WO2023182038A1 - Method for producing polymer, varnish, and method for producing varnish - Google Patents

Method for producing polymer, varnish, and method for producing varnish Download PDF

Info

Publication number
WO2023182038A1
WO2023182038A1 PCT/JP2023/009565 JP2023009565W WO2023182038A1 WO 2023182038 A1 WO2023182038 A1 WO 2023182038A1 JP 2023009565 W JP2023009565 W JP 2023009565W WO 2023182038 A1 WO2023182038 A1 WO 2023182038A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
diamine
tetracarboxylic dianhydride
varnish
producing
Prior art date
Application number
PCT/JP2023/009565
Other languages
French (fr)
Japanese (ja)
Inventor
舜 星野
紘二 鈴木
琢朗 畠山
孝博 村谷
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023182038A1 publication Critical patent/WO2023182038A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method for producing a polymer, a varnish, and a method for producing a varnish.
  • polyimide resin Since polyimide resin has excellent mechanical properties and heat resistance, various uses are being considered in fields such as electrical and electronic parts. For example, since it is desired to replace glass substrates used in image display devices such as liquid crystal displays and OLED displays with polyimide film substrates, polyimide resins that satisfy the performance as optical materials are being developed. Varnish, which is a solution of polyimide or a polyimide precursor dissolved in a solvent, is used as a raw material for manufacturing polyimide molded bodies such as polyimide films. Varnishes have also been devised to improve the performance of the resulting polyimide molded bodies and to facilitate the manufacture of the molded bodies.
  • Patent Document 1 discloses a varnish containing a specific amount of a polymer such as polyamic acid, a solvent, and a compound such as a monovalent primary amine or monovalent alcohol for the purpose of improving storage stability. There is.
  • Polyimide resins have excellent properties as described above, but recently, even higher strength and heat resistance have been required. Therefore, it is necessary to increase the molecular weight of polyimide resin. Furthermore, varnishes with various resin concentrations are required depending on the shape, thickness, and purpose of the intended polyimide film. On the other hand, varnishes containing high molecular weight polyimides or polyimide precursors have a problem in that their viscosity tends to increase during storage. Furthermore, the viscosity changes greatly when the resin concentration changes, and the resin concentration required differs depending on the application. In this manner, it has been difficult to suppress changes in viscosity and maintain stability of the varnish at various resin concentrations.
  • the present invention was made in view of these circumstances, and an object of the present invention is to create a varnish that exhibits little increase in viscosity even in a wide viscosity range and has excellent storage stability despite containing a high molecular weight resin.
  • the object of the present invention is to provide a method for producing a polymer that can be obtained, a varnish containing the polymer, and a method for producing a varnish.
  • the present inventors have discovered that the above problems can be solved by setting the monomer ratio in a specific range when obtaining a polymer that is a polyimide or a polyimide precursor, and polymerizing it in the presence of tert-butanol, and have completed the invention. reached.
  • a method for producing a polymer comprising a step 1 of polymerizing a diamine and a tetracarboxylic dianhydride to obtain a polymer, the molar ratio of the diamine to the tetracarboxylic dianhydride in the step 1 ( diamine/tetracarboxylic dianhydride) is 1.00 or more and less than 1.03, and step 1 is a step of polymerizing the diamine and the tetracarboxylic dianhydride in the presence of tert-butanol and a solvent. .
  • a method for producing a polymer wherein the polymer has at least one repeating unit selected from the group consisting of amic acid units and imide units, and has a weight average molecular weight of 300,000 or more.
  • step 1 is a step of mixing a solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol, and polymerizing the mixture.
  • the polymer is a polyamic acid
  • the tetracarboxylic dianhydride contains a compound represented by the following formula (a1)
  • the diamine contains a compound represented by the following general formula (b1).
  • R 1 , R 2 , and R 3 each independently represent an organic group having 1 to 20 carbon atoms.
  • the polymer is an imide-amic acid copolymer
  • the tetracarboxylic dianhydride consists of a first tetracarboxylic dianhydride and a second tetracarboxylic dianhydride
  • Step 1-1 A step of reacting the first tetracarboxylic dianhydride and the first diamine in the presence of a solvent to obtain an imide oligomer.
  • Step 1-2 The imide oligomer obtained in Step 1-1.
  • Step of mixing and polymerizing the second tetracarboxylic dianhydride, the second diamine, and tert-butanol [6]
  • the polymer is an imide-amic acid copolymer, and the first tetracarboxylic dianhydride
  • the acid dianhydride contains a compound represented by the following formula (a1)
  • the second tetracarboxylic dianhydride contains a compound represented by the following formula (a2)
  • the first diamine and the first dianhydride contain a compound represented by the following formula (a2).
  • R 1 , R 2 , and R 3 each independently represent an organic group having 1 to 20 carbon atoms.
  • h, i, j, and k are integers of 0 to 4.
  • [7] The method according to any one of [1] to [6] above, wherein the amount of tert-butanol in Step 1 is 2 mol% or more based on the total amount of tetracarboxylic dianhydride in Step 1.
  • Method for producing polymers [8] A varnish containing a polymer obtained by the production method according to any one of [1] to [7] above and a solvent.
  • a method for producing a varnish comprising a step 1 of polymerizing a diamine and a tetracarboxylic dianhydride to obtain a polymer, the molar ratio of the diamine to the tetracarboxylic dianhydride in step 1 (diamine /tetracarboxylic dianhydride) is 1.00 or more and less than 1.03, and step 1 is a step of polymerizing diamine and tetracarboxylic dianhydride in the presence of tert-butanol and a solvent,
  • the polymer has at least one repeating unit selected from the group consisting of amic acid units and imide units, and has a weight average molecular weight of 300,000 or more, and the varnish contains the polymer and a solvent.
  • the solvent contains N-methylpyrrolidone.
  • a method for producing a polyimide film including:
  • a method for producing a polymer that can produce a varnish with little increase in viscosity and excellent storage stability despite containing a high molecular weight resin, a varnish containing the polymer, and production of the varnish method can be provided. Furthermore, a method for producing a polyimide film using the varnish can also be provided.
  • the method for producing a polymer of the present invention is a method for producing a polymer, comprising a step 1 of obtaining a polymer by polymerizing a diamine and a tetracarboxylic dianhydride, the method comprising: obtaining a polymer by polymerizing a diamine and a tetracarboxylic dianhydride;
  • the molar ratio of the diamine to the diamine (diamine/tetracarboxylic dianhydride) is 1.00 or more and less than 1.03, and in step 1, the diamine and the tetracarboxylic dianhydride are combined with tert-butanol in the presence of a solvent.
  • a method for producing a polymer, wherein the polymer has at least one repeating unit selected from the group consisting of amic acid units and imide units, and has a weight average molecular weight of 300,000 or more. be.
  • the polymer has at least one repeating unit selected from the group consisting of an amic acid unit and an imide unit, preferably an amic acid unit as a constituent unit, and more preferably an amide unit from the viewpoint of improving storage stability. Both acid units and imide units are repeating units.
  • having an amic acid unit as a repeating unit refers to one unit having an amic acid structure in which the following tetracarboxylic dianhydride and diamine are bonded one by one, and the minimum repeating unit in the polymer is The unit of
  • having an imide unit as a repeating unit refers to one unit having an imide structure in which the following tetracarboxylic dianhydride and diamine are bonded one by one, and is the smallest repeating unit in the polymer. means.
  • the polymer is preferably at least one selected from the group consisting of polyamic acid, polyimide, and imide-amic acid copolymer, more preferably selected from the group consisting of polyamic acid and imide-amic acid copolymer. From the viewpoint of obtaining a high molecular weight polymer, polyamic acid is more preferred, and from the viewpoint of improving storage stability, imide-amic acid copolymer is even more preferred.
  • the weight average molecular weight (Mw) of the polymer is 300,000 or more, preferably 400,000 or more, and more preferably 500,000 or more from the viewpoint of the mechanical strength of the resulting polyimide film. Although there is no upper limit to the upper limit, it is preferably 1,000,000 or less, more preferably 700,000 or less. Further, from the same viewpoint, the number average molecular weight is preferably 50,000 to 500,000. In addition, the weight average molecular weight and number average molecular weight of the said polymer can be calculated
  • PS polystyrene
  • step 1 the diamine and the tetracarboxylic dianhydride are polymerized in the presence of tert-butanol, so the polymer has a tert-butoxy group derived from tert-butanol at a part of the end.
  • the polymer has a structural unit A derived from a tetracarboxylic dianhydride and a structural unit B derived from a diamine.
  • the structural unit A and the structural unit B form an amic acid structure
  • the polymer is a polyimide
  • the structural unit A and the structural unit B form an imide structure
  • the polymer is an imide-amic acid copolymer
  • structural unit A and structural unit B form both an imide structure and an amic acid structure, but structural units derived from tetracarboxylic dianhydride constitute the structural unit.
  • Unit A and the structural units derived from diamine are collectively referred to as structural unit B.
  • the structural unit A is a structural unit derived from a tetracarboxylic dianhydride, and is not particularly limited as long as it is a structural unit derived from a tetracarboxylic dianhydride, but is preferably an aromatic tetracarboxylic dianhydride. , and more preferably a structural unit derived from aromatic tetracarboxylic dianhydride.
  • aromatic tetracarboxylic dianhydrides that provide structural units derived from aromatic tetracarboxylic dianhydrides include biphenyltetracarboxylic dianhydride (BPDA), 9,9-bis(3,4-dicarboxyphenyl) ) Fluorene dianhydride (BPAF), pyromellitic dianhydride, 3,3',4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 3,3',4,4'-diphenylsulfone tetra Examples include carboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and 2,2',3,3'-benzophenonetetracarboxylic dianhydride.
  • BPDA biphenyltetracarboxylic dianhydride
  • BPAF 9,9-bis(3,4-dicarboxyphenyl) ) Fluorene dianhydride
  • At least one compound selected from the group consisting of a compound represented by the following formula (a1) and a compound represented by the following formula (a2) is preferred, and more Preferably, it is a compound represented by the following formula (a1). That is, the structural unit A is preferably selected from the group consisting of a structural unit (A1) derived from a compound represented by the following formula (a1) and a structural unit (A2) derived from a compound represented by the following formula (a2). , and more preferably a structural unit (A1) derived from a compound represented by the following formula (a1).
  • the compound represented by formula (a1) is biphenyltetracarboxylic dianhydride (BPDA), and a specific example thereof is 3,3',4,4'-biphenyl represented by the following formula (a1s).
  • BPDA biphenyltetracarboxylic dianhydride
  • a1s 3,3',4,4'-biphenyl represented by the following formula (a1s).
  • a1i examples include 2,2',3,3'-biphenyltetracarboxylic dianhydride (i-BPDA).
  • s-BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride represented by the following formula (a1s) is preferred.
  • the compound represented by formula (a2) is 9,9'-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF).
  • the polymer when the polymer is a polyamic acid, it preferably contains the structural unit (A1).
  • the polyimide unit preferably contains the structural unit (A2), and the polyamic acid unit preferably contains the structural unit (A1).
  • the structural unit A may contain structural units other than aromatic tetracarboxylic dianhydride.
  • Tetracarboxylic dianhydrides that provide such structural units include, but are not particularly limited to, alicyclic tetracarboxylic dianhydrides and aliphatic tetracarboxylic dianhydrides.
  • Examples of the alicyclic tetracarboxylic dianhydride that provides a structural unit derived from alicyclic tetracarboxylic dianhydride include 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3, 4-Cyclobutanetetracarboxylic dianhydride, norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride dianhydride, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyltetracarboxylic dianhydride, 5,5'-(1,4-phenylene )-bis[hexahydro-4,7-Methanoisobenzofuran-1,3-dione], 5,5'-bis-2-norbornene-5,
  • aliphatic tetracarboxylic dianhydride that provides structural units derived from aliphatic tetracarboxylic dianhydride
