WO2023234085A1 - Polyimide resin precursor and polyimide resin - Google Patents

Polyimide resin precursor and polyimide resin Download PDF

Info

Publication number
WO2023234085A1
WO2023234085A1 PCT/JP2023/018858 JP2023018858W WO2023234085A1 WO 2023234085 A1 WO2023234085 A1 WO 2023234085A1 JP 2023018858 W JP2023018858 W JP 2023018858W WO 2023234085 A1 WO2023234085 A1 WO 2023234085A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
general formula
polyimide resin
repeating unit
unit represented
Prior art date
Application number
PCT/JP2023/018858
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 安孫子
健太郎 石井
孝博 村谷
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023234085A1 publication Critical patent/WO2023234085A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a polyimide resin precursor, a polyimide resin, and a polyimide film.
  • polyimide resin Various uses of polyimide resin are being considered in fields such as electrical and electronic parts. Particularly in recent years, in place of the glass substrates conventionally used in the field of display materials, consideration has been given to adopting transparent flexible substrates that take advantage of their characteristics such as lightness and flexibility. In order to apply polyimide resin as a transparent flexible substrate, heat resistance and mechanical strength are required in addition to transparency. In order to meet these requirements, attempts have been made to synthesize semi-aromatic polyimides and the like by modifying the raw materials tetracarboxylic acid and diamine.
  • Patent Document 1 discloses that 1,2,3,4-cyclobutanetetracarboxylic dianhydride and bis( A method for producing polyimide by reacting polyamic acid with 4-aminophenyl) terephthalate to obtain polyamic acid and imidizing it is disclosed.
  • TFT substrates have been used to manufacture TFT substrates, but when the TFT device type is LTPS (low temperature polysilicon TFT), the process temperature exceeds 400°C. Due to the warping of the support due to the difference in linear expansion coefficient with the support and the difference in the linear thermal expansion coefficient with the inorganic layer that makes up the device, the thermal history described above can cause peeling at the bonding surface and deformation of the product. It is feared.
  • the polyimide used as the substrate is required to have a low linear expansion coefficient in addition to a high glass transition temperature. Polyimides used in such applications are also required to have elongation and mechanical strength.
  • the present invention was made in view of these circumstances, and an object of the present invention is to obtain a polyimide resin that has excellent heat resistance, a low linear expansion coefficient, and further excellent elongation and mechanical strength.
  • the object of the present invention is to provide a polyimide resin precursor that can be used as a polyimide resin precursor, and a polyimide resin and a polyimide film that have excellent heat resistance, a low coefficient of linear expansion, and further excellent elongation and mechanical strength.
  • the present inventors have discovered that a polyimide resin precursor having a specific structural unit and a polyimide resin obtained using the precursor can solve the above problems, and have completed the invention.
  • [1] Contains a repeating unit represented by the following general formula (1), or a repeating unit represented by the following general formula (1) and a repeating unit represented by the following general formula (2), and the general formula (1)
  • the total of the repeating units represented by the formula (2) and the repeating units represented by the general formula (2) is 70 mol% or more and 100 mol% or less based on the total repeating units of the polyimide resin precursor, and the general formula (1)
  • a polyimide resin precursor in which the ratio of the repeating unit represented by general formula (1) is 30 to 100 mol% with respect to the total of the repeating unit represented by and the repeating unit represented by general formula (2).
  • X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms; R 1 , R 2 , R 3 each independently represents a methyl group, a fluoro group, or a trifluoromethyl group. h, i, and j are integers from 0 to 4.) [2] The ratio of the repeating unit represented by general formula (1) to the total of the repeating unit represented by general formula (1) and the repeating unit represented by general formula (2) is 50 to 100 moles. %, the polyimide resin precursor according to the above [1].
  • [3] A varnish containing the polyimide resin precursor and organic solvent according to [1] or [2] above.
  • [4] A polyimide film obtained by applying the varnish described in [3] above onto a support and heating it.
  • [5] Contains a repeating unit represented by the following general formula (3), or a repeating unit represented by the following general formula (3) and a repeating unit represented by the following general formula (4), and the general formula (3)
  • the total of the repeating units represented by the formula (4) and the repeating units represented by the general formula (4) is 70 mol% or more and 100 mol% or less based on the total repeating units of the polyimide resin
  • a polyimide resin in which the ratio of the repeating unit represented by the general formula (3) is 30 to 100 mol% with respect to the total of the repeating unit represented by the following general formula (4) and the repeating unit represented by the following general formula (4).
  • R 1 , R 2 , and R 3 each independently represent a methyl group, a fluoro group, or a trifluoromethyl group.
  • h, i, and j are integers of 0 to 4.
  • the ratio of the repeating unit represented by general formula (3) is 50 to 100 moles to the total of the repeating unit represented by general formula (3) and the repeating unit represented by general formula (4). %, the polyimide resin according to [5] above.
  • a polyimide film comprising the polyimide resin according to [5] or [6] above.
  • the glass transition temperature is 430°C or higher, the tensile elongation at 23°C and 50% RH is 15% or higher when the polyimide film has a thickness of 10 ⁇ m, and the polyimide film has a thickness of 10 ⁇ m.
  • the polyimide film according to [4] or [7] above which has a total light transmittance of 80% or more.
  • a polyimide resin precursor having excellent heat resistance, a polyimide resin having a low coefficient of linear expansion, and further excellent elongation and mechanical strength can be obtained, and a polyimide resin precursor having excellent heat resistance.
  • the polyimide resin precursor of the present invention includes a repeating unit represented by the following general formula (1), or a repeating unit represented by the following general formula (1) and a repeating unit represented by the following general formula (2).
  • the total of the repeating units represented by general formula (1) and the repeating units represented by general formula (2) is 70 mol% or more and 100 mol% or less with respect to all repeating units of the polyimide resin precursor.
  • the ratio of the repeating unit represented by general formula (1) to the total of the repeating unit represented by general formula (1) and the repeating unit represented by general formula (2) is 30 to 100 mol%. be.
  • X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms; R 1 , R 2 , R 3 each independently represents a methyl group, a fluoro group, or a trifluoromethyl group. h, i, and j are integers from 0 to 4.
  • polyimide resin precursor of the present invention By using the polyimide resin precursor of the present invention, it is possible to obtain a polyimide resin that has excellent heat resistance, a low linear expansion coefficient, and further excellent elongation and mechanical strength.
  • resin and polyimide films have excellent heat resistance, low coefficient of linear expansion, and further excellent elongation and mechanical strength.
  • aromatic diamines certain diamines having an ester skeleton as a bonding group for an aromatic ring have high rigidity, and a component derived from a specific aromatic tetracarboxylic dianhydride and a diamine having the above-mentioned specific ester skeleton have high rigidity.
  • the copolymer consisting of the above components is capable of achieving both a low coefficient of linear expansion and high heat resistance required for TFT substrates and the like.
  • the rigidity becomes too high, the elongation and mechanical strength tend to decrease.
  • the polyimide of the present invention is produced by copolymerizing a specific acid dianhydride with a flexible ether skeleton and a specific acid dianhydride with a rigid skeleton in an appropriate ratio, and furthermore, in order to increase the molecular weight, nucleophilic
  • copolymerizing an aromatic diamine having a high specific ester skeleton it is thought that in addition to achieving both the aforementioned low coefficient of linear expansion and high heat resistance, it has excellent elongation and mechanical strength.
  • the "repeating unit" in the polyimide resin precursor refers to an amic acid unit, an amic acid ester unit, or an amic acid ester unit containing one structural unit derived from a tetracarboxylic dianhydride and one structural unit derived from a diamine. It is a silyl ester unit.
  • X 1 and X 2 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 6 carbon atoms, and an alkylsilyl group having 3 to 9 carbon atoms, and preferably At least one selected from the group consisting of hydrogen and an alkyl group having 1 to 6 carbon atoms, and hydrogen is more preferred.
  • R 1 , R 2 , and R 3 are each independently at least one selected from the group consisting of a methyl group, a fluoro group, and a trifluoromethyl group, and preferably a methyl group.
  • h, i, and j are each independently an integer of 0 to 4, preferably 0.
  • X 1 and X 2 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 6 carbon atoms, and an alkylsilyl group having 3 to 9 carbon atoms, and preferably At least one selected from the group consisting of hydrogen and an alkyl group having 1 to 6 carbon atoms, and hydrogen is more preferred.
  • R 1 , R 2 , and R 3 are each independently at least one selected from the group consisting of a methyl group, a fluoro group, and a trifluoromethyl group, and preferably a methyl group.
  • h, i, and j are each independently an integer of 0 to 4, preferably 0.
  • the polyimide resin precursor contains the repeating unit represented by the general formula (1), and may also contain the repeating unit represented by the general formula (2).
  • the ratio of the repeating unit represented by general formula (1) to the total of the repeating unit represented by general formula (1) and the repeating unit represented by general formula (2) is 30 to 100 mol%, From the viewpoint of transparency, it is preferably 40 to 100 mol%, more preferably 50 to 100 mol%, even more preferably 60 to 100 mol%, even more preferably 70 to 100 mol%. , even more preferably 80 to 100 mol%, even more preferably 90 to 100 mol%, and may be 100 mol%.
  • the content is preferably 30 to 90 mol%, more preferably 30 to 80 mol%, even more preferably 30 to 70 mol%, even more preferably 30 to 60 mol%. It is mol%, more preferably 30 to 50 mol%.
  • the total of the repeating units represented by general formula (1) and the repeating units represented by general formula (2) is the total of the total of the polyimide resin precursor. It is 70 mol% or more and 100 mol% or less with respect to the repeating unit. Preferably it is 80 mol% or more and 100 mol% or less, more preferably 90 mol% or more and 100 mol% or less, still more preferably 95 mol% or more and 100 mol% or less, even more preferably 99 mol% or more and 100 mol% or less. It is less than mol%.
  • the repeating unit represented by general formula (1) is preferably 40 mol% or more, more preferably 50 mol% or more, based on all the repeating units of the polyimide resin precursor.
  • the content is more preferably 60 mol% or more, even more preferably 70 mol% or more, even more preferably 80 mol% or more, and still more preferably 90 mol% or more.
  • the upper limit is 100 mol% or less.
  • the polyimide resin precursor may contain repeating units other than the repeating unit represented by general formula (1) or the repeating unit represented by general formula (2), as long as the effects of the present invention are not impaired. .
  • the content of repeating units other than the repeating units represented by general formula (1) or the repeating units represented by general formula (2) is preferably 30 mol% with respect to all repeating units of the polyimide resin precursor. or less, more preferably 20 mol% or less, even more preferably 10 mol% or less, even more preferably 5 mol% or less, even more preferably 1 mol% or less, even more preferably It is even more preferable that the content is 0 mol %, and that it is not included.
  • the polyimide resin precursor contains a repeating unit represented by general formula (1) and may further contain a repeating unit represented by general formula (2), but regarding the structural units constituting the precursor This will be explained below.
  • the polyimide resin precursor has a structural unit A derived from a tetracarboxylic dianhydride and a structural unit B derived from a diamine.
  • the structural unit A and the structural unit B form an amic acid structure.
  • the polyimide resin precursor of the present invention contains a repeating unit represented by the general formula (1)
  • the structural unit A is a structural unit (A1) derived from a compound represented by the following formula (a1).
  • the structural unit B includes a structural unit (B1) derived from a compound represented by the following formula (b1).
  • R 1 , R 2 , and R 3 each independently represent a methyl group, a fluoro group, or a trifluoromethyl group.
  • h, i, and j are integers from 0 to 4.
  • the polyimide resin precursor of the present invention contains the repeating unit represented by the general formula (1) and may further contain the repeating unit represented by the general formula (2), so that the structural unit A contains the structural unit (A1) derived from the compound represented by the formula (a1), and may further contain the structural unit (A2) derived from the compound represented by the following formula (a2).
  • the structural unit A is a structural unit derived from tetracarboxylic dianhydride, and includes at least the structural unit (A1) derived from the compound represented by the formula (a1). Furthermore, it may contain both the structural unit (A1) derived from the compound represented by the formula (a1) and the structural unit (A2) derived from the compound represented by the formula (a2).
  • the compound represented by formula (a1) is 4,4'-oxydiphthalic anhydride (ODPA).
  • ODPA 4,4'-oxydiphthalic anhydride
  • a polyimide resin that can produce a polyimide resin that has excellent heat resistance and strength as well as excellent transparency by using the structural unit (A1) derived from the compound represented by formula (a1) as a structural unit of a polyimide resin precursor. A precursor can be obtained.
  • the compound represented by formula (a2) is 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA).
  • s-BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • the total ratio of the structural unit (A1) and the structural unit (A2) in the structural unit A is preferably 70 mol% or more and 100 mol% or less. More preferably 80 mol% or more and 100 mol% or less, still more preferably 90 mol% or more and 100 mol% or less, even more preferably 95 mol% or more and 100 mol% or less, even more preferably 99 mol%.
  • the content is 100 mol% or less.
  • the ratio of the structural unit (A1) to the total of the structural unit (A1) and the structural unit (A2) is preferably 30 to 100 mol%, and from the viewpoint of transparency, more preferably 40 to 100 mol%. , still more preferably 50 to 100 mol%, even more preferably 60 to 100 mol%, even more preferably 70 to 100 mol%, even more preferably 80 to 100 mol%, even more preferably It is preferably 90 to 100 mol%, and may be 100 mol%.
  • the content is more preferably 30 to 90 mol%, still more preferably 30 to 80 mol%, even more preferably 30 to 70 mol%, and even more preferably 30 to 80 mol%. It is 60 mol%, more preferably 30 to 50 mol%.
  • the ratio of the structural unit (A1) in the structural unit A is preferably 40 mol% or more, more preferably 50 mol% or more, still more preferably 60 mol% or more, Even more preferably it is 70 mol% or more, even more preferably 80 mol% or more, even more preferably 90 mol% or more.
  • the upper limit is 100 mol% or less.
  • the structural unit A may include structural units other than the structural unit (A1) or the structural unit (A2).
  • Such structural units include, but are not particularly limited to, structural units derived from aromatic tetracarboxylic dianhydrides other than structural unit (A1) or structural unit (A2), and structural units derived from alicyclic tetracarboxylic dianhydrides. and structural units derived from aliphatic tetracarboxylic dianhydride.
  • the aromatic tetracarboxylic dianhydride that provides the structural unit derived from the aromatic tetracarboxylic dianhydride other than the structural unit (A1) or the structural unit (A2) is 9,9-bis(3,4-dianhydride).
  • carboxyphenyl)fluorene dianhydride BPAF
  • pyromellitic dianhydride 3,3',4,4'-(hexafluoroisopropylidene)diphthalic anhydride
  • 3,3',4,4'- Examples include diphenylsulfonetetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, and the like.
  • Examples of the alicyclic tetracarboxylic dianhydride that provides a structural unit derived from alicyclic tetracarboxylic dianhydride include 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3, Examples include 4-cyclobutanetetracarboxylic dianhydride and dicyclohexyltetracarboxylic dianhydride.
  • Examples of the aliphatic tetracarboxylic dianhydride that provides structural units derived from aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride and the like.
  • the number of structural units optionally included in the structural unit A may be one, or two or more.
  • aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings
  • alicyclic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more alicyclic rings.
  • aliphatic tetracarboxylic dianhydride refers to a tetracarboxylic dianhydride containing the above and not containing an aromatic ring
  • aliphatic tetracarboxylic dianhydride refers to a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
  • the structural unit B is a structural unit derived from a diamine, and includes a structural unit (B1) derived from a compound represented by the following formula (b1).
  • R 1 , R 2 , and R 3 each independently represent a methyl group, a fluoro group, or a trifluoromethyl group.
  • h, i, and j are integers from 0 to 4.
  • R 1 , R 2 , and R 3 are each independently at least one selected from the group consisting of a methyl group, a fluoro group, and a trifluoromethyl group, and preferably a methyl group.
  • h, i, and j are each independently an integer of 0 to 4, preferably 0.
  • the ratio of the structural unit (B1) in the structural unit B is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, even more preferably 95 mol%. or more, and even more preferably 99 mol% or more.
  • the upper limit of the ratio is not particularly limited and is 100 mol% or less.
  • the compound represented by formula (b11) is bis(4-aminophenyl) terephthalate (APTP).
  • Structural unit B preferably includes a structural unit (B11) derived from a compound represented by formula (b11).
  • structural unit (B11) derived from the compound represented by formula (b11) as the structural unit of the polyimide resin precursor, it is possible to obtain a polyimide resin precursor that can produce a polyimide resin with excellent heat resistance and strength. .
  • the structural unit B may include structural units other than the structural unit (B1).
  • Such structural units include, but are not particularly limited to, structural units derived from aromatic diamines other than structural unit (B1), structural units derived from alicyclic diamines, and structural units derived from aliphatic diamines. It will be done.
  • aromatic diamines that provide structural units derived from aromatic diamines other than structural unit (B1) include 2,2'-bis(trifluoromethyl)benzidine (TFMB), 3,5-diaminobenzoic acid (3,5 -DABA), 9,9-bis(4-aminophenyl)fluorene (BAFL), 4-aminophenyl-4-aminobenzoate (4-BAAB), p-xylylenediamine, 1,5-diaminonaphthalene, 2, 2'-dimethylbiphenyl-4,4'-diamine, 2,2'-dimethylbiphenyl-4,4'-diamine, 4,4'-diaminodiphenylmethane, 1,4-bis[2-(4-aminophenyl) -2-propyl]benzene, 2,2-bis(4-aminophenyl)hexafluoropropane, 4,4'-diaminobenzanilide, 1-(4-amin
  • Examples of the alicyclic diamine that provides a structural unit derived from an alicyclic diamine include 1,3-bis(aminomethyl)cyclohexane and 1,4-bis(aminomethyl)cyclohexane.
  • Examples of the alicyclic diamine that provides a structural unit derived from an alicyclic diamine include ethylene diamine and hexamethylene diamine.
  • aromatic diamine means a diamine containing one or more aromatic rings
  • alicyclic diamine means a diamine containing one or more alicyclic rings and no aromatic ring
  • Group diamine means a diamine containing neither aromatic ring nor alicyclic ring.
  • the number of structural units optionally included in the structural unit B may be one, or two or more.
  • the polyimide resin precursor may be manufactured by any method, it is preferable to use the following manufacturing method.
  • the polyimide resin precursor contains the repeating unit represented by the general formula (1), or the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2) ( Both contain (amic acid).
  • a manufacturing method for obtaining a polyimide resin precursor by reacting a tetracarboxylic acid component and a diamine component constituting a polyamic acid containing a repeating unit represented by the general formula (1), or A tetracarboxylic acid component and a diamine component constituting a polyamic acid containing a repeating unit represented by 1), and a tetracarboxylic acid component and a diamine component constituting a polyamic acid containing a repeating unit represented by the general formula (2) above. It is preferable to use a manufacturing method in which a polyimide resin precursor is obtained by reacting with the polyimide resin precursor.
  • the tetracarboxylic acid component used in this production method preferably contains a compound that provides the structural unit (A1), and may also contain a compound that provides the structural unit (A2), within a range that does not impair the effects of the present invention.
  • the compound may contain a tetracarboxylic acid component other than the compound providing the structural unit (A1) or the compound providing the structural unit (A2).
  • the diamine component used in this production method preferably contains a compound that provides the structural unit (B1), and does not contain any diamine components other than the compound that provides the structural unit (B1) to the extent that the effects of the present invention are not impaired. You can stay there.
  • the amount of the diamine component relative to the tetracarboxylic acid component is preferably 0.9 to 1.1 mol.
  • a specific reaction method is to charge a tetracarboxylic acid component, a diamine component, a solvent, and an end-capping agent as necessary into a reactor, and heat the mixture at a temperature of 1 to 72°C at a temperature of 0 to 120°C, preferably 5 to 80°C. Examples include a method of stirring for a period of time.
  • the molecular weight of the polyimide resin precursor does not change depending on the temperature history during polymerization, and the progress of thermal imidization can be suppressed, so the polyimide resin precursor which is a polyamic acid can be manufactured stably.
  • a polyimide resin precursor solution having a polyamic acid structure dissolved in a solvent is obtained.
  • the concentration of the polyimide resin precursor in the resulting solution is preferably 1 to 50% by mass, more preferably 3 to 35% by mass, and still more preferably 5 to 30% by mass.
  • the number average molecular weight of the polyimide resin precursor obtained by the above production method is preferably 5,000 to 500,000 from the viewpoint of mechanical strength of the obtained polyimide film. Further, from the same viewpoint, the weight average molecular weight (Mw) is preferably 10,000 to 800,000, more preferably 100,000 to 300,000. Next, the raw materials used in this manufacturing method will be explained.
  • the tetracarboxylic acid component used as a raw material in this production method is preferably the tetracarboxylic dianhydride described in the section (Structural unit (A)) above.
  • the tetracarboxylic dianhydride used as the tetracarboxylic acid component in this production method may be in any form of dianhydride, tetracarboxylic acid (free acid), or alkyl ester of tetracarboxylic acid, but dianhydride is preferably dianhydride. It is anhydrous.
  • the tetracarboxylic acid component used as a raw material in this production method includes at least the compound represented by the formula (a1) (a compound that provides the structural unit (A1)). Furthermore, it may contain both the compound represented by the formula (a1) and the compound represented by the formula (a2) (compound that provides the structural unit (A2)).
  • the total ratio of the compound represented by formula (a1) and the compound represented by formula (a2) in the tetracarboxylic acid component is preferably 70 mol% or more and 100 mol% or less.
  • the content is 100 mol% or less.
  • the ratio of the compound represented by formula (a1) to the total of the compound represented by formula (a1) and the compound represented by formula (a2) is preferably 30 to 100 mol%, from the viewpoint of transparency.
  • the content is more preferably 40 to 100 mol%, still more preferably 50 to 100 mol%, even more preferably 60 to 100 mol%, even more preferably 70 to 100 mol%, and even more preferably It is preferably 80 to 100 mol%, even more preferably 90 to 100 mol%, and may be 100 mol%.
  • the content is more preferably 30 to 90 mol%, still more preferably 30 to 80 mol%, even more preferably 30 to 70 mol%, and even more preferably 30 to 80 mol%.
  • the amount is 60 mol%, more preferably 30 to 50 mol%.
  • the ratio of the compound represented by formula (a1) in the tetracarboxylic acid component is preferably 40 mol% or more, more preferably 50 mol% or more, and even more preferably 60 mol%. % or more, even more preferably 70 mol% or more, even more preferably 80 mol% or more, even more preferably 90 mol% or more.
  • the upper limit is 100 mol% or less.
  • the tetracarboxylic acid component may include a tetracarboxylic acid component other than the compound represented by formula (a1) or the compound represented by formula (a2).
  • tetracarboxylic acid components include, but are not particularly limited to, aromatic tetracarboxylic dianhydrides other than the compound represented by formula (a1) or the compound represented by formula (a2), and alicyclic tetracarboxylic acid components. Examples include acid dianhydrides and aliphatic tetracarboxylic dianhydrides.
  • tetracarboxylic acid components other than the compound represented by formula (a1) or the compound represented by formula (a2) include the tetracarboxylic dianhydride described in the section (Structural unit (A)) above. can be mentioned.
  • tetracarboxylic dianhydrides may be used, or two or more types may be used.
  • the diamine component used as a raw material in this production method includes a compound represented by the above formula (b1) (a compound that provides the structural unit (B1)).
  • the diamine component used as a raw material in this production method is preferably the diamine described in the section (Structural unit (B)) above.
  • the diamine used as the diamine component in this production method may be in the form of either a diamine or a diisocyanate corresponding to the diamine, but is preferably a diamine.
  • the diamine component used as a raw material in this production method includes a compound represented by the formula (b1), preferably a compound represented by the formula (b11).
  • the ratio of the compound represented by the formula (b1) in the diamine component is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, even more preferably is 95 mol% or more, and even more preferably 99 mol% or more.
  • the upper limit of the ratio is not particularly limited and is 100 mol% or less.
  • the diamine component may include a diamine component other than the compound represented by the formula (b1).
  • diamine components include, but are not particularly limited to, aromatic diamines other than the compound providing the structural unit (B1), alicyclic diamines, and aliphatic diamines.
  • Specific examples of diamine components other than the compound represented by formula (b1) include the diamines described in the section (structural unit (B)) above.
  • One kind of diamine may be used, or two or more kinds of diamines may be used.
  • Terminal sealing agent Furthermore, in addition to the above-mentioned tetracarboxylic acid component and diamine component, a terminal capping agent may be used in the production of the polyimide resin precursor.
  • the terminal capping agent monoamines or dicarboxylic acids are preferable.
  • the amount of the terminal capping agent to be introduced is preferably 0.0001 to 0.1 mol, more preferably 0.001 to 0.06 mol, per 1 mol of the tetracarboxylic acid component.
  • Examples of monoamine terminal capping agents include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Examples include ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline and the like. Among these, benzylamine and aniline are preferred.
  • dicarboxylic acid terminal capping agent dicarboxylic acids are preferred, and a portion thereof may be ring-closed.
  • phthalic acid for example, phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenone dicarboxylic acid, 3,4-benzophenone dicarboxylic acid, cyclopentane-1,2-dicarboxylic acid, 4-cyclohexene-1 , 2-dicarboxylic acid and the like.
