WO2020110947A1 - Polyimide resin, polyimide varnish and polyimide film - Google Patents

Polyimide resin, polyimide varnish and polyimide film Download PDF

Info

Publication number
WO2020110947A1
WO2020110947A1 PCT/JP2019/045814 JP2019045814W WO2020110947A1 WO 2020110947 A1 WO2020110947 A1 WO 2020110947A1 JP 2019045814 W JP2019045814 W JP 2019045814W WO 2020110947 A1 WO2020110947 A1 WO 2020110947A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
mol
polyimide
film
manufactured
Prior art date
Application number
PCT/JP2019/045814
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 安孫子
舜 星野
孝博 村谷
慎司 関口
貴文 高田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201980077603.2A priority Critical patent/CN113166412B/en
Priority to JP2020557671A priority patent/JP7384170B2/en
Priority to KR1020217006670A priority patent/KR20210097095A/en
Publication of WO2020110947A1 publication Critical patent/WO2020110947A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide resin, a polyimide varnish, and a polyimide film.
  • the polyimide resin are being considered in the fields of electric and electronic parts. For example, it is desired to replace a glass substrate used for an image display device such as a liquid crystal display or an OLED display with a plastic substrate for the purpose of reducing the weight and flexibility of the device. Research is in progress.
  • the plastic substrate when light emitted from a display element is emitted through a plastic substrate, the plastic substrate is required to be colorless and transparent, and when light passes through a retardation film or a polarizing plate ( For example, liquid crystal displays, touch panels, etc.) are required to have high optical isotropy (that is, low Rth) in addition to colorless transparency.
  • ⁇ Development of various polyimide resins is progressing in order to meet the above required performance.
  • 3,3′-diaminodiphenylsulfone (primary diamine) and 4,4′-diaminodiphenylsulfone are used as polyimide resins that give a polyimide film that is colorless and transparent and has low Rth and excellent toughness.
  • a polyimide resin produced by using a combination with a specific diamine (secondary diamine) as a diamine component is described.
  • a polyimide film to be suitable as a substrate, not only colorless transparency and optical isotropy but also chemical resistance (solvent resistance, acid resistance and alkali resistance) are important physical properties.
  • solvent resistance for example, a varnish for forming the resin layer
  • the polyimide film contains a solvent contained in the varnish. Resistance is required. If the solvent resistance of the polyimide film is insufficient, the film may be meaningless as a substrate due to dissolution or swelling of the film.
  • the polyimide film When a polyimide film is used as a substrate for forming an ITO (Indium Tin Oxide) film, the polyimide film is required to have resistance to the acid used for etching the ITO film. If the acid resistance of the polyimide film is insufficient, the film may turn yellow and impair the colorless transparency. Further, an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution is mainly used for cleaning a support such as a glass plate (a support to which a polyimide varnish is applied) used when manufacturing a polyimide film. .. The cleaning with the alkaline aqueous solution may be performed even in the state where the polyimide film is formed on the support such as a glass plate. Therefore, the polyimide film is also required to have resistance to alkali. However, in Patent Document 1, chemical resistance is not evaluated.
  • the object of the present invention is a colorless transparent, optical isotropic, and chemical resistance (solvent resistance, acid resistance and alkali resistance) excellent film It is to provide a polyimide resin capable of forming a film, and a polyimide varnish and a polyimide film containing the polyimide resin.
  • the present inventors have found that a polyimide resin containing a specific combination of structural units can solve the above problems, and have completed the invention.
  • a polyimide resin having a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from a diamine A structural unit A is a structural unit (A-1) derived from a compound represented by the following formula (a-1) and a structural unit (A-2) is derived from a compound represented by the following formula (a-2).
  • Including and The structural unit B contains a structural unit (B-1) derived from a compound represented by the following formula (b-1), A polyimide resin in which the ratio of the structural unit (B-1) in the structural unit B is 70 mol% or more.
  • the ratio of the structural unit (A-1) in the structural unit A is 5 to 95 mol %
  • the polyimide resin according to the above [1], wherein the ratio of the structural unit (A-2) in the structural unit A is 5 to 95 mol %.
  • the polyimide resin of the present invention has a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from a diamine, and the structural unit A is derived from a compound represented by the following formula (a-1).
  • the structural unit (A-1) and the structural unit (A-2) derived from the compound represented by the following formula (a-2) are contained, and the structural unit B is represented by the following formula (b-1).
  • the constitutional unit (B-1) derived from the compound is contained, and the proportion of the constitutional unit (B-1) in the constitutional unit B is 70 mol% or more.
  • the structural unit A is a structural unit derived from the tetracarboxylic dianhydride occupying in the polyimide resin, and the structural unit (A-1) derived from the compound represented by the following formula (a-1) and the following formula And a structural unit (A-2) derived from the compound represented by (a-2).
  • the compound represented by the formula (a-1) is 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • the compound represented by the formula (a-2) is 4,4′-oxydiphthalic anhydride.
  • the ratio of the structural unit (A-1) in the structural unit A is preferably 5 to 95 mol%, more preferably 15 to 95 mol%, and the film has colorless transparency, optical isotropy, and From the viewpoint of improving the chemical resistance, it is more preferably 20 to 90 mol %, particularly preferably 50 to 90 mol %. On the other hand, particularly from the viewpoint of optical isotropy and acid resistance, it is more preferably 70 to 95 mol %, and particularly preferably 85 to 95 mol %.
  • the ratio of the structural unit (A-2) in the structural unit A is preferably 5 to 95 mol %, more preferably 5 to 85 mol %, the colorless transparency of the film, optical isotropy, and From the viewpoint of improving the chemical resistance, it is more preferably 10 to 80 mol %, particularly preferably 10 to 50 mol %. On the other hand, from the viewpoint of optical isotropy and acid resistance, the content is more preferably 5 to 30 mol %, particularly preferably 5 to 15 mol %.
  • the total ratio of the structural units (A-1) and (A-2) in the structural unit A is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more. And particularly preferably 99 mol% or more.
  • the upper limit of the total ratio of the structural units (A-1) and (A-2) is not particularly limited, that is, 100 mol%.
  • the structural unit A may consist of the structural unit (A-1) and the structural unit (A-2) only.
  • the structural unit A may include a structural unit other than the structural units (A-1) and (A-2).
  • the tetracarboxylic acid dianhydride that gives such a constitutional unit is not particularly limited, but pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 9,9′ -Bis(3,4-dicarboxyphenyl)fluorene dianhydride, and aromatic tetracarboxylic dianhydrides such as 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (provided that the formula (a-2 A) 1,2,3,4-cyclobutanetetracarboxylic dianhydride and norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2''-norbornane-5) , 5′′, 6,6′′-tetracarboxylic dianhydride and the like, alicyclic
  • the aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings
  • the alicyclic tetracarboxylic dianhydride has one alicyclic ring.
  • the above means a tetracarboxylic dianhydride containing no aromatic ring
  • the aliphatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
  • the constitutional units arbitrarily contained in the constitutional unit A may be one kind or two or more kinds.
  • the structural unit B is a structural unit derived from a diamine in the polyimide resin and includes a structural unit (B-1) derived from a compound represented by the following formula (b-1).
  • the compound represented by the formula (b-1) is 3,3′-diaminodiphenyl sulfone.
  • the structural unit B contains the structural unit (B-1)
  • the optical isotropy and chemical resistance of the film can be improved.
  • acid resistance can be improved.
  • the ratio of the structural unit (B-1) in the structural unit B is 70 mol% or more.
  • the ratio is preferably 75 mol% or more, more preferably 80 mol% or more.
  • the upper limit of the ratio of the structural unit (B-1) may be 90 mol%, 95 mol%, 99 mol% or 100 mol%.
  • the structural unit B may consist of the structural unit (B-1) only.
  • the structural unit B may include a structural unit other than the structural unit (B-1).
  • the diamine which gives such a constitutional unit is not particularly limited, but 1,4-phenylenediamine, p-xylylenediamine, 3,5-diaminobenzoic acid, 1,5-diaminonaphthalene, 2,2′-dimethyl Biphenyl-4,4'-diamine, 2,2'-bis(trifluoromethyl)benzidine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 2,2-bis(4-aminophenyl)hexa Fluoropropane, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminobenzanilide, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-indene-5 Amine, ⁇ , ⁇ '-bis(4-amin
  • the aromatic diamine means a diamine containing at least one aromatic ring
  • the alicyclic diamine means a diamine containing at least one alicyclic ring and containing no aromatic ring
  • a fat Group diamine means a diamine containing neither an aromatic ring nor an alicyclic ring.
  • the constitutional unit arbitrarily contained in the constitutional unit B may be one type or two or more types.
  • Examples of the diamine that gives the structural unit arbitrarily contained in the structural unit B include compounds represented by the following formula (b-2-1), compounds represented by the following formula (b-2-2), and compounds represented by the following formula (b -2-3) and compounds represented by the following formula (b-2-4) are preferable.
  • the structural unit B is a structural unit (B-2-1) derived from a compound represented by the following formula (b-2-1), and the following structural formula (b-2) -2), a structural unit (B-2-2) derived from a compound represented by the formula (b-2-3), a structural unit (B-2-3) derived from a compound represented by the following formula (b-2-3), and
  • the compound may further contain a structural unit (B-2) which is at least one selected from the group consisting of structural units (B-2-4) derived from the compound represented by the formula (b-2-4).
  • each R is independently a hydrogen atom, a fluorine atom or a methyl group.
  • the compound represented by the formula (b-2-1) is 4,4′-diamino-2,2′-bistrifluoromethyldiphenyl ether.
  • the structural unit B contains the structural unit (B-2-1), the colorless transparency of the film can be improved.
  • each R is independently a hydrogen atom, a fluorine atom or a methyl group, and preferably a hydrogen atom.
  • the compound represented by the formula (b-2-2) include 9,9-bis(4-aminophenyl)fluorene, 9,9-bis(3-fluoro-4-aminophenyl)fluorene, and 9,9. Examples thereof include -bis(3-methyl-4-aminophenyl)fluorene, and 9,9-bis(4-aminophenyl)fluorene is preferable.
  • the structural unit B contains the structural unit (B-2-2)
  • the optical isotropy and heat resistance of the film can be improved.
  • the compound represented by the formula (b-2-3) is 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane.
  • the structural unit (B-2-3) By including the structural unit (B-2-3) in the structural unit B, the colorless transparency and optical isotropy of the film can be improved.
  • the compound represented by the formula (b-2-4) is 2,2′-bis(trifluoromethyl)benzidine.
  • the structural unit B contains the structural unit (B-2-4)
  • the colorless transparency, chemical resistance, heat resistance and mechanical properties of the film can be improved.
  • the structural unit B is a structural unit (B-2-1) derived from a compound represented by the formula (b-2-1).
  • the constituent unit B preferably contains a constituent unit (B-2-3) derived from the compound represented by the formula (b-2-3).
  • the ratio of the structural unit (B-1) in the structural unit B is preferably 70 to 95 mol %, and It is preferably 75 to 95 mol %, more preferably 75 to 90 mol %, and the ratio of the structural unit (B-2) in the structural unit B is preferably 5 to 30 mol %, and more preferably It is 5 to 25 mol %, and more preferably 10 to 25 mol %.
  • the total ratio of the structural unit (B-1) and the structural unit (B-2) in the structural unit B is preferably 75 mol% or more, more preferably 80 mol% or more, further preferably 90 mol%. % Or more, particularly preferably 99 mol% or more.
  • the upper limit of the total ratio of the structural unit (B-1) and the structural unit (B-2) is not particularly limited, that is, 100 mol%.
  • the structural unit B may consist of only the structural unit (B-1) and the structural unit (B-2).
  • the structural unit (B-2) may be only the structural unit (B-2-1) or only the structural unit (B-2-2), and the structural unit (B-2-3) Or only the structural unit (B-2-4). Further, the structural unit (B-2) may be a combination of two or more structural units selected from the group consisting of the structural units (B-2-1) to (B-2-4).
  • the number average molecular weight of the polyimide resin of the present invention is preferably 5,000 to 200,000 from the viewpoint of mechanical strength of the obtained polyimide film.
  • the number average molecular weight of the polyimide resin can be determined, for example, from a standard polymethylmethacrylate (PMMA) conversion value measured by gel filtration chromatography.
  • the polyimide resin of the present invention may include a structure other than a polyimide chain (a structure in which the structural unit A and the structural unit B are imide-bonded).
  • Examples of the structure other than the polyimide chain that may be contained in the polyimide resin include a structure containing an amide bond.
  • the polyimide resin of the present invention preferably contains a polyimide chain (a structure in which the structural unit A and the structural unit B are imide-bonded) as a main structure. Therefore, the ratio of the polyimide chain in the polyimide resin of the present invention is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 90% by mass or more, particularly preferably 99% by mass. % Or more.
  • the total light transmittance is preferably 88% or more, more preferably 88.5% or more, still more preferably 89% or more when a film having a thickness of 10 ⁇ m is formed.
  • the yellow index (YI) of the film having a thickness of 10 ⁇ m is preferably 4.0 or less, more preferably 2.5 or less, and further preferably 2.0 or less.
  • b * is preferably 2.0 or less, more preferably 1.2 or less, still more preferably 1.0 or less when a film having a thickness of 10 ⁇ m is formed.
  • the absolute value of the thickness retardation (Rth) is preferably 70 nm or less, more preferably 60 nm or less, still more preferably 50 nm or less when a film having a thickness of 10 ⁇ m is formed.
  • the mixed acid ⁇ YI is preferably 1.5 or less, more preferably 1.3 or less, and still more preferably 1.0 or less when a film having a thickness of 10 ⁇ m is formed.
  • the mixed acid ⁇ b * is preferably 0.8 or less, more preferably 0.6 or less, still more preferably 0.5 or less when a film having a thickness of 10 ⁇ m is formed.
  • the mixed acid ⁇ YI and mixed acid ⁇ b * mean the difference in YI and the difference in b * before and after the immersion of the polyimide film in a mixture of phosphoric acid, nitric acid and acetic acid, respectively. It can be measured by the method described in the examples. It means that the smaller ⁇ YI and ⁇ b * are, the more excellent the acid resistance is.
  • a film having excellent chemical resistance can be formed and excellent resistance to acid is also exhibited.
  • a mixed solution of mixed acids for example, 50 to 97% by mass of phosphoric acid, 1 to 20% by mass of nitric acid, 1 to 10% by mass of acetic acid, and 1 to 20% by mass of water, preferably 63 to 87% of phosphoric acid).
  • the film that can be formed using the polyimide resin of the present invention has good mechanical properties and heat resistance, and has the following suitable physical property values.
  • the tensile strength is preferably 60 MPa or more, more preferably 70 MPa or more, and further preferably 80 MPa or more.
  • the tensile elastic modulus is preferably 2.0 GPa or more, more preferably 2.5 GPa or more, and further preferably 3.0 GPa or more.
  • the glass transition temperature (Tg) is preferably 230°C or higher, more preferably 250°C or higher, and further preferably 270°C or higher.
  • the polyimide resin of the present invention comprises a tetracarboxylic acid component containing a compound giving the above structural unit (A-1) and a compound giving the above structural unit (A-2), and the above structural unit (B-1). It can be produced by reacting with a diamine component containing 70 mol% or more of the compound to be given.
  • Examples of the compound that provides the structural unit (A-1) include compounds represented by the formula (a-1), but the compound is not limited thereto, and a derivative thereof may be used as long as the same structural unit is provided.
  • Examples of the derivative include a tetracarboxylic acid corresponding to the tetracarboxylic acid dianhydride represented by the formula (a-1) (that is, 1,2,4,5-cyclohexanetetracarboxylic acid) and an alkyl of the tetracarboxylic acid. Esters can be mentioned.
  • a compound represented by the formula (a-1) ie, dianhydride
  • examples of the compound that provides the structural unit (A-2) include compounds represented by the formula (a-2), but the compound is not limited thereto, and a derivative thereof may be used as long as the same structural unit is provided. ..
  • examples of the derivative include a tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by the formula (a-2) and an alkyl ester of the tetracarboxylic acid.
  • the compound represented by the formula (a-2) ie, dianhydride
  • a-2 ie, dianhydride
  • the tetracarboxylic acid component preferably contains the compound giving the structural unit (A-1) in an amount of 5 to 95 mol %, more preferably 15 to 95 mol %, and has colorless transparency of the film, optical isotropy, and From the viewpoint of improving the chemical resistance, the content is more preferably 20 to 90 mol %, particularly preferably 50 to 90 mol %. On the other hand, particularly from the viewpoint of optical isotropy and acid resistance, the content is more preferably 70 to 95 mol %, and particularly preferably 85 to 95 mol %.
  • the tetracarboxylic acid component preferably contains 5 to 95 mol% of the compound giving the structural unit (A-2), more preferably 5 to 85 mol%, and the film has colorless transparency, optical isotropy, and From the viewpoint of improving the chemical resistance, the content is more preferably 10 to 80 mol %, particularly preferably 10 to 50 mol %. On the other hand, from the viewpoints of optical isotropy and acid resistance, the content is more preferably 5 to 30 mol %, particularly preferably 5 to 15 mol %.
  • the tetracarboxylic acid component contains a compound giving the structural unit (A-1) and a compound giving the structural unit (A-2) in a total amount of preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably Is 90 mol% or more, particularly preferably 99 mol% or more.
  • the upper limit of the total content ratio of the compound providing the structural unit (A-1) and the compound providing the structural unit (A-2) is not particularly limited, that is, 100 mol%.
  • the tetracarboxylic acid component may consist of only the compound which gives the structural unit (A-1) and the compound which gives the structural unit (A-2).
  • the tetracarboxylic acid component may include a compound other than the compound which gives the structural unit (A-1) and the compound which gives the structural unit (A-2), and the compound is the aromatic tetracarboxylic dianhydride described above. Alicyclic tetracarboxylic dianhydride, aliphatic tetracarboxylic dianhydride, and derivatives thereof (tetracarboxylic acid, alkyl ester of tetracarboxylic acid, etc.).
  • the compound optionally contained in the tetracarboxylic acid component may be one type or two or more types. It may be.
  • Examples of the compound that provides the structural unit (B-1) include compounds represented by the formula (b-1), but the compound is not limited thereto, and a derivative thereof may be used as long as the same structural unit is provided.
  • Examples of the derivative include diisocyanates corresponding to the diamine represented by the formula (b-1).
  • a compound represented by the formula (b-1) that is, diamine is preferable.
  • the diamine component contains 70 mol% or more of the compound giving the structural unit (B-1).
  • the diamine component preferably contains 75 mol% or more, more preferably 80 mol% or more, of the compound providing the structural unit (B-1).
  • the upper limit of the content ratio of the compound providing the structural unit (B-1) may be 90 mol%, 95 mol%, 99 mol% or 100 mol%.
  • the diamine component may consist of only the compound which gives the structural unit (B-1).
  • the diamine component may include a compound other than the compound that provides the structural unit (B-1), and examples of the compound include the above-mentioned aromatic diamine, alicyclic diamine, and aliphatic diamine, and their derivatives (diisocyanate, etc.). Is mentioned.
  • the compound optionally contained in the diamine component (that is, the compound other than the compound providing the structural unit (B-1)) may be one type or two or more types.
  • a compound giving the structural unit (B-2) that is, a compound giving the structural unit (B-2-1), a compound giving the structural unit (B-2-2), At least one selected from the group consisting of a compound giving the structural unit (B-2-3) and a compound giving the structural unit (B-2-4) is preferable, and among them, the structural unit (B-2-3) Are more preferred.
  • the compound providing the structural unit (B-2) include a compound represented by the formula (b-2-1), a compound represented by the formula (b-2-2), and a compound represented by the formula (b-2-3).
  • Examples thereof include the compound represented by the formula (b-2-4) and the compound represented by the formula (b-2-4), and the derivative may be used as long as the same constitutional unit can be formed.
  • Examples of the derivative include diisocyanates corresponding to the diamines represented by the formulas (b-2-1) to (b-2-4).
  • compounds represented by formula (b-2-1) to formula (b-2-4) that is, diamine are preferable.
  • the diamine component when the diamine component contains a compound which gives the structural unit (B-1) and a compound which gives the structural unit (B-2), the diamine component preferably contains 70 to 95 mol% of the compound which gives the structural unit (B-1). Included, more preferably 75 to 95 mol%, still more preferably 75 to 90 mol%, preferably 5 to 30 mol%, more preferably 5 to 25 mol% of the compound providing the structural unit (B-2). And more preferably 10 to 25 mol %.
  • the total amount of the diamine component containing the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2) is preferably 75 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more.
  • the diamine component may consist of only the compound which gives the structural unit (B-1) and the compound which gives the structural unit (B-2).
  • the compound giving the structural unit (B-2) may be only the compound giving the structural unit (B-2-1), or may be only the compound giving the structural unit (B-2-2), Only the compound providing the structural unit (B-2-3) may be used, or only the compound providing the structural unit (B-2-4) may be used.
  • the compound that provides the structural unit (B-2) is a combination of two or more compounds selected from the group consisting of compounds that provide the structural units (B-2-1) to (B-2-4). Good.
  • the charge ratio of the tetracarboxylic acid component and the diamine component used for producing the polyimide resin is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component.
  • an endcapping agent may be used in the production of the polyimide resin.
  • the terminal blocking agent monoamines or dicarboxylic acids are preferable.
  • the amount of the terminal blocking agent introduced is preferably 0.0001 to 0.1 mol, and particularly preferably 0.001 to 0.06 mol, per 1 mol of the tetracarboxylic acid component.
  • Examples of monoamine endcapping agents include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline and the like are recommended. Of these, benzylamine and aniline can be preferably used.
  • dicarboxylic acid end capping agent dicarboxylic acids are preferable, and a part thereof may be ring-closed.
  • phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenone dicarboxylic acid, 3,4-benzophenone dicarboxylic acid, cyclopentane-1,2-dicarboxylic acid, 4-cyclohexene-1 , 2-dicarboxylic acid and the like are recommended.
  • phthalic acid and phthalic anhydride can be preferably used.
  • the method for reacting the above-mentioned tetracarboxylic acid component and diamine component is not particularly limited, and a known method can be used.
  • a specific reaction method (1) a tetracarboxylic acid component, a diamine component, and a reaction solvent are charged in a reactor, stirred at room temperature (about 20° C.) to 80° C. for 0.5 to 30 hours, and then heated.
  • a method of stirring for 0.5 to 30 hours and then raising the temperature to perform an imidization reaction (3) charging a tetracarboxylic acid component, a diamine component, and a reaction solvent into a reactor and immediately raising the temperature to perform the imidization reaction. And the like.
  • the reaction solvent used for producing the polyimide resin may be any solvent that does not inhibit the imidization reaction and that can dissolve the generated polyimide.
  • an aprotic solvent, a phenol solvent, an ether solvent, a carbonate solvent, etc. are mentioned.
  • aprotic solvent examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone and tetramethylurea.
  • examples thereof include system solvents, ketone solvents such as acetone, cyclohexanone and methylcyclohexanone, amine solvents such as picoline and pyridine, ester solvents such as acetic acid (2-methoxy-1-methylethyl).
  • phenolic solvent examples include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4. -Xylenol, 3,5-xylenol and the like can be mentioned.
  • ether solvents include 1,2-dimethoxyethane, bis(2-methoxyethyl)ether, 1,2-bis(2-methoxyethoxy)ethane, bis[2-(2-methoxyethoxy)ethyl].
  • Ether, tetrahydrofuran, 1,4-dioxane and the like can be mentioned.
  • carbonate-based solvent examples include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate and the like.
  • amide solvents or lactone solvents are preferable.
  • the imidization reaction it is preferable to use a Dean-Stark apparatus or the like to carry out the reaction while removing water produced during production. By performing such an operation, the degree of polymerization and the imidization ratio can be further increased.
  • a known imidization catalyst can be used.
  • the imidization catalyst include a base catalyst and an acid catalyst.
  • the base catalyst pyridine, quinoline, isoquinoline, ⁇ -picoline, ⁇ -picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, imidazole, N,N
  • examples include organic base catalysts such as dimethylaniline and N,N-diethylaniline, and inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, and sodium hydrogen carbonate.
  • the acid catalyst crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, paratoluenesulfonic acid, naphthalenesulfonic acid, etc.
  • the above imidization catalysts may be used alone or in combination of two or more.
  • a base catalyst more preferable to use an organic base catalyst, further preferable to use triethylamine, and particularly preferable to use triethylamine and triethylenediamine in combination.
  • the temperature of the imidization reaction is preferably 120 to 250° C., more preferably 160 to 200° C., from the viewpoint of reaction rate and suppression of gelation and the like.
  • the reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
  • the polyimide varnish of the present invention is obtained by dissolving the polyimide resin of the present invention in an organic solvent. That is, the polyimide varnish of the present invention contains the polyimide resin of the present invention and an organic solvent, and the polyimide resin is dissolved in the organic solvent.
  • the organic solvent is not particularly limited as long as it can dissolve the polyimide resin, but it is preferable to use the compounds described above as the reaction solvent used in the production of the polyimide resin, alone or in combination of two or more kinds.
  • the polyimide varnish of the present invention may be a polyimide solution itself in which a polyimide resin obtained by a polymerization method is dissolved in a reaction solvent, or may be one obtained by further adding a diluting solvent to the polyimide solution.
  • the polyimide varnish of the present invention preferably contains the polyimide resin of the present invention in an amount of 5 to 40% by mass, more preferably 10 to 30% by mass.
  • the viscosity of the polyimide varnish is preferably 1 to 200 Pa ⁇ s, more preferably 2 to 100 Pa ⁇ s.
  • the viscosity of the polyimide varnish is a value measured at 25° C. using an E-type viscometer.
  • the polyimide varnish of the present invention is an inorganic filler, an adhesion promoter, a release agent, a flame retardant, an ultraviolet stabilizer, a surfactant, a leveling agent, a defoaming agent, and a fluorescent enhancer within a range that does not impair the required properties of the polyimide film. It may contain various additives such as a whitening agent, a crosslinking agent, a polymerization initiator, and a photosensitizer.
  • the method for producing the polyimide varnish of the present invention is not particularly limited, and a known method can be applied.
  • the polyimide film of the present invention contains the polyimide resin of the present invention. Therefore, the polyimide film of the present invention is excellent in colorless transparency, optical isotropy, and chemical resistance (solvent resistance, acid resistance and alkali resistance). Suitable physical properties of the polyimide film of the present invention are as described above.
  • the method for producing the polyimide film of the present invention is not particularly limited, and a known method can be used.
  • the coating method examples include known coating methods such as spin coating, slit coating, and blade coating.
  • the slit coat is preferable from the viewpoint of controlling intermolecular orientation and improving chemical resistance and workability.
  • a temperature equal to or higher than the boiling point of the used organic solvent not particularly limited, preferably It is preferable to dry at 200 to 500°C. Further, it is preferable to dry under an air atmosphere or a nitrogen atmosphere.
  • the pressure of the dry atmosphere may be any of reduced pressure, normal pressure and increased pressure.
  • the method of peeling the polyimide film formed on the support from the support is not particularly limited, but a laser lift-off method or a method of using a sacrificial layer for peeling (a release agent is applied to the surface of the support in advance. Method).
  • the polyimide film of the present invention can also be produced using a polyamic acid varnish obtained by dissolving polyamic acid in an organic solvent.
  • the polyamic acid contained in the polyamic acid varnish includes a compound that gives the above-mentioned structural unit (A-1) and a compound that gives the above-mentioned structural unit (A-2), which are precursors of the polyimide resin of the present invention. It is a product of a polyaddition reaction between a tetracarboxylic acid component and a diamine component containing 70 mol% or more of the compound which gives the structural unit (B-1).
  • the final product of the polyimide resin of the present invention can be obtained.
  • the organic solvent contained in the polyamic acid varnish the organic solvent contained in the polyimide varnish of the present invention can be used.
  • the polyamic acid varnish may be a polyamic acid solution itself obtained by polyaddition reaction of a tetracarboxylic acid component and a diamine component in a reaction solvent, or further diluted with respect to the polyamic acid solution. It may be a solvent added.
  • the method for producing a polyimide film using a polyamic acid varnish is not particularly limited, and a known method can be used.
  • a polyamic acid varnish is applied on a smooth support such as a glass plate, a metal plate, or a plastic, or formed into a film, and an organic solvent such as a reaction solvent or a diluting solvent contained in the varnish is removed by heating.
  • a polyamic acid film is obtained, and the polyamic acid in the polyamic acid film is imidized by heating to produce a polyimide film.
  • the heating temperature for drying the polyamic acid varnish to obtain a polyamic acid film is preferably 50 to 120°C.
  • the heating temperature for imidizing the polyamic acid by heating is preferably 200 to 400°C.
  • the imidization method is not limited to thermal imidization, and chemical imidization can also be applied.
  • the thickness of the polyimide film of the present invention can be appropriately selected depending on the application etc., but is preferably in the range of 1 to 250 ⁇ m, more preferably 5 to 100 ⁇ m, and further preferably 10 to 80 ⁇ m. A thickness of 1 to 250 ⁇ m enables practical use as a self-supporting film.
  • the thickness of the polyimide film can be easily controlled by adjusting the solid content concentration and viscosity of the polyimide varnish.
  • the polyimide film of the present invention is preferably used as a film for various members such as color filters, flexible displays, semiconductor parts and optical members.
  • the polyimide film of the present invention is particularly preferably used as a substrate for image display devices such as liquid crystal displays and OLED displays.
  • each physical property was measured by the methods described below.
  • (1) Film thickness The film thickness was measured using a micrometer manufactured by Mitutoyo Corporation.
  • (2) Tensile Strength and Tensile Elastic Modulus Tensile strength and tensile elastic modulus were measured using a tensile tester “STROGRAPH VG-1E” manufactured by Toyo Seiki Co., Ltd. according to JIS K7127:1999. The distance between chucks was 50 mm, the size of the test piece was 10 mm ⁇ 70 mm, and the test speed was 20 mm/min.
  • PGMEA propylene glycol monomethyl ether acetate
  • the evaluation criteria for solvent resistance were as follows. A: There was no change on the film surface. B: The surface of the film was slightly cracked. C: The film surface was cracked or the film surface was dissolved. (7) Acid resistance (mixed acid ⁇ YI and mixed acid ⁇ b * ) Of a mixed acid (H 3 PO 4 (70 mass %)+HNO 3 (10 mass %)+CH 3 COOH (5 mass %)+H 2 O (15 mass %) obtained by heating a polyimide film formed on a glass plate to 40° C. It was immersed in a mixed solution) for 4 minutes and then washed with water.
  • tetracarboxylic acid component and diamine component used in the examples and comparative examples, and their abbreviations are as follows.
  • ODPA 4,4′-oxydiphthalic anhydride (manac KK; compound represented by formula (a-2))
  • BAFL 9,9-bis(4
  • Example 1 32.841 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.132 mol) and ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) (63.328 g) were added, and the solution was obtained by stirring at a system internal temperature of 70° C. and a nitrogen atmosphere at a rotation speed of 200 rpm.
  • Example 2 In a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap, 31.073 g of 3,3′-DDS ( 0.125 mol) and 63.077 g of ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the solution was obtained by stirring at a system internal temperature of 70° C. and a nitrogen atmosphere at a rotation speed of 200 rpm.
  • Example 3 29.486 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.119 mol) and ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) (62.851 g) were added, and the solution was obtained by stirring at a system internal temperature of 70° C. and a nitrogen atmosphere at a rotation speed of 200 rpm.
  • ⁇ -butyrolactone manufactured by Mitsubishi Chemical Co., Ltd.
  • Example 4 25.353 g of 3,3′-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.102 mol), 6FODA (8.547 g (0.025 mol)), and ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Corporation) (63.142 g) were added, the system temperature was 70°C, and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
  • Example 5 In a 300 mL five-necked round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap, 24.04 g of 3,3'-DDS ( 0.096 mol), 6.106 g (0.024 mol) of 6FODA, and 62.910 g of ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Corporation) were charged, and the system temperature was 70° C., under a nitrogen atmosphere, and the rotation speed was 200 rpm. A solution was obtained by stirring.
  • Example 6 25.822 g of 3,3′-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.103 mol), 6.706 g (0.026 mol) of 6FODA, and 63.225 g of ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were charged, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
  • Example 7 25.218 g of 3,3′-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.101 mol), 8.821 g (0.025 mol) of BAFL, and 63.118 g of ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were charged, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
  • Example 9 23.530 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.094 mol), 12.247 g (0.024 mol) of HFBAPP, and 62.820 g of ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
  • Example 11 23.933 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap.
  • 0.096 mol 12.457 g (0.024 mol) of HFBAPP, and 62.891 g of ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere.
  • a solution was obtained by stirring.
  • Example 12 26.000 g of 3,3'-DDS was placed in a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.104 mol), 8.351 g (0.026 mol) of TFMB, and 63.256 g of ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
  • ⁇ Comparative example 4> 15.356 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.062 mol), 21.485 g (0.062 mol) of BAFL, and 63.004 g of ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
  • ⁇ Comparative Example 5> 13.053 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.052 mol), 18.263 g (0.052 mol) of BAFL, and 62.353 g of ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
  • ⁇ Comparative example 6> 14.109 g of 3,3'-DDS was added to a 300 mL five-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.057 mol), 19.740 g (0.057 mol) of BAFL, and 62.651 g of ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Corporation) were charged, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
  • Comparative Example 1 The film of Comparative Example 1 was significantly deteriorated when immersed in a mixed acid in the acid resistance test, so that the YI and b * after immersion could not be measured. Therefore, ⁇ YI and ⁇ b * of Comparative Example 1 were not obtained.
  • the polyimide films of Examples 1 to 3 were produced by using HPMDA and ODPA in combination as the tetracarboxylic acid component and 3,3′-DDS as the diamine component. As a result, it was excellent in colorless transparency, optical isotropy, and chemical resistance (solvent resistance, acid resistance and alkali resistance).
  • the polyimide film of Comparative Example 1 was manufactured using only HPMDA as the tetracarboxylic acid component. As a result, the acid resistance was poor.
  • the polyimide film of Comparative Example 2 was manufactured using only ODPA as the tetracarboxylic acid component. As a result, the colorless transparency and the optical isotropy were poor.
  • the polyimide film of Comparative Example 3 was manufactured using BAFL only without using 3,3′-DDS as a diamine component. As a result, the acid resistance was poor.
  • the polyimide films of Examples 4 to 12 used not only 3,3′-DDS as the diamine component but also a second diamine (6FODA, BAFL, HFBAPP, or TFMB) other than that. Manufactured. However, 3,3′-DDS and secondary diamine were used in combination so that the ratio of 3,3′-DDS was 70 mol% or more. As a result, it was excellent in colorless transparency, optical isotropy, and chemical resistance (solvent resistance, acid resistance and alkali resistance). On the other hand, the polyimide film of Comparative Example 4 was produced by using 3,3′-DDS as the diamine component in combination with the other second diamine (BAFL), and the ratio of the 3,3′-DDS used was 70.
  • a second diamine 6FODA, BAFL, HFBAPP, or TFMB
  • the polyimide film of Comparative Example 5 was produced by using 3,3′-DDS as the diamine component and the other secondary diamine (BAFL) in combination, and the ratio of the 3,3′-DDS used was 70 mol %. Was less than. Furthermore, only ODPA was used as the tetracarboxylic acid component. As a result, the colorless transparency (total light transmittance), optical isotropy, and acid resistance were poor.
  • the polyimide film of Comparative Example 6 was produced by using 3,3'-DDS as the diamine component and the other secondary diamine (BAFL) in combination, and the ratio of the 3,3'-DDS used was 70 mol%. Was less than. As a result, the optical isotropy and acid resistance were poor.