  • examples of the aliphatic tetracarboxylic dianhydride that provides structural units derived from aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride and the like.
  • the number of structural units optionally included in the structural unit A may be one, or two or more.
  • aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings
  • alicyclic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more alicyclic rings.
  • aliphatic tetracarboxylic dianhydride refers to a tetracarboxylic dianhydride containing the above and not containing an aromatic ring
  • aliphatic tetracarboxylic dianhydride refers to a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
  • the structural unit B is a structural unit derived from a diamine, and is not particularly limited as long as it is a structural unit derived from a diamine, but preferably includes a structural unit derived from an aromatic diamine, and more preferably contains a structural unit derived from an aromatic diamine. It is a structural unit derived from
  • aromatic diamines that provide structural units derived from aromatic diamines include 4-aminophenyl-4-aminobenzoate (4-BAAB), 2,2'-bis(trifluoromethyl)benzidine (TFMB), and 3,5 -Diaminobenzoic acid (3,5-DABA), 9,9-bis(4-aminophenyl)fluorene (BAFL), 1,4-phenylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, 2, 2'-dimethylbiphenyl-4,4'-diamine, 4,4'-diaminodiphenylmethane, 1,4-bis[2-(4-aminophenyl)-2-propyl]benzene, 2,2-bis(4- (aminophenyl)hexafluoropropane, 4,4'-diaminobenzanilide, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-
  • a compound represented by the following formula (b1) is preferred from the viewpoint of achieving high molecular weight.
  • R 1 , R 2 , and R 3 each independently represent an organic group having 1 to 20 carbon atoms. h, i, j, and k are integers of 0 to 4.
  • the structural unit B preferably includes a structural unit (B1) derived from the compound represented by the formula (b1).
  • R 1 , R 2 and R 3 each independently represent an organic group having 1 to 20 carbon atoms, preferably R 1 , R 2 and R 3 each independently represent a methyl group or a trifluoromethyl group. .
  • h, i, j, and k are integers from 0 to 4, and each of h, i, j, and k is preferably 0.
  • the structural unit A contains the structural unit (A1) derived from the compound represented by the above formula (a1). It is preferable to include. That is, the structural unit A of the polymer includes a structural unit (A1) derived from the compound represented by the formula (a1), and the structural unit B of the polymer is represented by the formula (b1). It is preferable to include a structural unit (B1) derived from a compound.
  • the compound represented by formula (b11) (4-aminophenyl-4-aminobenzoate (4-BAAB)) is particularly preferred. That is, the structural unit B particularly preferably includes a structural unit (B11) derived from the compound represented by the above formula (b11). In addition, when the structural unit B contains the structural unit (B11) derived from the compound represented by the above formula (b11), the structural unit A contains the structural unit (A1) derived from the compound represented by the above formula (a1). It is preferable to include. That is, the structural unit A of the polymer includes a structural unit (A1) derived from the compound represented by the formula (a1), and the structural unit B of the polymer is represented by the formula (b11).
  • a structural unit (B11) derived from a compound It is preferable to include a structural unit (B11) derived from a compound.
  • a structural unit (B11) derived from a compound By combining the above structural units, a high molecular weight polymer with excellent film properties can be obtained, and the storage stability, which is an effect of the present invention, can be particularly clearly expressed.
  • Structural unit B may also contain structural units other than aromatic diamine.
  • Diamines that provide such structural units include, but are not particularly limited to, alicyclic diamines and aliphatic diamines.
  • Examples of the alicyclic diamine that provides a structural unit derived from an alicyclic diamine include 1,3-bis(aminomethyl)cyclohexane and 1,4-bis(aminomethyl)cyclohexane.
  • Examples of aliphatic diamines that provide structural units derived from aliphatic diamines include ethylene diamine and hexamethylene diamine.
  • the number of structural units optionally included in the structural unit B may be one, or two or more.
  • aromatic diamine means a diamine containing one or more aromatic rings
  • alicyclic diamine means a diamine containing one or more alicyclic rings and no aromatic ring
  • Group diamine means a diamine containing neither aromatic ring nor alicyclic ring.
  • the method for producing the polymer includes Step 1 of obtaining a polymer by polymerizing diamine and tetracarboxylic dianhydride, and the molar ratio of the diamine to the tetracarboxylic dianhydride in Step 1 is The ratio (diamine/tetracarboxylic dianhydride) is 1.00 or more and less than 1.03, and step 1 is a step of polymerizing diamine and tetracarboxylic dianhydride in the presence of tert-butanol and a solvent.
  • the polymer contains either or both of imide units and amic acid units, but these can be controlled by changing the manufacturing method. Specifically, in a production method containing both imide units and amic acid units (method for producing an imide-amic acid copolymer), only the step of producing a part (polyimide part) mainly containing imide units is used. By doing this, a polymer (polyimide) consisting essentially of imide units can be obtained, and by using only the process of producing a part (polyamic acid part) mainly containing amic acid units, a polymer consisting essentially of amic acid units can be obtained. (polyamic acid) can be obtained.
  • the method for producing the varnish of the present invention includes the method for producing the polymer. That is, the method for producing a varnish of the present invention is a method for producing a varnish, which includes step 1 of obtaining a polymer by polymerizing a diamine and a tetracarboxylic dianhydride, and the method includes a step 1 of obtaining a polymer by polymerizing a diamine and a tetracarboxylic dianhydride.
  • the molar ratio of the diamine to the diamine is 1.00 or more and less than 1.03, and in step 1, the diamine and the tetracarboxylic dianhydride are combined with tert-butanol in the presence of a solvent.
  • the polymer has at least one repeating unit selected from the group consisting of amic acid units and imide units and has a weight average molecular weight of 300,000 or more, and the varnish has a repeating unit of at least one selected from the group consisting of amic acid units and imide units, and the varnish has A method for producing varnish, including coalescence and solvent.
  • the varnish may be the polymer solution itself obtained by the above-mentioned method for producing a polymer, may have a solvent added thereto, or may have a reduced amount of solvent by concentration or the like. That is, the method for producing the varnish is any one of a method having only the step 1, a method having a step of adding a solvent after the step 1, or a method having a step of reducing the solvent after the step 1. It's okay.
  • the preferred conditions for Step 1 differ depending on whether the polymer obtained by the production method of the present invention is an imide-amic acid copolymer, polyimide, or polyamic acid.
  • the molar ratio of the diamine to the tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in No. 1 is 1.00 or more and less than 1.03.
  • the molar ratio of the diamine to the tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is preferably 1.005 or more, more preferably 1.010 or more. Further, it is preferably 1.025 or less, more preferably 1.020 or less.
  • the amount of tert-butanol used in Step 1 is preferably 2 mol% or more, more preferably 2.5 mol% or more, based on the total amount of tetracarboxylic dianhydride in Step 1, and Preferably it is 3 mol% or more. Moreover, it is preferably 5 mol% or less, more preferably 4 mol% or less, and still more preferably 3.5 mol% or less.
  • tetracarboxylic dianhydride is a first tetracarboxylic dianhydride.
  • a second tetracarboxylic dianhydride the diamine consists of a first diamine and a second diamine, and Step 1 consists of the following Step 1-1 and the following Step 1-2.
  • Step 1-1 A step of reacting the first tetracarboxylic dianhydride and the first diamine in the presence of a solvent to obtain an imide oligomer.
  • Step 1-2 The imide oligomer obtained in Step 1-1.
  • the first tetracarboxylic dianhydride contains a compound represented by the following formula (a1)
  • the second tetracarboxylic dianhydride contains a compound represented by the following formula (a2)
  • the first tetracarboxylic dianhydride contains a compound represented by the following formula (a2)
  • the first diamine and the second diamine include a compound represented by the following formula (b1).
  • R 1 , R 2 , and R 3 each independently represent an organic group having 1 to 20 carbon atoms.
  • h, i, j, and k are integers of 0 to 4.
  • R 1 , R 2 and R 3 each independently represent an organic group having 1 to 20 carbon atoms, preferably R 1 , R 2 and R 3 each independently represent a methyl group or a trifluoromethyl group.
  • h, i, j, and k are integers from 0 to 4, and each of h, i, j, and k is preferably 0.
  • Step 1-1 is a step in which the first tetracarboxylic dianhydride constituting the imide moiety and the first diamine are reacted in the presence of a solvent to obtain an imide oligomer.
  • the first tetracarboxylic dianhydride used in step 1-1 preferably includes aromatic tetracarboxylic dianhydride, more preferably aromatic tetracarboxylic dianhydride. Further, it preferably contains a compound represented by the above formula (a2).
  • the first tetracarboxylic dianhydride may contain a tetracarboxylic dianhydride other than the aromatic tetracarboxylic dianhydride.
  • the first diamine used in step 1-1 preferably includes an aromatic diamine, more preferably an aromatic diamine. Further, it preferably contains a compound represented by the above formula (b1), and more preferably contains a compound represented by the above formula (b11).
  • the first diamine may contain diamines other than aromatic diamines.
  • the amount of diamine relative to the tetracarboxylic dianhydride is preferably 1.01 to 2 mol, more preferably 1.05 to 1.9 mol, and 1.1 to 1.7 mol. More preferably, it is in moles.
  • step 1-1 There is no particular restriction on the method of reacting the first tetracarboxylic dianhydride and the first diamine to obtain the imide oligomer in step 1-1, and any known method can be used.
  • the specific reaction method is as follows: (1) Tetracarboxylic dianhydride, diamine, and solvent are charged into a reactor, stirred at 10 to 110°C for 0.5 to 30 hours, and then heated to imidize.
  • the imidization reaction it is preferable to use a Dean-Stark apparatus or the like to conduct the reaction while removing water generated during production. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.
  • imidization catalysts include base catalysts and acid catalysts.
  • Base catalysts include pyridine, quinoline, isoquinoline, ⁇ -picoline, ⁇ -picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, imidazole, N,N
  • organic base catalysts such as -dimethylaniline and N,N-diethylaniline
  • inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, and sodium hydrogen carbonate.
  • examples of acid catalysts include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc. can be mentioned.
  • the above imidization catalysts may be used alone or in combination of two or more.
  • base catalysts are preferred, organic base catalysts are more preferred, one or more selected from triethylamine and triethylenediamine are still more preferred, and triethylamine is even more preferred.
  • the temperature of the imidization reaction is preferably 120 to 250°C, more preferably 160 to 200°C from the viewpoint of reaction rate and suppression of gelation and the like. Further, the reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
  • a solution containing an imide oligomer dissolved in a solvent is obtained.
  • the solution containing the imide oligomer obtained in Step 1-1 contains the components used as the first tetracarboxylic dianhydride and the first diamine in Step 1-1 to the extent that the effects of the present invention are not impaired. At least a portion may be contained as an unreacted monomer.
  • Step 1-2 in the production method of the present invention is a step in which the imide oligomer obtained in Step 1-1, the second tetracarboxylic dianhydride, the second diamine, and tert-butanol are mixed and polymerized. .
  • the second tetracarboxylic dianhydride used in step 1-2 preferably includes aromatic tetracarboxylic dianhydride, more preferably aromatic tetracarboxylic dianhydride. Further, it preferably contains a compound represented by the above formula (a1).
  • the second tetracarboxylic dianhydride may contain a tetracarboxylic dianhydride other than the aromatic tetracarboxylic dianhydride.
  • the second diamine used in step 1-2 preferably includes an aromatic diamine, more preferably an aromatic diamine. Further, it preferably contains a compound represented by the above formula (b1), and more preferably contains a compound represented by the above formula (b11).
