JP7384170B2 - Polyimide resin, polyimide varnish and polyimide film - Google Patents

Polyimide resin, polyimide varnish and polyimide film Download PDF

Info

Publication number
JP7384170B2
JP7384170B2 JP2020557671A JP2020557671A JP7384170B2 JP 7384170 B2 JP7384170 B2 JP 7384170B2 JP 2020557671 A JP2020557671 A JP 2020557671A JP 2020557671 A JP2020557671 A JP 2020557671A JP 7384170 B2 JP7384170 B2 JP 7384170B2
Authority
JP
Japan
Prior art keywords
structural unit
mol
polyimide
film
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020557671A
Other languages
Japanese (ja)
Other versions
JPWO2020110947A1 (en
Inventor
洋平 安孫子
舜 星野
孝博 村谷
慎司 関口
貴文 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2020110947A1 publication Critical patent/JPWO2020110947A1/en
Application granted granted Critical
Publication of JP7384170B2 publication Critical patent/JP7384170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明はポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムに関する。 The present invention relates to polyimide resins, polyimide varnishes, and polyimide films.

ポリイミド樹脂は、電気・電子部品等の分野において様々な利用が検討されている。例えば、液晶ディスプレイやOLEDディスプレイ等の画像表示装置に用いられるガラス基板を、デバイスの軽量化やフレキシブル化を目的として、プラスチック基板へ代替することが望まれており、当該プラスチック基板として適するポリイミドフィルムの研究が進められている。
画像表示装置において、表示素子から発せられる光がプラスチック基板を通って出射されるような場合、プラスチック基板には無色透明性が要求され、さらに、位相差フィルムや偏光板を光が通過する場合(例えば、液晶ディスプレイ、タッチパネルなど)は、無色透明性に加えて、光学的等方性が高い(即ち、Rthが低い)ことも要求される。
Various uses of polyimide resins are being considered in fields such as electrical and electronic parts. For example, it is desired to replace the glass substrates used in image display devices such as liquid crystal displays and OLED displays with plastic substrates in order to make the devices lighter and more flexible. Research is underway.
In an image display device, when light emitted from a display element passes through a plastic substrate, the plastic substrate is required to be colorless and transparent; furthermore, when light passes through a retardation film or a polarizing plate ( For example, liquid crystal displays, touch panels, etc.) are required to have high optical isotropy (ie, low Rth) in addition to colorless transparency.

上記のような要求性能を満たすために、様々なポリイミド樹脂の開発が進められている。例えば、特許文献1には、無色透明でRthが低く、靱性に優れるポリイミドフィルムを与えるポリイミド樹脂として、3,3’-ジアミノジフェニルスルホン(第一ジアミン)と4,4’-ジアミノジフェニルスルホン等の特定のジアミン(第二ジアミン)との組み合わせをジアミン成分に用いて製造されたポリイミド樹脂が記載されている。 Various polyimide resins are being developed in order to meet the above-mentioned performance requirements. For example, Patent Document 1 describes that 3,3'-diaminodiphenylsulfone (primary diamine) and 4,4'-diaminodiphenylsulfone are used as polyimide resins that provide a polyimide film that is colorless and transparent, has a low Rth, and has excellent toughness. A polyimide resin produced using a combination of a specific diamine (secondary diamine) as a diamine component is described.

国際公開第2016/158825号International Publication No. 2016/158825

ところで、ポリイミドフィルムが基板として適するためには、無色透明性及び光学的等方性だけでなく、耐薬品性(耐溶剤性、耐酸性及び耐アルカリ性)も重要な物性である。
例えば、ポリイミドフィルムの上に別の樹脂層(例えば、カラーフィルター、レジスト)を形成するために当該樹脂層形成用のワニスをポリイミドフィルムに塗布する場合、ポリイミドフィルムには当該ワニス中に含まれる溶剤に対する耐性が求められる。ポリイミドフィルムの耐溶剤性が不十分であると、フィルムの溶解や膨潤により、基板として意味をなさなくなるおそれがある。
また、ポリイミドフィルムをITO(Indium Tin Oxide)膜形成用の基板として用いた場合、ポリイミドフィルムにはITO膜のエッチングに用いられる酸に対する耐性が求められる。ポリイミドフィルムの耐酸性が不十分であると、フィルムが黄変して無色透明性が損なわれるおそれがある。
また、ポリイミドフィルムを製造する際に使用するガラス板等の支持体(ポリイミドワニスを塗布する支持体)の洗浄には、水酸化ナトリウム水溶液や水酸化カリウム水溶液等のアルカリ水溶液が主に使用される。アルカリ水溶液による洗浄は、ガラス板等の支持体上にポリイミドフィルムが製膜された状態でも行われる可能性がある。したがって、ポリイミドフィルムにはアルカリに対する耐性も求められる。
しかし、特許文献1では、耐薬品性について評価されていない。
Incidentally, in order for a polyimide film to be suitable as a substrate, not only colorless transparency and optical isotropy but also chemical resistance (solvent resistance, acid resistance, and alkali resistance) are important physical properties.
For example, when applying a varnish for forming a resin layer to a polyimide film in order to form another resin layer (e.g., color filter, resist) on the polyimide film, the solvent contained in the varnish may be applied to the polyimide film. Requires resistance to If the solvent resistance of the polyimide film is insufficient, the film may dissolve or swell, making it useless as a substrate.
Further, when a polyimide film is used as a substrate for forming an ITO (Indium Tin Oxide) film, the polyimide film is required to have resistance to the acid used for etching the ITO film. If the acid resistance of the polyimide film is insufficient, the film may turn yellow and lose its colorless transparency.
In addition, alkaline aqueous solutions such as sodium hydroxide aqueous solution and potassium hydroxide aqueous solution are mainly used to clean supports such as glass plates used when manufacturing polyimide films (supports to which polyimide varnish is applied). . Cleaning with an alkaline aqueous solution may be performed even when a polyimide film is formed on a support such as a glass plate. Therefore, polyimide films are also required to have resistance to alkalis.
However, in Patent Document 1, chemical resistance is not evaluated.

本発明はこのような状況に鑑みてなされたものであり、本発明の課題は、無色透明性、光学的等方性、及び耐薬品性(耐溶剤性、耐酸性及び耐アルカリ性)に優れるフィルムの形成が可能なポリイミド樹脂、並びに該ポリイミド樹脂を含むポリイミドワニス及びポリイミドフィルムを提供することにある。 The present invention was made in view of these circumstances, and an object of the present invention is to provide a film that has excellent colorless transparency, optical isotropy, and chemical resistance (solvent resistance, acid resistance, and alkali resistance). An object of the present invention is to provide a polyimide resin capable of forming a polyimide resin, as well as a polyimide varnish and a polyimide film containing the polyimide resin.

本発明者らは、特定の構成単位の組み合わせを含むポリイミド樹脂が上記課題を解決できることを見出し、発明を完成させるに至った。 The present inventors have discovered that a polyimide resin containing a combination of specific structural units can solve the above problems, and have completed the invention.

即ち、本発明は、下記の[1]~[4]に関する。
[1]
テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有するポリイミド樹脂であって、
構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、
構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)を含み、
構成単位B中における構成単位(B-1)の比率が70モル%以上である、ポリイミド樹脂。

Figure 0007384170000001
That is, the present invention relates to the following [1] to [4].
[1]
A polyimide resin having a structural unit A derived from a tetracarboxylic dianhydride and a structural unit B derived from a diamine,
A structural unit (A-1) in which structural unit A is derived from a compound represented by the following formula (a-1), and a structural unit (A-2) derived from a compound represented by the following formula (a-2) including
Structural unit B includes a structural unit (B-1) derived from a compound represented by the following formula (b-1),
A polyimide resin in which the ratio of the structural unit (B-1) in the structural unit B is 70 mol% or more.
Figure 0007384170000001

[2]
構成単位A中における構成単位(A-1)の比率が5~95モル%であり、
構成単位A中における構成単位(A-2)の比率が5~95モル%である、上記[1]に記載のポリイミド樹脂。
[3]
上記[1]又は[2]に記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。
[4]
上記[1]又は[2]に記載のポリイミド樹脂を含む、ポリイミドフィルム。
[2]
The ratio of the structural unit (A-1) in the structural unit A is 5 to 95 mol%,
The polyimide resin according to [1] above, wherein the ratio of the structural unit (A-2) in the structural unit A is 5 to 95 mol%.
[3]
A polyimide varnish obtained by dissolving the polyimide resin described in [1] or [2] above in an organic solvent.
[4]
A polyimide film comprising the polyimide resin described in [1] or [2] above.

本発明によれば、無色透明性、光学的等方性、及び耐薬品性(耐溶剤性、耐酸性及び耐アルカリ性)に優れるフィルムを形成することができる。 According to the present invention, a film can be formed that has excellent colorless transparency, optical isotropy, and chemical resistance (solvent resistance, acid resistance, and alkali resistance).

[ポリイミド樹脂]
本発明のポリイミド樹脂は、テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有し、構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)を含み、構成単位B中における構成単位(B-1)の比率が70モル%以上である。

Figure 0007384170000002
[Polyimide resin]
The polyimide resin of the present invention has a structural unit A derived from a tetracarboxylic dianhydride and a structural unit B derived from a diamine, and the structural unit A is derived from a compound represented by the following formula (a-1). Contains a structural unit (A-1) and a structural unit (A-2) derived from a compound represented by the following formula (a-2), and the structural unit B is represented by the following formula (b-1). Contains a structural unit (B-1) derived from a compound, and the ratio of the structural unit (B-1) in the structural unit B is 70 mol% or more.
Figure 0007384170000002

<構成単位A>
構成単位Aは、ポリイミド樹脂に占めるテトラカルボン酸二無水物に由来する構成単位であって、下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含む。

Figure 0007384170000003
<Constituent unit A>
Structural unit A is a structural unit derived from tetracarboxylic dianhydride that occupies the polyimide resin, and comprises a structural unit (A-1) derived from a compound represented by the following formula (a-1), and a structural unit derived from the following formula (a-1). Contains a structural unit (A-2) derived from the compound represented by (a-2).
Figure 0007384170000003

式(a-1)で表される化合物は、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物である。
式(a-2)で表される化合物は、4,4’-オキシジフタル酸無水物である。
構成単位Aが構成単位(A-1)と構成単位(A-2)との両方を含むことによって、フィルムの無色透明性、光学的等方性、及び耐薬品性を向上させることができる。構成単位(A-1)は特に無色透明性及び光学的等方性の向上への寄与が大きく、構成単位(A-2)は特に耐薬品性の向上への寄与が大きい。
The compound represented by formula (a-1) is 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
The compound represented by formula (a-2) is 4,4'-oxydiphthalic anhydride.
When the structural unit A contains both the structural unit (A-1) and the structural unit (A-2), the colorless transparency, optical isotropy, and chemical resistance of the film can be improved. The structural unit (A-1) particularly makes a large contribution to improving colorless transparency and optical isotropy, and the structural unit (A-2) particularly makes a large contribution to improving chemical resistance.

構成単位A中における構成単位(A-1)の比率は、好ましくは5~95モル%であり、より好ましくは15~95モル%であり、フィルムの無色透明性、光学的等方性、及び耐薬品性を向上させる観点から、更に好ましくは20~90モル%であり、特に好ましくは50~90モル%である。一方、特に光学的等方性と耐酸性の観点からは、更に好ましくは70~95モル%であり、特に好ましくは85~95モル%である。
構成単位A中における構成単位(A-2)の比率は、好ましくは5~95モル%であり、より好ましくは5~85モル%であり、フィルムの無色透明性、光学的等方性、及び耐薬品性を向上させる観点から、更に好ましくは10~80モル%であり、特に好ましくは10~50モル%である。一方、特に光学的等方性と耐酸性の観点からは、更に好ましくは5~30モル%であり、特に好ましくは5~15モル%である。
構成単位A中における構成単位(A-1)及び(A-2)の合計の比率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは90モル%以上であり、特に好ましくは99モル%以上である。構成単位(A-1)及び(A-2)の合計の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Aは構成単位(A-1)と構成単位(A-2)とのみからなっていてもよい。
The ratio of the structural unit (A-1) in the structural unit A is preferably 5 to 95 mol%, more preferably 15 to 95 mol%, and it improves the colorless transparency, optical isotropy, and From the viewpoint of improving chemical resistance, the content is more preferably 20 to 90 mol%, particularly preferably 50 to 90 mol%. On the other hand, especially from the viewpoint of optical isotropy and acid resistance, the content is more preferably 70 to 95 mol%, particularly preferably 85 to 95 mol%.
The ratio of the structural unit (A-2) in the structural unit A is preferably 5 to 95 mol%, more preferably 5 to 85 mol%, and it improves the colorless transparency, optical isotropy, and From the viewpoint of improving chemical resistance, the content is more preferably 10 to 80 mol%, particularly preferably 10 to 50 mol%. On the other hand, especially from the viewpoint of optical isotropy and acid resistance, the content is more preferably 5 to 30 mol%, particularly preferably 5 to 15 mol%.
The total ratio of structural units (A-1) and (A-2) in structural unit A is preferably 50 mol% or more, more preferably 70 mol% or more, and even more preferably 90 mol% or more. and particularly preferably 99 mol% or more. The upper limit of the total ratio of structural units (A-1) and (A-2) is not particularly limited, that is, 100 mol%. The structural unit A may consist only of the structural unit (A-1) and the structural unit (A-2).

