0.30g/cm3である、[1]~[4-1]のいずれかに記載の血液処理フィルター。
[6]
 前記フィルター要素の嵩密度が0.18~0.30g/cm3である、[1]~[5]のいずれかに記載の血液処理フィルター。
[7]
 前記フィルター要素の平均厚みが0.38~0.50mmである、[1]~[6]のいずれかに記載の血液処理フィルター。
[7-1]
 前記フィルター要素の平均厚みが0.40~0.45mmである、[1]~[7]のいずれかに記載の血液処理フィルター。
[8]
 前記濾材の有効濾過面積が40~50cm2である、[1]~[7-1]のいずれかに記載の血液処理フィルター。
[8-1]
 前記濾材の有効濾過面積が40~45cm2である、[1]~[8]のいずれかに記載の血液処理フィルター。
 本発明によれば、濾過速度に優れた血液処理フィルターを提供することができる。
本発明の一実施形態である血液処理フィルターの模式図である。 図1の模式図の断面図である。 本発明の一実施形態である血液処理フィルターの断面図(厚み方向の断面)である。容器内に、複数のフィルター要素がたわんだ状態で存在し、各フィルター要素の間に空隙が不均一に存在していることが示されている。 濾材の平均厚み、及び厚みの標準偏差の測定に使用する部分を示す。 実施例における試験に使用した実験装置の概略図である。
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 以下、特に明記しない限り、「血液」の用語には、血液及び血液成分含有液体が含まれるものとする。血液成分含有液体としては、例えば、血液製剤が挙げられる。血液製剤としては、例えば、全血製剤、赤血球製剤、血小板製剤、及び血漿製剤が挙げられる。
<血液処理フィルター>
 本発明の一実施形態は、血液の入口部及び出口部を有する容器と、前記容器内の、前記入口部と前記出口部との間に配置された濾材と、を含む血液処理フィルターであって、前記濾材がフィルター要素を含み、前記濾材の平均厚みが7~12mmであり、前記濾材の厚みの標準偏差が0.30~0.80mmである、前記血液処理フィルターに関する。
 本実施形態の血液処理フィルターは、厚みにばらつきのある濾材を含んでおり、前記ばらつきは、厚みの標準偏差で表現されている。厚みにばらつきのある濾材を使用することにより、優れた濾過速度を達成することができる。このような効果が得られる理由としては、例えば、厚みにばらつきが生じることにより、血液が流れる流路が確保されることが想定されるが、本発明はこのような想定メカニズムによって限定されるものではない。
 本実施形態の血液処理フィルターにおいて、濾材は、容器の入口部から入った血液が出口部から出るまでの間に前記濾材を通過すように配置されていればよい。
 図1は、本実施形態の血液処理フィルターの一例を示す模式図であり、図2は、図1のII-II線断面図である。図1及び図2に示すように、血液処理フィルター10は、扁平型の容器1と、その内部に収容された濾材4とを含む。濾材4を収容する容器1は、入口部2を有する入口部側容器材と、出口部3を有する出口部側容器材とから構成される。扁平型の容器1内の空間は、濾材4によって、入口部側の空間5と出口部側の空間6とに仕切られている。血液処理フィルター1においては、入口部側容器材と出口部側容器材が濾材4を挟んで配置されており、2つの容器材が、各々の一部に設けられた把持部で濾材4の外縁部(周縁部)を把持している。把持部としては溶着部等であってもよい。
[容器]
 本実施形態の血液処理フィルターの容器は、未処理血液の入口部と、処理済血液の出口部とを有する。容器は特に限定されず、一般的な血液処理フィルターに使用される容器を採用することができる。
 容器の形状は特に限定されず、濾材の形状に応じた形状にすればよい。例えば、濾材が平板状の場合には、その形状に合わせて、容器を、多角形(例えば、四角形及び六角形)、円形、楕円形等とすることができる。また、濾材が円筒状の場合には、容器も同様に円筒状とすることができる。
 容器の材料は特に限定されず、一般的な血液処理フィルターの容器に使用される材料を採用することができる。例えば、容器の材料として、可撓性樹脂及び硬質性樹脂を挙げることができる。
 可撓性樹脂としては、例えば、軟質ポリ塩化ビニル、ポリウレタン、エチレン-酢酸ビニル共重合体、ポリオレフィン(例えば、ポリエチレン及びポリプロピレン)、スチレン-ブタジエン-スチレン共重合体の水添物、スチレン-イソプレン-スチレン共重合体又はその水添物等が挙げられる。
 硬質性樹脂としては、例えば、フェノール樹脂、アクリル樹脂、エポキシ樹脂、ホルムアルデヒド樹脂、尿素樹脂、ケイ素樹脂、ABS樹脂、ナイロン、ポリウレタン、ポリカーボネート、塩化ビニル、ポリエチレン、ポリプロピレン、ポリエステル、スチレン-ブタジエン共重合体等が挙げられる。
[濾材]
 本実施形態の血液処理フィルターの濾材の平均厚みは、7~12mmであり、好ましくは8~11mmで、より好ましくは9~10mmである。濾材の平均厚みを前記範囲内とすることにより、白血球除去性能を向上させることができる。濾材の平均厚みは、例えば、濾材を構成するフィルター要素の数及び厚みを変更することにより、適宜調整することができる。濾材の平均厚みは、実施例に記載の方法により測定することができる。