Abstract

Provided is a polyimide resin having constituent units A derived from tetracarboxylic dianhydride and constituent units B derived from diamine. The constituent units A include constituent units (A-1) derived from a compound represented by formula (a-1), and constituent units (A-2) derived from a compound represented by formula (a-2). Constituent units B include constituent units (B-1) derived from a compound represented by formula (b-1), and the ratio of constituent units (B-1) in constituent unit B is at least 70 mol%. Also provided are a polyimide varnish and a polyimide film containing said polyimide resin.

Description

ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムPolyimide resin, polyimide varnish and polyimide film
 本発明はポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムに関する。 The present invention relates to a polyimide resin, a polyimide varnish, and a polyimide film.
 ポリイミド樹脂は、電気・電子部品等の分野において様々な利用が検討されている。例えば、液晶ディスプレイやOLEDディスプレイ等の画像表示装置に用いられるガラス基板を、デバイスの軽量化やフレキシブル化を目的として、プラスチック基板へ代替することが望まれており、当該プラスチック基板として適するポリイミドフィルムの研究が進められている。
 画像表示装置において、表示素子から発せられる光がプラスチック基板を通って出射されるような場合、プラスチック基板には無色透明性が要求され、さらに、位相差フィルムや偏光板を光が通過する場合(例えば、液晶ディスプレイ、タッチパネルなど)は、無色透明性に加えて、光学的等方性が高い(即ち、Rthが低い)ことも要求される。
Various uses of the polyimide resin are being considered in the fields of electric and electronic parts. For example, it is desired to replace a glass substrate used for an image display device such as a liquid crystal display or an OLED display with a plastic substrate for the purpose of reducing the weight and flexibility of the device. Research is in progress.
In an image display device, when light emitted from a display element is emitted through a plastic substrate, the plastic substrate is required to be colorless and transparent, and when light passes through a retardation film or a polarizing plate ( For example, liquid crystal displays, touch panels, etc.) are required to have high optical isotropy (that is, low Rth) in addition to colorless transparency.
 上記のような要求性能を満たすために、様々なポリイミド樹脂の開発が進められている。例えば、特許文献1には、無色透明でRthが低く、靱性に優れるポリイミドフィルムを与えるポリイミド樹脂として、3,3’-ジアミノジフェニルスルホン(第一ジアミン)と4,4’-ジアミノジフェニルスルホン等の特定のジアミン(第二ジアミン)との組み合わせをジアミン成分に用いて製造されたポリイミド樹脂が記載されている。 ▽Development of various polyimide resins is progressing in order to meet the above required performance. For example, in Patent Document 1, 3,3′-diaminodiphenylsulfone (primary diamine) and 4,4′-diaminodiphenylsulfone are used as polyimide resins that give a polyimide film that is colorless and transparent and has low Rth and excellent toughness. A polyimide resin produced by using a combination with a specific diamine (secondary diamine) as a diamine component is described.
国際公開第2016/158825号International Publication No. 2016/158825
 ところで、ポリイミドフィルムが基板として適するためには、無色透明性及び光学的等方性だけでなく、耐薬品性(耐溶剤性、耐酸性及び耐アルカリ性)も重要な物性である。
 例えば、ポリイミドフィルムの上に別の樹脂層(例えば、カラーフィルター、レジスト)を形成するために当該樹脂層形成用のワニスをポリイミドフィルムに塗布する場合、ポリイミドフィルムには当該ワニス中に含まれる溶剤に対する耐性が求められる。ポリイミドフィルムの耐溶剤性が不十分であると、フィルムの溶解や膨潤により、基板として意味をなさなくなるおそれがある。
 また、ポリイミドフィルムをITO(Indium Tin Oxide)膜形成用の基板として用いた場合、ポリイミドフィルムにはITO膜のエッチングに用いられる酸に対する耐性が求められる。ポリイミドフィルムの耐酸性が不十分であると、フィルムが黄変して無色透明性が損なわれるおそれがある。
 また、ポリイミドフィルムを製造する際に使用するガラス板等の支持体(ポリイミドワニスを塗布する支持体)の洗浄には、水酸化ナトリウム水溶液や水酸化カリウム水溶液等のアルカリ水溶液が主に使用される。アルカリ水溶液による洗浄は、ガラス板等の支持体上にポリイミドフィルムが製膜された状態でも行われる可能性がある。したがって、ポリイミドフィルムにはアルカリに対する耐性も求められる。
 しかし、特許文献1では、耐薬品性について評価されていない。
By the way, for a polyimide film to be suitable as a substrate, not only colorless transparency and optical isotropy but also chemical resistance (solvent resistance, acid resistance and alkali resistance) are important physical properties.
For example, when a varnish for forming the resin layer is applied to the polyimide film to form another resin layer (for example, a color filter or a resist) on the polyimide film, the polyimide film contains a solvent contained in the varnish. Resistance is required. If the solvent resistance of the polyimide film is insufficient, the film may be meaningless as a substrate due to dissolution or swelling of the film.
When a polyimide film is used as a substrate for forming an ITO (Indium Tin Oxide) film, the polyimide film is required to have resistance to the acid used for etching the ITO film. If the acid resistance of the polyimide film is insufficient, the film may turn yellow and impair the colorless transparency.
Further, an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution is mainly used for cleaning a support such as a glass plate (a support to which a polyimide varnish is applied) used when manufacturing a polyimide film. .. The cleaning with the alkaline aqueous solution may be performed even in the state where the polyimide film is formed on the support such as a glass plate. Therefore, the polyimide film is also required to have resistance to alkali.
However, in Patent Document 1, chemical resistance is not evaluated.
 本発明はこのような状況に鑑みてなされたものであり、本発明の課題は、無色透明性、光学的等方性、及び耐薬品性(耐溶剤性、耐酸性及び耐アルカリ性)に優れるフィルムの形成が可能なポリイミド樹脂、並びに該ポリイミド樹脂を含むポリイミドワニス及びポリイミドフィルムを提供することにある。 The present invention has been made in view of such a situation, the object of the present invention is a colorless transparent, optical isotropic, and chemical resistance (solvent resistance, acid resistance and alkali resistance) excellent film It is to provide a polyimide resin capable of forming a film, and a polyimide varnish and a polyimide film containing the polyimide resin.
 本発明者らは、特定の構成単位の組み合わせを含むポリイミド樹脂が上記課題を解決できることを見出し、発明を完成させるに至った。 The present inventors have found that a polyimide resin containing a specific combination of structural units can solve the above problems, and have completed the invention.
 即ち、本発明は、下記の[1]~[4]に関する。
[1]
 テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有するポリイミド樹脂であって、
 構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、
 構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)を含み、
 構成単位B中における構成単位(B-1)の比率が70モル%以上である、ポリイミド樹脂。
Figure JPOXMLDOC01-appb-C000002
That is, the present invention relates to the following [1] to [4].
[1]
A polyimide resin having a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from a diamine,
A structural unit A is a structural unit (A-1) derived from a compound represented by the following formula (a-1) and a structural unit (A-2) is derived from a compound represented by the following formula (a-2). Including and
The structural unit B contains a structural unit (B-1) derived from a compound represented by the following formula (b-1),
A polyimide resin in which the ratio of the structural unit (B-1) in the structural unit B is 70 mol% or more.
Figure JPOXMLDOC01-appb-C000002
[2]
 構成単位A中における構成単位(A-1)の比率が5~95モル%であり、
 構成単位A中における構成単位(A-2)の比率が5~95モル%である、上記[1]に記載のポリイミド樹脂。
[3]
 上記[1]又は[2]に記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。
[4]
 上記[1]又は[2]に記載のポリイミド樹脂を含む、ポリイミドフィルム。
[2]
The ratio of the structural unit (A-1) in the structural unit A is 5 to 95 mol %,
The polyimide resin according to the above [1], wherein the ratio of the structural unit (A-2) in the structural unit A is 5 to 95 mol %.
[3]
A polyimide varnish obtained by dissolving the polyimide resin according to the above [1] or [2] in an organic solvent.
[4]
A polyimide film containing the polyimide resin according to the above [1] or [2].
 本発明によれば、無色透明性、光学的等方性、及び耐薬品性(耐溶剤性、耐酸性及び耐アルカリ性)に優れるフィルムを形成することができる。 According to the present invention, it is possible to form a film excellent in colorless transparency, optical isotropy, and chemical resistance (solvent resistance, acid resistance and alkali resistance).
[ポリイミド樹脂]
 本発明のポリイミド樹脂は、テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有し、構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)を含み、構成単位B中における構成単位(B-1)の比率が70モル%以上である。
Figure JPOXMLDOC01-appb-C000003
[Polyimide resin]
The polyimide resin of the present invention has a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from a diamine, and the structural unit A is derived from a compound represented by the following formula (a-1). The structural unit (A-1) and the structural unit (A-2) derived from the compound represented by the following formula (a-2) are contained, and the structural unit B is represented by the following formula (b-1). The constitutional unit (B-1) derived from the compound is contained, and the proportion of the constitutional unit (B-1) in the constitutional unit B is 70 mol% or more.
Figure JPOXMLDOC01-appb-C000003
<構成単位A>
 構成単位Aは、ポリイミド樹脂に占めるテトラカルボン酸二無水物に由来する構成単位であって、下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含む。
Figure JPOXMLDOC01-appb-C000004
<Structural unit A>
The structural unit A is a structural unit derived from the tetracarboxylic dianhydride occupying in the polyimide resin, and the structural unit (A-1) derived from the compound represented by the following formula (a-1) and the following formula And a structural unit (A-2) derived from the compound represented by (a-2).
Figure JPOXMLDOC01-appb-C000004
 式(a-1)で表される化合物は、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物である。
 式(a-2)で表される化合物は、4,4’-オキシジフタル酸無水物である。
 構成単位Aが構成単位(A-1)と構成単位(A-2)との両方を含むことによって、フィルムの無色透明性、光学的等方性、及び耐薬品性を向上させることができる。構成単位(A-1)は特に無色透明性及び光学的等方性の向上への寄与が大きく、構成単位(A-2)は特に耐薬品性の向上への寄与が大きい。
The compound represented by the formula (a-1) is 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
The compound represented by the formula (a-2) is 4,4′-oxydiphthalic anhydride.
When the structural unit A contains both the structural unit (A-1) and the structural unit (A-2), the colorless transparency, optical isotropy, and chemical resistance of the film can be improved. The structural unit (A-1) makes a large contribution to the improvement of colorless transparency and optical isotropy, and the structural unit (A-2) makes a large contribution to the improvement of chemical resistance.
 構成単位A中における構成単位(A-1)の比率は、好ましくは5~95モル%であり、より好ましくは15~95モル%であり、フィルムの無色透明性、光学的等方性、及び耐薬品性を向上させる観点から、更に好ましくは20~90モル%であり、特に好ましくは50~90モル%である。一方、特に光学的等方性と耐酸性の観点からは、更に好ましくは70~95モル%であり、特に好ましくは85~95モル%である。
 構成単位A中における構成単位(A-2)の比率は、好ましくは5~95モル%であり、より好ましくは5~85モル%であり、フィルムの無色透明性、光学的等方性、及び耐薬品性を向上させる観点から、更に好ましくは10~80モル%であり、特に好ましくは10~50モル%である。一方、特に光学的等方性と耐酸性の観点からは、更に好ましくは5~30モル%であり、特に好ましくは5~15モル%である。
 構成単位A中における構成単位(A-1)及び(A-2)の合計の比率は、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、更に好ましくは90モル%以上であり、特に好ましくは99モル%以上である。構成単位(A-1)及び(A-2)の合計の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Aは構成単位(A-1)と構成単位(A-2)とのみからなっていてもよい。
The ratio of the structural unit (A-1) in the structural unit A is preferably 5 to 95 mol%, more preferably 15 to 95 mol%, and the film has colorless transparency, optical isotropy, and From the viewpoint of improving the chemical resistance, it is more preferably 20 to 90 mol %, particularly preferably 50 to 90 mol %. On the other hand, particularly from the viewpoint of optical isotropy and acid resistance, it is more preferably 70 to 95 mol %, and particularly preferably 85 to 95 mol %.
The ratio of the structural unit (A-2) in the structural unit A is preferably 5 to 95 mol %, more preferably 5 to 85 mol %, the colorless transparency of the film, optical isotropy, and From the viewpoint of improving the chemical resistance, it is more preferably 10 to 80 mol %, particularly preferably 10 to 50 mol %. On the other hand, from the viewpoint of optical isotropy and acid resistance, the content is more preferably 5 to 30 mol %, particularly preferably 5 to 15 mol %.
The total ratio of the structural units (A-1) and (A-2) in the structural unit A is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more. And particularly preferably 99 mol% or more. The upper limit of the total ratio of the structural units (A-1) and (A-2) is not particularly limited, that is, 100 mol%. The structural unit A may consist of the structural unit (A-1) and the structural unit (A-2) only.
 構成単位Aは、構成単位(A-1)及び(A-2)以外の構成単位を含んでもよい。そのような構成単位を与えるテトラカルボン酸二無水物としては、特に限定されないが、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族テトラカルボン酸二無水物(ただし、式(a-2)で表される化合物を除く);1,2,3,4-シクロブタンテトラカルボン酸二無水物及びノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物(ただし、式(a-1)で表される化合物を除く);並びに1,2,3,4-ブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられる。
 なお、本明細書において、芳香族テトラカルボン酸二無水物とは芳香環を1つ以上含むテトラカルボン酸二無水物を意味し、脂環式テトラカルボン酸二無水物とは脂環を1つ以上含み、かつ芳香環を含まないテトラカルボン酸二無水物を意味し、脂肪族テトラカルボン酸二無水物とは芳香環も脂環も含まないテトラカルボン酸二無水物を意味する。
 構成単位Aに任意に含まれる構成単位(即ち、構成単位(A-1)及び(A-2)以外の構成単位)は、1種でもよいし、2種以上であってもよい。
The structural unit A may include a structural unit other than the structural units (A-1) and (A-2). The tetracarboxylic acid dianhydride that gives such a constitutional unit is not particularly limited, but pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 9,9′ -Bis(3,4-dicarboxyphenyl)fluorene dianhydride, and aromatic tetracarboxylic dianhydrides such as 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (provided that the formula (a-2 A) 1,2,3,4-cyclobutanetetracarboxylic dianhydride and norbornane-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornane-5) , 5″, 6,6″-tetracarboxylic dianhydride and the like, alicyclic tetracarboxylic dianhydride (excluding the compound represented by formula (a-1)); And aliphatic tetracarboxylic acid dianhydrides such as 3,4,4-butanetetracarboxylic acid dianhydride.
In this specification, the aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings, and the alicyclic tetracarboxylic dianhydride has one alicyclic ring. The above means a tetracarboxylic dianhydride containing no aromatic ring, and the aliphatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
The constitutional units arbitrarily contained in the constitutional unit A (that is, constitutional units other than the constitutional units (A-1) and (A-2)) may be one kind or two or more kinds.
<構成単位B>
 構成単位Bは、ポリイミド樹脂に占めるジアミンに由来する構成単位であって、下記式(b-1)で表される化合物に由来する構成単位(B-1)を含む。
Figure JPOXMLDOC01-appb-C000005
<Structural unit B>
The structural unit B is a structural unit derived from a diamine in the polyimide resin and includes a structural unit (B-1) derived from a compound represented by the following formula (b-1).
Figure JPOXMLDOC01-appb-C000005
 式(b-1)で表される化合物は、3,3’-ジアミノジフェニルスルホンである。
 構成単位Bが構成単位(B-1)を含むことによって、フィルムの光学的等方性及び耐薬品性を向上させることができる。なかでも耐酸性を向上させることができる。
The compound represented by the formula (b-1) is 3,3′-diaminodiphenyl sulfone.
When the structural unit B contains the structural unit (B-1), the optical isotropy and chemical resistance of the film can be improved. Among them, acid resistance can be improved.
 構成単位B中における構成単位(B-1)の比率は、70モル%以上である。当該比率は、好ましくは75モル%以上であり、より好ましくは80モル%以上である。構成単位(B-1)の比率の上限値は、90モル%でもよく、95モル%でもよく、99モル%でもよく、100モル%でもよい。構成単位Bは構成単位(B-1)のみからなっていてもよい。
 構成単位Bが構成単位(B-1)を構成単位B中70モル%以上含むことによって、フィルムの耐薬品性を維持しつつ、後述のポリイミドワニスに用いられる有機溶媒に均一に溶解する。そのため、得られるフィルムは無色透明性にも優れるものと考えられる。
The ratio of the structural unit (B-1) in the structural unit B is 70 mol% or more. The ratio is preferably 75 mol% or more, more preferably 80 mol% or more. The upper limit of the ratio of the structural unit (B-1) may be 90 mol%, 95 mol%, 99 mol% or 100 mol%. The structural unit B may consist of the structural unit (B-1) only.
When the structural unit B contains the structural unit (B-1) in an amount of 70 mol% or more in the structural unit B, the chemical resistance of the film is maintained and the film is uniformly dissolved in an organic solvent used for a polyimide varnish described later. Therefore, the obtained film is considered to be excellent in colorless transparency.
 構成単位Bは構成単位(B-1)以外の構成単位を含んでもよい。そのような構成単位を与えるジアミンとしては、特に限定されないが、1,4-フェニレンジアミン、p-キシリレンジアミン、3,5-ジアミノ安息香酸、1,5-ジアミノナフタレン、2,2’-ジメチルビフェニル-4,4’-ジアミン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノベンズアニリド、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)フルオレン、及び4,4’-ジアミノ-2,2’-ビストリフルオロメチルジフェニルエーテル等の芳香族ジアミン(ただし、式(b-1)で表される化合物を除く);1,3-ビス(アミノメチル)シクロヘキサン及び1,4-ビス(アミノメチル)シクロヘキサン等の脂環式ジアミン;並びにエチレンジアミン及びヘキサメチレンジアミン等の脂肪族ジアミンが挙げられる。
 なお、本明細書において、芳香族ジアミンとは芳香環を1つ以上含むジアミンを意味し、脂環式ジアミンとは脂環を1つ以上含み、かつ芳香環を含まないジアミンを意味し、脂肪族ジアミンとは芳香環も脂環も含まないジアミンを意味する。
 構成単位Bに任意に含まれる構成単位(即ち、構成単位(B-1)以外の構成単位)は、1種でもよいし、2種以上であってもよい。
The structural unit B may include a structural unit other than the structural unit (B-1). The diamine which gives such a constitutional unit is not particularly limited, but 1,4-phenylenediamine, p-xylylenediamine, 3,5-diaminobenzoic acid, 1,5-diaminonaphthalene, 2,2′-dimethyl Biphenyl-4,4'-diamine, 2,2'-bis(trifluoromethyl)benzidine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 2,2-bis(4-aminophenyl)hexa Fluoropropane, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminobenzanilide, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-indene-5 Amine, α,α'-bis(4-aminophenyl)-1,4-diisopropylbenzene, N,N'-bis(4-aminophenyl)terephthalamide, 4,4'-bis(4-aminophenoxy)biphenyl 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane, 9,9-bis(4-aminophenyl) Aromatic diamines such as fluorene and 4,4′-diamino-2,2′-bistrifluoromethyldiphenyl ether (excluding compounds represented by formula (b-1)); 1,3-bis(aminomethyl) ) Alicyclic diamines such as cyclohexane and 1,4-bis(aminomethyl)cyclohexane; and aliphatic diamines such as ethylenediamine and hexamethylenediamine.
In the present specification, the aromatic diamine means a diamine containing at least one aromatic ring, and the alicyclic diamine means a diamine containing at least one alicyclic ring and containing no aromatic ring, and a fat Group diamine means a diamine containing neither an aromatic ring nor an alicyclic ring.
The constitutional unit arbitrarily contained in the constitutional unit B (that is, the constitutional unit other than the constitutional unit (B-1)) may be one type or two or more types.
 構成単位Bに任意に含まれる構成単位を与えるジアミンとしては、下記式(b-2-1)で表される化合物、下記式(b-2-2)で表される化合物、下記式(b-2-3)で表される化合物、及び下記式(b-2-4)で表される化合物が好ましい。即ち、本発明の一態様のポリイミド樹脂は、構成単位Bが、下記式(b-2-1)で表される化合物に由来する構成単位(B-2-1)、下記式(b-2-2)で表される化合物に由来する構成単位(B-2-2)、下記式(b-2-3)で表される化合物に由来する構成単位(B-2-3)、及び下記式(b-2-4)で表される化合物に由来する構成単位(B-2-4)からなる群より選ばれる少なくとも1つである構成単位(B-2)を更に含んでもよい。
Figure JPOXMLDOC01-appb-C000006