  • the second diamine may contain diamines other than aromatic diamines. Since the molar ratio of diamine to tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1-1 and Step 1-2 as a whole is 1.00 or more and less than 1.03, Step 1-2 The molar ratio of diamine to tetracarboxylic dianhydride in Step 1-1 and Step 1-2 as a whole is 1.00 or more, taking into account the respective amounts used in Step 1-1. It is determined to be less than .03.
  • the molar ratio of diamine to tetracarboxylic dianhydride in step 1-2 is preferably 0.70 to 1.00 mol, more preferably 0.80 to 0.95 mol. , more preferably 0.85 to 0.90 mol.
  • tert-butanol is mixed in addition to the imide oligomer, the second tetracarboxylic dianhydride, and the second diamine.
  • the amount of tert-butanol used in Step 1-2 is preferably 2 mol% or more based on the total amount of tetracarboxylic dianhydride in Step 1-1 and Step 1-2. More preferably it is 2.5 mol% or more, and still more preferably 3 mol% or more. Moreover, it is preferably 5 mol% or less, more preferably 4 mol% or less, and still more preferably 3.5 mol% or less.
  • Step 1-2 the method for polymerizing the imide oligomer obtained in Step 1-1, the second tetracarboxylic dianhydride, and the second diamine is not particularly limited, and any known method can be used.
  • the imide oligomer, the second tetracarboxylic dianhydride, the second diamine, and tert-butanol are charged into a reactor, and the temperature is heated at 0 to 120°C, preferably 5 to 80°C.
  • the concentration of the copolymer in the resulting solution is usually 1 to 50% by weight, preferably 3 to 35% by weight, and more preferably 5 to 30% by weight.
  • the weight average molecular weight (Mw) of the imide-amic acid copolymer obtained by the above production method is 300,000 or more, preferably 400,000 or more, from the viewpoint of the mechanical strength of the obtained polyimide film, More preferably, it is 500,000 or more. Although there is no upper limit to the upper limit, it is preferably 1,000,000 or less, more preferably 700,000 or less. Further, from the same viewpoint, the number average molecular weight is preferably 50,000 to 500,000. Note that the weight average molecular weight and number average molecular weight of the copolymer can be determined from standard polystyrene (PS) equivalent values determined by gel filtration chromatography measurement.
  • PS polystyrene
  • a preferred manufacturing method is such that step 1 mixes a solution containing a diamine and a solvent, a tetracarboxylic dianhydride and tert-butanol, This is a polymerization step.
  • the tetracarboxylic dianhydride used in Step 1 preferably includes aromatic tetracarboxylic dianhydride, more preferably aromatic tetracarboxylic dianhydride. Further, it preferably contains a compound represented by the above formula (a1).
  • the tetracarboxylic dianhydride may contain a tetracarboxylic dianhydride other than the aromatic tetracarboxylic dianhydride.
  • the diamine used in Step 1 preferably includes an aromatic diamine, and more preferably an aromatic diamine. Further, it preferably contains a compound represented by the above formula (b1), and more preferably contains a compound represented by the above formula (b11).
  • the diamine may include diamines other than aromatic diamines.
  • the polymer obtained by the production method of the present invention is a polyamic acid
  • the tetracarboxylic dianhydride contains a compound represented by the following formula (a1)
  • the diamine contains a compound represented by the following general formula (b1).
  • R 1 , R 2 , and R 3 each independently represent an organic group having 1 to 20 carbon atoms.
  • h, i, j, and k are integers of 0 to 4.
  • R 1 , R 2 and R 3 each independently represent an organic group having 1 to 20 carbon atoms, preferably R 1 , R 2 and R 3 each independently represent a methyl group or a trifluoromethyl group.
  • h, i, j, and k are integers from 0 to 4, and each of h, i, j, and k is preferably 0.
  • the molar ratio of diamine to tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is 1.00 or more and less than 1.03.
  • the molar ratio of the diamine to the tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is preferably 1.005 or more, more preferably 1.010 or more. Further, it is preferably 1.025 or less, more preferably 1.020 or less.
  • step 1 a solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol are mixed and polymerized.
  • amount of tert-butanol used in Step 1 is preferably 2 mol% or more, more preferably 2.5% by mole, based on the total amount of tetracarboxylic dianhydride in Step 1. It is mol% or more, more preferably 3 mol% or more. Moreover, it is preferably 5 mol% or less, more preferably 4 mol% or less, and still more preferably 3.5 mol% or less.
  • Step 1 the method for polymerizing the tetracarboxylic dianhydride and diamine is not particularly limited, and any known method can be used.
  • a specific reaction method is to charge a solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol into a reactor, and heat the mixture at a temperature of 0 to 120°C, preferably 5 to 80°C, for 1 to 72 hours. Examples include a method of stirring.
  • the molecular weight of the polyamic acid obtained in step 1 does not vary depending on the temperature history during polymerization, and the progress of thermal imidization can be suppressed, so the polyamic acid is stabilized. It can be manufactured by
  • the concentration of polyamic acid in the resulting solution is usually 1 to 50% by weight, preferably 3 to 35% by weight, and more preferably 5 to 30% by weight.
  • the weight average molecular weight (Mw) of the polyamic acid obtained by the above production method is 300,000 or more, preferably 400,000 or more, more preferably 500,000 or more, from the viewpoint of the mechanical strength of the obtained polyimide film. 000 or more. Although there is no upper limit to the upper limit, it is preferably 1,000,000 or less, more preferably 700,000 or less. Further, from the same viewpoint, the number average molecular weight is preferably 50,000 to 500,000.
  • the weight average molecular weight and number average molecular weight of the polyamic acid can be determined from standard polystyrene (PS) equivalent values determined by gel filtration chromatography.
  • a preferred manufacturing method is such that step 1 mixes a solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol, and polymerizes the mixture. It is a process.
  • the tetracarboxylic dianhydride used in Step 1 preferably includes aromatic tetracarboxylic dianhydride, more preferably aromatic tetracarboxylic dianhydride. Further, it preferably contains a compound represented by the above formula (a1).
  • the tetracarboxylic dianhydride may contain a tetracarboxylic dianhydride other than the aromatic tetracarboxylic dianhydride.
  • the diamine used in Step 1 preferably includes an aromatic diamine, and more preferably an aromatic diamine. Further, it preferably contains a compound represented by the above formula (b1), and more preferably contains a compound represented by the above formula (b11).
  • the diamine may include diamines other than aromatic diamines.
  • the molar ratio of diamine to tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is 1.00 or more and less than 1.03, as described above.
  • the molar ratio of the diamine to the tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is preferably 1.005 or more, more preferably 1.010 or more. Further, it is preferably 1.025 or less, more preferably 1.020 or less.
  • step 1 a solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol are mixed and polymerized.
  • amount of tert-butanol used in Step 1 is preferably 2 mol% or more, more preferably 2.5% by mole, based on the total amount of tetracarboxylic dianhydride in Step 1. It is mol% or more, more preferably 3 mol% or more. Moreover, it is preferably 5 mol% or less, more preferably 4 mol% or less, and still more preferably 3.5 mol% or less.
  • Step 1 the method for polymerizing the tetracarboxylic dianhydride and diamine is not particularly limited, and any known method can be used.
  • a specific reaction method is as follows: (1) A solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol are charged into a reactor, and the reaction is carried out at 10 to 110°C for 0.5 to 30 hours as necessary. A method of stirring and then raising the temperature to perform an imidization reaction, (2) A solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol are charged into a reactor, and the temperature is immediately raised to imidize. Examples include methods for conducting the reaction.
  • the imidization reaction it is preferable to use a Dean-Stark apparatus or the like to conduct the reaction while removing water generated during production. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.
  • imidization catalysts include base catalysts and acid catalysts.
  • Base catalysts include pyridine, quinoline, isoquinoline, ⁇ -picoline, ⁇ -picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, imidazole, N,N
  • organic base catalysts such as -dimethylaniline and N,N-diethylaniline
  • inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, and sodium hydrogen carbonate.
  • examples of acid catalysts include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc. can be mentioned.
  • the above imidization catalysts may be used alone or in combination of two or more.
  • base catalysts are preferred, organic base catalysts are more preferred, one or more selected from triethylamine and triethylenediamine are still more preferred, and triethylamine is even more preferred.
  • the temperature of the imidization reaction is preferably 120 to 250°C, more preferably 160 to 200°C from the viewpoint of reaction rate and suppression of gelation and the like. Further, the reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
  • the concentration of polyimide in the resulting solution is usually in the range of 1 to 50% by weight, preferably in the range of 3 to 35% by weight, and more preferably in the range of 5 to 30% by weight.
  • the weight average molecular weight (Mw) of the polyimide obtained by the above production method is 300,000 or more, preferably 400,000 or more, and more Preferably it is 500,000 or more. Although there is no upper limit to the upper limit, it is preferably 1,000,000 or less, more preferably 700,000 or less. Further, from the same viewpoint, the number average molecular weight is preferably 50,000 to 500,000. Note that the weight average molecular weight and number average molecular weight of the polyimide can be determined from standard polystyrene (PS) equivalent values determined by gel filtration chromatography measurement.
  • PS polystyrene
  • the tetracarboxylic dianhydride used as a raw material in the present production method is not particularly limited as long as it is a tetracarboxylic dianhydride, but preferably contains an aromatic tetracarboxylic dianhydride, more preferably an aromatic tetracarboxylic dianhydride. It is a tetracarboxylic dianhydride.
  • at least one compound selected from the group consisting of the compound represented by the formula (a1) and the compound represented by the formula (a2) is preferable, and more Preferably it is a compound represented by the above formula (a1).
  • the polymer When the polymer is a polyamic acid, it preferably contains a compound represented by the formula (a1).
  • the raw material for the polyimide unit contains a compound represented by the formula (a2)
  • the raw material for the polyamic acid unit contains a compound represented by the formula (a1). It is preferable that the compound contains a compound.
  • the tetracarboxylic dianhydride include acid dianhydrides, but the invention is not limited thereto, and derivatives thereof may be used as long as they provide the structural unit A in the polymer. Such derivatives include tetracarboxylic acids (free acids) and alkyl esters of the tetracarboxylic acids. Among these, acid dianhydrides are preferred.
  • the diamine used as a raw material in this production method is not particularly limited as long as it is a diamine, but preferably contains an aromatic diamine, more preferably an aromatic diamine, and even more preferably a diamine represented by the above formula (b1). It further preferably includes a compound represented by the above formula (b11).
  • the diamine include diamine, but the diamine is not limited thereto, and derivatives thereof may be used as long as they provide the structural unit B in the polymer. Examples of such derivatives include diisocyanates corresponding to diamines. Among these, diamines are preferred.
  • Terminal sealing agent Furthermore, in addition to the above-mentioned tetracarboxylic dianhydride, diamine, and tert-butanol, a terminal capping agent may be used in the production of the polymer.
  • the terminal capping agent is preferably used in step 1-2 in the production of the imide-amic acid copolymer.
  • monoamines or dicarboxylic acids are preferable.
  • the amount of the terminal capping agent to be introduced is preferably 0.0001 to 0.1 mol, particularly preferably 0.001 to 0.06 mol, per 1 mol of the tetracarboxylic acid component.
  • Examples of monoamine terminal capping agents include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline, etc. are recommended. Among these, benzylamine and aniline can be preferably used.
  • dicarboxylic acid terminal capping agent dicarboxylic acids are preferred, and a portion thereof may be ring-closed.
  • phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenone dicarboxylic acid, 3,4-benzophenone dicarboxylic acid, cyclopentane-1,2-dicarboxylic acid, 4-cyclohexene-1 , 2-dicarboxylic acid, etc. are recommended.
  • phthalic acid and phthalic anhydride can be preferably used.
  • the solvent used in the method for producing a polymer may be any solvent as long as it can dissolve the produced polymer.
