WO2021177145A1 - Polyimide resin, polyimide varnish, and polyimide film - Google Patents

Polyimide resin, polyimide varnish, and polyimide film Download PDF

Info

Publication number
WO2021177145A1
WO2021177145A1 PCT/JP2021/007211 JP2021007211W WO2021177145A1 WO 2021177145 A1 WO2021177145 A1 WO 2021177145A1 JP 2021007211 W JP2021007211 W JP 2021007211W WO 2021177145 A1 WO2021177145 A1 WO 2021177145A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
structural unit
mol
film
constituent unit
Prior art date
Application number
PCT/JP2021/007211
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 安孫子
葵 大東
慎司 関口
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202180018414.5A priority Critical patent/CN115210292A/en
Priority to JP2022505163A priority patent/JPWO2021177145A1/ja
Priority to KR1020227029856A priority patent/KR20220147092A/en
Publication of WO2021177145A1 publication Critical patent/WO2021177145A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide resin, a polyimide varnish and a polyimide film.
  • polyimide resins are being studied in the fields of electrical and electronic components. For example, it is desired to replace a glass substrate used in an image display device such as a liquid crystal display or an OLED display with a plastic substrate for the purpose of reducing the weight and flexibility of the device. Research is underway. Films used in image display devices are required to have various optical characteristics. For example, when light emitted from a display element is emitted through a plastic substrate, the plastic substrate is required to be colorless and transparent.
  • Patent Document 1 contains 3,3 as diamine components for the purpose of obtaining a polyimide film having good solubility in a solvent and excellent processability, colorless and transparent, and excellent toughness.
  • a polyimide film containing a structure consisting of a combination of'-diaminodiphenyl sulfone and other specific diamines is disclosed.
  • the optical isotropic property is particularly high (that is, the Rth is low).
  • the Rth is low.
  • a polyimide film having high chemical resistance is also required.
  • the polyimide film contains a solvent contained in the varnish. Resistance to etc. is required. If the solvent resistance of the polyimide film is insufficient, it may become meaningless as a substrate due to dissolution or swelling of the film.
  • the present inventors have found that a polyimide resin containing a combination of a structural unit derived from two specific types of tetracarboxylic acid dianhydride and a structural unit derived from two specific types of diamine can solve the above-mentioned problems, and invented the invention. Has been completed.
  • the present invention relates to the following ⁇ 1> to ⁇ 5>.
  • a polyimide resin having a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from diamine, wherein the structural unit A is a structural unit derived from a compound represented by the following formula (a1).
  • (A1) and a structural unit (A2) derived from a compound represented by the following formula (a2) are included, and the structural unit B is a structural unit (B1) derived from a compound represented by the following formula (b1).
  • the ratio of the constituent unit (B1) in the constituent unit B is 5 to 80 mol%, and the ratio of the constituent unit (B2) in the constituent unit B is 20 to 95 mol%.
  • ⁇ 4> A polyimide varnish in which the polyimide resin according to any one of ⁇ 1> to ⁇ 3> above is dissolved in an organic solvent.
  • ⁇ 5> A polyimide film containing the polyimide resin according to any one of ⁇ 1> to ⁇ 3> above.
  • a polyimide resin, a polyimide varnish, and a polyimide resin capable of forming a film having excellent optical isotropic properties and also excellent elongation and chemical resistance, and excellent optical isotropic properties and further elongation. It is possible to provide a polyimide film having excellent chemical resistance.
  • the polyimide resin of the present invention is a polyimide resin having a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from diamine, and the structural unit A is a compound represented by the following formula (a1).
  • a structural unit (A1) derived from the constituent unit (A1) and a structural unit (A2) derived from the compound represented by the following formula (a2), and the structural unit B derived from the compound represented by the following formula (b1) At least one selected from the group consisting of B1) and a structural unit (B21) derived from a compound represented by the following formula (b21) and a structural unit (B22) derived from a compound represented by the following formula (b22).
  • B2 At least one selected from the group consisting of B1 and a structural unit (B21) derived from a compound represented by the following formula (b21) and a structural unit (B22) derived from a compound represented by the following formula (b22).
  • the polyimide resin of the present invention is excellent in elongation and chemical resistance while maintaining optical isotropic property is not clear, but the alicyclic structure and the aromatic structure, and the ether structure and the sulfonyl structure are arranged in an appropriate ratio. Therefore, it is considered to be excellent in optical isotropic property, and also excellent in elongation and chemical resistance.
  • the structural unit A is a structural unit derived from tetracarboxylic dianhydride in the polyimide resin.
  • the structural unit A includes a structural unit (A1) derived from the compound represented by the following formula (a1) and a structural unit (A2) derived from the compound represented by the following formula (a2).
  • the compound represented by the formula (a1) is a 4,4'-oxydiphthalic anhydride.
  • the compound represented by the formula (a2) is 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • the ratio of the constituent unit (A1) in the constituent unit A is preferably 30 to 90 mol%, more preferably 35 to 70 mol%, and further preferably 40 to 60 mol%.
  • the ratio of the constituent unit (A2) in the constituent unit A is preferably 10 to 70 mol%, more preferably 30 to 65 mol%, and further preferably 40 to 60 mol%.
  • the total ratio of the constituent units (A1) and (A2) in the constituent unit A is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more.
  • the upper limit is not particularly limited, and the total ratio of the constituent units (A1) and (A2) in the constituent unit A is 100 mol% or less.
  • the structural unit A may consist only of the structural unit (A1) and the structural unit (A2).
  • the molar ratio [(A1) / (A2)] of the structural unit (A1) and the structural unit (A2) in the structural unit A is preferably 30/70 from the viewpoint of improving optical isotropic property and chemical resistance. It is ⁇ 90/10, more preferably 35/65 to 70/30, and even more preferably 40/60 to 60/40.
  • the structural unit A may include a structural unit other than the structural unit (A1) and the structural unit (A2).
  • the tetracarboxylic dianhydride giving such a constituent unit is not particularly limited, but is pyromellitic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 9,9'. -Bis (3,4-dicarboxyphenyl) fluorene dianhydride, and aromatic tetracarboxylic dianhydrides such as 4,4'-(hexafluoroisopropyridene) diphthalic acid dianhydride (provided in the formula (a1)).
  • 1,2,3,4-cyclobutanetetracarboxylic dianhydride norbornenan-2-spirio- ⁇ -cyclopentanone- ⁇ '-spirio-2''-norbornane-5,5 '', 6,6''-tetracarboxylic dianhydride, 5,5'-bis-2-norbornene-5,5', 6,6'-tetracarboxylic acid-5,5', 6,6' -Alicyclic tetracarboxylic dianhydride such as dianhydride (excluding the compound represented by the formula (a2)); and fat such as 1,2,3,4-butanetetracarboxylic dianhydride Examples thereof include group tetracarboxylic dianhydride.
  • the aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings
  • the alicyclic tetracarboxylic dianhydride has one alicyclic ring. It means a tetracarboxylic acid dianhydride containing the above and does not contain an aromatic ring
  • the aliphatic tetracarboxylic acid dianhydride means a tetracarboxylic acid dianhydride containing neither an aromatic ring nor an alicyclic ring.
  • the structural unit arbitrarily included in the structural unit A may be one type or two or more types.
  • the structural unit B is a structural unit derived from diamine in the polyimide resin.
  • the structural unit B is a structural unit (B1) derived from the compound represented by the following formula (b1), a structural unit (B21) derived from the compound represented by the following formula (b21), and the following formula (b22). It contains at least one structural unit (B2) selected from the group consisting of structural units (B22) derived from the represented compound.
  • the compound represented by the formula (b1) is a bis [(aminophenoxy) phenyl] sulfone, and as a specific example, a bis [4- (4-aminophenoxy) phenyl] sulfone represented by the following formula (b1a). , A bis [4- (3-aminophenoxy) phenyl] sulfone represented by the following formula (b1b).
  • the structural unit B includes the structural unit (B1), the elongation and chemical resistance of the film can be improved, and the heat resistance and optical anisotropy can also be improved.
  • the compound represented by the formula (b21) is bis (aminomethyl) cyclohexane, and specific examples thereof include 1,3-bis (aminomethyl) cyclohexane represented by the following formula (b21a) and the following formula (b21b). ), And 1,4-bis (aminomethyl) cyclohexane is mentioned.
  • the cis: trans ratio of the compound represented by the formula (b21) is preferably 0: 100 to 80:20, more preferably 0.1: 99.9 to 70:30, from the viewpoint of organic solvent resistance and heat resistance.
  • 0.5: 99.5 to 60:40 is even more preferable, and 1:99 to 20:80 is even more preferable.
  • the compound represented by the formula (b22) is bis (aminomethyl) norbornane.
  • the formula (b22) represents an isomer mixture, and the compound represented by the formula (b22) is available as an isomer mixture.
  • the structural unit (B2) By including the structural unit (B2) in the structural unit B, the transparency and optical isotropic property of the film can be improved.
  • the ratio of the constituent unit (B1) in the constituent unit B is preferably 5 to 80 mol%, more preferably 10 to 70 mol%, and further preferably 30 to 60 mol%.
  • the ratio of the constituent unit (B2) in the constituent unit B is preferably 20 to 95 mol%, more preferably 30 to 90 mol%, and further preferably 40 to 70 mol%.
  • the total ratio of the constituent units (B1) and (B2) in the constituent unit B is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more.
  • the upper limit is not particularly limited, and the total ratio of the constituent units (B1) and (B2) in the constituent unit B is 100 mol% or less.
  • the structural unit B may consist only of the structural unit (B1) and the structural unit (B2).
  • the molar ratio [(B1) / (B2)] of the structural unit (B1) to the structural unit (B2) in the structural unit B is preferably 5/95 from the viewpoint of improving optical isotropic property and chemical resistance. It is -80/20, more preferably 10/90 to 70/30, and even more preferably 30/70 to 60/40. Further, from the viewpoint of heat resistance and elongation, it is preferably 25/75 to 80/20, more preferably 35/65 to 65/35, still more preferably 35/65 to 55/45, and further preferably. Is 35/65 to 45/55.
  • the structural unit B may include a structural unit other than the structural unit (B1) and the structural unit (B2).
  • the diamine giving such a constituent unit is not particularly limited, but is limited to 1,4-phenylenediamine, p-xylylene diamine, 1,5-diaminonaphthalene, 2,2'-dimethylbiphenyl-4,4'-diamine.
  • the aromatic diamine means a diamine containing one or more aromatic rings
  • the alicyclic diamine means a diamine containing one or more alicyclic rings and not containing an aromatic ring, and is a fat.
  • the group diamine means a diamine that does not contain an aromatic ring or an alicyclic ring.
  • the structural unit arbitrarily included in the structural unit B may be one type or two or more types.
  • the weight average molecular weight of the polyimide resin is preferably 5,000 to 300,000 from the viewpoint of the mechanical strength of the obtained polyimide film.
  • the weight average molecular weight of the polyimide resin can be determined from, for example, a standard polymethylmethacrylate (PMMA) conversion value measured by gel filtration chromatography.
  • the polyimide resin may contain a structure other than the polyimide chain (a structure in which the structural unit A and the structural unit B are imide-bonded).
  • Examples of the structure other than the polyimide chain that can be contained in the polyimide resin include a structure containing an amide bond.
  • the polyimide resin preferably contains a polyimide chain (a structure in which the structural unit A and the structural unit B are imide-bonded) as a main structure. Therefore, the ratio of the polyimide chain to the polyimide resin is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 90% by mass or more, and particularly preferably 99% by mass or more. Yes, and less than 100 mol%.
  • the polyimide resin may consist only of a polyimide chain.
  • the polyimide resin composition of the present invention containing the above-mentioned polyimide resin can form a film excellent in optical isotropic property, elongation and chemical resistance, and suitable physical property values of the film are as follows.
  • the total light transmittance is preferably 88% or more, more preferably 88.5% or more, and further preferably 89% or more when the film has a thickness of 10 ⁇ m.
  • the yellow index (YI) is preferably 5.0 or less, more preferably 3.0 or less, still more preferably 2.5 or less, and even more preferably, when the film has a thickness of 10 ⁇ m. It is 2.0 or less.
  • the absolute value of the thickness retardation (Rth) is preferably 70 nm or less, more preferably 50 nm or less, still more preferably 35 nm or less, still more preferably 30 nm or less, and more when the film has a thickness of 10 ⁇ m. More preferably, it is 20 nm or less.
  • the film that can be formed by using the above-mentioned polyimide resin has good mechanical properties and heat resistance, and has the following suitable physical property values.
  • the tensile strength is preferably 70 MPa or more, more preferably 90 MPa or more, and further preferably 100 MPa or more.
  • the tensile elastic modulus is preferably 1.5 GPa or more, more preferably 2.0 GPa or more, still more preferably 2.5 GPa or more, still more preferably 2.7 GPa or more.
  • the tensile elongation at break is preferably 8% or more, more preferably 10% or more, still more preferably 15% or more, still more preferably 20% or more.
  • the glass transition temperature (Tg) is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and even more preferably 250 ° C. or higher.
  • the above-mentioned physical property values in the present invention can be specifically measured by the method described in Examples.
  • the polyimide resin of the present invention comprises a tetracarboxylic acid component containing a compound giving the above-mentioned structural unit (A1) and a compound giving the above-mentioned structural unit (A2), a compound giving the above-mentioned structural unit (B1), and the above-mentioned configuration. It can be produced by reacting with a diamine component containing a compound giving a unit (B2).
  • Examples of the compound giving the structural unit (A1) include the compound represented by the formula (a1), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given.
  • Examples of the derivative include a tetracarboxylic acid (that is, 4,4'-oxydiphthalic acid) corresponding to the tetracarboxylic dianhydride represented by the formula (a1), and an alkyl ester of the tetracarboxylic acid. Of these, the tetracarboxylic dianhydride represented by the formula (a1) is preferable.
  • the compound giving the structural unit (A2) includes a compound represented by the formula (a2), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given.
  • the derivative include a tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by the formula (a2) (that is, 1,2,4,5-cyclohexanetetracarboxylic acid), and an alkyl ester of the tetracarboxylic acid.
  • the tetracarboxylic dianhydride represented by the formula (a2) is preferable.
  • the tetracarboxylic acid component preferably contains the compound giving the structural unit (A1) in an amount of 30 to 90 mol%, more preferably 35 to 70 mol%, still more preferably 40 to 60 mol%.
  • the tetracarboxylic acid component preferably contains the compound giving the structural unit (A2) in an amount of 10 to 70 mol%, more preferably 30 to 65 mol%, and further preferably 40 to 60 mol%.
  • the tetracarboxylic acid component contains, in total, a compound giving the constituent unit (A1) and a compound giving the constituent unit (A2) in an amount of preferably 50 mol% or more, more preferably 70 mol% or more, and more preferably 90 mol%. Including the above.
  • the upper limit is not particularly limited, and the total amount of the tetracarboxylic acid component is 100 mol% or less of the compound giving the constituent unit (A1) and the compound giving the constituent unit (A2).
  • the tetracarboxylic acid component may consist only of a compound that gives a constituent unit (A1) and a compound that gives a constituent unit (A2).
  • the molar ratio [(A1) / (A2)] of the compound giving the constituent unit (A1) to the compound giving the constituent unit (A2) in the tetracarboxylic acid component is preferably 30/70 to 90/10, and more. It is preferably 35/65 to 70/30, and more preferably 40/60 to 60/40.
  • the tetracarboxylic acid component may contain any compound other than the compound giving the structural unit (A1) and the compound giving the structural unit (A2).
  • Such optional compounds include the above-mentioned aromatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aliphatic tetracarboxylic dianhydrides, and derivatives thereof (tetracarboxylic acid, tetra). Alkyl ester of carboxylic acid, etc.).
  • the compound arbitrarily contained in the tetracarboxylic acid component may be one kind or two or more kinds.
  • Examples of the compound giving the structural unit (B1) include the compound represented by the formula (b1), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given.
  • Examples of the derivative include diisocyanates corresponding to the compound represented by the formula (b1).
  • the compound that gives the structural unit (B1) the compound represented by the formula (b1) (that is, a diamine) is preferable.
  • examples of the compound that gives the structural unit (B2) include, but are not limited to, the compound represented by the formula (b21) and the compound represented by the formula (b22), as long as the same structural unit is given. It may be a derivative.
  • Examples of the derivative include a diisocyanate corresponding to the compound represented by the formula (b21) and a diisocyanate corresponding to the compound represented by the formula (b22).
  • a compound represented by the formula (b21) and a compound represented by the formula (b22) that is, a diamine are preferable.
  • the diamine component preferably contains 5 to 80 mol%, more preferably 10 to 70 mol%, and further preferably 30 to 60 mol% of the compound giving the structural unit (B1).
  • the diamine component preferably contains a compound that gives the structural unit (B2) in an amount of 20 to 95 mol%, more preferably 30 to 90 mol%, and even more preferably 40 to 70 mol%.
  • the diamine component contains, in total, a compound that gives the constituent unit (B1) and a compound that gives the constituent unit (B2), preferably 50 mol% or more, more preferably 70 mol% or more, and more preferably 90 mol% or more. ..
  • the upper limit is not particularly limited, and the total amount of the tetracarboxylic acid component is 100 mol% or less of the compound giving the constituent unit (B1) and the compound giving the constituent unit (B2).
  • the tetracarboxylic acid component may consist only of a compound that gives a constituent unit (B1) and a compound that gives a constituent unit (B2).
  • the molar ratio [(B1) / (B2)] of the compound giving the constituent unit (B1) to the compound giving the constituent unit (B2) in the diamine component is determined from the viewpoint of improving optical isotropic property and chemical resistance. It is preferably 5/95 to 80/20, more preferably 10/90 to 70/30, and even more preferably 30/70 to 60/40. Further, from the viewpoint of heat resistance and elongation, it is preferably 25/75 to 80/20, more preferably 35/65 to 65/35, still more preferably 35/65 to 55/45, and further preferably. Is 35/65 to 45/55.
  • the diamine component may contain any compound other than the compound giving the structural unit (B1) and the compound giving the structural unit (B2).
  • Such arbitrary compounds include the above-mentioned aromatic diamines, alicyclic diamines, and aliphatic diamines, and derivatives thereof (diisocyanates, etc.).
  • the compound arbitrarily contained in the diamine component may be one kind or two or more kinds.
  • the charge amount ratio of the tetracarboxylic acid component and the diamine component used in the production of the polyimide resin is 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component. Is preferable.
  • an end-capping agent may be used in the production of the polyimide resin in addition to the above-mentioned tetracarboxylic acid component and diamine component.
  • the terminal encapsulant monoamines or dicarboxylic acids are preferable.
  • the amount of the terminal encapsulant to be introduced is preferably 0.0001 to 0.1 mol, more preferably 0.001 to 0.06 mol, based on 1 mol of the tetracarboxylic acid component.
  • Examples of the monoamine terminal encapsulant include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3-. Examples thereof include ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline, and benzylamine and aniline are preferable.
  • dicarboxylic acid terminal encapsulant dicarboxylic acids are preferable, and a part thereof may be ring-closed.
  • phthalic acid and phthalic anhydride are preferable.
  • the method for reacting the above-mentioned tetracarboxylic acid component with the diamine component is not particularly limited, and a known method can be used.
  • Specific reaction methods include (1) charging a tetracarboxylic acid component, a diamine component, and a reaction solvent into a reactor, stirring at 10 to 110 ° C. for 0.5 to 30 hours, and then raising the temperature to imidize. Method of carrying out the reaction, (2) After charging the diamine component and the reaction solvent into the reactor and dissolving them, the tetracarboxylic acid component is charged, and if necessary, the mixture is stirred at 10 to 110 ° C. for 0.5 to 30 hours, and then.
  • Examples thereof include a method of carrying out an imidization reaction by raising the temperature to (3) a method of charging a tetracarboxylic acid component, a diamine component and a reaction solvent into a reactor and immediately raising the temperature to carry out the imidization reaction.
  • the reaction solvent used in the production of the polyimide resin may be one that does not inhibit the imidization reaction and can dissolve the produced polyimide.
  • an aprotic solvent, a phenol solvent, an ether solvent, a carbonate solvent and the like can be mentioned.
  • aprotonic solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), N-methylcaprolactam, 1,3-dimethylimidazolidinone, and tetra.
  • Amide solvents such as methyl urea, lactone solvents such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphintriamide, dimethyl sulfone and dimethyl sulfoxide.
  • Sulfur-containing solvent such as sulfolane, ketone solvent such as acetone, cyclohexanone, methylcyclohexanone, amine solvent such as picolin and pyridine, ester solvent such as acetic acid (2-methoxy-1-methylethyl) and the like. ..
  • phenolic solvent examples include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4. -Xylenol, 3,5-xylenol and the like can be mentioned.
  • ether solvent examples include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, and bis [2- (2-methoxyethoxy) ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
  • the carbonate solvent examples include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate and the like.
  • aproton solvents are preferable, amide solvents and lactone solvents are more preferable, and lactone solvents are even more preferable.
  • the above-mentioned reaction solvent may be used alone or in mixture of 2 or more types.
  • the imidization reaction it is preferable to carry out the reaction while removing water generated during production using a Dean-Stark apparatus or the like. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.
  • a known imidization catalyst can be used.
  • the imidization catalyst include a base catalyst and an acid catalyst.
  • Base catalysts include pyridine, quinoline, isoquinoline, ⁇ -picoline, ⁇ -picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine (TEA), tripropylamine, tributylamine, triethylenediamine, imidazole,
  • organic base catalysts such as N, N-dimethylaniline and N, N-diethylaniline
  • inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogencarbonate and sodium hydrogencarbonate.
  • the acid catalyst examples include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, paratoluenesulfonic acid, naphthalenesulfonic acid and the like. Can be mentioned.
  • the above-mentioned imidization catalyst may be used alone or in combination of two or more. Of the above, from the viewpoint of handleability, it is preferable to use a base catalyst, more preferably an organic base catalyst, and even more preferably triethylamine.
  • the temperature of the imidization reaction is preferably 120 to 250 ° C., more preferably 160 to 200 ° C. from the viewpoint of suppressing the reaction rate and gelation.
  • the reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
  • the polyimide varnish of the present invention is obtained by dissolving the polyimide resin of the present invention in an organic solvent. That is, the polyimide varnish of the present invention contains the polyimide resin of the present invention and an organic solvent, and the polyimide resin is dissolved in the organic solvent.
  • the organic solvent may be any one that dissolves the polyimide resin, and is not particularly limited, but it is preferable to use the above-mentioned compounds alone or in combination of two or more as the reaction solvent used for producing the polyimide resin.
  • the polyimide varnish of the present invention may be the polyimide solution itself in which the polyimide resin obtained by the polymerization method is dissolved in a reaction solvent, or may be diluted by adding a solvent to the polyimide solution. good.
  • the polyimide varnish of the present invention preferably contains the polyimide resin of the present invention in an amount of 5 to 40% by mass, more preferably 5 to 20% by mass.
  • the viscosity of the polyimide varnish is preferably 1 to 200 Pa ⁇ s, more preferably 1 to 100 Pa ⁇ s.
  • the viscosity of the polyimide varnish is a value measured at 25 ° C. using an E-type viscometer.
  • the polyimide varnish of the present invention has an inorganic filler, an adhesion accelerator, a release agent, a flame retardant, an ultraviolet stabilizer, a surfactant, a leveling agent, a defoaming agent, and an optical brightener as long as the required properties of the polyimide film are not impaired.
  • Various additives such as a whitening agent, a cross-linking agent, a polymerization initiator, and a photosensitizer may be contained.
  • the method for producing the polyimide varnish of the present invention is not particularly limited, and a known method can be applied.
  • the polyimide film of the present invention contains the polyimide resin of the present invention. Therefore, the polyimide film of the present invention is excellent in optical isotropic property, peelability and chemical resistance. Suitable physical property values of the polyimide film of the present invention are as described above as ⁇ property of polyimide resin>.
  • the method for producing the polyimide film of the present invention is not particularly limited, and a known method can be used.
  • the polyimide varnish of the present invention is applied onto a smooth support such as a glass plate, a metal plate, or plastic, or formed into a film, and then an organic solvent such as a reaction solvent or a dilution solvent contained in the varnish is applied. Examples thereof include a method of removing by heating.
  • the coating method examples include known coating methods such as spin coating, slit coating, and blade coating, and spin coating and slit coating are preferable. Above all, the slit coat is more preferable from the viewpoint of controlling the intermolecular orientation and improving the chemical resistance and workability.
  • the organic solvent is evaporated at a temperature of 150 ° C. or lower to make it tack-free, and then the temperature is equal to or higher than the boiling point of the organic solvent used (not particularly limited, but preferably). It is preferable to dry at 200 to 500 ° C.). Further, it is preferable to dry in an air atmosphere or a nitrogen atmosphere. The pressure in the dry atmosphere may be reduced pressure, normal pressure, or pressurized.
  • the method of peeling the polyimide film formed on the support from the support is not particularly limited, but a mechanical peel-off method, a laser lift-off method, or the like can be used.
  • the polyimide film of the present invention can also be produced by using a polyamic acid varnish in which polyamic acid is dissolved in an organic solvent.
  • the polyamic acid contained in the polyamic acid varnish is a precursor of the polyimide resin of the present invention, and is a tetracarboxylic acid component containing a compound giving the above-mentioned structural unit (A1) and a compound giving the above-mentioned structural unit (A2).
  • A1 a compound giving the above-mentioned structural unit
  • A2 a compound giving the above-mentioned structural unit
  • the polyimide resin of the present invention By imidizing (dehydrating and ring-closing) this polyamic acid, the polyimide resin of the present invention, which is the final product, can be obtained.
  • the organic solvent contained in the polyamic acid varnish the organic solvent contained in the polyimide varnish of the present invention can be used.
  • the polyamic acid varnish may be the polyamic acid solution itself obtained by subjecting the tetracarboxylic acid component and the diamine component to a heavy addition reaction in a reaction solvent, or the polyamic acid solution. It may be diluted by adding a solvent to the above.
  • the method for producing the polyimide film using the polyamic acid varnish is not particularly limited, and a known method can be used.
  • a polyamic acid varnish is applied onto a smooth support such as a glass plate, a metal plate, or plastic, or formed into a film, and organic solvents such as a reaction solvent and a diluting solvent contained in the varnish are removed by heating.
  • a polyimide film can be produced by obtaining a polyamic acid film and imidizing the polyamic acid in the polyamic acid film by heating.
  • the heating temperature for drying the polyamic acid varnish to obtain a polyamic acid film is preferably 50 to 120 ° C.
  • the heating temperature for imidizing the polyamic acid by heating is preferably 200 to 400 ° C.
  • the imidization method is not limited to thermal imidization, and chemical imidization can also be applied.
  • the thickness of the polyimide film of the present invention can be appropriately selected depending on the intended use, but is preferably 1 to 250 ⁇ m, more preferably 5 to 100 ⁇ m, still more preferably 8 to 80 ⁇ m, still more preferably 10 to 80 ⁇ m. The range. When the thickness is 1 to 250 ⁇ m, it can be practically used as a self-supporting film. The thickness of the polyimide film can be easily controlled by adjusting the solid content concentration and the viscosity of the polyimide varnish.
  • the polyimide film of the present invention is suitably used as a film for various members such as color filters, flexible displays, semiconductor parts, and optical members.
  • the polyimide film of the present invention is particularly preferably used as a substrate for an image display device such as a liquid crystal display or an OLED display.
  • Total light transmittance and yellow index (YI) The total light transmittance and YI were measured using a color / turbidity simultaneous measuring device "COH7700" manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7136.
  • Thickness phase difference (evaluation of optical isotropic property)
  • the thickness phase difference (Rth) was measured using an ellipsometer "M-220" manufactured by JASCO Corporation. The value of the thickness phase difference at the measurement wavelength of 590 nm was measured.
  • Rth is expressed by the following formula, where nx is the maximum in-plane refractive index of the polyimide film, ny is the minimum, nz is the refractive index in the thickness direction, and d is the thickness of the film. Is to be done.
  • Rth [ ⁇ (nx + ny) / 2 ⁇ -nz] ⁇ d
  • the 10 ⁇ m-converted Rth is Rth when the value of d is 10 ⁇ m.
  • Solvent resistance (PGMEA resistance) (evaluation of chemical resistance)
  • PMEA resistance evaluation of chemical resistance
  • the polyimide film formed on the glass plate was immersed in a solvent at room temperature, and it was confirmed whether the film surface was changed.
  • the solvent propylene glycol monomethyl ether acetate (PGMEA) was used.
  • the evaluation criteria for solvent resistance were as follows. A: There was no change on the film surface. B: The film surface was cracked or the film surface was melted.
  • ODPA 4,4'-oxydiphthalic anhydride (manufactured by Manac Inc .; compound represented by formula (a1))
  • HPMDA 1,2,4,5-Cyclohexanetetracarboxylic dianhydride (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (a2))
  • BAPS Bis [4- (4-aminophenoxy) phenyl] sulfone (manufactured by Seika Co., Ltd .; compound represented by formula (b1a))
  • M-BAPS Bis [4- (3-aminophenoxy) phenyl] sulfone (manufactured by Seika Co., Ltd .; compound represented by the formula (b1b)) 1,3-BAC: 1,3-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (b21a)) 1,4-BAC: 1,4-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (b21b); trans ratio 40%) 1,4-BACT: 1,4-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (b21b); trans ratio
  • Example 1 BAPS 8.650 g (0.020 mol) in a 500 mL 5-necked round-bottom flask equipped with a stainless steel crescent-shaped stirring blade, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. , 1,4-BACT 11.380 g (0.080 mol) and ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Corporation) 45.710 g were added, and the mixture was stirred at a system temperature of 70 ° C., a nitrogen atmosphere, and a rotation speed of 150 rpm. Obtained a solution.
  • Example 2 The amount of 1,4-BACT was changed from 11.380 g (0.080 mol) to 9.958 g (0.070 mol), and the amount of BAPS was changed from 8.650 g (0.020 mol) to 12.975 g (0).
  • a polyimide varnish having a solid content concentration of 15% by mass was obtained by the same method as in Example 1 except that the mixture was changed to .030 mol). Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Example 3 The amount of 1,4-BACT was changed from 11.380 g (0.080 mol) to 8.535 g (0.060 mol), and the amount of BAPS was changed from 8.650 g (0.020 mol) to 17.300 g (0).
  • a polyimide varnish having a solid content concentration of 15% by mass was obtained by the same method as in Example 1 except that the mixture was changed to .040 mol). Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Example 4 The amount of 1,4-BACT was changed from 11.380 g (0.080 mol) to 7.113 g (0.050 mol), and the amount of BAPS was changed from 8.650 g (0.020 mol) to 21.625 g (0).
  • a polyimide varnish having a solid content concentration of 15% by mass was obtained by the same method as in Example 1 except that the mixture was changed to .050 mol). Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Example 5 Solid content concentration 15% by mass by the same method as in Example 4 except that 1,4-BACT 7.13 g (0.050 mol) was changed to 1,4-BAC 7.113 g (0.050 mol). Polyimide varnish was obtained. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Example 6 Solid content concentration 15% by mass by the same method as in Example 4 except that 1,4-BACT 7.13 g (0.050 mol) was changed to 1,3-BAC 7.113 g (0.050 mol). Polyimide varnish was obtained. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Example 7 7.113 g (0.050 mol) of 1,4-BACT is added to bis (aminomethyl) norbornan (isomer mixture: manufactured by Tokyo Chemical Industry Co., Ltd .; compound represented by formula (b22)) 7.713 g (0.050).
  • a polyimide varnish having a solid content concentration of 15% by mass was obtained by the same method as in Example 4 except that the mixture was changed to moles).
  • a film was obtained by the same method as in Example 1.
  • Example 8 A polyimide varnish having a solid content concentration of 15% by mass was obtained by the same method as in Example 4 except that 21.625 g (0.050 mol) of BAPS was changed to 21.625 g (0.050 mol) of M-BAPS. .. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Comparative Example 1 Polyimide varnish with a solid content concentration of 20% by mass by the same method as in Example 4 except that BAPS 21.625 g (0.050 mol) was changed to 3,3'-DDS 12.415 g (0.050 mol). Got Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Comparative Example 2 The amount of BAPS was changed from 8.650 g (0.020 mol) to 43.249 g (0.100 mol) and the amount of HPMDA was changed from 11.209 g (0.050 mol) to 22.417 g (0.100 mol).
  • a polyimide varnish having a solid content concentration of 20% by mass was obtained by the same method as in Example 1 except that ODPA and 1,4-BACT were not used. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Comparative Example 3 The amount of M-BAPS was changed from 21.625 g (0.050 mol) to 43.249 g (0.100 mol), and the amount of HPMDA was changed from 11.209 g (0.050 mol) to 22.417 g (0.100 mol).
  • a polyimide varnish having a solid content concentration of 20% by mass was obtained by the same method as in Example 8 except that ODPA and 1,4-BACT were not used. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • the polyimide film of the example has good optical isotropic properties, and is also excellent in toughness and chemical resistance.
  • Comparative Example 1 was excellent in optical isotropic property and chemical resistance, but was inferior in elongation.
  • Comparative Example 2 was inferior in optical isotropic property, chemical resistance, and elongation.
  • the optical isotropic property was good, but the elongation and chemical resistance were inferior. Therefore, ODPA and HPMDA are used as the tetracarboxylic acid component, and BAPS or M-BAPS and alicyclic diamines such as 1,3-BAC, 1,4-BAC, and 1,4-BACT are used in combination as the diamine component.
  • the polyimide film can be suitably used as a plastic substrate for a liquid crystal display, an OLED display, a touch panel, or the like as a film having excellent optical isotropic properties, chemical resistance, and elongation.