構成単位Aは、構成単位(A-1)及び(A-2)以外の構成単位を含んでもよい。そのような構成単位を与えるテトラカルボン酸二無水物としては、特に限定されないが、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族テトラカルボン酸二無水物(ただし、式(a-2)で表される化合物を除く);1,2,3,4-シクロブタンテトラカルボン酸二無水物及びノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物(ただし、式(a-1)で表される化合物を除く);並びに1,2,3,4-ブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられる。
なお、本明細書において、芳香族テトラカルボン酸二無水物とは芳香環を1つ以上含むテトラカルボン酸二無水物を意味し、脂環式テトラカルボン酸二無水物とは脂環を1つ以上含み、かつ芳香環を含まないテトラカルボン酸二無水物を意味し、脂肪族テトラカルボン酸二無水物とは芳香環も脂環も含まないテトラカルボン酸二無水物を意味する。
構成単位Aに任意に含まれる構成単位(即ち、構成単位(A-1)及び(A-2)以外の構成単位)は、1種でもよいし、2種以上であってもよい。
The structural unit A may include structural units other than the structural units (A-1) and (A-2). Tetracarboxylic dianhydrides providing such structural units include, but are not particularly limited to, pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 9,9' Aromatic tetracarboxylic dianhydrides such as -bis(3,4-dicarboxyphenyl)fluorene dianhydride and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (provided that the formula (a-2 ); 1,2,3,4-cyclobutanetetracarboxylic dianhydride and norbornane-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornane-5 , 5'',6,6''-alicyclic tetracarboxylic dianhydride such as tetracarboxylic dianhydride (excluding compounds represented by formula (a-1)); and 1,2 , 3,4-butanetetracarboxylic dianhydride and other aliphatic tetracarboxylic dianhydrides.
In addition, in this specification, aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings, and alicyclic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more alicyclic rings. The term "aliphatic tetracarboxylic dianhydride" refers to a tetracarboxylic dianhydride containing the above and not containing an aromatic ring, and the term "aliphatic tetracarboxylic dianhydride" refers to a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
The number of structural units optionally included in structural unit A (that is, structural units other than structural units (A-1) and (A-2)) may be one type or two or more types.

<構成単位B>
構成単位Bは、ポリイミド樹脂に占めるジアミンに由来する構成単位であって、下記式(b-1)で表される化合物に由来する構成単位(B-1)を含む。

Figure 0007384170000004
<Constituent unit B>
The structural unit B is a structural unit derived from a diamine that occupies the polyimide resin, and includes a structural unit (B-1) derived from a compound represented by the following formula (b-1).
Figure 0007384170000004

式(b-1)で表される化合物は、3,3’-ジアミノジフェニルスルホンである。
構成単位Bが構成単位(B-1)を含むことによって、フィルムの光学的等方性及び耐薬品性を向上させることができる。なかでも耐酸性を向上させることができる。
The compound represented by formula (b-1) is 3,3'-diaminodiphenylsulfone.
When the structural unit B contains the structural unit (B-1), the optical isotropy and chemical resistance of the film can be improved. Among these, acid resistance can be improved.

構成単位B中における構成単位(B-1)の比率は、70モル%以上である。当該比率は、好ましくは75モル%以上であり、より好ましくは80モル%以上である。構成単位(B-1)の比率の上限値は、90モル%でもよく、95モル%でもよく、99モル%でもよく、100モル%でもよい。構成単位Bは構成単位(B-1)のみからなっていてもよい。
構成単位Bが構成単位(B-1)を構成単位B中70モル%以上含むことによって、フィルムの耐薬品性を維持しつつ、後述のポリイミドワニスに用いられる有機溶媒に均一に溶解する。そのため、得られるフィルムは無色透明性にも優れるものと考えられる。
The ratio of the structural unit (B-1) in the structural unit B is 70 mol% or more. The ratio is preferably 75 mol% or more, more preferably 80 mol% or more. The upper limit of the ratio of the structural unit (B-1) may be 90 mol%, 95 mol%, 99 mol%, or 100 mol%. The structural unit B may consist only of the structural unit (B-1).
By containing the structural unit (B-1) in an amount of 70 mol % or more in the structural unit B, the structural unit B maintains the chemical resistance of the film and is uniformly dissolved in the organic solvent used for the polyimide varnish described below. Therefore, the obtained film is considered to have excellent colorless transparency.

構成単位Bは構成単位(B-1)以外の構成単位を含んでもよい。そのような構成単位を与えるジアミンとしては、特に限定されないが、1,4-フェニレンジアミン、p-キシリレンジアミン、3,5-ジアミノ安息香酸、1,5-ジアミノナフタレン、2,2’-ジメチルビフェニル-4,4’-ジアミン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノベンズアニリド、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)フルオレン、及び4,4’-ジアミノ-2,2’-ビストリフルオロメチルジフェニルエーテル等の芳香族ジアミン(ただし、式(b-1)で表される化合物を除く);1,3-ビス(アミノメチル)シクロヘキサン及び1,4-ビス(アミノメチル)シクロヘキサン等の脂環式ジアミン;並びにエチレンジアミン及びヘキサメチレンジアミン等の脂肪族ジアミンが挙げられる。
なお、本明細書において、芳香族ジアミンとは芳香環を1つ以上含むジアミンを意味し、脂環式ジアミンとは脂環を1つ以上含み、かつ芳香環を含まないジアミンを意味し、脂肪族ジアミンとは芳香環も脂環も含まないジアミンを意味する。
構成単位Bに任意に含まれる構成単位(即ち、構成単位(B-1)以外の構成単位)は、1種でもよいし、2種以上であってもよい。
The structural unit B may include structural units other than the structural unit (B-1). Diamines that provide such structural units include, but are not particularly limited to, 1,4-phenylenediamine, p-xylylenediamine, 3,5-diaminobenzoic acid, 1,5-diaminonaphthalene, 2,2'-dimethyl Biphenyl-4,4'-diamine, 2,2'-bis(trifluoromethyl)benzidine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 2,2-bis(4-aminophenyl) hexa Fluoropropane, 4,4'-diaminodiphenylsulfone, 4,4'-diaminobenzanilide, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-indene-5- Amine, α,α'-bis(4-aminophenyl)-1,4-diisopropylbenzene, N,N'-bis(4-aminophenyl)terephthalamide, 4,4'-bis(4-aminophenoxy)biphenyl , 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane, 9,9-bis(4-aminophenyl) Aromatic diamines such as fluorene and 4,4'-diamino-2,2'-bistrifluoromethyldiphenyl ether (excluding compounds represented by formula (b-1)); 1,3-bis(aminomethyl ) cycloaliphatic diamines such as cyclohexane and 1,4-bis(aminomethyl)cyclohexane; and aliphatic diamines such as ethylenediamine and hexamethylene diamine.
In addition, in this specification, aromatic diamine means a diamine containing one or more aromatic rings, alicyclic diamine means a diamine containing one or more alicyclic rings and no aromatic ring, Group diamine means a diamine containing neither aromatic ring nor alicyclic ring.
The number of structural units optionally included in the structural unit B (ie, structural units other than the structural unit (B-1)) may be one or two or more types.

構成単位Bに任意に含まれる構成単位を与えるジアミンとしては、下記式(b-2-1)で表される化合物、下記式(b-2-2)で表される化合物、下記式(b-2-3)で表される化合物、及び下記式(b-2-4)で表される化合物が好ましい。即ち、本発明の一態様のポリイミド樹脂は、構成単位Bが、下記式(b-2-1)で表される化合物に由来する構成単位(B-2-1)、下記式(b-2-2)で表される化合物に由来する構成単位(B-2-2)、下記式(b-2-3)で表される化合物に由来する構成単位(B-2-3)、及び下記式(b-2-4)で表される化合物に由来する構成単位(B-2-4)からなる群より選ばれる少なくとも1つである構成単位(B-2)を更に含んでもよい。

Figure 0007384170000005

(式(b-2-2)中、Rはそれぞれ独立して、水素原子、フッ素原子又はメチル基である。)Examples of diamines that provide structural units that are optionally included in structural unit B include compounds represented by the following formula (b-2-1), compounds represented by the following formula (b-2-2), and the following formula (b-2-1); -2-3) and a compound represented by the following formula (b-2-4) are preferred. That is, in the polyimide resin of one embodiment of the present invention, the structural unit B is a structural unit (B-2-1) derived from a compound represented by the following formula (b-2-1), a structural unit (B-2-1) derived from a compound represented by the following formula (b-2 A structural unit (B-2-2) derived from a compound represented by -2), a structural unit (B-2-3) derived from a compound represented by the following formula (b-2-3), and the following It may further contain a structural unit (B-2) that is at least one selected from the group consisting of structural units (B-2-4) derived from the compound represented by formula (b-2-4).
Figure 0007384170000005

(In formula (b-2-2), each R is independently a hydrogen atom, a fluorine atom, or a methyl group.)

式(b-2-1)で表される化合物は、4,4’-ジアミノ-2,2’-ビストリフルオロメチルジフェニルエーテルである。
構成単位Bが構成単位(B-2-1)を含むことによって、フィルムの無色透明性を向上させることができる。
The compound represented by formula (b-2-1) is 4,4'-diamino-2,2'-bistrifluoromethyl diphenyl ether.
When the structural unit B contains the structural unit (B-2-1), the colorless transparency of the film can be improved.

式(b-2-2)において、Rはそれぞれ独立して、水素原子、フッ素原子、又はメチル基であり、水素原子であることが好ましい。式(b-2-2)で表される化合物としては、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(3-フルオロ-4-アミノフェニル)フルオレン、及び9,9-ビス(3-メチル-4-アミノフェニル)フルオレン等が挙げられ、9,9-ビス(4-アミノフェニル)フルオレンが好ましい。
構成単位Bが構成単位(B-2-2)を含むことによって、フィルムの光学的等方性及び耐熱性を向上させることができる。
In formula (b-2-2), each R is independently a hydrogen atom, a fluorine atom, or a methyl group, and preferably a hydrogen atom. Examples of the compound represented by formula (b-2-2) include 9,9-bis(4-aminophenyl)fluorene, 9,9-bis(3-fluoro-4-aminophenyl)fluorene, and 9,9-bis(4-aminophenyl)fluorene. -bis(3-methyl-4-aminophenyl)fluorene and the like, with 9,9-bis(4-aminophenyl)fluorene being preferred.
When the structural unit B contains the structural unit (B-2-2), the optical isotropy and heat resistance of the film can be improved.

式(b-2-3)で表される化合物は、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパンである。
構成単位Bが構成単位(B-2-3)を含むことによって、フィルムの無色透明性と光学的等方性を向上させることができる。
The compound represented by formula (b-2-3) is 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane.
When the structural unit B contains the structural unit (B-2-3), the colorless transparency and optical isotropy of the film can be improved.

式(b-2-4)で表される化合物は、2,2’-ビス(トリフルオロメチル)ベンジジンである。
構成単位Bが構成単位(B-2-4)を含むことによって、フィルムの無色透明性、耐薬品性、耐熱性及び機械的特性を向上させることができる。
The compound represented by formula (b-2-4) is 2,2'-bis(trifluoromethyl)benzidine.
When the structural unit B contains the structural unit (B-2-4), the colorless transparency, chemical resistance, heat resistance, and mechanical properties of the film can be improved.