(式(b-2-2)中、Rはそれぞれ独立して、水素原子、フッ素原子又はメチル基である。)
Examples of the diamine that gives the structural unit arbitrarily contained in the structural unit B include compounds represented by the following formula (b-2-1), compounds represented by the following formula (b-2-2), and compounds represented by the following formula (b -2-3) and compounds represented by the following formula (b-2-4) are preferable. That is, in the polyimide resin of one embodiment of the present invention, the structural unit B is a structural unit (B-2-1) derived from a compound represented by the following formula (b-2-1), and the following structural formula (b-2) -2), a structural unit (B-2-2) derived from a compound represented by the formula (b-2-3), a structural unit (B-2-3) derived from a compound represented by the following formula (b-2-3), and The compound may further contain a structural unit (B-2) which is at least one selected from the group consisting of structural units (B-2-4) derived from the compound represented by the formula (b-2-4).
Figure JPOXMLDOC01-appb-C000006

(In the formula (b-2-2), each R is independently a hydrogen atom, a fluorine atom or a methyl group.)
 式(b-2-1)で表される化合物は、4,4’-ジアミノ-2,2’-ビストリフルオロメチルジフェニルエーテルである。
 構成単位Bが構成単位(B-2-1)を含むことによって、フィルムの無色透明性を向上させることができる。
The compound represented by the formula (b-2-1) is 4,4′-diamino-2,2′-bistrifluoromethyldiphenyl ether.
When the structural unit B contains the structural unit (B-2-1), the colorless transparency of the film can be improved.
 式(b-2-2)において、Rはそれぞれ独立して、水素原子、フッ素原子、又はメチル基であり、水素原子であることが好ましい。式(b-2-2)で表される化合物としては、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(3-フルオロ-4-アミノフェニル)フルオレン、及び9,9-ビス(3-メチル-4-アミノフェニル)フルオレン等が挙げられ、9,9-ビス(4-アミノフェニル)フルオレンが好ましい。
 構成単位Bが構成単位(B-2-2)を含むことによって、フィルムの光学的等方性及び耐熱性を向上させることができる。
In formula (b-2-2), each R is independently a hydrogen atom, a fluorine atom or a methyl group, and preferably a hydrogen atom. Examples of the compound represented by the formula (b-2-2) include 9,9-bis(4-aminophenyl)fluorene, 9,9-bis(3-fluoro-4-aminophenyl)fluorene, and 9,9. Examples thereof include -bis(3-methyl-4-aminophenyl)fluorene, and 9,9-bis(4-aminophenyl)fluorene is preferable.
When the structural unit B contains the structural unit (B-2-2), the optical isotropy and heat resistance of the film can be improved.
 式(b-2-3)で表される化合物は、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパンである。
 構成単位Bが構成単位(B-2-3)を含むことによって、フィルムの無色透明性と光学的等方性を向上させることができる。
The compound represented by the formula (b-2-3) is 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane.
By including the structural unit (B-2-3) in the structural unit B, the colorless transparency and optical isotropy of the film can be improved.
 式(b-2-4)で表される化合物は、2,2’-ビス(トリフルオロメチル)ベンジジンである。
 構成単位Bが構成単位(B-2-4)を含むことによって、フィルムの無色透明性、耐薬品性、耐熱性及び機械的特性を向上させることができる。
The compound represented by the formula (b-2-4) is 2,2′-bis(trifluoromethyl)benzidine.
When the structural unit B contains the structural unit (B-2-4), the colorless transparency, chemical resistance, heat resistance and mechanical properties of the film can be improved.
 フィルムの様々な性能を向上させる観点から、構成単位Bが、構成単位(B-2)として、式(b-2-1)で表される化合物に由来する構成単位(B-2-1)、式(b-2-2)で表される化合物に由来する構成単位(B-2-2)、式(b-2-3)で表される化合物に由来する構成単位(B-2-3)、及び式(b-2-4)で表される化合物に由来する構成単位(B-2-4)からなる群より選ばれる少なくとも1つを含むことが好ましく、特にフィルムの無色透明性と光学的等方性を向上させる観点から、構成単位Bは式(b-2-3)で表される化合物に由来する構成単位(B-2-3)を含むことが好ましい。 From the viewpoint of improving various performances of the film, the structural unit B is a structural unit (B-2-1) derived from a compound represented by the formula (b-2-1). A structural unit (B-2-2) derived from the compound represented by formula (b-2-2), a structural unit (B-2-2) derived from the compound represented by formula (b-2-3) 3) and at least one selected from the group consisting of structural units (B-2-4) derived from the compound represented by the formula (b-2-4), and in particular, the film is colorless and transparent. From the viewpoint of improving the optical isotropy, the constituent unit B preferably contains a constituent unit (B-2-3) derived from the compound represented by the formula (b-2-3).
 構成単位Bが構成単位(B-1)及び構成単位(B-2)を含む場合、構成単位B中における構成単位(B-1)の比率は、好ましくは70~95モル%であり、より好ましくは75~95モル%であり、更に好ましくは75~90モル%であり、構成単位B中における構成単位(B-2)の比率は、好ましくは5~30モル%であり、より好ましくは5~25モル%であり、更に好ましくは10~25モル%である。
 構成単位B中における構成単位(B-1)と構成単位(B-2)の合計の比率は、好ましくは75モル%以上であり、より好ましくは80モル%以上であり、更に好ましくは90モル%以上であり、特に好ましくは99モル%以上である。構成単位(B-1)と構成単位(B-2)の合計の比率の上限値は特に限定されず、即ち、100モル%である。構成単位Bは構成単位(B-1)と構成単位(B-2)とのみからなっていてもよい。
When the structural unit B includes the structural unit (B-1) and the structural unit (B-2), the ratio of the structural unit (B-1) in the structural unit B is preferably 70 to 95 mol %, and It is preferably 75 to 95 mol %, more preferably 75 to 90 mol %, and the ratio of the structural unit (B-2) in the structural unit B is preferably 5 to 30 mol %, and more preferably It is 5 to 25 mol %, and more preferably 10 to 25 mol %.
The total ratio of the structural unit (B-1) and the structural unit (B-2) in the structural unit B is preferably 75 mol% or more, more preferably 80 mol% or more, further preferably 90 mol%. % Or more, particularly preferably 99 mol% or more. The upper limit of the total ratio of the structural unit (B-1) and the structural unit (B-2) is not particularly limited, that is, 100 mol%. The structural unit B may consist of only the structural unit (B-1) and the structural unit (B-2).
 構成単位(B-2)は、構成単位(B-2-1)のみであってもよく、構成単位(B-2-2)のみであってもよく、構成単位(B-2-3)のみであってもよく、又は構成単位(B-2-4)のみであってもよい。
 また、構成単位(B-2)は、構成単位(B-2-1)~(B-2-4)からなる群より選ばれる2つ以上の構成単位の組み合せであってもよい。
The structural unit (B-2) may be only the structural unit (B-2-1) or only the structural unit (B-2-2), and the structural unit (B-2-3) Or only the structural unit (B-2-4).
Further, the structural unit (B-2) may be a combination of two or more structural units selected from the group consisting of the structural units (B-2-1) to (B-2-4).
 本発明のポリイミド樹脂の数平均分子量は、得られるポリイミドフィルムの機械的強度の観点から、好ましくは5,000~200,000である。なお、ポリイミド樹脂の数平均分子量は、例えば、ゲルろ過クロマトグラフィー測定による標準ポリメチルメタクリレート(PMMA)換算値より求めることができる。 The number average molecular weight of the polyimide resin of the present invention is preferably 5,000 to 200,000 from the viewpoint of mechanical strength of the obtained polyimide film. The number average molecular weight of the polyimide resin can be determined, for example, from a standard polymethylmethacrylate (PMMA) conversion value measured by gel filtration chromatography.
 本発明のポリイミド樹脂は、ポリイミド鎖(構成単位Aと構成単位Bとがイミド結合してなる構造)以外の構造を含んでもよい。ポリイミド樹脂中に含まれうるポリイミド鎖以外の構造としては、例えばアミド結合を含む構造等が挙げられる。
 本発明のポリイミド樹脂は、ポリイミド鎖(構成単位Aと構成単位Bとがイミド結合してなる構造)を主たる構造として含むことが好ましい。したがって、本発明のポリイミド樹脂中に占めるポリイミド鎖の比率は、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、更に好ましくは90質量%以上であり、特に好ましくは99質量%以上である。
The polyimide resin of the present invention may include a structure other than a polyimide chain (a structure in which the structural unit A and the structural unit B are imide-bonded). Examples of the structure other than the polyimide chain that may be contained in the polyimide resin include a structure containing an amide bond.
The polyimide resin of the present invention preferably contains a polyimide chain (a structure in which the structural unit A and the structural unit B are imide-bonded) as a main structure. Therefore, the ratio of the polyimide chain in the polyimide resin of the present invention is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 90% by mass or more, particularly preferably 99% by mass. % Or more.
 本発明のポリイミド樹脂を用いることで、無色透明性、光学的等方性、及び耐薬品性に優れるフィルムを形成することができ、当該フィルムの有する好適な物性値は以下の通りである。
 全光線透過率は、厚さ10μmのフィルムとした際に、好ましくは88%以上であり、より好ましくは88.5%以上であり、更に好ましくは89%以上である。
 イエローインデックス(YI)は、厚さ10μmのフィルムとした際に、好ましくは4.0以下であり、より好ましくは2.5以下であり、更に好ましくは2.0以下である。
 bは、厚さ10μmのフィルムとした際に、好ましくは2.0以下であり、より好ましくは1.2以下であり、更に好ましくは1.0以下である。
 厚み位相差(Rth)の絶対値は、厚さ10μmのフィルムとした際に、好ましくは70nm以下であり、より好ましくは60nm以下であり、更に好ましく50nm以下である。
 混酸ΔYIは、厚さ10μmのフィルムとした際に、好ましくは1.5以下であり、より好ましくは1.3以下であり、更に好ましくは1.0以下である。
 混酸Δbは、厚さ10μmのフィルムとした際に、好ましくは0.8以下であり、より好ましくは0.6以下であり、更に好ましくは0.5以下である。
 なお、混酸ΔYI及び混酸Δbは、それぞれ、リン酸、硝酸及び酢酸の混合物にポリイミドフィルムを浸漬した際の、浸漬前後でのYIの差及びbの差を意味し、具体的には実施例に記載の方法で測定することができる。ΔYI及びΔbが小さいほど、耐酸性に優れることを意味する。本発明のポリイミド樹脂を用いることで、耐薬品性に優れるフィルムを形成することができ、酸に対しても優れた耐性を示す。特に混酸(例えば、リン酸を50~97質量%、硝酸を1~20質量%、酢酸を1~10質量%、及び水を1~20質量%の混合溶液、好ましくはリン酸を63~87質量%、硝酸を5~15質量%、酢酸を3~7質量%、及び水を5~15質量%の混合溶液)に対して優れた耐性を示す。
By using the polyimide resin of the present invention, a film excellent in colorless transparency, optical isotropy and chemical resistance can be formed, and suitable physical property values of the film are as follows.
The total light transmittance is preferably 88% or more, more preferably 88.5% or more, still more preferably 89% or more when a film having a thickness of 10 μm is formed.
The yellow index (YI) of the film having a thickness of 10 μm is preferably 4.0 or less, more preferably 2.5 or less, and further preferably 2.0 or less.
b * is preferably 2.0 or less, more preferably 1.2 or less, still more preferably 1.0 or less when a film having a thickness of 10 μm is formed.
The absolute value of the thickness retardation (Rth) is preferably 70 nm or less, more preferably 60 nm or less, still more preferably 50 nm or less when a film having a thickness of 10 μm is formed.
The mixed acid ΔYI is preferably 1.5 or less, more preferably 1.3 or less, and still more preferably 1.0 or less when a film having a thickness of 10 μm is formed.
The mixed acid Δb * is preferably 0.8 or less, more preferably 0.6 or less, still more preferably 0.5 or less when a film having a thickness of 10 μm is formed.
The mixed acid ΔYI and mixed acid Δb * mean the difference in YI and the difference in b * before and after the immersion of the polyimide film in a mixture of phosphoric acid, nitric acid and acetic acid, respectively. It can be measured by the method described in the examples. It means that the smaller ΔYI and Δb * are, the more excellent the acid resistance is. By using the polyimide resin of the present invention, a film having excellent chemical resistance can be formed and excellent resistance to acid is also exhibited. In particular, a mixed solution of mixed acids (for example, 50 to 97% by mass of phosphoric acid, 1 to 20% by mass of nitric acid, 1 to 10% by mass of acetic acid, and 1 to 20% by mass of water, preferably 63 to 87% of phosphoric acid). %, nitric acid 5 to 15% by mass, acetic acid 3 to 7% by mass, and water 5 to 15% by mass).
 本発明のポリイミド樹脂を用いて形成することができるフィルムは機械的特性及び耐熱性も良好であり、以下のような好適な物性値を有する。
 引張強度は、好ましくは60MPa以上であり、より好ましくは70MPa以上であり、更に好ましくは80MPa以上である。
 引張弾性率は、好ましくは2.0GPa以上であり、より好ましくは2.5GPa以上であり、更に好ましくは3.0GPa以上である。
 ガラス転移温度(Tg)は、好ましくは230℃以上であり、より好ましくは250℃以上であり、更に好ましくは270℃以上である。
 なお、本発明における上述の物性値は、具体的には実施例に記載の方法で測定することができる。
The film that can be formed using the polyimide resin of the present invention has good mechanical properties and heat resistance, and has the following suitable physical property values.
The tensile strength is preferably 60 MPa or more, more preferably 70 MPa or more, and further preferably 80 MPa or more.
The tensile elastic modulus is preferably 2.0 GPa or more, more preferably 2.5 GPa or more, and further preferably 3.0 GPa or more.
The glass transition temperature (Tg) is preferably 230°C or higher, more preferably 250°C or higher, and further preferably 270°C or higher.
The above-mentioned physical property values in the present invention can be specifically measured by the methods described in Examples.
[ポリイミド樹脂の製造方法]
 本発明のポリイミド樹脂は、上述の構成単位(A-1)を与える化合物及び上述の構成単位(A-2)を与える化合物を含むテトラカルボン酸成分と、上述の構成単位(B-1)を与える化合物を70モル%以上含むジアミン成分とを反応させることにより製造することができる。
[Method for producing polyimide resin]
The polyimide resin of the present invention comprises a tetracarboxylic acid component containing a compound giving the above structural unit (A-1) and a compound giving the above structural unit (A-2), and the above structural unit (B-1). It can be produced by reacting with a diamine component containing 70 mol% or more of the compound to be given.
 構成単位(A-1)を与える化合物としては、式(a-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(a-1)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸(即ち、1,2,4,5-シクロヘキサンテトラカルボン酸)及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A-1)を与える化合物としては、式(a-1)で表される化合物(即ち、二無水物)が好ましい。
 同様に、構成単位(A-2)を与える化合物としては、式(a-2)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(a-2)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A-2)を与える化合物としては、式(a-2)で表される化合物(即ち、二無水物)が好ましい。
Examples of the compound that provides the structural unit (A-1) include compounds represented by the formula (a-1), but the compound is not limited thereto, and a derivative thereof may be used as long as the same structural unit is provided. Examples of the derivative include a tetracarboxylic acid corresponding to the tetracarboxylic acid dianhydride represented by the formula (a-1) (that is, 1,2,4,5-cyclohexanetetracarboxylic acid) and an alkyl of the tetracarboxylic acid. Esters can be mentioned. As the compound providing the structural unit (A-1), a compound represented by the formula (a-1) (ie, dianhydride) is preferable.
Similarly, examples of the compound that provides the structural unit (A-2) include compounds represented by the formula (a-2), but the compound is not limited thereto, and a derivative thereof may be used as long as the same structural unit is provided. .. Examples of the derivative include a tetracarboxylic acid corresponding to the tetracarboxylic dianhydride represented by the formula (a-2) and an alkyl ester of the tetracarboxylic acid. As the compound providing the structural unit (A-2), the compound represented by the formula (a-2) (ie, dianhydride) is preferable.
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物を、好ましくは5~95モル%含み、より好ましくは15~95モル%含み、フィルムの無色透明性、光学的等方性、及び耐薬品性を向上させる観点から、更に好ましくは20~90モル%含み、特に好ましくは50~90モル%含む。一方、特に光学的等方性と耐酸性の観点からは、更に好ましくは70~95モル%含み、特に好ましくは85~95モル%含む。
 テトラカルボン酸成分は、構成単位(A-2)を与える化合物を、好ましくは5~95モル%含み、より好ましくは5~85モル%含み、フィルムの無色透明性、光学的等方性、及び耐薬品性を向上させる観点から、更に好ましくは10~80モル%含み、特に好ましくは10~50モル%含む。一方、特に光学的等方性と耐酸性の観点からは、更に好ましくは5~30モル%で含み、特に好ましくは5~15モル%含む。
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物を合計で、好ましくは50モル%以上含み、より好ましくは70モル%以上含み、更に好ましくは90モル%以上含み、特に好ましくは99モル%以上含む。構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。テトラカルボン酸成分は構成単位(A-1)を与える化合物と構成単位(A-2)を与える化合物とのみからなっていてもよい。
The tetracarboxylic acid component preferably contains the compound giving the structural unit (A-1) in an amount of 5 to 95 mol %, more preferably 15 to 95 mol %, and has colorless transparency of the film, optical isotropy, and From the viewpoint of improving the chemical resistance, the content is more preferably 20 to 90 mol %, particularly preferably 50 to 90 mol %. On the other hand, particularly from the viewpoint of optical isotropy and acid resistance, the content is more preferably 70 to 95 mol %, and particularly preferably 85 to 95 mol %.
The tetracarboxylic acid component preferably contains 5 to 95 mol% of the compound giving the structural unit (A-2), more preferably 5 to 85 mol%, and the film has colorless transparency, optical isotropy, and From the viewpoint of improving the chemical resistance, the content is more preferably 10 to 80 mol %, particularly preferably 10 to 50 mol %. On the other hand, from the viewpoints of optical isotropy and acid resistance, the content is more preferably 5 to 30 mol %, particularly preferably 5 to 15 mol %.
The tetracarboxylic acid component contains a compound giving the structural unit (A-1) and a compound giving the structural unit (A-2) in a total amount of preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably Is 90 mol% or more, particularly preferably 99 mol% or more. The upper limit of the total content ratio of the compound providing the structural unit (A-1) and the compound providing the structural unit (A-2) is not particularly limited, that is, 100 mol%. The tetracarboxylic acid component may consist of only the compound which gives the structural unit (A-1) and the compound which gives the structural unit (A-2).
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、及び脂肪族テトラカルボン酸二無水物、並びにそれらの誘導体(テトラカルボン酸、テトラカルボン酸のアルキルエステル等)が挙げられる。
 テトラカルボン酸成分に任意に含まれる化合物(即ち、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物以外の化合物)は、1種でもよいし、2種以上であってもよい。
The tetracarboxylic acid component may include a compound other than the compound which gives the structural unit (A-1) and the compound which gives the structural unit (A-2), and the compound is the aromatic tetracarboxylic dianhydride described above. Alicyclic tetracarboxylic dianhydride, aliphatic tetracarboxylic dianhydride, and derivatives thereof (tetracarboxylic acid, alkyl ester of tetracarboxylic acid, etc.).
The compound optionally contained in the tetracarboxylic acid component (that is, the compound other than the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2)) may be one type or two or more types. It may be.
 構成単位(B-1)を与える化合物としては、式(b-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を与える範囲でその誘導体であってもよい。当該誘導体としては、式(b-1)で表されるジアミンに対応するジイソシアネートが挙げられる。構成単位(B-1)を与える化合物としては、式(b-1)で表される化合物(即ち、ジアミン)が好ましい。 Examples of the compound that provides the structural unit (B-1) include compounds represented by the formula (b-1), but the compound is not limited thereto, and a derivative thereof may be used as long as the same structural unit is provided. Examples of the derivative include diisocyanates corresponding to the diamine represented by the formula (b-1). As the compound providing the structural unit (B-1), a compound represented by the formula (b-1) (that is, diamine) is preferable.
 ジアミン成分は、構成単位(B-1)を与える化合物を70モル%以上含む。ジアミン成分は、構成単位(B-1)を与える化合物を、好ましくは75モル%以上含み、より好ましくは80モル%以上含む。構成単位(B-1)を与える化合物の含有比率の上限値は、90モル%でもよく、95モル%でもよく、99モル%でもよく、100モル%でもよい。ジアミン成分は構成単位(B-1)を与える化合物のみからなっていてもよい。 The diamine component contains 70 mol% or more of the compound giving the structural unit (B-1). The diamine component preferably contains 75 mol% or more, more preferably 80 mol% or more, of the compound providing the structural unit (B-1). The upper limit of the content ratio of the compound providing the structural unit (B-1) may be 90 mol%, 95 mol%, 99 mol% or 100 mol%. The diamine component may consist of only the compound which gives the structural unit (B-1).
 ジアミン成分は構成単位(B-1)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族ジアミン、脂環式ジアミン、及び脂肪族ジアミン、並びにそれらの誘導体(ジイソシアネート等)が挙げられる。
 ジアミン成分に任意に含まれる化合物(即ち、構成単位(B-1)を与える化合物以外の化合物)は、1種でもよいし、2種以上であってもよい。
The diamine component may include a compound other than the compound that provides the structural unit (B-1), and examples of the compound include the above-mentioned aromatic diamine, alicyclic diamine, and aliphatic diamine, and their derivatives (diisocyanate, etc.). Is mentioned.