Abstract

A polyimide resin having a constituent unit A derived from a tetracarboxylic acid dianhydride and a constituent unit B derived from a diamine, wherein the constituent unit A includes a constituent unit (A1) derived from a compound represented by formula (a1) and a constituent unit (A2) derived from a compound represented by formula (a2), and the constituent unit B includes a constituent unit (B1) derived from a compound represented by formula (b1) and at least one constituent unit (B2) selected from the group consisting of a constituent unit (B21) derived from a compound represent by formula (b21) and a constituent unit (B22) derived from a compound represented by formula (b22).

Description

ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムPolyimide resin, polyimide varnish and polyimide film
 本発明はポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムに関する。 The present invention relates to a polyimide resin, a polyimide varnish and a polyimide film.
 ポリイミド樹脂は、電気及び電子部品等の分野において様々な利用が検討されている。例えば、液晶ディスプレイやOLEDディスプレイ等の画像表示装置に用いられるガラス基板を、デバイスの軽量化やフレキシブル化を目的として、プラスチック基板へ代替することが望まれており、当該プラスチック基板として適するポリイミドフィルムの研究が進められている。
 画像表示装置用途に使用されるフィルムには、様々な光学特性が求められる。たとえば、表示素子から発せられる光がプラスチック基板を通って出射されるような場合、プラスチック基板には無色透明性が要求される。
Various uses of polyimide resins are being studied in the fields of electrical and electronic components. For example, it is desired to replace a glass substrate used in an image display device such as a liquid crystal display or an OLED display with a plastic substrate for the purpose of reducing the weight and flexibility of the device. Research is underway.
Films used in image display devices are required to have various optical characteristics. For example, when light emitted from a display element is emitted through a plastic substrate, the plastic substrate is required to be colorless and transparent.
 上記のような性能を満たすために、様々な組成のポリイミド樹脂の開発が行われている。たとえば、特許文献1には、溶媒への溶解性が良好で、加工性に優れるポリアミドを含有し、無色透明であり、靭性に優れるポリイミドフィルムを得ることを目的として、ジアミン成分として、3,3’-ジアミノジフェニルスルホンと他の特定のジアミンとの組み合わせからなる構造を含むポリイミドフィルムが開示されている。 Polyimide resins with various compositions are being developed to satisfy the above performance. For example, Patent Document 1 contains 3,3 as diamine components for the purpose of obtaining a polyimide film having good solubility in a solvent and excellent processability, colorless and transparent, and excellent toughness. A polyimide film containing a structure consisting of a combination of'-diaminodiphenyl sulfone and other specific diamines is disclosed.
国際公開第2016/158825号International Publication No. 2016/158825
 無色透明性以外にも、位相差フィルムや偏光板を光が通過する用途、例えば、液晶ディスプレイ、タッチパネル等に使用される場合には、特に光学的等方性が高い(すなわち、Rthが低い)ことが要求される。
 更に、耐薬品性の高いポリイミドフィルムも求められている。例えば、ポリイミドフィルムの上に別の樹脂層(例えば、カラーフィルター、レジスト)を形成するために当該樹脂層形成用のワニスをポリイミドフィルムに塗布する場合、ポリイミドフィルムには当該ワニス中に含まれる溶剤等に対する耐性が求められる。ポリイミドフィルムの耐溶剤性が不十分であると、フィルムの溶解や膨潤により、基板として意味をなさなくなるおそれがある。しかし、前記のように光学特性を確保するためには、ポリイミドフィルム作成時には溶液としなければならず、これらの性質を両立することは困難であった。
 また、ポリイミドフィルムを基板として用いる場合、回路作成後にポリイミドフィルムを支持体から剥離する工程があり。その際、ポリイミドフィルムにはプロセスを容易にして剥離中の破断を防ぐ意味で、一定の靱性、即ち良好な伸びを有することが求められる。
 このように、得られるポリイミドフィルムの光学特性、特に光学的等方性を維持しつつ、伸びと耐薬品性に優れるポリイミドフィルムを得ることができるポリイミド樹脂が求められていた。
In addition to colorless transparency, when used for applications where light passes through a retardation film or polarizing plate, for example, in a liquid crystal display, a touch panel, etc., the optical isotropic property is particularly high (that is, the Rth is low). Is required.
Further, a polyimide film having high chemical resistance is also required. For example, when a varnish for forming the resin layer is applied to the polyimide film in order to form another resin layer (for example, a color filter or a resist) on the polyimide film, the polyimide film contains a solvent contained in the varnish. Resistance to etc. is required. If the solvent resistance of the polyimide film is insufficient, it may become meaningless as a substrate due to dissolution or swelling of the film. However, as described above, in order to secure the optical properties, a solution must be used when producing the polyimide film, and it is difficult to achieve both of these properties.
Further, when the polyimide film is used as a substrate, there is a step of peeling the polyimide film from the support after creating the circuit. At that time, the polyimide film is required to have a certain toughness, that is, good elongation in order to facilitate the process and prevent breakage during peeling.
As described above, there has been a demand for a polyimide resin capable of obtaining a polyimide film having excellent elongation and chemical resistance while maintaining the optical characteristics of the obtained polyimide film, particularly optical isotropic property.
 本発明者らは、特定の2種のテトラカルボン酸二無水物に由来する構成単位と特定の2種のジアミンに由来する構成単位の組み合わせを含むポリイミド樹脂が上記課題を解決できることを見出し、発明を完成させるに至った。 The present inventors have found that a polyimide resin containing a combination of a structural unit derived from two specific types of tetracarboxylic acid dianhydride and a structural unit derived from two specific types of diamine can solve the above-mentioned problems, and invented the invention. Has been completed.
 即ち、本発明は、下記の<1>~<5>に関する。
<1> テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有するポリイミド樹脂であって、構成単位Aが下記式(a1)で表される化合物に由来する構成単位(A1)と、下記式(a2)で表される化合物に由来する構成単位(A2)を含み、構成単位Bが下記式(b1)で表される化合物に由来する構成単位(B1)と、下記式(b21)で表される化合物に由来する構成単位(B21)及び下記式(b22)で表される化合物に由来する構成単位(B22)からなる群より選ばれる少なくとも1つである構成単位(B2)を含むポリイミド樹脂。
Figure JPOXMLDOC01-appb-C000002

<2> 構成単位A中における構成単位(A1)の比率が30~90モル%であり、構成単位B中における構成単位(A2)の比率が10~70モル%である、上記<1>に記載のポリイミド樹脂。
<3> 構成単位B中における構成単位(B1)の比率が5~80モル%であり、構成単位B中における構成単位(B2)の比率が20~95モル%である、上記<1>又は<2>に記載のポリイミド樹脂。
<4> 上記<1>~<3>のいずれか1つに記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。
<5> 上記<1>~<3>のいずれか1つに記載のポリイミド樹脂を含む、ポリイミドフィルム。
That is, the present invention relates to the following <1> to <5>.
<1> A polyimide resin having a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from diamine, wherein the structural unit A is a structural unit derived from a compound represented by the following formula (a1). (A1) and a structural unit (A2) derived from a compound represented by the following formula (a2) are included, and the structural unit B is a structural unit (B1) derived from a compound represented by the following formula (b1). A structural unit that is at least one selected from the group consisting of a structural unit (B21) derived from a compound represented by the following formula (b21) and a structural unit (B22) derived from a compound represented by the following formula (b22). Polyimide resin containing (B2).
Figure JPOXMLDOC01-appb-C000002