 本実施形態の血液処理フィルターの濾材の厚みの標準偏差は、0.30~0.80mmであり、好ましくは0.40~0.70mmである。標準偏差を前記範囲内とすることにより、血液ロス量とのバランスが良くなり、濾過速度も向上させることができる。以下の想定メカニズムによって本発明が限定されるものではないが、標準偏差を0.30mm以上とすることによって、濾材の厚みのばらつきが大きくなり、血液が流れる流路が新たに形成され、濾過速度が向上すると想定される。また、標準偏差を0.80mm以下とすることによって、流路が大きくなり過ぎることによる濾過効率の低下が回避されると想定される。濾材の厚みの標準偏差は、実施例に記載の方法により測定することができる。
 白血球除去血漿製剤調製においては、好ましくは室温下または冷蔵下にて保存された全血を採血後72時間以内、更に好ましくは48時間以内、特に好ましくは24時間以内、最も好ましくは12時間以内に遠心分離を行うことができる。好ましくは室温下または冷蔵下にて保存された血漿製剤から採血後120時間以内、更に好ましくは72時間以内、特に好ましくは24時間以内、最も好ましくは12時間以内に室温下または冷蔵下にて血液処理フィルターFを用いて白血球を除去することにより白血球除去血漿製剤を得ることができる。保存後白血球除去の場合、好ましくは室温下または冷蔵下または冷凍下にて保存された血漿製剤から使用前24時間以内に血液処理フィルターFを用いて白血球を除去することにより白血球除去血漿製剤を得ることができる。特に、欧州と日本においては、保存前白血球除去後の血漿製剤をそれぞれ採血後24時間以内または8時間以内に調製しなければ、FFP(新鮮凍結血漿)として使用することができない。濾過時間が延長して規定の時間を超えてしまった場合には、原料血漿などの別用途に使用せざるを得ず、作業効率を大幅に低下してしまう。従って、濾過時間を適正に完了させることが作業効率をよくするためにも重要である。
 また、適度に流路が確保されることにより、血液処理フィルター内に血液が残留することなく血液回収量を向上させることにも効果を発揮する。
 輸血市場で現在行われる白血球ろ過の回数は年間5000万回といわれる。かりに、フィルター内の血液ロス量が35mLである全血用のフィルターに対して、新型フィルターにより0.1mLの全血ロス量の削減に成功した場合に、年間採血回数の1/10、つまり500万回実施したケースにおいて、年間の全血ロス削減量は以下のようになる。
  1/10000(L)×500×10000=500L
 わずか0.1mLの血液ロス削減でも、年間採血回数が多く、かつ血液製剤の調製システムが完成されている先進国市場(例えば日本、欧州)では、莫大な血液回収量のロスを生むことが自明である。
 濾材の厚みの標準偏差は、例えば、フィルター要素の目付を変更することにより、適宜調節することができる。より具体的に説明すると、高目付のフィルター要素のみを積層した濾材を、入口部側容器材と出口部側容器材とで挟み、これらの外縁部で、濾材と2つの容器材とを溶着すると、濾材の厚みの標準偏差が大きくなる傾向にある。逆に、低目付のフィルター要素を少なくとも一部に使用すると、濾材の厚みの標準偏差が小さくなる傾向にある。このような相違が生じる理由としては、高目付のフィルター要素は、低目付のフィルター要素よりも張りがあるため、容器材と溶着するとたわみが発生し、このたわみが濾材の厚みにばらつきを生じさせると想定される。低目付フィルター要素を使用する場合には、濾材に張りを持たせる為のプリーツ加工やエンボス加工に加え、加工したフィルター要素を積層し、入口部側容器材と出口部側容器材とで挟み、これらの外縁部で濾材と2つの容器材とを溶着すると、濾材の厚みの標準偏差が大きくなる傾向にある。
 フィルター要素の目付を変更せずに濾材の厚みの標準偏差を調節することもできる。通常、容器は、入口部を有する入口部側容器材と、出口部を有する出口部側容器材とからなり、前記入口部側容器材と前記出口部側容器材とが、その周縁部にて、濾材を挟んだ状態で溶着されている。ここで、溶着条件を変更することによって、たわみを調整し、濾材の厚みの標準偏差を調節することができる。高周波溶着機を用いる場合においては、高周波を発振する際、溶着電流や溶着時間を調整する事でたわみの大きさを制御できる。溶着条件は、目的とする標準偏差に応じて適宜調整すればよい。溶着部の強弱を判断する指標としては、例えば溶着部厚みがある。溶着部厚みが厚くなれば、溶着は弱く、溶着部厚みが薄くなれば、溶着は強くなる傾向にある。通常、溶着部厚みは1.2~1.8mmであればフィルターとしての機能を十分果たし、より好ましくは、1.3~1.6mmである。
 また、濾材の厚みの標準偏差は、濾材を小さめの型枠などにはめ込み、たるませた状態で溶着するなどの方法、フィルター要素間にスペーサーを挟み込む方法などで調節することもできる。
 なお、濾材の厚みの標準偏差を調節する際、容器にたわみが生じていないことが好ましい。すなわち、血液処理フィルターは全体として湾曲していないことが好ましい。
 一例として、容器が、入口部を有する入口部側容器材と、出口部を有する出口部側容器材とからなり、前記入口部側容器材と前記出口部側容器材とが、その周縁部にて、濾材を挟んだ状態で溶着されており、血液処理フィルターの厚み方向に直交する任意の方向(以下「第1の方向」という。)と交差する2点の溶着部を結ぶ線上の全ての位置に血液処理フィルターが存在しており、第1の方向に直交する第2の方向と交差する2点の溶着部を結ぶ線上の全ての位置に血液処理フィルターが存在していることが好ましい。