フィルムの様々な性能を向上させる観点から、構成単位Bが、構成単位(B-2)として、式(b-2-1)で表される化合物に由来する構成単位(B-2-1)、式(b-2-2)で表される化合物に由来する構成単位(B-2-2)、式(b-2-3)で表される化合物に由来する構成単位(B-2-3)、及び式(b-2-4)で表される化合物に由来する構成単位(B-2-4)からなる群より選ばれる少なくとも1つを含むことが好ましく、特にフィルムの無色透明性と光学的等方性を向上させる観点から、構成単位Bは式(b-2-3)で表される化合物に由来する構成単位(B-2-3)を含むことが好ましい。 From the viewpoint of improving various performances of the film, the structural unit B is a structural unit (B-2-1) derived from a compound represented by formula (b-2-1) as the structural unit (B-2). , a structural unit derived from a compound represented by formula (b-2-2) (B-2-2), a structural unit derived from a compound represented by formula (b-2-3) (B-2- 3), and a structural unit (B-2-4) derived from a compound represented by formula (b-2-4). From the viewpoint of improving the optical isotropy, it is preferable that the structural unit B includes a structural unit (B-2-3) derived from a compound represented by the formula (b-2-3).

構成単位Bが構成単位(B-1)及び構成単位(B-2)を含む場合、構成単位B中における構成単位(B-1)の比率は、好ましくは70~95モル%であり、より好ましくは75~95モル%であり、更に好ましくは75~90モル%であり、構成単位B中における構成単位(B-2)の比率は、好ましくは5~30モル%であり、より好ましくは5~25モル%であり、更に好ましくは10~25モル%である。
構成単位B中における構成単位(B-1)と構成単位(B-2)の合計の比率は、好ましくは75モル%以上であり、より好ましくは80モル%以上であり、更に好ましくは90モル%以上であり、特に好ましくは99モル%以上である。構成単位(B-1)と構成単位(B-2)の合計の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Bは構成単位(B-1)と構成単位(B-2)とのみからなっていてもよい。
When the structural unit B contains the structural unit (B-1) and the structural unit (B-2), the ratio of the structural unit (B-1) in the structural unit B is preferably 70 to 95 mol%, and more Preferably it is 75 to 95 mol%, more preferably 75 to 90 mol%, and the ratio of the structural unit (B-2) in structural unit B is preferably 5 to 30 mol%, more preferably It is 5 to 25 mol%, more preferably 10 to 25 mol%.
The total ratio of the structural unit (B-1) and the structural unit (B-2) in the structural unit B is preferably 75 mol% or more, more preferably 80 mol% or more, and even more preferably 90 mol%. % or more, particularly preferably 99 mol% or more. The upper limit of the total ratio of the structural unit (B-1) and the structural unit (B-2) is not particularly limited, that is, 100 mol%. The structural unit B may consist only of the structural unit (B-1) and the structural unit (B-2).

構成単位(B-2)は、構成単位(B-2-1)のみであってもよく、構成単位(B-2-2)のみであってもよく、構成単位(B-2-3)のみであってもよく、又は構成単位(B-2-4)のみであってもよい。
また、構成単位(B-2)は、構成単位(B-2-1)~(B-2-4)からなる群より選ばれる2つ以上の構成単位の組み合せであってもよい。
The structural unit (B-2) may be only the structural unit (B-2-1), may be only the structural unit (B-2-2), or the structural unit (B-2-3). or only the structural unit (B-2-4).
Further, the structural unit (B-2) may be a combination of two or more structural units selected from the group consisting of structural units (B-2-1) to (B-2-4).

本発明のポリイミド樹脂の数平均分子量は、得られるポリイミドフィルムの機械的強度の観点から、好ましくは5,000~200,000である。なお、ポリイミド樹脂の数平均分子量は、例えば、ゲルろ過クロマトグラフィー測定による標準ポリメチルメタクリレート(PMMA)換算値より求めることができる。 The number average molecular weight of the polyimide resin of the present invention is preferably 5,000 to 200,000 from the viewpoint of mechanical strength of the polyimide film obtained. Note that the number average molecular weight of the polyimide resin can be determined, for example, from a standard polymethyl methacrylate (PMMA) equivalent value measured by gel filtration chromatography.

本発明のポリイミド樹脂は、ポリイミド鎖(構成単位Aと構成単位Bとがイミド結合してなる構造)以外の構造を含んでもよい。ポリイミド樹脂中に含まれうるポリイミド鎖以外の構造としては、例えばアミド結合を含む構造等が挙げられる。
本発明のポリイミド樹脂は、ポリイミド鎖(構成単位Aと構成単位Bとがイミド結合してなる構造)を主たる構造として含むことが好ましい。したがって、本発明のポリイミド樹脂中に占めるポリイミド鎖の比率は、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、更に好ましくは90質量%以上であり、特に好ましくは99質量%以上である。
The polyimide resin of the present invention may include a structure other than a polyimide chain (a structure formed by imide bonding of structural unit A and structural unit B). Structures other than polyimide chains that may be included in the polyimide resin include, for example, structures containing amide bonds.
The polyimide resin of the present invention preferably contains a polyimide chain (a structure formed by imide bonding of structural unit A and structural unit B) as a main structure. Therefore, the proportion of polyimide chains in the polyimide resin of the present invention is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and particularly preferably 99% by mass. % or more.

本発明のポリイミド樹脂を用いることで、無色透明性、光学的等方性、及び耐薬品性に優れるフィルムを形成することができ、当該フィルムの有する好適な物性値は以下の通りである。
全光線透過率は、厚さ10μmのフィルムとした際に、好ましくは88%以上であり、より好ましくは88.5%以上であり、更に好ましくは89%以上である。
イエローインデックス(YI)は、厚さ10μmのフィルムとした際に、好ましくは4.0以下であり、より好ましくは2.5以下であり、更に好ましくは2.0以下である。
は、厚さ10μmのフィルムとした際に、好ましくは2.0以下であり、より好ましくは1.2以下であり、更に好ましくは1.0以下である。
厚み位相差(Rth)の絶対値は、厚さ10μmのフィルムとした際に、好ましくは70nm以下であり、より好ましくは60nm以下であり、更に好ましく50nm以下である。
混酸ΔYIは、厚さ10μmのフィルムとした際に、好ましくは1.5以下であり、より好ましくは1.3以下であり、更に好ましくは1.0以下である。
混酸Δbは、厚さ10μmのフィルムとした際に、好ましくは0.8以下であり、より好ましくは0.6以下であり、更に好ましくは0.5以下である。
なお、混酸ΔYI及び混酸Δbは、それぞれ、リン酸、硝酸及び酢酸の混合物にポリイミドフィルムを浸漬した際の、浸漬前後でのYIの差及びbの差を意味し、具体的には実施例に記載の方法で測定することができる。ΔYI及びΔbが小さいほど、耐酸性に優れることを意味する。本発明のポリイミド樹脂を用いることで、耐薬品性に優れるフィルムを形成することができ、酸に対しても優れた耐性を示す。特に混酸(例えば、リン酸を50~97質量%、硝酸を1~20質量%、酢酸を1~10質量%、及び水を1~20質量%の混合溶液、好ましくはリン酸を63~87質量%、硝酸を5~15質量%、酢酸を3~7質量%、及び水を5~15質量%の混合溶液)に対して優れた耐性を示す。
By using the polyimide resin of the present invention, a film having excellent colorless transparency, optical isotropy, and chemical resistance can be formed, and the preferable physical properties of the film are as follows.
The total light transmittance is preferably 88% or more, more preferably 88.5% or more, and even more preferably 89% or more when the film has a thickness of 10 μm.
The yellow index (YI) is preferably 4.0 or less, more preferably 2.5 or less, still more preferably 2.0 or less when the film has a thickness of 10 μm.
b * is preferably 2.0 or less, more preferably 1.2 or less, and still more preferably 1.0 or less when the film has a thickness of 10 μm.
The absolute value of the thickness retardation (Rth) is preferably 70 nm or less, more preferably 60 nm or less, and still more preferably 50 nm or less when the film has a thickness of 10 μm.
The mixed acid ΔYI is preferably 1.5 or less, more preferably 1.3 or less, and even more preferably 1.0 or less when a film having a thickness of 10 μm is formed.
The mixed acid Δb * is preferably 0.8 or less, more preferably 0.6 or less, and even more preferably 0.5 or less when the film is 10 μm thick.
Note that mixed acid ΔYI and mixed acid Δb * mean the difference in YI and b * before and after immersion, respectively, when a polyimide film is immersed in a mixture of phosphoric acid, nitric acid, and acetic acid. It can be measured by the method described in the example. It means that the smaller ΔYI and Δb * are, the better the acid resistance is. By using the polyimide resin of the present invention, a film with excellent chemical resistance can be formed and shows excellent resistance to acids. In particular, a mixed acid (for example, a mixed solution of 50 to 97% by mass of phosphoric acid, 1 to 20% by mass of nitric acid, 1 to 10% by mass of acetic acid, and 1 to 20% by mass of water, preferably 63 to 87% by mass of phosphoric acid) % by mass, a mixed solution of 5 to 15 mass % nitric acid, 3 to 7 mass % acetic acid, and 5 to 15 mass % water).

本発明のポリイミド樹脂を用いて形成することができるフィルムは機械的特性及び耐熱性も良好であり、以下のような好適な物性値を有する。
引張強度は、好ましくは60MPa以上であり、より好ましくは70MPa以上であり、更に好ましくは80MPa以上である。
引張弾性率は、好ましくは2.0GPa以上であり、より好ましくは2.5GPa以上であり、更に好ましくは3.0GPa以上である。
ガラス転移温度(Tg)は、好ましくは230℃以上であり、より好ましくは250℃以上であり、更に好ましくは270℃以上である。
なお、本発明における上述の物性値は、具体的には実施例に記載の方法で測定することができる。
The film that can be formed using the polyimide resin of the present invention has good mechanical properties and heat resistance, and has the following suitable physical property values.
The tensile strength is preferably 60 MPa or more, more preferably 70 MPa or more, still more preferably 80 MPa or more.
The tensile modulus is preferably 2.0 GPa or more, more preferably 2.5 GPa or more, still more preferably 3.0 GPa or more.
The glass transition temperature (Tg) is preferably 230°C or higher, more preferably 250°C or higher, even more preferably 270°C or higher.
In addition, the above-mentioned physical property values in the present invention can be specifically measured by the method described in the Examples.

[ポリイミド樹脂の製造方法]
本発明のポリイミド樹脂は、上述の構成単位(A-1)を与える化合物及び上述の構成単位(A-2)を与える化合物を含むテトラカルボン酸成分と、上述の構成単位(B-1)を与える化合物を70モル%以上含むジアミン成分とを反応させることにより製造することができる。
[Production method of polyimide resin]
The polyimide resin of the present invention contains a tetracarboxylic acid component containing a compound that provides the above-mentioned structural unit (A-1) and a compound that provides the above-mentioned structural unit (A-2), and the above-mentioned structural unit (B-1). It can be produced by reacting the given compound with a diamine component containing 70 mol% or more.

構成単位(A-1)を与える化合物としては、式(a-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(a-1)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸(即ち、1,2,4,5-シクロヘキサンテトラカルボン酸)及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A-1)を与える化合物としては、式(a-1)で表される化合物(即ち、二無水物)が好ましい。
同様に、構成単位(A-2)を与える化合物としては、式(a-2)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(a-2)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A-2)を与える化合物としては、式(a-2)で表される化合物(即ち、二無水物)が好ましい。
Examples of the compound that provides the structural unit (A-1) include the compound represented by formula (a-1), but the compound is not limited thereto, and derivatives thereof may be used as long as they provide the same structural unit. The derivatives include the tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by formula (a-1) (i.e., 1,2,4,5-cyclohexanetetracarboxylic acid) and the alkyl of the tetracarboxylic acid. Examples include esters. As the compound providing structural unit (A-1), a compound represented by formula (a-1) (ie, dianhydride) is preferable.
Similarly, the compound that provides the structural unit (A-2) includes the compound represented by formula (a-2), but is not limited thereto, and derivatives thereof may be used as long as they provide the same structural unit. . Examples of such derivatives include tetracarboxylic acids corresponding to the tetracarboxylic dianhydride represented by formula (a-2) and alkyl esters of the tetracarboxylic acids. As the compound providing structural unit (A-2), a compound represented by formula (a-2) (ie, dianhydride) is preferable.

