WO2021132196A1 - Polyimide resin, polyimide varnish, and polyimide film - Google Patents

Polyimide resin, polyimide varnish, and polyimide film Download PDF

Info

Publication number
WO2021132196A1
WO2021132196A1 PCT/JP2020/047790 JP2020047790W WO2021132196A1 WO 2021132196 A1 WO2021132196 A1 WO 2021132196A1 JP 2020047790 W JP2020047790 W JP 2020047790W WO 2021132196 A1 WO2021132196 A1 WO 2021132196A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
mol
polyimide
film
polyimide resin
Prior art date
Application number
PCT/JP2020/047790
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 安孫子
菜摘 脇田
三田寺 淳
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020227021122A priority Critical patent/KR20220123393A/en
Priority to CN202080090183.4A priority patent/CN114867767A/en
Priority to JP2021567460A priority patent/JPWO2021132196A1/ja
Publication of WO2021132196A1 publication Critical patent/WO2021132196A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide resin, a polyimide varnish and a polyimide film.
  • polyimide resins are being studied in the fields of electrical and electronic components. For example, it is desired to replace a glass substrate used in an image display device such as a liquid crystal display or an OLED display with a plastic substrate for the purpose of reducing the weight and flexibility of the device. Research is underway. Films used in image display devices are required to have various optical characteristics. For example, when light emitted from a display element is emitted through a plastic substrate, the plastic substrate is required to be colorless and transparent. On the other hand, when it is used for applications where light passes through a retardation film or a polarizing plate, for example, a liquid crystal display, a touch panel, etc., it is required to have particularly high optical isotropic properties (that is, low Rth). ..
  • a polyimide film having excellent optical isotropic properties is required, especially for applications such as displays. Further, a polyimide film having high chemical resistance is also required.
  • the polyimide film contains a solvent contained in the varnish. Resistance to is required. If the solvent resistance of the polyimide film is insufficient, it may become meaningless as a substrate due to dissolution or swelling of the film.
  • a solution must be used when producing the polyimide film, and it is difficult to achieve both of these properties.
  • an object of the present invention is to provide a polyimide resin, a polyimide varnish, and a polyimide film capable of forming a film having excellent optical isotropic properties and also excellent peelability and chemical resistance.
  • the present inventors have found that a polyimide resin containing a combination of a structural unit derived from two specific types of tetracarboxylic dianhydride and a structural unit derived from two specific types of diamine can solve the above-mentioned problems, and invented the invention. Has been completed.
  • the ratio of the constituent unit (A-1) in the constituent unit A is 20 to 80 mol%, and the ratio of the constituent unit (A-2) in the constituent unit A is 20 to 80 mol%.
  • ⁇ 3> The ratio of the structural unit (B-1) in the structural unit B is 5 to 80 mol%, and the ratio of the structural unit (B-2) in the structural unit B is 20 to 95 mol%.
  • ⁇ 4> A polyimide varnish in which the polyimide resin according to any one of ⁇ 1> to ⁇ 3> above is dissolved in an organic solvent.
  • ⁇ 5> A polyimide film containing the polyimide resin according to any one of ⁇ 1> to ⁇ 3> above.
  • a polyimide resin, a polyimide varnish and a polyimide film capable of forming a film having excellent optical isotropic properties and also excellent peelability and chemical resistance.
  • the polyimide resin of the present invention is a polyimide resin having a structural unit A derived from tetracarboxylic acid dianhydride and a structural unit B derived from diamine, and the structural unit A is represented by the following formula (a-1).
  • a structural unit (A-1) derived from a compound and a structural unit (A-2) derived from a compound represented by the following formula (a-2) are included, and the structural unit B is represented by the following formula (b-1). It contains a structural unit (B-1) derived from the compound represented by the compound and a structural unit (B-2) derived from the compound represented by the following formula (b-2).
  • the polyimide resin of the present invention is excellent in peelability and chemical resistance while maintaining optical isotropic properties is not clear, but the polyimide resin of the present invention has a sulfonyl structure in addition to an ether structure and is alicyclic. Since it also has a ring structure, it is considered to be excellent in optical isotropic properties, and also in peelability and chemical resistance.
  • the structural unit A is a structural unit derived from tetracarboxylic dianhydride in the polyimide resin.
  • the structural unit A is a structural unit (A-1) derived from a compound represented by the following formula (a-1) and a structural unit (A-2) derived from a compound represented by the following formula (a-2). )including.
  • the compound represented by the formula (a-1) is a 4,4'-oxydiphthalic anhydride.
  • the structural unit A includes the structural unit (A-1)
  • chemical resistance, optical isotropic property, and transparency can be improved.
  • the compound represented by the formula (a-2) is 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • the structural unit A may consist only of the structural unit (A-1) and the structural unit (A-2).
  • the constituent unit A contains both the constituent units (A-1) and (A-2)
  • it becomes optically isotropic, peelable, or chemical resistant as described above. Not only is it excellent, but also the solubility of the polymer produced by the progress of the imidization reaction in the production of the polyimide resin in the solvent is high, and a transparent varnish and film can be obtained.
  • the molar ratio [(A-1) / (A-2)] of the structural unit (A-1) and the structural unit (A-2) in the structural unit A improves optical isotropic property and chemical resistance. From the viewpoint, it is preferably 20/80 to 80/20, more preferably 30/70 to 70/30, and even more preferably 40/60 to 60/40.
  • the structural unit A may include a structural unit other than the structural unit (A-1) and the structural unit (A-2).
  • the tetracarboxylic dianhydride giving such a constituent unit is not particularly limited, but is pyromellitic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 9,9'.
  • Arophilic tetracarboxylic dianhydrides such as -bis (3,4-dicarboxyphenyl) fluorene dianhydride and 4,4'-(hexafluoroisopropyridene) diphthalic acid dianhydride (provided that the formula (a-1) is used.
  • the aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings
  • the alicyclic tetracarboxylic dianhydride has one alicyclic ring. It means a tetracarboxylic acid dianhydride containing the above and does not contain an aromatic ring
  • the aliphatic tetracarboxylic acid dianhydride means a tetracarboxylic acid dianhydride containing neither an aromatic ring nor an alicyclic ring.
  • the structural unit arbitrarily included in the structural unit A may be one type or two or more types.
  • the structural unit B is a structural unit derived from diamine in the polyimide resin, and is a structural unit (B-1) derived from a compound represented by the following formula (b-1) and the following formula (b-2). Includes a structural unit (B-2) derived from the compound represented by.
  • the compound represented by the formula (b-1) is 4,4'-diaminodiphenyl sulfone.
  • the structural unit B includes the structural unit (B-1)
  • the toughness and peelability of the film can be improved, and the heat resistance can also be improved.
  • the compound represented by the formula (b-2) is bis (aminomethyl) cyclohexane, and specific examples thereof include 1,3-bis (aminomethyl) cyclohexane represented by the following formula (b-2a). Examples thereof include 1,4-bis (aminomethyl) cyclohexane represented by the following formula (b-2b).
  • the cis: trans ratio of the compound represented by the formula (b-2) is preferably 0: 100 to 80:20, preferably 0.1: 99.9 to 70:30, from the viewpoint of organic solvent resistance and heat resistance. Is more preferable, 0.5: 99.5 to 60:40 is further preferable, and 1:99 to 20:80 is even more preferable.
  • the structural unit (B-2) in the structural unit B the colorless transparency and optical isotropic property of the film can be improved.
  • the ratio of the structural unit (B-1) in the structural unit B is preferably 5 to 80 mol%, more preferably 10 to 70 mol%, still more preferably 30 to 70 mol%, and further. It is preferably 45 to 70 mol%, and even more preferably 45 to 60 mol%.
  • the ratio of the structural unit (B-2) in the structural unit B is preferably 20 to 95 mol%, more preferably 30 to 90 mol%, still more preferably 30 to 70 mol%, and further. It is preferably 30 to 55 mol%, and even more preferably 40 to 55 mol%.
  • the total ratio of the structural units (B-1) and (B-2) in the structural unit B is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more. Is.
  • the upper limit of the total ratio of the structural units (B-1) and (B-2) is not particularly limited, that is, 100 mol%.
  • the structural unit B may consist only of the structural unit (B-1) and the structural unit (B-2). In the polyimide resin of the present invention, when the constituent unit B contains both the constituent units (B-1) and (B-2), it becomes optically isotropic, peelable, or chemical resistant as described above.
  • the molar ratio [(B-1) / (B-2)] of the structural unit (B-1) and the structural unit (B-2) in the structural unit B improves optical isotropic property and chemical resistance. From the viewpoint, it is preferably 5/95 to 80/20, more preferably 10/90 to 70/30, and further preferably 30/70 to 70/30 from the viewpoint of heat resistance, and from the viewpoint of toughness. Therefore, it is even more preferably 45/55 to 70/30, and even more preferably 45/55 to 60/40.
  • the structural unit B may include a structural unit other than the structural units (B-1) and (B-2).
  • the structural unit B is a structural unit derived from a compound represented by the following formula (b-3) from the viewpoint of heat resistance and colorless transparency (b-3). It is preferable to include B-3).
  • the compound represented by the formula (b-3) is 4,4'-diamino-2,2'-bistrifluoromethyldiphenyl ether.
  • the constituent unit B includes the constituent unit (B-1), the constituent unit (B-2), and the constituent unit (B-3), the constituent unit (B-1) and the constituent unit (B-2) in the constituent unit B ) Is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more, and the ratio of the constituent unit (B-3) in the constituent unit B. Is preferably 1 to 50 mol%, more preferably 5 to 40 mol%, still more preferably 10 to 30 mol%.
  • the total ratio of the structural unit (B-1), the structural unit (B-2), and the structural unit (B-3) in the structural unit B is preferably 80 mol% or more, more preferably 90 mol% or more.
  • the upper limit of the ratio of the total of the structural unit (B-1), the structural unit (B-2) and the structural unit (B-3) is not particularly limited, that is, 100 mol%.
  • the structural unit B may be composed of only the structural unit (B-1), the structural unit (B-2), and the structural unit (B-3).
  • the structural unit B may include a structural unit other than the structural units (B-1), (B-2) and (B-3).
  • the diamine that gives such a structural unit is not particularly limited, but is limited to 1,4-phenylenediamine, p-xylylene diamine, 1,5-diaminonaphthalene, and 2,2'-dimethylbiphenyl-4,4'-diamine.
  • alicyclic diamines (excluding compounds represented by the formula (b-2)); and aliphatic diamines such as ethylenediamine and hexamethylenediamine.
  • the aromatic diamine means a diamine containing one or more aromatic rings
  • the alicyclic diamine means a diamine containing one or more alicyclic rings and not containing an aromatic ring, and is a fat.
  • the group diamine means a diamine that does not contain an aromatic ring or an alicyclic ring.
  • the structural unit other than the structural unit (B-1) and the structural unit (B-2) arbitrarily included in the structural unit B may be one type or two or more types.
  • the number average molecular weight of the polyimide resin is preferably 5,000 to 300,000 from the viewpoint of the mechanical strength of the obtained polyimide film.
  • the number average molecular weight of the polyimide resin can be obtained from, for example, a standard polymethylmethacrylate (PMMA) conversion value measured by gel filtration chromatography.
  • the polyimide resin may contain a structure other than the polyimide chain (a structure in which the structural unit A and the structural unit B are imide-bonded).
  • Examples of the structure other than the polyimide chain that can be contained in the polyimide resin include a structure containing an amide bond.
  • the polyimide resin preferably contains a polyimide chain (a structure in which the structural unit A and the structural unit B are imide-bonded) as a main structure. Therefore, the ratio of the polyimide chain to the polyimide resin is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 90% by mass or more, and particularly preferably 99% by mass or more. Yes, it may be 100% by mass.
  • the polyimide resin composition of the present invention containing the above-mentioned polyimide resin can form a film excellent in optical isotropic property, peelability and chemical resistance, and suitable physical property values of the film are as follows. ..
  • the total light transmittance is preferably 88% or more, more preferably 88.5% or more, and further preferably 89% or more when the film has a thickness of 10 ⁇ m.
  • the yellow index (YI) is preferably 4.5 or less, more preferably 3.0 or less, still more preferably 2.0 or less, and even more preferably 2.0 or less when the film has a thickness of 10 ⁇ m. It is 1.5 or less.
  • the absolute value of the thickness retardation (Rth) is preferably 70 nm or less, more preferably 50 nm or less, still more preferably 40 nm or less, and even more preferably 30 nm when the film has a thickness of 10 ⁇ m.
  • the film that can be formed using the polyimide resin has good mechanical properties and heat resistance, and has the following suitable physical property values.
  • the tensile strength is preferably 70 MPa or more, more preferably 90 MPa or more, and further preferably 100 MPa or more.
  • the tensile elastic modulus is preferably 1.5 GPa or more, more preferably 2.0 GPa or more, and further preferably 2.5 GPa or more.
  • the tensile elongation at break is preferably 5% or more, more preferably 6% or more, and further preferably 7% or more.
  • the glass transition temperature (Tg) is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and even more preferably 250 ° C. or higher.
  • the above-mentioned physical property values in the present invention can be specifically measured by the method described in Examples.
  • the polyimide resin contains a tetracarboxylic acid component containing a compound giving the above-mentioned structural unit (A-1) and a compound giving the above-mentioned structural unit (A-2), and the above-mentioned structural unit (B-1). It can be produced by reacting with a diamine component containing a compound giving the above-mentioned structural unit (B-2).
  • Examples of the compound giving the structural unit (A-1) include the compound represented by the formula (a-1), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given.
  • Examples of the derivative include a tetracarboxylic acid (that is, 4,4'-oxydiphthalic acid) corresponding to the tetracarboxylic dianhydride represented by the formula (a-1), and an alkyl ester of the tetracarboxylic acid. .. Of these, the tetracarboxylic dianhydride represented by the formula (a-1) is preferable.
  • the compound giving the structural unit (A-2) includes a compound represented by the formula (a-2), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given. ..
  • the derivative include a tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by the formula (a-2) (that is, 1,2,4,5-cyclohexanetetracarboxylic acid), and the tetracarboxylic acid.
  • Alkyl esters can be mentioned.
  • the tetracarboxylic dianhydride represented by the formula (a-2) is preferable.
  • the tetracarboxylic acid component preferably contains 20 to 80 mol%, more preferably 30 to 70 mol%, and further preferably 40 to 60 mol% of the compound giving the structural unit (A-1).
  • the tetracarboxylic acid component preferably contains 20 to 80 mol%, more preferably 30 to 70 mol%, and further preferably 40 to 60 mol% of the compound giving the structural unit (A-2).
  • the tetracarboxylic acid component contains, in total, a compound giving the structural unit (A-1) and a compound giving the structural unit (A-2) in an amount of preferably 50 mol% or more, more preferably 70 mol% or more, and more preferably. Contains 90 mol% or more.
  • the upper limit of the total content of the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2) is not particularly limited, that is, 100 mol%.
  • the tetracarboxylic acid component may consist only of a compound giving a structural unit (A-1) and a compound giving a structural unit (A-2).
  • the molar ratio [(A-1) / (A-2)] of the compound giving the constituent unit (A-1) to the compound giving the constituent unit (A-2) in the tetracarboxylic acid component is preferably 20/80. It is -80/20, more preferably 30/70 to 70/30, and even more preferably 40/60 to 60/40.
  • the tetracarboxylic acid component may contain a compound other than the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2).
  • arbitrary compounds include the above-mentioned aromatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, and aliphatic tetracarboxylic dianhydride, and derivatives thereof (tetracarboxylic dian, tetra). Alkyl ester of carboxylic acid, etc.).
  • the compound that gives the constituent unit (A-1) arbitrarily contained in the tetracarboxylic acid component and the compound other than the compound that gives the constituent unit (A-2) may be one kind or two or more kinds.
  • Examples of the compound giving the structural unit (B-1) include the compound represented by the formula (b-1), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given.
  • Examples of the derivative include diisocyanate corresponding to the compound represented by the formula (b-1).
  • the compound that gives the structural unit (B-1) the compound represented by the formula (b-1) (that is, a diamine) is preferable.
  • the compound giving the structural unit (B-2) includes a compound represented by the formula (b-2), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given. ..
  • Examples of the derivative include diisocyanate corresponding to the compound represented by the formula (b-2).
  • the compound represented by the formula (b-2) that is, diamine
  • the diamine component preferably contains a compound that gives the structural unit (B-1) in an amount of 5 to 80 mol%, more preferably 10 to 70 mol%, still more preferably 30 to 70 mol%, and even more preferably 45. It contains ⁇ 70 mol%, more preferably 45-60 mol%.
  • the diamine component preferably contains a compound that gives the structural unit (B-2) in an amount of 20 to 95 mol%, more preferably 30 to 90 mol%, still more preferably 30 to 70 mol%, and even more preferably 30. It contains ⁇ 55 mol%, more preferably 40-55 mol%.
  • the diamine component contains, in total, a compound giving the structural unit (B-1) and a compound giving the structural unit (B-2) in an amount of 50 mol% or more, more preferably 70 mol% or more, and more preferably 90. Contains more than mol%.
  • the upper limit of the total content of the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2) is not particularly limited, that is, 100 mol%.
  • the diamine component may consist only of a compound giving a structural unit (B-1) and a compound giving a structural unit (B-2).
  • the molar ratio [(B-1) / (B-2)] of the compound giving the structural unit (B-1) to the compound giving the structural unit (B-2) in the diamine component is optically isotropic and resistant to light. From the viewpoint of improving chemical properties, it is preferably 5/95 to 80/20, more preferably 10/90 to 70/30, and further preferably 30/70 to 70/30 from the viewpoint of heat resistance. From the viewpoint of toughness, it is even more preferably 45/55 to 70/30, and even more preferably 45/55 to 60/40.
  • the diamine component may further contain a compound giving the structural unit (B-3) in addition to the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2).
  • Examples of the compound giving the structural unit (B-3) include the compound represented by the formula (b-3), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given. Examples of the derivative include diisocyanate corresponding to the compound represented by the formula (b-3).
  • the compound represented by the formula (b-3) that is, diamine is preferable.
  • the diamine component preferably contains a compound that gives the structural unit (B-3) in an amount of 1 to 50 mol%, more preferably 5 to 40 mol%, and even more preferably 10 to 30 mol%.
  • the diamine component contains a compound that gives a constituent unit (B-3)
  • the diamine component includes a compound that gives a constituent unit (B-1), a compound that gives a constituent unit (B-2), and a constituent unit (B-3). In total, it contains 80 mol% or more, more preferably 90 mol% or more, and further preferably 99 mol% or more.
  • the upper limit of the total content of the compound giving the structural unit (B-1), the compound giving the structural unit (B-2), and the compound giving the structural unit (B-3) is not particularly limited, that is, 100 mol. %.
  • the diamine component may consist only of a compound giving a structural unit (B-1), a compound giving a structural unit (B-2), and a compound giving a structural unit (B-3).
  • the compound other than the compound giving the structural unit (B-1) arbitrarily contained in the diamine component and the compound giving the structural unit (B-2) is not limited to the compound giving the structural unit (B-3).
  • Such arbitrary compounds include the above-mentioned aromatic diamines, alicyclic diamines, and aliphatic diamines, and derivatives thereof (diisocyanate and the like).
  • the compound that gives the constituent unit (B-1) arbitrarily contained in the diamine component and the compound other than the compound that gives the constituent unit (B-2) may be one kind or two or more kinds.
  • the ratio of the amount of the tetracarboxylic acid component to the diamine component charged in the production of the polyimide resin is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component.
  • an end-capping agent may be used for producing the polyimide resin.
  • the terminal encapsulant monoamines or dicarboxylic acids are preferable.
  • the amount of the terminal encapsulant to be introduced is preferably 0.0001 to 0.1 mol, more preferably 0.001 to 0.06 mol, based on 1 mol of the tetracarboxylic acid component.
  • Examples of the monoamine terminal encapsulant include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3-. Examples thereof include ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline, and benzylamine and aniline are preferable.
  • dicarboxylic acid terminal encapsulant dicarboxylic acids are preferable, and a part thereof may be ring-closed.
  • phthalic acid and phthalic anhydride are preferable.
  • the method for reacting the above-mentioned tetracarboxylic acid component with the diamine component is not particularly limited, and a known method can be used.
  • Specific reaction methods include (1) charging a tetracarboxylic acid component, a diamine component, and a reaction solvent into a reactor, stirring at 0 to 80 ° C. for 0.5 to 30 hours, and then raising the temperature to imidize. Method of carrying out the reaction, (2) After charging the diamine component and the reaction solvent into the reactor and dissolving them, the tetracarboxylic acid component was charged, and if necessary, the mixture was stirred at room temperature of 0 to 80 ° C. for 0.5 to 30 hours.
  • the reaction solvent used in the production of the polyimide resin may be one that does not inhibit the imidization reaction and can dissolve the produced polyimide.
  • an aprotic solvent, a phenol solvent, an ether solvent, a carbonate solvent and the like can be mentioned.
  • aprotonic solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), N-methylcaprolactam, 1,3-dimethylimidazolidinone, and tetra.
  • Amide solvents such as methyl urea, lactone solvents such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphintriamide, dimethyl sulfone and dimethyl sulfoxide.
  • Sulfur-containing solvent such as sulfolane, ketone solvent such as acetone, cyclohexanone, methylcyclohexanone, amine solvent such as picolin and pyridine, ester solvent such as acetic acid (2-methoxy-1-methylethyl) and the like. ..
  • phenolic solvent examples include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4. -Xylenol, 3,5-xylenol and the like can be mentioned.
  • ether solvent examples include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, and bis [2- (2-methoxyethoxy) ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
  • the carbonate solvent examples include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate and the like.
  • aproton solvents are preferable, and amide solvents and lactone solvents are more preferable.
  • the above-mentioned reaction solvent may be used alone or in mixture of 2 or more types.
  • the imidization reaction it is preferable to carry out the reaction while removing water generated during production using a Dean-Stark apparatus or the like. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.
  • a known imidization catalyst can be used.
  • the imidization catalyst include a base catalyst and an acid catalyst.
  • Base catalysts include pyridine, quinoline, isoquinoline, ⁇ -picoline, ⁇ -picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine (TEA), tripropylamine, tributylamine, triethylenediamine, imidazole,
  • organic base catalysts such as N, N-dimethylaniline and N, N-diethylaniline
  • inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogencarbonate and sodium hydrogencarbonate.
  • the acid catalyst examples include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, paratoluenesulfonic acid, naphthalenesulfonic acid and the like. Can be mentioned.
  • the above-mentioned imidization catalyst may be used alone or in combination of two or more. Of the above, from the viewpoint of handleability, it is preferable to use a base catalyst, more preferably an organic base catalyst, and even more preferably triethylamine.
  • the temperature of the imidization reaction is preferably 120 to 250 ° C., more preferably 160 to 200 ° C. from the viewpoint of suppressing the reaction rate and gelation.
  • the reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
  • the constituent unit A contains the constituent units (A-1) and (A-2), and the constituent unit B contains the constituent units (B-1) and (B-2).
  • a transparent varnish can be obtained with high solubility of the polymer produced by the progress of the chemical reaction in the solvent.
  • the polyimide varnish of the present invention is obtained by dissolving the polyimide resin of the present invention in an organic solvent. That is, the polyimide varnish of the present invention contains the polyimide resin of the present invention and an organic solvent, and the polyimide resin is dissolved in the organic solvent.
  • the organic solvent may be any one that dissolves the polyimide resin, and is not particularly limited, but it is preferable to use the above-mentioned compounds alone or in combination of two or more as the reaction solvent used for producing the polyimide resin.
  • the polyimide varnish of the present invention may be the polyimide solution itself in which the polyimide resin obtained by the polymerization method is dissolved in a reaction solvent, or may be diluted by adding a solvent to the polyimide solution. Good.
  • the polyimide varnish of the present invention preferably contains the polyimide resin of the present invention in an amount of 5 to 40% by mass, more preferably 10 to 30% by mass.
  • the viscosity of the polyimide varnish is preferably 1 to 200 Pa ⁇ s, more preferably 1 to 100 Pa ⁇ s.
  • the viscosity of the polyimide varnish is a value measured at 25 ° C. using an E-type viscometer.
  • the polyimide varnish of the present invention has an inorganic filler, an adhesion accelerator, a release agent, a flame retardant, an ultraviolet stabilizer, a surfactant, a leveling agent, a defoaming agent, and an optical brightener as long as the required properties of the polyimide film are not impaired.
  • Various additives such as a whitening agent, a cross-linking agent, a polymerization initiator, and a photosensitizer may be contained.
  • the method for producing the polyimide varnish of the present invention is not particularly limited, and a known method can be applied.
  • the polyimide film of the present invention contains the polyimide resin of the present invention. Therefore, the polyimide film of the present invention is excellent in optical isotropic property, peelability and chemical resistance. Suitable physical property values of the polyimide film of the present invention are as described above.
  • the method for producing the polyimide film of the present invention is not particularly limited, and a known method can be used.
  • the polyimide varnish of the present invention is applied onto a smooth support such as a glass plate, a metal plate, or plastic, or formed into a film, and then an organic solvent such as a reaction solvent or a dilution solvent contained in the varnish is applied. Examples thereof include a method of removing by heating.
  • the coating method examples include known coating methods such as spin coating, slit coating, and blade coating. Above all, the slit coat is preferable from the viewpoint of controlling the intermolecular orientation and improving the chemical resistance and workability.
  • the organic solvent is evaporated at a temperature of 150 ° C. or lower to make it tack-free, and then the temperature is equal to or higher than the boiling point of the organic solvent used (not particularly limited, but preferably). It is preferable to dry at 200 to 500 ° C.). Further, it is preferable to dry in an air atmosphere or a nitrogen atmosphere. The pressure in the dry atmosphere may be reduced pressure, normal pressure, or pressurized pressure.
  • the method of peeling the polyimide film formed on the support from the support is not particularly limited, but a laser lift-off method or the like can be used.
  • the polyimide film of the present invention can also be produced by using a polyamic acid varnish in which polyamic acid is dissolved in an organic solvent.
  • the polyamic acid contained in the polyamic acid varnish is a precursor of the polyimide resin of the present invention and includes a compound giving the above-mentioned structural unit (A-1) and a compound giving the above-mentioned structural unit (A-2). It is a product of a polyaddition reaction of a tetracarboxylic acid component and a diamine component containing the above-mentioned compound giving the structural unit (B-1) and the compound giving the structural unit (B-2).
  • the polyimide resin of the present invention By imidizing (dehydrating and ring-closing) this polyamic acid, the polyimide resin of the present invention, which is the final product, can be obtained.
  • the organic solvent contained in the polyamic acid varnish the organic solvent contained in the polyimide varnish of the present invention can be used.
  • the polyamic acid varnish may be the polyamic acid solution itself obtained by subjecting the tetracarboxylic acid component and the diamine component to a heavy addition reaction in a reaction solvent, or a solvent for the polyamic acid solution. May be added and diluted.
  • the thickness of the polyimide film of the present invention can be appropriately selected depending on the application and the like, but is preferably 1 to 250 ⁇ m, more preferably 5 to 100 ⁇ m, still more preferably 8 to 80 ⁇ m, still more preferably 10 to 80 ⁇ m. The range. When the thickness is 1 to 250 ⁇ m, it can be practically used as a self-supporting film. The thickness of the polyimide film can be easily controlled by adjusting the solid content concentration and viscosity of the polyimide varnish.
  • Total light transmittance and yellow index (YI) The total light transmittance and YI were measured using a color / turbidity simultaneous measuring device "COH7700" manufactured by Nippon Denshoku Kogyo Co., Ltd. in accordance with JIS K7136.
  • Thickness phase difference (evaluation of optical isotropic property)
  • the thickness phase difference (Rth) was measured using an ellipsometer "M-220" manufactured by JASCO Corporation. The value of the thickness phase difference at the measurement wavelength of 590 nm was measured.
  • Rth is expressed by the following formula, where nx is the maximum in-plane refractive index of the polyimide film, ny is the minimum, nz is the refractive index in the thickness direction, and d is the thickness of the film. Is to be done.
  • Rth [ ⁇ (nx + ny) / 2 ⁇ -nz] ⁇ d
  • Solvent resistance A polyimide film formed on a glass plate was immersed in a solvent at room temperature, and it was confirmed whether or not there was any change in the film surface.
  • PGMEA propylene glycol monomethyl ether acetate
  • the evaluation criteria for solvent resistance were as follows. A: There was no change on the film surface. B: The film surface was slightly cracked. C: The film surface was cracked or the film surface was melted.
  • ODPA 4,4'-oxydiphthalic anhydride (manufactured by Manac Inc .; compound represented by formula (a-1))
  • HPMDA 1,2,4,5-Cyclohexanetetracarboxylic dianhydride (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (a-2)) 6FDA: 4,4'-(hexafluoroisopropylidene) diphthalic anhydride
  • Example 1 12.415 g of 4,4'-DDS in a 300 mL five-necked round-bottom flask equipped with a stainless half-moon agitator, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. 0.050 mol), 7.113 g (0.050 mol) of 1,4-BACT and 55.496 g of ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the mixture was rotated at a system temperature of 70 ° C. and a nitrogen atmosphere. A solution was obtained by stirring at several 200 rpm.
  • Example 2 The amount of 1,4-BACT was changed from 7.113 g (0.050 mol) to 11.380 g (0.080 mol), and the amount of 4,4'-DDS was changed from 12.415 g (0.050 mol).
  • a polyimide varnish having a solid content concentration of 20% by mass was obtained in the same manner as in Example 1 except that the content was changed to 4.966 g (0.020 mol). Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Example 3 The amount of 1,4-BACT was changed from 7.113 g (0.050 mol) to 8.535 g (0.060 mol), and the amount of 4,4'-DDS was changed from 12.415 g (0.050 mol).
  • a polyimide varnish having a solid content concentration of 20% by mass was obtained in the same manner as in Example 1 except that the content was changed to 9.923 g (0.040 mol). Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Example 4 Examples except that the amount of 4,4'-DDS was changed from 12.415 g (0.050 mol) to 4.966 g (0.020 mol) and 10.087 g (0.030 mol) of 6FODA was added.
  • a polyimide varnish having a solid content concentration of 20% by mass was obtained.
  • a film was obtained by the same method as in Example 1.
  • Example 5 In the same manner as in Example 1, the solid content concentration was 20% by mass, except that 1,4-BACT 7.13 g (0.050 mol) was changed to 1,3-BAC 7.113 g (0.050 mol). A polyimide varnish was obtained. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Comparative Example 1 Solid content concentration in the same manner as in Example 1 except that ODPA 15.511 g (0.050 mol) and HPMDA 11.209 g (0.050 mol) were changed to 6FDA 44.424 (0.100 mol). A 20% by mass polyimide varnish was obtained. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Comparative Example 2 A polyimide varnish having a solid content concentration of 20% by mass was obtained in the same manner as in Example 1 except that 11.209 g (0.050 mol) of HPMDA was changed to 22.212 g (0.050 mol) of 6FDA. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Comparative Example 3 Solid content concentration 20 in the same manner as in Example 1 except that 4,4'-DDS 12.415 g (0.050 mol) was changed to 3,3'-DDS 12.415 g (0.050 mol). A weight% polyimide varnish was obtained. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Comparative Example 4 The imidization reaction was carried out in the same manner as in Example 1 except that HPMDA was not used and the amount of ODPA was changed from 15.511 g (0.050 mol) to 31.021 g (0.100 mol). However, after adding triethylamine, the reaction solution became cloudy in the process of raising the temperature in the reaction system to 190 ° C., and no varnish was obtained.
  • Comparative Example 5 The amount of 4,4'-DDS was changed from 12.415 g (0.050 mol) to 24.830 g (0.100 mol) without using 1,4-BACT and without HPMDA of ODPA.
  • the imidization reaction was carried out in the same manner as in Example 1 except that the amount was changed from 15.511 g (0.050 mol) to 31.021 g (0.100 mol).
  • the reaction solution became cloudy in the process of raising the temperature in the reaction system to 190 ° C., and no varnish was obtained.
  • Comparative Example 6 Change the amount of 4,4'-DDS from 12.415 g (0.050 mol) to 24.830 g (0.100 mol) without using 1,4-BACT, without using ODPA, HPMDA
  • the imidization reaction was carried out in the same manner as in Example 1 except that the amount was changed from 11.209 g (0.050 mol) to 22.417 g (0.100 mol).
  • the reaction solution became cloudy in the process of raising the temperature in the reaction system to 190 ° C., and no varnish was obtained.
  • the polyimide film of the example has good optical isotropic properties, and is also excellent in peelability and chemical resistance.
  • the polyimide film containing the polyimide resin of the present invention has good optical isotropic properties, and also has excellent peelability and chemical resistance, and is a film for various members such as color filters, flexible displays, semiconductor parts, and optical members. It is preferably used as.
  • the polyimide film containing the polyimide resin of the present invention is particularly preferably used as a substrate for an image display device such as a liquid crystal display or an OLED display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention provides a polyimide resin, a polyimide varnish, and a polyimide film, the polyimide resin having constituent units A derived from tetracarboxylic dianhydrides and constituent units B derived from diamines, and being such that: the constituent units A include constituent units (A-1) derived from a compound represented by formula (a-1), and constituent units (A-2) derived from a compound represented by formula (a-2); and the constituent units B include constituent units (B-1) derived from a compound represented by formula (b-1), and constituent units (B-2) derived from a compound represented by formula (b-2), the polyimide resin making it possible to form a film that has exceptional optical isotropy and furthermore has exceptional release properties and chemical resistance.