<2> In the above <1>, the ratio of the constituent unit (A1) in the constituent unit A is 30 to 90 mol%, and the ratio of the constituent unit (A2) in the constituent unit B is 10 to 70 mol%. The polyimide resin described.
<3> The ratio of the constituent unit (B1) in the constituent unit B is 5 to 80 mol%, and the ratio of the constituent unit (B2) in the constituent unit B is 20 to 95 mol%. The polyimide resin according to <2>.
<4> A polyimide varnish in which the polyimide resin according to any one of <1> to <3> above is dissolved in an organic solvent.
<5> A polyimide film containing the polyimide resin according to any one of <1> to <3> above.
 本発明によれば、光学的等方性に優れ、更に伸びと耐薬品性にも優れるフィルムを形成することが可能であるポリイミド樹脂、ポリイミドワニス、及び光学的等方性に優れ、更に伸びと耐薬品性にも優れるポリイミドフィルムを提供することができる。 According to the present invention, a polyimide resin, a polyimide varnish, and a polyimide resin capable of forming a film having excellent optical isotropic properties and also excellent elongation and chemical resistance, and excellent optical isotropic properties and further elongation. It is possible to provide a polyimide film having excellent chemical resistance.
[ポリイミド樹脂]
 本発明のポリイミド樹脂は、テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有するポリイミド樹脂であって、構成単位Aが下記式(a1)で表される化合物に由来する構成単位(A1)と、下記式(a2)で表される化合物に由来する構成単位(A2)を含み、構成単位Bが下記式(b1)で表される化合物に由来する構成単位(B1)と、下記式(b21)で表される化合物に由来する構成単位(B21)及び下記式(b22)で表される化合物に由来する構成単位(B22)からなる群より選ばれる少なくとも1つである構成単位(B2)を含む。
[Polyimide resin]
The polyimide resin of the present invention is a polyimide resin having a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from diamine, and the structural unit A is a compound represented by the following formula (a1). A structural unit (A1) derived from the constituent unit (A1) and a structural unit (A2) derived from the compound represented by the following formula (a2), and the structural unit B derived from the compound represented by the following formula (b1) ( At least one selected from the group consisting of B1) and a structural unit (B21) derived from a compound represented by the following formula (b21) and a structural unit (B22) derived from a compound represented by the following formula (b22). Includes the structural unit (B2) that is.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明のポリイミド樹脂が光学的等方性を維持しつつ、伸びと耐薬品性に優れる理由は定かではないが、脂環式構造と芳香族構造、及びエーテル構造とスルホニル構造を適当な比率で有するため、光学的等方性に優れ、更に伸びと耐薬品性にも優れるものと考えられる。 The reason why the polyimide resin of the present invention is excellent in elongation and chemical resistance while maintaining optical isotropic property is not clear, but the alicyclic structure and the aromatic structure, and the ether structure and the sulfonyl structure are arranged in an appropriate ratio. Therefore, it is considered to be excellent in optical isotropic property, and also excellent in elongation and chemical resistance.
<構成単位A>
 構成単位Aは、ポリイミド樹脂に占めるテトラカルボン酸二無水物に由来する構成単位である。
 構成単位Aは、下記式(a1)で表される化合物に由来する構成単位(A1)と、下記式(a2)で表される化合物に由来する構成単位(A2)を含む。
<Structural unit A>
The structural unit A is a structural unit derived from tetracarboxylic dianhydride in the polyimide resin.
The structural unit A includes a structural unit (A1) derived from the compound represented by the following formula (a1) and a structural unit (A2) derived from the compound represented by the following formula (a2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(a1)で表される化合物は、4,4’-オキシジフタル酸無水物である。
  構成単位Aが構成単位(A1)を含むことによって、耐薬品性や伸びを向上させることができる。
 式(a2)で表される化合物は、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物である。
 構成単位Aが構成単位(A2)を含むことによって、得られるポリイミド樹脂のワニスへの溶解性を高めつつ、透明性、光学的等方性を向上させることができる。
The compound represented by the formula (a1) is a 4,4'-oxydiphthalic anhydride.
When the constituent unit A includes the constituent unit (A1), chemical resistance and elongation can be improved.
The compound represented by the formula (a2) is 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
By including the structural unit (A2) in the structural unit A, it is possible to improve the transparency and optical isotropic property while increasing the solubility of the obtained polyimide resin in the varnish.
 構成単位A中における構成単位(A1)の比率は、好ましくは30~90モル%であり、より好ましくは35~70モル%であり、更に好ましくは40~60モル%である。
 構成単位A中における構成単位(A2)の比率は、好ましくは10~70モル%であり、より好ましくは30~65モル%であり、更に好ましくは40~60モル%である。
 構成単位A中における構成単位(A1)及び(A2)の合計の比率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは90モル%以上である。上限値は特に限定されず、構成単位A中における構成単位(A1)及び(A2)の合計の比率は、100モル%以下である。構成単位Aは構成単位(A1)と構成単位(A2)とのみからなっていてもよい。
 構成単位A中における構成単位(A1)と構成単位(A2)のモル比[(A1)/(A2)]は、光学的等方性及び耐薬品性を向上させる観点から、好ましくは30/70~90/10であり、より好ましくは35/65~70/30であり、更に好ましくは40/60~60/40である。
The ratio of the constituent unit (A1) in the constituent unit A is preferably 30 to 90 mol%, more preferably 35 to 70 mol%, and further preferably 40 to 60 mol%.
The ratio of the constituent unit (A2) in the constituent unit A is preferably 10 to 70 mol%, more preferably 30 to 65 mol%, and further preferably 40 to 60 mol%.
The total ratio of the constituent units (A1) and (A2) in the constituent unit A is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more. The upper limit is not particularly limited, and the total ratio of the constituent units (A1) and (A2) in the constituent unit A is 100 mol% or less. The structural unit A may consist only of the structural unit (A1) and the structural unit (A2).
The molar ratio [(A1) / (A2)] of the structural unit (A1) and the structural unit (A2) in the structural unit A is preferably 30/70 from the viewpoint of improving optical isotropic property and chemical resistance. It is ~ 90/10, more preferably 35/65 to 70/30, and even more preferably 40/60 to 60/40.
 構成単位Aは、構成単位(A1)及び構成単位(A2)以外の構成単位を含んでもよい。そのような構成単位を与えるテトラカルボン酸二無水物としては、特に限定されないが、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族テトラカルボン酸二無水物(ただし、式(a1)で表される化合物を除く);1,2,3,4-シクロブタンテトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、5,5’-ビス-2-ノルボルネン-5,5’,6,6’-テトラカルボン酸-5,5’,6,6’-二無水物等の脂環式テトラカルボン酸二無水物(ただし、式(a2)で表される化合物を除く);並びに1,2,3,4-ブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられる。
 なお、本明細書において、芳香族テトラカルボン酸二無水物とは芳香環を1つ以上含むテトラカルボン酸二無水物を意味し、脂環式テトラカルボン酸二無水物とは脂環を1つ以上含み、かつ芳香環を含まないテトラカルボン酸二無水物を意味し、脂肪族テトラカルボン酸二無水物とは芳香環も脂環も含まないテトラカルボン酸二無水物を意味する。
 構成単位Aに任意に含まれる構成単位は、1種でもよいし、2種以上であってもよい。
The structural unit A may include a structural unit other than the structural unit (A1) and the structural unit (A2). The tetracarboxylic dianhydride giving such a constituent unit is not particularly limited, but is pyromellitic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 9,9'. -Bis (3,4-dicarboxyphenyl) fluorene dianhydride, and aromatic tetracarboxylic dianhydrides such as 4,4'-(hexafluoroisopropyridene) diphthalic acid dianhydride (provided in the formula (a1)). (Excluding the compounds represented); 1,2,3,4-cyclobutanetetracarboxylic dianhydride, norbornenan-2-spirio-α-cyclopentanone-α'-spirio-2''-norbornane-5,5 '', 6,6''-tetracarboxylic dianhydride, 5,5'-bis-2-norbornene-5,5', 6,6'-tetracarboxylic acid-5,5', 6,6' -Alicyclic tetracarboxylic dianhydride such as dianhydride (excluding the compound represented by the formula (a2)); and fat such as 1,2,3,4-butanetetracarboxylic dianhydride Examples thereof include group tetracarboxylic dianhydride.
In the present specification, the aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings, and the alicyclic tetracarboxylic dianhydride has one alicyclic ring. It means a tetracarboxylic acid dianhydride containing the above and does not contain an aromatic ring, and the aliphatic tetracarboxylic acid dianhydride means a tetracarboxylic acid dianhydride containing neither an aromatic ring nor an alicyclic ring.
The structural unit arbitrarily included in the structural unit A may be one type or two or more types.
<構成単位B>
 構成単位Bは、ポリイミド樹脂に占めるジアミンに由来する構成単位である。
 構成単位Bは、下記式(b1)で表される化合物に由来する構成単位(B1)と、下記式(b21)で表される化合物に由来する構成単位(B21)及び下記式(b22)で表される化合物に由来する構成単位(B22)からなる群より選ばれる少なくとも1つである構成単位(B2)を含む。
<Structural unit B>
The structural unit B is a structural unit derived from diamine in the polyimide resin.
The structural unit B is a structural unit (B1) derived from the compound represented by the following formula (b1), a structural unit (B21) derived from the compound represented by the following formula (b21), and the following formula (b22). It contains at least one structural unit (B2) selected from the group consisting of structural units (B22) derived from the represented compound.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(b1)で表される化合物は、ビス[(アミノフェノキシ)フェニル]スルホンであり、具体例としては、下記式(b1a)で表されるビス[4-(4-アミノフェノキシ)フェニル]スルホン、下記式(b1b)で表されるビス[4-(3-アミノフェノキシ)フェニル]スルホンである。構成単位Bが構成単位(B1)を含むことによって、フィルムの伸び、耐薬品性を向上させることができ、更に耐熱性や光学等方性も良好にすることができる。 The compound represented by the formula (b1) is a bis [(aminophenoxy) phenyl] sulfone, and as a specific example, a bis [4- (4-aminophenoxy) phenyl] sulfone represented by the following formula (b1a). , A bis [4- (3-aminophenoxy) phenyl] sulfone represented by the following formula (b1b). When the structural unit B includes the structural unit (B1), the elongation and chemical resistance of the film can be improved, and the heat resistance and optical anisotropy can also be improved.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(b21)で表される化合物は、ビス(アミノメチル)シクロヘキサンであり、その具体例としては、下記式(b21a)で表される1,3-ビス(アミノメチル)シクロヘキサン、下記式(b21b)で表される1,4-ビス(アミノメチル)シクロヘキサンが挙げられる。 The compound represented by the formula (b21) is bis (aminomethyl) cyclohexane, and specific examples thereof include 1,3-bis (aminomethyl) cyclohexane represented by the following formula (b21a) and the following formula (b21b). ), And 1,4-bis (aminomethyl) cyclohexane is mentioned.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(b21)で表される化合物のシス:トランス比は、耐有機溶剤性、耐熱性の観点から、0:100~80:20が好ましく、0.1:99.9~70:30がより好ましく、0.5:99.5~60:40が更に好ましく、1:99~20:80がより更に好ましい。 The cis: trans ratio of the compound represented by the formula (b21) is preferably 0: 100 to 80:20, more preferably 0.1: 99.9 to 70:30, from the viewpoint of organic solvent resistance and heat resistance. Preferably, 0.5: 99.5 to 60:40 is even more preferable, and 1:99 to 20:80 is even more preferable.
 式(b22)で表される化合物は、ビス(アミノメチル)ノルボルナンである。式(b22)は異性体混合物を示し、式(b22)で表される化合物は、異性体混合物として入手することができる。
 構成単位Bが構成単位(B2)を含むことによって、フィルムの透明性及び光学的等方性を向上させることができる。
The compound represented by the formula (b22) is bis (aminomethyl) norbornane. The formula (b22) represents an isomer mixture, and the compound represented by the formula (b22) is available as an isomer mixture.
By including the structural unit (B2) in the structural unit B, the transparency and optical isotropic property of the film can be improved.
 構成単位B中における構成単位(B1)の比率は、好ましくは5~80モル%であり、より好ましくは10~70モル%であり、更に好ましくは30~60モル%である。
 構成単位B中における構成単位(B2)の比率は、好ましくは20~95モル%であり、より好ましくは30~90モル%であり、更に好ましくは40~70モル%である。
 構成単位B中における構成単位(B1)及び(B2)の合計の比率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは90モル%以上である。上限値は特に限定されず、構成単位B中における構成単位(B1)及び(B2)の合計の比率は、100モル%以下である。構成単位Bは構成単位(B1)と構成単位(B2)とのみからなっていてもよい。
 構成単位B中における構成単位(B1)と構成単位(B2)のモル比[(B1)/(B2)]は、光学的等方性及び耐薬品性を向上させる観点から、好ましくは5/95~80/20であり、より好ましくは10/90~70/30であり、更に好ましくは30/70~60/40である。また、耐熱性と伸びの観点から、好ましくは25/75~80/20であり、より好ましくは35/65~65/35であり、更に好ましくは35/65~55/45であり、更に好ましくは35/65~45/55である。
The ratio of the constituent unit (B1) in the constituent unit B is preferably 5 to 80 mol%, more preferably 10 to 70 mol%, and further preferably 30 to 60 mol%.
The ratio of the constituent unit (B2) in the constituent unit B is preferably 20 to 95 mol%, more preferably 30 to 90 mol%, and further preferably 40 to 70 mol%.
The total ratio of the constituent units (B1) and (B2) in the constituent unit B is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more. The upper limit is not particularly limited, and the total ratio of the constituent units (B1) and (B2) in the constituent unit B is 100 mol% or less. The structural unit B may consist only of the structural unit (B1) and the structural unit (B2).
The molar ratio [(B1) / (B2)] of the structural unit (B1) to the structural unit (B2) in the structural unit B is preferably 5/95 from the viewpoint of improving optical isotropic property and chemical resistance. It is -80/20, more preferably 10/90 to 70/30, and even more preferably 30/70 to 60/40. Further, from the viewpoint of heat resistance and elongation, it is preferably 25/75 to 80/20, more preferably 35/65 to 65/35, still more preferably 35/65 to 55/45, and further preferably. Is 35/65 to 45/55.
 構成単位Bは、構成単位(B1)及び構成単位(B2)以外の構成単位を含んでもよい。そのような構成単位を与えるジアミンとしては、特に限定されないが、1,4-フェニレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,2’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノ-2,2’-ビストリフルオロメチルジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノベンズアニリド、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、及び9,9-ビス(4-アミノフェニル)フルオレン等の芳香族ジアミン(ただし、式(b1)で表される化合物を除く);脂環式ジアミン(ただし、式(b21)で表される化合物及び式(b22)で表される化合物を除く);並びにエチレンジアミン及びヘキサメチレンジアミン等の脂肪族ジアミンが挙げられる。
 なお、本明細書において、芳香族ジアミンとは芳香環を1つ以上含むジアミンを意味し、脂環式ジアミンとは脂環を1つ以上含み、かつ芳香環を含まないジアミンを意味し、脂肪族ジアミンとは芳香環も脂環も含まないジアミンを意味する。
 構成単位Bに任意に含まれる構成単位は、1種でもよいし、2種以上であってもよい。
The structural unit B may include a structural unit other than the structural unit (B1) and the structural unit (B2). The diamine giving such a constituent unit is not particularly limited, but is limited to 1,4-phenylenediamine, p-xylylene diamine, 1,5-diaminonaphthalene, 2,2'-dimethylbiphenyl-4,4'-diamine. , 4,4'-Diaminodiphenyl ether, 4,4'-diamino-2,2'-bistrifluoromethyldiphenyl ether, 4,4'-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) hexafluoropropane, 4 , 4'-diaminobenzanilide, 1- (4-aminophenyl) -2,3-dihydro-1,3,3-trimethyl-1H-inden-5-amine, α, α'-bis (4-aminophenyl) ) -1,4-Diisopropylbenzene, N, N'-bis (4-aminophenyl) terephthalamide, 4,4'-bis (4-aminophenoxy) biphenyl, 2,2-bis [4- (4-amino) Aromatic amines such as phenoxy) phenyl] propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, and 9,9-bis (4-aminophenyl) fluorene (where the formula (b1) ); Alicyclic diamines (excluding compounds represented by formula (b21) and compounds represented by formula (b22)); and aliphatics such as ethylenediamine and hexamethylenediamine. Diamine is mentioned.
In the present specification, the aromatic diamine means a diamine containing one or more aromatic rings, and the alicyclic diamine means a diamine containing one or more alicyclic rings and not containing an aromatic ring, and is a fat. The group diamine means a diamine that does not contain an aromatic ring or an alicyclic ring.
The structural unit arbitrarily included in the structural unit B may be one type or two or more types.
<ポリイミド樹脂の特性>
 ポリイミド樹脂の重量平均分子量は、得られるポリイミドフィルムの機械的強度の観点から、好ましくは5,000~300,000である。なお、ポリイミド樹脂の重量平均分子量は、例えば、ゲルろ過クロマトグラフィー測定による標準ポリメチルメタクリレート(PMMA)換算値より求めることができる。
<Characteristics of polyimide resin>
The weight average molecular weight of the polyimide resin is preferably 5,000 to 300,000 from the viewpoint of the mechanical strength of the obtained polyimide film. The weight average molecular weight of the polyimide resin can be determined from, for example, a standard polymethylmethacrylate (PMMA) conversion value measured by gel filtration chromatography.