テトラカルボン酸成分は、構成単位(A-1)を与える化合物を、好ましくは5~95モル%含み、より好ましくは15~95モル%含み、フィルムの無色透明性、光学的等方性、及び耐薬品性を向上させる観点から、更に好ましくは20~90モル%含み、特に好ましくは50~90モル%含む。一方、特に光学的等方性と耐酸性の観点からは、更に好ましくは70~95モル%含み、特に好ましくは85~95モル%含む。
テトラカルボン酸成分は、構成単位(A-2)を与える化合物を、好ましくは5~95モル%含み、より好ましくは5~85モル%含み、フィルムの無色透明性、光学的等方性、及び耐薬品性を向上させる観点から、更に好ましくは10~80モル%含み、特に好ましくは10~50モル%含む。一方、特に光学的等方性と耐酸性の観点からは、更に好ましくは5~30モル%で含み、特に好ましくは5~15モル%含む。
テトラカルボン酸成分は、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物を合計で、好ましくは50モル%以上含み、より好ましくは70モル%以上含み、更に好ましくは90モル%以上含み、特に好ましくは99モル%以上含む。構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。テトラカルボン酸成分は構成単位(A-1)を与える化合物と構成単位(A-2)を与える化合物とのみからなっていてもよい。
The tetracarboxylic acid component preferably contains 5 to 95 mol%, more preferably 15 to 95 mol%, of a compound that provides the structural unit (A-1), and improves colorless transparency, optical isotropy, and From the viewpoint of improving chemical resistance, the content is more preferably 20 to 90 mol%, particularly preferably 50 to 90 mol%. On the other hand, especially from the viewpoint of optical isotropy and acid resistance, the content is more preferably 70 to 95 mol%, particularly preferably 85 to 95 mol%.
The tetracarboxylic acid component preferably contains 5 to 95 mol%, more preferably 5 to 85 mol%, of a compound that provides the structural unit (A-2), and improves colorless transparency, optical isotropy, and From the viewpoint of improving chemical resistance, the content is more preferably 10 to 80 mol%, particularly preferably 10 to 50 mol%. On the other hand, especially from the viewpoint of optical isotropy and acid resistance, it is more preferably contained in an amount of 5 to 30 mol%, particularly preferably 5 to 15 mol%.
The tetracarboxylic acid component preferably contains a total of 50 mol% or more, more preferably 70 mol% or more, and even more preferably contains 90 mol% or more, particularly preferably 99 mol% or more. The upper limit of the total content ratio of the compound providing the structural unit (A-1) and the compound providing the structural unit (A-2) is not particularly limited, that is, 100 mol%. The tetracarboxylic acid component may consist only of a compound that provides the structural unit (A-1) and a compound that provides the structural unit (A-2).

テトラカルボン酸成分は、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、及び脂肪族テトラカルボン酸二無水物、並びにそれらの誘導体(テトラカルボン酸、テトラカルボン酸のアルキルエステル等)が挙げられる。
テトラカルボン酸成分に任意に含まれる化合物(即ち、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物以外の化合物)は、1種でもよいし、2種以上であってもよい。
The tetracarboxylic acid component may contain compounds other than the compound that provides the structural unit (A-1) and the compound that provides the structural unit (A-2), such as the above-mentioned aromatic tetracarboxylic dianhydride. , alicyclic tetracarboxylic dianhydride, aliphatic tetracarboxylic dianhydride, and derivatives thereof (tetracarboxylic acid, alkyl ester of tetracarboxylic acid, etc.).
The number of compounds optionally included in the tetracarboxylic acid component (that is, compounds other than the compound providing the structural unit (A-1) and the compound providing the structural unit (A-2)) may be one type, or two or more types. There may be.

構成単位(B-1)を与える化合物としては、式(b-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(b-1)で表されるジアミンに対応するジイソシアネートが挙げられる。構成単位(B-1)を与える化合物としては、式(b-1)で表される化合物(即ち、ジアミン)が好ましい。 Examples of the compound that provides the structural unit (B-1) include the compound represented by formula (b-1), but the compound is not limited thereto, and derivatives thereof may be used as long as they provide the same structural unit. Examples of such derivatives include diisocyanates corresponding to the diamine represented by formula (b-1). As the compound providing the structural unit (B-1), a compound represented by formula (b-1) (ie, diamine) is preferable.

ジアミン成分は、構成単位(B-1)を与える化合物を70モル%以上含む。ジアミン成分は、構成単位(B-1)を与える化合物を、好ましくは75モル%以上含み、より好ましくは80モル%以上含む。構成単位(B-1)を与える化合物の含有比率の上限値は、90モル%でもよく、95モル%でもよく、99モル%でもよく、100モル%でもよい。ジアミン成分は構成単位(B-1)を与える化合物のみからなっていてもよい。 The diamine component contains 70 mol% or more of the compound that provides the structural unit (B-1). The diamine component preferably contains 75 mol% or more, more preferably 80 mol% or more of the compound that provides the structural unit (B-1). The upper limit of the content ratio of the compound providing the structural unit (B-1) may be 90 mol%, 95 mol%, 99 mol%, or 100 mol%. The diamine component may consist only of the compound that provides the structural unit (B-1).

ジアミン成分は構成単位(B-1)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族ジアミン、脂環式ジアミン、及び脂肪族ジアミン、並びにそれらの誘導体(ジイソシアネート等)が挙げられる。
ジアミン成分に任意に含まれる化合物(即ち、構成単位(B-1)を与える化合物以外の化合物)は、1種でもよいし、2種以上であってもよい。
The diamine component may contain a compound other than the compound providing the structural unit (B-1), and such compounds include the above-mentioned aromatic diamines, alicyclic diamines, aliphatic diamines, and derivatives thereof (diisocyanates, etc.) can be mentioned.
The number of compounds optionally included in the diamine component (ie, compounds other than the compound providing the structural unit (B-1)) may be one or two or more.

ジアミン成分に任意に含まれる化合物としては、構成単位(B-2)を与える化合物(即ち、構成単位(B-2-1)を与える化合物、構成単位(B-2-2)を与える化合物、構成単位(B-2-3)を与える化合物、及び構成単位(B-2-4)を与える化合物からなる群より選ばれる少なくとも1つ以上)が好ましく、なかでも構成単位(B-2-3)を与える化合物がより好ましい。
構成単位(B-2)を与える化合物としては、式(b-2-1)で表される化合物、式(b-2-2)で表される化合物、式(b-2-3)で表される化合物、及び式(b-2-4)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(b-2-1)~式(b-2-4)で表されるジアミンに対応するジイソシアネートが挙げられる。構成単位(B-2)を与える化合物としては、式(b-2-1)~式(b-2-4)で表される化合物(即ち、ジアミン)が好ましい。
Compounds optionally included in the diamine component include compounds that provide the structural unit (B-2) (i.e., compounds that provide the structural unit (B-2-1), compounds that provide the structural unit (B-2-2), At least one compound selected from the group consisting of a compound that provides the structural unit (B-2-3) and a compound that provides the structural unit (B-2-4) is preferred; ) is more preferred.
Examples of the compound that provides the structural unit (B-2) include a compound represented by formula (b-2-1), a compound represented by formula (b-2-2), and a compound represented by formula (b-2-3). Examples include the compound represented by the above formula and the compound represented by the formula (b-2-4), but the invention is not limited thereto, and derivatives thereof may be used as long as they can form the same structural unit. Examples of such derivatives include diisocyanates corresponding to diamines represented by formulas (b-2-1) to (b-2-4). As the compound that provides the structural unit (B-2), compounds represented by formulas (b-2-1) to (b-2-4) (ie, diamines) are preferred.

ジアミン成分が、構成単位(B-1)を与える化合物及び構成単位(B-2)を与える化合物を含む場合、ジアミン成分は構成単位(B-1)を与える化合物を好ましくは70~95モル%含み、より好ましくは75~95モル%含み、更に好ましくは75~90モル%含み、構成単位(B-2)を与える化合物を好ましくは5~30モル%含み、より好ましくは5~25モル%含み、更に好ましくは10~25モル%含む。
ジアミン成分は、構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物を合計で、好ましくは75モル%以上含み、より好ましくは80モル%以上含み、更に好ましくは90モル%以上含み、特に好ましくは99モル%以上含む。構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。ジアミン成分は構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物とのみからなっていてもよい。
When the diamine component contains a compound that provides the structural unit (B-1) and a compound that provides the structural unit (B-2), the diamine component preferably contains the compound that provides the structural unit (B-1) in an amount of 70 to 95 mol%. Contains, more preferably 75 to 95 mol%, still more preferably 75 to 90 mol%, preferably 5 to 30 mol% of the compound providing the structural unit (B-2), more preferably 5 to 25 mol%. more preferably 10 to 25 mol%.
The diamine component preferably contains a total of 75 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more of the compound that provides the structural unit (B-1) and the compound that provides the structural unit (B-2). It contains mol % or more, particularly preferably 99 mol % or more. The upper limit of the total content ratio of the compound providing the structural unit (B-1) and the compound providing the structural unit (B-2) is not particularly limited, ie, 100 mol%. The diamine component may consist only of a compound that provides the structural unit (B-1) and a compound that provides the structural unit (B-2).

構成単位(B-2)を与える化合物は、構成単位(B-2-1)を与える化合物のみであってもよく、構成単位(B-2-2)を与える化合物のみであってもよく、構成単位(B-2-3)を与える化合物のみであってもよく、又は構成単位(B-2-4)を与える化合物のみであってもよい。
また、構成単位(B-2)を与える化合物は、構成単位(B-2-1)~(B-2-4)を与える化合物からなる群より選ばれる2つ以上の化合物の組み合せであってもよい。
The compound that provides the structural unit (B-2) may be only the compound that provides the structural unit (B-2-1), or may be the only compound that provides the structural unit (B-2-2), It may be only the compound that provides the structural unit (B-2-3), or it may be only the compound that provides the structural unit (B-2-4).
Furthermore, the compound that provides the structural unit (B-2) is a combination of two or more compounds selected from the group consisting of compounds that provide the structural units (B-2-1) to (B-2-4). Good too.

本発明において、ポリイミド樹脂の製造に用いるテトラカルボン酸成分とジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。 In the present invention, the charging ratio of the tetracarboxylic acid component and the diamine component used in the production of the polyimide resin is preferably 0.9 to 1.1 mol of the diamine component per 1 mol of the tetracarboxylic acid component.

また、本発明において、ポリイミド樹脂の製造には、前述のテトラカルボン酸成分及びジアミン成分の他に、末端封止剤を用いてもよい。末端封止剤としてはモノアミン類あるいはジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、テトラカルボン酸成分1モルに対して0.0001~0.1モルが好ましく、特に0.001~0.06モルが好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、4-メチルアニリン等が推奨される。これらのうち、ベンジルアミン、アニリンが好適に使用できる。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していてもよい。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸等が推奨される。これらのうち、フタル酸、無水フタル酸が好適に使用できる。 Furthermore, in the present invention, in addition to the above-mentioned tetracarboxylic acid component and diamine component, a terminal capping agent may be used in the production of the polyimide resin. As the terminal capping agent, monoamines or dicarboxylic acids are preferable. The amount of the terminal capping agent to be introduced is preferably 0.0001 to 0.1 mol, particularly preferably 0.001 to 0.06 mol, per 1 mol of the tetracarboxylic acid component. Examples of monoamine terminal capping agents include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline, etc. are recommended. Among these, benzylamine and aniline can be preferably used. As the dicarboxylic acid terminal capping agent, dicarboxylic acids are preferred, and a portion thereof may be ring-closed. For example, phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenone dicarboxylic acid, 3,4-benzophenone dicarboxylic acid, cyclopentane-1,2-dicarboxylic acid, 4-cyclohexene-1 , 2-dicarboxylic acid, etc. are recommended. Among these, phthalic acid and phthalic anhydride can be preferably used.

前述のテトラカルボン酸成分とジアミン成分とを反応させる方法には特に制限はなく、公知の方法を用いることができる。
具体的な反応方法としては、(1)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、室温(約20℃)~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(2)ジアミン成分及び反応溶剤を反応器に仕込んで溶解させた後、テトラカルボン酸成分を仕込み、必要に応じて室温(約20℃)~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(3)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、直ちに昇温してイミド化反応を行う方法等が挙げられる。
There is no particular restriction on the method of reacting the above-mentioned tetracarboxylic acid component and diamine component, and any known method can be used.
As a specific reaction method, (1) a tetracarboxylic acid component, a diamine component, and a reaction solvent are charged into a reactor, stirred at room temperature (approximately 20°C) to 80°C for 0.5 to 30 hours, and then heated to an elevated temperature. (2) After charging the diamine component and reaction solvent into a reactor and dissolving them, charging the tetracarboxylic acid component and heating at room temperature (approximately 20°C) to 80°C as necessary. A method of stirring for 0.5 to 30 hours and then raising the temperature to carry out the imidization reaction. (3) A method in which the tetracarboxylic acid component, the diamine component, and the reaction solvent are charged into a reactor, and the temperature is immediately raised to carry out the imidization reaction. Examples include methods for performing this.