Description

ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムPolyimide resin, polyimide varnish and polyimide film
 本発明はポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムに関する。 The present invention relates to a polyimide resin, a polyimide varnish and a polyimide film.
 ポリイミド樹脂は、電気及び電子部品等の分野において様々な利用が検討されている。例えば、液晶ディスプレイやOLEDディスプレイ等の画像表示装置に用いられるガラス基板を、デバイスの軽量化やフレキシブル化を目的として、プラスチック基板へ代替することが望まれており、当該プラスチック基板として適するポリイミドフィルムの研究が進められている。
 画像表示装置用途に使用されるフィルムには、様々な光学特性が求められる。たとえば、表示素子から発せられる光がプラスチック基板を通って出射されるような場合、プラスチック基板には無色透明性が要求される。
 一方、位相差フィルムや偏光板を光が通過する用途、例えば、液晶ディスプレイ、タッチパネル等に使用される場合には、特に光学的等方性が高い(すなわち、Rthが低い)ことが要求される。
Various uses of polyimide resins are being studied in the fields of electrical and electronic components. For example, it is desired to replace a glass substrate used in an image display device such as a liquid crystal display or an OLED display with a plastic substrate for the purpose of reducing the weight and flexibility of the device. Research is underway.
Films used in image display devices are required to have various optical characteristics. For example, when light emitted from a display element is emitted through a plastic substrate, the plastic substrate is required to be colorless and transparent.
On the other hand, when it is used for applications where light passes through a retardation film or a polarizing plate, for example, a liquid crystal display, a touch panel, etc., it is required to have particularly high optical isotropic properties (that is, low Rth). ..
 上記のような性能を満たすために、様々な組成のポリイミド樹脂の開発が行われている。たとえば、特許文献1には、溶媒への溶解性が良好で、加工性に優れるポリアミドを含有し、無色透明であり、靭性に優れるポリイミドフィルムを得ることを目的として、ジアミン成分として、3,3’-ジアミノジフェニルスルホンと他の特定のジアミンとの組み合わせからなる構造を含むポリイミドフィルムが開示されている。 Polyimide resins with various compositions are being developed to satisfy the above performance. For example, Patent Document 1 contains 3,3 as diamine components for the purpose of obtaining a polyimide film having good solubility in a solvent and excellent processability, colorless and transparent, and excellent toughness. A polyimide film containing a structure consisting of a combination of'-diaminodiphenyl sulfone and other specific diamines is disclosed.
国際公開第2016/158825号International Publication No. 2016/158825
 上述のように、特にディスプレイ等の用途には、光学的等方性に優れるポリイミドフィルムが求められている。
 更に、耐薬品性の高いポリイミドフィルムも求められている。例えば、ポリイミドフィルムの上に別の樹脂層(例えば、カラーフィルター、レジスト)を形成するために当該樹脂層形成用のワニスをポリイミドフィルムに塗布する場合、ポリイミドフィルムには当該ワニス中に含まれる溶剤に対する耐性が求められる。ポリイミドフィルムの耐溶剤性が不十分であると、フィルムの溶解や膨潤により、基板として意味をなさなくなるおそれがある。しかし、前記のように光学特性を確保するためには、ポリイミドフィルム作成時には溶液としなければならず、これらの性質を両立することは困難であった。
 また、ポリイミドフィルムを基板として用いる場合、フィルム上に電子回路を作る工程で、フィルムをガラス板等の支持体上に密着させる。そのため、回路作成後にポリイミドフィルムを支持体から容易に剥離する特性も求められている。
 このように、得られるポリイミドフィルムの光学特性、特に光学的等方性を維持しつつ、剥離性と耐薬品性に優れるポリイミドフィルムを得ることができるポリイミド樹脂が求められていた。
 そこで、本発明は、光学的等方性に優れ、更に剥離性と耐薬品性にも優れるフィルムを形成することができるポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムを提供することを課題とする。
As described above, a polyimide film having excellent optical isotropic properties is required, especially for applications such as displays.
Further, a polyimide film having high chemical resistance is also required. For example, when a varnish for forming the resin layer is applied to the polyimide film in order to form another resin layer (for example, a color filter or a resist) on the polyimide film, the polyimide film contains a solvent contained in the varnish. Resistance to is required. If the solvent resistance of the polyimide film is insufficient, it may become meaningless as a substrate due to dissolution or swelling of the film. However, as described above, in order to secure the optical properties, a solution must be used when producing the polyimide film, and it is difficult to achieve both of these properties.
When a polyimide film is used as a substrate, the film is brought into close contact with a support such as a glass plate in the process of forming an electronic circuit on the film. Therefore, the property of easily peeling the polyimide film from the support after creating the circuit is also required.
As described above, there has been a demand for a polyimide resin capable of obtaining a polyimide film having excellent peelability and chemical resistance while maintaining the optical characteristics of the obtained polyimide film, particularly optical isotropic property.
Therefore, an object of the present invention is to provide a polyimide resin, a polyimide varnish, and a polyimide film capable of forming a film having excellent optical isotropic properties and also excellent peelability and chemical resistance.
 本発明者らは、特定の2種のテトラカルボン酸二無水物に由来する構成単位と特定の2種のジアミンに由来する構成単位の組み合わせを含むポリイミド樹脂が上記課題を解決できることを見出し、発明を完成させるに至った。 The present inventors have found that a polyimide resin containing a combination of a structural unit derived from two specific types of tetracarboxylic dianhydride and a structural unit derived from two specific types of diamine can solve the above-mentioned problems, and invented the invention. Has been completed.
 即ち、本発明は、下記の<1>~<5>に関する。
<1> テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有するポリイミド樹脂であって、構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)を含み、構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)と、下記式(b-2)で表される化合物に由来する構成単位(B-2)を含むポリイミド樹脂。
That is, the present invention relates to the following <1> to <5>.
<1> A polyimide resin having a structural unit A derived from tetracarboxylic acid dianhydride and a structural unit B derived from diamine, wherein the structural unit A is derived from a compound represented by the following formula (a-1). A compound containing a structural unit (A-1) and a structural unit (A-2) derived from a compound represented by the following formula (a-2), wherein the structural unit B is represented by the following formula (b-1). A polyimide resin containing a structural unit (B-1) derived from and a structural unit (B-2) derived from a compound represented by the following formula (b-2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
<2> 構成単位A中における構成単位(A-1)の比率が20~80モル%であり、構成単位A中における構成単位(A-2)の比率が20~80モル%である、上記<1>に記載のポリイミド樹脂。
<3> 構成単位B中における構成単位(B-1)の比率が5~80モル%であり、構成単位B中における構成単位(B-2)の比率が20~95モル%である、上記<1>又は<2>に記載のポリイミド樹脂。
<4> 上記<1>~<3>のいずれか1つに記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。
<5> 上記<1>~<3>のいずれか1つに記載のポリイミド樹脂を含む、ポリイミドフィルム。
<2> The ratio of the constituent unit (A-1) in the constituent unit A is 20 to 80 mol%, and the ratio of the constituent unit (A-2) in the constituent unit A is 20 to 80 mol%. The polyimide resin according to <1>.
<3> The ratio of the structural unit (B-1) in the structural unit B is 5 to 80 mol%, and the ratio of the structural unit (B-2) in the structural unit B is 20 to 95 mol%. The polyimide resin according to <1> or <2>.
<4> A polyimide varnish in which the polyimide resin according to any one of <1> to <3> above is dissolved in an organic solvent.
<5> A polyimide film containing the polyimide resin according to any one of <1> to <3> above.
 本発明によれば、光学的等方性に優れ、更に剥離性と耐薬品性にも優れるフィルムを形成することができるポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムを提供することができる。 According to the present invention, it is possible to provide a polyimide resin, a polyimide varnish and a polyimide film capable of forming a film having excellent optical isotropic properties and also excellent peelability and chemical resistance.
[ポリイミド樹脂]
 本発明のポリイミド樹脂は、テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有するポリイミド樹脂であって、構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)を含み、構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)と、下記式(b-2)で表される化合物に由来する構成単位(B-2)を含む。
[Polyimide resin]
The polyimide resin of the present invention is a polyimide resin having a structural unit A derived from tetracarboxylic acid dianhydride and a structural unit B derived from diamine, and the structural unit A is represented by the following formula (a-1). A structural unit (A-1) derived from a compound and a structural unit (A-2) derived from a compound represented by the following formula (a-2) are included, and the structural unit B is represented by the following formula (b-1). It contains a structural unit (B-1) derived from the compound represented by the compound and a structural unit (B-2) derived from the compound represented by the following formula (b-2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明のポリイミド樹脂が光学的等方性を維持しつつ、剥離性と耐薬品性に優れる理由は定かではないが、本発明のポリイミド樹脂は、エーテル構造に加え、スルホニル構造を有し、脂環式構造も有するため、光学的等方性に優れ、更に剥離性と耐薬品性にも優れるものと考えられる。 The reason why the polyimide resin of the present invention is excellent in peelability and chemical resistance while maintaining optical isotropic properties is not clear, but the polyimide resin of the present invention has a sulfonyl structure in addition to an ether structure and is alicyclic. Since it also has a ring structure, it is considered to be excellent in optical isotropic properties, and also in peelability and chemical resistance.
<構成単位A>
 構成単位Aは、ポリイミド樹脂に占めるテトラカルボン酸二無水物に由来する構成単位である。
 構成単位Aは、下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)を含む。
<Structural unit A>
The structural unit A is a structural unit derived from tetracarboxylic dianhydride in the polyimide resin.
The structural unit A is a structural unit (A-1) derived from a compound represented by the following formula (a-1) and a structural unit (A-2) derived from a compound represented by the following formula (a-2). )including.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(a-1)で表される化合物は、4,4’-オキシジフタル酸無水物である。
  構成単位Aが構成単位(A-1)を含むことによって、耐薬品性、光学的等方性、透明性を向上させることができる。
 式(a-2)で表される化合物は、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物である。
 構成単位Aが構成単位(A-2)を含むことによって、得られるポリイミド樹脂のワニスへの溶解性を高めつつ、耐薬品性、光学的等方性を向上させることができる。
The compound represented by the formula (a-1) is a 4,4'-oxydiphthalic anhydride.
When the structural unit A includes the structural unit (A-1), chemical resistance, optical isotropic property, and transparency can be improved.
The compound represented by the formula (a-2) is 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
By including the structural unit (A-2) in the structural unit A, it is possible to improve the chemical resistance and optical isotropic property while increasing the solubility of the obtained polyimide resin in the varnish.
 構成単位A中における構成単位(A-1)の比率は、好ましくは20~80モル%であり、より好ましくは30~70モル%であり、更に好ましくは40~60モル%である。
 構成単位A中における構成単位(A-2)の比率は、好ましくは20~80モル%であり、より好ましくは30~70モル%であり、更に好ましくは40~60モル%である。
 構成単位A中における構成単位(A-1)及び(A-2)の合計の比率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは90モル%以上である。構成単位(A-1)及び(A-2)の合計の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Aは構成単位(A-1)と構成単位(A-2)とのみからなっていてもよい。
 本発明のポリイミド樹脂において、構成単位Aが構成単位(A-1)及び(A-2)の両方を含むことによって、前記のように光学的等方性、剥離性、耐薬品性のいずれにも優れるばかりでなく、ポリイミド樹脂を製造する際にイミド化反応が進行して生成するポリマーの溶媒への溶解度も高く、透明なワニス及びフィルムを得ることができる。
 構成単位A中における構成単位(A-1)と構成単位(A-2)のモル比[(A-1)/(A-2)]は、光学的等方性及び耐薬品性を向上させる観点から、好ましくは20/80~80/20であり、より好ましくは30/70~70/30であり、更に好ましくは40/60~60/40である。
The ratio of the structural unit (A-1) in the structural unit A is preferably 20 to 80 mol%, more preferably 30 to 70 mol%, and further preferably 40 to 60 mol%.
The ratio of the structural unit (A-2) in the structural unit A is preferably 20 to 80 mol%, more preferably 30 to 70 mol%, and further preferably 40 to 60 mol%.
The total ratio of the structural units (A-1) and (A-2) in the structural unit A is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more. Is. The upper limit of the total ratio of the structural units (A-1) and (A-2) is not particularly limited, that is, 100 mol%. The structural unit A may consist only of the structural unit (A-1) and the structural unit (A-2).
In the polyimide resin of the present invention, when the constituent unit A contains both the constituent units (A-1) and (A-2), it becomes optically isotropic, peelable, or chemical resistant as described above. Not only is it excellent, but also the solubility of the polymer produced by the progress of the imidization reaction in the production of the polyimide resin in the solvent is high, and a transparent varnish and film can be obtained.
The molar ratio [(A-1) / (A-2)] of the structural unit (A-1) and the structural unit (A-2) in the structural unit A improves optical isotropic property and chemical resistance. From the viewpoint, it is preferably 20/80 to 80/20, more preferably 30/70 to 70/30, and even more preferably 40/60 to 60/40.
 構成単位Aは、構成単位(A-1)及び構成単位(A-2)以外の構成単位を含んでもよい。そのような構成単位を与えるテトラカルボン酸二無水物としては、特に限定されないが、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族テトラカルボン酸二無水物(ただし、式(a-1)で表される化合物を除く);1,2,3,4-シクロブタンテトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物(ただし、式(a-2)で表される化合物を除く);並びに1,2,3,4-ブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられる。
 なお、本明細書において、芳香族テトラカルボン酸二無水物とは芳香環を1つ以上含むテトラカルボン酸二無水物を意味し、脂環式テトラカルボン酸二無水物とは脂環を1つ以上含み、かつ芳香環を含まないテトラカルボン酸二無水物を意味し、脂肪族テトラカルボン酸二無水物とは芳香環も脂環も含まないテトラカルボン酸二無水物を意味する。
 構成単位Aに任意に含まれる構成単位は、1種でもよいし、2種以上であってもよい。
The structural unit A may include a structural unit other than the structural unit (A-1) and the structural unit (A-2). The tetracarboxylic dianhydride giving such a constituent unit is not particularly limited, but is pyromellitic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 9,9'. Arophilic tetracarboxylic dianhydrides such as -bis (3,4-dicarboxyphenyl) fluorene dianhydride and 4,4'-(hexafluoroisopropyridene) diphthalic acid dianhydride (provided that the formula (a-1) is used. ); 1,2,3,4-cyclobutanetetracarboxylic dianhydride, norbornane-2-spirio-α-cyclopentanone-α'-spirio-2''-norbornan-5 , 5'', 6,6''-Alicyclic tetracarboxylic dianhydride such as tetracarboxylic dianhydride (excluding the compound represented by the formula (a-2)); and 1,2, , 3,4-Butanetetracarboxylic dianhydride and other aliphatic tetracarboxylic dianhydrides can be mentioned.
In the present specification, the aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings, and the alicyclic tetracarboxylic dianhydride has one alicyclic ring. It means a tetracarboxylic acid dianhydride containing the above and does not contain an aromatic ring, and the aliphatic tetracarboxylic acid dianhydride means a tetracarboxylic acid dianhydride containing neither an aromatic ring nor an alicyclic ring.
The structural unit arbitrarily included in the structural unit A may be one type or two or more types.
<構成単位B>
 構成単位Bは、ポリイミド樹脂に占めるジアミンに由来する構成単位であって、下記式(b-1)で表される化合物に由来する構成単位(B-1)と、下記式(b-2)で表される化合物に由来する構成単位(B-2)とを含む。
<Structural unit B>
The structural unit B is a structural unit derived from diamine in the polyimide resin, and is a structural unit (B-1) derived from a compound represented by the following formula (b-1) and the following formula (b-2). Includes a structural unit (B-2) derived from the compound represented by.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(b-1)で表される化合物は、4,4’-ジアミノジフェニルスルホンである。構成単位Bが構成単位(B-1)を含むことによって、フィルムの靭性、剥離性を向上させることができ、更に耐熱性も良好にすることができる。 The compound represented by the formula (b-1) is 4,4'-diaminodiphenyl sulfone. When the structural unit B includes the structural unit (B-1), the toughness and peelability of the film can be improved, and the heat resistance can also be improved.
 式(b-2)で表される化合物は、ビス(アミノメチル)シクロヘキサンであり、その具体例としては、下記式(b-2a)で表される1,3-ビス(アミノメチル)シクロヘキサン、下記式(b-2b)で表される1,4-ビス(アミノメチル)シクロヘキサンが挙げられる。 The compound represented by the formula (b-2) is bis (aminomethyl) cyclohexane, and specific examples thereof include 1,3-bis (aminomethyl) cyclohexane represented by the following formula (b-2a). Examples thereof include 1,4-bis (aminomethyl) cyclohexane represented by the following formula (b-2b).
Figure JPOXMLDOC01-appb-C000006