 ポリイミド樹脂は、ポリイミド鎖(構成単位Aと構成単位Bとがイミド結合してなる構造)以外の構造を含んでもよい。ポリイミド樹脂中に含まれうるポリイミド鎖以外の構造としては、例えばアミド結合を含む構造等が挙げられる。
 ポリイミド樹脂は、ポリイミド鎖(構成単位Aと構成単位Bとがイミド結合してなる構造)を主たる構造として含むことが好ましい。したがって、ポリイミド樹脂中に占めるポリイミド鎖の比率は、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、更に好ましくは90質量%以上であり、特に好ましくは99質量%以上であり、また、100モル%以下である。ポリイミド樹脂は、ポリイミド鎖のみからなっていてもよい。
The polyimide resin may contain a structure other than the polyimide chain (a structure in which the structural unit A and the structural unit B are imide-bonded). Examples of the structure other than the polyimide chain that can be contained in the polyimide resin include a structure containing an amide bond.
The polyimide resin preferably contains a polyimide chain (a structure in which the structural unit A and the structural unit B are imide-bonded) as a main structure. Therefore, the ratio of the polyimide chain to the polyimide resin is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 90% by mass or more, and particularly preferably 99% by mass or more. Yes, and less than 100 mol%. The polyimide resin may consist only of a polyimide chain.
 上記ポリイミド樹脂を含む本発明のポリイミド樹脂組成物は、光学的等方性、伸び及び耐薬品性に優れるフィルムを形成することができ、当該フィルムの有する好適な物性値は以下の通りである。 The polyimide resin composition of the present invention containing the above-mentioned polyimide resin can form a film excellent in optical isotropic property, elongation and chemical resistance, and suitable physical property values of the film are as follows.
 全光線透過率は、厚さ10μmのフィルムとした際に、好ましくは88%以上であり、より好ましくは88.5%以上であり、更に好ましくは89%以上である。
 イエローインデックス(YI)は、厚さ10μmのフィルムとした際に、好ましくは5.0以下であり、より好ましくは3.0以下であり、更に好ましくは2.5以下であり、より更に好ましくは2.0以下である。
 厚み位相差(Rth)の絶対値は、厚さ10μmのフィルムとした際に、好ましくは70nm以下であり、より好ましくは50nm以下であり、更に好ましくは35nm以下、より更に好ましくは30nm以下、より更に好ましくは20nm以下である。
The total light transmittance is preferably 88% or more, more preferably 88.5% or more, and further preferably 89% or more when the film has a thickness of 10 μm.
The yellow index (YI) is preferably 5.0 or less, more preferably 3.0 or less, still more preferably 2.5 or less, and even more preferably, when the film has a thickness of 10 μm. It is 2.0 or less.
The absolute value of the thickness retardation (Rth) is preferably 70 nm or less, more preferably 50 nm or less, still more preferably 35 nm or less, still more preferably 30 nm or less, and more when the film has a thickness of 10 μm. More preferably, it is 20 nm or less.
 また、上記ポリイミド樹脂を用いて形成することができるフィルムは機械的特性及び耐熱性も良好であり、以下のような好適な物性値を有する。
 引張強度は、好ましくは70MPa以上であり、より好ましくは90MPa以上であり、更に好ましくは100MPa以上である。
 引張弾性率は、好ましくは1.5GPa以上であり、より好ましくは2.0GPa以上であり、更に好ましくは2.5GPa以上、より更に好ましくは2.7GPa以上である。
 引張破断伸びは、好ましくは8%以上であり、より好ましくは10%以上であり、更に好ましくは15%以上、より更に好ましくは20%以上である。
 ガラス転移温度(Tg)は、好ましくは200℃以上であり、より好ましくは230℃以上であり、更に好ましくは250℃以上である。
 なお、本発明における上述の物性値は、具体的には実施例に記載の方法で測定することができる。
Further, the film that can be formed by using the above-mentioned polyimide resin has good mechanical properties and heat resistance, and has the following suitable physical property values.
The tensile strength is preferably 70 MPa or more, more preferably 90 MPa or more, and further preferably 100 MPa or more.
The tensile elastic modulus is preferably 1.5 GPa or more, more preferably 2.0 GPa or more, still more preferably 2.5 GPa or more, still more preferably 2.7 GPa or more.
The tensile elongation at break is preferably 8% or more, more preferably 10% or more, still more preferably 15% or more, still more preferably 20% or more.
The glass transition temperature (Tg) is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and even more preferably 250 ° C. or higher.
The above-mentioned physical property values in the present invention can be specifically measured by the method described in Examples.
<ポリイミド樹脂の製造方法>
 本発明のポリイミド樹脂は、上述の構成単位(A1)を与える化合物及び上述の構成単位(A2)を与える化合物を含むテトラカルボン酸成分と、上述の構成単位(B1)を与える化合物及び上述の構成単位(B2)を与える化合物を含むジアミン成分とを反応させることにより製造することができる。
<Manufacturing method of polyimide resin>
The polyimide resin of the present invention comprises a tetracarboxylic acid component containing a compound giving the above-mentioned structural unit (A1) and a compound giving the above-mentioned structural unit (A2), a compound giving the above-mentioned structural unit (B1), and the above-mentioned configuration. It can be produced by reacting with a diamine component containing a compound giving a unit (B2).
 構成単位(A1)を与える化合物としては、式(a1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(a1)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸(即ち、4,4’-オキシジフタル酸)、及び当該テトラカルボン酸のアルキルエステルが挙げられる。なかでも、式(a1)で表されるテトラカルボン酸二無水物が好ましい。
 同様に、構成単位(A2)を与える化合物としては、式(a2)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(a2)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸(即ち、1,2,4,5-シクロヘキサンテトラカルボン酸)、及び当該テトラカルボン酸のアルキルエステルが挙げられる。なかでも、式(a2)で表されるテトラカルボン酸二無水物が好ましい。
Examples of the compound giving the structural unit (A1) include the compound represented by the formula (a1), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given. Examples of the derivative include a tetracarboxylic acid (that is, 4,4'-oxydiphthalic acid) corresponding to the tetracarboxylic dianhydride represented by the formula (a1), and an alkyl ester of the tetracarboxylic acid. Of these, the tetracarboxylic dianhydride represented by the formula (a1) is preferable.
Similarly, the compound giving the structural unit (A2) includes a compound represented by the formula (a2), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given. Examples of the derivative include a tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by the formula (a2) (that is, 1,2,4,5-cyclohexanetetracarboxylic acid), and an alkyl ester of the tetracarboxylic acid. Can be mentioned. Of these, the tetracarboxylic dianhydride represented by the formula (a2) is preferable.
 テトラカルボン酸成分は、構成単位(A1)を与える化合物を、好ましくは30~90モル%含み、より好ましくは35~70モル%含み、更に好ましくは40~60モル%含む。
 テトラカルボン酸成分は、構成単位(A2)を与える化合物を、好ましくは10~70モル%含み、より好ましくは30~65モル%含み、更に好ましくは40~60モル%含む。
 テトラカルボン酸成分は、構成単位(A1)を与える化合物及び構成単位(A2)を与える化合物を合計で、好ましくは50モル%以上含み、より好ましくは70モル%以上含み、より好ましくは90モル%以上含む。上限値は特に限定されず、テトラカルボン酸成分は、構成単位(A1)を与える化合物及び構成単位(A2)を与える化合物を合計で、100モル%以下である。テトラカルボン酸成分は構成単位(A1)を与える化合物と構成単位(A2)を与える化合物とのみからなっていてもよい。
 テトラカルボン酸成分中における構成単位(A1)を与える化合物と構成単位(A2)を与える化合物のモル比[(A1)/(A2)]は、好ましくは30/70~90/10であり、より好ましくは35/65~70/30であり、更に好ましくは40/60~60/40である。
The tetracarboxylic acid component preferably contains the compound giving the structural unit (A1) in an amount of 30 to 90 mol%, more preferably 35 to 70 mol%, still more preferably 40 to 60 mol%.
The tetracarboxylic acid component preferably contains the compound giving the structural unit (A2) in an amount of 10 to 70 mol%, more preferably 30 to 65 mol%, and further preferably 40 to 60 mol%.
The tetracarboxylic acid component contains, in total, a compound giving the constituent unit (A1) and a compound giving the constituent unit (A2) in an amount of preferably 50 mol% or more, more preferably 70 mol% or more, and more preferably 90 mol%. Including the above. The upper limit is not particularly limited, and the total amount of the tetracarboxylic acid component is 100 mol% or less of the compound giving the constituent unit (A1) and the compound giving the constituent unit (A2). The tetracarboxylic acid component may consist only of a compound that gives a constituent unit (A1) and a compound that gives a constituent unit (A2).
The molar ratio [(A1) / (A2)] of the compound giving the constituent unit (A1) to the compound giving the constituent unit (A2) in the tetracarboxylic acid component is preferably 30/70 to 90/10, and more. It is preferably 35/65 to 70/30, and more preferably 40/60 to 60/40.
 テトラカルボン酸成分は、構成単位(A1)を与える化合物及び構成単位(A2)を与える化合物以外の任意の化合物を含んでもよい。
 そのような任意の化合物としては、上述の芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、及び脂肪族テトラカルボン酸二無水物、並びにそれらの誘導体(テトラカルボン酸、テトラカルボン酸のアルキルエステル等)が挙げられる。
 テトラカルボン酸成分に任意に含まれる化合物は、1種でもよいし、2種以上であってもよい。
The tetracarboxylic acid component may contain any compound other than the compound giving the structural unit (A1) and the compound giving the structural unit (A2).
Such optional compounds include the above-mentioned aromatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and aliphatic tetracarboxylic dianhydrides, and derivatives thereof (tetracarboxylic acid, tetra). Alkyl ester of carboxylic acid, etc.).
The compound arbitrarily contained in the tetracarboxylic acid component may be one kind or two or more kinds.
 構成単位(B1)を与える化合物としては、式(b1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(b1)で表される化合物に対応するジイソシアネートが挙げられる。構成単位(B1)を与える化合物としては、式(b1)で表される化合物(即ち、ジアミン)が好ましい。
 同様に、構成単位(B2)を与える化合物としては、式(b21)で表される化合物及び式(b22)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(b21)で表される化合物に対応するジイソシアネート及び式(b22)で表される化合物に対応するジイソシアネートが挙げられる。構成単位(B2)を与える化合物としては、式(b21)で表される化合物及び式(b22)で表される化合物(即ち、ジアミン)が好ましい。
Examples of the compound giving the structural unit (B1) include the compound represented by the formula (b1), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given. Examples of the derivative include diisocyanates corresponding to the compound represented by the formula (b1). As the compound that gives the structural unit (B1), the compound represented by the formula (b1) (that is, a diamine) is preferable.
Similarly, examples of the compound that gives the structural unit (B2) include, but are not limited to, the compound represented by the formula (b21) and the compound represented by the formula (b22), as long as the same structural unit is given. It may be a derivative. Examples of the derivative include a diisocyanate corresponding to the compound represented by the formula (b21) and a diisocyanate corresponding to the compound represented by the formula (b22). As the compound giving the structural unit (B2), a compound represented by the formula (b21) and a compound represented by the formula (b22) (that is, a diamine) are preferable.
 ジアミン成分は、構成単位(B1)を与える化合物を、好ましくは5~80モル%含み、より好ましくは10~70モル%含み、更に好ましくは30~60モル%含む。
 ジアミン成分は、構成単位(B2)を与える化合物を、好ましくは20~95モル%含み、より好ましくは30~90モル%含み、更に好ましくは40~70モル%含む。
 ジアミン成分は、構成単位(B1)を与える化合物及び構成単位(B2)を与える化合物を合計で、好ましくは50モル%以上含み、より好ましくは70モル%以上含み、より好ましくは90モル%以上含む。上限値は特に限定されず、テトラカルボン酸成分は、構成単位(B1)を与える化合物及び構成単位(B2)を与える化合物を合計で、100モル%以下である。テトラカルボン酸成分は構成単位(B1)を与える化合物と構成単位(B2)を与える化合物とのみからなっていてもよい。
 ジアミン成分中における構成単位(B1)を与える化合物と構成単位(B2)を与える化合物のモル比[(B1)/(B2)]は、光学的等方性及び耐薬品性を向上させる観点から、好ましくは5/95~80/20であり、より好ましくは10/90~70/30であり、更に好ましくは30/70~60/40である。また、耐熱性と伸びの観点から、好ましくは25/75~80/20であり、より好ましくは35/65~65/35であり、更に好ましくは35/65~55/45であり、更に好ましくは35/65~45/55である。
The diamine component preferably contains 5 to 80 mol%, more preferably 10 to 70 mol%, and further preferably 30 to 60 mol% of the compound giving the structural unit (B1).
The diamine component preferably contains a compound that gives the structural unit (B2) in an amount of 20 to 95 mol%, more preferably 30 to 90 mol%, and even more preferably 40 to 70 mol%.
The diamine component contains, in total, a compound that gives the constituent unit (B1) and a compound that gives the constituent unit (B2), preferably 50 mol% or more, more preferably 70 mol% or more, and more preferably 90 mol% or more. .. The upper limit is not particularly limited, and the total amount of the tetracarboxylic acid component is 100 mol% or less of the compound giving the constituent unit (B1) and the compound giving the constituent unit (B2). The tetracarboxylic acid component may consist only of a compound that gives a constituent unit (B1) and a compound that gives a constituent unit (B2).
The molar ratio [(B1) / (B2)] of the compound giving the constituent unit (B1) to the compound giving the constituent unit (B2) in the diamine component is determined from the viewpoint of improving optical isotropic property and chemical resistance. It is preferably 5/95 to 80/20, more preferably 10/90 to 70/30, and even more preferably 30/70 to 60/40. Further, from the viewpoint of heat resistance and elongation, it is preferably 25/75 to 80/20, more preferably 35/65 to 65/35, still more preferably 35/65 to 55/45, and further preferably. Is 35/65 to 45/55.
 ジアミン成分は構成単位(B1)を与える化合物及び構成単位(B2)を与える化合物以外の任意の化合物を含んでもよい。
 そのような任意の化合物としては、上述の芳香族ジアミン、脂環式ジアミン、及び脂肪族ジアミン、並びにそれらの誘導体(ジイソシアネート等)が挙げられる。
 ジアミン成分に任意に含まれる化合物は、1種でもよいし、2種以上であってもよい。
The diamine component may contain any compound other than the compound giving the structural unit (B1) and the compound giving the structural unit (B2).
Such arbitrary compounds include the above-mentioned aromatic diamines, alicyclic diamines, and aliphatic diamines, and derivatives thereof (diisocyanates, etc.).
The compound arbitrarily contained in the diamine component may be one kind or two or more kinds.
 本発明のポリイミド樹脂の製造において、ポリイミド樹脂の製造に用いるテトラカルボン酸成分とジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。 In the production of the polyimide resin of the present invention, the charge amount ratio of the tetracarboxylic acid component and the diamine component used in the production of the polyimide resin is 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component. Is preferable.
 また、本発明のポリイミド樹脂の製造において、ポリイミド樹脂の製造には、前述のテトラカルボン酸成分及びジアミン成分の他に、末端封止剤を用いてもよい。末端封止剤としてはモノアミン類あるいはジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、テトラカルボン酸成分1モルに対して0.0001~0.1モルが好ましく、0.001~0.06モルがより好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、4-メチルアニリン等が挙げられ、ベンジルアミン、アニリンが好ましい。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していてもよい。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロヘキサン-1,2-ジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸等が挙げられ、フタル酸、無水フタル酸が好ましい。 Further, in the production of the polyimide resin of the present invention, an end-capping agent may be used in the production of the polyimide resin in addition to the above-mentioned tetracarboxylic acid component and diamine component. As the terminal encapsulant, monoamines or dicarboxylic acids are preferable. The amount of the terminal encapsulant to be introduced is preferably 0.0001 to 0.1 mol, more preferably 0.001 to 0.06 mol, based on 1 mol of the tetracarboxylic acid component. Examples of the monoamine terminal encapsulant include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3-. Examples thereof include ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline, and benzylamine and aniline are preferable. As the dicarboxylic acid terminal encapsulant, dicarboxylic acids are preferable, and a part thereof may be ring-closed. For example, phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenonedicarboxylic acid, 3,4-benzophenonedicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclopentane-1,2 Examples thereof include -dicarboxylic acid and 4-cyclohexene-1,2-dicarboxylic acid, and phthalic acid and phthalic anhydride are preferable.
 前述のテトラカルボン酸成分とジアミン成分とを反応させる方法には特に制限はなく、公知の方法を用いることができる。