ポリイミド樹脂の製造に用いられる反応溶剤は、イミド化反応を阻害せず、生成するポリイミドを溶解できるものであればよい。例えば、非プロトン性溶剤、フェノール系溶剤、エーテル系溶剤、カーボネート系溶剤等が挙げられる。 The reaction solvent used for producing the polyimide resin may be any solvent as long as it does not inhibit the imidization reaction and can dissolve the polyimide produced. Examples include aprotic solvents, phenolic solvents, ether solvents, carbonate solvents, and the like.

非プロトン性溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶剤、γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶剤、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、アセトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤、ピコリン、ピリジン等のアミン系溶剤、酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶剤等が挙げられる。 Specific examples of aprotic solvents include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, and tetramethylurea. amide solvents, lactone solvents such as γ-butyrolactone and γ-valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide, sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide, and sulfolane. Examples include ketone solvents such as acetone, cyclohexanone, and methylcyclohexanone, amine solvents such as picoline and pyridine, and ester solvents such as acetic acid (2-methoxy-1-methylethyl).

フェノール系溶剤の具体例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。
エーテル系溶剤の具体例としては、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス〔2-(2-メトキシエトキシ)エチル〕エーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
また、カーボネート系溶剤の具体的な例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
上記反応溶剤の中でも、アミド系溶剤又はラクトン系溶剤が好ましい。また、上記の反応溶剤は単独で又は2種以上混合して用いてもよい。
Specific examples of phenolic solvents include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4 -xylenol, 3,5-xylenol, etc.
Specific examples of ether solvents include 1,2-dimethoxyethane, bis(2-methoxyethyl)ether, 1,2-bis(2-methoxyethoxy)ethane, and bis[2-(2-methoxyethoxy)ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
Further, specific examples of carbonate-based solvents include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and the like.
Among the above reaction solvents, amide solvents or lactone solvents are preferred. Further, the above reaction solvents may be used alone or in combination of two or more.

イミド化反応では、ディーンスターク装置などを用いて、製造時に生成する水を除去しながら反応を行うことが好ましい。このような操作を行うことで、重合度及びイミド化率をより上昇させることができる。 In the imidization reaction, it is preferable to use a Dean-Stark apparatus or the like to perform the reaction while removing water generated during production. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.

上記のイミド化反応においては、公知のイミド化触媒を用いることができる。イミド化触媒としては、塩基触媒又は酸触媒が挙げられる。
塩基触媒としては、ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、2,4-ルチジン、2,6-ルチジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、イミダゾール、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の有機塩基触媒、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の無機塩基触媒が挙げられる。
また、酸触媒としては、クロトン酸、アクリル酸、トランス-3-ヘキセノイック酸、桂皮酸、安息香酸、メチル安息香酸、オキシ安息香酸、テレフタル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸等が挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
上記のうち、取り扱い性の観点から、塩基触媒を用いることが好ましく、有機塩基触媒を用いることがより好ましく、トリエチルアミンを用いることが更に好ましく、トリエチルアミンとトリエチレンジアミンを組み合わせて用いることが特に好ましい。
In the above imidization reaction, a known imidization catalyst can be used. Examples of imidization catalysts include base catalysts and acid catalysts.
Base catalysts include pyridine, quinoline, isoquinoline, α-picoline, β-picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, imidazole, N,N Examples include organic base catalysts such as -dimethylaniline and N,N-diethylaniline, and inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, and sodium hydrogen carbonate.
In addition, examples of acid catalysts include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc. can be mentioned. The above imidization catalysts may be used alone or in combination of two or more.
Among the above, from the viewpoint of ease of handling, it is preferable to use a base catalyst, it is more preferable to use an organic base catalyst, it is even more preferable to use triethylamine, and it is particularly preferable to use a combination of triethylamine and triethylenediamine.

イミド化反応の温度は、反応率及びゲル化等の抑制の観点から、好ましくは120~250℃、より好ましくは160~200℃である。また、反応時間は、生成水の留出開始後、好ましくは0.5~10時間である。 The temperature of the imidization reaction is preferably 120 to 250°C, more preferably 160 to 200°C from the viewpoint of reaction rate and suppression of gelation and the like. Further, the reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.

[ポリイミドワニス]
本発明のポリイミドワニスは、本発明のポリイミド樹脂が有機溶媒に溶解してなるものである。即ち、本発明のポリイミドワニスは、本発明のポリイミド樹脂及び有機溶媒を含み、当該ポリイミド樹脂は当該有機溶媒に溶解している。
有機溶媒はポリイミド樹脂が溶解するものであればよく、特に限定されないが、ポリイミド樹脂の製造に用いられる反応溶剤として上述した化合物を、単独又は2種以上を混合して用いることが好ましい。
本発明のポリイミドワニスは、重合法により得られるポリイミド樹脂が反応溶剤に溶解したポリイミド溶液そのものであってもよいし、又は当該ポリイミド溶液に対して更に希釈溶剤を追加したものであってもよい。
[Polyimide varnish]
The polyimide varnish of the present invention is obtained by dissolving the polyimide resin of the present invention in an organic solvent. That is, the polyimide varnish of the present invention contains the polyimide resin of the present invention and an organic solvent, and the polyimide resin is dissolved in the organic solvent.
The organic solvent is not particularly limited as long as it dissolves the polyimide resin, but it is preferable to use the above-mentioned compounds alone or in a mixture of two or more types as a reaction solvent used in the production of the polyimide resin.
The polyimide varnish of the present invention may be a polyimide solution itself in which a polyimide resin obtained by a polymerization method is dissolved in a reaction solvent, or it may be a polyimide solution obtained by adding a diluting solvent to the polyimide solution.

本発明のポリイミド樹脂は溶媒溶解性を有しているため、室温で安定な高濃度のワニスとすることができる。本発明のポリイミドワニスは、本発明のポリイミド樹脂を5~40質量%含むことが好ましく、10~30質量%含むことがより好ましい。ポリイミドワニスの粘度は1~200Pa・sが好ましく、2~100Pa・sがより好ましい。ポリイミドワニスの粘度は、E型粘度計を用いて25℃で測定された値である。
また、本発明のポリイミドワニスは、ポリイミドフィルムの要求特性を損なわない範囲で、無機フィラー、接着促進剤、剥離剤、難燃剤、紫外線安定剤、界面活性剤、レベリング剤、消泡剤、蛍光増白剤、架橋剤、重合開始剤、感光剤等各種添加剤を含んでもよい。
本発明のポリイミドワニスの製造方法は特に限定されず、公知の方法を適用することができる。
Since the polyimide resin of the present invention has solvent solubility, it can be made into a highly concentrated varnish that is stable at room temperature. The polyimide varnish of the present invention preferably contains 5 to 40% by mass, more preferably 10 to 30% by mass of the polyimide resin of the present invention. The viscosity of the polyimide varnish is preferably 1 to 200 Pa·s, more preferably 2 to 100 Pa·s. The viscosity of the polyimide varnish is a value measured at 25°C using an E-type viscometer.
In addition, the polyimide varnish of the present invention may contain inorganic fillers, adhesion promoters, release agents, flame retardants, ultraviolet stabilizers, surfactants, leveling agents, antifoaming agents, fluorescent enhancers, etc. within the range that does not impair the required properties of the polyimide film. It may contain various additives such as a whitening agent, a crosslinking agent, a polymerization initiator, and a photosensitizer.
The method for producing the polyimide varnish of the present invention is not particularly limited, and known methods can be applied.

[ポリイミドフィルム]
本発明のポリイミドフィルムは、本発明のポリイミド樹脂を含む。したがって、本発明のポリイミドフィルムは、無色透明性、光学的等方性、及び耐薬品性(耐溶剤性、耐酸性及び耐アルカリ性)に優れる。本発明のポリイミドフィルムが有する好適な物性値は上述の通りである。
本発明のポリイミドフィルムの製造方法には特に制限はなく、公知の方法を用いることができる。例えば、本発明のポリイミドワニスを、ガラス板、金属板、プラスチックなどの平滑な支持体上に塗布、又はフィルム状に成形した後、該ワニス中に含まれる反応溶剤や希釈溶剤等の有機溶媒を加熱により除去する方法等が挙げられる。
[Polyimide film]
The polyimide film of the present invention contains the polyimide resin of the present invention. Therefore, the polyimide film of the present invention has excellent colorless transparency, optical isotropy, and chemical resistance (solvent resistance, acid resistance, and alkali resistance). The preferred physical properties of the polyimide film of the present invention are as described above.
There are no particular limitations on the method for producing the polyimide film of the present invention, and known methods can be used. For example, after the polyimide varnish of the present invention is coated on a smooth support such as a glass plate, metal plate, or plastic, or formed into a film, organic solvents such as reaction solvents and diluting solvents contained in the varnish are removed. Examples include a method of removing by heating.

塗布方法としては、スピンコート、スリットコート、ブレードコート等の公知の塗布方法が挙げられる。中でも、スリットコートが分子間配向を制御し耐薬品性が向上すること、作業性の観点から好ましい。
ワニス中に含まれる有機溶媒を加熱により除去する方法としては、150℃以下の温度で有機溶媒を蒸発させタックフリーにした後、用いた有機溶媒の沸点以上の温度(特に限定されないが、好ましくは200~500℃)で乾燥することが好ましい。また、空気雰囲気下又は窒素雰囲気下で乾燥することが好ましい。乾燥雰囲気の圧力は、減圧、常圧、加圧のいずれでもよい。
支持体上に製膜されたポリイミドフィルムを支持体から剥離する方法は特に限定されないが、レーザーリフトオフ法や、剥離用犠牲層を使用する方法(支持体の表面に予め離形剤を塗布しておく方法)が挙げられる。
Examples of the coating method include known coating methods such as spin coating, slit coating, and blade coating. Among these, slit coating is preferable from the viewpoint of controlling intermolecular orientation, improving chemical resistance, and workability.
The method for removing the organic solvent contained in the varnish by heating is to evaporate the organic solvent at a temperature of 150°C or lower to make it tack-free, and then heat the varnish to a temperature higher than the boiling point of the organic solvent used (although not particularly limited). It is preferable to dry at a temperature of 200 to 500°C. Moreover, it is preferable to dry under an air atmosphere or a nitrogen atmosphere. The pressure of the drying atmosphere may be reduced pressure, normal pressure, or increased pressure.
The method for peeling off the polyimide film formed on the support is not particularly limited, but includes a laser lift-off method, a method using a sacrificial layer for peeling (preliminary coating of a release agent on the surface of the support), and a method using a sacrificial layer for peeling. method).

また、本発明のポリイミドフィルムは、ポリアミド酸が有機溶媒に溶解してなるポリアミド酸ワニスを用いて製造することもできる。
前記ポリアミド酸ワニスに含まれるポリアミド酸は、本発明のポリイミド樹脂の前駆体であって、上述の構成単位(A-1)を与える化合物及び上述の構成単位(A-2)を与える化合物を含むテトラカルボン酸成分と上述の構成単位(B-1)を与える化合物を70モル%以上含むジアミン成分との重付加反応の生成物である。このポリアミド酸をイミド化(脱水閉環)することで、最終生成物である本発明のポリイミド樹脂が得られる。
前記ポリアミド酸ワニスに含まれる有機溶媒としては、本発明のポリイミドワニスに含まれる有機溶媒を用いることができる。
本発明において、ポリアミド酸ワニスは、テトラカルボン酸成分とジアミン成分とを反応溶剤中で重付加反応させて得られるポリアミド酸溶液そのものであってもよいし、又は当該ポリアミド酸溶液に対して更に希釈溶剤を追加したものであってもよい。
Moreover, the polyimide film of the present invention can also be manufactured using a polyamic acid varnish formed by dissolving polyamic acid in an organic solvent.
The polyamic acid contained in the polyamic acid varnish is a precursor of the polyimide resin of the present invention, and includes a compound that provides the above-mentioned structural unit (A-1) and a compound that provides the above-mentioned structural unit (A-2). It is a product of a polyaddition reaction between a tetracarboxylic acid component and a diamine component containing 70 mol% or more of the compound that provides the above-mentioned structural unit (B-1). By imidizing this polyamic acid (dehydration ring closure), the final product, the polyimide resin of the present invention, is obtained.
As the organic solvent contained in the polyamic acid varnish, the organic solvent contained in the polyimide varnish of the present invention can be used.
In the present invention, the polyamic acid varnish may be a polyamic acid solution itself obtained by polyaddition reaction of a tetracarboxylic acid component and a diamine component in a reaction solvent, or it may be further diluted with respect to the polyamic acid solution. A solvent may be added.