 式(b-2)で表される化合物のシス:トランス比は、耐有機溶剤性、耐熱性の観点から、0:100~80:20が好ましく、0.1:99.9~70:30がより好ましく、0.5:99.5~60:40が更に好ましく、1:99~20:80がより更に好ましい。
 構成単位Bが構成単位(B-2)を含むことによって、フィルムの無色透明性及び光学的等方性を向上させることができる。
Figure JPOXMLDOC01-appb-C000006

The cis: trans ratio of the compound represented by the formula (b-2) is preferably 0: 100 to 80:20, preferably 0.1: 99.9 to 70:30, from the viewpoint of organic solvent resistance and heat resistance. Is more preferable, 0.5: 99.5 to 60:40 is further preferable, and 1:99 to 20:80 is even more preferable.
By including the structural unit (B-2) in the structural unit B, the colorless transparency and optical isotropic property of the film can be improved.
 構成単位B中における構成単位(B-1)の比率は、好ましくは5~80モル%であり、より好ましくは10~70モル%であり、更に好ましくは30~70モル%であり、より更に好ましくは45~70モル%であり、より更に好ましくは45~60モル%である。
 構成単位B中における構成単位(B-2)の比率は、好ましくは20~95モル%であり、より好ましくは30~90モル%であり、更に好ましくは30~70モル%であり、より更に好ましくは30~55モル%であり、より更に好ましくは40~55モル%である。
 構成単位B中における構成単位(B-1)及び(B-2)の合計の比率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは90モル%以上である。構成単位(B-1)及び(B-2)の合計の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Bは構成単位(B-1)と構成単位(B-2)とのみからなっていてもよい。
 本発明のポリイミド樹脂において、構成単位Bが構成単位(B-1)及び(B-2)の両方を含むことによって、前記のように光学的等方性、剥離性、耐薬品性のいずれにも優れるばかりでなく、ポリイミド樹脂を製造する際にイミド化反応が進行して生成するポリマーの溶媒への溶解度も高く、透明なワニス及びフィルムを得ることができる。
 構成単位B中における構成単位(B-1)と構成単位(B-2)のモル比[(B-1)/(B-2)]は、光学的等方性及び耐薬品性を向上させる観点から、好ましくは5/95~80/20であり、より好ましくは10/90~70/30であり、耐熱性の観点から、更に好ましくは30/70~70/30であり、靭性の観点から、より更に好ましくは45/55~70/30であり、より更に好ましくは45/55~60/40である。
The ratio of the structural unit (B-1) in the structural unit B is preferably 5 to 80 mol%, more preferably 10 to 70 mol%, still more preferably 30 to 70 mol%, and further. It is preferably 45 to 70 mol%, and even more preferably 45 to 60 mol%.
The ratio of the structural unit (B-2) in the structural unit B is preferably 20 to 95 mol%, more preferably 30 to 90 mol%, still more preferably 30 to 70 mol%, and further. It is preferably 30 to 55 mol%, and even more preferably 40 to 55 mol%.
The total ratio of the structural units (B-1) and (B-2) in the structural unit B is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more. Is. The upper limit of the total ratio of the structural units (B-1) and (B-2) is not particularly limited, that is, 100 mol%. The structural unit B may consist only of the structural unit (B-1) and the structural unit (B-2).
In the polyimide resin of the present invention, when the constituent unit B contains both the constituent units (B-1) and (B-2), it becomes optically isotropic, peelable, or chemical resistant as described above. Not only is it excellent, but also the solubility of the polymer produced by the progress of the imidization reaction in the production of the polyimide resin in the solvent is high, and a transparent varnish and film can be obtained.
The molar ratio [(B-1) / (B-2)] of the structural unit (B-1) and the structural unit (B-2) in the structural unit B improves optical isotropic property and chemical resistance. From the viewpoint, it is preferably 5/95 to 80/20, more preferably 10/90 to 70/30, and further preferably 30/70 to 70/30 from the viewpoint of heat resistance, and from the viewpoint of toughness. Therefore, it is even more preferably 45/55 to 70/30, and even more preferably 45/55 to 60/40.
 構成単位Bは、構成単位(B-1)及び(B-2)以外の構成単位を含んでもよい。
 構成単位Bは、構成単位(B-1)及び(B-2)に加えて、耐熱性と無色透明性の観点から、下記式(b-3)で表される化合物に由来する構成単位(B-3)を含むことが好ましい。
The structural unit B may include a structural unit other than the structural units (B-1) and (B-2).
In addition to the structural units (B-1) and (B-2), the structural unit B is a structural unit derived from a compound represented by the following formula (b-3) from the viewpoint of heat resistance and colorless transparency (b-3). It is preferable to include B-3).
Figure JPOXMLDOC01-appb-C000007

 式(b-3)で表される化合物は、4,4’-ジアミノ-2,2’-ビストリフルオロメチルジフェニルエーテルである。
Figure JPOXMLDOC01-appb-C000007