  • examples include aprotic solvents, phenolic solvents, ether solvents, carbonate solvents, etc., and at least one selected from the group consisting of aprotic solvents, phenol solvents, ether solvents, and carbonate solvents is preferred. .
  • the aprotic solvent include amide solvents such as cyclic amides and chain amides, phosphorus-containing amide solvents, sulfur-containing solvents, ketone solvents, and ester solvents containing cyclic esters.
  • the solvent preferably contains at least one selected from the group consisting of a cyclic amide, a chain amide, and a cyclic ester, and more preferably a cyclic amide.
  • the cyclic amide include N-methylpyrrolidone, N-methylcaprolactam, and 1,3-dimethylimidazolidinone, with N-methylpyrrolidone being preferred.
  • Examples of the chain amide include N,N-dimethylformamide, N,N-dimethylacetamide, and tetramethylurea.
  • Examples of the cyclic ester include ⁇ -butyrolactone and ⁇ -valerolactone.
  • Other ester solvents include acetic acid (2-methoxy-1-methylethyl) and the like.
  • Examples of the phosphorus-containing amide solvent include hexamethylphosphoric amide, hexamethylphosphine triamide, and the like.
  • Examples of the sulfur-containing solvent include dimethylsulfone, dimethylsulfoxide, and sulfolane.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, cyclohexanone, methyl cyclohexanone, and the like.
  • phenolic solvents include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4 -xylenol, 3,5-xylenol, etc.
  • ether solvents include 1,2-dimethoxyethane, bis(2-methoxyethyl)ether, 1,2-bis(2-methoxyethoxy)ethane, and bis[2-(2-methoxyethoxy)ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
  • carbonate solvents include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and the like.
  • it preferably contains at least one selected from the group consisting of cyclic amides, chain amides, and cyclic esters, more preferably contains cyclic amides, and still more preferably contains N-methylpyrrolidone.
  • the above solvents may be used alone or in combination of two or more.
  • the varnish of the present invention contains the polymer obtained by the above manufacturing method and a solvent.
  • the solvent is not particularly limited as long as it dissolves the polymer, but it is preferable to use the above-mentioned compounds alone or in a mixture of two or more as the solvent used for producing the polymer.
  • it preferably contains at least one selected from the group consisting of cyclic amides, chain amides, and cyclic esters, more preferably contains cyclic amides, and still more preferably contains N-methylpyrrolidone.
  • the varnish of the present invention may be the polymer solution itself obtained by the above-mentioned polymer production method, may have a solvent added thereto, or may have a reduced amount of solvent by concentration or the like. .
  • the varnish of the present invention may further contain an imidization catalyst and a dehydration catalyst.
  • the imidization catalyst may be any imidization catalyst having a boiling point of 40° C. or higher and 180° C. or lower, and amine compounds having a boiling point of 180° C. or lower are preferred. If the imidization catalyst has a boiling point of 180° C. or lower, there is no risk that the film will be colored during drying at a high temperature after film formation and the appearance will be impaired. Moreover, if the imidization catalyst has a boiling point of 40° C.
  • An amine compound suitably used as an imidization catalyst includes pyridine or picoline.
  • the above imidization catalysts may be used alone or in combination of two or more.
  • the dehydration catalyst include acid anhydrides such as acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, and trifluoroacetic anhydride; carbodiimide compounds such as dicyclohexylcarbodiimide; and the like. These may be used alone or in combination of two or more.
  • the varnish of the present invention preferably contains 3 to 40% by mass of the polymer, more preferably 5 to 40% by mass, and even more preferably 10 to 30% by mass.
  • the viscosity of the varnish is preferably 1 to 200 Pa ⁇ s, more preferably 2 to 20 Pa ⁇ s.
  • the viscosity of the varnish is a value measured at 25°C using an E-type viscometer.
  • the varnish of the present invention may contain inorganic fillers, adhesion promoters, release agents, flame retardants, ultraviolet stabilizers, surfactants, leveling agents, antifoaming agents, optical brighteners, within the range that does not impair the required properties of the polyimide film. It may also contain various additives such as a cross-linking agent, a polymerization initiator, and a photosensitizer.
  • the varnish of the present invention contains a high molecular weight resin, there is little increase in viscosity even in a wide viscosity range, and it has excellent storage stability. Therefore, the rate of increase in viscosity on the 7th day of storage at 23°C is preferably 20% or less, more preferably 15% or less, and still more preferably 12% or less, with respect to the viscosity on day 0. Even more preferably, it is 9% or less.
  • a polyimide film can be manufactured using the varnish. Since the varnish contains a high molecular weight resin, a high strength film can be produced. In addition, even though the varnish contains a high molecular weight resin, there is little increase in viscosity even in a wide viscosity range, and it has excellent storage stability, so it is possible to stably produce a high-strength film even after long-term storage. .
  • a suitable method for producing a polyimide film includes the steps of casting the above-mentioned varnish onto a substrate, and drying the cast varnish to form a polymer film.
  • the base material examples include smooth plate-like objects, such as smooth glass plates, metal plates, and plastic plates.
  • “Cast on a base material” means "to apply on a base material” and refers to pouring varnish onto a base material and forming it into a film. After the varnish is cast onto a substrate, the solvent contained in the varnish is removed by heating and dried to form a polymer film. Furthermore, it is preferable to produce a polyimide film by a step of drying the polymer film at a temperature higher than the boiling point of the solvent.
  • a polyimide film may be obtained by peeling the polymer film from the base material and then drying it at a temperature higher than the boiling point of the solvent, or by drying the polymer film at a temperature higher than the boiling point of the solvent before peeling it from the base material.
  • a polyimide film may be obtained by peeling the polyimide film from the base material. Furthermore, even if the polymer in the polymer film has an amic acid moiety, it can be imidized (dehydration ring closed) by heating at a temperature equal to or higher than the boiling point of the solvent to obtain a polyimide film.
  • the weight average molecular weight (Mw) of the polyimide contained in the polyimide film obtained by the above manufacturing method is 300,000 or more, preferably 400,000 or more, especially from the viewpoint of elongation among the mechanical strength of the polyimide film. Yes, more preferably 500,000 or more. Although there is no upper limit to the upper limit, it is preferably 1,000,000 or less, more preferably 700,000 or less. Further, from the same viewpoint, the number average molecular weight is preferably 50,000 to 500,000. Note that the weight average molecular weight and number average molecular weight of the polyimide can be determined from standard polystyrene (PS) equivalent values determined by gel filtration chromatography measurement.
  • PS polystyrene
  • the heating temperature when drying the varnish of the present invention to obtain a polymer film is preferably 50 to 150°C.
  • the heating time is usually 1 minute to 6 hours, preferably 5 minutes to 2 hours, more preferably 15 minutes to 1 hour.
  • the heating temperature for further drying the polymer film is preferably 100 to 500°C, more preferably 200 to 450°C, and even more preferably 300 to 430°C.
  • the heating time is usually 1 minute to 6 hours, preferably 5 minutes to 2 hours, more preferably 15 minutes to 1 hour.
  • heating can be divided into two or more stages. When heating is divided into two or more stages, it is preferably two or more stages. Although there is no upper limit, it is preferably 5 or less.
  • the heating temperature in the first stage is preferably 100 to 300°C, and the heating time is preferably 1 minute to 6 hours.
  • the heating temperature in the final stage is preferably 300 to 500°C, and the heating time is preferably 1 minute to 6 hours.
  • the heating temperature in the first stage is preferably 100 to 300°C, and the heating time is preferably 1 minute to 6 hours.
  • the heating temperature in the second stage is preferably 300 to 500°C, and the heating time is preferably 1 minute to 6 hours.
  • the atmosphere for further drying the polymer film includes air gas, nitrogen gas, oxygen gas, hydrogen gas, nitrogen/hydrogen mixed gas, etc., but in order to suppress the coloring of the resulting polyimide film, the oxygen concentration must be Preferred are nitrogen gas having a concentration of 100 ppm or less, and a nitrogen/hydrogen mixed gas containing hydrogen at a hydrogen concentration of 0.5% or less.
  • the thickness of the polyimide film of the present invention can be appropriately selected depending on the intended use, but is preferably 1 to 250 ⁇ m, more preferably 5 to 100 ⁇ m, and still more preferably 5 to 50 ⁇ m. A thickness of 1 to 250 ⁇ m allows practical use as a self-supporting film.
  • the thickness of the polyimide film can be easily controlled by adjusting the solid content concentration and viscosity of the varnish, and the amount of varnish used during casting.
  • the polyimide film of the present invention is suitably used as a film for various members such as color filters, flexible displays, semiconductor parts, and optical members.
  • the polyimide film of the present invention is particularly suitably used as a substrate for image display devices such as liquid crystal displays and OLED displays.
  • the apparatus was Shodex 101 (manufactured by Showa Denko KK), the column was KD-806M (manufactured by Showa Denko KK), the flow rate was 1.0 mL/min, and the column temperature was 40°C.
  • the molecular weight of the polymer contained in the varnish of each Example and each Comparative Example is shown in Table 1-1 and Table 1-2.
  • Thickening rate (%) [(B) - (A)] / (A) x 100
  • Table 1-1 and Table 1-2 The results of the storage stability evaluation of the varnishes of each Example and each Comparative Example are shown in Table 1-1 and Table 1-2. The smaller the value of the thickening rate, the better the storage stability.
  • ⁇ Tetracarboxylic acid component and diamine component used in Examples and Comparative Examples, and their abbreviations are as follows.
  • s-BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride (manufactured by Mitsubishi Chemical Corporation, compound represented by formula (a1s))
  • solvents and catalysts used in Examples and Comparative Examples are as follows.
  • NMP N-methyl-2-pyrrolidone (manufactured by Tokyo Pure Chemical Industries, Ltd.)
  • TEA Triethylamine (manufactured by Kanto Kagaku Co., Ltd.)
  • Example 1 Production of polyamic acid varnish> 26.101 g (0.114 mol) of 4-BAAB was placed in a 500 mL 5-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap. ) and 192.000 g of NMP were added, the system temperature was set to 70° C. under a nitrogen atmosphere, and the mixture was stirred at a rotational speed of 200 rpm to obtain a solution.
  • Example 2 Production of imide-amic acid copolymer varnish> 7.449 g (0.033 mol) of 4-BAAB was placed in a 500 mL 5-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap. ) and 49.695 g of NMP were added, the system temperature was set to 70° C. under a nitrogen atmosphere, and the mixture was stirred at a rotational speed of 200 rpm to obtain a solution.
  • Example 3 Production of imide-amic acid copolymer varnish> A solution containing an imide-amic acid copolymer was obtained in the same manner as in Example 2, except that the amount of 4-BAAB was changed as shown in Table 1-1. NMP was added to this so that the viscosity at 25° C. was 3 Pa ⁇ s to obtain a varnish for storage stability evaluation.
  • Examples 4 and 5 Production of imide-amic acid copolymer varnish>
  • a solution containing an imide-amic acid copolymer was obtained.
  • NMP was added to this so that the solid content (concentration of the polymer in the varnish) was 15% by mass and 20% by mass, respectively, to prepare a varnish for storage stability evaluation.
  • the polyimide film used in the tensile elongation evaluation was manufactured as follows.
  • the varnishes produced in the above Examples and Comparative Examples were applied onto a glass plate by spin coating, held at 80°C for 20 minutes on a hot plate, then transferred to a hot air dryer, and heated at a temperature increase rate of 5°C under a nitrogen atmosphere.
  • the temperature was raised to 420° C./min at 420° C. in a hot air dryer under a nitrogen atmosphere for 60 minutes to evaporate the solvent and thermally imidize the mixture to obtain a polyimide film.
  • the varnish containing the polymer obtained by the production method of the present invention has a wide viscosity range despite containing a high molecular weight resin (polyimide precursor). It can be seen that a varnish with little increase in viscosity and excellent storage stability can be obtained. In addition, in Comparative Examples 8 and 10, the molecular weight of the resin is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