The compound optionally contained in the diamine component (that is, the compound other than the compound providing the structural unit (B-1)) may be one type or two or more types.
 ジアミン成分に任意に含まれる化合物としては、構成単位(B-2)を与える化合物(即ち、構成単位(B-2-1)を与える化合物、構成単位(B-2-2)を与える化合物、構成単位(B-2-3)を与える化合物、及び構成単位(B-2-4)を与える化合物からなる群より選ばれる少なくとも1つ以上)が好ましく、なかでも構成単位(B-2-3)を与える化合物がより好ましい。
 構成単位(B-2)を与える化合物としては、式(b-2-1)で表される化合物、式(b-2-2)で表される化合物、式(b-2-3)で表される化合物、及び式(b-2-4)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(b-2-1)~式(b-2-4)で表されるジアミンに対応するジイソシアネートが挙げられる。構成単位(B-2)を与える化合物としては、式(b-2-1)~式(b-2-4)で表される化合物(即ち、ジアミン)が好ましい。
As the compound optionally contained in the diamine component, a compound giving the structural unit (B-2) (that is, a compound giving the structural unit (B-2-1), a compound giving the structural unit (B-2-2), At least one selected from the group consisting of a compound giving the structural unit (B-2-3) and a compound giving the structural unit (B-2-4) is preferable, and among them, the structural unit (B-2-3) Are more preferred.
Examples of the compound providing the structural unit (B-2) include a compound represented by the formula (b-2-1), a compound represented by the formula (b-2-2), and a compound represented by the formula (b-2-3). Examples thereof include the compound represented by the formula (b-2-4) and the compound represented by the formula (b-2-4), and the derivative may be used as long as the same constitutional unit can be formed. Examples of the derivative include diisocyanates corresponding to the diamines represented by the formulas (b-2-1) to (b-2-4). As the compound providing the structural unit (B-2), compounds represented by formula (b-2-1) to formula (b-2-4) (that is, diamine) are preferable.
 ジアミン成分が、構成単位(B-1)を与える化合物及び構成単位(B-2)を与える化合物を含む場合、ジアミン成分は構成単位(B-1)を与える化合物を好ましくは70~95モル%含み、より好ましくは75~95モル%含み、更に好ましくは75~90モル%含み、構成単位(B-2)を与える化合物を好ましくは5~30モル%含み、より好ましくは5~25モル%含み、更に好ましくは10~25モル%含む。
 ジアミン成分は、構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物を合計で、好ましくは75モル%以上含み、より好ましくは80モル%以上含み、更に好ましくは90モル%以上含み、特に好ましくは99モル%以上含む。構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。ジアミン成分は構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物とのみからなっていてもよい。
When the diamine component contains a compound which gives the structural unit (B-1) and a compound which gives the structural unit (B-2), the diamine component preferably contains 70 to 95 mol% of the compound which gives the structural unit (B-1). Included, more preferably 75 to 95 mol%, still more preferably 75 to 90 mol%, preferably 5 to 30 mol%, more preferably 5 to 25 mol% of the compound providing the structural unit (B-2). And more preferably 10 to 25 mol %.
The total amount of the diamine component containing the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2) is preferably 75 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more. It is contained in an amount of not less than mol %, particularly preferably not less than 99 mol %. The upper limit of the total content ratio of the compound providing the structural unit (B-1) and the compound providing the structural unit (B-2) is not particularly limited, that is, 100 mol%. The diamine component may consist of only the compound which gives the structural unit (B-1) and the compound which gives the structural unit (B-2).
 構成単位(B-2)を与える化合物は、構成単位(B-2-1)を与える化合物のみであってもよく、構成単位(B-2-2)を与える化合物のみであってもよく、構成単位(B-2-3)を与える化合物のみであってもよく、又は構成単位(B-2-4)を与える化合物のみであってもよい。
 また、構成単位(B-2)を与える化合物は、構成単位(B-2-1)~(B-2-4)を与える化合物からなる群より選ばれる2つ以上の化合物の組み合せであってもよい。
The compound giving the structural unit (B-2) may be only the compound giving the structural unit (B-2-1), or may be only the compound giving the structural unit (B-2-2), Only the compound providing the structural unit (B-2-3) may be used, or only the compound providing the structural unit (B-2-4) may be used.
The compound that provides the structural unit (B-2) is a combination of two or more compounds selected from the group consisting of compounds that provide the structural units (B-2-1) to (B-2-4). Good.
 本発明において、ポリイミド樹脂の製造に用いるテトラカルボン酸成分とジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。 In the present invention, the charge ratio of the tetracarboxylic acid component and the diamine component used for producing the polyimide resin is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component.
 また、本発明において、ポリイミド樹脂の製造には、前述のテトラカルボン酸成分及びジアミン成分の他に、末端封止剤を用いてもよい。末端封止剤としてはモノアミン類あるいはジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、テトラカルボン酸成分1モルに対して0.0001~0.1モルが好ましく、特に0.001~0.06モルが好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、4-メチルアニリン等が推奨される。これらのうち、ベンジルアミン、アニリンが好適に使用できる。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していてもよい。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸等が推奨される。これらのうち、フタル酸、無水フタル酸が好適に使用できる。 In the present invention, in addition to the above-mentioned tetracarboxylic acid component and diamine component, an endcapping agent may be used in the production of the polyimide resin. As the terminal blocking agent, monoamines or dicarboxylic acids are preferable. The amount of the terminal blocking agent introduced is preferably 0.0001 to 0.1 mol, and particularly preferably 0.001 to 0.06 mol, per 1 mol of the tetracarboxylic acid component. Examples of monoamine endcapping agents include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline and the like are recommended. Of these, benzylamine and aniline can be preferably used. As the dicarboxylic acid end capping agent, dicarboxylic acids are preferable, and a part thereof may be ring-closed. For example, phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenone dicarboxylic acid, 3,4-benzophenone dicarboxylic acid, cyclopentane-1,2-dicarboxylic acid, 4-cyclohexene-1 , 2-dicarboxylic acid and the like are recommended. Of these, phthalic acid and phthalic anhydride can be preferably used.
 前述のテトラカルボン酸成分とジアミン成分とを反応させる方法には特に制限はなく、公知の方法を用いることができる。
 具体的な反応方法としては、(1)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、室温(約20℃)~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(2)ジアミン成分及び反応溶剤を反応器に仕込んで溶解させた後、テトラカルボン酸成分を仕込み、必要に応じて室温(約20℃)~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(3)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、直ちに昇温してイミド化反応を行う方法等が挙げられる。
The method for reacting the above-mentioned tetracarboxylic acid component and diamine component is not particularly limited, and a known method can be used.
As a specific reaction method, (1) a tetracarboxylic acid component, a diamine component, and a reaction solvent are charged in a reactor, stirred at room temperature (about 20° C.) to 80° C. for 0.5 to 30 hours, and then heated. A method of performing an imidization reaction by heating, (2) charging a diamine component and a reaction solvent into a reactor and dissolving them, and then charging a tetracarboxylic acid component, if necessary, at room temperature (about 20°C) to 80°C A method of stirring for 0.5 to 30 hours and then raising the temperature to perform an imidization reaction, (3) charging a tetracarboxylic acid component, a diamine component, and a reaction solvent into a reactor and immediately raising the temperature to perform the imidization reaction. And the like.
 ポリイミド樹脂の製造に用いられる反応溶剤は、イミド化反応を阻害せず、生成するポリイミドを溶解できるものであればよい。例えば、非プロトン性溶剤、フェノール系溶剤、エーテル系溶剤、カーボネート系溶剤等が挙げられる。 The reaction solvent used for producing the polyimide resin may be any solvent that does not inhibit the imidization reaction and that can dissolve the generated polyimide. For example, an aprotic solvent, a phenol solvent, an ether solvent, a carbonate solvent, etc. are mentioned.
 非プロトン性溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶剤、γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶剤、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、アセトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤、ピコリン、ピリジン等のアミン系溶剤、酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶剤等が挙げられる。 Specific examples of the aprotic solvent include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone and tetramethylurea. Amide solvents, γ-butyrolactone, γ-valerolactone, and other lactone solvents, hexamethylphosphoric amide, hexamethylphosphinetriamide, and other phosphorus-containing amide solvents, dimethyl sulfone, dimethyl sulfoxide, sulfolane, and other sulfur-containing solvents Examples thereof include system solvents, ketone solvents such as acetone, cyclohexanone and methylcyclohexanone, amine solvents such as picoline and pyridine, ester solvents such as acetic acid (2-methoxy-1-methylethyl).
 フェノール系溶剤の具体例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。
 エーテル系溶剤の具体例としては、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス〔2-(2-メトキシエトキシ)エチル〕エーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 また、カーボネート系溶剤の具体的な例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
 上記反応溶剤の中でも、アミド系溶剤又はラクトン系溶剤が好ましい。また、上記の反応溶剤は単独で又は2種以上混合して用いてもよい。
Specific examples of the phenolic solvent include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4. -Xylenol, 3,5-xylenol and the like can be mentioned.
Specific examples of ether solvents include 1,2-dimethoxyethane, bis(2-methoxyethyl)ether, 1,2-bis(2-methoxyethoxy)ethane, bis[2-(2-methoxyethoxy)ethyl]. Ether, tetrahydrofuran, 1,4-dioxane and the like can be mentioned.
In addition, specific examples of the carbonate-based solvent include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate and the like.
Among the above reaction solvents, amide solvents or lactone solvents are preferable. Moreover, you may use the said reaction solvent individually or in mixture of 2 or more types.
 イミド化反応では、ディーンスターク装置などを用いて、製造時に生成する水を除去しながら反応を行うことが好ましい。このような操作を行うことで、重合度及びイミド化率をより上昇させることができる。 In the imidization reaction, it is preferable to use a Dean-Stark apparatus or the like to carry out the reaction while removing water produced during production. By performing such an operation, the degree of polymerization and the imidization ratio can be further increased.
 上記のイミド化反応においては、公知のイミド化触媒を用いることができる。イミド化触媒としては、塩基触媒又は酸触媒が挙げられる。
 塩基触媒としては、ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、2,4-ルチジン、2,6-ルチジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、イミダゾール、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の有機塩基触媒、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の無機塩基触媒が挙げられる。
 また、酸触媒としては、クロトン酸、アクリル酸、トランス-3-ヘキセノイック酸、桂皮酸、安息香酸、メチル安息香酸、オキシ安息香酸、テレフタル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸等が挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
 上記のうち、取り扱い性の観点から、塩基触媒を用いることが好ましく、有機塩基触媒を用いることがより好ましく、トリエチルアミンを用いることが更に好ましく、トリエチルアミンとトリエチレンジアミンを組み合わせて用いることが特に好ましい。
In the above imidization reaction, a known imidization catalyst can be used. Examples of the imidization catalyst include a base catalyst and an acid catalyst.
As the base catalyst, pyridine, quinoline, isoquinoline, α-picoline, β-picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, imidazole, N,N Examples include organic base catalysts such as dimethylaniline and N,N-diethylaniline, and inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, and sodium hydrogen carbonate.
As the acid catalyst, crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, paratoluenesulfonic acid, naphthalenesulfonic acid, etc. Is mentioned. The above imidization catalysts may be used alone or in combination of two or more.
Among the above, from the viewpoint of handleability, it is preferable to use a base catalyst, more preferable to use an organic base catalyst, further preferable to use triethylamine, and particularly preferable to use triethylamine and triethylenediamine in combination.
 イミド化反応の温度は、反応率及びゲル化等の抑制の観点から、好ましくは120~250℃、より好ましくは160~200℃である。また、反応時間は、生成水の留出開始後、好ましくは0.5~10時間である。 The temperature of the imidization reaction is preferably 120 to 250° C., more preferably 160 to 200° C., from the viewpoint of reaction rate and suppression of gelation and the like. The reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
[ポリイミドワニス]
 本発明のポリイミドワニスは、本発明のポリイミド樹脂が有機溶媒に溶解してなるものである。即ち、本発明のポリイミドワニスは、本発明のポリイミド樹脂及び有機溶媒を含み、当該ポリイミド樹脂は当該有機溶媒に溶解している。
 有機溶媒はポリイミド樹脂が溶解するものであればよく、特に限定されないが、ポリイミド樹脂の製造に用いられる反応溶剤として上述した化合物を、単独又は2種以上を混合して用いることが好ましい。
 本発明のポリイミドワニスは、重合法により得られるポリイミド樹脂が反応溶剤に溶解したポリイミド溶液そのものであってもよいし、又は当該ポリイミド溶液に対して更に希釈溶剤を追加したものであってもよい。
[Polyimide varnish]
The polyimide varnish of the present invention is obtained by dissolving the polyimide resin of the present invention in an organic solvent. That is, the polyimide varnish of the present invention contains the polyimide resin of the present invention and an organic solvent, and the polyimide resin is dissolved in the organic solvent.
The organic solvent is not particularly limited as long as it can dissolve the polyimide resin, but it is preferable to use the compounds described above as the reaction solvent used in the production of the polyimide resin, alone or in combination of two or more kinds.
The polyimide varnish of the present invention may be a polyimide solution itself in which a polyimide resin obtained by a polymerization method is dissolved in a reaction solvent, or may be one obtained by further adding a diluting solvent to the polyimide solution.
 本発明のポリイミド樹脂は溶媒溶解性を有しているため、室温で安定な高濃度のワニスとすることができる。本発明のポリイミドワニスは、本発明のポリイミド樹脂を5~40質量%含むことが好ましく、10~30質量%含むことがより好ましい。ポリイミドワニスの粘度は1~200Pa・sが好ましく、2~100Pa・sがより好ましい。ポリイミドワニスの粘度は、E型粘度計を用いて25℃で測定された値である。
 また、本発明のポリイミドワニスは、ポリイミドフィルムの要求特性を損なわない範囲で、無機フィラー、接着促進剤、剥離剤、難燃剤、紫外線安定剤、界面活性剤、レベリング剤、消泡剤、蛍光増白剤、架橋剤、重合開始剤、感光剤等各種添加剤を含んでもよい。
 本発明のポリイミドワニスの製造方法は特に限定されず、公知の方法を適用することができる。
Since the polyimide resin of the present invention has solvent solubility, it can be a highly concentrated varnish stable at room temperature. The polyimide varnish of the present invention preferably contains the polyimide resin of the present invention in an amount of 5 to 40% by mass, more preferably 10 to 30% by mass. The viscosity of the polyimide varnish is preferably 1 to 200 Pa·s, more preferably 2 to 100 Pa·s. The viscosity of the polyimide varnish is a value measured at 25° C. using an E-type viscometer.
In addition, the polyimide varnish of the present invention is an inorganic filler, an adhesion promoter, a release agent, a flame retardant, an ultraviolet stabilizer, a surfactant, a leveling agent, a defoaming agent, and a fluorescent enhancer within a range that does not impair the required properties of the polyimide film. It may contain various additives such as a whitening agent, a crosslinking agent, a polymerization initiator, and a photosensitizer.
The method for producing the polyimide varnish of the present invention is not particularly limited, and a known method can be applied.
[ポリイミドフィルム]
 本発明のポリイミドフィルムは、本発明のポリイミド樹脂を含む。したがって、本発明のポリイミドフィルムは、無色透明性、光学的等方性、及び耐薬品性(耐溶剤性、耐酸性及び耐アルカリ性)に優れる。本発明のポリイミドフィルムが有する好適な物性値は上述の通りである。
 本発明のポリイミドフィルムの製造方法には特に制限はなく、公知の方法を用いることができる。例えば、本発明のポリイミドワニスを、ガラス板、金属板、プラスチックなどの平滑な支持体上に塗布、又はフィルム状に成形した後、該ワニス中に含まれる反応溶剤や希釈溶剤等の有機溶媒を加熱により除去する方法等が挙げられる。
[Polyimide film]
The polyimide film of the present invention contains the polyimide resin of the present invention. Therefore, the polyimide film of the present invention is excellent in colorless transparency, optical isotropy, and chemical resistance (solvent resistance, acid resistance and alkali resistance). Suitable physical properties of the polyimide film of the present invention are as described above.
The method for producing the polyimide film of the present invention is not particularly limited, and a known method can be used. For example, the polyimide varnish of the present invention, a glass plate, a metal plate, after coating on a smooth support such as plastic, or molded into a film, an organic solvent such as a reaction solvent or a diluting solvent contained in the varnish. Examples include a method of removing by heating.
 塗布方法としては、スピンコート、スリットコート、ブレードコート等の公知の塗布方法が挙げられる。中でも、スリットコートが分子間配向を制御し耐薬品性が向上すること、作業性の観点から好ましい。
 ワニス中に含まれる有機溶媒を加熱により除去する方法としては、150℃以下の温度で有機溶媒を蒸発させタックフリーにした後、用いた有機溶媒の沸点以上の温度(特に限定されないが、好ましくは200~500℃)で乾燥することが好ましい。また、空気雰囲気下又は窒素雰囲気下で乾燥することが好ましい。乾燥雰囲気の圧力は、減圧、常圧、加圧のいずれでもよい。
 支持体上に製膜されたポリイミドフィルムを支持体から剥離する方法は特に限定されないが、レーザーリフトオフ法や、剥離用犠牲層を使用する方法(支持体の表面に予め離形剤を塗布しておく方法)が挙げられる。
Examples of the coating method include known coating methods such as spin coating, slit coating, and blade coating. Among them, the slit coat is preferable from the viewpoint of controlling intermolecular orientation and improving chemical resistance and workability.
As a method of removing the organic solvent contained in the varnish by heating, after evaporating the organic solvent at a temperature of 150° C. or less to be tack-free, a temperature equal to or higher than the boiling point of the used organic solvent (not particularly limited, preferably It is preferable to dry at 200 to 500°C. Further, it is preferable to dry under an air atmosphere or a nitrogen atmosphere. The pressure of the dry atmosphere may be any of reduced pressure, normal pressure and increased pressure.
The method of peeling the polyimide film formed on the support from the support is not particularly limited, but a laser lift-off method or a method of using a sacrificial layer for peeling (a release agent is applied to the surface of the support in advance. Method).
 また、本発明のポリイミドフィルムは、ポリアミド酸が有機溶媒に溶解してなるポリアミド酸ワニスを用いて製造することもできる。
 前記ポリアミド酸ワニスに含まれるポリアミド酸は、本発明のポリイミド樹脂の前駆体であって、上述の構成単位(A-1)を与える化合物及び上述の構成単位(A-2)を与える化合物を含むテトラカルボン酸成分と上述の構成単位(B-1)を与える化合物を70モル%以上含むジアミン成分との重付加反応の生成物である。このポリアミド酸をイミド化(脱水閉環)することで、最終生成物である本発明のポリイミド樹脂が得られる。
 前記ポリアミド酸ワニスに含まれる有機溶媒としては、本発明のポリイミドワニスに含まれる有機溶媒を用いることができる。
 本発明において、ポリアミド酸ワニスは、テトラカルボン酸成分とジアミン成分とを反応溶剤中で重付加反応させて得られるポリアミド酸溶液そのものであってもよいし、又は当該ポリアミド酸溶液に対して更に希釈溶剤を追加したものであってもよい。
Further, the polyimide film of the present invention can also be produced using a polyamic acid varnish obtained by dissolving polyamic acid in an organic solvent.
The polyamic acid contained in the polyamic acid varnish includes a compound that gives the above-mentioned structural unit (A-1) and a compound that gives the above-mentioned structural unit (A-2), which are precursors of the polyimide resin of the present invention. It is a product of a polyaddition reaction between a tetracarboxylic acid component and a diamine component containing 70 mol% or more of the compound which gives the structural unit (B-1). By imidizing (dehydrating and ring-closing) this polyamic acid, the final product of the polyimide resin of the present invention can be obtained.
As the organic solvent contained in the polyamic acid varnish, the organic solvent contained in the polyimide varnish of the present invention can be used.
In the present invention, the polyamic acid varnish may be a polyamic acid solution itself obtained by polyaddition reaction of a tetracarboxylic acid component and a diamine component in a reaction solvent, or further diluted with respect to the polyamic acid solution. It may be a solvent added.