  • phthalic acid and phthalic anhydride are more preferred.
  • the solvent (organic solvent) used for producing the polyimide resin precursor may be any solvent as long as it can dissolve the polyimide resin precursor to be produced. Examples include aprotic solvents, phenolic solvents, ether solvents, carbonate solvents, and the like.
  • aprotic solvents include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, and tetramethylurea.
  • amide solvents lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide, sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide, and sulfolane.
  • Examples include ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, and methyl cyclohexanone, and ester solvents such as acetic acid (2-methoxy-1-methylethyl).
  • ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, and methyl cyclohexanone
  • ester solvents such as acetic acid (2-methoxy-1-methylethyl).
  • phenolic solvents include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4 -xylenol, 3,5-xylenol, etc.
  • ether solvents include 1,2-dimethoxyethane, bis(2-methoxyethyl)ether, 1,2-bis(2-methoxyethoxy)ethane, and bis[2-(2-methoxyethoxy)ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
  • carbonate solvents include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and the like.
  • amide solvents or lactone solvents are preferred, amide solvents are more preferred, and N-methyl-2-pyrrolidone is even more preferred.
  • the above solvents may be used alone or in combination of two or more.
  • the varnish of the present invention contains the aforementioned polyimide resin precursor and organic solvent. That is, the polyimide resin precursor is dissolved in an organic solvent.
  • the organic solvent is not particularly limited as long as it dissolves the polyimide resin precursor, but it is preferable to use the above-mentioned compounds alone or in a mixture of two or more as the solvent used for producing the polyimide resin precursor.
  • the varnish of the present invention may be the above-mentioned polyimide resin precursor solution itself after producing the polyimide resin precursor, or may be a mixture of the polyimide resin precursor solution further mixed with a diluting solvent. good.
  • the varnish of the present invention can further contain an imidization catalyst and a dehydration catalyst from the viewpoint of efficiently progressing the imidization of the polyamic acid, which is the polyimide resin precursor of the present invention.
  • an imidization catalyst any imidization catalyst with a boiling point of 40°C or higher is sufficient. If the imidization catalyst has a boiling point of 40°C or higher, it is possible to avoid the possibility of volatilization before imidization progresses sufficiently. .
  • the imidization catalyst examples include amine compounds such as pyridine or picoline; imidazole compounds such as imidazole, 1,2-dimethylimidazole, 1-benzylimidazole, 1-benzyl-2-methylimidazole, and benzimidazole; and the like.
  • the above imidization catalysts may be used alone or in combination of two or more.
  • the dehydration catalyst include acid anhydrides such as acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, and trifluoroacetic anhydride; and carbodiimide compounds such as dicyclohexylcarbodiimide. These may be used alone or in combination of two or more.
  • the varnish of the present invention preferably contains 3 to 40% by mass, more preferably 5 to 30% by mass of a polyimide resin precursor (polyamic acid).
  • the viscosity of the varnish is preferably 0.1 to 100 Pa ⁇ s, more preferably 0.1 to 20 Pa ⁇ s.
  • the viscosity of the varnish is a value measured at 25°C using an E-type viscometer.
  • the varnish of the present invention may contain inorganic fillers, adhesion promoters, release agents, flame retardants, ultraviolet stabilizers, surfactants, leveling agents, antifoaming agents, etc.
  • the method for producing the varnish of the present invention is not particularly limited, and known methods can be applied. For example, it can be obtained by adjusting the concentration by mixing an additional solvent with the solution of the polyimide resin precursor obtained by the above-described production method, if necessary.
  • the polyimide film of the present invention is preferably manufactured using the above-mentioned varnish.
  • the polyimide film of the present invention is obtained by imidizing the aforementioned polyimide resin precursor.
  • it includes a repeating unit represented by general formula (3) described below, or a repeating unit represented by general formula (3) and a repeating unit represented by general formula (4) below, and is represented by general formula (3).
  • the total of the repeating units represented by the general formula (4) and the repeating units represented by the general formula (4) is 70 mol% or more and 100 mol% or less based on the total repeating units of the polyimide resin, and the total of the repeating units represented by the general formula (3) is There is also a polyimide film containing a polyimide resin in which the ratio of the repeating unit represented by general formula (3) is 30 to 100 mol% with respect to the total of the repeating unit represented by the following general formula (4) and the repeating unit represented by the following general formula (4). Included in the present invention.
  • the total of the repeating units represented by general formula (3) and the repeating units represented by general formula (4) is 70 It is mol% or more and 100 mol% or less. Preferably it is 80 mol% or more and 100 mol% or less, more preferably 90 mol% or more and 100 mol% or less, still more preferably 95 mol% or more and 100 mol% or less, even more preferably 99 mol% or more and 100 mol% or less. It is less than mol%.
  • the method for producing a polyimide film using the varnish of the present invention there are no particular limitations on the method for producing a polyimide film using the varnish of the present invention, and any known method can be used.
  • the organic solvent such as the reaction solvent or diluent contained in the varnish is removed by heating.
  • a polyimide film can be produced by removing the polyamic acid film to obtain a polyamic acid film, imidizing the polyamic acid in the polyamic acid film by heating (dehydration ring closure), and then peeling it off from the support.
  • the polyimide film of the present invention is preferably a film obtained by applying the above-mentioned varnish onto a support and heating it. A method of coating and heating is preferred.
  • the heating temperature when drying a varnish containing a polyimide resin precursor to obtain a polyimide resin precursor (polyamic acid) film is preferably 50 to 150°C.
  • the heating temperature when imidizing the polyimide resin precursor by heating is preferably 350 to 450°C, more preferably 380 to 420°C.
  • the heating time is usually 1 minute to 6 hours, preferably 5 minutes to 2 hours, and more preferably 15 minutes to 1 hour. By using such temperature and time, the physical properties of the resulting polyimide film will be good.
  • heating atmosphere examples include air gas, nitrogen gas, oxygen gas, hydrogen gas, nitrogen/hydrogen mixed gas, etc., but in order to suppress coloring of the obtained polyimide resin, nitrogen gas with an oxygen concentration of 100 ppm or less, hydrogen concentration A nitrogen/hydrogen mixed gas containing 0.5% or less is preferred.
  • nitrogen gas with an oxygen concentration of 100 ppm or less, hydrogen concentration A nitrogen/hydrogen mixed gas containing 0.5% or less is preferred.
  • the imidization method is not limited to thermal imidization, and chemical imidization can also be applied.
  • the thickness of the polyimide film of the present invention can be appropriately selected depending on the intended use, but is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 7 ⁇ m or more. Moreover, it is preferably 250 ⁇ m or less, more preferably 100 ⁇ m or less, even more preferably 50 ⁇ m or less, and even more preferably 20 ⁇ m or less. Among these, it is even more preferable that the thickness of the polyimide film is 1 ⁇ m or more and 20 ⁇ m or less. When the thickness is within the above range, practical use as a self-supporting film becomes possible. The thickness of the polyimide film can be easily controlled by adjusting the solid content concentration and viscosity of the varnish.
  • the glass transition temperature (Tg) is preferably 425°C or higher, more preferably 430°C or higher, still more preferably 440°C or higher, even more preferably 445°C or higher.
  • the tensile elongation at 23° C. and 50% RH when the thickness of the polyimide film is 10 ⁇ m is preferably 12% or more, more preferably 15% or more, still more preferably 17% or more, and even more Preferably it is 19% or more.
  • the total light transmittance when the thickness of the polyimide film is 10 ⁇ m is preferably 80% or more, more preferably 81% or more.
  • the tensile strength (according to JIS K7127:1999, 23°C, 50% RH) when the thickness of the polyimide film is 10 ⁇ m is preferably 235 MPa or more, more preferably 240 MPa. or more, more preferably 250 MPa or more, even more preferably 260 MPa or more.
  • the coefficient of linear expansion (CTE) is preferably 15 ppm/°C or less, more preferably 7 ppm/°C or less, and even more preferably 5 ppm/°C or less.
  • the lower limit is preferably 1 ppm/°C or more, more preferably 2 ppm/°C or more. , more preferably 3 ppm/°C or more.
  • the above-mentioned physical property values in the present invention can be specifically measured by the method described in the Examples.
  • the polyimide film of the present invention is suitably used as a film for various members such as color filters, flexible displays, semiconductor parts, and optical members.
  • the polyimide film of the present invention is particularly suitably used as a substrate for image display devices such as liquid crystal displays and OLED displays.
  • the polyimide resin of the present invention contains a repeating unit represented by the following general formula (3), or a repeating unit represented by the following general formula (3) and a repeating unit represented by the following general formula (4), and has a general
  • the total of the repeating units represented by formula (3) and the repeating units represented by general formula (4) is 70 mol% or more and 100 mol% or less with respect to all the repeating units of the polyimide resin, and the general formula ( The ratio of the repeating unit represented by general formula (3) is 30 to 100 mol% with respect to the total of the repeating unit represented by 3) and the repeating unit represented by general formula (4) below.
  • the polyimide resin of the present invention constitutes the above-mentioned polyimide film, and the above-mentioned polyimide film contains the polyimide resin of the present invention.
  • the polyimide resin of the present invention may be obtained by any production method, it is preferably produced by the method of imidizing the aforementioned polyimide resin precursor.
  • the polyimide resin of the present invention and the polyimide film containing the polyimide resin have excellent heat resistance, low coefficient of linear expansion, and excellent elongation and mechanical strength. It will be done.
  • aromatic diamines certain diamines having an ester skeleton as a bonding group for an aromatic ring have high rigidity, and a component derived from a specific aromatic tetracarboxylic dianhydride and a diamine having the above-mentioned specific ester skeleton have high rigidity. It is believed that the copolymer consisting of the above components is capable of achieving both a low coefficient of linear expansion and high heat resistance required for TFT substrates and the like.
  • the polyimide of the present invention is produced by copolymerizing a specific acid dianhydride with a flexible ether skeleton and a specific acid dianhydride with a rigid skeleton in an appropriate ratio, and furthermore, in order to increase the molecular weight, nucleophilic By copolymerizing an aromatic diamine having a high specific ester skeleton, it is thought that in addition to achieving both the aforementioned low coefficient of linear expansion and high heat resistance, it has excellent elongation and mechanical strength.
  • the "repeating unit" in the polyimide resin is an imide unit containing one structural unit derived from a tetracarboxylic dianhydride and one structural unit derived from a diamine.
  • R 1 , R 2 , and R 3 are each independently at least one selected from the group consisting of a methyl group, a fluoro group, and a trifluoromethyl group, and preferably a methyl group.
  • h, i, and j are each independently an integer of 0 to 4, preferably 0.
  • R 1 , R 2 , and R 3 are each independently at least one selected from the group consisting of a methyl group, a fluoro group, and a trifluoromethyl group, and preferably a methyl group.
  • h, i, and j are each independently an integer of 0 to 4, preferably 0.
  • the polyimide resin includes a repeating unit represented by the general formula (3), and may also contain a repeating unit represented by the general formula (4).
  • the ratio of the repeating unit represented by general formula (3) to the total of the repeating unit represented by general formula (3) and the repeating unit represented by general formula (4) is 30 to 100 mol%, From the viewpoint of transparency, it is preferably 40 to 100 mol%, more preferably 50 to 100 mol%, even more preferably 60 to 100 mol%, even more preferably 70 to 100 mol%. , even more preferably 80 to 100 mol%, even more preferably 90 to 100 mol%, and may be 100 mol%.
  • the content is preferably 30 to 90 mol%, more preferably 30 to 80 mol%, even more preferably 30 to 70 mol%, even more preferably 30 to 60 mol%. It is mol%, more preferably 30 to 50 mol%.
  • the total of the repeating units represented by general formula (3) and the repeating units represented by general formula (4) is the total repeating unit of the polyimide resin. 70 mol% or more and 100 mol% or less. Preferably it is 80 mol% or more and 100 mol% or less, more preferably 90 mol% or more and 100 mol% or less, still more preferably 95 mol% or more and 100 mol% or less, even more preferably 99 mol% or more and 100 mol% or less. It is less than mol%.
  • the repeating unit represented by general formula (3) is preferably 40 mol% or more, more preferably 50 mol% or more, based on all the repeating units of the polyimide resin, More preferably, it is 60 mol% or more, even more preferably 70 mol% or more, even more preferably 80 mol% or more, and even more preferably 90 mol% or more.
  • the upper limit is 100 mol% or less.
  • the polyimide resin may contain repeating units other than the repeating unit represented by the general formula (3) or the repeating unit represented by the general formula (4) within a range that does not impair the effects of the present invention.
  • the content of repeating units other than the repeating units represented by the general formula (3) or the repeating units represented by the general formula (4) is preferably 30 mol% or less based on the total repeating units of the polyimide resin. Yes, more preferably 20 mol% or less, still more preferably 10 mol% or less, even more preferably 5 mol% or less, even more preferably 1 mol% or less, even more preferably 0 mol%. %, and it is even more preferable that it not be included.
  • the polyimide resin contains a repeating unit represented by general formula (3), and may further contain a repeating unit represented by general formula (4).
  • the structural units constituting the polyimide resin are the same as those explained in the section ⁇ Each structural unit of the polyimide resin precursor> above. That is, the polyimide resin has a structural unit AI derived from a tetracarboxylic dianhydride and a structural unit BI derived from a diamine. Note that in the polyimide resin, the structural unit AI and the structural unit BI form an imide structure.
  • the structural unit AI includes a structural unit (AI1) derived from a compound represented by the following formula (a1)
  • the structural unit BI includes a structural unit (BI1) derived from a compound represented by the following formula (b1).
  • R 1 , R 2 , and R 3 each independently represent a methyl group, a fluoro group, or a trifluoromethyl group.
  • h, i, and j are integers from 0 to 4.
  • the polyimide resin of the present invention may contain a repeating unit represented by the above general formula (3) and a repeating unit represented by the above general formula (4)
  • the structural unit AI may be represented by the above formula ( It contains a structural unit (AI1) derived from the compound represented by a1), and may further contain a structural unit (AI2) derived from the compound represented by the following formula (a2).
  • the structural unit AI is a structural unit derived from tetracarboxylic dianhydride, and includes at least a structural unit (AI1) derived from the compound represented by the formula (a1). Furthermore, it may contain both a structural unit (AI1) derived from the compound represented by the formula (a1) and a structural unit (AI2) derived from the compound represented by the formula (a2).
  • the compound represented by formula (a1) is 4,4'-oxydiphthalic anhydride (ODPA).
  • the compound represented by formula (a2) is 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA).
  • s-BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • the total ratio of the structural unit (AI1) and the structural unit (AI2) in the structural unit AI is preferably 70 mol% or more and 100 mol% or less. More preferably 80 mol% or more and 100 mol% or less, still more preferably 90 mol% or more and 100 mol% or less, even more preferably 95 mol% or more and 100 mol% or less, even more preferably 99 mol%.
  • the content is 100 mol% or less.
  • the ratio of the structural unit (AI1) to the total of the structural unit (AI1) and the structural unit (AI2) is preferably 30 to 100 mol%, and from the viewpoint of transparency, more preferably 40 to 100 mol%. , still more preferably 50 to 100 mol%, even more preferably 60 to 100 mol%, even more preferably 70 to 100 mol%, even more preferably 80 to 100 mol%, even more preferably It is preferably 90 to 100 mol%, and may be 100 mol%.
  • the content is more preferably 30 to 90 mol%, still more preferably 30 to 80 mol%, even more preferably 30 to 70 mol%, and even more preferably 30 to 80 mol%. It is 60 mol%, more preferably 30 to 50 mol%.
  • the ratio of the structural unit (AI1) in the structural unit AI is preferably 40 mol% or more, more preferably 50 mol% or more, and still more preferably 60 mol% or more, Even more preferably it is 70 mol% or more, even more preferably 80 mol% or more, even more preferably 90 mol% or more.
  • the upper limit is 100 mol% or less.
  • the structural unit AI may include structural units other than the structural unit (AI1) or the structural unit (AI2).
  • structural units include, but are not particularly limited to, structural units derived from aromatic tetracarboxylic dianhydrides other than the structural unit (AI1) or structural unit (AI2), and structural units derived from alicyclic tetracarboxylic dianhydrides. and structural units derived from aliphatic tetracarboxylic dianhydride.
  • the aromatic tetracarboxylic dianhydride that provides a structural unit derived from an aromatic tetracarboxylic dianhydride other than the structural unit (AI1) or the structural unit (AI2) is 9,9-bis(3,4-dianhydride).
  • carboxyphenyl)fluorene dianhydride BPAF
  • pyromellitic dianhydride 3,3',4,4'-(hexafluoroisopropylidene)diphthalic anhydride
  • 3,3',4,4'- Examples include diphenylsulfonetetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, and the like.
  • Examples of the alicyclic tetracarboxylic dianhydride that provides a structural unit derived from alicyclic tetracarboxylic dianhydride include 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3, Examples include 4-cyclobutanetetracarboxylic dianhydride and dicyclohexyltetracarboxylic dianhydride.
  • Examples of the aliphatic tetracarboxylic dianhydride that provides structural units derived from aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride and the like.
  • the number of structural units arbitrarily included in the structural unit AI may be one, or two or more types.
  • aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings
  • alicyclic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more alicyclic rings.
  • aliphatic tetracarboxylic dianhydride refers to a tetracarboxylic dianhydride containing the above and not containing an aromatic ring
  • aliphatic tetracarboxylic dianhydride refers to a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
  • the structural unit BI is a structural unit derived from a diamine, and includes a structural unit (BI1) derived from a compound represented by the following formula (b1).
  • a structural unit (BI1) derived from a compound represented by the following formula (b1).
  • R 1 , R 2 , and R 3 each independently represent a methyl group, a fluoro group, or a trifluoromethyl group.
  • h, i, and j are integers from 0 to 4.
  • the polyimide resin can have excellent heat resistance and strength.
  • R 1 , R 2 , and R 3 are each independently at least one selected from the group consisting of a methyl group, a fluoro group, and a trifluoromethyl group, and preferably a methyl group.
  • h, i, and j are each independently an integer of 0 to 4, preferably 0.
  • the ratio of the structural unit (BI1) in the structural unit BI is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, even more preferably 95 mol%. or more, and even more preferably 99 mol% or more.
  • the upper limit of the ratio is not particularly limited and is 100 mol% or less.
  • Structural unit B preferably includes a structural unit (BI11) derived from a compound represented by formula (b11).
  • a structural unit (BI11) derived from the compound represented by formula (b11) as a structural unit of the polyimide resin, a polyimide resin having excellent heat resistance and strength can be obtained.
  • the structural unit BI may include structural units other than the structural unit (BI1). Such structural units include, but are not particularly limited to, structural units derived from aromatic diamines other than the structural unit (BI1), structural units derived from alicyclic diamines, and structural units derived from aliphatic diamines. It will be done.
  • aromatic diamines that provide structural units derived from aromatic diamines other than the structural unit (BI1) include 2,2'-bis(trifluoromethyl)benzidine (TFMB), 3,5-diaminobenzoic acid (3,5 -DABA), 9,9-bis(4-aminophenyl)fluorene (BAFL), 4-aminophenyl-4-aminobenzoate (4-BAAB), p-xylylenediamine, 1,5-diaminonaphthalene, 2, 2'-dimethylbiphenyl-4,4'-diamine, 2,2'-dimethylbiphenyl-4,4'-diamine, 4,4'-diaminodiphenylmethane, 1,4-bis[2-(4-aminophenyl) -2-propyl]benzene, 2,2-bis(4-aminophenyl)hexafluoropropane, 4,4'-diaminobenzanilide, 1-(4-bis
  • Examples of the alicyclic diamine that provides a structural unit derived from an alicyclic diamine include 1,3-bis(aminomethyl)cyclohexane and 1,4-bis(aminomethyl)cyclohexane.
  • Examples of the alicyclic diamine that provides a structural unit derived from an alicyclic diamine include ethylene diamine and hexamethylene diamine.
  • aromatic diamine means a diamine containing one or more aromatic rings
  • alicyclic diamine means a diamine containing one or more alicyclic rings and no aromatic ring
  • Group diamine means a diamine containing neither aromatic ring nor alicyclic ring.
  • the number of structural units optionally included in the structural unit BI may be one, or two or more.
  • the polyimide resin of the present invention may contain a structure other than a polyimide chain (a structure formed by an imide bond between a structural unit AI and a structural unit BI) as long as the present invention is not impaired. Structures other than polyimide chains that may be included in the polyimide resin include, for example, structures containing amide bonds.
  • the polyimide resin of the present invention preferably contains a polyimide chain (a structure formed by imide bonding of a structural unit AI and a structural unit BI) as a main structure. Therefore, the proportion of polyimide chains in the polyimide resin of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 99% by mass or more, even more preferably 100% by mass or more. Mass%.
  • the glass transition temperature (Tg) is preferably 425°C or higher, more preferably 430°C or higher, still more preferably 440°C or higher, even more preferably 445°C or higher.
  • the tensile elongation at 23° C. and 50% RH when the film has a thickness of 10 ⁇ m is preferably 12% or more, more preferably 15% or more, still more preferably 17% or more, and even more preferably is 19% or more.
  • the total light transmittance of a film having a thickness of 10 ⁇ m is preferably 80% or more, more preferably 81% or more.
  • the tensile strength (according to JIS K7127:1999, 23°C, 50% RH) when made into a 10 ⁇ m thick film is preferably 235 MPa or more, more preferably 240 MPa or more. It is more preferably 250 MPa or more, even more preferably 260 MPa or more.
  • the coefficient of linear expansion (CTE) is preferably 15 ppm/°C or less, more preferably 7 ppm/°C or less, and even more preferably 5 ppm/°C or less.
  • the lower limit is preferably 1 ppm/°C or more, more preferably 2 ppm/°C or more. , more preferably 3 ppm/°C or more.
  • the above-mentioned physical property values in the present invention can be specifically measured by the method described in the Examples.
  • CTE Coefficient of linear expansion
  • a smaller difference from the coefficient of thermal expansion of the supporting base material is better because peeling at the joint surface is less likely to occur.
  • Tensile strength, tensile modulus, and tensile elongation are as per JIS K7127: 1999, using a tensile tester "Strograph VG-1E" manufactured by Toyo Seiki Co., Ltd. (measurement environment: 23° C., 50% RH). The distance between chucks was 50 mm, the test piece size was 10 mm x 70 mm, and the test speed was 20 mm/min. The larger the tensile strength value, the better the mechanical strength.
  • ⁇ Tetracarboxylic acid component> ODPA 4,4'-oxydiphthalic anhydride (manufactured by Manac Co., Ltd.; compound represented by formula (a1))
  • s-BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride (manufactured by Mitsubishi Chemical Corporation, compound represented by formula (a2))
  • APTP bis(4-aminophenyl) terephthalate (manufactured by Tokyo Chemical Industry Co., Ltd.; compound represented by formula (b11))
  • ABHQ [4-(4-aminobenzoyl)oxyphenyl]4-aminobenzoate (manufactured by ChinaTech Chemical (Tianjin) Co., Ltd., compound represented by the following formula) 4-BAAB: 4-aminophen
  • NMP N-methyl-2-pyrrolidone (manufactured by Tokyo Pure Chemical Industries, Ltd.)
  • Example 1 6.967 g (0.020 mol) of APTP was placed in a 300 mL 5-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap. , 59.710 g of NMP was added, and the system was stirred at a rotational speed of 200 rpm under a nitrogen atmosphere at a system temperature of 50° C. to obtain a solution. To this solution, 6.204 g (0.020 mol) of ODPA and 14.928 g of NMP were added all at once, and the mixture was stirred for 5 hours while being maintained at 50° C.
  • Example 2 Same as Example 1 except that the amount of ODPA was changed from 6.204 g (0.020 mol) to 4.963 g (0.016 mol) and 1.177 g (0.004 mol) of s-BPDA was added.
  • a polyamic acid varnish having a solid content concentration of 10% by mass was obtained by the method described above.
  • a film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
  • Example 3 Same as Example 1 except that the amount of ODPA was changed from 6.204 g (0.020 mol) to 3.102 g (0.010 mol) and 2.942 g (0.010 mol) of s-BPDA was added.
  • a polyamic acid varnish having a solid content concentration of 10% by mass was obtained by the method described above.
  • a film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
  • Comparative example 1 Same as Example 1 except that the amount of ODPA was changed from 6.204 g (0.020 mol) to 1.241 g (0.004 mol) and 4.708 g (0.016 mol) of s-BPDA was added. A polyamic acid varnish having a solid content concentration of 10% by mass was obtained by the method described above. A film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
  • Comparative example 2 A polyamic acid varnish with a solid content concentration of 10% by mass was obtained in the same manner as in Example 1, except that 6.204 g (0.020 mol) of ODPA was changed to 5.884 g (0.020 mol) of s-BPDA. Ta. A film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
  • Comparative example 3 A polyamic acid varnish with a solid content concentration of 10% by mass was obtained in the same manner as in Example 1, except that 6.967 g (0.020 mol) of APTP was changed to 6.967 g (0.020 mol) of ABHQ. A film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
  • Comparative example 4 A polyamic acid varnish with a solid content concentration of 10% by mass was obtained in the same manner as in Example 1, except that 6.967 g (0.020 mol) of APTP was changed to 4.567 g (0.020 mol) of 4-BAAB. Ta. A film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
  • Comparative example 5 The solid content concentration was determined in the same manner as in Example 3, except that 6.967 g (0.020 mol) of APTP was changed to 4.668 g (0.0134 mol) of APTP and 0.714 g (0.0066 mol) of PPD. A 10% by mass polyamic acid varnish was obtained. A film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
  • the polyimide film obtained using the polyimide resin precursor of the example has a high glass transition temperature, a low linear expansion coefficient, and a high tensile elongation and tensile strength, so it has good heat resistance. It can be seen that it has excellent strength and elongation. This shows that the polyimide resin and polyimide film of the present invention have excellent heat resistance, a low linear expansion coefficient, and further excellent elongation and mechanical strength.