The compound represented by the formula (b-3) is 4,4'-diamino-2,2'-bistrifluoromethyldiphenyl ether.
 構成単位Bが構成単位(B-1)、構成単位(B-2)及び構成単位(B-3)を含む場合、構成単位B中における構成単位(B-1)と構成単位(B-2)の合計の比率は、好ましくは50モル%以上であり、より好ましくは60モル%以上であり、更に好ましくは70モル%以上であり、構成単位B中における構成単位(B-3)の比率は、好ましくは1~50モル%であり、より好ましくは5~40モル%であり、更に好ましくは10~30モル%である。
 構成単位B中における構成単位(B-1)、構成単位(B-2)及び構成単位(B-3)の合計の比率は、好ましくは80モル%以上であり、より好ましくは90モル%以上であり、特に好ましくは99モル%以上である。構成単位(B-1)、構成単位(B-2)及び構成単位(B-3)の合計の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Bは構成単位(B-1)、構成単位(B-2)及び構成単位(B-3)のみからなっていてもよい。
When the constituent unit B includes the constituent unit (B-1), the constituent unit (B-2), and the constituent unit (B-3), the constituent unit (B-1) and the constituent unit (B-2) in the constituent unit B ) Is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more, and the ratio of the constituent unit (B-3) in the constituent unit B. Is preferably 1 to 50 mol%, more preferably 5 to 40 mol%, still more preferably 10 to 30 mol%.
The total ratio of the structural unit (B-1), the structural unit (B-2), and the structural unit (B-3) in the structural unit B is preferably 80 mol% or more, more preferably 90 mol% or more. It is particularly preferably 99 mol% or more. The upper limit of the ratio of the total of the structural unit (B-1), the structural unit (B-2) and the structural unit (B-3) is not particularly limited, that is, 100 mol%. The structural unit B may be composed of only the structural unit (B-1), the structural unit (B-2), and the structural unit (B-3).
 構成単位Bは、構成単位(B-1)、(B-2)及び(B-3)以外の構成単位を含んでもよい。そのような構成単位を与えるジアミンとしては、特に限定されないが、1,4-フェニレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,2’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノベンズアニリド、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、及び9,9-ビス(4-アミノフェニル)フルオレン等の芳香族ジアミン(ただし、式(b-1)で表される化合物及び式(b-3)で表される化合物を除く);脂環式ジアミン(ただし、式(b-2)で表される化合物を除く);並びにエチレンジアミン及びヘキサメチレンジアミン等の脂肪族ジアミンが挙げられる。
 なお、本明細書において、芳香族ジアミンとは芳香環を1つ以上含むジアミンを意味し、脂環式ジアミンとは脂環を1つ以上含み、かつ芳香環を含まないジアミンを意味し、脂肪族ジアミンとは芳香環も脂環も含まないジアミンを意味する。
 構成単位Bに任意に含まれる構成単位(B-1)及び構成単位(B-2)以外の構成単位は、1種でもよいし、2種以上であってもよい。
The structural unit B may include a structural unit other than the structural units (B-1), (B-2) and (B-3). The diamine that gives such a structural unit is not particularly limited, but is limited to 1,4-phenylenediamine, p-xylylene diamine, 1,5-diaminonaphthalene, and 2,2'-dimethylbiphenyl-4,4'-diamine. , 4,4'-Diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) hexafluoropropane, 4,4'-diaminobenzanilide, 1- (4-aminophenyl)- 2,3-dihydro-1,3,3-trimethyl-1H-inden-5-amine, α, α'-bis (4-aminophenyl) -1,4-diisopropylbenzene, N, N'-bis (4) -Aminophenyl) terephthalamide, 4,4'-bis (4-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis (4- (4- (4- (4- (4-)4-) Aromatic diamines such as aminophenoxy) phenyl) hexafluoropropane and 9,9-bis (4-aminophenyl) fluorene (however, compounds represented by formula (b-1) and represented by formula (b-3). (Excluding compounds to be used); alicyclic diamines (excluding compounds represented by the formula (b-2)); and aliphatic diamines such as ethylenediamine and hexamethylenediamine.
In the present specification, the aromatic diamine means a diamine containing one or more aromatic rings, and the alicyclic diamine means a diamine containing one or more alicyclic rings and not containing an aromatic ring, and is a fat. The group diamine means a diamine that does not contain an aromatic ring or an alicyclic ring.
The structural unit other than the structural unit (B-1) and the structural unit (B-2) arbitrarily included in the structural unit B may be one type or two or more types.
<ポリイミド樹脂の特性>
 ポリイミド樹脂の数平均分子量は、得られるポリイミドフィルムの機械的強度の観点から、好ましくは5,000~300,000である。なお、ポリイミド樹脂の数平均分子量は、例えば、ゲルろ過クロマトグラフィー測定による標準ポリメチルメタクリレート(PMMA)換算値より求めることができる。
<Characteristics of polyimide resin>
The number average molecular weight of the polyimide resin is preferably 5,000 to 300,000 from the viewpoint of the mechanical strength of the obtained polyimide film. The number average molecular weight of the polyimide resin can be obtained from, for example, a standard polymethylmethacrylate (PMMA) conversion value measured by gel filtration chromatography.
 ポリイミド樹脂は、ポリイミド鎖(構成単位Aと構成単位Bとがイミド結合してなる構造)以外の構造を含んでもよい。ポリイミド樹脂中に含まれうるポリイミド鎖以外の構造としては、例えばアミド結合を含む構造等が挙げられる。
 ポリイミド樹脂は、ポリイミド鎖(構成単位Aと構成単位Bとがイミド結合してなる構造)を主たる構造として含むことが好ましい。したがって、ポリイミド樹脂中に占めるポリイミド鎖の比率は、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、更に好ましくは90質量%以上であり、特に好ましくは99質量%以上であり、100質量%であってもよい。
The polyimide resin may contain a structure other than the polyimide chain (a structure in which the structural unit A and the structural unit B are imide-bonded). Examples of the structure other than the polyimide chain that can be contained in the polyimide resin include a structure containing an amide bond.
The polyimide resin preferably contains a polyimide chain (a structure in which the structural unit A and the structural unit B are imide-bonded) as a main structure. Therefore, the ratio of the polyimide chain to the polyimide resin is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 90% by mass or more, and particularly preferably 99% by mass or more. Yes, it may be 100% by mass.
 上記ポリイミド樹脂を含む本発明のポリイミド樹脂組成物は、光学的等方性、剥離性及び耐薬品性に優れるフィルムを形成することができ、当該フィルムの有する好適な物性値は以下の通りである。 The polyimide resin composition of the present invention containing the above-mentioned polyimide resin can form a film excellent in optical isotropic property, peelability and chemical resistance, and suitable physical property values of the film are as follows. ..
 全光線透過率は、厚さ10μmのフィルムとした際に、好ましくは88%以上であり、より好ましくは88.5%以上であり、更に好ましくは89%以上である。
 イエローインデックス(YI)は、厚さ10μmのフィルムとした際に、好ましくは4.5以下であり、より好ましくは3.0以下であり、更に好ましくは2.0以下であり、より更に好ましくは1.5以下である。
 厚み位相差(Rth)の絶対値は、厚さ10μmのフィルムとした際に、好ましくは70nm以下であり、より好ましくは50nm以下であり、更に好ましくは40nm以下、より更に好ましくは30nmである。
The total light transmittance is preferably 88% or more, more preferably 88.5% or more, and further preferably 89% or more when the film has a thickness of 10 μm.
The yellow index (YI) is preferably 4.5 or less, more preferably 3.0 or less, still more preferably 2.0 or less, and even more preferably 2.0 or less when the film has a thickness of 10 μm. It is 1.5 or less.
The absolute value of the thickness retardation (Rth) is preferably 70 nm or less, more preferably 50 nm or less, still more preferably 40 nm or less, and even more preferably 30 nm when the film has a thickness of 10 μm.
 また、上記ポリイミド樹脂を用いて形成することができるフィルムは機械的特性及び耐熱性も良好であり、以下のような好適な物性値を有する。
 引張強度は、好ましくは70MPa以上であり、より好ましくは90MPa以上であり、更に好ましくは100MPa以上である。
 引張弾性率は、好ましくは1.5GPa以上であり、より好ましくは2.0GPa以上であり、更に好ましくは2.5GPa以上である。
 引張破断伸び率は、好ましくは5%以上であり、より好ましくは6%以上であり、更に好ましくは7%以上である。
 ガラス転移温度(Tg)は、好ましくは200℃以上であり、より好ましくは230℃以上であり、更に好ましくは250℃以上である。
 なお、本発明における上述の物性値は、具体的には実施例に記載の方法で測定することができる。
In addition, the film that can be formed using the polyimide resin has good mechanical properties and heat resistance, and has the following suitable physical property values.
The tensile strength is preferably 70 MPa or more, more preferably 90 MPa or more, and further preferably 100 MPa or more.
The tensile elastic modulus is preferably 1.5 GPa or more, more preferably 2.0 GPa or more, and further preferably 2.5 GPa or more.
The tensile elongation at break is preferably 5% or more, more preferably 6% or more, and further preferably 7% or more.
The glass transition temperature (Tg) is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and even more preferably 250 ° C. or higher.
The above-mentioned physical property values in the present invention can be specifically measured by the method described in Examples.
<ポリイミド樹脂の製造方法>
 本発明において、ポリイミド樹脂は、上述の構成単位(A-1)を与える化合物及び上述の構成単位(A-2)を与える化合物を含むテトラカルボン酸成分と、上述の構成単位(B-1)を与える化合物及び上述の構成単位(B-2)を与える化合物を含むジアミン成分とを反応させることにより製造することができる。
<Manufacturing method of polyimide resin>
In the present invention, the polyimide resin contains a tetracarboxylic acid component containing a compound giving the above-mentioned structural unit (A-1) and a compound giving the above-mentioned structural unit (A-2), and the above-mentioned structural unit (B-1). It can be produced by reacting with a diamine component containing a compound giving the above-mentioned structural unit (B-2).
 構成単位(A-1)を与える化合物としては、式(a-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(a-1)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸(即ち、4,4’-オキシジフタル酸)、及び当該テトラカルボン酸のアルキルエステルが挙げられる。中でも、式(a-1)で表されるテトラカルボン酸二無水物が好ましい。
 同様に、構成単位(A-2)を与える化合物としては、式(a-2)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(a-2)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸(即ち、1,2,4,5-シクロヘキサンテトラカルボン酸)、及び当該テトラカルボン酸のアルキルエステルが挙げられる。中でも、式(a-2)で表されるテトラカルボン酸二無水物が好ましい。
Examples of the compound giving the structural unit (A-1) include the compound represented by the formula (a-1), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given. Examples of the derivative include a tetracarboxylic acid (that is, 4,4'-oxydiphthalic acid) corresponding to the tetracarboxylic dianhydride represented by the formula (a-1), and an alkyl ester of the tetracarboxylic acid. .. Of these, the tetracarboxylic dianhydride represented by the formula (a-1) is preferable.
Similarly, the compound giving the structural unit (A-2) includes a compound represented by the formula (a-2), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given. .. Examples of the derivative include a tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by the formula (a-2) (that is, 1,2,4,5-cyclohexanetetracarboxylic acid), and the tetracarboxylic acid. Alkyl esters can be mentioned. Of these, the tetracarboxylic dianhydride represented by the formula (a-2) is preferable.
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物を、好ましくは20~80モル%含み、より好ましくは30~70モル%含み、更に好ましくは40~60モル%含む。
 テトラカルボン酸成分は、構成単位(A-2)を与える化合物を、好ましくは20~80モル%含み、より好ましくは30~70モル%含み、更に好ましくは40~60モル%含む。
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物を合計で、好ましくは50モル%以上含み、より好ましくは70モル%以上含み、より好ましくは90モル%以上含む。構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物の合計の含有量の上限値は、特に限定されず、すなわち100モル%である。テトラカルボン酸成分は構成単位(A-1)を与える化合物と構成単位(A-2)を与える化合物とのみからなっていてもよい。
 テトラカルボン酸成分中における構成単位(A-1)を与える化合物と構成単位(A-2)を与える化合物のモル比[(A-1)/(A-2)]は、好ましくは20/80~80/20であり、より好ましくは30/70~70/30であり、更に好ましくは40/60~60/40である。
The tetracarboxylic acid component preferably contains 20 to 80 mol%, more preferably 30 to 70 mol%, and further preferably 40 to 60 mol% of the compound giving the structural unit (A-1).
The tetracarboxylic acid component preferably contains 20 to 80 mol%, more preferably 30 to 70 mol%, and further preferably 40 to 60 mol% of the compound giving the structural unit (A-2).
The tetracarboxylic acid component contains, in total, a compound giving the structural unit (A-1) and a compound giving the structural unit (A-2) in an amount of preferably 50 mol% or more, more preferably 70 mol% or more, and more preferably. Contains 90 mol% or more. The upper limit of the total content of the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2) is not particularly limited, that is, 100 mol%. The tetracarboxylic acid component may consist only of a compound giving a structural unit (A-1) and a compound giving a structural unit (A-2).
The molar ratio [(A-1) / (A-2)] of the compound giving the constituent unit (A-1) to the compound giving the constituent unit (A-2) in the tetracarboxylic acid component is preferably 20/80. It is -80/20, more preferably 30/70 to 70/30, and even more preferably 40/60 to 60/40.
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物以外の化合物を含んでもよい。
 そのような任意の化合物としては、上述の芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、及び脂肪族テトラカルボン酸二無水物、並びにそれらの誘導体(テトラカルボン酸、テトラカルボン酸のアルキルエステル等)が挙げられる。
 テトラカルボン酸成分に任意に含まれる構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物以外の化合物は、1種でもよいし、2種以上であってもよい。
The tetracarboxylic acid component may contain a compound other than the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2).
Such arbitrary compounds include the above-mentioned aromatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, and aliphatic tetracarboxylic dianhydride, and derivatives thereof (tetracarboxylic dian, tetra). Alkyl ester of carboxylic acid, etc.).
The compound that gives the constituent unit (A-1) arbitrarily contained in the tetracarboxylic acid component and the compound other than the compound that gives the constituent unit (A-2) may be one kind or two or more kinds.
 構成単位(B-1)を与える化合物としては、式(b-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(b-1)で表される化合物に対応するジイソシアネートが挙げられる。構成単位(B-1)を与える化合物としては、式(b-1)で表される化合物(即ち、ジアミン)が好ましい。
 同様に、構成単位(B-2)を与える化合物としては、式(b-2)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(b-2)で表される化合物に対応するジイソシアネートが挙げられる。構成単位(B-2)を与える化合物としては、式(b-2)で表される化合物(即ち、ジアミン)が好ましい。
Examples of the compound giving the structural unit (B-1) include the compound represented by the formula (b-1), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given. Examples of the derivative include diisocyanate corresponding to the compound represented by the formula (b-1). As the compound that gives the structural unit (B-1), the compound represented by the formula (b-1) (that is, a diamine) is preferable.
Similarly, the compound giving the structural unit (B-2) includes a compound represented by the formula (b-2), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given. .. Examples of the derivative include diisocyanate corresponding to the compound represented by the formula (b-2). As the compound giving the structural unit (B-2), the compound represented by the formula (b-2) (that is, diamine) is preferable.
 ジアミン成分は、構成単位(B-1)を与える化合物を、好ましくは5~80モル%含み、より好ましくは10~70モル%含み、更に好ましくは30~70モル%含み、より更に好ましくは45~70モル%含み、より更に好ましくは45~60モル%含む。
 ジアミン成分は、構成単位(B-2)を与える化合物を、好ましくは20~95モル%含み、より好ましくは30~90モル%含み、更に好ましくは30~70モル%含み、より更に好ましくは30~55モル%含み、より更に好ましくは40~55モル%含む。
 ジアミン成分は、構成単位(B-1)を与える化合物及び構成単位(B-2)を与える化合物を合計で、好ましくは50モル%以上含み、より好ましくは70モル%以上含み、より好ましくは90モル%以上含む。構成単位(B-1)を与える化合物及び構成単位(B-2)を与える化合物の合計の含有量の上限値は、特に限定されず、すなわち100モル%である。ジアミン成分は構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物とのみからなっていてもよい。
 ジアミン成分中における構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物のモル比[(B-1)/(B-2)]は、光学的等方性及び耐薬品性を向上させる観点から、好ましくは5/95~80/20であり、より好ましくは10/90~70/30であり、耐熱性の観点から、更に好ましくは30/70~70/30であり、靭性の観点から、より更に好ましくは45/55~70/30であり、より更に好ましくは45/55~60/40である。
The diamine component preferably contains a compound that gives the structural unit (B-1) in an amount of 5 to 80 mol%, more preferably 10 to 70 mol%, still more preferably 30 to 70 mol%, and even more preferably 45. It contains ~ 70 mol%, more preferably 45-60 mol%.
The diamine component preferably contains a compound that gives the structural unit (B-2) in an amount of 20 to 95 mol%, more preferably 30 to 90 mol%, still more preferably 30 to 70 mol%, and even more preferably 30. It contains ~ 55 mol%, more preferably 40-55 mol%.
The diamine component contains, in total, a compound giving the structural unit (B-1) and a compound giving the structural unit (B-2) in an amount of 50 mol% or more, more preferably 70 mol% or more, and more preferably 90. Contains more than mol%. The upper limit of the total content of the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2) is not particularly limited, that is, 100 mol%. The diamine component may consist only of a compound giving a structural unit (B-1) and a compound giving a structural unit (B-2).
The molar ratio [(B-1) / (B-2)] of the compound giving the structural unit (B-1) to the compound giving the structural unit (B-2) in the diamine component is optically isotropic and resistant to light. From the viewpoint of improving chemical properties, it is preferably 5/95 to 80/20, more preferably 10/90 to 70/30, and further preferably 30/70 to 70/30 from the viewpoint of heat resistance. From the viewpoint of toughness, it is even more preferably 45/55 to 70/30, and even more preferably 45/55 to 60/40.
 ジアミン成分は構成単位(B-1)を与える化合物及び構成単位(B-2)を与える化合物以外の化合物を含んでもよい。 The diamine component may contain a compound other than the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2).
 ジアミン成分は、構成単位(B-1)を与える化合物及び構成単位(B-2)を与える化合物に加えて、構成単位(B-3)を与える化合物を更に含んでもよい。
 構成単位(B-3)を与える化合物としては式(b-3)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(b-3)で表される化合物に対応するジイソシアネートが挙げられる。構成単位(B-3)を与える化合物としては、式(b-3)で表される化合物(即ち、ジアミン)が好ましい。
The diamine component may further contain a compound giving the structural unit (B-3) in addition to the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2).
Examples of the compound giving the structural unit (B-3) include the compound represented by the formula (b-3), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit is given. Examples of the derivative include diisocyanate corresponding to the compound represented by the formula (b-3). As the compound giving the structural unit (B-3), the compound represented by the formula (b-3) (that is, diamine) is preferable.
 ジアミン成分は、構成単位(B-3)を与える化合物を、好ましくは1~50モル%含み、より好ましくは5~40モル%、更に好ましくは10~30モル%含む。
 ジアミン成分に構成単位(B-3)を与える化合物を含む場合、ジアミン成分は、構成単位(B-1)を与える化合物、構成単位(B-2)を与える化合物及び構成単位(B-3)を与える化合物を合計で、好ましくは80モル%以上含み、より好ましくは90モル%以上含み、更に好ましくは99モル%以上含む。構成単位(B-1)を与える化合物、構成単位(B-2)を与える化合物及び構成単位(B-3)を与える化合物の合計の含有量の上限値は特に限定されず、即ち、100モル%である。ジアミン成分は構成単位(B-1)を与える化合物、構成単位(B-2)を与える化合物及び構成単位(B-3)を与える化合物のみからなっていてもよい。