 例えば、図2は血液処理フィルターを長手方向で切断した断面であり、図3は血液処理フィルターを短手方向で切断した断面であるが、長手方向を第1の方向とした場合、これに直交する短手方向が第2の方向となる。図2では、長手方向(第1の方向)と交差する上側の溶着部と下側の溶着部を結ぶ線上の全ての位置に血液処理フィルターが存在し、図3では、短手方向(第2の方向)と交差する左側の溶着部と右側の溶着部を結ぶ線上の全ての位置に血液処理フィルターが存在しているため、血液処理フィルターは全体として湾曲していない。
 本実施形態の血液処理フィルターの濾材の有効濾過面積は、40~50cm2であり、好ましくは40~45cm2である。有効濾過面積とは、濾過に使用される実際の面積である。濾材の有効濾過面積を前記範囲内とすることにより、濾過速度、白血球除去性能、及び血液回収率を向上させることができる。濾材の有効濾過面積は、例えば、濾材を構成するフィルター要素の数、比表面積、単位面積あたりの質量等を変更することにより、適宜調整することができる。濾材の有効濾過面積は、実施例に記載の方法により測定することができる。
[フィルター要素]
 濾材は、複数のフィルター要素が積層された構造を有していることが好ましい。積層されるフィルター要素の数は特に限定されず、濾材の目的の厚みに応じて適宜決定すればよい。濾材が複数のフィルター要素を含む場合、各フィルター要素は同一のものであってもよいし、異なるものであってもよい。
 フィルター要素の平均厚みは、好ましくは0.38~0.50mmであり、より好ましくは0.40~0.45mmである。フィルター要素の平均厚みを前記範囲内とすることにより、血液回収率を向上させることができる。フィルター要素の平均厚みは、実施例に記載の方法により測定することができる。
 フィルター要素の厚みは、ばらつきが少ないことが好ましい。例えば、フィルター要素の厚みの標準偏差は、好ましくは0.002~0.015mmであり、より好ましくは0.002~0.010mmである。フィルター要素の厚みの標準偏差は、実施例に記載の方法により測定することができる。
 厚みのばらつきの少ないフィルター要素を積層して構成された濾材であるにも関わらず、その厚みのばらつきが大きくなる理由としては、例えば、各フィルター要素の間に空隙が不均一に存在していることが挙げられる。すなわち、大きな空隙が存在している場所では濾材が厚くなるのに対し、空隙が少ない場所では濾材が薄くなる。これによって、濾材の厚みにばらつきが生じる。空隙は血液の流路として機能し得るため、濾過速度の向上に寄与する。
 フィルター要素の嵩密度は、好ましくは0.14~0.30g/cm3であり、より好ましくは0.18~0.30g/cm3である。フィルター要素の嵩密度を前記範囲内とすることにより、白血球除去性能を向上させることができる。フィルター要素の嵩密度は、実施例に記載の方法により測定することができる。
 フィルター要素の形態は、血液処理に適したものであれば特に限定されない。例えば、フィルター要素の形態として、織布、不織布、多孔膜等が挙げられる。
 フィルター要素の材料は、血液に悪影響を与えるものでなければ特に限定されない。例えば、フィルター要素の材料として、ポリエステル、ポリオレフィン、ポリアクリロニトリル、ポリアミド、ポリスチレン、ポリメチルメタアクリレート、ポリ弗化ビニル、ポリウレタン、ポリビニルアルコール、ポリビニルアセタール、ポリスルホン、ポリ弗化ビニリデン、ポリトリフルオロクロロビニル、弗化ビニリデン-テトラフルオロエチレン共重合体、ポリエーテルスルホン、ポリアクリレート、ブタジエン-アクリロニトリル共重合体、ポリエーテル-ポリアミドブロック共重合体、エチレン-ビニルアルコール共重合体、セルロース、セルロースアセテート等が挙げられる。
 フィルター要素が不織布の場合、不織布の厚みや嵩密度は、不織布の製造時の条件を調整することにより、任意に調整することができる。これらのような不織布の繊維構造の調整が容易な不織布の製造方法の一例として、メルトブロー法が挙げられ、樹脂粘度、溶融温度、単孔あたりの吐出量、加熱気体温度、加熱気体圧力、紡口と集積ネットの距離等の紡糸因子を検討することにより、所望の厚みや嵩密度を有する不織布を得ることができる。なお、適切な厚みや嵩密度を有するフィルター材(不織布)の製造方法として、公知情報(例えば、非特許文献:「不織布の基礎と応用」 P.119-127、平成5年8月25日発行、社団法人 日本繊維機械協会等)を基本に上記技術思想と製造プロセスの選択肢を参酌することで適切な製造条件を決定できる。
 本実施形態において、例えば、メルトブロー法において、下記条件を調整することにより、異なる嵩密度や厚みを有するポリブチレンテレフタレート(PBT)不織布を得ることができる。メルトブロー法における紡糸条件としては、メルトブローダイ紡口数、単孔吐出量、加熱エアー量等が挙げられ、これらは任意に設定することができる。
 メルトブローダイ紡口数は、通常5hole/cm以上30hole/cm以下に設定すればよい。
 単孔吐出量は、通常0.12g/(min・hole)以上0.20g/(min・hole)以下に設定すればよい。
 加熱エアー量は、通常100Nm3/hr以上400Nm3/hr以下に設定すればよい。