Abstract

Provided is a polyimide resin precursor comprising a repeating unit represented by general formula (1) below or a repeating unit represented by general formula (1) below and a repeating unit represented by general formula (2) below, wherein the total of the repeating unit represented by general formula (1) and the repeating unit represented by general formula (2) is 70 to 100 mol % inclusive based on all the repeating units of the polyimide resin precursor, and the ratio of the repeating unit represented by general formula (1) is 30 to 100 mol % based on the total of the repeating unit represented by general formula (1) and the repeating unit represented by general formula (2). This polyimide resin precursor has excellent heat resistance, and a polyimide resin having a low linear expansion coefficient as well as excellent elongation and mechanical strength can be obtained.

Description

ポリイミド樹脂前駆体及びポリイミド樹脂Polyimide resin precursor and polyimide resin
 本発明はポリイミド樹脂前駆体、ポリイミド樹脂及びポリイミドフィルムに関する。 The present invention relates to a polyimide resin precursor, a polyimide resin, and a polyimide film.
 ポリイミド樹脂は、電気・電子部品等の分野において様々な利用が検討されている。特に近年では、ディスプレイ材料の分野で従来使用されていたガラス基板に代わり、軽量性、柔軟性等の特徴を利用した透明フレキシブル基板としての採用が検討されている。ポリイミド樹脂を透明フレキシブル基板として適用するためには、透明性に加え、耐熱性や機械強度が求められる。これらを満たすために、原料であるテトラカルボン酸とジアミンを工夫し、半芳香族ポリイミド等を合成する試みも行われている。 Various uses of polyimide resin are being considered in fields such as electrical and electronic parts. Particularly in recent years, in place of the glass substrates conventionally used in the field of display materials, consideration has been given to adopting transparent flexible substrates that take advantage of their characteristics such as lightness and flexibility. In order to apply polyimide resin as a transparent flexible substrate, heat resistance and mechanical strength are required in addition to transparency. In order to meet these requirements, attempts have been made to synthesize semi-aromatic polyimides and the like by modifying the raw materials tetracarboxylic acid and diamine.
 たとえば、特許文献1には、無色透明、耐熱性、低線膨張率、靭性に優れたポリイミドを得ることを目的として、1,2,3,4-シクロブタンテトラカルボン酸二無水物と、ビス(4-アミノフェニル)テレフタレートとを反応させてポリアミド酸を得、イミド化してポリイミドを製造する方法が開示されている。 For example, Patent Document 1 discloses that 1,2,3,4-cyclobutanetetracarboxylic dianhydride and bis( A method for producing polyimide by reacting polyamic acid with 4-aminophenyl) terephthalate to obtain polyamic acid and imidizing it is disclosed.
特開2010-077184号公報Japanese Patent Application Publication No. 2010-077184
 最近ではTFT基板の製造にもポリイミドが用いられているが、TFTのデバイスタイプがLTPS(低温ポリシリコンTFT)では、400℃を超えるプロセス温度となる。支持体との線膨張係数の違いによる支持体の反りやデバイスを構成する無機層との線熱膨張率の違いから、前記のような熱履歴によって、接合面における剥離や製品が変形することが危惧される。以上のような理由から、基板となるポリイミドには高いガラス転移温度に加え、線膨張係数の低減も必要とされている。また、このような用途に使用されるポリイミドには、伸度や機械強度も要求される。
 このように、従来に比べ、より高い耐熱性、より低い線膨張係数を有し、更に伸度と機械強度も兼ね備えるポリイミドが求められていた。
 本発明はこのような状況に鑑みてなされたものであり、本発明の課題は、優れた耐熱性を有し、線膨張係数が低く、更に優れた伸度、機械強度を有するポリイミド樹脂を得ることができるポリイミド樹脂前駆体、そして優れた耐熱性を有し、線膨張係数が低く、更に優れた伸度、機械強度を有するポリイミド樹脂及びポリイミドフィルムを提供することにある。
Recently, polyimide has been used to manufacture TFT substrates, but when the TFT device type is LTPS (low temperature polysilicon TFT), the process temperature exceeds 400°C. Due to the warping of the support due to the difference in linear expansion coefficient with the support and the difference in the linear thermal expansion coefficient with the inorganic layer that makes up the device, the thermal history described above can cause peeling at the bonding surface and deformation of the product. It is feared. For the above reasons, the polyimide used as the substrate is required to have a low linear expansion coefficient in addition to a high glass transition temperature. Polyimides used in such applications are also required to have elongation and mechanical strength.
Thus, there has been a demand for polyimides that have higher heat resistance, lower coefficient of linear expansion, and also have higher elongation and mechanical strength than conventional polyimides.
The present invention was made in view of these circumstances, and an object of the present invention is to obtain a polyimide resin that has excellent heat resistance, a low linear expansion coefficient, and further excellent elongation and mechanical strength. The object of the present invention is to provide a polyimide resin precursor that can be used as a polyimide resin precursor, and a polyimide resin and a polyimide film that have excellent heat resistance, a low coefficient of linear expansion, and further excellent elongation and mechanical strength.
 本発明者らは、特定の構成単位を有するポリイミド樹脂前駆体、及び該前駆体を用いて得られるポリイミド樹脂が上記課題を解決できることを見出し、発明を完成させるに至った。 The present inventors have discovered that a polyimide resin precursor having a specific structural unit and a polyimide resin obtained using the precursor can solve the above problems, and have completed the invention.
 すなわち、本発明は、下記の[1]~[9]に関する。
[1]下記一般式(1)で表される繰り返し単位、又は下記一般式(1)で表される繰り返し単位および下記一般式(2)で表される繰り返し単位を含み、一般式(1)で表される繰り返し単位及び一般式(2)で表される繰り返し単位の合計が、ポリイミド樹脂前駆体の全繰り返し単位に対して、70モル%以上100モル%以下であり、一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位の合計に対して、一般式(1)で表される繰り返し単位の比率が30~100モル%である、ポリイミド樹脂前駆体。
Figure JPOXMLDOC01-appb-C000003

(式(1)および式(2)中、X1及びX2はそれぞれ独立に水素、炭素数1~6のアルキル基又は炭素数3~9のアルキルシリル基であり、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基あるいはトリフルオロメチル基を表す。h、i、jは0~4の整数である。)
[2]一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位の合計に対して、一般式(1)で表される繰り返し単位の比率が50~100モル%である、前記[1]に記載のポリイミド樹脂前駆体。
[3]前記[1]又は[2]に記載のポリイミド樹脂前駆体及び有機溶媒を含有するワニス。
[4]前記[3]に記載のワニスを支持体上に塗布し、加熱して得られる、ポリイミドフィルム。
[5]下記一般式(3)で表される繰り返し単位、又は下記一般式(3)で表される繰り返し単位および下記一般式(4)で表される繰り返し単位を含み、一般式(3)で表される繰り返し単位及び一般式(4)で表される繰り返し単位の合計が、ポリイミド樹脂の全繰り返し単位に対して、70モル%以上100モル%以下であり、一般式(3)で表される繰り返し単位と下記一般式(4)で表される繰り返し単位の合計に対して、一般式(3)で表される繰り返し単位の比率が30~100モル%である、ポリイミド樹脂。
Figure JPOXMLDOC01-appb-C000004

(式(3)および式(4)中、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基あるいはトリフルオロメチル基を表す。h、i、jは0~4の整数である。)
[6]一般式(3)で表される繰り返し単位と一般式(4)で表される繰り返し単位の合計に対して、一般式(3)で表される繰り返し単位の比率が50~100モル%である、前記[5]に記載のポリイミド樹脂。
[7]前記[5]又は[6]に記載のポリイミド樹脂を含む、ポリイミドフィルム。
[8]ガラス転移温度が430℃以上であり、ポリイミドフィルムの厚さが10μmのときの23℃、50%RHにおける引張伸度が15%以上であり、ポリイミドフィルムの厚さが10μmのときの全光線透過率が80%以上である、前記[4]又は[7]に記載のポリイミドフィルム。
[9]ポリイミドフィルムの厚さが、1μm以上20μm以下である、前記[4]、[7]又は[8]に記載のポリイミドフィルム。
That is, the present invention relates to the following [1] to [9].
[1] Contains a repeating unit represented by the following general formula (1), or a repeating unit represented by the following general formula (1) and a repeating unit represented by the following general formula (2), and the general formula (1) The total of the repeating units represented by the formula (2) and the repeating units represented by the general formula (2) is 70 mol% or more and 100 mol% or less based on the total repeating units of the polyimide resin precursor, and the general formula (1) A polyimide resin precursor in which the ratio of the repeating unit represented by general formula (1) is 30 to 100 mol% with respect to the total of the repeating unit represented by and the repeating unit represented by general formula (2). .
Figure JPOXMLDOC01-appb-C000003

(In formulas (1) and (2), X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms; R 1 , R 2 , R 3 each independently represents a methyl group, a fluoro group, or a trifluoromethyl group. h, i, and j are integers from 0 to 4.)
[2] The ratio of the repeating unit represented by general formula (1) to the total of the repeating unit represented by general formula (1) and the repeating unit represented by general formula (2) is 50 to 100 moles. %, the polyimide resin precursor according to the above [1].
[3] A varnish containing the polyimide resin precursor and organic solvent according to [1] or [2] above.
[4] A polyimide film obtained by applying the varnish described in [3] above onto a support and heating it.
[5] Contains a repeating unit represented by the following general formula (3), or a repeating unit represented by the following general formula (3) and a repeating unit represented by the following general formula (4), and the general formula (3) The total of the repeating units represented by the formula (4) and the repeating units represented by the general formula (4) is 70 mol% or more and 100 mol% or less based on the total repeating units of the polyimide resin, and A polyimide resin in which the ratio of the repeating unit represented by the general formula (3) is 30 to 100 mol% with respect to the total of the repeating unit represented by the following general formula (4) and the repeating unit represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000004

(In formulas (3) and (4), R 1 , R 2 , and R 3 each independently represent a methyl group, a fluoro group, or a trifluoromethyl group. h, i, and j are integers of 0 to 4. )
[6] The ratio of the repeating unit represented by general formula (3) is 50 to 100 moles to the total of the repeating unit represented by general formula (3) and the repeating unit represented by general formula (4). %, the polyimide resin according to [5] above.
[7] A polyimide film comprising the polyimide resin according to [5] or [6] above.
[8] The glass transition temperature is 430°C or higher, the tensile elongation at 23°C and 50% RH is 15% or higher when the polyimide film has a thickness of 10 μm, and the polyimide film has a thickness of 10 μm. The polyimide film according to [4] or [7] above, which has a total light transmittance of 80% or more.
[9] The polyimide film according to [4], [7], or [8], wherein the polyimide film has a thickness of 1 μm or more and 20 μm or less.
 本発明によれば、優れた耐熱性を有し、線膨張係数が低く、更に優れた伸度、機械強度を有するポリイミド樹脂を得ることができるポリイミド樹脂前駆体、そして、優れた耐熱性を有し、線膨張係数が低く、更に優れた伸度、機械強度を有するポリイミド樹脂及びポリイミドフィルムを提供することができる。本発明のポリイミド樹脂は、以上のような性質を有するため、透明フレキシブル基板、特にLTPS-TFT基板の原料として有用である。 According to the present invention, a polyimide resin precursor having excellent heat resistance, a polyimide resin having a low coefficient of linear expansion, and further excellent elongation and mechanical strength can be obtained, and a polyimide resin precursor having excellent heat resistance. However, it is possible to provide a polyimide resin and a polyimide film having a low coefficient of linear expansion and excellent elongation and mechanical strength. Since the polyimide resin of the present invention has the above properties, it is useful as a raw material for transparent flexible substrates, particularly LTPS-TFT substrates.
[ポリイミド樹脂前駆体]
 本発明のポリイミド樹脂前駆体は、下記一般式(1)で表される繰り返し単位、又は下記一般式(1)で表される繰り返し単位および下記一般式(2)で表される繰り返し単位を含み、一般式(1)で表される繰り返し単位及び一般式(2)で表される繰り返し単位の合計が、ポリイミド樹脂前駆体の全繰り返し単位に対して、70モル%以上100モル%以下であり、一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位の合計に対して、一般式(1)で表される繰り返し単位の比率が30~100モル%である。
Figure JPOXMLDOC01-appb-C000005

(式(1)および式(2)中、X1及びX2はそれぞれ独立に水素、炭素数1~6のアルキル基又は炭素数3~9のアルキルシリル基であり、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基あるいはトリフルオロメチル基を表す。h、i、jは0~4の整数である。)
[Polyimide resin precursor]
The polyimide resin precursor of the present invention includes a repeating unit represented by the following general formula (1), or a repeating unit represented by the following general formula (1) and a repeating unit represented by the following general formula (2). , the total of the repeating units represented by general formula (1) and the repeating units represented by general formula (2) is 70 mol% or more and 100 mol% or less with respect to all repeating units of the polyimide resin precursor. , the ratio of the repeating unit represented by general formula (1) to the total of the repeating unit represented by general formula (1) and the repeating unit represented by general formula (2) is 30 to 100 mol%. be.
Figure JPOXMLDOC01-appb-C000005