The diamine component preferably contains a compound that gives the structural unit (B-3) in an amount of 1 to 50 mol%, more preferably 5 to 40 mol%, and even more preferably 10 to 30 mol%.
When the diamine component contains a compound that gives a constituent unit (B-3), the diamine component includes a compound that gives a constituent unit (B-1), a compound that gives a constituent unit (B-2), and a constituent unit (B-3). In total, it contains 80 mol% or more, more preferably 90 mol% or more, and further preferably 99 mol% or more. The upper limit of the total content of the compound giving the structural unit (B-1), the compound giving the structural unit (B-2), and the compound giving the structural unit (B-3) is not particularly limited, that is, 100 mol. %. The diamine component may consist only of a compound giving a structural unit (B-1), a compound giving a structural unit (B-2), and a compound giving a structural unit (B-3).
 ジアミン成分に任意に含まれる構成単位(B-1)を与える化合物及び構成単位(B-2)を与える化合物以外の化合物は、構成単位(B-3)を与える化合物に限定されない。そのような任意の化合物としては、上述の芳香族ジアミン、脂環式ジアミン、及び脂肪族ジアミン、並びにそれらの誘導体(ジイソシアネート等)が挙げられる。
 ジアミン成分に任意に含まれる構成単位(B-1)を与える化合物及び構成単位(B-2)を与える化合物以外の化合物は、1種でもよいし、2種以上であってもよい。
The compound other than the compound giving the structural unit (B-1) arbitrarily contained in the diamine component and the compound giving the structural unit (B-2) is not limited to the compound giving the structural unit (B-3). Such arbitrary compounds include the above-mentioned aromatic diamines, alicyclic diamines, and aliphatic diamines, and derivatives thereof (diisocyanate and the like).
The compound that gives the constituent unit (B-1) arbitrarily contained in the diamine component and the compound other than the compound that gives the constituent unit (B-2) may be one kind or two or more kinds.
 本発明において、ポリイミド樹脂の製造に用いるテトラカルボン酸成分とジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。 In the present invention, the ratio of the amount of the tetracarboxylic acid component to the diamine component charged in the production of the polyimide resin is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component.
 また、本発明において、ポリイミド樹脂の製造には、前述のテトラカルボン酸成分及びジアミン成分の他に、末端封止剤を用いてもよい。末端封止剤としてはモノアミン類あるいはジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、テトラカルボン酸成分1モルに対して0.0001~0.1モルが好ましく、0.001~0.06モルがより好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、4-メチルアニリン等が挙げられ、ベンジルアミン、アニリンが好ましい。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していてもよい。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロヘキサン-1,2-ジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸等が挙げられ、フタル酸、無水フタル酸が好ましい。 Further, in the present invention, in addition to the above-mentioned tetracarboxylic acid component and diamine component, an end-capping agent may be used for producing the polyimide resin. As the terminal encapsulant, monoamines or dicarboxylic acids are preferable. The amount of the terminal encapsulant to be introduced is preferably 0.0001 to 0.1 mol, more preferably 0.001 to 0.06 mol, based on 1 mol of the tetracarboxylic acid component. Examples of the monoamine terminal encapsulant include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3-. Examples thereof include ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline, and benzylamine and aniline are preferable. As the dicarboxylic acid terminal encapsulant, dicarboxylic acids are preferable, and a part thereof may be ring-closed. For example, phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenonedicarboxylic acid, 3,4-benzophenonedicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclopentane-1,2 Examples thereof include -dicarboxylic acid and 4-cyclohexene-1,2-dicarboxylic acid, and phthalic acid and phthalic anhydride are preferable.
 前述のテトラカルボン酸成分とジアミン成分とを反応させる方法には特に制限はなく、公知の方法を用いることができる。
 具体的な反応方法としては、(1)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、0~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(2)ジアミン成分及び反応溶剤を反応器に仕込んで溶解させた後、テトラカルボン酸成分を仕込み、必要に応じて室温0~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(3)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、直ちに昇温してイミド化反応を行う方法等が挙げられる。
The method for reacting the above-mentioned tetracarboxylic acid component with the diamine component is not particularly limited, and a known method can be used.
Specific reaction methods include (1) charging a tetracarboxylic acid component, a diamine component, and a reaction solvent into a reactor, stirring at 0 to 80 ° C. for 0.5 to 30 hours, and then raising the temperature to imidize. Method of carrying out the reaction, (2) After charging the diamine component and the reaction solvent into the reactor and dissolving them, the tetracarboxylic acid component was charged, and if necessary, the mixture was stirred at room temperature of 0 to 80 ° C. for 0.5 to 30 hours. After that, a method of raising the temperature to carry out the imidization reaction, (3) a method of charging the tetracarboxylic acid component, the diamine component, and the reaction solvent into the reactor and immediately raising the temperature to carry out the imidization reaction can be mentioned.
 ポリイミド樹脂の製造に用いられる反応溶剤は、イミド化反応を阻害せず、生成するポリイミドを溶解できるものであればよい。例えば、非プロトン性溶剤、フェノール系溶剤、エーテル系溶剤、カーボネート系溶剤等が挙げられる。 The reaction solvent used in the production of the polyimide resin may be one that does not inhibit the imidization reaction and can dissolve the produced polyimide. For example, an aprotic solvent, a phenol solvent, an ether solvent, a carbonate solvent and the like can be mentioned.
 非プロトン性溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶剤、γ-ブチロラクトン(GBL)、γ-バレロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶剤、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、アセトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤、ピコリン、ピリジン等のアミン系溶剤、酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶剤等が挙げられる。 Specific examples of the aprotonic solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), N-methylcaprolactam, 1,3-dimethylimidazolidinone, and tetra. Amide solvents such as methyl urea, lactone solvents such as γ-butyrolactone (GBL) and γ-valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphintriamide, dimethyl sulfone and dimethyl sulfoxide. , Sulfur-containing solvent such as sulfolane, ketone solvent such as acetone, cyclohexanone, methylcyclohexanone, amine solvent such as picolin and pyridine, ester solvent such as acetic acid (2-methoxy-1-methylethyl) and the like. ..
 フェノール系溶剤の具体例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。
 エーテル系溶剤の具体例としては、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス〔2-(2-メトキシエトキシ)エチル〕エーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 また、カーボネート系溶剤の具体的な例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
 上記反応溶剤の中でも、非プロトン系溶剤が好ましく、アミド系溶剤及びラクトン系溶剤がより好ましい。また、上記の反応溶剤は単独で又は2種以上混合して用いてもよい。
Specific examples of the phenolic solvent include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4. -Xylenol, 3,5-xylenol and the like can be mentioned.
Specific examples of the ether solvent include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, and bis [2- (2-methoxyethoxy) ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
Specific examples of the carbonate solvent include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate and the like.
Among the above reaction solvents, aproton solvents are preferable, and amide solvents and lactone solvents are more preferable. Moreover, the above-mentioned reaction solvent may be used alone or in mixture of 2 or more types.
 イミド化反応では、ディーンスターク装置などを用いて、製造時に生成する水を除去しながら反応を行うことが好ましい。このような操作を行うことで、重合度及びイミド化率をより上昇させることができる。 In the imidization reaction, it is preferable to carry out the reaction while removing water generated during production using a Dean-Stark apparatus or the like. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.
 上記のイミド化反応においては、公知のイミド化触媒を用いることができる。イミド化触媒としては、塩基触媒又は酸触媒が挙げられる。
 塩基触媒としては、ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、2,4-ルチジン、2,6-ルチジン、トリメチルアミン、トリエチルアミン(TEA)、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、イミダゾール、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の有機塩基触媒、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の無機塩基触媒が挙げられる。
 また、酸触媒としては、クロトン酸、アクリル酸、トランス-3-ヘキセノイック酸、桂皮酸、安息香酸、メチル安息香酸、オキシ安息香酸、テレフタル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸等が挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
 上記のうち、取り扱い性の観点から、塩基触媒を用いることが好ましく、有機塩基触媒を用いることがより好ましく、トリエチルアミンを用いることが更に好ましい。
In the above imidization reaction, a known imidization catalyst can be used. Examples of the imidization catalyst include a base catalyst and an acid catalyst.
Base catalysts include pyridine, quinoline, isoquinoline, α-picoline, β-picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine (TEA), tripropylamine, tributylamine, triethylenediamine, imidazole, Examples thereof include organic base catalysts such as N, N-dimethylaniline and N, N-diethylaniline, and inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogencarbonate and sodium hydrogencarbonate.
Examples of the acid catalyst include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, paratoluenesulfonic acid, naphthalenesulfonic acid and the like. Can be mentioned. The above-mentioned imidization catalyst may be used alone or in combination of two or more.
Of the above, from the viewpoint of handleability, it is preferable to use a base catalyst, more preferably an organic base catalyst, and even more preferably triethylamine.
 イミド化反応の温度は、反応率及びゲル化等の抑制の観点から、好ましくは120~250℃、より好ましくは160~200℃である。また、反応時間は、生成水の留出開始後、好ましくは0.5~10時間である。 The temperature of the imidization reaction is preferably 120 to 250 ° C., more preferably 160 to 200 ° C. from the viewpoint of suppressing the reaction rate and gelation. The reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
 本発明のポリイミド樹脂は、構成単位Aが構成単位(A-1)及び(A-2)を含み、構成単位Bが構成単位(B-1)及び(B-2)を含むためか、イミド化反応が進行して生成するポリマーの溶媒への溶解度が高く、透明なワニスを得ることができる。 In the polyimide resin of the present invention, the constituent unit A contains the constituent units (A-1) and (A-2), and the constituent unit B contains the constituent units (B-1) and (B-2). A transparent varnish can be obtained with high solubility of the polymer produced by the progress of the chemical reaction in the solvent.
[ポリイミドワニス]
 本発明のポリイミドワニスは、本発明のポリイミド樹脂が有機溶媒に溶解してなるものである。即ち、本発明のポリイミドワニスは、本発明のポリイミド樹脂及び有機溶媒を含み、当該ポリイミド樹脂は当該有機溶媒に溶解している。
 有機溶媒はポリイミド樹脂が溶解するものであればよく、特に限定されないが、ポリイミド樹脂の製造に用いられる反応溶剤として上述した化合物を、単独又は2種以上を混合して用いることが好ましい。
 本発明のポリイミドワニスは、重合法により得られるポリイミド樹脂が反応溶剤に溶解したポリイミド溶液そのものであってもよいし、又は当該ポリイミド溶液に対して更に溶剤を追加して希釈したものであってもよい。
[Polyimide varnish]
The polyimide varnish of the present invention is obtained by dissolving the polyimide resin of the present invention in an organic solvent. That is, the polyimide varnish of the present invention contains the polyimide resin of the present invention and an organic solvent, and the polyimide resin is dissolved in the organic solvent.
The organic solvent may be any one that dissolves the polyimide resin, and is not particularly limited, but it is preferable to use the above-mentioned compounds alone or in combination of two or more as the reaction solvent used for producing the polyimide resin.
The polyimide varnish of the present invention may be the polyimide solution itself in which the polyimide resin obtained by the polymerization method is dissolved in a reaction solvent, or may be diluted by adding a solvent to the polyimide solution. Good.
 本発明のポリイミド樹脂は溶媒溶解性を有しているため、室温で安定な高濃度のワニスとすることができる。本発明のポリイミドワニスは、本発明のポリイミド樹脂を5~40質量%含むことが好ましく、10~30質量%含むことがより好ましい。ポリイミドワニスの粘度は1~200Pa・sが好ましく、1~100Pa・sがより好ましい。ポリイミドワニスの粘度は、E型粘度計を用いて25℃で測定された値である。
 また、本発明のポリイミドワニスは、ポリイミドフィルムの要求特性を損なわない範囲で、無機フィラー、接着促進剤、剥離剤、難燃剤、紫外線安定剤、界面活性剤、レベリング剤、消泡剤、蛍光増白剤、架橋剤、重合開始剤、感光剤等各種添加剤を含んでもよい。
 本発明のポリイミドワニスの製造方法は特に限定されず、公知の方法を適用することができる。
Since the polyimide resin of the present invention has solvent solubility, it is possible to obtain a high-concentration varnish that is stable at room temperature. The polyimide varnish of the present invention preferably contains the polyimide resin of the present invention in an amount of 5 to 40% by mass, more preferably 10 to 30% by mass. The viscosity of the polyimide varnish is preferably 1 to 200 Pa · s, more preferably 1 to 100 Pa · s. The viscosity of the polyimide varnish is a value measured at 25 ° C. using an E-type viscometer.
Further, the polyimide varnish of the present invention has an inorganic filler, an adhesion accelerator, a release agent, a flame retardant, an ultraviolet stabilizer, a surfactant, a leveling agent, a defoaming agent, and an optical brightener as long as the required properties of the polyimide film are not impaired. Various additives such as a whitening agent, a cross-linking agent, a polymerization initiator, and a photosensitizer may be contained.
The method for producing the polyimide varnish of the present invention is not particularly limited, and a known method can be applied.
[ポリイミドフィルム]
 本発明のポリイミドフィルムは、本発明のポリイミド樹脂を含む。したがって、本発明のポリイミドフィルムは、光学的等方性、剥離性及び耐薬品性に優れる。本発明のポリイミドフィルムが有する好適な物性値は上述の通りである。
 本発明のポリイミドフィルムの製造方法には特に制限はなく、公知の方法を用いることができる。例えば、本発明のポリイミドワニスを、ガラス板、金属板、プラスチックなどの平滑な支持体上に塗布、又はフィルム状に成形した後、該ワニス中に含まれる反応溶剤や希釈溶剤等の有機溶媒を加熱により除去する方法等が挙げられる。
[Polyimide film]
The polyimide film of the present invention contains the polyimide resin of the present invention. Therefore, the polyimide film of the present invention is excellent in optical isotropic property, peelability and chemical resistance. Suitable physical property values of the polyimide film of the present invention are as described above.
The method for producing the polyimide film of the present invention is not particularly limited, and a known method can be used. For example, the polyimide varnish of the present invention is applied onto a smooth support such as a glass plate, a metal plate, or plastic, or formed into a film, and then an organic solvent such as a reaction solvent or a dilution solvent contained in the varnish is applied. Examples thereof include a method of removing by heating.
 塗布方法としては、スピンコート、スリットコート、ブレードコート等の公知の塗布方法が挙げられる。中でも、スリットコートが分子間配向を制御し耐薬品性が向上すること、作業性の観点から好ましい。
 ワニス中に含まれる有機溶媒を加熱により除去する方法としては、150℃以下の温度で有機溶媒を蒸発させタックフリーにした後、用いた有機溶媒の沸点以上の温度(特に限定されないが、好ましくは200~500℃)で乾燥することが好ましい。また、空気雰囲気下又は窒素雰囲気下で乾燥することが好ましい。乾燥雰囲気の圧力は、減圧、常圧、加圧のいずれでもよい。
 支持体上に製膜されたポリイミドフィルムを支持体から剥離する方法は特に限定されないが、レーザーリフトオフ法等を用いることができる。
Examples of the coating method include known coating methods such as spin coating, slit coating, and blade coating. Above all, the slit coat is preferable from the viewpoint of controlling the intermolecular orientation and improving the chemical resistance and workability.
As a method for removing the organic solvent contained in the varnish by heating, the organic solvent is evaporated at a temperature of 150 ° C. or lower to make it tack-free, and then the temperature is equal to or higher than the boiling point of the organic solvent used (not particularly limited, but preferably). It is preferable to dry at 200 to 500 ° C.). Further, it is preferable to dry in an air atmosphere or a nitrogen atmosphere. The pressure in the dry atmosphere may be reduced pressure, normal pressure, or pressurized pressure.
The method of peeling the polyimide film formed on the support from the support is not particularly limited, but a laser lift-off method or the like can be used.
 また、本発明のポリイミドフィルムは、ポリアミド酸が有機溶媒に溶解してなるポリアミド酸ワニスを用いて製造することもできる。
 前記ポリアミド酸ワニスに含まれるポリアミド酸は、本発明のポリイミド樹脂の前駆体であって、上述の構成単位(A-1)を与える化合物と上述の構成単位(A-2)を与える化合物を含むテトラカルボン酸成分と、上述の構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物を含むジアミン成分との重付加反応の生成物である。このポリアミド酸をイミド化(脱水閉環)することで、最終生成物である本発明のポリイミド樹脂が得られる。
 前記ポリアミド酸ワニスに含まれる有機溶媒としては、本発明のポリイミドワニスに含まれる有機溶媒を用いることができる。
 本発明において、ポリアミド酸ワニスは、テトラカルボン酸成分とジアミン成分とを反応溶剤中で重付加反応させて得られるポリアミド酸溶液そのものであってもよいし、又は当該ポリアミド酸溶液に対して更に溶剤を追加して希釈したものであってもよい。
Further, the polyimide film of the present invention can also be produced by using a polyamic acid varnish in which polyamic acid is dissolved in an organic solvent.
The polyamic acid contained in the polyamic acid varnish is a precursor of the polyimide resin of the present invention and includes a compound giving the above-mentioned structural unit (A-1) and a compound giving the above-mentioned structural unit (A-2). It is a product of a polyaddition reaction of a tetracarboxylic acid component and a diamine component containing the above-mentioned compound giving the structural unit (B-1) and the compound giving the structural unit (B-2). By imidizing (dehydrating and ring-closing) this polyamic acid, the polyimide resin of the present invention, which is the final product, can be obtained.
As the organic solvent contained in the polyamic acid varnish, the organic solvent contained in the polyimide varnish of the present invention can be used.
In the present invention, the polyamic acid varnish may be the polyamic acid solution itself obtained by subjecting the tetracarboxylic acid component and the diamine component to a heavy addition reaction in a reaction solvent, or a solvent for the polyamic acid solution. May be added and diluted.