 ポリアミド酸ワニスを用いてポリイミドフィルムを製造する方法には特に制限はなく、公知の方法を用いることができる。例えば、ポリアミド酸ワニスを、ガラス板、金属板、プラスチックなどの平滑な支持体上に塗布、又はフィルム状に成形し、該ワニス中に含まれる反応溶剤や希釈溶剤等の有機溶媒を加熱により除去してポリアミド酸フィルムを得て、該ポリアミド酸フィルム中のポリアミド酸を加熱によりイミド化することで、ポリイミドフィルムを製造することができる。
 ポリアミド酸ワニスを乾燥させてポリアミド酸フィルムを得る際の加熱温度としては、好ましくは50~120℃である。ポリアミド酸を加熱によりイミド化する際の加熱温度としては好ましくは200~400℃である。
 なお、イミド化の方法は熱イミド化に限定されず、化学イミド化を適用することもできる。
The method for producing a polyimide film using a polyamic acid varnish is not particularly limited, and a known method can be used. For example, a polyamic acid varnish is applied on a smooth support such as a glass plate, a metal plate, or a plastic, or formed into a film, and an organic solvent such as a reaction solvent or a diluting solvent contained in the varnish is removed by heating. Then, a polyamic acid film is obtained, and the polyamic acid in the polyamic acid film is imidized by heating to produce a polyimide film.
The heating temperature for drying the polyamic acid varnish to obtain a polyamic acid film is preferably 50 to 120°C. The heating temperature for imidizing the polyamic acid by heating is preferably 200 to 400°C.
The imidization method is not limited to thermal imidization, and chemical imidization can also be applied.
 本発明のポリイミドフィルムの厚みは用途等に応じて適宜選択することができるが、好ましくは1~250μm、より好ましくは5~100μm、更に好ましくは10~80μmの範囲である。厚みが1~250μmであることで、自立膜としての実用的な使用が可能となる。
 ポリイミドフィルムの厚みは、ポリイミドワニスの固形分濃度や粘度を調整することにより、容易に制御することができる。
The thickness of the polyimide film of the present invention can be appropriately selected depending on the application etc., but is preferably in the range of 1 to 250 μm, more preferably 5 to 100 μm, and further preferably 10 to 80 μm. A thickness of 1 to 250 μm enables practical use as a self-supporting film.
The thickness of the polyimide film can be easily controlled by adjusting the solid content concentration and viscosity of the polyimide varnish.
 本発明のポリイミドフィルムは、カラーフィルター、フレキシブルディスプレイ、半導体部品、光学部材等の各種部材用のフィルムとして好適に用いられる。本発明のポリイミドフィルムは、液晶ディスプレイやOLEDディスプレイ等の画像表示装置の基板として、特に好適に用いられる。 The polyimide film of the present invention is preferably used as a film for various members such as color filters, flexible displays, semiconductor parts and optical members. The polyimide film of the present invention is particularly preferably used as a substrate for image display devices such as liquid crystal displays and OLED displays.
 以下に、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these examples.
 実施例及び比較例において、各物性は以下に示す方法によって測定した。
(1)フィルム厚さ
 フィルム厚さは、株式会社ミツトヨ製のマイクロメーターを用いて測定した。
(2)引張強度、引張弾性率
 引張強度及び引張弾性率は、JIS K7127:1999に準拠し、東洋精機株式会社製の引張試験機「ストログラフVG-1E」を用いて測定した。チャック間距離は50mm、試験片サイズは10mm×70mm、試験速度は20mm/minとした。
(3)ガラス転移温度(Tg)
 株式会社日立ハイテクサイエンス製の熱機械的分析装置「TMA/SS6100」を用いて、引張モードで試料サイズ2mm×20mm、荷重0.1N、昇温速度10℃/minの条件で、残留応力を取り除くのに十分な温度まで昇温して残留応力を取り除き、その後室温まで冷却した。その後、前記残留応力を取り除くための処理と同じ条件で試験片伸びの測定を行い、伸びの変曲点が見られたところをガラス転移温度として求めた。
(4)全光線透過率、イエローインデックス(YI)、b
 全光線透過率、YI及びbは、JIS K7105:1981に準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH400」を用いて測定した。
(5)厚み位相差(Rth)
 厚み位相差(Rth)は、日本分光株式会社製のエリプソメーター「M-220」を用いて測定した。測定波長590nmにおける、厚み位相差の値を測定した。なおRthは、ポリイミドフィルムの面内の屈折率のうち最大のものをnx、最小のものをnyとし、厚み方向の屈折率をnzとし、フィルムの厚みをdとしたとき、下記式によって表されるものである。
  Rth=[{(nx+ny)/2}-nz]×d
(6)耐溶剤性
 ガラス板上に製膜したポリイミドフィルムに、室温で溶剤を滴下し、フィルム表面に変化がないかを確認した。なお、溶剤としては、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を使用した。
 耐溶剤性の評価基準は、以下の通りとした。
A:フィルム表面に変化がなかった。
B:フィルム表面にわずかにクラックが入った。
C:フィルム表面にクラックが入った、又はフィルム表面が溶解した。
(7)耐酸性(混酸ΔYI及び混酸Δb
 ガラス板上に製膜したポリイミドフィルムを40℃に温めた混酸(H3PO4(70質量%)+HNO3(10質量%)+CH3COOH(5質量%)+H2O(15質量%)の混合溶液)に4分間浸漬した後、水洗した。水洗後、水分をふき取り、ホットプレートにて240℃で50分加熱して、乾燥した。試験前後でYI及びbを測定し、その変化(ΔYI及びΔb)を求めた。なお、ここでのYI測定及びb測定は、ガラス板にポリイミドフィルムを製膜した状態(ガラス板+ポリイミドフィルムの状態)で行った。
(8)耐アルカリ性
 ガラス板上に製膜したポリイミドフィルムを、室温で3質量%濃度の水酸化カリウム水溶液に5分間浸漬した後、水洗した。水洗後、フィルム表面に変化がないかを確認した。
 耐アルカリ性の評価基準は、以下の通りとした。
A:フィルム表面に変化がなかった。
B:フィルム表面にわずかにクラックが入った。
C:フィルム表面にクラックが入った、又はフィルム表面が溶解した。
In Examples and Comparative Examples, each physical property was measured by the methods described below.
(1) Film thickness The film thickness was measured using a micrometer manufactured by Mitutoyo Corporation.
(2) Tensile Strength and Tensile Elastic Modulus Tensile strength and tensile elastic modulus were measured using a tensile tester “STROGRAPH VG-1E” manufactured by Toyo Seiki Co., Ltd. according to JIS K7127:1999. The distance between chucks was 50 mm, the size of the test piece was 10 mm×70 mm, and the test speed was 20 mm/min.
(3) Glass transition temperature (Tg)
Residual stress is removed using a thermo-mechanical analyzer "TMA/SS6100" manufactured by Hitachi High-Tech Science Co., Ltd. in the tensile mode under the conditions of sample size 2 mm x 20 mm, load 0.1 N, and heating rate 10 °C/min The temperature was raised to a temperature sufficient to remove residual stress, and then cooled to room temperature. Then, the elongation of the test piece was measured under the same conditions as the treatment for removing the residual stress, and the point where the inflection point of the elongation was observed was determined as the glass transition temperature.
(4) Total light transmittance, yellow index (YI), b *
The total light transmittance, YI and b * were measured according to JIS K7105:1981 using a color/turbidity simultaneous measuring device “COH400” manufactured by Nippon Denshoku Industries Co., Ltd.
(5) Thickness phase difference (Rth)
The thickness retardation (Rth) was measured using an ellipsometer “M-220” manufactured by JASCO Corporation. The value of the thickness retardation at a measurement wavelength of 590 nm was measured. Note that Rth is represented by the following formula when the maximum in-plane refractive index of the polyimide film is nx, the minimum is ny, the thickness direction refractive index is nz, and the film thickness is d. It is something.
Rth=[{(nx+ny)/2}-nz]×d
(6) Solvent resistance A solvent was dropped at room temperature on a polyimide film formed on a glass plate, and it was confirmed whether the film surface was changed. In addition, propylene glycol monomethyl ether acetate (PGMEA) was used as a solvent.
The evaluation criteria for solvent resistance were as follows.
A: There was no change on the film surface.
B: The surface of the film was slightly cracked.
C: The film surface was cracked or the film surface was dissolved.
(7) Acid resistance (mixed acid ΔYI and mixed acid Δb * )
Of a mixed acid (H 3 PO 4 (70 mass %)+HNO 3 (10 mass %)+CH 3 COOH (5 mass %)+H 2 O (15 mass %) obtained by heating a polyimide film formed on a glass plate to 40° C. It was immersed in a mixed solution) for 4 minutes and then washed with water. After washing with water, the water was wiped off, the mixture was heated on a hot plate at 240° C. for 50 minutes, and dried. YI and b * were measured before and after the test, and the change (ΔYI and Δb * ) was determined. The YI measurement and the b * measurement here were carried out in a state in which a polyimide film was formed on a glass plate (a glass plate+a polyimide film).
(8) Alkali resistance A polyimide film formed on a glass plate was immersed in an aqueous potassium hydroxide solution having a concentration of 3% by mass for 5 minutes at room temperature and then washed with water. After washing with water, it was confirmed that the film surface did not change.
The evaluation criteria of alkali resistance were as follows.
A: There was no change on the film surface.
B: The surface of the film was slightly cracked.
C: The film surface was cracked or the film surface was dissolved.
 実施例及び比較例にて使用したテトラカルボン酸成分及びジアミン成分、並びにその略号は以下の通りである。
<テトラカルボン酸成分>
HPMDA:1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(三菱ガス化学株式会社製;式(a-1)で表される化合物)
ODPA:4,4’-オキシジフタル酸無水物(マナック株式会社製;式(a-2)で表される化合物)
<ジアミン成分>
3,3’-DDS:3,3’-ジアミノジフェニルスルホン(セイカ株式会社製;式(b-1)で表される化合物)
6FODA:4,4’-ジアミノ-2,2’-ビストリフルオロメチルジフェニルエーテル(ChinaTech Chemical (Tianjin) Co., Ltd.製;式(b-2-1)で表される化合物)
BAFL:9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製;式(b-2-2)で表される化合物)
HFBAPP:2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン(セイカ株式会社製;式(b-2-3)で表される化合物)
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン(セイカ株式会社製;式(b-2-4)で表される化合物)
The tetracarboxylic acid component and diamine component used in the examples and comparative examples, and their abbreviations are as follows.
<Tetracarboxylic acid component>
HPMDA: 1,2,4,5-cyclohexanetetracarboxylic dianhydride (manufactured by Mitsubishi Gas Chemical Co., Inc.; compound represented by formula (a-1))
ODPA: 4,4′-oxydiphthalic anhydride (manac KK; compound represented by formula (a-2))
<Diamine component>
3,3′-DDS: 3,3′-diaminodiphenyl sulfone (manufactured by Seika Ltd.; compound represented by formula (b-1))
6FODA: 4,4′-diamino-2,2′-bistrifluoromethyldiphenyl ether (manufactured by ChinaTech Chemical (Tianjin) Co., Ltd.; compound represented by formula (b-2-1))
BAFL: 9,9-bis(4-aminophenyl)fluorene (manufactured by Taoka Chemical Co., Ltd.; compound represented by formula (b-2-2))
HFBAPP: 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane (manufactured by Seika Ltd.; compound represented by formula (b-2-3))
TFMB: 2,2'-bis(trifluoromethyl)benzidine (manufactured by Seika Ltd.; compound represented by formula (b-2-4))
<実施例1>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを32.841g(0.132モル)とγ-ブチロラクトン(三菱化学株式会社製)を63.328g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを23.720g(0.106モル)と、ODPAを8.206g(0.026モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.832gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.669g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を160.841g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Example 1>
32.841 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.132 mol) and γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) (63.328 g) were added, and the solution was obtained by stirring at a system internal temperature of 70° C. and a nitrogen atmosphere at a rotation speed of 200 rpm.
To this solution, 23.720 g (0.106 mol) of HPMDA, 8.206 g (0.026 mol) of ODPA, and 15.832 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. Then, 0.669 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was maintained at 190° C. and refluxed for about 5 hours while adjusting the number of rotations according to the increase in viscosity.
Then, 160.841 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogeneity. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 1.
<実施例2>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを31.073g(0.125モル)とγ-ブチロラクトン(三菱化学株式会社製)を63.077g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを14.027g(0.063モル)と、ODPAを19.410g(0.063モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.769gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.633g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.154g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Example 2>
In a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap, 31.073 g of 3,3′-DDS ( 0.125 mol) and 63.077 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the solution was obtained by stirring at a system internal temperature of 70° C. and a nitrogen atmosphere at a rotation speed of 200 rpm.
To this solution, 14.027 g (0.063 mol) of HPMDA, 19.410 g (0.063 mol) of ODPA, and 15.769 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. Then, 0.633 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst and heated by a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was maintained at 190° C. and refluxed for about 5 hours while adjusting the number of rotations according to the increase in viscosity.
After that, 161.154 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogenize. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 1.
<実施例3>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを29.486g(0.119モル)とγ-ブチロラクトン(三菱化学株式会社製)を62.851g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを5.324g(0.024モル)と、ODPAを29.470g(0.095モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.713gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.601g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.436g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Example 3>
29.486 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.119 mol) and γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) (62.851 g) were added, and the solution was obtained by stirring at a system internal temperature of 70° C. and a nitrogen atmosphere at a rotation speed of 200 rpm.
To this solution, 5.324 g (0.024 mol) of HPMDA, 29.470 g (0.095 mol) of ODPA, and 15.713 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. Then, 0.601 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst and heated with a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was maintained at 190° C. and refluxed for about 5 hours while adjusting the number of rotations according to the increase in viscosity.
Thereafter, 161.436 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., followed by stirring for about 1 hour to homogenize the mixture. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 1.
<比較例1>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを34.192g(0.137モル)とγ-ブチロラクトン(三菱化学株式会社製)を63.495g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを30.746g(0.0137モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.874gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.693g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃に保持して約5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を160.631g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Comparative Example 1>
In a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a Dean Stark equipped with a nitrogen introducing tube, a cooling tube, a thermometer, and a glass end cap, 34.192 g of 3,3′-DDS ( 0.137 mol) and γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added in an amount of 63.495 g, and the solution was obtained by stirring at a system internal temperature of 70° C. and a nitrogen atmosphere at a rotation speed of 200 rpm.
To this solution, 30.746 g (0.0137 mol) of HPMDA and 15.874 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added all at once, and triethylamine (manufactured by Kanto Chemical Co., Ltd.) was used as an imidization catalyst. 0.693 g was added, the mixture was heated with a mantle heater, the temperature in the reaction system was kept at 190° C. over about 20 minutes, and the mixture was refluxed for about 5 hours.
Then, 160.631 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogeneity. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 1.
<比較例2>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを28.588g(0.115モル)とγ-ブチロラクトン(三菱化学株式会社製)を62.704g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、ODPAを35.541g(0.115モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.676gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.580g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.620g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Comparative example 2>
28.588 g of 3,3'-DDS was placed in a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.115 mol) and 62.704 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were charged, and the solution was obtained by stirring at a system internal temperature of 70° C. and a nitrogen atmosphere at a rotation speed of 200 rpm.
To this solution, 35.541 g (0.115 mol) of ODPA and 15.676 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once, and triethylamine (manufactured by Kanto Chemical Co., Ltd.) was used as an imidization catalyst. ) Was charged and heated by a mantle heater, and the temperature in the reaction system was raised to 190° C. in about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was maintained at 190° C. and refluxed for about 5 hours while adjusting the number of rotations according to the increase in viscosity.
Thereafter, 161.620 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogenize. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 1.
<比較例3>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、BAFLを36.092g(0.103モル)とγ-ブチロラクトン(三菱化学株式会社製)を63.309g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを11.598g(0.052モル)と、ODPAを16.035g(0.052モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.577gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.523g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を162.113g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表1に示す。
<Comparative example 3>
36.092 g (0.103 mol) of BAFL was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 63.309 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the solution was obtained by stirring at a system internal temperature of 70° C. and a nitrogen atmosphere at a rotation speed of 200 rpm.
To this solution, 11.598 g (0.052 mol) of HPMDA, 16.35 g (0.052 mol) of ODPA, and 15.577 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. Then, 0.523 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst and heated by a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was maintained at 190° C. and refluxed for about 5 hours while adjusting the number of rotations according to the increase in viscosity.
Then, 162.113 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and then stirred for about 1 hour to homogeneity. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 1.
<実施例4>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを25.353g(0.102モル)、6FODAを8.547g(0.025モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を63.142g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを22.797g(0.102モル)と、ODPAを7.880g(0.025モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.785gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.643g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.073g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 4>
25.353 g of 3,3′-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.102 mol), 6FODA (8.547 g (0.025 mol)), and γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) (63.142 g) were added, the system temperature was 70°C, and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 22.797 g (0.102 mol) of HPMDA, 7.880 g (0.025 mol) of ODPA, and 15.785 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.643 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated by a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was kept at 190° C. and refluxed for 5 hours while adjusting the number of rotations according to the increase in viscosity.
Then, 161.073 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration became 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogenize. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 2.