(In formulas (1) and (2), X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms; R 1 , R 2 , R 3 each independently represents a methyl group, a fluoro group, or a trifluoromethyl group. h, i, and j are integers from 0 to 4.)
 本発明のポリイミド樹脂前駆体を用いることで、優れた耐熱性を有し、線膨張係数が低く、更に優れた伸度、機械強度を有するポリイミド樹脂を得ることができ、また、得られたポリイミド樹脂及びポリイミドフィルムが優れた耐熱性を有し、線膨張係数が低く、更に優れた伸度、機械強度を有する理由は定かではないが、次のように考えられる。
 芳香族ジアミンの中で、芳香環の結合基としてエステル骨格を有する特定のジアミンは剛直性が高く、特定の芳香族テトラカルボン酸二無水物由来の成分と、前記の特定のエステル骨格を有するジアミン成分からなる共重合体は、TFT基板等に必要な低線膨張係数、高耐熱性を両立できるものと考えられる。
 一方で、剛直性が高くなりすぎると伸度、機械強度が低下する傾向にある。また、ポリイミドの分子量が高いほど、伸度、機械強度は増加する傾向にある。本発明のポリイミドは、柔軟なエーテル骨格を有する特定の酸二無水物と剛直骨格の特定の酸二無水物を適切な比率で共重合し、更に、分子量を増加させるために、求核性の高い特定のエステル骨格を有する芳香族ジアミンを共重合することで、前述した低線膨張係数、高耐熱性の両立に加え、優れた伸度、機械強度を有すると考えられる。
By using the polyimide resin precursor of the present invention, it is possible to obtain a polyimide resin that has excellent heat resistance, a low linear expansion coefficient, and further excellent elongation and mechanical strength. The reason why resin and polyimide films have excellent heat resistance, low coefficient of linear expansion, and further excellent elongation and mechanical strength is not clear, but it is thought to be as follows.
Among aromatic diamines, certain diamines having an ester skeleton as a bonding group for an aromatic ring have high rigidity, and a component derived from a specific aromatic tetracarboxylic dianhydride and a diamine having the above-mentioned specific ester skeleton have high rigidity. It is believed that the copolymer consisting of the above components is capable of achieving both a low coefficient of linear expansion and high heat resistance required for TFT substrates and the like.
On the other hand, if the rigidity becomes too high, the elongation and mechanical strength tend to decrease. Furthermore, the higher the molecular weight of polyimide, the higher the elongation and mechanical strength tend to be. The polyimide of the present invention is produced by copolymerizing a specific acid dianhydride with a flexible ether skeleton and a specific acid dianhydride with a rigid skeleton in an appropriate ratio, and furthermore, in order to increase the molecular weight, nucleophilic By copolymerizing an aromatic diamine having a high specific ester skeleton, it is thought that in addition to achieving both the aforementioned low coefficient of linear expansion and high heat resistance, it has excellent elongation and mechanical strength.
 なお、ポリイミド樹脂前駆体における「繰り返し単位」とは、1つのテトラカルボン酸二無水物に由来する構成単位と1つのジアミンに由来する構成単位を含むアミド酸単位、アミド酸エステル単位、又はアミド酸シリルエステル単位である。
 前記式(1)において、X1及びX2はそれぞれ独立に水素、炭素数1~6のアルキル基及び炭素数3~9のアルキルシリル基からなる群より選ばれる少なくとも1つであり、好ましくは水素及び炭素数1~6のアルキル基からなる群より選ばれる少なくとも1つであり、より好ましくは水素である。
 前記式(1)において、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基及びトリフルオロメチル基からなる群より選ばれる少なくとも1つであり、好ましくはメチル基である。
 前記式(1)において、h、i、jはそれぞれ独立に0~4の整数であり、好ましくは0である。
 前記式(2)において、X1及びX2はそれぞれ独立に水素、炭素数1~6のアルキル基及び炭素数3~9のアルキルシリル基からなる群より選ばれる少なくとも1つであり、好ましくは水素及び炭素数1~6のアルキル基からなる群より選ばれる少なくとも1つであり、より好ましくは水素である。
 前記式(2)において、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基及びトリフルオロメチル基からなる群より選ばれる少なくとも1つであり、好ましくはメチル基である。
 前記式(2)において、h、i、jはそれぞれ独立に0~4の整数であり、好ましくは0である。
Note that the "repeating unit" in the polyimide resin precursor refers to an amic acid unit, an amic acid ester unit, or an amic acid ester unit containing one structural unit derived from a tetracarboxylic dianhydride and one structural unit derived from a diamine. It is a silyl ester unit.
In the formula (1), X 1 and X 2 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 6 carbon atoms, and an alkylsilyl group having 3 to 9 carbon atoms, and preferably At least one selected from the group consisting of hydrogen and an alkyl group having 1 to 6 carbon atoms, and hydrogen is more preferred.
In the formula (1), R 1 , R 2 , and R 3 are each independently at least one selected from the group consisting of a methyl group, a fluoro group, and a trifluoromethyl group, and preferably a methyl group.
In the formula (1), h, i, and j are each independently an integer of 0 to 4, preferably 0.
In the formula (2), X 1 and X 2 are each independently at least one selected from the group consisting of hydrogen, an alkyl group having 1 to 6 carbon atoms, and an alkylsilyl group having 3 to 9 carbon atoms, and preferably At least one selected from the group consisting of hydrogen and an alkyl group having 1 to 6 carbon atoms, and hydrogen is more preferred.
In the formula (2), R 1 , R 2 , and R 3 are each independently at least one selected from the group consisting of a methyl group, a fluoro group, and a trifluoromethyl group, and preferably a methyl group.
In the formula (2), h, i, and j are each independently an integer of 0 to 4, preferably 0.
 前記のとおり、ポリイミド樹脂前駆体には、前記一般式(1)で表される繰り返し単位を含み、前記一般式(2)で表される繰り返し単位を含んでもよい。
 一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位の合計に対する一般式(1)で表される繰り返し単位の比率は、30~100モル%であるが、透明性の観点からは、好ましくは40~100モル%であり、より好ましくは50~100モル%であり、更に好ましくは60~100モル%であり、より更に好ましくは70~100モル%であり、より更に好ましくは80~100モル%であり、より更に好ましくは90~100モル%であり、100モル%であってもよい。また、耐熱性と強度の観点からは、好ましくは30~90モル%であり、より好ましくは30~80モル%であり、更に好ましくは30~70モル%であり、より更に好ましくは30~60モル%であり、より更に好ましくは30~50モル%である。
As described above, the polyimide resin precursor contains the repeating unit represented by the general formula (1), and may also contain the repeating unit represented by the general formula (2).
The ratio of the repeating unit represented by general formula (1) to the total of the repeating unit represented by general formula (1) and the repeating unit represented by general formula (2) is 30 to 100 mol%, From the viewpoint of transparency, it is preferably 40 to 100 mol%, more preferably 50 to 100 mol%, even more preferably 60 to 100 mol%, even more preferably 70 to 100 mol%. , even more preferably 80 to 100 mol%, even more preferably 90 to 100 mol%, and may be 100 mol%. In addition, from the viewpoint of heat resistance and strength, the content is preferably 30 to 90 mol%, more preferably 30 to 80 mol%, even more preferably 30 to 70 mol%, even more preferably 30 to 60 mol%. It is mol%, more preferably 30 to 50 mol%.
 耐熱性、線膨張係数、伸度、機械強度の観点から、一般式(1)で表される繰り返し単位及び一般式(2)で表される繰り返し単位の合計は、前記ポリイミド樹脂前駆体の全繰り返し単位に対して、70モル%以上100モル%以下である。好ましくは80モル%以上100モル%以下であり、より好ましくは90モル%以上100モル%以下であり、更に好ましくは95モル%以上100モル%以下であり、より更に好ましくは99モル%以上100モル%以下である。 From the viewpoint of heat resistance, coefficient of linear expansion, elongation, and mechanical strength, the total of the repeating units represented by general formula (1) and the repeating units represented by general formula (2) is the total of the total of the polyimide resin precursor. It is 70 mol% or more and 100 mol% or less with respect to the repeating unit. Preferably it is 80 mol% or more and 100 mol% or less, more preferably 90 mol% or more and 100 mol% or less, still more preferably 95 mol% or more and 100 mol% or less, even more preferably 99 mol% or more and 100 mol% or less. It is less than mol%.
 一般式(1)で表される繰り返し単位が、前記ポリイミド樹脂前駆体の全繰り返し単位に対して、透明性の観点からは、好ましくは40モル%以上であり、より好ましくは50モル%以上であり、更に好ましくは60モル%以上であり、より更に好ましくは70モル%以上であり、より更に好ましくは80モル%以上であり、より更に好ましくは90モル%以上である。上限は100モル%以下である。 From the viewpoint of transparency, the repeating unit represented by general formula (1) is preferably 40 mol% or more, more preferably 50 mol% or more, based on all the repeating units of the polyimide resin precursor. The content is more preferably 60 mol% or more, even more preferably 70 mol% or more, even more preferably 80 mol% or more, and still more preferably 90 mol% or more. The upper limit is 100 mol% or less.
 ポリイミド樹脂前駆体には、本発明の効果を損なわない範囲で、一般式(1)で表される繰り返し単位又は一般式(2)で表される繰り返し単位以外の繰り返し単位を含んでいてもよい。
 一般式(1)で表される繰り返し単位又は一般式(2)で表される繰り返し単位以外の繰り返し単位の含有量は、前記ポリイミド樹脂前駆体の全繰り返し単位に対して、好ましくは30モル%以下であり、より好ましくは20モル%以下であり、更に好ましくは10モル%以下であり、より更に好ましくは5モル%以下であり、より更に好ましくは1モル%以下であり、より更に好ましくは0モル%であり、含まないことがより更に好ましい。
The polyimide resin precursor may contain repeating units other than the repeating unit represented by general formula (1) or the repeating unit represented by general formula (2), as long as the effects of the present invention are not impaired. .
The content of repeating units other than the repeating units represented by general formula (1) or the repeating units represented by general formula (2) is preferably 30 mol% with respect to all repeating units of the polyimide resin precursor. or less, more preferably 20 mol% or less, even more preferably 10 mol% or less, even more preferably 5 mol% or less, even more preferably 1 mol% or less, even more preferably It is even more preferable that the content is 0 mol %, and that it is not included.
<ポリイミド樹脂前駆体の各構成単位>
 前記ポリイミド樹脂前駆体は、一般式(1)で表される繰り返し単位を含み、更に一般式(2)で表される繰り返し単位を含んでいてもよいが、該前駆体を構成する構成単位について以下に説明する。
<Each structural unit of polyimide resin precursor>
The polyimide resin precursor contains a repeating unit represented by general formula (1) and may further contain a repeating unit represented by general formula (2), but regarding the structural units constituting the precursor This will be explained below.
 ポリイミド樹脂前駆体は、テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有する。
 なお、ポリイミド樹脂前駆体においては、構成単位A及び構成単位Bはアミド酸構造を形成している。
 本発明のポリイミド樹脂前駆体は、前記一般式(1)で表される繰り返し単位を含むことから、構成単位Aが、下記式(a1)で表される化合物に由来する構成単位(A1)を含み、構成単位Bが、下記式(b1)で表される化合物に由来する構成単位(B1)を含む。
Figure JPOXMLDOC01-appb-C000006

(式(b1)中、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基あるいはトリフルオロメチル基を表す。h、i、jは0~4の整数である。)
The polyimide resin precursor has a structural unit A derived from a tetracarboxylic dianhydride and a structural unit B derived from a diamine.
In addition, in the polyimide resin precursor, the structural unit A and the structural unit B form an amic acid structure.
Since the polyimide resin precursor of the present invention contains a repeating unit represented by the general formula (1), the structural unit A is a structural unit (A1) derived from a compound represented by the following formula (a1). The structural unit B includes a structural unit (B1) derived from a compound represented by the following formula (b1).
Figure JPOXMLDOC01-appb-C000006

(In formula (b1), R 1 , R 2 , and R 3 each independently represent a methyl group, a fluoro group, or a trifluoromethyl group. h, i, and j are integers from 0 to 4.)
 更に本発明のポリイミド樹脂前駆体は、前記一般式(1)で表される繰り返し単位を含み、更に前記一般式(2)で表される繰り返し単位を含んでいてもよいことから、構成単位Aが、前記式(a1)で表される化合物に由来する構成単位(A1)を含み、更に下記式(a2)で表される化合物に由来する構成単位(A2)を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000007
Furthermore, the polyimide resin precursor of the present invention contains the repeating unit represented by the general formula (1) and may further contain the repeating unit represented by the general formula (2), so that the structural unit A contains the structural unit (A1) derived from the compound represented by the formula (a1), and may further contain the structural unit (A2) derived from the compound represented by the following formula (a2).
Figure JPOXMLDOC01-appb-C000007
(構成単位A)
 構成単位Aは、テトラカルボン酸二無水物に由来する構成単位であり、少なくとも前記式(a1)で表される化合物に由来する構成単位(A1)を含む。更に前記式(a1)で表される化合物に由来する構成単位(A1)および前記式(a2)で表される化合物に由来する構成単位(A2)の両方を含んでいてもよい。
 式(a1)で表される化合物は、4,4’-オキシジフタル酸無水物(ODPA)である。式(a1)で表される化合物に由来する構成単位(A1)をポリイミド樹脂前駆体の構成単位とすることによって、耐熱性と強度に優れ、更に透明性にも優れるポリイミド樹脂を製造できるポリイミド樹脂前駆体を得ることができる。
 式(a2)で表される化合物は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)である。式(a2)で表される化合物に由来する構成単位(A2)をポリイミド樹脂前駆体の構成単位とすることによって、得られるポリイミド樹脂の耐熱性と強度をより高めることができる。
(Component unit A)
The structural unit A is a structural unit derived from tetracarboxylic dianhydride, and includes at least the structural unit (A1) derived from the compound represented by the formula (a1). Furthermore, it may contain both the structural unit (A1) derived from the compound represented by the formula (a1) and the structural unit (A2) derived from the compound represented by the formula (a2).
The compound represented by formula (a1) is 4,4'-oxydiphthalic anhydride (ODPA). A polyimide resin that can produce a polyimide resin that has excellent heat resistance and strength as well as excellent transparency by using the structural unit (A1) derived from the compound represented by formula (a1) as a structural unit of a polyimide resin precursor. A precursor can be obtained.
The compound represented by formula (a2) is 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA). By using the structural unit (A2) derived from the compound represented by formula (a2) as a structural unit of the polyimide resin precursor, the heat resistance and strength of the obtained polyimide resin can be further improved.
 構成単位A中の構成単位(A1)と構成単位(A2)の合計の比率は、好ましくは70モル%以上100モル%以下である。より好ましくは80モル%以上100モル%以下であり、更に好ましくは90モル%以上100モル%以下であり、より更に好ましくは95モル%以上100モル%以下であり、より更に好ましくは99モル%以上100モル%以下である。 The total ratio of the structural unit (A1) and the structural unit (A2) in the structural unit A is preferably 70 mol% or more and 100 mol% or less. More preferably 80 mol% or more and 100 mol% or less, still more preferably 90 mol% or more and 100 mol% or less, even more preferably 95 mol% or more and 100 mol% or less, even more preferably 99 mol%. The content is 100 mol% or less.
 構成単位(A1)と構成単位(A2)の合計に対する構成単位(A1)の比率は、好ましくは30~100モル%であり、透明性の観点からは、より好ましくは40~100モル%であり、更に好ましくは50~100モル%であり、より更に好ましくは60~100モル%であり、より更に好ましくは70~100モル%であり、より更に好ましくは80~100モル%であり、より更に好ましくは90~100モル%であり、100モル%であってもよい。また、耐熱性と強度の観点からは、より好ましくは30~90モル%であり、更に好ましくは30~80モル%であり、より更に好ましくは30~70モル%であり、より更に好ましくは30~60モル%であり、より更に好ましくは30~50モル%である。 The ratio of the structural unit (A1) to the total of the structural unit (A1) and the structural unit (A2) is preferably 30 to 100 mol%, and from the viewpoint of transparency, more preferably 40 to 100 mol%. , still more preferably 50 to 100 mol%, even more preferably 60 to 100 mol%, even more preferably 70 to 100 mol%, even more preferably 80 to 100 mol%, even more preferably It is preferably 90 to 100 mol%, and may be 100 mol%. In addition, from the viewpoint of heat resistance and strength, the content is more preferably 30 to 90 mol%, still more preferably 30 to 80 mol%, even more preferably 30 to 70 mol%, and even more preferably 30 to 80 mol%. It is 60 mol%, more preferably 30 to 50 mol%.
 構成単位A中の構成単位(A1)の比率は、透明性の観点からは、好ましくは40モル%以上であり、より好ましくは50モル%以上であり、更に好ましくは60モル%以上であり、より更に好ましくは70モル%以上であり、より更に好ましくは80モル%以上であり、より更に好ましくは90モル%以上である。上限は100モル%以下である。 From the viewpoint of transparency, the ratio of the structural unit (A1) in the structural unit A is preferably 40 mol% or more, more preferably 50 mol% or more, still more preferably 60 mol% or more, Even more preferably it is 70 mol% or more, even more preferably 80 mol% or more, even more preferably 90 mol% or more. The upper limit is 100 mol% or less.
 構成単位Aは、構成単位(A1)又は構成単位(A2)以外の構成単位を含んでもよい。そのような構成単位としては、特に限定されないが、構成単位(A1)又は構成単位(A2)以外の芳香族テトラカルボン酸二無水物に由来する構成単位、脂環式テトラカルボン酸二無水物に由来する構成単位、及び脂肪族テトラカルボン酸二無水物に由来する構成単位が挙げられる。 The structural unit A may include structural units other than the structural unit (A1) or the structural unit (A2). Such structural units include, but are not particularly limited to, structural units derived from aromatic tetracarboxylic dianhydrides other than structural unit (A1) or structural unit (A2), and structural units derived from alicyclic tetracarboxylic dianhydrides. and structural units derived from aliphatic tetracarboxylic dianhydride.
 構成単位(A1)又は構成単位(A2)以外の芳香族テトラカルボン酸二無水物に由来する構成単位を与える芳香族テトラカルボン酸二無水物としては、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、ピロメリット酸二無水物、3,3’,4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物等が挙げられる。
 脂環式テトラカルボン酸二無水物に由来する構成単位を与える脂環式テトラカルボン酸二無水物としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、ジシクロヘキシルテトラカルボン酸二無水物等が挙げられる。
 脂肪族テトラカルボン酸二無水物に由来する構成単位を与える脂肪族テトラカルボン酸二無水物としては、1,2,3,4-ブタンテトラカルボン酸二無水物等が挙げられる。
 構成単位Aに任意に含まれる構成単位は、1種でもよいし、2種以上であってもよい。
 なお、本明細書において、芳香族テトラカルボン酸二無水物とは芳香環を1つ以上含むテトラカルボン酸二無水物を意味し、脂環式テトラカルボン酸二無水物とは脂環を1つ以上含み、かつ芳香環を含まないテトラカルボン酸二無水物を意味し、脂肪族テトラカルボン酸二無水物とは芳香環も脂環も含まないテトラカルボン酸二無水物を意味する。
The aromatic tetracarboxylic dianhydride that provides the structural unit derived from the aromatic tetracarboxylic dianhydride other than the structural unit (A1) or the structural unit (A2) is 9,9-bis(3,4-dianhydride). carboxyphenyl)fluorene dianhydride (BPAF), pyromellitic dianhydride, 3,3',4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 3,3',4,4'- Examples include diphenylsulfonetetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, and the like.
Examples of the alicyclic tetracarboxylic dianhydride that provides a structural unit derived from alicyclic tetracarboxylic dianhydride include 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3, Examples include 4-cyclobutanetetracarboxylic dianhydride and dicyclohexyltetracarboxylic dianhydride.
Examples of the aliphatic tetracarboxylic dianhydride that provides structural units derived from aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride and the like.
The number of structural units optionally included in the structural unit A may be one, or two or more.
In addition, in this specification, aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings, and alicyclic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more alicyclic rings. The term "aliphatic tetracarboxylic dianhydride" refers to a tetracarboxylic dianhydride containing the above and not containing an aromatic ring, and the term "aliphatic tetracarboxylic dianhydride" refers to a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
(構成単位B)
 構成単位Bは、ジアミンに由来する構成単位であり、下記式(b1)で表される化合物に由来する構成単位(B1)を含む。
Figure JPOXMLDOC01-appb-C000008

(式(b1)中、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基あるいはトリフルオロメチル基を表す。h、i、jは0~4の整数である。)
(Component unit B)
The structural unit B is a structural unit derived from a diamine, and includes a structural unit (B1) derived from a compound represented by the following formula (b1).
Figure JPOXMLDOC01-appb-C000008