 フィルター要素の目付は、特に限定されないが、好ましくは45~150g/m2であり、より好ましくは53~150g/m2であり、更に好ましくは68~150g/m2であり、特に好ましくは85~95g/m2である。濾材に含まれる全てのフィルター要素の目付が前記範囲内であることが好ましい。フィルター要素の目付を前記範囲内とすることにより、白血球除去性能を向上させることができる。
[用途]
 本実施形態の血液処理フィルターは、血液を処理するために使用することができる。「処理」とは、血液から好ましくない成分(例えば白血球)を除去することを意味する。特に限定するものではないが、本実施形態の血液処理フィルターは、冷蔵血の処理に特に適している。上述のとおり、冷蔵血を濾過する場合には濾過速度が遅くなる傾向にあるが、本実施形態の血液処理フィルターを使用することにより、冷蔵血であっても速やかに処理することが可能になる。
<血液処理フィルターの製造方法>
 前記血液処理フィルターの製造方法は、濾材の厚みにばらつきが生じるように実施すればよく、特に限定されない。濾材の厚みにばらつきを生じさせる方法としては、例えば、高目付のフィルター要素を積層させた濾材を、入口部側容器材と出口部側容器材とで挟み、これらの外縁部で、濾材と2つの容器材とを溶着することが挙げられる。高目付のフィルター要素は、形成された容器内でたわんだ形状となりやすく、これによって、各フィルター要素の間に空隙が不均一に生じ、濾材の厚みにばらつきが生じる(例えば、図3を参照)。
 濾材の厚みにばらつきを生じさせる別の方法としては、前記[濾材]の項目で説明した方法等を挙げることができる。
 以下、実施例及び比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。
<測定法>
[濾材の平均厚み]
 血液処理フィルター(製品)の接合部(溶着部)内側のハウジングを取り除き、濾材を露出させる。図4に示すように、濾材11の中心で交差する2本の中心線(実線)を描き、各中心線から溶着部12内側までを等分する4本の線(点線)を中心線の両側に平行に描き、これらの線が交差した9点における厚みを、厚み計(型番:SM-114、メーカー:TECLOCK)を用いて3.2N/cm2の測定力で測定し、その平均を濾材の平均厚みとした。(前記厚み計の取扱説明書によると、測定対象物に2.5Nかかるとの記載があり、厚み計が不織布と接触する面積(直径1cmの円)は0.785cm2であることから、測定力は2.5N/0.785cm2=3.2N/cm2としている。)
[濾材の厚みの標準偏差]
 前記[濾材の平均厚み]の項目で測定した、9点における厚みから標準偏差を決定した。本測定方法では、濾材の厚みの標準偏差を少なくとも小数第2位まで正確に測定することができる。
[フィルター要素の平均厚み]
 フィルター要素から、5cm×20cmのサイズの試料を11枚切り出し、これを厚み計(型番:ID-C112、メーカー:Mitutoyo)を用い各枚1点測定し、その平均をフィルター要素の平均厚みとした。
[フィルター要素の厚みの標準偏差]
 上記[フィルター要素の平均厚み]の項目で測定した、11点における厚みから標準偏差を決定した。
[フィルター要素の嵩密度]
 フィルター要素の嵩密度(g/cm3)=フィルター要素の目付(g/m2)/フィルター要素の平均厚み(mm)/1000
[フィルター要素の目付]
 フィルター要素から、5cm×20cmのサイズの試料を切り出し、これを天秤(型番:XP205、メーカー:METTLER TOLEDO)に載せ、その質量を測定した。得られた値から、以下の式にしたがって、フィルター要素の目付を算出した。
 目付=フィルター要素の質量(g)÷フィルター要素の面積(m2
[溶着部の平均厚み]
 マイクロメーター(メーカー:Mitutoyo、型式:331-261)で溶着部の各辺の中央部を測定し、円形の場合は等間隔で4点を測定し、その平均値をフランジ溶着部厚みとした。
[濾材の有効濾過面積]
 濾材と可撓性シートの周縁部分を溶着し、溶着部の内側のろ材面積をろ材の有効ろ過面積とした。
<試験方法>
[濾過時間]
 下述の[残存白血球数]の試験において、赤血球製剤を血液処理フィルターに流し始めてから濾過後赤血球製剤の回収バッグの質量増加が停止するまでに要した時間(分)を濾過時間(分)とした。なお、回収バッグの質量増加の停止とは、回収バッグの質量を濾過開始から1分毎に測定し、回収バッグの質量変化が0.1g以下となった時点をさす。本実施例では、質量増加の停止と判断した最終の1分は濾過時間に含んで算出した。
 評価基準を以下のとおりとした。
[評価基準]
A:濾過時間が25分未満であり、ろ過時間の短縮化に優れる。
B:濾過時間が25分超過30分以下であり、濾過時間の短縮化が良好である。
C:濾過時間が30分超過であり、濾過時間の短縮化に優れていない。
[残存白血球数]
 血液製剤として欧州基準(the Guide to the Preparation, Use and Quality Assurance of Blood Components第19版(2017年))にしたがって調製された赤血球製剤を用い、これを落差110cmの自然落差で実施例、比較例の血液処理フィルターを用いて濾過、回収し、濾過後血液製剤を得た。ここで、落差とは、図5に示されるように、赤血球製剤の入った濾過前バッグの最下部から赤血球製剤の濾過後回収バッグの最下部(図5の例では天秤の天板まで)とした。