 具体的な反応方法としては、(1)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、10~110℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(2)ジアミン成分及び反応溶剤を反応器に仕込んで溶解させた後、テトラカルボン酸成分を仕込み、必要に応じて10~110℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(3)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、直ちに昇温してイミド化反応を行う方法等が挙げられる。
The method for reacting the above-mentioned tetracarboxylic acid component with the diamine component is not particularly limited, and a known method can be used.
Specific reaction methods include (1) charging a tetracarboxylic acid component, a diamine component, and a reaction solvent into a reactor, stirring at 10 to 110 ° C. for 0.5 to 30 hours, and then raising the temperature to imidize. Method of carrying out the reaction, (2) After charging the diamine component and the reaction solvent into the reactor and dissolving them, the tetracarboxylic acid component is charged, and if necessary, the mixture is stirred at 10 to 110 ° C. for 0.5 to 30 hours, and then. Examples thereof include a method of carrying out an imidization reaction by raising the temperature to (3) a method of charging a tetracarboxylic acid component, a diamine component and a reaction solvent into a reactor and immediately raising the temperature to carry out the imidization reaction.
 ポリイミド樹脂の製造に用いられる反応溶剤は、イミド化反応を阻害せず、生成するポリイミドを溶解できるものであればよい。例えば、非プロトン性溶剤、フェノール系溶剤、エーテル系溶剤、カーボネート系溶剤等が挙げられる。 The reaction solvent used in the production of the polyimide resin may be one that does not inhibit the imidization reaction and can dissolve the produced polyimide. For example, an aprotic solvent, a phenol solvent, an ether solvent, a carbonate solvent and the like can be mentioned.
 非プロトン性溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶剤、γ-ブチロラクトン(GBL)、γ-バレロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶剤、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、アセトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤、ピコリン、ピリジン等のアミン系溶剤、酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶剤等が挙げられる。 Specific examples of the aprotonic solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), N-methylcaprolactam, 1,3-dimethylimidazolidinone, and tetra. Amide solvents such as methyl urea, lactone solvents such as γ-butyrolactone (GBL) and γ-valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphintriamide, dimethyl sulfone and dimethyl sulfoxide. , Sulfur-containing solvent such as sulfolane, ketone solvent such as acetone, cyclohexanone, methylcyclohexanone, amine solvent such as picolin and pyridine, ester solvent such as acetic acid (2-methoxy-1-methylethyl) and the like. ..
 フェノール系溶剤の具体例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。
 エーテル系溶剤の具体例としては、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス〔2-(2-メトキシエトキシ)エチル〕エーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 また、カーボネート系溶剤の具体的な例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
 上記反応溶剤の中でも、非プロトン系溶剤が好ましく、アミド系溶剤及びラクトン系溶剤がより好ましく、ラクトン系溶剤が更に好ましい。また、上記の反応溶剤は単独で又は2種以上混合して用いてもよい。
Specific examples of the phenolic solvent include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4. -Xylenol, 3,5-xylenol and the like can be mentioned.
Specific examples of the ether solvent include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, and bis [2- (2-methoxyethoxy) ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
Specific examples of the carbonate solvent include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate and the like.
Among the above reaction solvents, aproton solvents are preferable, amide solvents and lactone solvents are more preferable, and lactone solvents are even more preferable. Moreover, the above-mentioned reaction solvent may be used alone or in mixture of 2 or more types.
 イミド化反応では、ディーンスターク装置などを用いて、製造時に生成する水を除去しながら反応を行うことが好ましい。このような操作を行うことで、重合度及びイミド化率をより上昇させることができる。 In the imidization reaction, it is preferable to carry out the reaction while removing water generated during production using a Dean-Stark apparatus or the like. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.
 上記のイミド化反応においては、公知のイミド化触媒を用いることができる。イミド化触媒としては、塩基触媒又は酸触媒が挙げられる。
 塩基触媒としては、ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、2,4-ルチジン、2,6-ルチジン、トリメチルアミン、トリエチルアミン(TEA)、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、イミダゾール、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の有機塩基触媒、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の無機塩基触媒が挙げられる。
 また、酸触媒としては、クロトン酸、アクリル酸、トランス-3-ヘキセノイック酸、桂皮酸、安息香酸、メチル安息香酸、オキシ安息香酸、テレフタル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸等が挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
 上記のうち、取り扱い性の観点から、塩基触媒を用いることが好ましく、有機塩基触媒を用いることがより好ましく、トリエチルアミンを用いることが更に好ましい。
In the above imidization reaction, a known imidization catalyst can be used. Examples of the imidization catalyst include a base catalyst and an acid catalyst.
Base catalysts include pyridine, quinoline, isoquinoline, α-picoline, β-picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine (TEA), tripropylamine, tributylamine, triethylenediamine, imidazole, Examples thereof include organic base catalysts such as N, N-dimethylaniline and N, N-diethylaniline, and inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogencarbonate and sodium hydrogencarbonate.
Examples of the acid catalyst include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, paratoluenesulfonic acid, naphthalenesulfonic acid and the like. Can be mentioned. The above-mentioned imidization catalyst may be used alone or in combination of two or more.
Of the above, from the viewpoint of handleability, it is preferable to use a base catalyst, more preferably an organic base catalyst, and even more preferably triethylamine.
 イミド化反応の温度は、反応率及びゲル化等の抑制の観点から、好ましくは120~250℃、より好ましくは160~200℃である。また、反応時間は、生成水の留出開始後、好ましくは0.5~10時間である。 The temperature of the imidization reaction is preferably 120 to 250 ° C., more preferably 160 to 200 ° C. from the viewpoint of suppressing the reaction rate and gelation. The reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
[ポリイミドワニス]
 本発明のポリイミドワニスは、本発明のポリイミド樹脂が有機溶媒に溶解してなるものである。即ち、本発明のポリイミドワニスは、本発明のポリイミド樹脂及び有機溶媒を含み、当該ポリイミド樹脂は当該有機溶媒に溶解している。
 有機溶媒はポリイミド樹脂が溶解するものであればよく、特に限定されないが、ポリイミド樹脂の製造に用いられる反応溶剤として上述した化合物を、単独又は2種以上を混合して用いることが好ましい。
 本発明のポリイミドワニスは、重合法により得られるポリイミド樹脂が反応溶剤に溶解したポリイミド溶液そのものであってもよいし、又は当該ポリイミド溶液に対して更に溶剤を追加して希釈したものであってもよい。
[Polyimide varnish]
The polyimide varnish of the present invention is obtained by dissolving the polyimide resin of the present invention in an organic solvent. That is, the polyimide varnish of the present invention contains the polyimide resin of the present invention and an organic solvent, and the polyimide resin is dissolved in the organic solvent.
The organic solvent may be any one that dissolves the polyimide resin, and is not particularly limited, but it is preferable to use the above-mentioned compounds alone or in combination of two or more as the reaction solvent used for producing the polyimide resin.
The polyimide varnish of the present invention may be the polyimide solution itself in which the polyimide resin obtained by the polymerization method is dissolved in a reaction solvent, or may be diluted by adding a solvent to the polyimide solution. good.
 本発明のポリイミド樹脂は溶媒溶解性を有しているため、室温で安定な高濃度のワニスとすることができる。本発明のポリイミドワニスは、本発明のポリイミド樹脂を5~40質量%含むことが好ましく、5~20質量%含むことがより好ましい。ポリイミドワニスの粘度は1~200Pa・sが好ましく、1~100Pa・sがより好ましい。ポリイミドワニスの粘度は、E型粘度計を用いて25℃で測定された値である。
 また、本発明のポリイミドワニスは、ポリイミドフィルムの要求特性を損なわない範囲で、無機フィラー、接着促進剤、剥離剤、難燃剤、紫外線安定剤、界面活性剤、レベリング剤、消泡剤、蛍光増白剤、架橋剤、重合開始剤、感光剤等各種添加剤を含んでもよい。
 本発明のポリイミドワニスの製造方法は特に限定されず、公知の方法を適用することができる。
Since the polyimide resin of the present invention has solvent solubility, it is possible to obtain a high-concentration varnish that is stable at room temperature. The polyimide varnish of the present invention preferably contains the polyimide resin of the present invention in an amount of 5 to 40% by mass, more preferably 5 to 20% by mass. The viscosity of the polyimide varnish is preferably 1 to 200 Pa · s, more preferably 1 to 100 Pa · s. The viscosity of the polyimide varnish is a value measured at 25 ° C. using an E-type viscometer.
Further, the polyimide varnish of the present invention has an inorganic filler, an adhesion accelerator, a release agent, a flame retardant, an ultraviolet stabilizer, a surfactant, a leveling agent, a defoaming agent, and an optical brightener as long as the required properties of the polyimide film are not impaired. Various additives such as a whitening agent, a cross-linking agent, a polymerization initiator, and a photosensitizer may be contained.
The method for producing the polyimide varnish of the present invention is not particularly limited, and a known method can be applied.
[ポリイミドフィルム]
 本発明のポリイミドフィルムは、本発明のポリイミド樹脂を含む。したがって、本発明のポリイミドフィルムは、光学的等方性、剥離性及び耐薬品性に優れる。本発明のポリイミドフィルムが有する好適な物性値は、<ポリイミド樹脂の特性>として上述した通りである。
 本発明のポリイミドフィルムの製造方法には特に制限はなく、公知の方法を用いることができる。例えば、本発明のポリイミドワニスを、ガラス板、金属板、プラスチックなどの平滑な支持体上に塗布、又はフィルム状に成形した後、該ワニス中に含まれる反応溶剤や希釈溶剤等の有機溶媒を加熱により除去する方法等が挙げられる。
[Polyimide film]
The polyimide film of the present invention contains the polyimide resin of the present invention. Therefore, the polyimide film of the present invention is excellent in optical isotropic property, peelability and chemical resistance. Suitable physical property values of the polyimide film of the present invention are as described above as <property of polyimide resin>.
The method for producing the polyimide film of the present invention is not particularly limited, and a known method can be used. For example, the polyimide varnish of the present invention is applied onto a smooth support such as a glass plate, a metal plate, or plastic, or formed into a film, and then an organic solvent such as a reaction solvent or a dilution solvent contained in the varnish is applied. Examples thereof include a method of removing by heating.
 塗布方法としては、スピンコート、スリットコート、ブレードコート等の公知の塗布方法が挙げられ、スピンコート、スリットコートが好ましい。中でも、スリットコートが分子間配向を制御し耐薬品性が向上すること、作業性の観点からより好ましい。
 ワニス中に含まれる有機溶媒を加熱により除去する方法としては、150℃以下の温度で有機溶媒を蒸発させタックフリーにした後、用いた有機溶媒の沸点以上の温度(特に限定されないが、好ましくは200~500℃)で乾燥することが好ましい。また、空気雰囲気下又は窒素雰囲気下で乾燥することが好ましい。乾燥雰囲気の圧力は、減圧、常圧、加圧のいずれでもよい。
 支持体上に製膜されたポリイミドフィルムを支持体から剥離する方法は特に限定されないが、メカニカルピールオフ法、レーザーリフトオフ法等を用いることができる。
Examples of the coating method include known coating methods such as spin coating, slit coating, and blade coating, and spin coating and slit coating are preferable. Above all, the slit coat is more preferable from the viewpoint of controlling the intermolecular orientation and improving the chemical resistance and workability.
As a method for removing the organic solvent contained in the varnish by heating, the organic solvent is evaporated at a temperature of 150 ° C. or lower to make it tack-free, and then the temperature is equal to or higher than the boiling point of the organic solvent used (not particularly limited, but preferably). It is preferable to dry at 200 to 500 ° C.). Further, it is preferable to dry in an air atmosphere or a nitrogen atmosphere. The pressure in the dry atmosphere may be reduced pressure, normal pressure, or pressurized.
The method of peeling the polyimide film formed on the support from the support is not particularly limited, but a mechanical peel-off method, a laser lift-off method, or the like can be used.
 また、本発明のポリイミドフィルムは、ポリアミド酸が有機溶媒に溶解してなるポリアミド酸ワニスを用いて製造することもできる。
 前記ポリアミド酸ワニスに含まれるポリアミド酸は、本発明のポリイミド樹脂の前駆体であって、上述の構成単位(A1)を与える化合物と上述の構成単位(A2)を与える化合物を含むテトラカルボン酸成分と、上述の構成単位(B1)を与える化合物と構成単位(B2)を与える化合物を含むジアミン成分との重付加反応の生成物である。このポリアミド酸をイミド化(脱水閉環)することで、最終生成物である本発明のポリイミド樹脂が得られる。
 前記ポリアミド酸ワニスに含まれる有機溶媒としては、本発明のポリイミドワニスに含まれる有機溶媒を用いることができる。
 本発明のポリイミドフィルムの製造において、ポリアミド酸ワニスは、テトラカルボン酸成分とジアミン成分とを反応溶剤中で重付加反応させて得られるポリアミド酸溶液そのものであってもよいし、又は当該ポリアミド酸溶液に対して更に溶剤を追加して希釈したものであってもよい。
Further, the polyimide film of the present invention can also be produced by using a polyamic acid varnish in which polyamic acid is dissolved in an organic solvent.
The polyamic acid contained in the polyamic acid varnish is a precursor of the polyimide resin of the present invention, and is a tetracarboxylic acid component containing a compound giving the above-mentioned structural unit (A1) and a compound giving the above-mentioned structural unit (A2). And the product of the polyaddition reaction between the compound giving the above-mentioned structural unit (B1) and the diamine component containing the compound giving the structural unit (B2). By imidizing (dehydrating and ring-closing) this polyamic acid, the polyimide resin of the present invention, which is the final product, can be obtained.
As the organic solvent contained in the polyamic acid varnish, the organic solvent contained in the polyimide varnish of the present invention can be used.
In the production of the polyimide film of the present invention, the polyamic acid varnish may be the polyamic acid solution itself obtained by subjecting the tetracarboxylic acid component and the diamine component to a heavy addition reaction in a reaction solvent, or the polyamic acid solution. It may be diluted by adding a solvent to the above.
 ポリアミド酸ワニスを用いてポリイミドフィルムを製造する方法には特に制限はなく、公知の方法を用いることができる。例えば、ポリアミド酸ワニスを、ガラス板、金属板、プラスチックなどの平滑な支持体上に塗布、又はフィルム状に成形し、該ワニス中に含まれる反応溶剤や希釈溶剤等の有機溶媒を加熱により除去してポリアミド酸フィルムを得て、該ポリアミド酸フィルム中のポリアミド酸を加熱によりイミド化することで、ポリイミドフィルムを製造することができる。
 ポリアミド酸ワニスを乾燥させてポリアミド酸フィルムを得る際の加熱温度としては、好ましくは50~120℃である。ポリアミド酸を加熱によりイミド化する際の加熱温度としては好ましくは200~400℃である。
 なお、イミド化の方法は熱イミド化に限定されず、化学イミド化を適用することもできる。
The method for producing the polyimide film using the polyamic acid varnish is not particularly limited, and a known method can be used. For example, a polyamic acid varnish is applied onto a smooth support such as a glass plate, a metal plate, or plastic, or formed into a film, and organic solvents such as a reaction solvent and a diluting solvent contained in the varnish are removed by heating. A polyimide film can be produced by obtaining a polyamic acid film and imidizing the polyamic acid in the polyamic acid film by heating.
The heating temperature for drying the polyamic acid varnish to obtain a polyamic acid film is preferably 50 to 120 ° C. The heating temperature for imidizing the polyamic acid by heating is preferably 200 to 400 ° C.
The imidization method is not limited to thermal imidization, and chemical imidization can also be applied.
 本発明のポリイミドフィルムの厚さは用途等に応じて適宜選択することができるが、好ましくは1~250μm、より好ましくは5~100μm、更に好ましくは8~80μm、より更に好ましくは10~80μmの範囲である。厚さが1~250μmであることで、自立膜としての実用的な使用が可能となる。
 ポリイミドフィルムの厚さは、ポリイミドワニスの固形分濃度や粘度を調整することにより、容易に制御することができる。
The thickness of the polyimide film of the present invention can be appropriately selected depending on the intended use, but is preferably 1 to 250 μm, more preferably 5 to 100 μm, still more preferably 8 to 80 μm, still more preferably 10 to 80 μm. The range. When the thickness is 1 to 250 μm, it can be practically used as a self-supporting film.
The thickness of the polyimide film can be easily controlled by adjusting the solid content concentration and the viscosity of the polyimide varnish.