 ポリアミド酸ワニスを用いてポリイミドフィルムを製造する方法には特に制限はなく、公知の方法を用いることができる。例えば、ポリアミド酸ワニスを、ガラス板、金属板、プラスチックなどの平滑な支持体上に塗布、又はフィルム状に成形し、該ワニス中に含まれる反応溶剤や希釈溶剤等の有機溶媒を加熱により除去してポリアミド酸フィルムを得て、該ポリアミド酸フィルム中のポリアミド酸を加熱によりイミド化することで、ポリイミドフィルムを製造することができる。
 ポリアミド酸ワニスを乾燥させてポリアミド酸フィルムを得る際の加熱温度としては、好ましくは50~120℃である。ポリアミド酸を加熱によりイミド化する際の加熱温度としては好ましくは200~400℃である。
 なお、イミド化の方法は熱イミド化に限定されず、化学イミド化を適用することもできる。
The method for producing the polyimide film using the polyamic acid varnish is not particularly limited, and a known method can be used. For example, a polyamic acid varnish is applied onto a smooth support such as a glass plate, a metal plate, or a plastic, or formed into a film, and an organic solvent such as a reaction solvent or a diluting solvent contained in the varnish is removed by heating. A polyimide film can be produced by obtaining a polyamic acid film and imidizing the polyamic acid in the polyamic acid film by heating.
The heating temperature for drying the polyamic acid varnish to obtain a polyamic acid film is preferably 50 to 120 ° C. The heating temperature for imidizing the polyamic acid by heating is preferably 200 to 400 ° C.
The imidization method is not limited to thermal imidization, and chemical imidization can also be applied.
 本発明のポリイミドフィルムの厚さは用途等に応じて適宜選択することができるが、好ましくは1~250μm、より好ましくは5~100μm、更に好ましくは8~80μm、より更に好ましくは10~80μmの範囲である。厚さが1~250μmであることで、自立膜としての実用的な使用が可能となる。
 ポリイミドフィルムの厚さは、ポリイミドワニスの固形分濃度や粘度を調整することにより、容易に制御することができる。
The thickness of the polyimide film of the present invention can be appropriately selected depending on the application and the like, but is preferably 1 to 250 μm, more preferably 5 to 100 μm, still more preferably 8 to 80 μm, still more preferably 10 to 80 μm. The range. When the thickness is 1 to 250 μm, it can be practically used as a self-supporting film.
The thickness of the polyimide film can be easily controlled by adjusting the solid content concentration and viscosity of the polyimide varnish.
 以下に、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to these examples.
<フィルム物性及び評価>
 実施例及び比較例で得たフィルムの各物性は以下に示す方法によって測定した。
<Film physical characteristics and evaluation>
The physical characteristics of the films obtained in Examples and Comparative Examples were measured by the methods shown below.
(1)フィルム厚さ
 フィルム厚さは、株式会社ミツトヨ製のマイクロメーターを用いて測定した。
(1) Film thickness The film thickness was measured using a micrometer manufactured by Mitutoyo Co., Ltd.
(2)引張強度、引張弾性率、及び引張破断伸び率
 引張強度、引張弾性率及び引張破断伸び率は、JIS K7127:1999に準拠し、東洋精機株式会社製の引張試験機「ストログラフVG-1E」を用いて測定した。チャック間距離は50mm、試験片サイズは10mm×70mm、試験速度は20mm/minとした。
(2) Tensile strength, tensile elastic modulus, and tensile elongation at break The tensile strength, tensile elastic modulus, and elongation at break are in accordance with JIS K7127: 1999, and the tensile tester "Strograph VG-" manufactured by Toyo Seiki Co., Ltd. 1E ”was used for measurement. The distance between the chucks was 50 mm, the test piece size was 10 mm × 70 mm, and the test speed was 20 mm / min.
(3)ガラス転移温度(Tg)
 株式会社日立ハイテクサイエンス製の熱機械的分析装置「TMA/SS6100」を用いて、引張モードで試料サイズ2mm×20mm、荷重0.1N、昇温速度10℃/minの条件で、残留応力を取り除くのに十分な温度まで昇温して残留応力を取り除き、その後室温まで冷却した。その後、前記残留応力を取り除くための処理と同じ条件で試験片伸びの測定を行い、伸びの変曲点が見られたところをガラス転移温度として求めた。
(3) Glass transition temperature (Tg)
Using the thermomechanical analyzer "TMA / SS6100" manufactured by Hitachi High-Tech Science Co., Ltd., residual stress is removed under the conditions of sample size 2 mm x 20 mm, load 0.1 N, and heating rate 10 ° C / min in tensile mode. The temperature was raised to a sufficient temperature to remove residual stress, and then cooled to room temperature. Then, the elongation of the test piece was measured under the same conditions as the treatment for removing the residual stress, and the place where the inflection point of the elongation was observed was determined as the glass transition temperature.
(4)全光線透過率、及びイエローインデックス(YI)
 全光線透過率及びYIは、JIS K7136に準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH7700」を用いて測定した。
(4) Total light transmittance and yellow index (YI)
The total light transmittance and YI were measured using a color / turbidity simultaneous measuring device "COH7700" manufactured by Nippon Denshoku Kogyo Co., Ltd. in accordance with JIS K7136.
(5)ヘイズ
 測定はJIS K7361-1に準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH7700」を用いて行った。
(5) The haze measurement was carried out in accordance with JIS K7361-1 using a color / turbidity simultaneous measuring device "COH7700" manufactured by Nippon Denshoku Kogyo Co., Ltd.
(6)厚み位相差(Rth)(光学的等方性の評価)
 厚み位相差(Rth)は、日本分光株式会社製のエリプソメーター「M-220」を用いて測定した。測定波長590nmにおける、厚み位相差の値を測定した。なおRthは、ポリイミドフィルムの面内の屈折率のうち最大のものをnx、最小のものをnyとし、厚み方向の屈折率をnzとし、フィルムの厚さをdとしたとき、下記式によって表されるものである。
  Rth=[{(nx+ny)/2}-nz]×d
(6) Thickness phase difference (Rth) (evaluation of optical isotropic property)
The thickness phase difference (Rth) was measured using an ellipsometer "M-220" manufactured by JASCO Corporation. The value of the thickness phase difference at the measurement wavelength of 590 nm was measured. Rth is expressed by the following formula, where nx is the maximum in-plane refractive index of the polyimide film, ny is the minimum, nz is the refractive index in the thickness direction, and d is the thickness of the film. Is to be done.
Rth = [{(nx + ny) / 2} -nz] × d
(7)剥離性
 ガラス板上に製膜したポリイミドフィルムに、カッターナイフで8cm角に切れ目を入れ、ピンセットでフィルムをガラス板から剥がすことにより、剥離性を評価した。
 フィルム及びガラス板を水に浸漬しなくても剥離できるものは剥離性が良好であり、フィルム及びガラス板を水に浸漬しなければ剥離できないものは剥離性が不良である。
 表1において、剥離性が良好である場合は「A」とし、剥離性が不良である場合は「C」とした。
 なお、前記(1)~(6)の評価において、水に浸漬したフィルムを用いる際には、測定及び評価の前にフィルムを90℃、1時間乾燥した。
(7) Releasability The polyimide film formed on the glass plate was cut into 8 cm squares with a cutter knife, and the film was peeled off from the glass plate with tweezers to evaluate the releasability.
Those that can be peeled off without immersing the film and glass plate in water have good peelability, and those that cannot be peeled off without immersing the film and glass plate in water have poor peelability.
In Table 1, when the peelability was good, it was given as “A”, and when the peelability was poor, it was given as “C”.
In the evaluations (1) to (6) above, when the film immersed in water was used, the film was dried at 90 ° C. for 1 hour before the measurement and evaluation.
(8)耐溶剤性
 ガラス板上に製膜したポリイミドフィルムを、室温で溶剤に浸漬し、フィルム表面に変化がないかを確認した。なお、溶剤としては、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を使用した。
 耐溶剤性の評価基準は、以下の通りとした。
A:フィルム表面に変化がなかった。
B:フィルム表面にわずかにクラックが入った。
C:フィルム表面にクラックが入った、又はフィルム表面が溶解した。
(8) Solvent resistance A polyimide film formed on a glass plate was immersed in a solvent at room temperature, and it was confirmed whether or not there was any change in the film surface. As the solvent, propylene glycol monomethyl ether acetate (PGMEA) was used.
The evaluation criteria for solvent resistance were as follows.
A: There was no change on the film surface.
B: The film surface was slightly cracked.
C: The film surface was cracked or the film surface was melted.
<成分等の略号>
 実施例及び比較例にて使用したテトラカルボン酸成分及びジアミン成分、並びにその略号は以下の通りである。
<Abbreviations for ingredients, etc.>
The tetracarboxylic acid component and diamine component used in Examples and Comparative Examples, and their abbreviations are as follows.
(テトラカルボン酸成分)
ODPA:4,4’-オキシジフタル酸無水物(マナック株式会社製;式(a-1)で表される化合物)
HPMDA:1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(三菱ガス化学株式会社製;式(a-2)で表される化合物)
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
(Tetracarboxylic acid component)
ODPA: 4,4'-oxydiphthalic anhydride (manufactured by Manac Inc .; compound represented by formula (a-1))
HPMDA: 1,2,4,5-Cyclohexanetetracarboxylic dianhydride (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (a-2))
6FDA: 4,4'-(hexafluoroisopropylidene) diphthalic anhydride
(ジアミン成分)
4,4’-DDS:4,4’-ジアミノジフェニルスルホン(セイカ株式会社製;式(b-1)で表される化合物)
1,3-BAC:1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製;式(b-2a)で表される化合物)
1,4-BACT:1,4-ビス(アミノメチル)シクロヘキサン(三菱ガス化学株式会社製;式(b-2b)で表される化合物;トランス比率85%)
6FODA:4,4’-ジアミノ-2,2’-ビストリフルオロメチルジフェニルエーテル(ChinaTech Chemical (Tianjin) Co., Ltd.製;式(b-3)で表される化合物)
3,3’-DDS:3,3’-ジアミノジフェニルスルホン(セイカ株式会社製)
(Diamine component)
4,4'-DDS: 4,4'-diaminodiphenyl sulfone (manufactured by Seika Co., Ltd .; compound represented by formula (b-1))
1,3-BAC: 1,3-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (b-2a))
1,4-BACT: 1,4-bis (aminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemical Company, Inc .; compound represented by formula (b-2b); trans ratio 85%)
6FODA: 4,4'-diamino-2,2'-bistrifluoromethyldiphenyl ether (manufactured by ChinaTech Chemical (Tianjin) Co., Ltd; compound represented by formula (b-3))
3,3'-DDS: 3,3'-diaminodiphenyl sulfone (manufactured by Seika Co., Ltd.)
<ポリイミド樹脂、ワニス及びポリイミドフィルムの製造>
実施例1
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、4,4’-DDSを12.415g(0.050モル)、1,4-BACTを7.113g(0.050モル)とγ-ブチロラクトン(三菱化学株式会社製)を55.496g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、ODPA 15.511g(0.050モル)と、HPMDA 11.209g(0.050モル)と、γ-ブチロラクトン(三菱化学株式会社製)13.874gを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.506g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を101.200g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し、溶媒を蒸発させ、フィルムを得た。
<Manufacturing of polyimide resin, varnish and polyimide film>
Example 1
12.415 g of 4,4'-DDS in a 300 mL five-necked round-bottom flask equipped with a stainless half-moon agitator, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. 0.050 mol), 7.113 g (0.050 mol) of 1,4-BACT and 55.496 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the mixture was rotated at a system temperature of 70 ° C. and a nitrogen atmosphere. A solution was obtained by stirring at several 200 rpm.
To this solution, 15.511 g (0.050 mol) of ODPA, 11.209 g (0.050 mol) of HPMDA, and 13.874 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Inc.) were added in a batch and then imidized. 0.506 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as a catalyst, and the mixture was heated with a mantle heater to raise the temperature inside the reaction system to 190 ° C. over about 20 minutes. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. and refluxed for about 5 hours while adjusting the rotation speed according to the increase in viscosity.
Then, 101.200 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added so that the solid content concentration was 20% by mass, the temperature inside the reaction system was cooled to 100 ° C., and the mixture was further stirred for about 1 hour to make it uniform. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held on a hot plate at 80 ° C. for 20 minutes, and then heated in a hot air dryer at 260 ° C. for 30 minutes in an air atmosphere to prepare a solvent. Evaporation gave a film.
実施例2
 1,4-BACTの量を7.113g(0.050モル)から11.380g(0.080モル)に変更し、4,4’-DDSの量を12.415g(0.050モル)から4.966g(0.020モル)に変更した以外は、実施例1と同様にして、固形分濃度20質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Example 2
The amount of 1,4-BACT was changed from 7.113 g (0.050 mol) to 11.380 g (0.080 mol), and the amount of 4,4'-DDS was changed from 12.415 g (0.050 mol). A polyimide varnish having a solid content concentration of 20% by mass was obtained in the same manner as in Example 1 except that the content was changed to 4.966 g (0.020 mol).
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
実施例3
 1,4-BACTの量を7.113g(0.050モル)から8.535g(0.060モル)に変更し、4,4’-DDSの量を12.415g(0.050モル)から9.932g(0.040モル)に変更した以外は、実施例1と同様にして、固形分濃度20質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Example 3
The amount of 1,4-BACT was changed from 7.113 g (0.050 mol) to 8.535 g (0.060 mol), and the amount of 4,4'-DDS was changed from 12.415 g (0.050 mol). A polyimide varnish having a solid content concentration of 20% by mass was obtained in the same manner as in Example 1 except that the content was changed to 9.923 g (0.040 mol).
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
実施例4
 4,4’-DDSの量を12.415g(0.050モル)から4.966g(0.020モル)に変更し、6FODAを10.087g(0.030モル)追加した以外は、実施例1と同様にして、固形分濃度20質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Example 4
Examples except that the amount of 4,4'-DDS was changed from 12.415 g (0.050 mol) to 4.966 g (0.020 mol) and 10.087 g (0.030 mol) of 6FODA was added. In the same manner as in No. 1, a polyimide varnish having a solid content concentration of 20% by mass was obtained.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
実施例5
 1,4-BACT 7.113g(0.050モル)を1,3-BAC 7.113g(0.050モル)に変更した以外は、実施例1と同様にして、固形分濃度20質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Example 5
In the same manner as in Example 1, the solid content concentration was 20% by mass, except that 1,4-BACT 7.13 g (0.050 mol) was changed to 1,3-BAC 7.113 g (0.050 mol). A polyimide varnish was obtained.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
比較例1
 ODPA 15.511g(0.050モル)とHPMDA 11.209g(0.050モル)を、6FDA 44.424(0.100モル)に変更した以外は、実施例1と同様にして、固形分濃度20質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Comparative Example 1
Solid content concentration in the same manner as in Example 1 except that ODPA 15.511 g (0.050 mol) and HPMDA 11.209 g (0.050 mol) were changed to 6FDA 44.424 (0.100 mol). A 20% by mass polyimide varnish was obtained.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
比較例2
 HPMDA 11.209g(0.050モル)を、6FDA 22.212g(0.050モル)に変更した以外は、実施例1と同様にして、固形分濃度20質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Comparative Example 2
A polyimide varnish having a solid content concentration of 20% by mass was obtained in the same manner as in Example 1 except that 11.209 g (0.050 mol) of HPMDA was changed to 22.212 g (0.050 mol) of 6FDA.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
比較例3
 4,4’-DDS 12.415g(0.050モル)を、3,3’-DDS 12.415g(0.050モル)に変更した以外は、実施例1と同様にして、固形分濃度20質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
Comparative Example 3
Solid content concentration 20 in the same manner as in Example 1 except that 4,4'-DDS 12.415 g (0.050 mol) was changed to 3,3'-DDS 12.415 g (0.050 mol). A weight% polyimide varnish was obtained.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
比較例4
 HPMDAを使用せず、ODPAの量を15.511g(0.050モル)から31.021g(0.100モル)に変更した以外は、実施例1と同様にイミド化反応を行った。しかし、トリエチルアミンを投入後、反応系内温度を190℃に昇温する過程で反応溶液が白濁し、ワニスが得られなかった。
Comparative Example 4
The imidization reaction was carried out in the same manner as in Example 1 except that HPMDA was not used and the amount of ODPA was changed from 15.511 g (0.050 mol) to 31.021 g (0.100 mol). However, after adding triethylamine, the reaction solution became cloudy in the process of raising the temperature in the reaction system to 190 ° C., and no varnish was obtained.
比較例5
 1,4-BACTを使用せず、4,4’-DDSの量を12.415g(0.050モル)から24.830g(0.100モル)に変更し、HPMDAを使用せず、ODPAの量を15.511g(0.050モル)から31.021g(0.100モル)に変更した以外は、実施例1と同様にイミド化反応を行った。しかし、トリエチルアミンを投入後、反応系内温度を190℃に昇温する過程で反応溶液が白濁し、ワニスが得られなかった。
Comparative Example 5
The amount of 4,4'-DDS was changed from 12.415 g (0.050 mol) to 24.830 g (0.100 mol) without using 1,4-BACT and without HPMDA of ODPA. The imidization reaction was carried out in the same manner as in Example 1 except that the amount was changed from 15.511 g (0.050 mol) to 31.021 g (0.100 mol). However, after adding triethylamine, the reaction solution became cloudy in the process of raising the temperature in the reaction system to 190 ° C., and no varnish was obtained.
比較例6
 1,4-BACTを使用せず、4,4’-DDSの量を12.415g(0.050モル)から24.830g(0.100モル)に変更し、ODPAを使用せず、HPMDAの量を11.209g(0.050モル)から22.417g(0.100モル)に変更した以外は、実施例1と同様にイミド化反応を行った。しかし、トリエチルアミンを投入後、反応系内温度を190℃に昇温する過程で反応溶液が白濁し、ワニスが得られなかった。
Comparative Example 6
Change the amount of 4,4'-DDS from 12.415 g (0.050 mol) to 24.830 g (0.100 mol) without using 1,4-BACT, without using ODPA, HPMDA The imidization reaction was carried out in the same manner as in Example 1 except that the amount was changed from 11.209 g (0.050 mol) to 22.417 g (0.100 mol). However, after adding triethylamine, the reaction solution became cloudy in the process of raising the temperature in the reaction system to 190 ° C., and no varnish was obtained.
 実施例及び比較例で得られたポリイミドフィルムについて前記の物性測定及び評価を行った。結果を表1に示す。 The above-mentioned physical properties were measured and evaluated for the polyimide films obtained in Examples and Comparative Examples. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1に示すように、実施例のポリイミドフィルムは、光学的等方性が良好であり、更に剥離性と耐薬品性にも優れることがわかる。 As shown in Table 1, it can be seen that the polyimide film of the example has good optical isotropic properties, and is also excellent in peelability and chemical resistance.
 本発明のポリイミド樹脂を含むポリイミドフィルムは、光学的等方性が良好であり、更に剥離性と耐薬品性にも優れ、カラーフィルター、フレキシブルディスプレイ、半導体部品、光学部材等の各種部材用のフィルムとして好適に用いられる。本発明のポリイミド樹脂を含むポリイミドフィルムは、液晶ディスプレイやOLEDディスプレイ等の画像表示装置の基板として、特に好適に用いられる。 The polyimide film containing the polyimide resin of the present invention has good optical isotropic properties, and also has excellent peelability and chemical resistance, and is a film for various members such as color filters, flexible displays, semiconductor parts, and optical members. It is preferably used as. The polyimide film containing the polyimide resin of the present invention is particularly preferably used as a substrate for an image display device such as a liquid crystal display or an OLED display.