<実施例5>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを24.042g(0.096モル)、6FODAを8.106g(0.024モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.910g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを13.512g(0.060モル)と、ODPAを18.681g(0.060モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.728gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.609g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.362g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 5>
In a 300 mL five-necked round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap, 24.04 g of 3,3'-DDS ( 0.096 mol), 6.106 g (0.024 mol) of 6FODA, and 62.910 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were charged, and the system temperature was 70° C., under a nitrogen atmosphere, and the rotation speed was 200 rpm. A solution was obtained by stirring.
To this solution, 13.512 g (0.060 mol) of HPMDA, 18.681 g (0.060 mol) of ODPA, and 15.728 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.609 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was charged as an imidization catalyst and heated with a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was kept at 190° C. and refluxed for 5 hours while adjusting the number of rotations according to the increase in viscosity.
Thereafter, 161.362 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogeneity. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 2.
<実施例6>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを25.822g(0.103モル)、6FODAを8.706g(0.026モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を63.225g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを26.121g(0.116モル)と、ODPAを4.013g(0.013モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.806gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.654g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を160.969g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 6>
25.822 g of 3,3′-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.103 mol), 6.706 g (0.026 mol) of 6FODA, and 63.225 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were charged, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 26.121 g (0.116 mol) of HPMDA, 4.013 g (0.013 mol) of ODPA, and 15.806 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.654 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was charged as an imidization catalyst and heated by a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was kept at 190° C. and refluxed for 5 hours while adjusting the number of rotations according to the increase in viscosity.
Then, 160.969 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogeneity. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 2.
<実施例7>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを25.218g(0.101モル)、BAFLを8.821g(0.025モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を63.118g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを22.676g(0.101モル)と、ODPAを7.838g(0.025モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.780gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.639g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.102g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 7>
25.218 g of 3,3′-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.101 mol), 8.821 g (0.025 mol) of BAFL, and 63.118 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were charged, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 22.676 g (0.101 mol) of HPMDA, 7.838 g (0.025 mol) of ODPA, and 15.780 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.639 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was charged as an imidization catalyst and heated with a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was kept at 190° C. and refluxed for 5 hours while adjusting the number of rotations according to the increase in viscosity.
Then, 161.102 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogeneity. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 2.
<実施例8>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを23.921g(0.096モル)、BAFLを8.367g(0.024モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.889g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを13.444g(0.060モル)と、ODPAを18.587g(0.060モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.722gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.606g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.389g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 8>
23.921 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.096 mol), 8.367 g (0.024 mol) of BAFL, and 62.889 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were charged, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 13.444 g (0.060 mol) of HPMDA, 18.587 g (0.060 mol) of ODPA, and 15.722 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.606 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was added as an imidization catalyst and heated with a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was kept at 190° C. and refluxed for 5 hours while adjusting the number of rotations according to the increase in viscosity.
Thereafter, 161.389 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogenize. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 2.
<実施例9>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを23.530g(0.094モル)、HFBAPPを12.247g(0.024モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.820g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを21.158g(0.094モル)と、ODPAを7.313g(0.024モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.705gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.596g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.475g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 9>
23.530 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.094 mol), 12.247 g (0.024 mol) of HFBAPP, and 62.820 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 21.158 g (0.094 mol) of HPMDA, 7.313 g (0.024 mol) of ODPA, and 15.705 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.596 g of triethylamine (manufactured by Kanto Kagaku Co., Ltd.) was charged as an imidization catalyst and heated by a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was kept at 190° C. and refluxed for 5 hours while adjusting the number of rotations according to the increase in viscosity.
Then, 161.475 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogeneity. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 2.
<実施例10>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを22.397g(0.090モル)、HFBAPPを11.657g(0.022モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.620g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを12.587g(0.056モル)と、ODPAを17.402g(0.056モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.655gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.568g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.725g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 10>
22.397 g of 3,3'-DDS was placed in a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.090 mol), 11.657 g (0.022 mol) of HFBAPP, and 62.620 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were charged, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 12.587 g (0.056 mol) of HPMDA, 17.402 g (0.056 mol) of ODPA, and 15.655 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.568 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst and heated with a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was kept at 190° C. and refluxed for 5 hours while adjusting the number of rotations according to the increase in viscosity.
Then, 161.725 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogenize. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 2.
<実施例11>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを23.933g(0.096モル)、HFBAPPを12.457g(0.024モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.891g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを24.211g(0.108モル)と、ODPAを3.719g(0.012モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.723gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.607g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.386g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 11>
23.933 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.096 mol), 12.457 g (0.024 mol) of HFBAPP, and 62.891 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 24.211 g (0.108 mol) of HPMDA, 3.719 g (0.012 mol) of ODPA, and 15.723 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.607 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst and heated by a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was kept at 190° C. and refluxed for 5 hours while adjusting the number of rotations according to the increase in viscosity.
Thereafter, 161.386 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration became 20% by mass, and the temperature in the reaction system was cooled to 100° C., and then stirred for about 1 hour to be uniform. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 2.
<実施例12>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを26.000g(0.104モル)、TFMBを8.351g(0.026モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を63.256g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを26.302g(0.117モル)と、ODPAを4.041g(0.013モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.814gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.659g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を160.930g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Example 12>
26.000 g of 3,3'-DDS was placed in a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.104 mol), 8.351 g (0.026 mol) of TFMB, and 63.256 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 26.302 g (0.117 mol) of HPMDA, 4.041 g (0.013 mol) of ODPA, and 15.814 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.659 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst and heated by a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was kept at 190° C. and refluxed for 5 hours while adjusting the number of rotations according to the increase in viscosity.
Thereafter, 160.930 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and then stirred for about 1 hour to homogenize. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 2.
<比較例4>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを15.356g(0.062モル)、BAFLを21.485g(0.062モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を63.004g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを27.594g(0.123モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.751gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.623g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.246g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Comparative example 4>
15.356 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.062 mol), 21.485 g (0.062 mol) of BAFL, and 63.004 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 27.594 g (0.123 mol) of HPMDA and 15.751 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added all at once, and triethylamine (manufactured by Kanto Chemical Co., Ltd.) was used as an imidization catalyst. 0.623 g was added and the mixture was heated with a mantle heater, and the temperature in the reaction system was raised to 190° C. in about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was kept at 190° C. and refluxed for 5 hours while adjusting the number of rotations according to the increase in viscosity.
After that, 162.246 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogeneity. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 2.
<比較例5>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを13.053g(0.052モル)、BAFLを18.263g(0.052モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.353g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、ODPAを32.455g(0.105モル)と、γ-ブチロラクトン(三菱化学株式会社製)を15.588gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.529g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を162.059g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Comparative Example 5>
13.053 g of 3,3'-DDS was added to a 300 mL 5-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.052 mol), 18.263 g (0.052 mol) of BAFL, and 62.353 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) were added, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 32.455 g (0.105 mol) of ODPA and 15.588 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once, and triethylamine (manufactured by Kanto Chemical Co., Ltd.) was used as an imidization catalyst. ) Was charged and heated with a mantle heater, and the temperature in the reaction system was raised to 190° C. in about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was kept at 190° C. and refluxed for 5 hours while adjusting the number of rotations according to the increase in viscosity.
Thereafter, 162.059 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, the temperature in the reaction system was cooled to 100° C., and the mixture was further stirred for about 1 hour to homogeneity. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 2.
<比較例6>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、3,3’-DDSを14.109g(0.057モル)、BAFLを19.740g(0.057モル)、及びγ-ブチロラクトン(三菱化学株式会社製)を62.651g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、HPMDAを12.687g(0.057モル)と、ODPAを17.540g(0.057モル)と、及びγ-ブチロラクトン(三菱化学株式会社製)を15.663gとを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)を0.572g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、固形分濃度20質量%となるようにγ-ブチロラクトン(三菱化学株式会社製)を161.686g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、空気雰囲気下、熱風乾燥機中260℃で30分加熱し溶媒を蒸発させ、フィルムを得た。結果を表2に示す。
<Comparative example 6>
14.109 g of 3,3'-DDS was added to a 300 mL five-neck round bottom flask equipped with a stainless steel half-moon stirring blade, a nitrogen introduction tube, a Dean Stark equipped with a cooling tube, a thermometer, and a glass end cap. 0.057 mol), 19.740 g (0.057 mol) of BAFL, and 62.651 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were charged, and the system temperature was 70° C. and the rotation speed was 200 rpm under a nitrogen atmosphere. A solution was obtained by stirring.
To this solution, 12.687 g (0.057 mol) of HPMDA, 17.540 g (0.057 mol) of ODPA, and 15.663 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Corporation) were added all at once. After that, 0.572 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added as an imidization catalyst and heated by a mantle heater, and the temperature in the reaction system was raised to 190° C. over about 20 minutes. The components to be distilled off were collected, and the temperature in the reaction system was kept at 190° C. and refluxed for 5 hours while adjusting the number of rotations according to the increase in viscosity.
Thereafter, 161.686 g of γ-butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added so that the solid content concentration was 20% by mass, and the temperature in the reaction system was cooled to 100° C., and further stirred for about 1 hour to homogeneity. To obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, kept at 80°C for 20 minutes on a hot plate, and then heated at 260°C for 30 minutes in a hot air dryer in an air atmosphere to evaporate the solvent. To obtain a film. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 なお、比較例1のフィルムは、耐酸性の試験において混酸に浸漬したところ、著しく劣化したため、浸漬後のYI及びbを測定できなかった。したがって、比較例1のΔYI及びΔbは求められなかった。 The film of Comparative Example 1 was significantly deteriorated when immersed in a mixed acid in the acid resistance test, so that the YI and b * after immersion could not be measured. Therefore, ΔYI and Δb * of Comparative Example 1 were not obtained.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1に示すように、実施例1~3のポリイミドフィルムは、テトラカルボン酸成分としてHPMDAとODPAとを併用し、ジアミン成分として3,3’-DDSを用いて製造した。その結果、無色透明性、光学的等方性、及び耐薬品性(耐溶剤性、耐酸性及び耐アルカリ性)に優れていた。
 一方、比較例1のポリイミドフィルムは、テトラカルボン酸成分としてHPMDAのみを使用して製造した。その結果、耐酸性が劣っていた。
 比較例2のポリイミドフィルムは、テトラカルボン酸成分としてODPAのみを使用して製造した。その結果、無色透明性及び光学的等方性が劣っていた。
 比較例3のポリイミドフィルムは、ジアミン成分として3,3’-DDSを用いず、BAFLのみを使用して製造した。その結果、耐酸性が劣っていた。
As shown in Table 1, the polyimide films of Examples 1 to 3 were produced by using HPMDA and ODPA in combination as the tetracarboxylic acid component and 3,3′-DDS as the diamine component. As a result, it was excellent in colorless transparency, optical isotropy, and chemical resistance (solvent resistance, acid resistance and alkali resistance).
On the other hand, the polyimide film of Comparative Example 1 was manufactured using only HPMDA as the tetracarboxylic acid component. As a result, the acid resistance was poor.
The polyimide film of Comparative Example 2 was manufactured using only ODPA as the tetracarboxylic acid component. As a result, the colorless transparency and the optical isotropy were poor.
The polyimide film of Comparative Example 3 was manufactured using BAFL only without using 3,3′-DDS as a diamine component. As a result, the acid resistance was poor.
 また、表2に示すように、実施例4~12のポリイミドフィルムは、ジアミン成分として3,3’-DDSだけでなく、それ以外の第二ジアミン(6FODA、BAFL、HFBAPP、又はTFMB)も使用して製造した。ただし、3,3’-DDSの比率が70モル%以上になるように、3,3’-DDSと第二ジアミンとを併用した。その結果、無色透明性、光学的等方性、及び耐薬品性(耐溶剤性、耐酸性及び耐アルカリ性)に優れていた。
 一方、比較例4のポリイミドフィルムは、ジアミン成分として3,3’-DDSとそれ以外の第二ジアミン(BAFL)とを併用して製造したが、使用した3,3’-DDSの比率は70モル%未満であった。さらに、テトラカルボン酸成分として、HPMDAのみを使用した。その結果、耐酸性が劣っていた。
 比較例5のポリイミドフィルムは、ジアミン成分として3,3’-DDSとそれ以外の第二ジアミン(BAFL)とを併用して製造したが、使用した3,3’-DDSの比率は70モル%未満であった。さらに、テトラカルボン酸成分として、ODPAのみを使用した。その結果、無色透明性(全光線透過率)、光学的等方性、及び耐酸性が劣っていた。
 比較例6のポリイミドフィルムは、ジアミン成分として3,3’-DDSとそれ以外の第二ジアミン(BAFL)とを併用して製造したが、使用した3,3’-DDSの比率は70モル%未満であった。その結果、光学的等方性及び耐酸性が劣っていた。
Further, as shown in Table 2, the polyimide films of Examples 4 to 12 used not only 3,3′-DDS as the diamine component but also a second diamine (6FODA, BAFL, HFBAPP, or TFMB) other than that. Manufactured. However, 3,3′-DDS and secondary diamine were used in combination so that the ratio of 3,3′-DDS was 70 mol% or more. As a result, it was excellent in colorless transparency, optical isotropy, and chemical resistance (solvent resistance, acid resistance and alkali resistance).
On the other hand, the polyimide film of Comparative Example 4 was produced by using 3,3′-DDS as the diamine component in combination with the other second diamine (BAFL), and the ratio of the 3,3′-DDS used was 70. It was less than mol %. Further, only HPMDA was used as the tetracarboxylic acid component. As a result, the acid resistance was poor.
The polyimide film of Comparative Example 5 was produced by using 3,3′-DDS as the diamine component and the other secondary diamine (BAFL) in combination, and the ratio of the 3,3′-DDS used was 70 mol %. Was less than. Furthermore, only ODPA was used as the tetracarboxylic acid component. As a result, the colorless transparency (total light transmittance), optical isotropy, and acid resistance were poor.
The polyimide film of Comparative Example 6 was produced by using 3,3'-DDS as the diamine component and the other secondary diamine (BAFL) in combination, and the ratio of the 3,3'-DDS used was 70 mol%. Was less than. As a result, the optical isotropy and acid resistance were poor.