This method for producing a polymer, the method comprising Step 1 for polymerizing diamine and tetracarboxylic dianhydride to obtain a polymer, wherein: the molar ratio of the diamine to the tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is 1.00 to 1.03 (exclusive of 1.03); Step 1 is a step for polymerizing diamine and tetracarboxylic dianhydride in the presence of tert-butanol and a solvent; and the polymer has, as a repeating unit, at least one selected from the group consisting of an amidic acid unit and an imide unit, and has a weight average molecular weight of at least 300,000.

Description

重合体の製造方法、ワニス、及びワニスの製造方法Polymer manufacturing method, varnish, and varnish manufacturing method
 本発明は重合体の製造方法、ワニス、及びワニスの製造方法に関する。 The present invention relates to a method for producing a polymer, a varnish, and a method for producing a varnish.
 ポリイミド樹脂は、優れた機械的特性及び耐熱性を有することから、電気・電子部品等の分野において様々な利用が検討されている。例えば、液晶ディスプレイやOLEDディスプレイ等の画像表示装置に用いられるガラス基板をポリイミドフィルム基板へ代替することが望まれていることから、光学材料としての性能を満たすポリイミド樹脂の開発が行われている。
 このようなポリイミドフィルムをはじめとするポリイミド成形体を製造するための原料として、ポリイミド又はポリイミド前駆体を溶媒に溶解した溶液であるワニスが用いられている。得られるポリイミド成形体の性能を向上させ、成形体の製造を容易にするためにワニスにも工夫がなされている。
Since polyimide resin has excellent mechanical properties and heat resistance, various uses are being considered in fields such as electrical and electronic parts. For example, since it is desired to replace glass substrates used in image display devices such as liquid crystal displays and OLED displays with polyimide film substrates, polyimide resins that satisfy the performance as optical materials are being developed.
Varnish, which is a solution of polyimide or a polyimide precursor dissolved in a solvent, is used as a raw material for manufacturing polyimide molded bodies such as polyimide films. Varnishes have also been devised to improve the performance of the resulting polyimide molded bodies and to facilitate the manufacture of the molded bodies.
 たとえば、特許文献1には、保存安定性の向上を目的として、ポリアミド酸等のポリマーと溶媒と、1価の1級アミン、1価のアルコール等の化合物を特定量含有するワニスが開示されている。 For example, Patent Document 1 discloses a varnish containing a specific amount of a polymer such as polyamic acid, a solvent, and a compound such as a monovalent primary amine or monovalent alcohol for the purpose of improving storage stability. There is.
特開2021-014564号公報Japanese Patent Application Publication No. 2021-014564
 ポリイミド樹脂は前記のように優れた性質を有しているが、最近では更に高い強度や耐熱性が要求されるようになっている。そのため、ポリイミド樹脂の高分子量化が必要になっている。また、目的とするポリイミドフィルムの形状や厚さ、用途に応じて、様々な樹脂濃度のワニスが必要とされている。一方、高分子量のポリイミド又はポリイミド前駆体を含んだワニスは、保存時に粘度の上昇が起きやすいという問題があった。更に、樹脂濃度が変わると粘度が大きく変わるが、用途によって要求される樹脂濃度は異なる。このように様々な樹脂濃度において、ワニスの粘度変化を抑制し、安定性を維持することは困難となっていた。特に高分子量のポリイミド又はポリイミド前駆体を含みながらも保存安定性に優れるワニスが求められていた。
 本発明はこのような状況に鑑みてなされたものであり、本発明の課題は、高分子量の樹脂を含むにもかかわらず、幅広い粘度範囲においても粘度上昇が少なく、保存安定性に優れるワニスを得ることができる重合体の製造方法、該重合体を含むワニス、及びワニスの製造方法を提供することにある。
Polyimide resins have excellent properties as described above, but recently, even higher strength and heat resistance have been required. Therefore, it is necessary to increase the molecular weight of polyimide resin. Furthermore, varnishes with various resin concentrations are required depending on the shape, thickness, and purpose of the intended polyimide film. On the other hand, varnishes containing high molecular weight polyimides or polyimide precursors have a problem in that their viscosity tends to increase during storage. Furthermore, the viscosity changes greatly when the resin concentration changes, and the resin concentration required differs depending on the application. In this manner, it has been difficult to suppress changes in viscosity and maintain stability of the varnish at various resin concentrations. In particular, there has been a demand for a varnish that has excellent storage stability even though it contains a high molecular weight polyimide or a polyimide precursor.
The present invention was made in view of these circumstances, and an object of the present invention is to create a varnish that exhibits little increase in viscosity even in a wide viscosity range and has excellent storage stability despite containing a high molecular weight resin. The object of the present invention is to provide a method for producing a polymer that can be obtained, a varnish containing the polymer, and a method for producing a varnish.
 本発明者らは、ポリイミド又はポリイミド前駆体である重合体を得る際にモノマー比を特定の範囲とし、tert-ブタノール存在下で重合させることで、上記課題を解決できることを見出し、発明を完成させるに至った。 The present inventors have discovered that the above problems can be solved by setting the monomer ratio in a specific range when obtaining a polymer that is a polyimide or a polyimide precursor, and polymerizing it in the presence of tert-butanol, and have completed the invention. reached.
 即ち、本発明は、下記の[1]~[14]に関する。
[1]ジアミンとテトラカルボン酸二無水物を重合させて重合体を得る工程1を有する重合体の製造方法であって、前記工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比(ジアミン/テトラカルボン酸二無水物)が1.00以上、1.03未満であり、前記工程1が、ジアミンとテトラカルボン酸二無水物を、tert-ブタノールと溶媒存在下で重合させる工程であり、前記重合体が、アミド酸単位及びイミド単位からなる群より選ばれる少なくとも1つを繰り返し単位とし、重量平均分子量が300,000以上である、重合体の製造方法。
[2]前記重合体が、ポリアミド酸、ポリイミド、及びイミド-アミド酸共重合体からなる群より選ばれる少なくとも一種である、前記[1]に記載の重合体の製造方法。
[3]前記重合体がポリアミド酸であって、工程1が、ジアミンと溶媒を含む溶液と、テトラカルボン酸二無水物及びtert-ブタノールとを混合し、重合させる工程である、前記[1]又は[2]に記載の重合体の製造方法。
[4]前記重合体がポリアミド酸であって、前記テトラカルボン酸二無水物が下記式(a1)で表される化合物を含み、前記ジアミンが下記一般式(b1)で表される化合物を含む、前記[1]~[3]のいずれか1つに記載の重合体の製造方法。
Figure JPOXMLDOC01-appb-C000003

(式(b1)中、R1、R2、R3はそれぞれ独立して、炭素数1~20の有機基を表す。h、i、j、kは0~4の整数である。)
[5]前記重合体が、イミド-アミド酸共重合体であって、前記テトラカルボン酸二無水物が、第1のテトラカルボン酸二無水物と第2のテトラカルボン酸二無水物からなり、前記ジアミンが第1のジアミンと第2のジアミンからなり、前記工程1が下記工程1-1及び下記工程1-2からなる、前記[1]又は[2]に記載の重合体の製造方法。
 工程1-1:第1のテトラカルボン酸二無水物と第1のジアミンとを、溶媒存在下で反応させ、イミドオリゴマーを得る工程
 工程1-2:工程1-1で得られたイミドオリゴマー、第2のテトラカルボン酸二無水物、第2のジアミン及びtert-ブタノールを混合し、重合させる工程
[6]前記重合体が、イミド-アミド酸共重合体であって、前記第1のテトラカルボン酸二無水物が下記式(a1)で表される化合物を含み、前記第2のテトラカルボン酸二無水物が下記式(a2)で表される化合物を含み、前記第1のジアミンおよび前記第2のジアミンが下記式(b1)で表される化合物を含む、前記[5]に記載の重合体の製造方法。
Figure JPOXMLDOC01-appb-C000004

(式(b1)中、R1、R2、R3はそれぞれ独立して、炭素数1~20の有機基を表す。h、i、j、kは0~4の整数である。)
[7]工程1におけるtert-ブタノールの量が、工程1におけるテトラカルボン酸二無水物の全量に対し、2モル%以上である、前記[1]~[6]のいずれか1つに記載の重合体の製造方法。
[8]前記[1]~[7]のいずれか1つに記載の製造方法により得られる重合体と、溶媒を含むワニス。
[9]ジアミンとテトラカルボン酸二無水物を重合させて重合体を得る工程1を有するワニスの製造方法であって、前記工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比(ジアミン/テトラカルボン酸二無水物)が1.00以上、1.03未満であり、前記工程1が、ジアミンとテトラカルボン酸二無水物を、tert-ブタノールと溶媒存在下で重合させる工程であり、前記重合体が、アミド酸単位及びイミド単位からなる群より選ばれる少なくとも1つを繰り返し単位とし、重量平均分子量が300,000以上であり、前記ワニスが、前記重合体と溶媒を含む、ワニスの製造方法。
[10]前記[9]に記載の製造方法により得られるワニス。
[11]23℃保管7日目の粘度の増加率が、0日目の粘度に対して15%以下である、前記[8]又は[10]に記載のワニス。
[12]溶媒が、環状アミド、鎖状アミド及び環状エステルからなる群より選ばれる少なくとも一種を含む、前記[8]、[10]又は[11]に記載のワニス。
[13]溶媒が、N-メチルピロリドンを含む、前記[8]又は[10]~[12]のいずれか1つに記載のワニス。
[14]前記[8]又は[10]~[13]のいずれか1つに記載のワニスを基材にキャストする工程と、キャストしたワニスを乾燥して、重合体フィルムを形成する工程とを含む、ポリイミドフィルムの製造方法。
That is, the present invention relates to the following [1] to [14].
[1] A method for producing a polymer, comprising a step 1 of polymerizing a diamine and a tetracarboxylic dianhydride to obtain a polymer, the molar ratio of the diamine to the tetracarboxylic dianhydride in the step 1 ( diamine/tetracarboxylic dianhydride) is 1.00 or more and less than 1.03, and step 1 is a step of polymerizing the diamine and the tetracarboxylic dianhydride in the presence of tert-butanol and a solvent. . A method for producing a polymer, wherein the polymer has at least one repeating unit selected from the group consisting of amic acid units and imide units, and has a weight average molecular weight of 300,000 or more.
[2] The method for producing a polymer according to [1] above, wherein the polymer is at least one selected from the group consisting of polyamic acid, polyimide, and imido-amic acid copolymers.
[3] The above-mentioned [1], wherein the polymer is a polyamic acid, and step 1 is a step of mixing a solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol, and polymerizing the mixture. Or the method for producing a polymer according to [2].
[4] The polymer is a polyamic acid, the tetracarboxylic dianhydride contains a compound represented by the following formula (a1), and the diamine contains a compound represented by the following general formula (b1). , a method for producing the polymer according to any one of [1] to [3] above.
Figure JPOXMLDOC01-appb-C000003

(In formula (b1), R 1 , R 2 , and R 3 each independently represent an organic group having 1 to 20 carbon atoms. h, i, j, and k are integers of 0 to 4.)
[5] The polymer is an imide-amic acid copolymer, and the tetracarboxylic dianhydride consists of a first tetracarboxylic dianhydride and a second tetracarboxylic dianhydride, The method for producing a polymer according to [1] or [2], wherein the diamine consists of a first diamine and a second diamine, and the step 1 consists of the following step 1-1 and the following step 1-2.
Step 1-1: A step of reacting the first tetracarboxylic dianhydride and the first diamine in the presence of a solvent to obtain an imide oligomer. Step 1-2: The imide oligomer obtained in Step 1-1. Step of mixing and polymerizing the second tetracarboxylic dianhydride, the second diamine, and tert-butanol [6] The polymer is an imide-amic acid copolymer, and the first tetracarboxylic dianhydride The acid dianhydride contains a compound represented by the following formula (a1), the second tetracarboxylic dianhydride contains a compound represented by the following formula (a2), and the first diamine and the first dianhydride contain a compound represented by the following formula (a2). The method for producing a polymer according to the above [5], wherein the diamine of No. 2 contains a compound represented by the following formula (b1).
Figure JPOXMLDOC01-appb-C000004