ポリアミド酸ワニスを用いてポリイミドフィルムを製造する方法には特に制限はなく、公知の方法を用いることができる。例えば、ポリアミド酸ワニスを、ガラス板、金属板、プラスチックなどの平滑な支持体上に塗布、又はフィルム状に成形し、該ワニス中に含まれる反応溶剤や希釈溶剤等の有機溶媒を加熱により除去してポリアミド酸フィルムを得て、該ポリアミド酸フィルム中のポリアミド酸を加熱によりイミド化することで、ポリイミドフィルムを製造することができる。
ポリアミド酸ワニスを乾燥させてポリアミド酸フィルムを得る際の加熱温度としては、好ましくは50~120℃である。ポリアミド酸を加熱によりイミド化する際の加熱温度としては好ましくは200~400℃である。
なお、イミド化の方法は熱イミド化に限定されず、化学イミド化を適用することもできる。
There are no particular limitations on the method for producing a polyimide film using polyamic acid varnish, and any known method can be used. For example, a polyamic acid varnish is applied onto a smooth support such as a glass plate, metal plate, or plastic, or formed into a film, and organic solvents such as reaction solvents and diluting solvents contained in the varnish are removed by heating. A polyimide film can be produced by obtaining a polyamic acid film and imidizing the polyamic acid in the polyamic acid film by heating.
The heating temperature when drying the polyamic acid varnish to obtain a polyamic acid film is preferably 50 to 120°C. The heating temperature when polyamic acid is imidized by heating is preferably 200 to 400°C.
Note that the imidization method is not limited to thermal imidization, and chemical imidization can also be applied.

本発明のポリイミドフィルムの厚みは用途等に応じて適宜選択することができるが、好ましくは1~250μm、より好ましくは5~100μm、更に好ましくは10~80μmの範囲である。厚みが1~250μmであることで、自立膜としての実用的な使用が可能となる。
ポリイミドフィルムの厚みは、ポリイミドワニスの固形分濃度や粘度を調整することにより、容易に制御することができる。
The thickness of the polyimide film of the present invention can be appropriately selected depending on the intended use, but is preferably in the range of 1 to 250 μm, more preferably 5 to 100 μm, and still more preferably 10 to 80 μm. A thickness of 1 to 250 μm allows practical use as a self-supporting membrane.
The thickness of the polyimide film can be easily controlled by adjusting the solid content concentration and viscosity of the polyimide varnish.

本発明のポリイミドフィルムは、カラーフィルター、フレキシブルディスプレイ、半導体部品、光学部材等の各種部材用のフィルムとして好適に用いられる。本発明のポリイミドフィルムは、液晶ディスプレイやOLEDディスプレイ等の画像表示装置の基板として、特に好適に用いられる。 The polyimide film of the present invention is suitably used as a film for various members such as color filters, flexible displays, semiconductor parts, and optical members. The polyimide film of the present invention is particularly suitably used as a substrate for image display devices such as liquid crystal displays and OLED displays.

以下に、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。 The present invention will be specifically explained below using Examples. However, the present invention is not limited to these Examples in any way.

実施例及び比較例において、各物性は以下に示す方法によって測定した。
(1)フィルム厚さ
フィルム厚さは、株式会社ミツトヨ製のマイクロメーターを用いて測定した。
(2)引張強度、引張弾性率
引張強度及び引張弾性率は、JIS K7127:1999に準拠し、東洋精機株式会社製の引張試験機「ストログラフVG-1E」を用いて測定した。チャック間距離は50mm、試験片サイズは10mm×70mm、試験速度は20mm/minとした。
(3)ガラス転移温度(Tg)
株式会社日立ハイテクサイエンス製の熱機械的分析装置「TMA/SS6100」を用いて、引張モードで試料サイズ2mm×20mm、荷重0.1N、昇温速度10℃/minの条件で、残留応力を取り除くのに十分な温度まで昇温して残留応力を取り除き、その後室温まで冷却した。その後、前記残留応力を取り除くための処理と同じ条件で試験片伸びの測定を行い、伸びの変曲点が見られたところをガラス転移温度として求めた。
(4)全光線透過率、イエローインデックス(YI)、b
全光線透過率、YI及びbは、JIS K7105:1981に準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH400」を用いて測定した。
(5)厚み位相差(Rth)
厚み位相差(Rth)は、日本分光株式会社製のエリプソメーター「M-220」を用いて測定した。測定波長590nmにおける、厚み位相差の値を測定した。なおRthは、ポリイミドフィルムの面内の屈折率のうち最大のものをnx、最小のものをnyとし、厚み方向の屈折率をnzとし、フィルムの厚みをdとしたとき、下記式によって表されるものである。
Rth=[{(nx+ny)/2}-nz]×d
(6)耐溶剤性
ガラス板上に製膜したポリイミドフィルムに、室温で溶剤を滴下し、フィルム表面に変化がないかを確認した。なお、溶剤としては、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を使用した。
耐溶剤性の評価基準は、以下の通りとした。
A:フィルム表面に変化がなかった。
B:フィルム表面にわずかにクラックが入った。
C:フィルム表面にクラックが入った、又はフィルム表面が溶解した。
(7)耐酸性(混酸ΔYI及び混酸Δb
ガラス板上に製膜したポリイミドフィルムを40℃に温めた混酸(H3PO4(70質量%)+HNO3(10質量%)+CH3COOH(5質量%)+H2O(15質量%)の混合溶液)に4分間浸漬した後、水洗した。水洗後、水分をふき取り、ホットプレートにて240℃で50分加熱して、乾燥した。試験前後でYI及びbを測定し、その変化(ΔYI及びΔb)を求めた。なお、ここでのYI測定及びb測定は、ガラス板にポリイミドフィルムを製膜した状態(ガラス板+ポリイミドフィルムの状態)で行った。
(8)耐アルカリ性
ガラス板上に製膜したポリイミドフィルムを、室温で3質量%濃度の水酸化カリウム水溶液に5分間浸漬した後、水洗した。水洗後、フィルム表面に変化がないかを確認した。
耐アルカリ性の評価基準は、以下の通りとした。
A:フィルム表面に変化がなかった。
B:フィルム表面にわずかにクラックが入った。
C:フィルム表面にクラックが入った、又はフィルム表面が溶解した。
In Examples and Comparative Examples, each physical property was measured by the method shown below.
(1) Film thickness The film thickness was measured using a micrometer manufactured by Mitutoyo Co., Ltd.
(2) Tensile strength and tensile modulus Tensile strength and tensile modulus were measured using a tensile tester "Strograph VG-1E" manufactured by Toyo Seiki Co., Ltd. in accordance with JIS K7127:1999. The distance between chucks was 50 mm, the test piece size was 10 mm x 70 mm, and the test speed was 20 mm/min.
(3) Glass transition temperature (Tg)
Using a thermomechanical analyzer "TMA/SS6100" manufactured by Hitachi High-Tech Science Co., Ltd., remove residual stress in tensile mode under the conditions of sample size 2 mm x 20 mm, load 0.1 N, and temperature increase rate 10 ° C / min. The temperature was raised to a temperature sufficient to remove residual stress, and then cooled to room temperature. Thereafter, the elongation of the test piece was measured under the same conditions as the treatment for removing residual stress, and the point where the inflection point of elongation was found was determined as the glass transition temperature.
(4) Total light transmittance, yellow index (YI), b *
The total light transmittance, YI and b * were measured in accordance with JIS K7105:1981 using a simultaneous color and turbidity meter "COH400" manufactured by Nippon Denshoku Industries Co., Ltd.
(5) Thickness phase difference (Rth)
The thickness retardation (Rth) was measured using an ellipsometer "M-220" manufactured by JASCO Corporation. The value of the thickness retardation was measured at a measurement wavelength of 590 nm. Note that Rth is expressed by the following formula, where the maximum in-plane refractive index of the polyimide film is nx, the minimum is ny, the refractive index in the thickness direction is nz, and the thickness of the film is d. It is something that
Rth=[{(nx+ny)/2}-nz]×d
(6) Solvent resistance A solvent was dropped at room temperature onto a polyimide film formed on a glass plate, and it was confirmed whether there was any change in the film surface. Note that propylene glycol monomethyl ether acetate (PGMEA) was used as the solvent.
The evaluation criteria for solvent resistance were as follows.
A: There was no change in the film surface.
B: Slight cracks appeared on the film surface.
C: Cracks appeared on the film surface or the film surface was dissolved.
(7) Acid resistance (mixed acid ΔYI and mixed acid Δb * )
A polyimide film formed on a glass plate was heated to 40°C and mixed with a mixed acid (H 3 PO 4 (70% by mass) + HNO 3 (10% by mass) + CH 3 COOH (5% by mass) + H 2 O (15% by mass)). After being immersed in a mixed solution for 4 minutes, it was washed with water. After washing with water, the moisture was wiped off, and the sample was heated on a hot plate at 240° C. for 50 minutes to dry. YI and b * were measured before and after the test, and the changes (ΔYI and Δb * ) were determined. Note that the YI measurement and b * measurement here were performed in a state in which a polyimide film was formed on a glass plate (a state of glass plate + polyimide film).
(8) Alkali resistance A polyimide film formed on a glass plate was immersed in a potassium hydroxide aqueous solution having a concentration of 3% by mass at room temperature for 5 minutes, and then washed with water. After washing with water, it was confirmed whether there was any change in the film surface.
The evaluation criteria for alkali resistance were as follows.
A: There was no change in the film surface.
B: Slight cracks appeared on the film surface.
C: Cracks appeared on the film surface or the film surface was dissolved.

実施例及び比較例にて使用したテトラカルボン酸成分及びジアミン成分、並びにその略号は以下の通りである。
<テトラカルボン酸成分>
HPMDA:1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(三菱ガス化学株式会社製;式(a-1)で表される化合物)
ODPA:4,4’-オキシジフタル酸無水物(マナック株式会社製;式(a-2)で表される化合物)
<ジアミン成分>
3,3’-DDS:3,3’-ジアミノジフェニルスルホン(セイカ株式会社製;式(b-1)で表される化合物)
6FODA:4,4’-ジアミノ-2,2’-ビストリフルオロメチルジフェニルエーテル(ChinaTech Chemical (Tianjin) Co., Ltd.製;式(b-2-1)で表される化合物)
BAFL:9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製;式(b-2-2)で表される化合物)
HFBAPP:2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン(セイカ株式会社製;式(b-2-3)で表される化合物)
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン(セイカ株式会社製;式(b-2-4)で表される化合物)
The tetracarboxylic acid component and diamine component used in Examples and Comparative Examples, and their abbreviations are as follows.
<Tetracarboxylic acid component>
HPMDA: 1,2,4,5-cyclohexanetetracarboxylic dianhydride (manufactured by Mitsubishi Gas Chemical Co., Ltd.; compound represented by formula (a-1))
ODPA: 4,4'-oxydiphthalic anhydride (manufactured by Manac Co., Ltd.; compound represented by formula (a-2))
<Diamine component>
3,3'-DDS: 3,3'-diaminodiphenylsulfone (manufactured by Seika Co., Ltd.; compound represented by formula (b-1))
6FODA: 4,4'-diamino-2,2'-bistrifluoromethyl diphenyl ether (manufactured by ChinaTech Chemical (Tianjin) Co., Ltd.; compound represented by formula (b-2-1))
BAFL: 9,9-bis(4-aminophenyl)fluorene (manufactured by Taoka Chemical Co., Ltd.; compound represented by formula (b-2-2))
HFBAPP: 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane (manufactured by Seika Co., Ltd.; compound represented by formula (b-2-3))
TFMB: 2,2'-bis(trifluoromethyl)benzidine (manufactured by Seika Co., Ltd.; compound represented by formula (b-2-4))

<実施例1>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを32.841g(0.132モル)とγ-ブチロラクトン(三菱化学株式会社製)を63.328g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを23.720g(0.106モル)と、ODPAを8.206g(0.026モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.832gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.669g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を160.841g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Example 1>
32.841 g of 3,3'-DDS (32.841 g) was placed in a 300 mL 5-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap. 0.132 mol) and 63.328 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the mixture was stirred at a rotational speed of 200 rpm at a system temperature of 70° C. under a nitrogen atmosphere to obtain a solution.
To this solution, 23.720 g (0.106 mol) of HPMDA, 8.206 g (0.026 mol) of ODPA, and 15.832 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. Thereafter, 0.669 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst, and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for about 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
Thereafter, 160.841 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to give a solid content concentration of 20% by mass, and after the temperature inside the reaction system was cooled to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 1.