 本発明のポリイミドフィルムは、カラーフィルター、フレキシブルディスプレイ、半導体部品、光学部材等の各種部材用のフィルムとして好適に用いられる。本発明のポリイミドフィルムは、液晶ディスプレイやOLEDディスプレイ等の画像表示装置の基板として、特に好適に用いられる。 The polyimide film of the present invention is suitably used as a film for various members such as color filters, flexible displays, semiconductor parts, and optical members. The polyimide film of the present invention is particularly preferably used as a substrate for an image display device such as a liquid crystal display or an OLED display.
 以下に、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to these examples.
<フィルム物性及び評価>
 実施例及び比較例で得たフィルムの各物性は以下に示す方法によって測定した。
<Film physical characteristics and evaluation>
The physical characteristics of the films obtained in Examples and Comparative Examples were measured by the methods shown below.
(1)フィルム厚さ
 フィルム厚さは、株式会社ミツトヨ製のマイクロメーターを用いて測定した。
(1) Film thickness The film thickness was measured using a micrometer manufactured by Mitutoyo Co., Ltd.
(2)引張強度、引張弾性率、及び引張破断伸び(伸びの評価)
 引張強度、引張弾性率及び引張破断伸びは、JIS K7127:1999に準拠し、東洋精機株式会社製の引張試験機「ストログラフVG-1E」を用いて測定した。チャック間距離は50mm、試験片サイズは10mm×70mm、試験速度は20mm/minとした。
(2) Tensile strength, tensile modulus, and tensile elongation at break (evaluation of elongation)
Tensile strength, tensile elastic modulus and tensile elongation at break were measured using a tensile tester "Strograph VG-1E" manufactured by Toyo Seiki Co., Ltd. in accordance with JIS K7127: 1999. The distance between the chucks was 50 mm, the test piece size was 10 mm × 70 mm, and the test speed was 20 mm / min.
(3)ガラス転移温度(Tg)
 株式会社日立ハイテクサイエンス製の熱機械的分析装置「TMA/SS6100」を用いて、引張モードで試料サイズ2mm×20mm、荷重0.1N、昇温速度10℃/minの条件で、残留応力を取り除くのに十分な温度まで昇温して残留応力を取り除き、その後室温まで冷却した。その後、前記残留応力を取り除くための処理と同じ条件で試験片伸びの測定を行い、伸びの変曲点が見られたところをガラス転移温度として求めた。
(3) Glass transition temperature (Tg)
Using the thermomechanical analyzer "TMA / SS6100" manufactured by Hitachi High-Tech Science Co., Ltd., residual stress is removed under the conditions of sample size 2 mm x 20 mm, load 0.1 N, and heating rate 10 ° C / min in tensile mode. The temperature was raised to a sufficient temperature to remove residual stress, and then cooled to room temperature. Then, the elongation of the test piece was measured under the same conditions as the treatment for removing the residual stress, and the place where the inflection point of the elongation was observed was determined as the glass transition temperature.
(4)全光線透過率、及びイエローインデックス(YI)
 全光線透過率及びYIは、JIS K7136に準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH7700」を用いて測定した。
(4) Total light transmittance and yellow index (YI)
The total light transmittance and YI were measured using a color / turbidity simultaneous measuring device "COH7700" manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7136.
(5)ヘイズ
 測定はJIS K7361-1準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH7700」を用いて行った。
(5) The haze measurement was carried out in accordance with JIS K7361-1 using a color / turbidity simultaneous measuring device "COH7700" manufactured by Nippon Denshoku Industries Co., Ltd.
(6)厚み位相差(Rth)(光学的等方性の評価)
 厚み位相差(Rth)は、日本分光株式会社製のエリプソメーター「M-220」を用いて測定した。測定波長590nmにおける、厚み位相差の値を測定した。なおRthは、ポリイミドフィルムの面内の屈折率のうち最大のものをnx、最小のものをnyとし、厚み方向の屈折率をnzとし、フィルムの厚さをdとしたとき、下記式によって表されるものである。
  Rth=[{(nx+ny)/2}-nz]×d
 なお、10μm換算のRthは、前記dの値を10μmとしたときの、Rthである。
(6) Thickness phase difference (Rth) (evaluation of optical isotropic property)
The thickness phase difference (Rth) was measured using an ellipsometer "M-220" manufactured by JASCO Corporation. The value of the thickness phase difference at the measurement wavelength of 590 nm was measured. Rth is expressed by the following formula, where nx is the maximum in-plane refractive index of the polyimide film, ny is the minimum, nz is the refractive index in the thickness direction, and d is the thickness of the film. Is to be done.
Rth = [{(nx + ny) / 2} -nz] × d
The 10 μm-converted Rth is Rth when the value of d is 10 μm.
(7)耐溶剤性(耐PGMEA性)(耐薬品性の評価)
 ガラス板上に製膜したポリイミドフィルムを、室温で溶剤に浸漬し、フィルム表面に変化がないかを確認した。なお、溶剤としては、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を使用した。
 耐溶剤性の評価基準は、以下の通りとした。
A:フィルム表面に変化がなかった。
B:フィルム表面にクラックが入った、又はフィルム表面が溶解した。
(7) Solvent resistance (PGMEA resistance) (evaluation of chemical resistance)
The polyimide film formed on the glass plate was immersed in a solvent at room temperature, and it was confirmed whether the film surface was changed. As the solvent, propylene glycol monomethyl ether acetate (PGMEA) was used.
The evaluation criteria for solvent resistance were as follows.
A: There was no change on the film surface.
B: The film surface was cracked or the film surface was melted.
<成分等の略号>
 実施例及び比較例にて使用したテトラカルボン酸成分及びジアミン成分、並びにその略号は以下の通りである。
<Abbreviations for ingredients, etc.>
The tetracarboxylic acid component and diamine component used in Examples and Comparative Examples, and their abbreviations are as follows.
(テトラカルボン酸成分)
ODPA:4,4’-オキシジフタル酸無水物(マナック株式会社製;式(a1)で表される化合物)
HPMDA:1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(三菱ガス化学株式会社製;式(a2)で表される化合物)
(Tetracarboxylic acid component)
ODPA: 4,4'-oxydiphthalic anhydride (manufactured by Manac Inc .; compound represented by formula (a1))
HPMDA: 1,2,4,5-Cyclohexanetetracarboxylic dianhydride (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (a2))
(ジアミン成分)
BAPS:ビス[4-(4-アミノフェノキシ)フェニル]スルホン(セイカ株式会社製;式(b1a)で表される化合物)
M-BAPS:ビス[4-(3-アミノフェノキシ)フェニル]スルホン(セイカ株式会社製;式(b1b)で表される化合物)
1,3-BAC:1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製;式(b21a)で表される化合物)
1,4-BAC:1,4-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製;式(b21b)で表される化合物;トランス比率40%)
1,4-BACT:1,4-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製;式(b21b)で表される化合物;トランス比率85%)
3,3’-DDS:3,3’-ジアミノジフェニルスルホン(セイカ株式会社製)
(Diamine component)
BAPS: Bis [4- (4-aminophenoxy) phenyl] sulfone (manufactured by Seika Co., Ltd .; compound represented by formula (b1a))
M-BAPS: Bis [4- (3-aminophenoxy) phenyl] sulfone (manufactured by Seika Co., Ltd .; compound represented by the formula (b1b))
1,3-BAC: 1,3-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (b21a))
1,4-BAC: 1,4-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (b21b); trans ratio 40%)
1,4-BACT: 1,4-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (b21b); trans ratio 85%)
3,3'-DDS: 3,3'-diaminodiphenyl sulfone (manufactured by Seika Co., Ltd.)
<ポリイミド樹脂、ワニス及びポリイミドフィルムの製造>
実施例1
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた500mLの5つ口丸底フラスコに、BAPS 8.650g(0.020モル)と、1,4-BACT 11.380g(0.080モル)と、γ-ブチロラクトン(三菱化学株式会社製)45.710gを投入し、系内温度70℃、窒素雰囲気下、回転数150rpmで撹拌して溶液を得た。
 この溶液に、ODPA 15.511g(0.050モル)と、HPMDA 11.209g(0.050モル)と、γ-ブチロラクトン(三菱化学株式会社製)11.427gを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.506g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して2時間還流した。
 その後、固形分濃度15質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を187.350g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し、溶媒を蒸発させ、フィルムを得た。
<Manufacturing of polyimide resin, varnish and polyimide film>
Example 1
BAPS 8.650 g (0.020 mol) in a 500 mL 5-necked round-bottom flask equipped with a stainless steel crescent-shaped stirring blade, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. , 1,4-BACT 11.380 g (0.080 mol) and γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) 45.710 g were added, and the mixture was stirred at a system temperature of 70 ° C., a nitrogen atmosphere, and a rotation speed of 150 rpm. Obtained a solution.
To this solution, 15.511 g (0.050 mol) of ODPA, 11.209 g (0.050 mol) of HPMDA, and 11.427 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Inc.) were added in a batch and then imidized. 0.506 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as a catalyst and heated with a mantle heater to raise the temperature inside the reaction system to 190 ° C. over about 20 minutes. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. and refluxed for 2 hours while adjusting the rotation speed according to the increase in viscosity.
Then, 187.350 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added so that the solid content concentration was 15% by mass, the temperature inside the reaction system was cooled to 100 ° C., and the mixture was further stirred for about 1 hour to make it uniform. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held on a hot plate at 80 ° C. for 20 minutes, and then heated in a hot air dryer at 260 ° C. for 30 minutes in an air atmosphere to prepare a solvent. Evaporation gave a film.
実施例2
 1,4-BACTの量を11.380g(0.080モル)から9.958g(0.070モル)に変更し、BAPSの量を8.650g(0.020モル)から12.975g(0.030モル)に変更した以外は、実施例1と同様の方法により、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Example 2
The amount of 1,4-BACT was changed from 11.380 g (0.080 mol) to 9.958 g (0.070 mol), and the amount of BAPS was changed from 8.650 g (0.020 mol) to 12.975 g (0). A polyimide varnish having a solid content concentration of 15% by mass was obtained by the same method as in Example 1 except that the mixture was changed to .030 mol).
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
実施例3
 1,4-BACTの量を11.380g(0.080モル)から8.535g(0.060モル)に変更し、BAPSの量を8.650g(0.020モル)から17.300g(0.040モル)に変更した以外は、実施例1と同様の方法により、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Example 3
The amount of 1,4-BACT was changed from 11.380 g (0.080 mol) to 8.535 g (0.060 mol), and the amount of BAPS was changed from 8.650 g (0.020 mol) to 17.300 g (0). A polyimide varnish having a solid content concentration of 15% by mass was obtained by the same method as in Example 1 except that the mixture was changed to .040 mol).
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
実施例4
1,4-BACTの量を11.380g(0.080モル)から7.113g(0.050モル)に変更し、BAPSの量を8.650g(0.020モル)から21.625g(0.050モル)に変更した以外は、実施例1と同様の方法により、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Example 4
The amount of 1,4-BACT was changed from 11.380 g (0.080 mol) to 7.113 g (0.050 mol), and the amount of BAPS was changed from 8.650 g (0.020 mol) to 21.625 g (0). A polyimide varnish having a solid content concentration of 15% by mass was obtained by the same method as in Example 1 except that the mixture was changed to .050 mol).
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
実施例5
 1,4-BACT 7.113g(0.050モル)を1,4-BAC 7.113g(0.050モル)に変更した以外は、実施例4と同様の方法により、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Example 5
Solid content concentration 15% by mass by the same method as in Example 4 except that 1,4-BACT 7.13 g (0.050 mol) was changed to 1,4-BAC 7.113 g (0.050 mol). Polyimide varnish was obtained.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
実施例6
 1,4-BACT 7.113g(0.050モル)を1,3-BAC 7.113g(0.050モル)に変更した以外は、実施例4と同様の方法により、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Example 6
Solid content concentration 15% by mass by the same method as in Example 4 except that 1,4-BACT 7.13 g (0.050 mol) was changed to 1,3-BAC 7.113 g (0.050 mol). Polyimide varnish was obtained.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
実施例7
 1,4-BACT 7.113g(0.050モル)をビス(アミノメチル)ノルボルナン(異性体混合物:東京化成工業株式会社製;式(b22)で表される化合物)7.713g(0.050モル)に変更した以外は、実施例4と同様の方法により、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Example 7
7.113 g (0.050 mol) of 1,4-BACT is added to bis (aminomethyl) norbornan (isomer mixture: manufactured by Tokyo Chemical Industry Co., Ltd .; compound represented by formula (b22)) 7.713 g (0.050). A polyimide varnish having a solid content concentration of 15% by mass was obtained by the same method as in Example 4 except that the mixture was changed to moles).
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
実施例8
 BAPS 21.625g(0.050モル)をM-BAPS 21.625g(0.050モル)に変更した以外は、実施例4と同様の方法により、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Example 8
A polyimide varnish having a solid content concentration of 15% by mass was obtained by the same method as in Example 4 except that 21.625 g (0.050 mol) of BAPS was changed to 21.625 g (0.050 mol) of M-BAPS. ..
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
比較例1
 BAPS 21.625g(0.050モル)を3,3’-DDS 12.415g(0.050モル)に変更した以外は、実施例4と同様の方法により、固形分濃度20質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Comparative Example 1
Polyimide varnish with a solid content concentration of 20% by mass by the same method as in Example 4 except that BAPS 21.625 g (0.050 mol) was changed to 3,3'-DDS 12.415 g (0.050 mol). Got
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
比較例2
 BAPSの量を8.650g(0.020モル)から43.249g(0.100モル)に変更し、HPMDAの量を11.209g(0.050モル)から22.417g(0.100モル)に変更し、ODPA、1,4-BACTを使用しなかった以外は、実施例1と同様の方法により、固形分濃度20質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Comparative Example 2
The amount of BAPS was changed from 8.650 g (0.020 mol) to 43.249 g (0.100 mol) and the amount of HPMDA was changed from 11.209 g (0.050 mol) to 22.417 g (0.100 mol). A polyimide varnish having a solid content concentration of 20% by mass was obtained by the same method as in Example 1 except that ODPA and 1,4-BACT were not used.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
比較例3
 M-BAPSの量を21.625g(0.050モル)から43.249g(0.100モル)に変更し、HPMDAの量を11.209g(0.050モル)から22.417g(0.100モル)に変更し、ODPA、1,4-BACTを使用しなかった以外は、実施例8と同様の方法により、固形分濃度20質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Comparative Example 3
The amount of M-BAPS was changed from 21.625 g (0.050 mol) to 43.249 g (0.100 mol), and the amount of HPMDA was changed from 11.209 g (0.050 mol) to 22.417 g (0.100 mol). A polyimide varnish having a solid content concentration of 20% by mass was obtained by the same method as in Example 8 except that ODPA and 1,4-BACT were not used.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
 実施例及び比較例で得られたポリイミドフィルムについて前記の物性測定及び評価を行った。結果を表1に示す。 The above-mentioned physical properties were measured and evaluated for the polyimide films obtained in Examples and Comparative Examples. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1に示すように、実施例のポリイミドフィルムは、光学的等方性が良好であり、更に靭性と耐薬品性にも優れることがわかる。比較例1は、光学等方性、耐薬品性に優れていたが、伸びが劣っていた。比較例2は光学等方性、耐薬品性、伸びがいずれも劣っていた。比較例3は、光学等方性は良好であったが、伸び、耐薬品性が劣っていた。
 したがって、テトラカルボン酸成分としてODPA、HPMDAを用い、ジアミン成分としてBAPSあるいはM-BAPS及び1,3-BAC、1,4-BAC、1,4-BACT等の脂環式ジアミンを併用して製造したポリイミドフィルムは、光学的等方性、耐薬品性及び伸びに優れるフィルムとして液晶ディスプレイ、OLEDディスプレイ、タッチパネルなどのプラスチック基板として好適に使用することができる。
As shown in Table 1, it can be seen that the polyimide film of the example has good optical isotropic properties, and is also excellent in toughness and chemical resistance. Comparative Example 1 was excellent in optical isotropic property and chemical resistance, but was inferior in elongation. Comparative Example 2 was inferior in optical isotropic property, chemical resistance, and elongation. In Comparative Example 3, the optical isotropic property was good, but the elongation and chemical resistance were inferior.
Therefore, ODPA and HPMDA are used as the tetracarboxylic acid component, and BAPS or M-BAPS and alicyclic diamines such as 1,3-BAC, 1,4-BAC, and 1,4-BACT are used in combination as the diamine component. The polyimide film can be suitably used as a plastic substrate for a liquid crystal display, an OLED display, a touch panel, or the like as a film having excellent optical isotropic properties, chemical resistance, and elongation.