Claims (4)

  1.  テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有するポリイミド樹脂であって、
     構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、
     構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)を含み、
     構成単位B中における構成単位(B-1)の比率が70モル%以上である、ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000001
    A polyimide resin having a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from a diamine,
    A structural unit A is a structural unit (A-1) derived from a compound represented by the following formula (a-1) and a structural unit (A-2) is derived from a compound represented by the following formula (a-2). Including and
    The structural unit B contains a structural unit (B-1) derived from a compound represented by the following formula (b-1),
    A polyimide resin in which the ratio of the structural unit (B-1) in the structural unit B is 70 mol% or more.
    Figure JPOXMLDOC01-appb-C000001
  2.  構成単位A中における構成単位(A-1)の比率が5~95モル%であり、
     構成単位A中における構成単位(A-2)の比率が5~95モル%である、請求項1に記載のポリイミド樹脂。
    The ratio of the structural unit (A-1) in the structural unit A is 5 to 95 mol %,
    The polyimide resin according to claim 1, wherein the ratio of the structural unit (A-2) in the structural unit A is 5 to 95 mol%.
  3.  請求項1又は2に記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。 A polyimide varnish obtained by dissolving the polyimide resin according to claim 1 or 2 in an organic solvent.
  4.  請求項1又は2に記載のポリイミド樹脂を含む、ポリイミドフィルム。 A polyimide film containing the polyimide resin according to claim 1 or 2.
PCT/JP2019/045814 2018-11-28 2019-11-22 Polyimide resin, polyimide varnish and polyimide film WO2020110947A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980077603.2A CN113166412B (en) 2018-11-28 2019-11-22 Polyimide resin, polyimide varnish and polyimide film
JP2020557671A JP7384170B2 (en) 2018-11-28 2019-11-22 Polyimide resin, polyimide varnish and polyimide film
KR1020217006670A KR20210097095A (en) 2018-11-28 2019-11-22 Polyimide resins, polyimide varnishes and polyimide films