(In formula (b1), R 1 , R 2 , and R 3 each independently represent a methyl group, a fluoro group, or a trifluoromethyl group. h, i, and j are integers from 0 to 4.)
 構成単位Bに構成単位(B1)を含むことで、耐熱性と強度に優れるポリイミド樹脂を製造できるポリイミド樹脂前駆体を得ることができる。
 前記式(b1)において、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基及びトリフルオロメチル基からなる群より選ばれる少なくとも1つであり、好ましくはメチル基である。
 前記式(b1)において、h、i、jはそれぞれ独立に0~4の整数であり、好ましくは0である。
 構成単位B中の構成単位(B1)の比率は、好ましくは70モル%以上であり、より好ましくは80モル%以上であり、更に好ましくは90モル%以上であり、より更に好ましくは95モル%以上であり、より更に好ましくは99モル%以上である。その比率の上限値は特に限定されず、100モル%以下である。
By including the structural unit (B1) in the structural unit B, it is possible to obtain a polyimide resin precursor from which a polyimide resin having excellent heat resistance and strength can be produced.
In the formula (b1), R 1 , R 2 , and R 3 are each independently at least one selected from the group consisting of a methyl group, a fluoro group, and a trifluoromethyl group, and preferably a methyl group.
In the formula (b1), h, i, and j are each independently an integer of 0 to 4, preferably 0.
The ratio of the structural unit (B1) in the structural unit B is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, even more preferably 95 mol%. or more, and even more preferably 99 mol% or more. The upper limit of the ratio is not particularly limited and is 100 mol% or less.
 前記式(b1)で表される化合物のなかでも、下記式(b11)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000009
Among the compounds represented by the formula (b1), a compound represented by the following formula (b11) is preferred.
Figure JPOXMLDOC01-appb-C000009
 式(b11)で表される化合物は、ビス(4-アミノフェニル)テレフタレート(APTP)である。構成単位Bは好ましくは式(b11)で表される化合物に由来する構成単位(B11)を含む。
 式(b11)で表される化合物に由来する構成単位(B11)をポリイミド樹脂前駆体の構成単位とすることによって、耐熱性と強度に優れるポリイミド樹脂を製造できるポリイミド樹脂前駆体を得ることができる。
The compound represented by formula (b11) is bis(4-aminophenyl) terephthalate (APTP). Structural unit B preferably includes a structural unit (B11) derived from a compound represented by formula (b11).
By using the structural unit (B11) derived from the compound represented by formula (b11) as the structural unit of the polyimide resin precursor, it is possible to obtain a polyimide resin precursor that can produce a polyimide resin with excellent heat resistance and strength. .
 構成単位Bは、構成単位(B1)以外の構成単位を含んでもよい。そのような構成単位としては、特に限定されないが、構成単位(B1)以外の芳香族ジアミンに由来する構成単位、脂環式ジアミンに由来する構成単位、及び脂肪族ジアミンに由来する構成単位が挙げられる。
 構成単位(B1)以外の芳香族ジアミンに由来する構成単位を与える芳香族ジアミンとしては、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、3,5-ジアミノ安息香酸(3,5-DABA)、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、4-アミノフェニル-4-アミノベンゾエート(4-BAAB)、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,2’-ジメチルビフェニル-4,4’-ジアミン、2,2’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノジフェニルメタン、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノベンズアニリド、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、及び1,4-ビス(4-アミノフェノキシ)ベンゼン等が挙げられる。
 脂環式ジアミンに由来する構成単位を与える脂環式ジアミンとしては、1,3-ビス(アミノメチル)シクロヘキサン、及び1,4-ビス(アミノメチル)シクロヘキサン等が挙げられる。
 脂環式ジアミンに由来する構成単位を与える脂環式ジアミンとしては、エチレンジアミン及びヘキサメチレンジアミン等が挙げられる。
The structural unit B may include structural units other than the structural unit (B1). Such structural units include, but are not particularly limited to, structural units derived from aromatic diamines other than structural unit (B1), structural units derived from alicyclic diamines, and structural units derived from aliphatic diamines. It will be done.
Examples of aromatic diamines that provide structural units derived from aromatic diamines other than structural unit (B1) include 2,2'-bis(trifluoromethyl)benzidine (TFMB), 3,5-diaminobenzoic acid (3,5 -DABA), 9,9-bis(4-aminophenyl)fluorene (BAFL), 4-aminophenyl-4-aminobenzoate (4-BAAB), p-xylylenediamine, 1,5-diaminonaphthalene, 2, 2'-dimethylbiphenyl-4,4'-diamine, 2,2'-dimethylbiphenyl-4,4'-diamine, 4,4'-diaminodiphenylmethane, 1,4-bis[2-(4-aminophenyl) -2-propyl]benzene, 2,2-bis(4-aminophenyl)hexafluoropropane, 4,4'-diaminobenzanilide, 1-(4-aminophenyl)-2,3-dihydro-1,3, 3-trimethyl-1H-inden-5-amine, α,α'-bis(4-aminophenyl)-1,4-diisopropylbenzene, N,N'-bis(4-aminophenyl)terephthalamide, 2,2 -bis(3-amino-4-hydroxyphenyl)hexafluoropropane, and 1,4-bis(4-aminophenoxy)benzene.
Examples of the alicyclic diamine that provides a structural unit derived from an alicyclic diamine include 1,3-bis(aminomethyl)cyclohexane and 1,4-bis(aminomethyl)cyclohexane.
Examples of the alicyclic diamine that provides a structural unit derived from an alicyclic diamine include ethylene diamine and hexamethylene diamine.
 なお、本明細書において、芳香族ジアミンとは芳香環を1つ以上含むジアミンを意味し、脂環式ジアミンとは脂環を1つ以上含み、かつ芳香環を含まないジアミンを意味し、脂肪族ジアミンとは芳香環も脂環も含まないジアミンを意味する。
 構成単位Bに任意に含まれる構成単位は、1種でもよいし、2種以上であってもよい。
In addition, in this specification, aromatic diamine means a diamine containing one or more aromatic rings, alicyclic diamine means a diamine containing one or more alicyclic rings and no aromatic ring, Group diamine means a diamine containing neither aromatic ring nor alicyclic ring.
The number of structural units optionally included in the structural unit B may be one, or two or more.
(ポリイミド樹脂前駆体の製造方法)
 前記ポリイミド樹脂前駆体はいかなる方法で製造してもよいが、次の製造方法によることが好ましい。
 前記のとおり、ポリイミド樹脂前駆体は、前記一般式(1)で表される繰り返し単位、又は前記一般式(1)で表される繰り返し単位および前記一般式(2)で表される繰り返し単位(いずれもアミド酸)を含む。
 具体的には、前記一般式(1)で表される繰り返し単位を含むポリアミド酸を構成するテトラカルボン酸成分およびジアミン成分を反応させて、ポリイミド樹脂前駆体を得る製造方法、あるいは前記一般式(1)で表される繰り返し単位を含むポリアミド酸を構成するテトラカルボン酸成分およびジアミン成分と、前記一般式(2)で表される繰り返し単位を含むポリアミド酸を構成するテトラカルボン酸成分およびジアミン成分とを反応させて、ポリイミド樹脂前駆体を得る製造方法、によることが好ましい。
(Method for producing polyimide resin precursor)
Although the polyimide resin precursor may be manufactured by any method, it is preferable to use the following manufacturing method.
As mentioned above, the polyimide resin precursor contains the repeating unit represented by the general formula (1), or the repeating unit represented by the general formula (1) and the repeating unit represented by the general formula (2) ( Both contain (amic acid).
Specifically, a manufacturing method for obtaining a polyimide resin precursor by reacting a tetracarboxylic acid component and a diamine component constituting a polyamic acid containing a repeating unit represented by the general formula (1), or A tetracarboxylic acid component and a diamine component constituting a polyamic acid containing a repeating unit represented by 1), and a tetracarboxylic acid component and a diamine component constituting a polyamic acid containing a repeating unit represented by the general formula (2) above. It is preferable to use a manufacturing method in which a polyimide resin precursor is obtained by reacting with the polyimide resin precursor.
 本製造方法で使用するテトラカルボン酸成分としては、構成単位(A1)を与える化合物を含むことが好ましく、構成単位(A2)を与える化合物を含んでいてもよく、本発明の効果を損なわない範囲で、構成単位(A1)を与える化合物又は構成単位(A2)を与える化合物以外のテトラカルボン酸成分を含んでいてもよい。
 本製造方法で使用するジアミン成分としては、構成単位(B1)を与える化合物を含むことが好ましく、本発明の効果を損なわない範囲で、構成単位(B1)を与える化合物以外のジアミン成分を含んでいてもよい。
 なお、テトラカルボン酸成分に対するジアミン成分の量を、0.9~1.1モルとすることが好ましい。
The tetracarboxylic acid component used in this production method preferably contains a compound that provides the structural unit (A1), and may also contain a compound that provides the structural unit (A2), within a range that does not impair the effects of the present invention. The compound may contain a tetracarboxylic acid component other than the compound providing the structural unit (A1) or the compound providing the structural unit (A2).
The diamine component used in this production method preferably contains a compound that provides the structural unit (B1), and does not contain any diamine components other than the compound that provides the structural unit (B1) to the extent that the effects of the present invention are not impaired. You can stay there.
Note that the amount of the diamine component relative to the tetracarboxylic acid component is preferably 0.9 to 1.1 mol.
 本製造方法でテトラカルボン酸成分とジアミン成分とを反応させる方法には特に制限はなく、公知の方法を用いることができる。
 具体的な反応方法としては、テトラカルボン酸成分、ジアミン成分、溶剤、及び必要に応じて末端封止剤を反応器に仕込み、0~120℃、好ましくは5~80℃の範囲で1~72時間撹拌する方法等が挙げられる。
 80℃以下で反応させる場合には、ポリイミド樹脂前駆体の分子量が重合時の温度履歴に依存して変動することなく、また熱イミド化の進行も抑制できるため、ポリアミド酸であるポリイミド樹脂前駆体を安定して製造できる。
There is no particular restriction on the method of reacting the tetracarboxylic acid component and the diamine component in this production method, and any known method can be used.
A specific reaction method is to charge a tetracarboxylic acid component, a diamine component, a solvent, and an end-capping agent as necessary into a reactor, and heat the mixture at a temperature of 1 to 72°C at a temperature of 0 to 120°C, preferably 5 to 80°C. Examples include a method of stirring for a period of time.
When reacting at 80°C or lower, the molecular weight of the polyimide resin precursor does not change depending on the temperature history during polymerization, and the progress of thermal imidization can be suppressed, so the polyimide resin precursor which is a polyamic acid can be manufactured stably.
 上記方法により、溶剤に溶解したポリアミド酸構造を有するポリイミド樹脂前駆体溶液が得られる。
 得られる溶液中のポリイミド樹脂前駆体の濃度は、好ましくは1~50質量%であり、より好ましくは3~35質量%であり、更に好ましくは5~30質量%である。
By the above method, a polyimide resin precursor solution having a polyamic acid structure dissolved in a solvent is obtained.
The concentration of the polyimide resin precursor in the resulting solution is preferably 1 to 50% by mass, more preferably 3 to 35% by mass, and still more preferably 5 to 30% by mass.
 前記製造方法で得られるポリイミド樹脂前駆体の数平均分子量は、得られるポリイミドフィルムの機械的強度の観点から、好ましくは5,000~500,000である。また、重量平均分子量(Mw)は、同様の観点から、好ましくは10,000~800,000であり、より好ましくは100,000~300,000である。
 次に本製造方法で用いられる原料等について説明する。
The number average molecular weight of the polyimide resin precursor obtained by the above production method is preferably 5,000 to 500,000 from the viewpoint of mechanical strength of the obtained polyimide film. Further, from the same viewpoint, the weight average molecular weight (Mw) is preferably 10,000 to 800,000, more preferably 100,000 to 300,000.
Next, the raw materials used in this manufacturing method will be explained.
〔テトラカルボン酸成分〕
 本製造方法における原料として用いられるテトラカルボン酸成分は、前記(構成単位(A))の項で説明したテトラカルボン酸二無水物であることが好ましい。なお、本製造方法においてテトラカルボン酸成分として用いられるテトラカルボン酸二無水物は、二無水物、テトラカルボン酸(遊離酸)、テトラカルボン酸のアルキルエステルのいずれの形態でもよいが、好ましくは二無水物である。
 本製造方法における原料として用いられるテトラカルボン酸成分は、少なくとも前記式(a1)で表される化合物(構成単位(A1)を与える化合物)を含む。更に前記式(a1)で表される化合物および前記式(a2)で表される化合物(構成単位(A2)を与える化合物)の両方を含んでいてもよい。
 テトラカルボン酸成分中の式(a1)で表される化合物と式(a2)で表される化合物の合計の比率は、好ましくは70モル%以上100モル%以下である。より好ましくは80モル%以上100モル%以下であり、更に好ましくは90モル%以上100モル%以下であり、より更に好ましくは95モル%以上100モル%以下であり、より更に好ましくは99モル%以上100モル%以下である。
 式(a1)で表される化合物と式(a2)で表される化合物の合計に対する式(a1)で表される化合物の比率は、好ましくは30~100モル%であり、透明性の観点からは、より好ましくは40~100モル%であり、更に好ましくは50~100モル%であり、より更に好ましくは60~100モル%であり、より更に好ましくは70~100モル%であり、より更に好ましくは80~100モル%であり、より更に好ましくは90~100モル%であり、100モル%であってもよい。また、耐熱性と強度の観点からは、より好ましくは30~90モル%であり、更に好ましくは30~80モル%であり、より更に好ましくは30~70モル%であり、より更に好ましくは30~60モル%であり、より更に好ましくは30~50モル%である。
 テトラカルボン酸成分中の式(a1)で表される化合物の比率は、透明性の観点からは、好ましくは40モル%以上であり、より好ましくは50モル%以上であり、更に好ましくは60モル%以上であり、より更に好ましくは70モル%以上であり、より更に好ましくは80モル%以上であり、より更に好ましくは90モル%以上である。上限は100モル%以下である。
[Tetracarboxylic acid component]
The tetracarboxylic acid component used as a raw material in this production method is preferably the tetracarboxylic dianhydride described in the section (Structural unit (A)) above. Note that the tetracarboxylic dianhydride used as the tetracarboxylic acid component in this production method may be in any form of dianhydride, tetracarboxylic acid (free acid), or alkyl ester of tetracarboxylic acid, but dianhydride is preferably dianhydride. It is anhydrous.
The tetracarboxylic acid component used as a raw material in this production method includes at least the compound represented by the formula (a1) (a compound that provides the structural unit (A1)). Furthermore, it may contain both the compound represented by the formula (a1) and the compound represented by the formula (a2) (compound that provides the structural unit (A2)).
The total ratio of the compound represented by formula (a1) and the compound represented by formula (a2) in the tetracarboxylic acid component is preferably 70 mol% or more and 100 mol% or less. More preferably 80 mol% or more and 100 mol% or less, still more preferably 90 mol% or more and 100 mol% or less, even more preferably 95 mol% or more and 100 mol% or less, even more preferably 99 mol%. The content is 100 mol% or less.
The ratio of the compound represented by formula (a1) to the total of the compound represented by formula (a1) and the compound represented by formula (a2) is preferably 30 to 100 mol%, from the viewpoint of transparency. is more preferably 40 to 100 mol%, still more preferably 50 to 100 mol%, even more preferably 60 to 100 mol%, even more preferably 70 to 100 mol%, and even more preferably It is preferably 80 to 100 mol%, even more preferably 90 to 100 mol%, and may be 100 mol%. In addition, from the viewpoint of heat resistance and strength, the content is more preferably 30 to 90 mol%, still more preferably 30 to 80 mol%, even more preferably 30 to 70 mol%, and even more preferably 30 to 80 mol%. The amount is 60 mol%, more preferably 30 to 50 mol%.
From the viewpoint of transparency, the ratio of the compound represented by formula (a1) in the tetracarboxylic acid component is preferably 40 mol% or more, more preferably 50 mol% or more, and even more preferably 60 mol%. % or more, even more preferably 70 mol% or more, even more preferably 80 mol% or more, even more preferably 90 mol% or more. The upper limit is 100 mol% or less.
 テトラカルボン酸成分は、式(a1)で表される化合物又は式(a2)で表される化合物以外のテトラカルボン酸成分を含んでもよい。そのようなテトラカルボン酸成分としては、特に限定されないが、式(a1)で表される化合物又は式(a2)で表される化合物以外の芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、及び脂肪族テトラカルボン酸二無水物が挙げられる。
 式(a1)で表される化合物又は式(a2)で表される化合物以外のテトラカルボン酸成分の具体例としては、前記(構成単位(A))の項で説明したテトラカルボン酸二無水物が挙げられる。
 これらテトラカルボン酸二無水物は、1種用いてもよいし、2種以上用いてもよい。
The tetracarboxylic acid component may include a tetracarboxylic acid component other than the compound represented by formula (a1) or the compound represented by formula (a2). Such tetracarboxylic acid components include, but are not particularly limited to, aromatic tetracarboxylic dianhydrides other than the compound represented by formula (a1) or the compound represented by formula (a2), and alicyclic tetracarboxylic acid components. Examples include acid dianhydrides and aliphatic tetracarboxylic dianhydrides.
Specific examples of tetracarboxylic acid components other than the compound represented by formula (a1) or the compound represented by formula (a2) include the tetracarboxylic dianhydride described in the section (Structural unit (A)) above. can be mentioned.
One type of these tetracarboxylic dianhydrides may be used, or two or more types may be used.
〔ジアミン成分〕
 本製造方法における原料として用いられるジアミン成分は、前記式(b1)で表される化合物(構成単位(B1)を与える化合物)を含む。
 本製造方法における原料として用いられるジアミン成分は、前記(構成単位(B))の項で説明したジアミンであることが好ましい。なお、本製造方法においてジアミン成分として用いられるジアミンは、ジアミン、ジアミンに対応するジイソシアネートのいずれの形態でもよいが、好ましくはジアミンである。
 本製造方法における原料として用いられるジアミン成分は、前記式(b1)で表される化合物を含み、好ましくは式(b11)で表される化合物を含む。
 ジアミン成分中の前記式(b1)で表される化合物の比率は、好ましくは70モル%以上であり、より好ましくは80モル%以上であり、更に好ましくは90モル%以上であり、より更に好ましくは95モル%以上であり、より更に好ましくは99モル%以上である。その比率の上限値は特に限定されず、100モル%以下である。
[Diamine component]
The diamine component used as a raw material in this production method includes a compound represented by the above formula (b1) (a compound that provides the structural unit (B1)).
The diamine component used as a raw material in this production method is preferably the diamine described in the section (Structural unit (B)) above. Note that the diamine used as the diamine component in this production method may be in the form of either a diamine or a diisocyanate corresponding to the diamine, but is preferably a diamine.
The diamine component used as a raw material in this production method includes a compound represented by the formula (b1), preferably a compound represented by the formula (b11).
The ratio of the compound represented by the formula (b1) in the diamine component is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, even more preferably is 95 mol% or more, and even more preferably 99 mol% or more. The upper limit of the ratio is not particularly limited and is 100 mol% or less.
 ジアミン成分は、前記式(b1)で表される化合物以外のジアミン成分を含んでもよい。そのようなジアミン成分としては、特に限定されないが、構成単位(B1)を与える化合物以外の芳香族ジアミン、脂環式ジアミン、及び脂肪族ジアミンが挙げられる。
 前記式(b1)で表される化合物以外のジアミン成分の具体例としては、前記(構成単位(B))の項で説明したジアミンが挙げられる。
 ジアミンは、1種用いてもよいし、2種以上用いてもよい。
The diamine component may include a diamine component other than the compound represented by the formula (b1). Such diamine components include, but are not particularly limited to, aromatic diamines other than the compound providing the structural unit (B1), alicyclic diamines, and aliphatic diamines.
Specific examples of diamine components other than the compound represented by formula (b1) include the diamines described in the section (structural unit (B)) above.
One kind of diamine may be used, or two or more kinds of diamines may be used.
〔末端封止剤〕
 また、ポリイミド樹脂前駆体の製造には、前述のテトラカルボン酸成分及びジアミン成分の他に、末端封止剤を用いてもよい。
 末端封止剤としてはモノアミン類又はジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、テトラカルボン酸成分1モルに対して0.0001~0.1モルが好ましく、0.001~0.06モルがより好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、4-メチルアニリン等が挙げられる。これらのうち、ベンジルアミン、アニリンが好ましい。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していてもよい。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸等が挙げられる。これらのうち、フタル酸、無水フタル酸がより好ましい。
[Terminal sealing agent]
Furthermore, in addition to the above-mentioned tetracarboxylic acid component and diamine component, a terminal capping agent may be used in the production of the polyimide resin precursor.
As the terminal capping agent, monoamines or dicarboxylic acids are preferable. The amount of the terminal capping agent to be introduced is preferably 0.0001 to 0.1 mol, more preferably 0.001 to 0.06 mol, per 1 mol of the tetracarboxylic acid component. Examples of monoamine terminal capping agents include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Examples include ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline and the like. Among these, benzylamine and aniline are preferred. As the dicarboxylic acid terminal capping agent, dicarboxylic acids are preferred, and a portion thereof may be ring-closed. For example, phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenone dicarboxylic acid, 3,4-benzophenone dicarboxylic acid, cyclopentane-1,2-dicarboxylic acid, 4-cyclohexene-1 , 2-dicarboxylic acid and the like. Among these, phthalic acid and phthalic anhydride are more preferred.
〔溶剤(有機溶媒)〕
 前記ポリイミド樹脂前駆体の製造に用いられる溶剤(有機溶媒)は、生成するポリイミド樹脂前駆体を溶解できるものであればよい。例えば、非プロトン性溶剤、フェノール系溶剤、エーテル系溶剤、カーボネート系溶剤等が挙げられる。
[Solvent (organic solvent)]
The solvent (organic solvent) used for producing the polyimide resin precursor may be any solvent as long as it can dissolve the polyimide resin precursor to be produced. Examples include aprotic solvents, phenolic solvents, ether solvents, carbonate solvents, and the like.
 非プロトン性溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶剤、γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶剤、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、アセトン、メチルエチルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤、酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶剤等が挙げられる。 Specific examples of aprotic solvents include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, and tetramethylurea. amide solvents, lactone solvents such as γ-butyrolactone and γ-valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide, sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide, and sulfolane. Examples include ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, and methyl cyclohexanone, and ester solvents such as acetic acid (2-methoxy-1-methylethyl).
 フェノール系溶剤の具体例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。
 エーテル系溶剤の具体例としては、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス〔2-(2-メトキシエトキシ)エチル〕エーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 カーボネート系溶剤の具体的な例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
 上記溶剤の中でも、アミド系溶剤又はラクトン系溶剤が好ましく、アミド系溶剤がより好ましく、N-メチル-2-ピロリドンが更に好ましい。上記の溶剤は単独で又は2種以上混合して用いてもよい。
Specific examples of phenolic solvents include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4 -xylenol, 3,5-xylenol, etc.
Specific examples of ether solvents include 1,2-dimethoxyethane, bis(2-methoxyethyl)ether, 1,2-bis(2-methoxyethoxy)ethane, and bis[2-(2-methoxyethoxy)ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
Specific examples of carbonate solvents include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and the like.
Among the above solvents, amide solvents or lactone solvents are preferred, amide solvents are more preferred, and N-methyl-2-pyrrolidone is even more preferred. The above solvents may be used alone or in combination of two or more.
[ワニス]
 本発明のワニスは、前述のポリイミド樹脂前駆体及び有機溶媒を含有する。すなわち、該ポリイミド樹脂前駆体は、有機溶媒に溶解している。
 有機溶媒はポリイミド樹脂前駆体が溶解するものであればよく、特に限定されないが、ポリイミド樹脂前駆体の製造に用いられる溶剤として上述した化合物を、単独又は2種以上を混合して用いることが好ましい。
 本発明のワニスは、ポリイミド樹脂前駆体の製造後の上述のポリイミド樹脂前駆体溶液そのものであってもよいし、又は当該ポリイミド樹脂前駆体溶液に対して更に希釈溶剤を混合したものであってもよい。
[varnish]
The varnish of the present invention contains the aforementioned polyimide resin precursor and organic solvent. That is, the polyimide resin precursor is dissolved in an organic solvent.
The organic solvent is not particularly limited as long as it dissolves the polyimide resin precursor, but it is preferable to use the above-mentioned compounds alone or in a mixture of two or more as the solvent used for producing the polyimide resin precursor. .
The varnish of the present invention may be the above-mentioned polyimide resin precursor solution itself after producing the polyimide resin precursor, or may be a mixture of the polyimide resin precursor solution further mixed with a diluting solvent. good.
 本発明のワニスは、本発明のポリイミド樹脂前駆体であるポリアミド酸のイミド化を効率よく進行させる観点から、更にイミド化触媒及び脱水触媒を含有させることができる。イミド化触媒としては、沸点が40℃以上であるイミド化触媒であればよく、沸点が40℃以上のイミド化触媒であれば、十分にイミド化が進行する前に揮発する可能性を回避できる。
 イミド化触媒としては、ピリジン又はピコリン等のアミン化合物;イミダゾール、1,2-ジメチルイミダゾール、1-ベンジルイミダゾール、1-ベンジル-2-メチルイミダゾール及びベンゾイミダゾール等のイミダゾール化合物;等が挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
 脱水触媒としては、無水酢酸、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等の酸無水物;ジシクロヘキシルカルボジイミド等のカルボジイミド化合物を挙げることができる。これらは単独で又は2種以上を組み合わせて用いてもよい。
The varnish of the present invention can further contain an imidization catalyst and a dehydration catalyst from the viewpoint of efficiently progressing the imidization of the polyamic acid, which is the polyimide resin precursor of the present invention. As the imidization catalyst, any imidization catalyst with a boiling point of 40°C or higher is sufficient.If the imidization catalyst has a boiling point of 40°C or higher, it is possible to avoid the possibility of volatilization before imidization progresses sufficiently. .
Examples of the imidization catalyst include amine compounds such as pyridine or picoline; imidazole compounds such as imidazole, 1,2-dimethylimidazole, 1-benzylimidazole, 1-benzyl-2-methylimidazole, and benzimidazole; and the like. The above imidization catalysts may be used alone or in combination of two or more.
Examples of the dehydration catalyst include acid anhydrides such as acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, and trifluoroacetic anhydride; and carbodiimide compounds such as dicyclohexylcarbodiimide. These may be used alone or in combination of two or more.
 本発明のワニスに含まれるポリイミド樹脂前駆体は溶媒溶解性を有しているため、室温で安定な高濃度のワニスとすることができる。本発明のワニスは、ポリイミド樹脂前駆体(ポリアミド酸)を3~40質量%含むことが好ましく、5~30質量%含むことがより好ましい。ワニスの粘度は0.1~100Pa・sが好ましく、0.1~20Pa・sがより好ましい。ワニスの粘度は、E型粘度計を用いて25℃で測定される値である。
 また、本発明のワニスは、得られるポリイミド樹脂及びポリイミドフィルムの要求特性を損なわない範囲で、無機フィラー、接着促進剤、剥離剤、難燃剤、紫外線安定剤、界面活性剤、レベリング剤、消泡剤、蛍光増白剤、架橋剤、重合開始剤、感光剤等各種添加剤を含んでもよい。
 本発明のワニスの製造方法は特に限定されず、公知の方法を適用することができる。たとえば、上述の製造方法で得られたポリイミド樹脂前駆体の溶液に、必要に応じて更なる溶剤を混合して濃度を調整することによって得ることができる。
Since the polyimide resin precursor contained in the varnish of the present invention has solvent solubility, it can be made into a highly concentrated varnish that is stable at room temperature. The varnish of the present invention preferably contains 3 to 40% by mass, more preferably 5 to 30% by mass of a polyimide resin precursor (polyamic acid). The viscosity of the varnish is preferably 0.1 to 100 Pa·s, more preferably 0.1 to 20 Pa·s. The viscosity of the varnish is a value measured at 25°C using an E-type viscometer.
In addition, the varnish of the present invention may contain inorganic fillers, adhesion promoters, release agents, flame retardants, ultraviolet stabilizers, surfactants, leveling agents, antifoaming agents, etc. within the range that does not impair the required properties of the resulting polyimide resin and polyimide film. It may contain various additives such as a brightening agent, a fluorescent whitening agent, a crosslinking agent, a polymerization initiator, and a photosensitizer.
The method for producing the varnish of the present invention is not particularly limited, and known methods can be applied. For example, it can be obtained by adjusting the concentration by mixing an additional solvent with the solution of the polyimide resin precursor obtained by the above-described production method, if necessary.
[ポリイミドフィルム、及びポリイミドフィルムの製造方法]
 本発明のポリイミドフィルムは、前述のワニスを用いて製造することが好ましい。
 本発明のポリイミドフィルムは、前述のポリイミド樹脂前駆体をイミド化して得られるものである。また、後述の一般式(3)で表される繰り返し単位、又は一般式(3)で表される繰り返し単位および下記一般式(4)で表される繰り返し単位を含み、一般式(3)で表される繰り返し単位及び一般式(4)で表される繰り返し単位の合計が、ポリイミド樹脂の全繰り返し単位に対して、70モル%以上100モル%以下であり、一般式(3)で表される繰り返し単位と下記一般式(4)で表される繰り返し単位の合計に対して、一般式(3)で表される繰り返し単位の比率が30~100モル%であるポリイミド樹脂を含むポリイミドフィルムも本発明に含まれる。
 本発明のポリイミドフィルムにおいて、一般式(3)で表される繰り返し単位及び一般式(4)で表される繰り返し単位の合計は、ポリイミドフィルムを構成するポリイミド樹脂の全繰り返し単位に対して、70モル%以上100モル%以下である。好ましくは80モル%以上100モル%以下であり、より好ましくは90モル%以上100モル%以下であり、更に好ましくは95モル%以上100モル%以下であり、より更に好ましくは99モル%以上100モル%以下である。
[Polyimide film and method for producing polyimide film]
The polyimide film of the present invention is preferably manufactured using the above-mentioned varnish.
The polyimide film of the present invention is obtained by imidizing the aforementioned polyimide resin precursor. In addition, it includes a repeating unit represented by general formula (3) described below, or a repeating unit represented by general formula (3) and a repeating unit represented by general formula (4) below, and is represented by general formula (3). The total of the repeating units represented by the general formula (4) and the repeating units represented by the general formula (4) is 70 mol% or more and 100 mol% or less based on the total repeating units of the polyimide resin, and the total of the repeating units represented by the general formula (3) is There is also a polyimide film containing a polyimide resin in which the ratio of the repeating unit represented by general formula (3) is 30 to 100 mol% with respect to the total of the repeating unit represented by the following general formula (4) and the repeating unit represented by the following general formula (4). Included in the present invention.
In the polyimide film of the present invention, the total of the repeating units represented by general formula (3) and the repeating units represented by general formula (4) is 70 It is mol% or more and 100 mol% or less. Preferably it is 80 mol% or more and 100 mol% or less, more preferably 90 mol% or more and 100 mol% or less, still more preferably 95 mol% or more and 100 mol% or less, even more preferably 99 mol% or more and 100 mol% or less. It is less than mol%.
 本発明のワニスを用いてポリイミドフィルムを製造する方法には特に制限はなく、公知の方法を用いることができる。例えば、ガラス板、金属板、プラスチックなどの平滑な支持体上に本発明のワニスを塗布、又はフィルム状に成形した後、該ワニス中に含まれる反応溶剤や希釈溶剤等の有機溶媒を加熱により除去し、ポリアミド酸フィルムを得て、該ポリアミド酸フィルム中のポリアミド酸を加熱によりイミド化(脱水閉環)し、次いで支持体から剥離することにより、ポリイミドフィルムを製造することができる。
 すなわち、本発明のポリイミドフィルムは、前述のワニスを支持体上に塗布し、加熱して得られるフィルムであることが好ましく、本発明のポリイミドフィルムの製造方法は、前述のワニスを支持体上に塗布し、加熱する方法であることが好ましい。
There are no particular limitations on the method for producing a polyimide film using the varnish of the present invention, and any known method can be used. For example, after coating the varnish of the present invention on a smooth support such as a glass plate, metal plate, or plastic, or forming it into a film, the organic solvent such as the reaction solvent or diluent contained in the varnish is removed by heating. A polyimide film can be produced by removing the polyamic acid film to obtain a polyamic acid film, imidizing the polyamic acid in the polyamic acid film by heating (dehydration ring closure), and then peeling it off from the support.
That is, the polyimide film of the present invention is preferably a film obtained by applying the above-mentioned varnish onto a support and heating it. A method of coating and heating is preferred.
 ポリイミド樹脂前駆体を含有するワニスを乾燥させてポリイミド樹脂前駆体(ポリアミド酸)フィルムを得る際の加熱温度としては、好ましくは50~150℃である。ポリイミド樹脂前駆体を加熱によりイミド化する際の加熱温度としては、好ましくは350~450℃であり、より好ましくは380~420℃である。また、加熱時間は、通常1分間~6時間であり、好ましくは5分間~2時間であり、より好ましくは15分間~1時間である。このような温度・時間とすることで、得られるポリイミドフィルムの物性が良好となる。
 加熱雰囲気は、空気ガス、窒素ガス、酸素ガス、水素ガス、窒素/水素混合ガス等が挙げられるが、得られるポリイミド樹脂の着色を抑えるためには、酸素濃度が100ppm以下の窒素ガス、水素濃度が0.5%以下含む窒素/水素混合ガスが好ましい。
 なお、イミド化の方法は熱イミド化に限定されず、化学イミド化を適用することもできる。
The heating temperature when drying a varnish containing a polyimide resin precursor to obtain a polyimide resin precursor (polyamic acid) film is preferably 50 to 150°C. The heating temperature when imidizing the polyimide resin precursor by heating is preferably 350 to 450°C, more preferably 380 to 420°C. The heating time is usually 1 minute to 6 hours, preferably 5 minutes to 2 hours, and more preferably 15 minutes to 1 hour. By using such temperature and time, the physical properties of the resulting polyimide film will be good.
Examples of the heating atmosphere include air gas, nitrogen gas, oxygen gas, hydrogen gas, nitrogen/hydrogen mixed gas, etc., but in order to suppress coloring of the obtained polyimide resin, nitrogen gas with an oxygen concentration of 100 ppm or less, hydrogen concentration A nitrogen/hydrogen mixed gas containing 0.5% or less is preferred.
Note that the imidization method is not limited to thermal imidization, and chemical imidization can also be applied.
 本発明のポリイミドフィルムの厚さは用途等に応じて適宜選択することができるが、好ましくは1μm以上であり、より好ましくは5μm以上であり、更に好ましくは7μm以上である。また、好ましくは250μm以下であり、より好ましくは100μm以下であり、更に好ましくは50μm以下であり、より更に好ましくは20μm以下である。なかでもポリイミドフィルムの厚さが、1μm以上20μm以下であることがより更に好ましい。厚さが上記範囲であることで、自立膜としての実用的な使用が可能となる。
 ポリイミドフィルムの厚さは、ワニスの固形分濃度や粘度を調整することにより、容易に制御することができる。
The thickness of the polyimide film of the present invention can be appropriately selected depending on the intended use, but is preferably 1 μm or more, more preferably 5 μm or more, and even more preferably 7 μm or more. Moreover, it is preferably 250 μm or less, more preferably 100 μm or less, even more preferably 50 μm or less, and even more preferably 20 μm or less. Among these, it is even more preferable that the thickness of the polyimide film is 1 μm or more and 20 μm or less. When the thickness is within the above range, practical use as a self-supporting film becomes possible.
The thickness of the polyimide film can be easily controlled by adjusting the solid content concentration and viscosity of the varnish.
 本発明のポリイミドフィルムの有する好適な物性値は以下の通りである。
 ガラス転移温度(Tg)は、好ましくは425℃以上であり、より好ましくは430℃以上であり、更に好ましくは440℃以上であり、より更に好ましくは445℃以上である。
 ポリイミドフィルムの厚さが10μmのときの23℃、50%RHにおける引張伸度は、好ましくは12%以上であり、より好ましくは15%以上であり、更に好ましくは17%以上であり、より更に好ましくは19%以上である。
 ポリイミドフィルムの厚さが10μmのときの全光線透過率は、好ましくは80%以上であり、より好ましくは81%以上である。
 ポリイミドフィルムの厚さが10μmのときの引張強度(JIS K7127:1999に準拠、23℃、50%RH)は、厚さ10μmのフィルムとした際に、好ましくは235MPa以上であり、より好ましくは240MPa以上であり、更に好ましくは250MPa以上であり、より更に好ましくは260MPa以上である。
 線膨張係数(CTE)は、好ましくは15ppm/℃以下であり、より好ましくは7ppm/℃以下であり、更に好ましくは5ppm/℃以下である。下限値には制限はないが、支持体やデバイスを構成する無機層の熱膨張率との差を低減する観点からは、好ましくは1ppm/℃以上であり、より好ましくは2ppm/℃以上であり、更に好ましくは3ppm/℃以上である。
 なお、本発明における上述の物性値は、具体的には実施例に記載の方法で測定することができる。
Preferred physical properties of the polyimide film of the present invention are as follows.
The glass transition temperature (Tg) is preferably 425°C or higher, more preferably 430°C or higher, still more preferably 440°C or higher, even more preferably 445°C or higher.
The tensile elongation at 23° C. and 50% RH when the thickness of the polyimide film is 10 μm is preferably 12% or more, more preferably 15% or more, still more preferably 17% or more, and even more Preferably it is 19% or more.
The total light transmittance when the thickness of the polyimide film is 10 μm is preferably 80% or more, more preferably 81% or more.
The tensile strength (according to JIS K7127:1999, 23°C, 50% RH) when the thickness of the polyimide film is 10 μm is preferably 235 MPa or more, more preferably 240 MPa. or more, more preferably 250 MPa or more, even more preferably 260 MPa or more.
The coefficient of linear expansion (CTE) is preferably 15 ppm/°C or less, more preferably 7 ppm/°C or less, and even more preferably 5 ppm/°C or less. There is no limit to the lower limit, but from the perspective of reducing the difference between the coefficient of thermal expansion and the inorganic layer constituting the support or device, it is preferably 1 ppm/°C or more, more preferably 2 ppm/°C or more. , more preferably 3 ppm/°C or more.
In addition, the above-mentioned physical property values in the present invention can be specifically measured by the method described in the Examples.
 本発明のポリイミドフィルムは、カラーフィルター、フレキシブルディスプレイ、半導体部品、光学部材等の各種部材用のフィルムとして好適に用いられる。本発明のポリイミドフィルムは、液晶ディスプレイやOLEDディスプレイ等の画像表示装置の基板として、特に好適に用いられる。 The polyimide film of the present invention is suitably used as a film for various members such as color filters, flexible displays, semiconductor parts, and optical members. The polyimide film of the present invention is particularly suitably used as a substrate for image display devices such as liquid crystal displays and OLED displays.
[ポリイミド樹脂]
 本発明のポリイミド樹脂は、下記一般式(3)で表される繰り返し単位、又は下記一般式(3)で表される繰り返し単位および下記一般式(4)で表される繰り返し単位を含み、一般式(3)で表される繰り返し単位及び一般式(4)で表される繰り返し単位の合計が、ポリイミド樹脂の全繰り返し単位に対して、70モル%以上100モル%以下であり、一般式(3)で表される繰り返し単位と下記一般式(4)で表される繰り返し単位の合計に対して、一般式(3)で表される繰り返し単位の比率が30~100モル%である。
Figure JPOXMLDOC01-appb-C000010