(In formula (b1), R 1 , R 2 , and R 3 each independently represent an organic group having 1 to 20 carbon atoms. h, i, j, and k are integers of 0 to 4.)
[7] The method according to any one of [1] to [6] above, wherein the amount of tert-butanol in Step 1 is 2 mol% or more based on the total amount of tetracarboxylic dianhydride in Step 1. Method for producing polymers.
[8] A varnish containing a polymer obtained by the production method according to any one of [1] to [7] above and a solvent.
[9] A method for producing a varnish, comprising a step 1 of polymerizing a diamine and a tetracarboxylic dianhydride to obtain a polymer, the molar ratio of the diamine to the tetracarboxylic dianhydride in step 1 (diamine /tetracarboxylic dianhydride) is 1.00 or more and less than 1.03, and step 1 is a step of polymerizing diamine and tetracarboxylic dianhydride in the presence of tert-butanol and a solvent, The polymer has at least one repeating unit selected from the group consisting of amic acid units and imide units, and has a weight average molecular weight of 300,000 or more, and the varnish contains the polymer and a solvent. Production method.
[10] A varnish obtained by the manufacturing method described in [9] above.
[11] The varnish according to [8] or [10], wherein the viscosity increase rate on the 7th day of storage at 23°C is 15% or less relative to the viscosity on the 0th day.
[12] The varnish according to [8], [10], or [11], wherein the solvent contains at least one selected from the group consisting of a cyclic amide, a chain amide, and a cyclic ester.
[13] The varnish according to any one of [8] or [10] to [12] above, wherein the solvent contains N-methylpyrrolidone.
[14] A step of casting the varnish according to any one of [8] or [10] to [13] above on a base material, and a step of drying the cast varnish to form a polymer film. A method for producing a polyimide film, including:
 本発明によれば、高分子量の樹脂を含むにもかかわらず、粘度上昇が少なく、保存安定性に優れるワニスを得ることができる重合体の製造方法、該重合体を含むワニス、及びワニスの製造方法を提供することができる。また、当該ワニスを用いるポリイミドフィルムの製造方法も提供することができる。 According to the present invention, a method for producing a polymer that can produce a varnish with little increase in viscosity and excellent storage stability despite containing a high molecular weight resin, a varnish containing the polymer, and production of the varnish method can be provided. Furthermore, a method for producing a polyimide film using the varnish can also be provided.
[重合体の製造方法]
 本発明の重合体の製造方法は、ジアミンとテトラカルボン酸二無水物を重合させて重合体を得る工程1を有する重合体の製造方法であって、前記工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比(ジアミン/テトラカルボン酸二無水物)が1.00以上、1.03未満であり、前記工程1が、ジアミンとテトラカルボン酸二無水物を、tert-ブタノールと溶媒存在下で重合させる工程であり、前記重合体が、アミド酸単位及びイミド単位からなる群より選ばれる少なくとも1つを繰り返し単位とし、重量平均分子量が300,000以上である、重合体の製造方法である。
[Production method of polymer]
The method for producing a polymer of the present invention is a method for producing a polymer, comprising a step 1 of obtaining a polymer by polymerizing a diamine and a tetracarboxylic dianhydride, the method comprising: obtaining a polymer by polymerizing a diamine and a tetracarboxylic dianhydride; The molar ratio of the diamine to the diamine (diamine/tetracarboxylic dianhydride) is 1.00 or more and less than 1.03, and in step 1, the diamine and the tetracarboxylic dianhydride are combined with tert-butanol in the presence of a solvent. A method for producing a polymer, wherein the polymer has at least one repeating unit selected from the group consisting of amic acid units and imide units, and has a weight average molecular weight of 300,000 or more. be.
<重合体>
 まず、前記製造方法で製造される重合体について説明する。
 前記重合体は、アミド酸単位及びイミド単位からなる群より選ばれる少なくとも1つを繰り返し単位とするが、好ましくはアミド酸単位を構成単位とし、保存安定性を高める観点からは、より好ましくはアミド酸単位及びイミド単位の両方を繰り返し単位とする。
 ここで「アミド酸単位を繰り返し単位とする」とは、下記テトラカルボン酸二無水物とジアミンが1つずつ結合し、アミド酸構造を有した1つの単位をいい、前記重合体において繰り返される最小の単位をいう。また、「イミド単位を繰り返し単位とする」とは、下記テトラカルボン酸二無水物とジアミンが1つずつ結合し、イミド構造を有した1つの単位をいい、前記重合体において繰り返される最小の単位をいう。
 前記重合体は、好ましくはポリアミド酸、ポリイミド、及びイミド-アミド酸共重合体からなる群より選ばれる少なくとも一種であり、より好ましくはポリアミド酸、及びイミド-アミド酸共重合体からなる群より選ばれる少なくとも一種であり、高分子量の重合体を得る観点からは、更に好ましくはポリアミド酸であり、保存安定性を高める観点からは、更に好ましくはイミド-アミド酸共重合体である。
<Polymer>
First, the polymer produced by the above production method will be explained.
The polymer has at least one repeating unit selected from the group consisting of an amic acid unit and an imide unit, preferably an amic acid unit as a constituent unit, and more preferably an amide unit from the viewpoint of improving storage stability. Both acid units and imide units are repeating units.
Here, "having an amic acid unit as a repeating unit" refers to one unit having an amic acid structure in which the following tetracarboxylic dianhydride and diamine are bonded one by one, and the minimum repeating unit in the polymer is The unit of In addition, "having an imide unit as a repeating unit" refers to one unit having an imide structure in which the following tetracarboxylic dianhydride and diamine are bonded one by one, and is the smallest repeating unit in the polymer. means.
The polymer is preferably at least one selected from the group consisting of polyamic acid, polyimide, and imide-amic acid copolymer, more preferably selected from the group consisting of polyamic acid and imide-amic acid copolymer. From the viewpoint of obtaining a high molecular weight polymer, polyamic acid is more preferred, and from the viewpoint of improving storage stability, imide-amic acid copolymer is even more preferred.
 前記重合体の重量平均分子量(Mw)は、得られるポリイミドフィルムの機械的強度の観点から、300,000以上であり、好ましくは400,000以上であり、より好ましくは500,000以上である。また、上限には制限はないが、好ましくは1,000,000以下であり、より好ましくは700,000以下である。また、数平均分子量は、同様の観点から、好ましくは50,000~500,000である。なお、当該重合体の重量平均分子量及び数平均分子量は、ゲルろ過クロマトグラフィー測定による標準ポリスチレン(PS)換算値より求めることができる。 The weight average molecular weight (Mw) of the polymer is 300,000 or more, preferably 400,000 or more, and more preferably 500,000 or more from the viewpoint of the mechanical strength of the resulting polyimide film. Although there is no upper limit to the upper limit, it is preferably 1,000,000 or less, more preferably 700,000 or less. Further, from the same viewpoint, the number average molecular weight is preferably 50,000 to 500,000. In addition, the weight average molecular weight and number average molecular weight of the said polymer can be calculated|required from the standard polystyrene (PS) conversion value by gel filtration chromatography measurement.
 上記のように、前記工程1では、ジアミンとテトラカルボン酸二無水物を、tert-ブタノールの存在下で重合させるため、前記重合体は末端の一部にtert-ブタノール由来のtert-ブトキシ基を有する。 As mentioned above, in step 1, the diamine and the tetracarboxylic dianhydride are polymerized in the presence of tert-butanol, so the polymer has a tert-butoxy group derived from tert-butanol at a part of the end. have
(重合体の各構成単位)
 前記重合体は、テトラカルボン酸二無水物に由来する構成単位A及びジアミンに由来する構成単位Bを有する。
 なお、重合体がポリアミド酸の場合、構成単位A及び構成単位Bはアミド酸構造を形成しており、重合体がポリイミドの場合、構成単位A及び構成単位Bはイミド構造を形成しており、重合体がイミド-アミド酸共重合体の場合、構成単位A及び構成単位Bはイミド構造とアミド酸構造のいずれもを形成しているが、テトラカルボン酸二無水物に由来する構成単位を構成単位A、ジアミンに由来する構成単位を構成単位Bと総称する。
(Each structural unit of the polymer)
The polymer has a structural unit A derived from a tetracarboxylic dianhydride and a structural unit B derived from a diamine.
In addition, when the polymer is a polyamic acid, the structural unit A and the structural unit B form an amic acid structure, and when the polymer is a polyimide, the structural unit A and the structural unit B form an imide structure, When the polymer is an imide-amic acid copolymer, structural unit A and structural unit B form both an imide structure and an amic acid structure, but structural units derived from tetracarboxylic dianhydride constitute the structural unit. Unit A and the structural units derived from diamine are collectively referred to as structural unit B.
(構成単位A)
 構成単位Aは、テトラカルボン酸二無水物に由来する構成単位であり、テトラカルボン酸二無水物に由来する構成単位であれば、特に制限はないが、好ましくは芳香族テトラカルボン酸二無水物に由来する構成単位を含み、より好ましくは芳香族テトラカルボン酸二無水物に由来する構成単位である。
(Component unit A)
The structural unit A is a structural unit derived from a tetracarboxylic dianhydride, and is not particularly limited as long as it is a structural unit derived from a tetracarboxylic dianhydride, but is preferably an aromatic tetracarboxylic dianhydride. , and more preferably a structural unit derived from aromatic tetracarboxylic dianhydride.
 芳香族テトラカルボン酸二無水物に由来する構成単位を与える芳香族テトラカルボン酸二無水物としては、ビフェニルテトラカルボン酸二無水物(BPDA)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(BPAF)、ピロメリット酸二無水物、3,3’,4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物等が挙げられる。
 これらのなかでも、高分子量化を達成させる観点から、好ましくは下記式(a1)で表される化合物及び下記式(a2)で表される化合物からなる群より選ばれる少なくとも1つであり、より好ましくは下記式(a1)で表される化合物である。
 すなわち、構成単位Aは好ましくは下記式(a1)で表される化合物に由来する構成単位(A1)及び下記式(a2)で表される化合物に由来する構成単位(A2)からなる群より選ばれる少なくとも1つを含み、より好ましくは下記式(a1)で表される化合物に由来する構成単位(A1)を含む。
Figure JPOXMLDOC01-appb-C000005
Examples of aromatic tetracarboxylic dianhydrides that provide structural units derived from aromatic tetracarboxylic dianhydrides include biphenyltetracarboxylic dianhydride (BPDA), 9,9-bis(3,4-dicarboxyphenyl) ) Fluorene dianhydride (BPAF), pyromellitic dianhydride, 3,3',4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 3,3',4,4'-diphenylsulfone tetra Examples include carboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and 2,2',3,3'-benzophenonetetracarboxylic dianhydride.
Among these, from the viewpoint of achieving high molecular weight, at least one compound selected from the group consisting of a compound represented by the following formula (a1) and a compound represented by the following formula (a2) is preferred, and more Preferably, it is a compound represented by the following formula (a1).
That is, the structural unit A is preferably selected from the group consisting of a structural unit (A1) derived from a compound represented by the following formula (a1) and a structural unit (A2) derived from a compound represented by the following formula (a2). , and more preferably a structural unit (A1) derived from a compound represented by the following formula (a1).
Figure JPOXMLDOC01-appb-C000005
 式(a1)で表される化合物は、ビフェニルテトラカルボン酸二無水物(BPDA)であり、その具体例としては、下記式(a1s)で表される3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、下記式(a1a)で表される2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)、下記式(a1i)で表される2,2’,3,3’-ビフェニルテトラカルボン酸二無水物(i-BPDA)が挙げられる。中でも、下記式(a1s)で表される3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)が好ましい。
Figure JPOXMLDOC01-appb-C000006
The compound represented by formula (a1) is biphenyltetracarboxylic dianhydride (BPDA), and a specific example thereof is 3,3',4,4'-biphenyl represented by the following formula (a1s). Tetracarboxylic dianhydride (s-BPDA), 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA) represented by the following formula (a1a), and the following formula (a1i) Examples include 2,2',3,3'-biphenyltetracarboxylic dianhydride (i-BPDA). Among these, 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA) represented by the following formula (a1s) is preferred.
Figure JPOXMLDOC01-appb-C000006
 式(a2)で表される化合物は、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(BPAF)である。 The compound represented by formula (a2) is 9,9'-bis(3,4-dicarboxyphenyl)fluorene dianhydride (BPAF).
 前記重合体がポリアミド酸の場合、構成単位(A1)を含むことが好ましい。
 前記重合体がイミド-アミド酸共重合体の場合、ポリイミド単位には、構成単位(A2)を含み、ポリアミド酸単位には、構成単位(A1)を含むことが好ましい。
When the polymer is a polyamic acid, it preferably contains the structural unit (A1).
When the polymer is an imide-amic acid copolymer, the polyimide unit preferably contains the structural unit (A2), and the polyamic acid unit preferably contains the structural unit (A1).
 構成単位Aは、芳香族テトラカルボン酸二無水物以外の構成単位を含んでもよい。そのような構成単位を与えるテトラカルボン酸二無水物としては、特に限定されないが、脂環式テトラカルボン酸二無水物、及び脂肪族テトラカルボン酸二無水物が挙げられる。
 脂環式テトラカルボン酸二無水物に由来する構成単位を与える脂環式テトラカルボン酸二無水物としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシルテトラカルボン酸二無水物、5,5'-(1,4-phenylene)-bis[hexahydro-4,7-Methanoisobenzofuran-1,3-dione]、5,5’-ビス-2-ノルボルネン-5,5’,6,6’-テトラカルボン酸-5,5’,6,6’-二無水物、又はこれらの位置異性体等が挙げられる。
 脂肪族テトラカルボン酸二無水物に由来する構成単位を与える脂肪族テトラカルボン酸二無水物としては、1,2,3,4-ブタンテトラカルボン酸二無水物等が挙げられる。
 構成単位Aに任意に含まれる構成単位は、1種でもよいし、2種以上であってもよい。
 なお、本明細書において、芳香族テトラカルボン酸二無水物とは芳香環を1つ以上含むテトラカルボン酸二無水物を意味し、脂環式テトラカルボン酸二無水物とは脂環を1つ以上含み、かつ芳香環を含まないテトラカルボン酸二無水物を意味し、脂肪族テトラカルボン酸二無水物とは芳香環も脂環も含まないテトラカルボン酸二無水物を意味する。
The structural unit A may contain structural units other than aromatic tetracarboxylic dianhydride. Tetracarboxylic dianhydrides that provide such structural units include, but are not particularly limited to, alicyclic tetracarboxylic dianhydrides and aliphatic tetracarboxylic dianhydrides.
Examples of the alicyclic tetracarboxylic dianhydride that provides a structural unit derived from alicyclic tetracarboxylic dianhydride include 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3, 4-Cyclobutanetetracarboxylic dianhydride, norbornane-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride dianhydride, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, dicyclohexyltetracarboxylic dianhydride, 5,5'-(1,4-phenylene )-bis[hexahydro-4,7-Methanoisobenzofuran-1,3-dione], 5,5'-bis-2-norbornene-5,5',6,6'-tetracarboxylic acid-5,5',6 , 6'-dianhydride, or positional isomers thereof.
Examples of the aliphatic tetracarboxylic dianhydride that provides structural units derived from aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride and the like.
The number of structural units optionally included in the structural unit A may be one, or two or more.
In addition, in this specification, aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings, and alicyclic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more alicyclic rings. The term "aliphatic tetracarboxylic dianhydride" refers to a tetracarboxylic dianhydride containing the above and not containing an aromatic ring, and the term "aliphatic tetracarboxylic dianhydride" refers to a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
(構成単位B)
 構成単位Bは、ジアミンに由来する構成単位であり、ジアミンに由来する構成単位であれば、特に制限はないが、好ましくは芳香族ジアミンに由来する構成単位を含み、より好ましくは芳香族ジアミンに由来する構成単位である。
(Component unit B)
The structural unit B is a structural unit derived from a diamine, and is not particularly limited as long as it is a structural unit derived from a diamine, but preferably includes a structural unit derived from an aromatic diamine, and more preferably contains a structural unit derived from an aromatic diamine. It is a structural unit derived from
 芳香族ジアミンに由来する構成単位を与える芳香族ジアミンとしては、4-アミノフェニル-4-アミノベンゾエート(4-BAAB)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、3,5-ジアミノ安息香酸(3,5-DABA)、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、1,4-フェニレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,2’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノジフェニルメタン、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノベンズアニリド、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、及び1,4-ビス(4-アミノフェノキシ)ベンゼン等が挙げられる。 Examples of aromatic diamines that provide structural units derived from aromatic diamines include 4-aminophenyl-4-aminobenzoate (4-BAAB), 2,2'-bis(trifluoromethyl)benzidine (TFMB), and 3,5 -Diaminobenzoic acid (3,5-DABA), 9,9-bis(4-aminophenyl)fluorene (BAFL), 1,4-phenylenediamine, p-xylylenediamine, 1,5-diaminonaphthalene, 2, 2'-dimethylbiphenyl-4,4'-diamine, 4,4'-diaminodiphenylmethane, 1,4-bis[2-(4-aminophenyl)-2-propyl]benzene, 2,2-bis(4- (aminophenyl)hexafluoropropane, 4,4'-diaminobenzanilide, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H-inden-5-amine, α,α '-bis(4-aminophenyl)-1,4-diisopropylbenzene, N,N'-bis(4-aminophenyl)terephthalamide, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane , and 1,4-bis(4-aminophenoxy)benzene.
 芳香族ジアミンのなかでも、高分子量化を達成させる観点から、好ましくは下記式(b1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000007