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018222894 2018-11-28
JP2018-222894 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020110947A1 true WO2020110947A1 (en) 2020-06-04

Family

ID=70853223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045814 WO2020110947A1 (en) 2018-11-28 2019-11-22 Polyimide resin, polyimide varnish and polyimide film

Country Status (4)

Country Link
JP (1) JP7384170B2 (en)
KR (1) KR20210097095A (en)
CN (1) CN113166412B (en)
WO (1) WO2020110947A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020110948A1 (en) * 2018-11-28 2021-10-21 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish and polyimide film
WO2022014667A1 (en) * 2020-07-16 2022-01-20 三菱瓦斯化学株式会社 Laminate
CN116057109A (en) * 2020-09-10 2023-05-02 三菱瓦斯化学株式会社 Polymer composition, varnish, and polyimide film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001040851A1 (en) * 1999-11-30 2001-06-07 Hitachi, Ltd. Liquid-crystal display and resin composition
JP2012167169A (en) * 2011-02-14 2012-09-06 Mitsubishi Gas Chemical Co Inc Colored light-blocking polyimide film
WO2016158825A1 (en) * 2015-03-31 2016-10-06 旭化成株式会社 Polyimide film, polyimide varnish, product using polyimide film, and laminate
WO2017073782A1 (en) * 2015-10-30 2017-05-04 株式会社アイ.エス.テイ Polyimide film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6579110B2 (en) * 2014-10-17 2019-09-25 三菱瓦斯化学株式会社 Polyimide resin composition, polyimide film and laminate
CN108136755B (en) * 2015-10-15 2021-06-29 日铁化学材料株式会社 Polyimide laminate and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001040851A1 (en) * 1999-11-30 2001-06-07 Hitachi, Ltd. Liquid-crystal display and resin composition
JP2012167169A (en) * 2011-02-14 2012-09-06 Mitsubishi Gas Chemical Co Inc Colored light-blocking polyimide film
WO2016158825A1 (en) * 2015-03-31 2016-10-06 旭化成株式会社 Polyimide film, polyimide varnish, product using polyimide film, and laminate
WO2017073782A1 (en) * 2015-10-30 2017-05-04 株式会社アイ.エス.テイ Polyimide film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020110948A1 (en) * 2018-11-28 2021-10-21 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish and polyimide film
JP7367699B2 (en) 2018-11-28 2023-10-24 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish and polyimide film
WO2022014667A1 (en) * 2020-07-16 2022-01-20 三菱瓦斯化学株式会社 Laminate
CN116057109A (en) * 2020-09-10 2023-05-02 三菱瓦斯化学株式会社 Polymer composition, varnish, and polyimide film

Also Published As

Publication number Publication date
TW202031726A (en) 2020-09-01
CN113166412B (en) 2024-03-08
JP7384170B2 (en) 2023-11-21
KR20210097095A (en) 2021-08-06
JPWO2020110947A1 (en) 2021-10-21
CN113166412A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
JP6996609B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7424284B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7205491B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7180617B2 (en) Polyimide resin composition and polyimide film
JP7367699B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7463964B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2019188306A1 (en) Polyimide resin, polyimide varnish, and polyimide film
JPWO2019069723A1 (en) Polyimide resin, polyimide varnish and polyimide film
JP7384170B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2021132196A1 (en) Polyimide resin, polyimide varnish, and polyimide film
JP7255489B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2020203264A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2021132197A1 (en) Polyimide resin, varnish, and polyimide film
WO2021100727A1 (en) Polyimide resin, polyimide varnish, and polyimide film
CN114096589B (en) Polyimide resin, polyimide varnish and polyimide film
JP7371621B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2022091814A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2021177145A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2022091813A1 (en) Polyimide resin, polyimide varnish, and polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557671

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890247

Country of ref document: EP

Kind code of ref document: A1