Claims (5)

  1.  テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有するポリイミド樹脂であって、
     構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)を含み、
     構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)と、下記式(b-2)で表される化合物に由来する構成単位(B-2)を含むポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000001
    A polyimide resin having a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from diamine.
    A structural unit (A-1) in which the structural unit A is derived from a compound represented by the following formula (a-1) and a structural unit (A-2) derived from a compound represented by the following formula (a-2). Including
    A structural unit (B-1) in which the structural unit B is derived from a compound represented by the following formula (b-1) and a structural unit (B-2) derived from a compound represented by the following formula (b-2). Polyimide resin containing.
    Figure JPOXMLDOC01-appb-C000001
  2.  構成単位A中における構成単位(A-1)の比率が20~80モル%であり、構成単位A中における構成単位(A-2)の比率が20~80モル%である、請求項1に記載のポリイミド樹脂。 According to claim 1, the ratio of the constituent unit (A-1) in the constituent unit A is 20 to 80 mol%, and the ratio of the constituent unit (A-2) in the constituent unit A is 20 to 80 mol%. The polyimide resin described.
  3.  構成単位B中における構成単位(B-1)の比率が5~80モル%であり、構成単位B中における構成単位(B-2)の比率が20~95モル%である、請求項1又は2に記載のポリイミド樹脂。 Claim 1 or claim 1, wherein the ratio of the constituent unit (B-1) in the constituent unit B is 5 to 80 mol%, and the ratio of the constituent unit (B-2) in the constituent unit B is 20 to 95 mol%. 2. The polyimide resin according to 2.
  4.  請求項1~3のいずれか1つに記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。 A polyimide varnish in which the polyimide resin according to any one of claims 1 to 3 is dissolved in an organic solvent.
  5.  請求項1~3のいずれか1つに記載のポリイミド樹脂を含む、ポリイミドフィルム。 A polyimide film containing the polyimide resin according to any one of claims 1 to 3.
PCT/JP2020/047790 2019-12-27 2020-12-22 Polyimide resin, polyimide varnish, and polyimide film WO2021132196A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227021122A KR20220123393A (en) 2019-12-27 2020-12-22 Polyimide resins, polyimide varnishes and polyimide films
CN202080090183.4A CN114867767A (en) 2019-12-27 2020-12-22 Polyimide resin, polyimide varnish, and polyimide film
JP2021567460A JPWO2021132196A1 (en) 2019-12-27 2020-12-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-239646 2019-12-27
JP2019239646 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021132196A1 true WO2021132196A1 (en) 2021-07-01