(式(3)および式(4)中、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基あるいはトリフルオロメチル基を表す。h、i、jは0~4の整数である。)
 また、本発明のポリイミド樹脂は、前述のポリイミドフィルムを構成するものであり、前述のポリイミドフィルムは、本発明のポリイミド樹脂を含む。
 本発明のポリイミド樹脂は、いかなる製造方法によって得てもよいが、前述のポリイミド樹脂前駆体をイミド化して製造する方法によることが好ましい。
[Polyimide resin]
The polyimide resin of the present invention contains a repeating unit represented by the following general formula (3), or a repeating unit represented by the following general formula (3) and a repeating unit represented by the following general formula (4), and has a general The total of the repeating units represented by formula (3) and the repeating units represented by general formula (4) is 70 mol% or more and 100 mol% or less with respect to all the repeating units of the polyimide resin, and the general formula ( The ratio of the repeating unit represented by general formula (3) is 30 to 100 mol% with respect to the total of the repeating unit represented by 3) and the repeating unit represented by general formula (4) below.
Figure JPOXMLDOC01-appb-C000010

(In formulas (3) and (4), R 1 , R 2 , and R 3 each independently represent a methyl group, a fluoro group, or a trifluoromethyl group. h, i, and j are integers of 0 to 4. )
Moreover, the polyimide resin of the present invention constitutes the above-mentioned polyimide film, and the above-mentioned polyimide film contains the polyimide resin of the present invention.
Although the polyimide resin of the present invention may be obtained by any production method, it is preferably produced by the method of imidizing the aforementioned polyimide resin precursor.
 本発明のポリイミド樹脂及び該ポリイミド樹脂を含むポリイミドフィルムが優れた耐熱性を有し、線膨張係数が低く、更に優れた伸度、機械強度を有する理由は定かではないが、次のように考えられる。
 芳香族ジアミンの中で、芳香環の結合基としてエステル骨格を有する特定のジアミンは剛直性が高く、特定の芳香族テトラカルボン酸二無水物由来の成分と、前記の特定のエステル骨格を有するジアミン成分からなる共重合体は、TFT基板等に必要な低線膨張係数、高耐熱性を両立できるものと考えられる。
 一方で、剛直性が高くなりすぎると伸度、機械強度が低下する傾向にある。また、ポリイミドの分子量が高いほど、伸度、機械強度は増加する傾向にある。本発明のポリイミドは、柔軟なエーテル骨格を有する特定の酸二無水物と剛直骨格の特定の酸二無水物を適切な比率で共重合し、更に、分子量を増加させるために、求核性の高い特定のエステル骨格を有する芳香族ジアミンを共重合することで、前述した低線膨張係数、高耐熱性の両立に加え、優れた伸度、機械強度を有すると考えられる。
The reason why the polyimide resin of the present invention and the polyimide film containing the polyimide resin have excellent heat resistance, low coefficient of linear expansion, and excellent elongation and mechanical strength is not clear, but it is thought as follows. It will be done.
Among aromatic diamines, certain diamines having an ester skeleton as a bonding group for an aromatic ring have high rigidity, and a component derived from a specific aromatic tetracarboxylic dianhydride and a diamine having the above-mentioned specific ester skeleton have high rigidity. It is believed that the copolymer consisting of the above components is capable of achieving both a low coefficient of linear expansion and high heat resistance required for TFT substrates and the like.
On the other hand, if the rigidity becomes too high, the elongation and mechanical strength tend to decrease. Furthermore, the higher the molecular weight of polyimide, the higher the elongation and mechanical strength tend to be. The polyimide of the present invention is produced by copolymerizing a specific acid dianhydride with a flexible ether skeleton and a specific acid dianhydride with a rigid skeleton in an appropriate ratio, and furthermore, in order to increase the molecular weight, nucleophilic By copolymerizing an aromatic diamine having a high specific ester skeleton, it is thought that in addition to achieving both the aforementioned low coefficient of linear expansion and high heat resistance, it has excellent elongation and mechanical strength.
 なお、ポリイミド樹脂における「繰り返し単位」とは、1つのテトラカルボン酸二無水物に由来する構成単位と1つのジアミンに由来する構成単位を含むイミド単位である。
 前記式(3)において、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基及びトリフルオロメチル基からなる群より選ばれる少なくとも1つであり、好ましくはメチル基である。
 前記式(3)において、h、i、jはそれぞれ独立に0~4の整数であり、好ましくは0である。
 前記式(4)において、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基及びトリフルオロメチル基からなる群より選ばれる少なくとも1つであり、好ましくはメチル基である。
 前記式(4)において、h、i、jはそれぞれ独立に0~4の整数であり、好ましくは0である。
Note that the "repeating unit" in the polyimide resin is an imide unit containing one structural unit derived from a tetracarboxylic dianhydride and one structural unit derived from a diamine.
In the formula (3), R 1 , R 2 , and R 3 are each independently at least one selected from the group consisting of a methyl group, a fluoro group, and a trifluoromethyl group, and preferably a methyl group.
In the formula (3), h, i, and j are each independently an integer of 0 to 4, preferably 0.
In the formula (4), R 1 , R 2 , and R 3 are each independently at least one selected from the group consisting of a methyl group, a fluoro group, and a trifluoromethyl group, and preferably a methyl group.
In the formula (4), h, i, and j are each independently an integer of 0 to 4, preferably 0.
 前記のとおり、ポリイミド樹脂には、前記一般式(3)で表される繰り返し単位を含み、前記一般式(4)で表される繰り返し単位を含んでもよい。
 一般式(3)で表される繰り返し単位と一般式(4)で表される繰り返し単位の合計に対する一般式(3)で表される繰り返し単位の比率は、30~100モル%であるが、透明性の観点からは、好ましくは40~100モル%であり、より好ましくは50~100モル%であり、更に好ましくは60~100モル%であり、より更に好ましくは70~100モル%であり、より更に好ましくは80~100モル%であり、より更に好ましくは90~100モル%であり、100モル%であってもよい。また、耐熱性と強度の観点からは、好ましくは30~90モル%であり、より好ましくは30~80モル%であり、更に好ましくは30~70モル%であり、より更に好ましくは30~60モル%であり、より更に好ましくは30~50モル%である。
As described above, the polyimide resin includes a repeating unit represented by the general formula (3), and may also contain a repeating unit represented by the general formula (4).
The ratio of the repeating unit represented by general formula (3) to the total of the repeating unit represented by general formula (3) and the repeating unit represented by general formula (4) is 30 to 100 mol%, From the viewpoint of transparency, it is preferably 40 to 100 mol%, more preferably 50 to 100 mol%, even more preferably 60 to 100 mol%, even more preferably 70 to 100 mol%. , even more preferably 80 to 100 mol%, even more preferably 90 to 100 mol%, and may be 100 mol%. In addition, from the viewpoint of heat resistance and strength, the content is preferably 30 to 90 mol%, more preferably 30 to 80 mol%, even more preferably 30 to 70 mol%, even more preferably 30 to 60 mol%. It is mol%, more preferably 30 to 50 mol%.
 耐熱性、線膨張係数、伸度、機械強度の観点から、一般式(3)で表される繰り返し単位及び一般式(4)で表される繰り返し単位の合計は、前記ポリイミド樹脂の全繰り返し単位に対して、70モル%以上100モル%以下である。好ましくは80モル%以上100モル%以下であり、より好ましくは90モル%以上100モル%以下であり、更に好ましくは95モル%以上100モル%以下であり、より更に好ましくは99モル%以上100モル%以下である。 From the viewpoint of heat resistance, linear expansion coefficient, elongation, and mechanical strength, the total of the repeating units represented by general formula (3) and the repeating units represented by general formula (4) is the total repeating unit of the polyimide resin. 70 mol% or more and 100 mol% or less. Preferably it is 80 mol% or more and 100 mol% or less, more preferably 90 mol% or more and 100 mol% or less, still more preferably 95 mol% or more and 100 mol% or less, even more preferably 99 mol% or more and 100 mol% or less. It is less than mol%.
 一般式(3)で表される繰り返し単位は、前記ポリイミド樹脂の全繰り返し単位に対して、透明性の観点からは、好ましくは40モル%以上であり、より好ましくは50モル%以上であり、更に好ましくは60モル%以上であり、より更に好ましくは70モル%以上であり、より更に好ましくは80モル%以上であり、より更に好ましくは90モル%以上である。上限は100モル%以下である。 From the viewpoint of transparency, the repeating unit represented by general formula (3) is preferably 40 mol% or more, more preferably 50 mol% or more, based on all the repeating units of the polyimide resin, More preferably, it is 60 mol% or more, even more preferably 70 mol% or more, even more preferably 80 mol% or more, and even more preferably 90 mol% or more. The upper limit is 100 mol% or less.
 ポリイミド樹脂には、本発明の効果を損なわない範囲で、一般式(3)で表される繰り返し単位又は一般式(4)で表される繰り返し単位以外の繰り返し単位を含んでいてもよい。
 一般式(3)で表される繰り返し単位又は一般式(4)で表される繰り返し単位以外の繰り返し単位の含有量は、前記ポリイミド樹脂の全繰り返し単位に対して、好ましくは30モル%以下であり、より好ましくは20モル%以下であり、更に好ましくは10モル%以下であり、より更に好ましくは5モル%以下であり、より更に好ましくは1モル%以下であり、より更に好ましくは0モル%であり、含まないことがより更に好ましい。
The polyimide resin may contain repeating units other than the repeating unit represented by the general formula (3) or the repeating unit represented by the general formula (4) within a range that does not impair the effects of the present invention.
The content of repeating units other than the repeating units represented by the general formula (3) or the repeating units represented by the general formula (4) is preferably 30 mol% or less based on the total repeating units of the polyimide resin. Yes, more preferably 20 mol% or less, still more preferably 10 mol% or less, even more preferably 5 mol% or less, even more preferably 1 mol% or less, even more preferably 0 mol%. %, and it is even more preferable that it not be included.
<ポリイミド樹脂の各構成単位>
 前記ポリイミド樹脂は、一般式(3)で表される繰り返し単位を含み、更に一般式(4)で表される繰り返し単位を含んでいてもよい。該ポリイミド樹脂を構成する構成単位は、前記<ポリイミド樹脂前駆体の各構成単位>の項で説明したものと同様である。
 すなわち、ポリイミド樹脂は、テトラカルボン酸二無水物に由来する構成単位AI及びジアミンに由来する構成単位BIを有する。
 なお、ポリイミド樹脂においては、構成単位AI及び構成単位BIはイミド構造を形成している。
 本発明のポリイミド樹脂は、前記一般式(3)で表される繰り返し単位を含むことから、構成単位AIが、下記式(a1)で表される化合物に由来する構成単位(AI1)を含み、構成単位BIが、下記式(b1)で表される化合物に由来する構成単位(BI1)を含む。
Figure JPOXMLDOC01-appb-C000011