(式(b1)中、R1、R2、R3はそれぞれ独立して、炭素数1~20の有機基を表す。h、i、j、kは0~4の整数である。)
 すなわち、構成単位Bは好ましくは前記式(b1)で表される化合物に由来する構成単位(B1)を含む。
 R1、R2、R3はそれぞれ独立して、炭素数1~20の有機基を表し、好ましくはR1、R2、R3はそれぞれ独立して、メチル基、トリフルオロメチル基である。
 h、i、j、kは0~4の整数であり、h、i、j、kはそれぞれ0が好ましい。
 なお、構成単位Bに前記式(b1)で表される化合物に由来する構成単位(B1)を含む場合、構成単位Aに前記式(a1)で表される化合物に由来する構成単位(A1)を含むことが好ましい。すなわち、前記重合体の構成単位Aが、前記式(a1)で表される化合物に由来する構成単位(A1)を含み、かつ前記重合体の構成単位Bが、前記式(b1)で表される化合物に由来する構成単位(B1)を含むことが好ましい。上記の構成単位の組合せとすることによって、フィルム物性に優れる高分子量の重合体を得ることができ、本発明の効果である保存安定性をより明確に発現させることができる。
Among the aromatic diamines, a compound represented by the following formula (b1) is preferred from the viewpoint of achieving high molecular weight.
Figure JPOXMLDOC01-appb-C000007

(In formula (b1), R 1 , R 2 , and R 3 each independently represent an organic group having 1 to 20 carbon atoms. h, i, j, and k are integers of 0 to 4.)
That is, the structural unit B preferably includes a structural unit (B1) derived from the compound represented by the formula (b1).
R 1 , R 2 and R 3 each independently represent an organic group having 1 to 20 carbon atoms, preferably R 1 , R 2 and R 3 each independently represent a methyl group or a trifluoromethyl group. .
h, i, j, and k are integers from 0 to 4, and each of h, i, j, and k is preferably 0.
In addition, when the structural unit B contains the structural unit (B1) derived from the compound represented by the above formula (b1), the structural unit A contains the structural unit (A1) derived from the compound represented by the above formula (a1). It is preferable to include. That is, the structural unit A of the polymer includes a structural unit (A1) derived from the compound represented by the formula (a1), and the structural unit B of the polymer is represented by the formula (b1). It is preferable to include a structural unit (B1) derived from a compound. By combining the above structural units, a high molecular weight polymer with excellent film properties can be obtained, and the storage stability, which is an effect of the present invention, can be more clearly expressed.
Figure JPOXMLDOC01-appb-C000008

 上記式(b1)で表される化合物の中でも、式(b11)で表される化合物(4-アミノフェニル-4-アミノベンゾエート(4-BAAB))が特に好ましい。
 すなわち、構成単位Bは特に好ましくは前記式(b11)で表される化合物に由来する構成単位(B11)を含む。
 なお、構成単位Bに前記式(b11)で表される化合物に由来する構成単位(B11)を含む場合、構成単位Aに前記式(a1)で表される化合物に由来する構成単位(A1)を含むことが好ましい。すなわち、前記重合体の構成単位Aが、前記式(a1)で表される化合物に由来する構成単位(A1)を含み、かつ前記重合体の構成単位Bが、前記式(b11)で表される化合物に由来する構成単位(B11)を含むことが好ましい。上記の構成単位の組合せとすることによって、フィルム物性に優れる高分子量の重合体を得ることができ、本発明の効果である保存安定性を特に明確に発現させることができる。
Figure JPOXMLDOC01-appb-C000008