Family

ID=76572983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047790 WO2021132196A1 (en) 2019-12-27 2020-12-22 Polyimide resin, polyimide varnish, and polyimide film

Country Status (5)

Country Link
JP (1) JPWO2021132196A1 (en)
KR (1) KR20220123393A (en)
CN (1) CN114867767A (en)
TW (1) TW202130706A (en)
WO (1) WO2021132196A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014667A1 (en) * 2020-07-16 2022-01-20 三菱瓦斯化学株式会社 Laminate
WO2023199718A1 (en) * 2022-04-15 2023-10-19 三菱瓦斯化学株式会社 Copolyimide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020016A1 (en) * 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 Polyimide resin
JP2016080985A (en) * 2014-10-21 2016-05-16 Jnc株式会社 Liquid crystal alignment agent containing polyamic acid or derivative of the same, liquid crystal alignment film, and liquid crystal display element
JP2018203906A (en) * 2017-06-06 2018-12-27 旭化成株式会社 Polyimide film, product using polyimide film, and laminate
WO2019026806A1 (en) * 2017-08-02 2019-02-07 旭化成株式会社 Polyimide varnish and method for producing same
JP2019214657A (en) * 2018-06-12 2019-12-19 旭化成株式会社 Transparent polyimide varnish and film
JP2021014564A (en) * 2018-12-25 2021-02-12 旭化成株式会社 Polyimide varnish and polyimide film, and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102181466B1 (en) 2015-03-31 2020-11-23 아사히 가세이 가부시키가이샤 Polyimide film, polyimide varnish, product using polyimide film, and laminate
KR101728833B1 (en) * 2015-09-02 2017-04-20 연세대학교 원주산학협력단 Preparation method for copolyimide from monomer salt
JP6912287B2 (en) * 2017-06-27 2021-08-04 旭化成株式会社 Polyimide film and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020016A1 (en) * 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 Polyimide resin
JP2016080985A (en) * 2014-10-21 2016-05-16 Jnc株式会社 Liquid crystal alignment agent containing polyamic acid or derivative of the same, liquid crystal alignment film, and liquid crystal display element
JP2018203906A (en) * 2017-06-06 2018-12-27 旭化成株式会社 Polyimide film, product using polyimide film, and laminate
WO2019026806A1 (en) * 2017-08-02 2019-02-07 旭化成株式会社 Polyimide varnish and method for producing same
JP2019214657A (en) * 2018-06-12 2019-12-19 旭化成株式会社 Transparent polyimide varnish and film
JP2021014564A (en) * 2018-12-25 2021-02-12 旭化成株式会社 Polyimide varnish and polyimide film, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014667A1 (en) * 2020-07-16 2022-01-20 三菱瓦斯化学株式会社 Laminate
WO2023199718A1 (en) * 2022-04-15 2023-10-19 三菱瓦斯化学株式会社 Copolyimide

Also Published As

Publication number Publication date
CN114867767A (en) 2022-08-05
TW202130706A (en) 2021-08-16
KR20220123393A (en) 2022-09-06
JPWO2021132196A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP6996609B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7424284B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7392660B2 (en) Imide-amic acid copolymer and its manufacturing method, varnish, and polyimide film
TWI777005B (en) Polyimide resin, polyimide varnish, and polyimide film
JP7180617B2 (en) Polyimide resin composition and polyimide film
JP7367699B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7463964B2 (en) Polyimide resin, polyimide varnish and polyimide film
JPWO2019188306A1 (en) Polyimide resin, polyimide varnish and polyimide film
JP7384170B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2021132196A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2021100727A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2020203264A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2021132197A1 (en) Polyimide resin, varnish, and polyimide film
JPWO2019065522A1 (en) Polyimide resin, polyimide varnish and polyimide film
JP7484913B2 (en) Polyimide resin, polyimide varnish and polyimide film
TWI839543B (en) Polyimide resin, polyimide varnish, and polyimide film
JP7371621B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2021177145A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2022091814A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2022091813A1 (en) Polyimide resin, polyimide varnish, and polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907492

Country of ref document: EP

Kind code of ref document: A1