(式(b1)中、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基あるいはトリフルオロメチル基を表す。h、i、jは0~4の整数である。)
<Each structural unit of polyimide resin>
The polyimide resin contains a repeating unit represented by general formula (3), and may further contain a repeating unit represented by general formula (4). The structural units constituting the polyimide resin are the same as those explained in the section <Each structural unit of the polyimide resin precursor> above.
That is, the polyimide resin has a structural unit AI derived from a tetracarboxylic dianhydride and a structural unit BI derived from a diamine.
Note that in the polyimide resin, the structural unit AI and the structural unit BI form an imide structure.
Since the polyimide resin of the present invention contains a repeating unit represented by the general formula (3), the structural unit AI includes a structural unit (AI1) derived from a compound represented by the following formula (a1), The structural unit BI includes a structural unit (BI1) derived from a compound represented by the following formula (b1).
Figure JPOXMLDOC01-appb-C000011

(In formula (b1), R 1 , R 2 , and R 3 each independently represent a methyl group, a fluoro group, or a trifluoromethyl group. h, i, and j are integers from 0 to 4.)
 更に本発明のポリイミド樹脂は、前記一般式(3)で表される繰り返し単位および前記一般式(4)で表される繰り返し単位を含んでいてもよいことから、構成単位AIが、前記式(a1)で表される化合物に由来する構成単位(AI1)を含み、更に下記式(a2)で表される化合物に由来する構成単位(AI2)を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000012
Furthermore, since the polyimide resin of the present invention may contain a repeating unit represented by the above general formula (3) and a repeating unit represented by the above general formula (4), the structural unit AI may be represented by the above formula ( It contains a structural unit (AI1) derived from the compound represented by a1), and may further contain a structural unit (AI2) derived from the compound represented by the following formula (a2).
Figure JPOXMLDOC01-appb-C000012
(構成単位AI)
 構成単位AIは、テトラカルボン酸二無水物に由来する構成単位であり、少なくとも前記式(a1)で表される化合物に由来する構成単位(AI1)を含む。更に前記式(a1)で表される化合物に由来する構成単位(AI1)および前記式(a2)で表される化合物に由来する構成単位(AI2)の両方を含んでいてもよい。
 式(a1)で表される化合物は、4,4’-オキシジフタル酸無水物(ODPA)である。式(a1)で表される化合物に由来する構成単位(AI1)をポリイミド樹脂の構成単位とすることによって、ポリイミド樹脂は耐熱性と強度に優れ、更に透明性にも優れる。
 式(a2)で表される化合物は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)である。式(a2)で表される化合物に由来する構成単位(AI2)をポリイミド樹脂の構成単位とすることによって、耐熱性と強度をより高めることができる。
(Component unit AI)
The structural unit AI is a structural unit derived from tetracarboxylic dianhydride, and includes at least a structural unit (AI1) derived from the compound represented by the formula (a1). Furthermore, it may contain both a structural unit (AI1) derived from the compound represented by the formula (a1) and a structural unit (AI2) derived from the compound represented by the formula (a2).
The compound represented by formula (a1) is 4,4'-oxydiphthalic anhydride (ODPA). By using the structural unit (AI1) derived from the compound represented by formula (a1) as the structural unit of the polyimide resin, the polyimide resin has excellent heat resistance and strength, and also excellent transparency.
The compound represented by formula (a2) is 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA). By using the structural unit (AI2) derived from the compound represented by formula (a2) as a structural unit of the polyimide resin, heat resistance and strength can be further improved.
 構成単位AI中の構成単位(AI1)と構成単位(AI2)の合計の比率は、好ましくは70モル%以上100モル%以下である。より好ましくは80モル%以上100モル%以下であり、更に好ましくは90モル%以上100モル%以下であり、より更に好ましくは95モル%以上100モル%以下であり、より更に好ましくは99モル%以上100モル%以下である。 The total ratio of the structural unit (AI1) and the structural unit (AI2) in the structural unit AI is preferably 70 mol% or more and 100 mol% or less. More preferably 80 mol% or more and 100 mol% or less, still more preferably 90 mol% or more and 100 mol% or less, even more preferably 95 mol% or more and 100 mol% or less, even more preferably 99 mol%. The content is 100 mol% or less.
 構成単位(AI1)と構成単位(AI2)の合計に対する構成単位(AI1)の比率は、好ましくは30~100モル%であり、透明性の観点からは、より好ましくは40~100モル%であり、更に好ましくは50~100モル%であり、より更に好ましくは60~100モル%であり、より更に好ましくは70~100モル%であり、より更に好ましくは80~100モル%であり、より更に好ましくは90~100モル%であり、100モル%であってもよい。また、耐熱性と強度の観点からは、より好ましくは30~90モル%であり、更に好ましくは30~80モル%であり、より更に好ましくは30~70モル%であり、より更に好ましくは30~60モル%であり、より更に好ましくは30~50モル%である。 The ratio of the structural unit (AI1) to the total of the structural unit (AI1) and the structural unit (AI2) is preferably 30 to 100 mol%, and from the viewpoint of transparency, more preferably 40 to 100 mol%. , still more preferably 50 to 100 mol%, even more preferably 60 to 100 mol%, even more preferably 70 to 100 mol%, even more preferably 80 to 100 mol%, even more preferably It is preferably 90 to 100 mol%, and may be 100 mol%. In addition, from the viewpoint of heat resistance and strength, the content is more preferably 30 to 90 mol%, still more preferably 30 to 80 mol%, even more preferably 30 to 70 mol%, and even more preferably 30 to 80 mol%. It is 60 mol%, more preferably 30 to 50 mol%.
 構成単位AI中の構成単位(AI1)の比率は、透明性の観点からは、好ましくは40モル%以上であり、より好ましくは50モル%以上であり、更に好ましくは60モル%以上であり、より更に好ましくは70モル%以上であり、より更に好ましくは80モル%以上であり、より更に好ましくは90モル%以上である。上限は100モル%以下である。 From the viewpoint of transparency, the ratio of the structural unit (AI1) in the structural unit AI is preferably 40 mol% or more, more preferably 50 mol% or more, and still more preferably 60 mol% or more, Even more preferably it is 70 mol% or more, even more preferably 80 mol% or more, even more preferably 90 mol% or more. The upper limit is 100 mol% or less.
 構成単位AIは、構成単位(AI1)又は構成単位(AI2)以外の構成単位を含んでもよい。そのような構成単位としては、特に限定されないが、構成単位(AI1)又は構成単位(AI2)以外の芳香族テトラカルボン酸二無水物に由来する構成単位、脂環式テトラカルボン酸二無水物に由来する構成単位、及び脂肪族テトラカルボン酸二無水物に由来する構成単位が挙げられる。 The structural unit AI may include structural units other than the structural unit (AI1) or the structural unit (AI2). Such structural units include, but are not particularly limited to, structural units derived from aromatic tetracarboxylic dianhydrides other than the structural unit (AI1) or structural unit (AI2), and structural units derived from alicyclic tetracarboxylic dianhydrides. and structural units derived from aliphatic tetracarboxylic dianhydride.
 構成単位(AI1)又は構成単位(AI2)以外の芳香族テトラカルボン酸二無水物に由来する構成単位を与える芳香族テトラカルボン酸二無水物としては、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、ピロメリット酸二無水物、3,3’,4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物等が挙げられる。
 脂環式テトラカルボン酸二無水物に由来する構成単位を与える脂環式テトラカルボン酸二無水物としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、ジシクロヘキシルテトラカルボン酸二無水物等が挙げられる。
 脂肪族テトラカルボン酸二無水物に由来する構成単位を与える脂肪族テトラカルボン酸二無水物としては、1,2,3,4-ブタンテトラカルボン酸二無水物等が挙げられる。
 構成単位AIに任意に含まれる構成単位は、1種でもよいし、2種以上であってもよい。
 なお、本明細書において、芳香族テトラカルボン酸二無水物とは芳香環を1つ以上含むテトラカルボン酸二無水物を意味し、脂環式テトラカルボン酸二無水物とは脂環を1つ以上含み、かつ芳香環を含まないテトラカルボン酸二無水物を意味し、脂肪族テトラカルボン酸二無水物とは芳香環も脂環も含まないテトラカルボン酸二無水物を意味する。
The aromatic tetracarboxylic dianhydride that provides a structural unit derived from an aromatic tetracarboxylic dianhydride other than the structural unit (AI1) or the structural unit (AI2) is 9,9-bis(3,4-dianhydride). carboxyphenyl)fluorene dianhydride (BPAF), pyromellitic dianhydride, 3,3',4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 3,3',4,4'- Examples include diphenylsulfonetetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, and the like.
Examples of the alicyclic tetracarboxylic dianhydride that provides a structural unit derived from alicyclic tetracarboxylic dianhydride include 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3, Examples include 4-cyclobutanetetracarboxylic dianhydride and dicyclohexyltetracarboxylic dianhydride.
Examples of the aliphatic tetracarboxylic dianhydride that provides structural units derived from aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride and the like.
The number of structural units arbitrarily included in the structural unit AI may be one, or two or more types.
In addition, in this specification, aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings, and alicyclic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more alicyclic rings. The term "aliphatic tetracarboxylic dianhydride" refers to a tetracarboxylic dianhydride containing the above and not containing an aromatic ring, and the term "aliphatic tetracarboxylic dianhydride" refers to a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
(構成単位BI)
 構成単位BIは、ジアミンに由来する構成単位であり、下記式(b1)で表される化合物に由来する構成単位(BI1)を含む。
Figure JPOXMLDOC01-appb-C000013

(式(b1)中、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基あるいはトリフルオロメチル基を表す。h、i、jは0~4の整数である。)
(Component unit BI)
The structural unit BI is a structural unit derived from a diamine, and includes a structural unit (BI1) derived from a compound represented by the following formula (b1).
Figure JPOXMLDOC01-appb-C000013

(In formula (b1), R 1 , R 2 , and R 3 each independently represent a methyl group, a fluoro group, or a trifluoromethyl group. h, i, and j are integers from 0 to 4.)
 構成単位BIに構成単位(BI1)を含むことで、ポリイミド樹脂を耐熱性と強度に優れるものとすることができる。
 前記式(b1)において、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基及びトリフルオロメチル基からなる群より選ばれる少なくとも1つであり、好ましくはメチル基である。
 前記式(b1)において、h、i、jはそれぞれ独立に0~4の整数であり、好ましくは0である。
 構成単位BI中の構成単位(BI1)の比率は、好ましくは70モル%以上であり、より好ましくは80モル%以上であり、更に好ましくは90モル%以上であり、より更に好ましくは95モル%以上であり、より更に好ましくは99モル%以上である。その比率の上限値は特に限定されず、100モル%以下である。
By including the structural unit (BI1) in the structural unit BI, the polyimide resin can have excellent heat resistance and strength.
In the formula (b1), R 1 , R 2 , and R 3 are each independently at least one selected from the group consisting of a methyl group, a fluoro group, and a trifluoromethyl group, and preferably a methyl group.
In the formula (b1), h, i, and j are each independently an integer of 0 to 4, preferably 0.
The ratio of the structural unit (BI1) in the structural unit BI is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, even more preferably 95 mol%. or more, and even more preferably 99 mol% or more. The upper limit of the ratio is not particularly limited and is 100 mol% or less.
 前記式(b1)で表される化合物のなかでも、下記式(b11)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000014
Among the compounds represented by the formula (b1), a compound represented by the following formula (b11) is preferred.
Figure JPOXMLDOC01-appb-C000014
 式(b11)で表される化合物は、ビス(4-アミノフェニル)テレフタレート(APTP)である。構成単位Bは好ましくは式(b11)で表される化合物に由来する構成単位(BI11)を含む。
 式(b11)で表される化合物に由来する構成単位(BI11)をポリイミド樹脂の構成単位とすることによって、耐熱性と強度に優れるポリイミド樹脂とすることができる。
The compound represented by formula (b11) is bis(4-aminophenyl) terephthalate (APTP). Structural unit B preferably includes a structural unit (BI11) derived from a compound represented by formula (b11).
By using the structural unit (BI11) derived from the compound represented by formula (b11) as a structural unit of the polyimide resin, a polyimide resin having excellent heat resistance and strength can be obtained.
 構成単位BIは、構成単位(BI1)以外の構成単位を含んでもよい。そのような構成単位としては、特に限定されないが、構成単位(BI1)以外の芳香族ジアミンに由来する構成単位、脂環式ジアミンに由来する構成単位、及び脂肪族ジアミンに由来する構成単位が挙げられる。
 構成単位(BI1)以外の芳香族ジアミンに由来する構成単位を与える芳香族ジアミンとしては、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、3,5-ジアミノ安息香酸(3,5-DABA)、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、4-アミノフェニル-4-アミノベンゾエート(4-BAAB)、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,2’-ジメチルビフェニル-4,4’-ジアミン、2,2’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノジフェニルメタン、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノベンズアニリド、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、及び1,4-ビス(4-アミノフェノキシ)ベンゼン等が挙げられる。
 脂環式ジアミンに由来する構成単位を与える脂環式ジアミンとしては、1,3-ビス(アミノメチル)シクロヘキサン、及び1,4-ビス(アミノメチル)シクロヘキサン等が挙げられる。
 脂環式ジアミンに由来する構成単位を与える脂環式ジアミンとしては、エチレンジアミン及びヘキサメチレンジアミン等が挙げられる。
The structural unit BI may include structural units other than the structural unit (BI1). Such structural units include, but are not particularly limited to, structural units derived from aromatic diamines other than the structural unit (BI1), structural units derived from alicyclic diamines, and structural units derived from aliphatic diamines. It will be done.
Examples of aromatic diamines that provide structural units derived from aromatic diamines other than the structural unit (BI1) include 2,2'-bis(trifluoromethyl)benzidine (TFMB), 3,5-diaminobenzoic acid (3,5 -DABA), 9,9-bis(4-aminophenyl)fluorene (BAFL), 4-aminophenyl-4-aminobenzoate (4-BAAB), p-xylylenediamine, 1,5-diaminonaphthalene, 2, 2'-dimethylbiphenyl-4,4'-diamine, 2,2'-dimethylbiphenyl-4,4'-diamine, 4,4'-diaminodiphenylmethane, 1,4-bis[2-(4-aminophenyl) -2-propyl]benzene, 2,2-bis(4-aminophenyl)hexafluoropropane, 4,4'-diaminobenzanilide, 1-(4-aminophenyl)-2,3-dihydro-1,3, 3-trimethyl-1H-inden-5-amine, α,α'-bis(4-aminophenyl)-1,4-diisopropylbenzene, N,N'-bis(4-aminophenyl)terephthalamide, 2,2 -bis(3-amino-4-hydroxyphenyl)hexafluoropropane, and 1,4-bis(4-aminophenoxy)benzene.
Examples of the alicyclic diamine that provides a structural unit derived from an alicyclic diamine include 1,3-bis(aminomethyl)cyclohexane and 1,4-bis(aminomethyl)cyclohexane.
Examples of the alicyclic diamine that provides a structural unit derived from an alicyclic diamine include ethylene diamine and hexamethylene diamine.
 なお、本明細書において、芳香族ジアミンとは芳香環を1つ以上含むジアミンを意味し、脂環式ジアミンとは脂環を1つ以上含み、かつ芳香環を含まないジアミンを意味し、脂肪族ジアミンとは芳香環も脂環も含まないジアミンを意味する。
 構成単位BIに任意に含まれる構成単位は、1種でもよいし、2種以上であってもよい。
In addition, in this specification, aromatic diamine means a diamine containing one or more aromatic rings, alicyclic diamine means a diamine containing one or more alicyclic rings and no aromatic ring, Group diamine means a diamine containing neither aromatic ring nor alicyclic ring.
The number of structural units optionally included in the structural unit BI may be one, or two or more.
 本発明のポリイミド樹脂は、本発明を損なわない範囲でポリイミド鎖(構成単位AIと構成単位BIとがイミド結合してなる構造)以外の構造を含んでもよい。ポリイミド樹脂中に含まれうるポリイミド鎖以外の構造としては、例えばアミド結合を含む構造等が挙げられる。
 本発明のポリイミド樹脂は、ポリイミド鎖(構成単位AIと構成単位BIとがイミド結合してなる構造)を主たる構造として含むことが好ましい。したがって、本発明のポリイミド樹脂中に占めるポリイミド鎖の比率は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは99質量%以上であり、より更に好ましくは100質量%である。
The polyimide resin of the present invention may contain a structure other than a polyimide chain (a structure formed by an imide bond between a structural unit AI and a structural unit BI) as long as the present invention is not impaired. Structures other than polyimide chains that may be included in the polyimide resin include, for example, structures containing amide bonds.
The polyimide resin of the present invention preferably contains a polyimide chain (a structure formed by imide bonding of a structural unit AI and a structural unit BI) as a main structure. Therefore, the proportion of polyimide chains in the polyimide resin of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 99% by mass or more, even more preferably 100% by mass or more. Mass%.
 本発明のポリイミド樹脂の有する好適な物性値は以下の通りである。
 ガラス転移温度(Tg)は、好ましくは425℃以上であり、より好ましくは430℃以上であり、更に好ましくは440℃以上であり、より更に好ましくは445℃以上である。
 厚さ10μmのフィルムとしたときの23℃、50%RHにおける引張伸度は、好ましくは12%以上であり、より好ましくは15%以上であり、更に好ましくは17%以上であり、より更に好ましくは19%以上である。
 厚さ10μmのフィルムとしたときの全光線透過率は、好ましくは80%以上であり、より好ましくは81%以上である。
 厚さ10μmのフィルムとしたときの引張強度(JIS K7127:1999に準拠、23℃、50%RH)は、厚さ10μmのフィルムとした際に、好ましくは235MPa以上であり、より好ましくは240MPa以上であり、更に好ましくは250MPa以上であり、より更に好ましくは260MPa以上である。
 線膨張係数(CTE)は、好ましくは15ppm/℃以下であり、より好ましくは7ppm/℃以下であり、更に好ましくは5ppm/℃以下である。下限値には制限はないが、支持体やデバイスを構成する無機層の熱膨張率との差を低減する観点からは、好ましくは1ppm/℃以上であり、より好ましくは2ppm/℃以上であり、更に好ましくは3ppm/℃以上である。
 なお、本発明における上述の物性値は、具体的には実施例に記載の方法で測定することができる。
Preferred physical properties of the polyimide resin of the present invention are as follows.
The glass transition temperature (Tg) is preferably 425°C or higher, more preferably 430°C or higher, still more preferably 440°C or higher, even more preferably 445°C or higher.
The tensile elongation at 23° C. and 50% RH when the film has a thickness of 10 μm is preferably 12% or more, more preferably 15% or more, still more preferably 17% or more, and even more preferably is 19% or more.
The total light transmittance of a film having a thickness of 10 μm is preferably 80% or more, more preferably 81% or more.
The tensile strength (according to JIS K7127:1999, 23°C, 50% RH) when made into a 10 μm thick film is preferably 235 MPa or more, more preferably 240 MPa or more. It is more preferably 250 MPa or more, even more preferably 260 MPa or more.
The coefficient of linear expansion (CTE) is preferably 15 ppm/°C or less, more preferably 7 ppm/°C or less, and even more preferably 5 ppm/°C or less. There is no limit to the lower limit, but from the perspective of reducing the difference between the coefficient of thermal expansion and the inorganic layer constituting the support or device, it is preferably 1 ppm/°C or more, more preferably 2 ppm/°C or more. , more preferably 3 ppm/°C or more.
In addition, the above-mentioned physical property values in the present invention can be specifically measured by the method described in the Examples.
 以下に、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例により何ら制限されるものではない。 The present invention will be specifically explained below with reference to Examples. However, the present invention is not limited in any way by these Examples.
<フィルム物性及び評価>
 実施例及び比較例で得たフィルムの各物性は以下に示す方法によって測定した。
(1)フィルム厚さ
 フィルム厚さは、株式会社シチズンファインデバイス製のデジタルゲージSA-S110/03Nを用いて測定した。
(2)全光線透過率
 実施例及び比較例のポリイミドフィルムの全光線透過率は、JIS K7361-1(D光源、65°)に準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH7700」を用いて測定した。
(3)ガラス転移温度(Tg)
 株式会社日立ハイテクサイエンス製の熱機械的分析装置「TMA 7100C」を用いて、試料サイズ4mm×20mm、引張モードで、荷重50mN、昇温速度10℃/分の条件で、40℃から500℃まで昇温してTMA測定を行い、伸びの変曲点が見られたところを外挿によりガラス転移温度(Tg)とした。ガラス転移温度(Tg)の値が大きいものほど、耐熱性に優れる。
(4)線膨張係数(CTE)
 株式会社日立ハイテクサイエンス製の熱機械的分析装置「TMA 7100C」を用いて、試料サイズ4mm×20mm、引張モードで、荷重50mN、昇温速度10℃/分の条件で、40℃から500℃まで昇温してTMA測定を行い、100~200℃のCTEを求め、下記の基準で評価した。また、支持基材(無アルカリガラス、AN100)の熱膨張係数(50~350℃の熱膨張係数:3.8ppm/℃)との差も表1に示した。支持基材の熱膨張係数との差が小さい方が接合面における剥離が生じにくいため、良好である。
(評価基準)
  A:7ppm/℃未満
  B:7ppm/℃以上15ppm/℃未満
  C:15ppm/℃以上
(5)引張強度、引張弾性率、引張伸度
 引張強度及び引張弾性率、引張伸度は、JIS K7127:1999に準拠し、東洋精機株式会社製の引張試験機「ストログラフVG-1E」を用いて測定した(測定環境:23℃、50%RH)。チャック間距離は50mm、試験片サイズは10mm×70mm、試験速度は20mm/minとした。引張強度の値が大きいものほど、機械強度に優れる。
<Film physical properties and evaluation>
Each physical property of the films obtained in Examples and Comparative Examples was measured by the method shown below.
(1) Film Thickness The film thickness was measured using a digital gauge SA-S110/03N manufactured by Citizen Fine Device Co., Ltd.
(2) Total light transmittance The total light transmittance of the polyimide films of Examples and Comparative Examples is based on JIS K7361-1 (D light source, 65°), and is based on the color and turbidity simultaneous test manufactured by Nippon Denshoku Industries Co., Ltd. Measurement was performed using a measuring device "COH7700".
(3) Glass transition temperature (Tg)
Using a thermomechanical analyzer "TMA 7100C" manufactured by Hitachi High-Tech Science Co., Ltd., sample size 4 mm x 20 mm, tensile mode, load 50 mN, temperature increase rate 10 ° C / min from 40 ° C to 500 ° C The temperature was raised and TMA measurement was performed, and the point where the inflection point of elongation was observed was determined as the glass transition temperature (Tg) by extrapolation. The larger the value of the glass transition temperature (Tg), the better the heat resistance.
(4) Coefficient of linear expansion (CTE)
Using a thermomechanical analyzer "TMA 7100C" manufactured by Hitachi High-Tech Science Co., Ltd., sample size 4 mm x 20 mm, tensile mode, load 50 mN, temperature increase rate 10 ° C / min from 40 ° C to 500 ° C The temperature was raised and TMA measurement was performed to determine the CTE between 100 and 200°C, and the evaluation was made according to the following criteria. Table 1 also shows the difference from the thermal expansion coefficient (thermal expansion coefficient from 50 to 350°C: 3.8 ppm/°C) of the supporting base material (alkali-free glass, AN100). A smaller difference from the coefficient of thermal expansion of the supporting base material is better because peeling at the joint surface is less likely to occur.
(Evaluation criteria)
A: Less than 7 ppm/°C B: 7 ppm/°C or more and less than 15 ppm/°C C: 15 ppm/°C or more (5) Tensile strength, tensile modulus, and tensile elongation The tensile strength, tensile modulus, and tensile elongation are as per JIS K7127: 1999, using a tensile tester "Strograph VG-1E" manufactured by Toyo Seiki Co., Ltd. (measurement environment: 23° C., 50% RH). The distance between chucks was 50 mm, the test piece size was 10 mm x 70 mm, and the test speed was 20 mm/min. The larger the tensile strength value, the better the mechanical strength.
 実施例及び比較例にて使用したテトラカルボン酸成分及びジアミン成分、並びにその略号等は下記の通りである。
<テトラカルボン酸成分>
ODPA:4,4’-オキシジフタル酸無水物(マナック株式会社製;式(a1)で表される化合物)
s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(三菱ケミカル株式会社製、式(a2)で表される化合物)
<ジアミン成分>
APTP:ビス(4-アミノフェニル)テレフタレート(東京化成工業株式会社製;式(b11)で表される化合物)
ABHQ:[4-(4-アミノベンゾイル)オキシフェニル]4-アミノベンゾエート(ChinaTech Chemical (Tianjin) Co., Ltd.製、下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000015