Claims (5)

  1.  テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有するポリイミド樹脂であって、
     構成単位Aが下記式(a1)で表される化合物に由来する構成単位(A1)と、下記式(a2)で表される化合物に由来する構成単位(A2)を含み、
     構成単位Bが下記式(b1)で表される化合物に由来する構成単位(B1)と、下記式(b21)で表される化合物に由来する構成単位(B21)及び下記式(b22)で表される化合物に由来する構成単位(B22)からなる群より選ばれる少なくとも1つである構成単位(B2)を含むポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000001
    A polyimide resin having a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from diamine.
    The structural unit A includes a structural unit (A1) derived from a compound represented by the following formula (a1) and a structural unit (A2) derived from a compound represented by the following formula (a2).
    The structural unit B is represented by the structural unit (B1) derived from the compound represented by the following formula (b1), the structural unit (B21) derived from the compound represented by the following formula (b21), and the following formula (b22). A polyimide resin containing at least one structural unit (B2) selected from the group consisting of structural units (B22) derived from the compound.
    Figure JPOXMLDOC01-appb-C000001
  2.  構成単位A中における構成単位(A1)の比率が30~90モル%であり、構成単位A中における構成単位(A2)の比率が10~70モル%である、請求項1に記載のポリイミド樹脂。 The polyimide resin according to claim 1, wherein the ratio of the constituent unit (A1) in the constituent unit A is 30 to 90 mol%, and the ratio of the constituent unit (A2) in the constituent unit A is 10 to 70 mol%. ..
  3.  構成単位B中における構成単位(B1)の比率が5~80モル%であり、構成単位B中における構成単位(B2)の比率が20~95モル%である、請求項1又は2に記載のポリイミド樹脂。 The first or second claim, wherein the ratio of the constituent unit (B1) in the constituent unit B is 5 to 80 mol%, and the ratio of the constituent unit (B2) in the constituent unit B is 20 to 95 mol%. Polyimide resin.
  4.  請求項1~3のいずれか1つに記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。 A polyimide varnish in which the polyimide resin according to any one of claims 1 to 3 is dissolved in an organic solvent.
  5.  請求項1~3のいずれか1つに記載のポリイミド樹脂を含む、ポリイミドフィルム。 A polyimide film containing the polyimide resin according to any one of claims 1 to 3.
PCT/JP2021/007211 2020-03-06 2021-02-25 Polyimide resin, polyimide varnish, and polyimide film WO2021177145A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180018414.5A CN115210292A (en) 2020-03-06 2021-02-25 Polyimide resin, polyimide varnish, and polyimide film
JP2022505163A JPWO2021177145A1 (en) 2020-03-06 2021-02-25
KR1020227029856A KR20220147092A (en) 2020-03-06 2021-02-25 Polyimide resins, polyimide varnishes and polyimide films