 次いで、以下の計算式に従い、濾過後残存白血球数を算出した。
 濾過後残存白血球数=log(濾過後血液製剤中の白血球濃度×濾過後血液製剤の量)
 なお、濾過前後の血液製剤中の白血球濃度の測定は、べクトンデッキンソン社(BD社)製白血球数測定用キット「LeucoCOUNT」及びBD社製フローサイトメーター FACS CantoIIを使用して行った。
 評価基準を以下のとおりとした。
[評価基準]
 A:残存白血球数が5.0未満であり、白血球除去能に優れる。
 B:残存白血球数が5.0以上5.5未満であり、白血球除去能が良好である。
 C:残存白血球数が5.5以上であり、白血球除去能が低い。
[血液ロス量]
 上述の[残存白血球数]の試験において、濾過終了後の血液処理フィルターの重量(g)を測定し、濾過前のフィルター重量(g)を差し引いて血液ロス量を算出した。
[評価基準]
 A:血液ロス量が28ml未満であり、血液回収率に優れる。
 B:血液ロス量が28ml以上30ml未満であり、血液回収率が良好である。
 C:血液ロス量が30ml以上であり、血液回収率が低い。
<血液処理フィルターの製造>
[実施例1]
 フィルター要素の厚みが0.42(mm)、フィルター要素の嵩密度が0.21(g/cm3)、フィルター要素の目付が88.2(g/m2)の不織布を用いて23枚積層し、レーザーカッターを用いて91mm×74mmのサイズに切断して濾材を作成した。
 この濾材を、血液の入口部又は出口部となるポートを有する2枚の可撓性ポリ塩化ビニル樹脂シートの間に挟み、高周波溶着機を用いて、濾材と可撓性シートの周縁部分を溶着、一体化させた。なお、溶着部の内側は、縦の寸法が74mm、横の寸法が57mmであって、角部分が曲線である長方形の有効濾過部分であり、有効濾過面積は42cm2であった。有効濾過部の、濾材の厚みは8.00mmで、標準偏差は0.30mmだった。
 さらに可撓性シートの周縁部分を溶着、一体化させ、溶着部厚み1.45mmの血液処理フィルターを作製した。該血液処理フィルターに対して115℃、59分間高圧蒸気滅菌を実施した後、前述の各種試験を行った。
[実施例2]
 フィルター要素の積層枚数を2枚増やし、濾材と可撓性シートの周縁部分の溶着条件を変更したこと以外は実施例1と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.43mm、溶着部厚みは1.45mmであった。
[実施例3]
 フィルター要素の積層枚数を4枚増やし、濾材と可撓性シートの周縁部分の溶着条件を変更したこと以外は実施例1と同様に血液処理フィルターを製造した。濾材の厚みは11.00mmであり、標準偏差は0.80mm、溶着部厚みは1.30mmであった。
[実施例4]
 フィルター要素の嵩密度を0.16(g/cm3)、目付を67.2(g/m2)としたこと以外は、実施例2と同様の濾材を作製した。高周波溶着機を用いて、濾材と可撓性シートの周縁部分を溶着する際に、濾材を91mm×73.9mmの型枠に入れて、濾材と可撓性シートの周縁部分を溶着、一体化させた。濾材の厚みは9.60mm、標準偏差は0.43mm、溶着部厚みは1.45mmであった。
[実施例5]
 フィルター要素の嵩密度を0.12(g/cm3)、目付を50.4(g/m2)としたこと以外は、実施例2と同様の濾材を作製した。この濾材を高周波溶着機を用いて、濾材と可撓性シートの周縁部分を溶着する際に、レーザー切断した濾材を91mm×73.8mmの型枠に入れて、濾材と可撓性シートの周縁部分を溶着、一体化させた。濾材の厚みは9.60mm、標準偏差は0.43mm、溶着部厚みは1.45mmであった。
[実施例6]
 厚みが0.35(mm)、目付が73.5(g/m2)のフィルター要素を用い、積層枚数を3枚増やしたこと以外は実施例2と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.43mm、溶着部厚みは1.45mmであった。
[実施例7]
 厚みが0.55(mm)、目付が115.5(g/m2)のフィルター要素を用い、積層枚数を3枚減らしたこと以外は実施例2と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.43mm、溶着部厚みは1.45mmであった。
[実施例8]
 有効濾過面積を35cm2としたこと以外は、実施例2と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.43mm、溶着部厚みは1.45mmであった。
[実施例9]
 有効濾過面積を55cm2としたこと以外は、実施例2と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.43mm、溶着部厚みは1.45mmであった。
[実施例10]
 嵩密度が0.18(g/cm3)、厚みが0.25(mm)、目付が45(g/m2)の、プリーツ加工がされたフィルター要素を用い、積層枚数を10枚増やしたこと以外は実施例2と同様に血液処理フィルターを製造した。濾材の厚みは8.00mmであり、標準偏差は0.30mm、溶着部厚みは1.50mmであった。
[実施例11]
 実施例1と同様に濾材を製造した。濾材と可撓性シートの周縁部分を、実施例5と同様に溶着し一体化させた。濾材の厚みは8.00mmであり、標準偏差は0.35mm、溶着部厚みは1.45mmであった。