4-BAAB:4-アミノフェニル-4-アミノベンゾエート(日本純良薬品株式会社製;下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000016

PPD:p-フェニレンジアミン(東京化成工業株式会社製)
The tetracarboxylic acid component and diamine component used in Examples and Comparative Examples, and their abbreviations are as follows.
<Tetracarboxylic acid component>
ODPA: 4,4'-oxydiphthalic anhydride (manufactured by Manac Co., Ltd.; compound represented by formula (a1))
s-BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride (manufactured by Mitsubishi Chemical Corporation, compound represented by formula (a2))
<Diamine component>
APTP: bis(4-aminophenyl) terephthalate (manufactured by Tokyo Chemical Industry Co., Ltd.; compound represented by formula (b11))
ABHQ: [4-(4-aminobenzoyl)oxyphenyl]4-aminobenzoate (manufactured by ChinaTech Chemical (Tianjin) Co., Ltd., compound represented by the following formula)
Figure JPOXMLDOC01-appb-C000015

4-BAAB: 4-aminophenyl-4-aminobenzoate (manufactured by Nihon Junryo Pharmaceutical Co., Ltd.; compound represented by the following formula)
Figure JPOXMLDOC01-appb-C000016

PPD: p-phenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
 実施例及び比較例において使用した、溶媒(溶剤)の略号等は下記の通りである。
NMP:N-メチル-2-ピロリドン(東京純薬工業株式会社製)
The abbreviations of solvents used in Examples and Comparative Examples are as follows.
NMP: N-methyl-2-pyrrolidone (manufactured by Tokyo Pure Chemical Industries, Ltd.)
実施例1
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた300mLの5つ口丸底フラスコに、APTPを6.967g(0.020モル)、NMPを59.710g投入し、系内温度50℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、ODPAを6.204g(0.020モル)と、NMPを14.928gとを一括で投入し、マントルヒーターで50℃に保持したまま5時間撹拌した。
 その後、NMPを43.905g添加し、更に1時間撹拌して均一化して、固形分濃度10質量%のポリアミド酸ワニスを得た。
 続いて支持基材(無アルカリガラス、AN100、AGC株式会社製)上へ、得られたポリアミド酸ワニスを塗布し、ホットプレートで80℃、20分間保持し、その後、熱風乾燥機中で窒素雰囲気下、昇温速度5℃/minで400℃まで昇温し、400℃で60分加熱し、溶媒を蒸発させ、熱イミド化させ、ポリイミドフィルムを得た。フィルムの評価結果を表1に示す。
Example 1
6.967 g (0.020 mol) of APTP was placed in a 300 mL 5-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap. , 59.710 g of NMP was added, and the system was stirred at a rotational speed of 200 rpm under a nitrogen atmosphere at a system temperature of 50° C. to obtain a solution.
To this solution, 6.204 g (0.020 mol) of ODPA and 14.928 g of NMP were added all at once, and the mixture was stirred for 5 hours while being maintained at 50° C. using a mantle heater.
Thereafter, 43.905 g of NMP was added, and the mixture was further stirred for 1 hour for homogenization to obtain a polyamic acid varnish with a solid content concentration of 10% by mass.
Subsequently, the obtained polyamic acid varnish was applied onto a supporting base material (alkali-free glass, AN100, manufactured by AGC Corporation), kept at 80°C for 20 minutes on a hot plate, and then dried in a nitrogen atmosphere in a hot air dryer. Below, the temperature was raised to 400° C. at a heating rate of 5° C./min, and heated at 400° C. for 60 minutes to evaporate the solvent and thermal imidization to obtain a polyimide film. Table 1 shows the evaluation results of the film.
実施例2
 ODPAの量を6.204g(0.020モル)から4.963g(0.016モル)に変更し、s-BPDAを1.177g(0.004モル)追加した以外は、実施例1と同様の方法により、固形分濃度10質量%のポリアミド酸ワニスを得た。
 得られたポリアミド酸ワニスを用いて、実施例1と同様の方法によりフィルムを得た。フィルムの評価結果を表1に示す。
Example 2
Same as Example 1 except that the amount of ODPA was changed from 6.204 g (0.020 mol) to 4.963 g (0.016 mol) and 1.177 g (0.004 mol) of s-BPDA was added. A polyamic acid varnish having a solid content concentration of 10% by mass was obtained by the method described above.
A film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
実施例3
 ODPAの量を6.204g(0.020モル)から3.102g(0.010モル)に変更し、s-BPDAを2.942g(0.010モル)追加した以外は、実施例1と同様の方法により、固形分濃度10質量%のポリアミド酸ワニスを得た。
 得られたポリアミド酸ワニスを用いて、実施例1と同様の方法によりフィルムを得た。フィルムの評価結果を表1に示す。
Example 3
Same as Example 1 except that the amount of ODPA was changed from 6.204 g (0.020 mol) to 3.102 g (0.010 mol) and 2.942 g (0.010 mol) of s-BPDA was added. A polyamic acid varnish having a solid content concentration of 10% by mass was obtained by the method described above.
A film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
比較例1
 ODPAの量を6.204g(0.020モル)から1.241g(0.004モル)に変更し、s-BPDAを4.708g(0.016モル)追加した以外は、実施例1と同様の方法により、固形分濃度10質量%のポリアミド酸ワニスを得た。
 得られたポリアミド酸ワニスを用いて、実施例1と同様の方法によりフィルムを得た。フィルムの評価結果を表1に示す。
Comparative example 1
Same as Example 1 except that the amount of ODPA was changed from 6.204 g (0.020 mol) to 1.241 g (0.004 mol) and 4.708 g (0.016 mol) of s-BPDA was added. A polyamic acid varnish having a solid content concentration of 10% by mass was obtained by the method described above.
A film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
比較例2
 ODPA 6.204g(0.020モル)をs-BPDA 5.884g(0.020モル)に変更した以外は、実施例1と同様の方法により、固形分濃度10質量%のポリアミド酸ワニスを得た。
 得られたポリアミド酸ワニスを用いて、実施例1と同様の方法によりフィルムを得た。フィルムの評価結果を表1に示す。
Comparative example 2
A polyamic acid varnish with a solid content concentration of 10% by mass was obtained in the same manner as in Example 1, except that 6.204 g (0.020 mol) of ODPA was changed to 5.884 g (0.020 mol) of s-BPDA. Ta.
A film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
比較例3
 APTP 6.967g(0.020モル)をABHQ 6.967g(0.020モル)に変更した以外は、実施例1と同様の方法により、固形分濃度10質量%のポリアミド酸ワニスを得た。
 得られたポリアミド酸ワニスを用いて、実施例1と同様の方法によりフィルムを得た。フィルムの評価結果を表1に示す。
Comparative example 3
A polyamic acid varnish with a solid content concentration of 10% by mass was obtained in the same manner as in Example 1, except that 6.967 g (0.020 mol) of APTP was changed to 6.967 g (0.020 mol) of ABHQ.
A film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
比較例4
 APTP 6.967g(0.020モル)を4-BAAB 4.567g(0.020モル)に変更した以外は、実施例1と同様の方法により、固形分濃度10質量%のポリアミド酸ワニスを得た。
 得られたポリアミド酸ワニスを用いて、実施例1と同様の方法によりフィルムを得た。フィルムの評価結果を表1に示す。
Comparative example 4
A polyamic acid varnish with a solid content concentration of 10% by mass was obtained in the same manner as in Example 1, except that 6.967 g (0.020 mol) of APTP was changed to 4.567 g (0.020 mol) of 4-BAAB. Ta.
A film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
比較例5
 APTP 6.967g(0.020モル)をAPTP 4.668g(0.0134モル)、PPD 0.714g(0.0066モル)に変更した以外は、実施例3と同様の方法により、固形分濃度10質量%のポリアミド酸ワニスを得た。
 得られたポリアミド酸ワニスを用いて、実施例1と同様の方法によりフィルムを得た。フィルムの評価結果を表1に示す。
Comparative example 5
The solid content concentration was determined in the same manner as in Example 3, except that 6.967 g (0.020 mol) of APTP was changed to 4.668 g (0.0134 mol) of APTP and 0.714 g (0.0066 mol) of PPD. A 10% by mass polyamic acid varnish was obtained.
A film was obtained in the same manner as in Example 1 using the obtained polyamic acid varnish. Table 1 shows the evaluation results of the film.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表1に示すように、実施例のポリイミド樹脂前駆体を用いて得られたポリイミドフィルムは、ガラス転移温度が高く、線膨張係数も低く、更に引張伸度及び引張強度も大きいことから、耐熱性と強度に優れ、伸度にも優れることがわかる。このことから本発明のポリイミド樹脂及びポリイミドフィルムは、優れた耐熱性を有し、線膨張係数が低く、更に優れた伸度、機械強度を有することがわかる。 As shown in Table 1, the polyimide film obtained using the polyimide resin precursor of the example has a high glass transition temperature, a low linear expansion coefficient, and a high tensile elongation and tensile strength, so it has good heat resistance. It can be seen that it has excellent strength and elongation. This shows that the polyimide resin and polyimide film of the present invention have excellent heat resistance, a low linear expansion coefficient, and further excellent elongation and mechanical strength.

Claims (9)

  1.  下記一般式(1)で表される繰り返し単位、又は下記一般式(1)で表される繰り返し単位および下記一般式(2)で表される繰り返し単位を含み、
     一般式(1)で表される繰り返し単位及び一般式(2)で表される繰り返し単位の合計が、ポリイミド樹脂前駆体の全繰り返し単位に対して、70モル%以上100モル%以下であり、
     一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位の合計に対して、一般式(1)で表される繰り返し単位の比率が30~100モル%である、ポリイミド樹脂前駆体。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)および式(2)中、X1及びX2はそれぞれ独立に水素、炭素数1~6のアルキル基又は炭素数3~9のアルキルシリル基であり、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基あるいはトリフルオロメチル基を表す。h、i、jは0~4の整数である。)
    Contains a repeating unit represented by the following general formula (1), or a repeating unit represented by the following general formula (1) and a repeating unit represented by the following general formula (2),
    The total of the repeating units represented by general formula (1) and the repeating units represented by general formula (2) is 70 mol% or more and 100 mol% or less with respect to all repeating units of the polyimide resin precursor,
    The ratio of the repeating unit represented by general formula (1) is 30 to 100 mol% with respect to the total of the repeating unit represented by general formula (1) and the repeating unit represented by general formula (2). , polyimide resin precursor.
    Figure JPOXMLDOC01-appb-C000001

    (In formulas (1) and (2), X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms; R 1 , R 2 , R 3 each independently represents a methyl group, a fluoro group, or a trifluoromethyl group. h, i, and j are integers from 0 to 4.)
  2.  一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位の合計に対して、一般式(1)で表される繰り返し単位の比率が50~100モル%である、請求項1に記載のポリイミド樹脂前駆体。 The ratio of the repeating unit represented by general formula (1) is 50 to 100 mol% with respect to the total of the repeating unit represented by general formula (1) and the repeating unit represented by general formula (2). , the polyimide resin precursor according to claim 1.
  3.  請求項1又は2に記載のポリイミド樹脂前駆体及び有機溶媒を含有するワニス。 A varnish containing the polyimide resin precursor according to claim 1 or 2 and an organic solvent.
  4.  請求項3に記載のワニスを支持体上に塗布し、加熱して得られる、ポリイミドフィルム。 A polyimide film obtained by applying the varnish according to claim 3 onto a support and heating it.
  5.  下記一般式(3)で表される繰り返し単位、又は下記一般式(3)で表される繰り返し単位および下記一般式(4)で表される繰り返し単位を含み、
     一般式(3)で表される繰り返し単位及び一般式(4)で表される繰り返し単位の合計が、ポリイミド樹脂の全繰り返し単位に対して、70モル%以上100モル%以下であり、
     一般式(3)で表される繰り返し単位と下記一般式(4)で表される繰り返し単位の合計に対して、一般式(3)で表される繰り返し単位の比率が30~100モル%である、ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000002

    (式(3)および式(4)中、R1、R2、R3はそれぞれ独立して、メチル基、フルオロ基あるいはトリフルオロメチル基を表す。h、i、jは0~4の整数である。)
    Contains a repeating unit represented by the following general formula (3), or a repeating unit represented by the following general formula (3) and a repeating unit represented by the following general formula (4),
    The total of the repeating units represented by general formula (3) and the repeating units represented by general formula (4) is 70 mol% or more and 100 mol% or less with respect to all repeating units of the polyimide resin,
    The ratio of the repeating unit represented by general formula (3) is 30 to 100 mol% with respect to the total of the repeating unit represented by general formula (3) and the repeating unit represented by general formula (4) below. Yes, polyimide resin.
    Figure JPOXMLDOC01-appb-C000002

    (In formulas (3) and (4), R 1 , R 2 , and R 3 each independently represent a methyl group, a fluoro group, or a trifluoromethyl group. h, i, and j are integers of 0 to 4. )
  6.  一般式(3)で表される繰り返し単位と一般式(4)で表される繰り返し単位の合計に対して、一般式(3)で表される繰り返し単位の比率が50~100モル%である、請求項5に記載のポリイミド樹脂。 The ratio of the repeating unit represented by general formula (3) is 50 to 100 mol% with respect to the total of the repeating unit represented by general formula (3) and the repeating unit represented by general formula (4). , the polyimide resin according to claim 5.
  7.  請求項5又は6に記載のポリイミド樹脂を含む、ポリイミドフィルム。 A polyimide film comprising the polyimide resin according to claim 5 or 6.
  8.  ガラス転移温度が430℃以上であり、ポリイミドフィルムの厚さが10μmのときの23℃、50%RHにおける引張伸度が15%以上であり、ポリイミドフィルムの厚さが10μmのときの全光線透過率が80%以上である、請求項7に記載のポリイミドフィルム。 Total light transmission when the glass transition temperature is 430°C or higher, the tensile elongation at 23°C and 50% RH is 15% or higher, and the thickness of the polyimide film is 10 μm. The polyimide film according to claim 7, having a ratio of 80% or more.
  9.  ポリイミドフィルムの厚さが、1μm以上20μm以下である、請求項7に記載のポリイミドフィルム。 The polyimide film according to claim 7, wherein the polyimide film has a thickness of 1 μm or more and 20 μm or less.
PCT/JP2023/018858 2022-05-31 2023-05-22 Polyimide resin precursor and polyimide resin WO2023234085A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-088908 2022-05-31
JP2022088908 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023234085A1 true WO2023234085A1 (en) 2023-12-07

Family

ID=89024754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018858 WO2023234085A1 (en) 2022-05-31 2023-05-22 Polyimide resin precursor and polyimide resin

Country Status (1)

Country Link
WO (1) WO2023234085A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199668A (en) * 1997-10-23 1999-07-27 Kanegafuchi Chem Ind Co Ltd Polytmide composition, and tape for tab and flexible printed circuit board therefrom
JP2015135464A (en) * 2013-10-07 2015-07-27 Jsr株式会社 Production method of liquid crystal alignment film, photo-aligning agent, and liquid crystal display element
CN113563585A (en) * 2021-07-29 2021-10-29 上海八亿时空先进材料有限公司 Polyimide and application thereof in metal laminated plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199668A (en) * 1997-10-23 1999-07-27 Kanegafuchi Chem Ind Co Ltd Polytmide composition, and tape for tab and flexible printed circuit board therefrom
JP2015135464A (en) * 2013-10-07 2015-07-27 Jsr株式会社 Production method of liquid crystal alignment film, photo-aligning agent, and liquid crystal display element
CN113563585A (en) * 2021-07-29 2021-10-29 上海八亿时空先进材料有限公司 Polyimide and application thereof in metal laminated plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASEGAWA, M. ; SAKAMOTO, Y. ; TANAKA, Y. ; KOBAYASHI, Y.: "Poly(ester imide)s possessing low coefficients of thermal expansion (CTE) and low water absorption (III). Use of bis(4-aminophenyl)terephthalate and effect of substituents", EUROPEAN POLYMER JOURNAL, PERGAMON PRESS LTD OXFORD, GB, vol. 46, no. 7, 1 July 2010 (2010-07-01), GB , pages 1510 - 1524, XP027096600, ISSN: 0014-3057 *

Similar Documents

Publication Publication Date Title
JP6996609B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7424284B2 (en) Polyimide resin, polyimide varnish and polyimide film
JPWO2019188306A1 (en) Polyimide resin, polyimide varnish and polyimide film
JP7180617B2 (en) Polyimide resin composition and polyimide film
WO2020100904A1 (en) Polyimide resin, varnish, and polyimide film
JPWO2019116940A1 (en) Polyimide resin, polyimide varnish and polyimide film
WO2020040057A1 (en) Polyimide resin, polyimide varnish, and polyimide film
JP7384170B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7375749B2 (en) Polyamide-imide resin, polyamide-imide varnish and polyamide-imide film
WO2021132196A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2022196664A1 (en) Polyimide precursor composition
WO2021132197A1 (en) Polyimide resin, varnish, and polyimide film
WO2021210640A1 (en) Imide-amic acid copolymer and method for producing same, varnish, and polyimide film
WO2021210641A1 (en) Imide-amic acid copolymer and method for producing same, varnish, and polyimide film
WO2023234085A1 (en) Polyimide resin precursor and polyimide resin
JPWO2019065522A1 (en) Polyimide resin, polyimide varnish and polyimide film
TWI804604B (en) Polyimide resin, polyimide varnish and polyimide film
WO2021177145A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2022025144A1 (en) Polyimide resin, polyamide acid, varnish, and polyimide film
WO2023249021A1 (en) Method for producing polyimide
TW202406984A (en) Polyimide resin precursor and polyimide resin
WO2021065509A1 (en) Polyimide resin composition, polyimide varnish, polyimide film
WO2021153379A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2023182038A1 (en) Method for producing polymer, varnish, and method for producing varnish
WO2022091813A1 (en) Polyimide resin, polyimide varnish, and polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815844

Country of ref document: EP

Kind code of ref document: A1