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020038948 2020-03-06
JP2020-038948 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021177145A1 true WO2021177145A1 (en) 2021-09-10

Family

ID=77613054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007211 WO2021177145A1 (en) 2020-03-06 2021-02-25 Polyimide resin, polyimide varnish, and polyimide film

Country Status (5)

Country Link
JP (1) JPWO2021177145A1 (en)
KR (1) KR20220147092A (en)
CN (1) CN115210292A (en)
TW (1) TW202140620A (en)
WO (1) WO2021177145A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155342A (en) * 2001-11-19 2003-05-27 Nippon Steel Chem Co Ltd Polyimide copolymer having alicyclic structure
WO2016158825A1 (en) * 2015-03-31 2016-10-06 旭化成株式会社 Polyimide film, polyimide varnish, product using polyimide film, and laminate
CN108559080A (en) * 2018-04-19 2018-09-21 长兴福威格新材料有限公司 A kind of continuous polymerization preparation method of thermoplastic polyimide
JP2018203906A (en) * 2017-06-06 2018-12-27 旭化成株式会社 Polyimide film, product using polyimide film, and laminate
WO2020203264A1 (en) * 2019-03-29 2020-10-08 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155342A (en) * 2001-11-19 2003-05-27 Nippon Steel Chem Co Ltd Polyimide copolymer having alicyclic structure
WO2016158825A1 (en) * 2015-03-31 2016-10-06 旭化成株式会社 Polyimide film, polyimide varnish, product using polyimide film, and laminate
JP2018203906A (en) * 2017-06-06 2018-12-27 旭化成株式会社 Polyimide film, product using polyimide film, and laminate
CN108559080A (en) * 2018-04-19 2018-09-21 长兴福威格新材料有限公司 A kind of continuous polymerization preparation method of thermoplastic polyimide
WO2020203264A1 (en) * 2019-03-29 2020-10-08 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film

Also Published As

Publication number Publication date
TW202140620A (en) 2021-11-01
JPWO2021177145A1 (en) 2021-09-10
CN115210292A (en) 2022-10-18
KR20220147092A (en) 2022-11-02

Similar Documents

Publication Publication Date Title
JP6996609B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7424284B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7205491B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7367699B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7463964B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2020138360A1 (en) Imide-(amic acid) copolymer and method for producing same, varnish, and polyimide film
JP7180617B2 (en) Polyimide resin composition and polyimide film
JPWO2019188306A1 (en) Polyimide resin, polyimide varnish and polyimide film
WO2021132196A1 (en) Polyimide resin, polyimide varnish, and polyimide film
JP7384170B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2021100727A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2020203264A1 (en) Polyimide resin, polyimide varnish, and polyimide film
JP7255489B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2021132197A1 (en) Polyimide resin, varnish, and polyimide film
WO2021177145A1 (en) Polyimide resin, polyimide varnish, and polyimide film
JP7484913B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7371621B2 (en) Polyimide resin, polyimide varnish and polyimide film
TWI839543B (en) Polyimide resin, polyimide varnish, and polyimide film
WO2022091813A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2022091814A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2021006284A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2021153379A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2023234085A1 (en) Polyimide resin precursor and polyimide resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21763519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505163

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21763519

Country of ref document: EP

Kind code of ref document: A1