[実施例12]
 実施例2と同様に濾材を製造した。濾材と可撓性シートの周縁部分を、実施例5と同様に溶着し一体化させた。濾材の厚みは9.60mmであり、標準偏差は0.50mm、溶着部厚みは1.40mmであった。
[実施例13]
 実施例2と同様に濾材を製造した。高周波溶着機を用いて、濾材と可撓性シートの周縁部分を溶着する際に、濾材を91mm×73.5mmの型枠に入れて、濾材と可撓性シートの周縁部分を溶着、一体化させた。濾材の厚みは9.60mmであり、標準偏差は0.70mm、溶着部厚みは1.30mmであった。
[実施例14]
 フィルター要素の嵩密度を0.18(g/cm3)、目付を75.6(g/m2)としたこと以外は、実施例5と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.43mm、溶着部厚みは1.45mmであった。
[実施例15]
 フィルター要素の嵩密度を0.28(g/cm3)、目付を117.6(g/m2)としたこと以外は、実施例2と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.43mm、溶着部厚みは1.45mmであった。
[実施例16]
 厚みが0.50(mm)、目付が105.0(g/m2)のフィルター要素を用い、積層枚数を1枚減らしたこと以外は実施例1と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.43mm、溶着部厚みは1.45mmであった。
[実施例17]
 実施例1と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.35mm、溶着部厚みは1.50mmであった。
[実施例18]
 厚みが0.38(mm)、目付が79.8(g/m2)のフィルター要素を用いたこと以外は、実施例1と同様に血液処理フィルターを製造した。濾材の厚みは7.00mmであり、標準偏差は0.30mm、溶着部厚みは1.45mmであった。
[実施例19]
 厚みが0.50(mm)、目付が105.0(g/m2)のフィルター要素を用い、積層枚数を3枚減らしたこと以外は実施例2と同様に血液処理フィルターを製造した。濾材の厚みは12.00mmであり、標準偏差は0.70mm、溶着部厚み1.40mmであった。
[比較例1]
 濾材と可撓性シートの周縁部分の溶着条件を変更したこと以外は実施例2と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.26mm、溶着部厚みは1.85mmであった。
[比較例2]
 濾材と可撓性シートの周縁部分の溶着条件を変更したこと以外は実施例2と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.85mm、溶着部厚みは1.20mmであった。
[比較例3]
 比較例1と同様の溶着条件を採用したこと以外は実施例4と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.26mm、溶着部厚みは1.85mmであった。
[比較例4]
 嵩密度が0.32(g/cm3)、目付が134.4(g/m2)のフィルター要素を用いたこと以外は、比較例1と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.26mm、溶着部厚みは1.85mmであった。
[比較例5]
 実施例6と同様の濾材を用いたこと以外は、比較例1と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.26mm、溶着部厚みは1.85mmであった。
[比較例6]
 実施例7と同様の濾材を用いたこと以外は、比較例1と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.26mm、溶着部厚みは1.85mmであった。
[比較例7]
 実施例8と同様の濾材を用いたこと以外は、比較例1と同様に血液処理フィルターを製造した。濾材の厚みは9.60mmであり、標準偏差は0.26mm、溶着部厚みは1.85mmであった。
[比較例8]
 実施例9と同様の濾材を用いたこと以外は、比較例1と同様に血液処理フィルターを製造した。 濾材の厚みは9.60mmであり、標準偏差は0.26mm、溶着部厚みは1.85mmであった。
[比較例9]
 実施例1と同様の濾材を用いたこと以外は、比較例1と同様に血液処理フィルターを製造した。 濾材の厚みは8.00mmであり、標準偏差は0.18mm、溶着部厚みは1.85mmであった。
[比較例10]
 フィルター要素の嵩密度が0.21(g/cm3)、目付が88.2(g/m2)のフィルター要素2枚と、フィルター要素の嵩密度が0.21(g/cm3)、目付が42.0(g/m2)のフィルター要素26枚を積層したこと以外は、実施例2と同様に血液処理フィルターを製造した。 濾材の厚みは9.60mmであり、標準偏差は0.20mm、溶着部厚みは1.45mmであった。
 上記実施例及び比較例で製造した血液処理フィルターの構成及び性能を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 1…容器、2…入口部、3…出口部、4…濾材、5…入口部側空間、6…出口部側空間、610…血液処理フィルター、11…濾材、12…溶着部