<実施例2>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを31.073g(0.125モル)とγ-ブチロラクトン(三菱化学株式会社製)を63.077g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを14.027g(0.063モル)と、ODPAを19.410g(0.063モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.769gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.633g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.154g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Example 2>
31.073 g of 3,3'-DDS (31.073 g) was placed in a 300 mL 5-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.125 mol) and 63.077 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the mixture was stirred at a rotation speed of 200 rpm at a system temperature of 70° C. under a nitrogen atmosphere to obtain a solution.
To this solution, 14.027 g (0.063 mol) of HPMDA, 19.410 g (0.063 mol) of ODPA, and 15.769 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. Thereafter, 0.633 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for about 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
After that, 161.154 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added so that the solid content concentration was 20% by mass, and after cooling the temperature inside the reaction system to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 1.

<実施例3>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを29.486g(0.119モル)とγ-ブチロラクトン(三菱化学株式会社製)を62.851g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを5.324g(0.024モル)と、ODPAを29.470g(0.095モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.713gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.601g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.436g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Example 3>
29.486 g of 3,3′-DDS ( 0.119 mol) and 62.851 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added and stirred at a rotational speed of 200 rpm at a system temperature of 70° C. and a nitrogen atmosphere to obtain a solution.
To this solution, 5.324 g (0.024 mol) of HPMDA, 29.470 g (0.095 mol) of ODPA, and 15.713 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. Thereafter, 0.601 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst, and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for about 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
Thereafter, 161.436 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added so that the solid content concentration was 20% by mass, and after the temperature inside the reaction system was cooled to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 1.

<比較例1>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを34.192g(0.137モル)とγ-ブチロラクトン(三菱化学株式会社製)を63.495g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを30.746g(0.0137モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.874gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.693g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃に保持して約5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を160.631g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Comparative example 1>
34.192 g of 3,3'-DDS (34.192 g) was placed in a 300 mL 5-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark with a condenser tube, a thermometer, and a glass end cap. 0.137 mol) and 63.495 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the mixture was stirred at a rotation speed of 200 rpm at a system temperature of 70° C. under a nitrogen atmosphere to obtain a solution.
To this solution, 30.746 g (0.0137 mol) of HPMDA and 15.874 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added at once, and then triethylamine (manufactured by Kanto Chemical Co., Ltd.) was added as an imidization catalyst. ), heated with a mantle heater, maintained the reaction system internal temperature at 190° C. over about 20 minutes, and refluxed for about 5 hours.
Thereafter, 160.631 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added so that the solid content concentration was 20% by mass, and after cooling the temperature inside the reaction system to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 1.

<比較例2>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを28.588g(0.115モル)とγ-ブチロラクトン(三菱化学株式会社製)を62.704g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、ODPAを35.541g(0.115モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.676gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.580g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.620g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Comparative example 2>
28.588 g of 3,3′-DDS ( 0.115 mol) and 62.704 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the mixture was stirred at a rotational speed of 200 rpm at a system temperature of 70° C. under a nitrogen atmosphere to obtain a solution.
To this solution, 35.541 g (0.115 mol) of ODPA and 15.676 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added at once, and then triethylamine (manufactured by Kanto Chemical Co., Ltd.) was added as an imidization catalyst. ) and heated with a mantle heater to raise the temperature inside the reaction system to 190°C over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for about 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
After that, 161.620g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added so that the solid content concentration was 20% by mass, and after cooling the reaction system internal temperature to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 1.

<比較例3>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、BAFLを36.092g(0.103モル)とγ-ブチロラクトン(三菱化学株式会社製)を63.309g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを11.598g(0.052モル)と、ODPAを16.035g(0.052モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.577gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.523g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を162.113g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Comparative example 3>
36.092 g (0.103 mol) of BAFL was placed in a 300 mL 5-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. and 63.309 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added and stirred at a rotation speed of 200 rpm at a system temperature of 70° C. and a nitrogen atmosphere to obtain a solution.
To this solution, 11.598 g (0.052 mol) of HPMDA, 16.035 g (0.052 mol) of ODPA, and 15.577 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. Thereafter, 0.523 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for about 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
After that, 162.113g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added so that the solid content concentration was 20% by mass, and after cooling the temperature inside the reaction system to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 1.

<実施例4>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを25.353g(0.102モル)、6FODAを8.547g(0.025モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を63.142g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを22.797g(0.102モル)と、ODPAを7.880g(0.025モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.785gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.643g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.073g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 4>
25.353 g of 3,3'-DDS ( 0.102 mol), 8.547 g (0.025 mol) of 6FODA, and 63.142 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the system temperature was 70°C and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 22.797 g (0.102 mol) of HPMDA, 7.880 g (0.025 mol) of ODPA, and 15.785 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.643 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
After that, 161.073g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added so that the solid content concentration was 20% by mass, and after cooling the temperature inside the reaction system to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 2.

<実施例5>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを24.042g(0.096モル)、6FODAを8.106g(0.024モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.910g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを13.512g(0.060モル)と、ODPAを18.681g(0.060モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.728gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.609g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.362g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 5>
24.042 g of 3,3'-DDS ( 0.096 mol), 8.106 g (0.024 mol) of 6FODA, and 62.910 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the system temperature was 70°C and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 13.512 g (0.060 mol) of HPMDA, 18.681 g (0.060 mol) of ODPA, and 15.728 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.609 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
Thereafter, 161.362 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to give a solid concentration of 20% by mass, and after cooling the reaction system to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 2.

<実施例6>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを25.822g(0.103モル)、6FODAを8.706g(0.026モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を63.225g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを26.121g(0.116モル)と、ODPAを4.013g(0.013モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.806gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.654g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を160.969g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 6>
25.822 g of 3,3′-DDS ( 0.103 mol), 8.706 g (0.026 mol) of 6FODA, and 63.225 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the system temperature was 70°C and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 26.121 g (0.116 mol) of HPMDA, 4.013 g (0.013 mol) of ODPA, and 15.806 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.654 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
Thereafter, 160.969 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to give a solid content concentration of 20% by mass, and after cooling the reaction system to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 2.

<実施例7>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを25.218g(0.101モル)、BAFLを8.821g(0.025モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を63.118g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを22.676g(0.101モル)と、ODPAを7.838g(0.025モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.780gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.639g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.102g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 7>
25.218 g of 3,3'-DDS (25.218 g) was placed in a 300 mL five-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. 0.101 mol), 8.821 g (0.025 mol) of BAFL, and 63.118 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the system temperature was 70°C and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 22.676 g (0.101 mol) of HPMDA, 7.838 g (0.025 mol) of ODPA, and 15.780 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.639 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
After that, 161.102g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added so that the solid content concentration was 20% by mass, and after cooling the temperature inside the reaction system to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 2.

<実施例8>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを23.921g(0.096モル)、BAFLを8.367g(0.024モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.889g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを13.444g(0.060モル)と、ODPAを18.587g(0.060モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.722gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.606g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.389g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 8>
23.921 g of 3,3'-DDS ( 0.096 mol), 8.367 g (0.024 mol) of BAFL, and 62.889 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the system temperature was 70°C and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 13.444 g (0.060 mol) of HPMDA, 18.587 g (0.060 mol) of ODPA, and 15.722 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.606 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
Thereafter, 161.389 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to give a solid content concentration of 20% by mass, and after cooling the reaction system temperature to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 2.

<実施例9>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを23.530g(0.094モル)、HFBAPPを12.247g(0.024モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.820g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを21.158g(0.094モル)と、ODPAを7.313g(0.024モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.705gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.596g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.475g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 9>
Add 23.530 g of 3,3'-DDS ( 0.094 mol), 12.247 g (0.024 mol) of HFBAPP, and 62.820 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the system temperature was 70°C and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 21.158 g (0.094 mol) of HPMDA, 7.313 g (0.024 mol) of ODPA, and 15.705 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.596 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
Thereafter, 161.475 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to give a solid content concentration of 20% by mass, and after cooling the reaction system to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 2.

<実施例10>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを22.397g(0.090モル)、HFBAPPを11.657g(0.022モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.620g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを12.587g(0.056モル)と、ODPAを17.402g(0.056モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.655gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.568g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.725g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 10>
22.397 g of 3,3'-DDS (22.397 g) was placed in a 300 mL 5-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. 0.090 mol), 11.657 g (0.022 mol) of HFBAPP, and 62.620 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the system temperature was 70°C and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 12.587 g (0.056 mol) of HPMDA, 17.402 g (0.056 mol) of ODPA, and 15.655 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.568 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst, and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
Thereafter, 161.725 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to give a solid content concentration of 20% by mass, and after cooling the reaction system temperature to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 2.

<実施例11>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを23.933g(0.096モル)、HFBAPPを12.457g(0.024モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.891g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを24.211g(0.108モル)と、ODPAを3.719g(0.012モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.723gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.607g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.386g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 11>
23.933 g of 3,3′-DDS ( 0.096 mol), 12.457 g (0.024 mol) of HFBAPP, and 62.891 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the system temperature was 70°C and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 24.211 g (0.108 mol) of HPMDA, 3.719 g (0.012 mol) of ODPA, and 15.723 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.607 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
After that, 161.386g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added so that the solid content concentration was 20% by mass, and after cooling the temperature inside the reaction system to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 2.

<実施例12>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを26.000g(0.104モル)、TFMBを8.351g(0.026モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を63.256g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを26.302g(0.117モル)と、ODPAを4.041g(0.013モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.814gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.659g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を160.930g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 12>
26.000 g of 3,3'-DDS was placed in a 300 mL five-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean-Stark fitted with a cooling tube, a thermometer, and a glass end cap. 0.104 mol), 8.351 g (0.026 mol) of TFMB, and 63.256 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the system temperature was 70°C and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 26.302 g (0.117 mol) of HPMDA, 4.041 g (0.013 mol) of ODPA, and 15.814 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.659 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
After that, 160.930g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to give a solid content concentration of 20% by mass, and after cooling the reaction system temperature to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 2.

<比較例4>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを15.356g(0.062モル)、BAFLを21.485g(0.062モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を63.004g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを27.594g(0.123モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.751gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.623g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.246g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Comparative example 4>
15.356 g of 3,3'-DDS ( 0.062 mol), 21.485 g (0.062 mol) of BAFL, and 63.004 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the system temperature was 70°C and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 27.594 g (0.123 mol) of HPMDA and 15.751 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added at once, and then triethylamine (manufactured by Kanto Chemical Co., Ltd.) was added as an imidization catalyst. ) and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
Thereafter, 161.246 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to give a solid content concentration of 20% by mass, and after cooling the reaction system to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 2.

<比較例5>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを13.053g(0.052モル)、BAFLを18.263g(0.052モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.353g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、ODPAを32.455g(0.105モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.588gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.529g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を162.059g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Comparative example 5>
13.053 g of 3,3'-DDS ( 0.052 mol), 18.263 g (0.052 mol) of BAFL, and 62.353 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the system temperature was 70°C and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 32.455 g (0.105 mol) of ODPA and 15.588 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added at once, and then triethylamine (manufactured by Kanto Chemical Co., Ltd.) was added as an imidization catalyst. ) and heated with a mantle heater to raise the temperature inside the reaction system to 190°C over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
Thereafter, 162.059 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added so that the solid content concentration was 20% by mass, and after cooling the temperature inside the reaction system to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 2.