Claims (8)

  1.  血液の入口部及び出口部を有する容器と、
     前記容器内の、前記入口部と前記出口部との間に配置された濾材と、
    を含む血液処理フィルターであって、
     前記濾材がフィルター要素を含み、
     前記濾材の平均厚みが7~12mmであり、
     前記濾材の厚みの標準偏差が0.30~0.80mmである、
    前記血液処理フィルター。
  2.  前記濾材の厚みの標準偏差が0.40~0.70mmである、請求項1に記載の血液処理フィルター。
  3.  前記容器が、前記入口部を有する入口部側容器材と、前記出口部を有する出口部側容器材と、からなり、
     前記入口部側容器材と前記出口部側容器材とが、その周縁部にて、前記濾材を挟んだ状態で溶着されており、
     前記溶着部の厚みが1.2mm~1.8mmである、請求項1又は2に記載の血液処理フィルター。
  4.  前記濾材の平均厚みが8~11mmである、請求項1~3のいずれか一項に記載の血液処理フィルター。
  5.  前記フィルター要素の嵩密度が0.14~0.30g/cm3である、請求項1~4のいずれか一項に記載の血液処理フィルター。
  6.  前記フィルター要素の嵩密度が0.18~0.30g/cm3である、請求項1~5のいずれか一項に記載の血液処理フィルター。
  7.  前記フィルター要素の平均厚みが0.38~0.50mmである、請求項1~6のいずれか一項に記載の血液処理フィルター。
  8.  前記濾材の有効濾過面積が40~50cm2である、請求項1~7のいずれか一項に記載の血液処理フィルター。
PCT/JP2021/007838 2020-03-04 2021-03-02 血液処理フィルター WO2021177272A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP21764736.1A EP4115967A4 (en) 2020-03-04 2021-03-02 BLOOD PROCESSING FILTER
AU2021230179A AU2021230179B2 (en) 2020-03-04 2021-03-02 Blood treatment filter
JP2022504380A JP7457101B2 (ja) 2020-03-04 2021-03-02 血液処理フィルター
KR1020227030068A KR20220128447A (ko) 2020-03-04 2021-03-02 혈액 처리 필터
CN202180018014.4A CN115209928A (zh) 2020-03-04 2021-03-02 血液处理过滤器
CA3169483A CA3169483A1 (en) 2020-03-04 2021-03-02 Blood processing filter
US17/802,733 US20230099894A1 (en) 2020-03-04 2021-03-02 Blood processing filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020036663 2020-03-04
JP2020-036663 2020-03-04