<比較例6>
ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを14.109g(0.057モル)、BAFLを19.740g(0.057モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.651g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
この溶液に、HPMDAを12.687g(0.057モル)と、ODPAを17.540g(0.057モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.663gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.572g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.686g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Comparative example 6>
14.109 g of 3,3'-DDS ( 0.057 mol), 19.740 g (0.057 mol) of BAFL, and 62.651 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added, and the system temperature was 70°C and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 12.687 g (0.057 mol) of HPMDA, 17.540 g (0.057 mol) of ODPA, and 15.663 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.572 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater to raise the temperature inside the reaction system to 190° C. over about 20 minutes. The components to be distilled off were collected, and the reaction system was refluxed for 5 hours while the internal temperature of the reaction system was maintained at 190° C. while adjusting the rotation speed according to the increase in viscosity.
Thereafter, 161.686 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) was added to give a solid content concentration of 20% by mass, and after cooling the reaction system to 100°C, the mixture was further stirred for about 1 hour to ensure uniformity. Polyimide varnish was obtained.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held at 80 °C for 20 minutes on a hot plate, and then heated at 260 °C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. A film was obtained. The results are shown in Table 2.

Figure 0007384170000006
Figure 0007384170000006

なお、比較例1のフィルムは、耐酸性の試験において混酸に浸漬したところ、著しく劣化したため、浸漬後のYI及びbを測定できなかった。したがって、比較例1のΔYI及びΔbは求められなかった。In addition, when the film of Comparative Example 1 was immersed in a mixed acid in an acid resistance test, it deteriorated significantly, so that YI and b * could not be measured after immersion. Therefore, ΔYI and Δb * of Comparative Example 1 could not be determined.

Figure 0007384170000007
Figure 0007384170000007

表1に示すように、実施例1~3のポリイミドフィルムは、テトラカルボン酸成分としてHPMDAとODPAとを併用し、ジアミン成分として3,3’-DDSを用いて製造した。その結果、無色透明性、光学的等方性、及び耐薬品性(耐溶剤性、耐酸性及び耐アルカリ性)に優れていた。
一方、比較例1のポリイミドフィルムは、テトラカルボン酸成分としてHPMDAのみを使用して製造した。その結果、耐酸性が劣っていた。
比較例2のポリイミドフィルムは、テトラカルボン酸成分としてODPAのみを使用して製造した。その結果、無色透明性及び光学的等方性が劣っていた。
比較例3のポリイミドフィルムは、ジアミン成分として3,3’-DDSを用いず、BAFLのみを使用して製造した。その結果、耐酸性が劣っていた。
As shown in Table 1, the polyimide films of Examples 1 to 3 were produced using a combination of HPMDA and ODPA as the tetracarboxylic acid component and 3,3'-DDS as the diamine component. As a result, it was excellent in colorless transparency, optical isotropy, and chemical resistance (solvent resistance, acid resistance, and alkali resistance).
On the other hand, the polyimide film of Comparative Example 1 was manufactured using only HPMDA as the tetracarboxylic acid component. As a result, acid resistance was poor.
The polyimide film of Comparative Example 2 was produced using only ODPA as the tetracarboxylic acid component. As a result, colorless transparency and optical isotropy were poor.
The polyimide film of Comparative Example 3 was produced using only BAFL without using 3,3'-DDS as a diamine component. As a result, acid resistance was poor.

また、表2に示すように、実施例4~12のポリイミドフィルムは、ジアミン成分として3,3’-DDSだけでなく、それ以外の第二ジアミン(6FODA、BAFL、HFBAPP、又はTFMB)も使用して製造した。ただし、3,3’-DDSの比率が70モル%以上になるように、3,3’-DDSと第二ジアミンとを併用した。その結果、無色透明性、光学的等方性、及び耐薬品性(耐溶剤性、耐酸性及び耐アルカリ性)に優れていた。
一方、比較例4のポリイミドフィルムは、ジアミン成分として3,3’-DDSとそれ以外の第二ジアミン(BAFL)とを併用して製造したが、使用した3,3’-DDSの比率は70モル%未満であった。さらに、テトラカルボン酸成分として、HPMDAのみを使用した。その結果、耐酸性が劣っていた。
比較例5のポリイミドフィルムは、ジアミン成分として3,3’-DDSとそれ以外の第二ジアミン(BAFL)とを併用して製造したが、使用した3,3’-DDSの比率は70モル%未満であった。さらに、テトラカルボン酸成分として、ODPAのみを使用した。その結果、無色透明性(全光線透過率)、光学的等方性、及び耐酸性が劣っていた。
比較例6のポリイミドフィルムは、ジアミン成分として3,3’-DDSとそれ以外の第二ジアミン(BAFL)とを併用して製造したが、使用した3,3’-DDSの比率は70モル%未満であった。その結果、光学的等方性及び耐酸性が劣っていた。
Furthermore, as shown in Table 2, the polyimide films of Examples 4 to 12 used not only 3,3'-DDS but also other secondary diamines (6FODA, BAFL, HFBAPP, or TFMB) as the diamine component. Manufactured by However, 3,3'-DDS and secondary diamine were used together so that the ratio of 3,3'-DDS was 70 mol% or more. As a result, it was excellent in colorless transparency, optical isotropy, and chemical resistance (solvent resistance, acid resistance, and alkali resistance).
On the other hand, the polyimide film of Comparative Example 4 was manufactured using 3,3'-DDS and other secondary diamine (BAFL) as diamine components, but the ratio of 3,3'-DDS used was 70. It was less than mol%. Furthermore, only HPMDA was used as the tetracarboxylic acid component. As a result, acid resistance was poor.
The polyimide film of Comparative Example 5 was produced using 3,3'-DDS and other secondary diamine (BAFL) as diamine components in combination, but the ratio of 3,3'-DDS used was 70 mol%. It was less than Furthermore, only ODPA was used as the tetracarboxylic acid component. As a result, colorless transparency (total light transmittance), optical isotropy, and acid resistance were poor.
The polyimide film of Comparative Example 6 was produced using 3,3'-DDS and other secondary diamine (BAFL) as the diamine component, but the ratio of 3,3'-DDS used was 70 mol%. It was less than As a result, optical isotropy and acid resistance were poor.

Claims (4)

テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有するポリイミド樹脂であって、
構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、
構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)のみからなる、又は、構成単位(B-1)及び構成単位(B-1)以外の構成単位を含み、
構成単位(B-1)以外の構成単位が、下記式(b-2-1)で表される化合物に由来する構成単位(B-2-1)、下記式(b-2-2)で表される化合物に由来する構成単位(B-2-2)、下記式(b-2-3)で表される化合物に由来する構成単位(B-2-3)、及び下記式(b-2-4)で表される化合物に由来する構成単位(B-2-4)からなる群より選ばれる少なくとも1つである構成単位(B-2)であり、
構成単位Bが構成単位(B-1)以外の構成単位を含む場合における、構成単位B中における構成単位(B-1)の比率が70~95モル%である、ポリイミド樹脂。


(式(b-2-2)中、Rはそれぞれ独立して、水素原子、フッ素原子又はメチル基である。)
A polyimide resin having a structural unit A derived from a tetracarboxylic dianhydride and a structural unit B derived from a diamine,
A structural unit (A-1) in which structural unit A is derived from a compound represented by the following formula (a-1), and a structural unit (A-2) derived from a compound represented by the following formula (a-2) including
The structural unit B consists only of the structural unit (B-1) derived from the compound represented by the following formula (b-1), or a structure other than the structural unit (B-1) and the structural unit (B-1) including units ,
The structural unit other than the structural unit (B-1) is a structural unit (B-2-1) derived from a compound represented by the following formula (b-2-1), a structural unit (B-2-1) derived from the following formula (b-2-2), A structural unit (B-2-2) derived from the compound represented by the following formula (B-2-3), a structural unit (B-2-3) derived from the compound represented by the following formula (b-2-3), and the structural unit (B-2-3) derived from the compound represented by the following formula (b- The structural unit (B-2) is at least one selected from the group consisting of the structural unit (B-2-4) derived from the compound represented by 2-4),
A polyimide resin in which the ratio of the structural unit (B-1) in the structural unit B is 70 to 95 mol% when the structural unit B contains a structural unit other than the structural unit (B-1).


(In formula (b-2-2), each R is independently a hydrogen atom, a fluorine atom, or a methyl group.)
構成単位A中における構成単位(A-1)の比率が5~95モル%であり、
構成単位A中における構成単位(A-2)の比率が5~95モル%である、請求項1に記載のポリイミド樹脂。
The ratio of the structural unit (A-1) in the structural unit A is 5 to 95 mol%,
The polyimide resin according to claim 1, wherein the ratio of the structural unit (A-2) in the structural unit A is 5 to 95 mol%.
請求項1又は2に記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。 A polyimide varnish obtained by dissolving the polyimide resin according to claim 1 or 2 in an organic solvent. 請求項1又は2に記載のポリイミド樹脂を含む、ポリイミドフィルム。 A polyimide film comprising the polyimide resin according to claim 1 or 2.
JP2020557671A 2018-11-28 2019-11-22 Polyimide resin, polyimide varnish and polyimide film Active JP7384170B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018222894 2018-11-28
JP2018222894 2018-11-28
PCT/JP2019/045814 WO2020110947A1 (en) 2018-11-28 2019-11-22 Polyimide resin, polyimide varnish and polyimide film

Publications (2)

Publication Number Publication Date
JPWO2020110947A1 JPWO2020110947A1 (en) 2021-10-21
JP7384170B2 true JP7384170B2 (en) 2023-11-21

Family

ID=70853223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020557671A Active JP7384170B2 (en) 2018-11-28 2019-11-22 Polyimide resin, polyimide varnish and polyimide film

Country Status (5)

Country Link
JP (1) JP7384170B2 (en)
KR (1) KR20210097095A (en)
CN (1) CN113166412B (en)
TW (1) TWI838426B (en)
WO (1) WO2020110947A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210096064A (en) * 2018-11-28 2021-08-04 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resins, polyimide varnishes and polyimide films
JPWO2022014667A1 (en) * 2020-07-16 2022-01-20
KR20220032905A (en) * 2020-09-08 2022-03-15 주식회사 엘지화학 Polyimide-based polymer film, substrate for display device, and optical device using the same
WO2022054765A1 (en) * 2020-09-10 2022-03-17 三菱瓦斯化学株式会社 Polymer composition, varnish, and polyimide film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001040851A1 (en) 1999-11-30 2001-06-07 Hitachi, Ltd. Liquid-crystal display and resin composition
WO2016158825A1 (en) 2015-03-31 2016-10-06 旭化成株式会社 Polyimide film, polyimide varnish, product using polyimide film, and laminate
WO2017073782A1 (en) 2015-10-30 2017-05-04 株式会社アイ.エス.テイ Polyimide film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5824818B2 (en) * 2011-02-14 2015-12-02 三菱瓦斯化学株式会社 Colored light shielding polyimide film
KR101869173B1 (en) * 2014-02-14 2018-06-19 아사히 가세이 가부시키가이샤 Polyimide precursor and resin composition containing same
JP6579110B2 (en) * 2014-10-17 2019-09-25 三菱瓦斯化学株式会社 Polyimide resin composition, polyimide film and laminate
KR20240049649A (en) * 2015-10-15 2024-04-16 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyimide laminate and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001040851A1 (en) 1999-11-30 2001-06-07 Hitachi, Ltd. Liquid-crystal display and resin composition
WO2016158825A1 (en) 2015-03-31 2016-10-06 旭化成株式会社 Polyimide film, polyimide varnish, product using polyimide film, and laminate
WO2017073782A1 (en) 2015-10-30 2017-05-04 株式会社アイ.エス.テイ Polyimide film

Also Published As

Publication number Publication date
JPWO2020110947A1 (en) 2021-10-21
TW202031726A (en) 2020-09-01
TWI838426B (en) 2024-04-11
CN113166412A (en) 2021-07-23
CN113166412B (en) 2024-03-08
WO2020110947A1 (en) 2020-06-04
KR20210097095A (en) 2021-08-06

Similar Documents

Publication Publication Date Title
JP7424284B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP6996609B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7384170B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7367699B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7180617B2 (en) Polyimide resin composition and polyimide film
JP7205491B2 (en) Polyimide resin, polyimide varnish and polyimide film
JPWO2019069723A1 (en) Polyimide resin, polyimide varnish and polyimide film
JP7375749B2 (en) Polyamide-imide resin, polyamide-imide varnish and polyamide-imide film
CN114867767B (en) Polyimide resin, polyimide varnish and polyimide film
JP7524894B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7255489B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7484913B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7371621B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7517342B2 (en) Polyimide resin composition, polyimide varnish and polyimide film
WO2021177145A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2022091814A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2022091813A1 (en) Polyimide resin, polyimide varnish, and polyimide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R151 Written notification of patent or utility model registration

Ref document number: 7384170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151