Publications (1)

Publication Number Publication Date
WO2021177272A1 true WO2021177272A1 (ja) 2021-09-10

Family

ID=77614324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007838 WO2021177272A1 (ja) 2020-03-04 2021-03-02 血液処理フィルター

Country Status (8)

Country Link
US (1) US20230099894A1 (ja)
EP (1) EP4115967A4 (ja)
JP (1) JP7457101B2 (ja)
KR (1) KR20220128447A (ja)
CN (1) CN115209928A (ja)
AU (1) AU2021230179B2 (ja)
CA (1) CA3169483A1 (ja)
WO (1) WO2021177272A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203909A (ja) 1989-01-30 1990-08-13 Toyobo Co Ltd 白血球除去用繊維及び白血球除去フィルター
JPH04329965A (ja) * 1991-05-27 1992-11-18 Asahi Medical Co Ltd 白血球の選択的除去方法
JP2002291875A (ja) * 2001-03-30 2002-10-08 Asahi Medical Co Ltd 白血球除去フィルター及びその製造方法
JP2007050013A (ja) 2005-08-15 2007-03-01 Asahi Kasei Medical Co Ltd 白血球除去方法および白血球除去フィルター
JP2007244858A (ja) * 2006-02-20 2007-09-27 Asahi Kasei Medical Co Ltd 白血球除去フィルターを用いた血液または血液成分の濾過方法及び濾過装置
JP2007252463A (ja) * 2006-03-22 2007-10-04 Asahi Kasei Medical Co Ltd 血液処理用フィルター装置の製造方法及び血液処理用フィルター装置
JP2016112251A (ja) * 2014-12-16 2016-06-23 旭化成メディカル株式会社 医療用フィルターの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6411501B2 (ja) * 2014-07-07 2018-10-24 旭化成メディカル株式会社 血液処理フィルター、及び血液処理フィルターの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203909A (ja) 1989-01-30 1990-08-13 Toyobo Co Ltd 白血球除去用繊維及び白血球除去フィルター
JPH04329965A (ja) * 1991-05-27 1992-11-18 Asahi Medical Co Ltd 白血球の選択的除去方法
JP2002291875A (ja) * 2001-03-30 2002-10-08 Asahi Medical Co Ltd 白血球除去フィルター及びその製造方法
JP2007050013A (ja) 2005-08-15 2007-03-01 Asahi Kasei Medical Co Ltd 白血球除去方法および白血球除去フィルター
JP2007244858A (ja) * 2006-02-20 2007-09-27 Asahi Kasei Medical Co Ltd 白血球除去フィルターを用いた血液または血液成分の濾過方法及び濾過装置
JP2007252463A (ja) * 2006-03-22 2007-10-04 Asahi Kasei Medical Co Ltd 血液処理用フィルター装置の製造方法及び血液処理用フィルター装置
JP2016112251A (ja) * 2014-12-16 2016-06-23 旭化成メディカル株式会社 医療用フィルターの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Fushokufu no Kiso to Oyo", 25 August 1993, TEXTILE MACHINERY ASSOCIATION, pages: 119 - 127
"Guide to the Preparation, Use and Quality Assurance of Blood Components", 2017
See also references of EP4115967A4

Also Published As

Publication number Publication date
AU2021230179B2 (en) 2024-03-28
JP7457101B2 (ja) 2024-03-27
JPWO2021177272A1 (ja) 2021-09-10
AU2021230179A1 (en) 2022-09-29
EP4115967A4 (en) 2023-08-09
EP4115967A1 (en) 2023-01-11
US20230099894A1 (en) 2023-03-30
CN115209928A (zh) 2022-10-18
KR20220128447A (ko) 2022-09-20
CA3169483A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
EP1837028B1 (en) Method of removing leukocyte
US8900462B2 (en) Method for removing leukocyte and filter for use therein
JP4134043B2 (ja) 白血球除去方法、白血球除去フィルター及びその使用
US5820755A (en) Leukocyte filter unit
EP1507577A1 (en) Leukocyte filter construction and a method of use thereof
EP3241574B1 (en) Method of manufacturing a blood filter
WO2021177272A1 (ja) 血液処理フィルター
JP2021137244A (ja) 血液処理フィルター
JP4144707B2 (ja) 血液処理フィルター
JPH03173824A (ja) 白血球分離器
JP7019054B2 (ja) 血液処理フィルター及び血液処理フィルターの製造方法
WO2021006331A1 (ja) 血液処理フィルター
JP5710244B2 (ja) 血液処理用フィルター
JP3419831B2 (ja) 血液中の凝集物除去フィルター及び血液処理用フィルター装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504380

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3169483

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021230179

Country of ref document: AU

Date of ref document: 20210302

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021764736

Country of ref document: EP

Effective date: 20221004