Among the compounds represented by formula (b1) above, the compound represented by formula (b11) (4-aminophenyl-4-aminobenzoate (4-BAAB)) is particularly preferred.
That is, the structural unit B particularly preferably includes a structural unit (B11) derived from the compound represented by the above formula (b11).
In addition, when the structural unit B contains the structural unit (B11) derived from the compound represented by the above formula (b11), the structural unit A contains the structural unit (A1) derived from the compound represented by the above formula (a1). It is preferable to include. That is, the structural unit A of the polymer includes a structural unit (A1) derived from the compound represented by the formula (a1), and the structural unit B of the polymer is represented by the formula (b11). It is preferable to include a structural unit (B11) derived from a compound. By combining the above structural units, a high molecular weight polymer with excellent film properties can be obtained, and the storage stability, which is an effect of the present invention, can be particularly clearly expressed.
 構成単位Bは、芳香族ジアミン以外の構成単位を含んでもよい。そのような構成単位を与えるジアミンとしては、特に限定されないが、脂環式ジアミン、及び脂肪族ジアミンが挙げられる。
 脂環式ジアミンに由来する構成単位を与える脂環式ジアミンとしては、1,3-ビス(アミノメチル)シクロヘキサン、及び1,4-ビス(アミノメチル)シクロヘキサン等が挙げられる。
 脂肪族ジアミンに由来する構成単位を与える脂肪族ジアミンとしては、エチレンジアミン及びヘキサメチレンジアミン等が挙げられる。
 構成単位Bに任意に含まれる構成単位は、1種でもよいし、2種以上であってもよい。
 なお、本明細書において、芳香族ジアミンとは芳香環を1つ以上含むジアミンを意味し、脂環式ジアミンとは脂環を1つ以上含み、かつ芳香環を含まないジアミンを意味し、脂肪族ジアミンとは芳香環も脂環も含まないジアミンを意味する。
Structural unit B may also contain structural units other than aromatic diamine. Diamines that provide such structural units include, but are not particularly limited to, alicyclic diamines and aliphatic diamines.
Examples of the alicyclic diamine that provides a structural unit derived from an alicyclic diamine include 1,3-bis(aminomethyl)cyclohexane and 1,4-bis(aminomethyl)cyclohexane.
Examples of aliphatic diamines that provide structural units derived from aliphatic diamines include ethylene diamine and hexamethylene diamine.
The number of structural units optionally included in the structural unit B may be one, or two or more.
In addition, in this specification, aromatic diamine means a diamine containing one or more aromatic rings, alicyclic diamine means a diamine containing one or more alicyclic rings and no aromatic ring, Group diamine means a diamine containing neither aromatic ring nor alicyclic ring.
(重合体の製造方法及びワニスの製造方法)
 前記重合体の製造方法は、上述のとおり、ジアミンとテトラカルボン酸二無水物を重合させて重合体を得る工程1を有し、前記工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比(ジアミン/テトラカルボン酸二無水物)が1.00以上、1.03未満であり、前記工程1が、ジアミンとテトラカルボン酸二無水物を、tert-ブタノールと溶媒存在下で重合させる工程であるが、次の方法によることが好ましい。
 前記重合体には、イミド単位及びアミド酸単位のいずれか、又は両方を含むが、製造方法を変えることによって、これらを調節することができる。
 具体的には、イミド単位とアミド酸単位の両方を含む場合の製造方法(イミド-アミド酸共重合体の製造方法)において、イミド単位を主として含む部分(ポリイミド部分)を製造する工程のみを用いることで、実質的にイミド単位からなる重合体(ポリイミド)が得られ、アミド酸単位を主として含む部分(ポリアミド酸部分)を製造する工程のみを用いることで、実質的にアミド酸単位からなる重合体(ポリアミド酸)を得ることができる。
(Polymer manufacturing method and varnish manufacturing method)
As described above, the method for producing the polymer includes Step 1 of obtaining a polymer by polymerizing diamine and tetracarboxylic dianhydride, and the molar ratio of the diamine to the tetracarboxylic dianhydride in Step 1 is The ratio (diamine/tetracarboxylic dianhydride) is 1.00 or more and less than 1.03, and step 1 is a step of polymerizing diamine and tetracarboxylic dianhydride in the presence of tert-butanol and a solvent. However, it is preferable to use the following method.
The polymer contains either or both of imide units and amic acid units, but these can be controlled by changing the manufacturing method.
Specifically, in a production method containing both imide units and amic acid units (method for producing an imide-amic acid copolymer), only the step of producing a part (polyimide part) mainly containing imide units is used. By doing this, a polymer (polyimide) consisting essentially of imide units can be obtained, and by using only the process of producing a part (polyamic acid part) mainly containing amic acid units, a polymer consisting essentially of amic acid units can be obtained. (polyamic acid) can be obtained.
 上記方法によれば、溶媒に溶解した重合体を含む重合体溶液が得られる。本発明のワニスは、上述の重合体溶液に、更に溶媒を追加したものであってもよく、濃縮して溶媒を低減したものでもよい。したがって、本発明のワニスの製造方法には、前記重合体の製造方法が含まれる。
 つまり、本発明のワニスの製造方法は、ジアミンとテトラカルボン酸二無水物を重合させて重合体を得る工程1を有するワニスの製造方法であって、前記工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比(ジアミン/テトラカルボン酸二無水物)が1.00以上、1.03未満であり、前記工程1が、ジアミンとテトラカルボン酸二無水物を、tert-ブタノールと溶媒存在下で重合させる工程であり、前記重合体が、アミド酸単位及びイミド単位からなる群より選ばれる少なくとも1つを繰り返し単位とし、重量平均分子量が300,000以上であり、前記ワニスが、前記重合体と溶媒を含む、ワニスの製造方法である。
 前記ワニスは、上述の重合体の製造方法で得られた重合体溶液そのものであってもよいし、更に溶媒を追加したものであってもよく、濃縮等によって溶媒を低減したものでもよい。すなわち、前記ワニスの製造方法は、前記工程1のみを有する方法、前記工程1の後に溶媒を追加する工程を有する方法、又は前記工程1の後に溶媒を低減する工程を有する方法のいずれかであってもよい。
According to the above method, a polymer solution containing a polymer dissolved in a solvent is obtained. The varnish of the present invention may be obtained by adding a solvent to the above-mentioned polymer solution, or may be obtained by concentrating the solution to reduce the amount of solvent. Therefore, the method for producing the varnish of the present invention includes the method for producing the polymer.
That is, the method for producing a varnish of the present invention is a method for producing a varnish, which includes step 1 of obtaining a polymer by polymerizing a diamine and a tetracarboxylic dianhydride, and the method includes a step 1 of obtaining a polymer by polymerizing a diamine and a tetracarboxylic dianhydride. The molar ratio of the diamine to the diamine (diamine/tetracarboxylic dianhydride) is 1.00 or more and less than 1.03, and in step 1, the diamine and the tetracarboxylic dianhydride are combined with tert-butanol in the presence of a solvent. In this step, the polymer has at least one repeating unit selected from the group consisting of amic acid units and imide units and has a weight average molecular weight of 300,000 or more, and the varnish has a repeating unit of at least one selected from the group consisting of amic acid units and imide units, and the varnish has A method for producing varnish, including coalescence and solvent.
The varnish may be the polymer solution itself obtained by the above-mentioned method for producing a polymer, may have a solvent added thereto, or may have a reduced amount of solvent by concentration or the like. That is, the method for producing the varnish is any one of a method having only the step 1, a method having a step of adding a solvent after the step 1, or a method having a step of reducing the solvent after the step 1. It's okay.
 前記のように本発明の製造方法で得られる重合体が、イミド-アミド酸共重合体であるか、ポリイミドであるか、ポリアミド酸であるかによって、好適な工程1の条件は異なるが、工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比(ジアミン/テトラカルボン酸二無水物)は1.00以上、1.03未満である。工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比(ジアミン/テトラカルボン酸二無水物)は、好ましくは1.005以上であり、より好ましくは1.010以上である。また、好ましくは1.025以下であり、より好ましくは1.020以下である。工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比を前記範囲とすることによって、高分子量の重合体を得ることができ、高分子量の重合体を含むにもかかわらず、粘度上昇が少なく、保存安定性に優れるワニスを得ることができる。
 また、工程1で用いられるtert-ブタノールの量は、工程1におけるテトラカルボン酸二無水物の全量に対し、好ましくは2モル%以上であり、より好ましくは2.5モル%以上であり、更に好ましくは3モル%以上である。また、好ましくは5モル%以下であり、より好ましくは4モル%以下であり、更に好ましくは3.5モル%以下である。工程1におけるtert-ブタノールの量を前記範囲とすることによって、高分子量の重合体を含むにもかかわらず、粘度上昇が少なく、保存安定性に優れるワニスを得ることができる。
As mentioned above, the preferred conditions for Step 1 differ depending on whether the polymer obtained by the production method of the present invention is an imide-amic acid copolymer, polyimide, or polyamic acid. The molar ratio of the diamine to the tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in No. 1 is 1.00 or more and less than 1.03. The molar ratio of the diamine to the tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is preferably 1.005 or more, more preferably 1.010 or more. Further, it is preferably 1.025 or less, more preferably 1.020 or less. By setting the molar ratio of the diamine to the tetracarboxylic dianhydride in the above range in Step 1, a high molecular weight polymer can be obtained, and even though it contains a high molecular weight polymer, the viscosity does not increase. A varnish with excellent storage stability can be obtained.
Further, the amount of tert-butanol used in Step 1 is preferably 2 mol% or more, more preferably 2.5 mol% or more, based on the total amount of tetracarboxylic dianhydride in Step 1, and Preferably it is 3 mol% or more. Moreover, it is preferably 5 mol% or less, more preferably 4 mol% or less, and still more preferably 3.5 mol% or less. By setting the amount of tert-butanol in Step 1 within the above range, it is possible to obtain a varnish with little increase in viscosity and excellent storage stability despite containing a high molecular weight polymer.
 テトラカルボン酸二無水物に対する前記ジアミンのモル比を前記範囲とし、tert-ブタノールを用いることで、高分子量の重合体を含むにもかかわらず、粘度上昇が少なく、保存安定性に優れるワニスを得ることができる理由は定かではないが、酸二無水物とtert-ブタノールが反応することで、ジアミンと酸二無水物の反応を抑制していることが考えられる。
 以下に、前記製造方法で得られる重合体が、イミド-アミド酸共重合体である場合、ポリイミドである場合、ポリアミド酸である場合に分けて詳細に説明する。
By setting the molar ratio of the diamine to the tetracarboxylic dianhydride in the above range and using tert-butanol, a varnish with little increase in viscosity and excellent storage stability despite containing a high molecular weight polymer is obtained. The reason why this is possible is not clear, but it is thought that the reaction between the diamine and the acid dianhydride is suppressed by the reaction between the acid dianhydride and tert-butanol.
Below, cases in which the polymer obtained by the above production method is an imide-amic acid copolymer, a polyimide, and a polyamic acid will be explained in detail.
(イミド-アミド酸共重合体の製造方法)
 イミド単位とアミド酸単位の両方を含む重合体(以下イミド-アミド酸共重合体ともいう)である場合の好ましい製造方法は、テトラカルボン酸二無水物が、第1のテトラカルボン酸二無水物と第2のテトラカルボン酸二無水物からなり、ジアミンが第1のジアミンと第2のジアミンからなり、工程1が下記工程1-1及び下記工程1-2からなる。
 工程1-1:第1のテトラカルボン酸二無水物と第1のジアミンとを、溶媒存在下で反応させ、イミドオリゴマーを得る工程
 工程1-2:工程1-1で得られたイミドオリゴマー、第2のテトラカルボン酸二無水物、第2のジアミン及びtert-ブタノールを混合し、重合させる工程
(Method for producing imide-amic acid copolymer)
In the case of a polymer containing both imide units and amic acid units (hereinafter also referred to as an imide-amic acid copolymer), a preferred production method is such that the tetracarboxylic dianhydride is a first tetracarboxylic dianhydride. and a second tetracarboxylic dianhydride, the diamine consists of a first diamine and a second diamine, and Step 1 consists of the following Step 1-1 and the following Step 1-2.
Step 1-1: A step of reacting the first tetracarboxylic dianhydride and the first diamine in the presence of a solvent to obtain an imide oligomer. Step 1-2: The imide oligomer obtained in Step 1-1. A step of mixing and polymerizing a second tetracarboxylic dianhydride, a second diamine, and tert-butanol
 各工程で使用する好ましいテトラカルボン酸二無水物及びジアミンについては、各工程の説明で述べるが、本発明の製造方法で得られる重合体がイミド-アミド酸共重合体である場合、好ましくは、前記第1のテトラカルボン酸二無水物が下記式(a1)で表される化合物を含み、前記第2のテトラカルボン酸二無水物が下記式(a2)で表される化合物を含み、前記第1のジアミンおよび前記第2のジアミンが下記式(b1)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000009

(式(b1)中、R1、R2、R3はそれぞれ独立して、炭素数1~20の有機基を表す。h、i、j、kは0~4の整数である。)
 R1、R2、R3はそれぞれ独立して、炭素数1~20の有機基を表し、好ましくはR1、R2、R3はそれぞれ独立して、メチル基、トリフルオロメチル基である。
 h、i、j、kは0~4の整数であり、h、i、j、kはそれぞれ0が好ましい。
Preferred tetracarboxylic dianhydrides and diamines used in each step will be described in the description of each step, but when the polymer obtained by the production method of the present invention is an imide-amic acid copolymer, preferably The first tetracarboxylic dianhydride contains a compound represented by the following formula (a1), the second tetracarboxylic dianhydride contains a compound represented by the following formula (a2), and the first tetracarboxylic dianhydride contains a compound represented by the following formula (a2), The first diamine and the second diamine include a compound represented by the following formula (b1).
Figure JPOXMLDOC01-appb-C000009

(In formula (b1), R 1 , R 2 , and R 3 each independently represent an organic group having 1 to 20 carbon atoms. h, i, j, and k are integers of 0 to 4.)
R 1 , R 2 and R 3 each independently represent an organic group having 1 to 20 carbon atoms, preferably R 1 , R 2 and R 3 each independently represent a methyl group or a trifluoromethyl group. .
h, i, j, and k are integers from 0 to 4, and each of h, i, j, and k is preferably 0.
〔工程1-1〕
 工程1-1は、イミド部分を構成する第1のテトラカルボン酸二無水物と第1のジアミンとを、溶媒存在下で反応させ、イミドオリゴマーを得る工程である。
 工程1-1で使用する第1のテトラカルボン酸二無水物としては、好ましくは芳香族テトラカルボン酸二無水物を含み、より好ましくは芳香族テトラカルボン酸二無水物である。また、好ましくは前記式(a2)で表される化合物を含む。第1のテトラカルボン酸二無水物には、芳香族テトラカルボン酸二無水物以外のテトラカルボン酸二無水物を含んでいてもよい。
 工程1-1で使用する第1のジアミンとしては、好ましくは芳香族ジアミンを含み、より好ましくは芳香族ジアミンである。また、好ましくは前記式(b1)で表される化合物を含み、より好ましくは前記式(b11)で表される化合物を含む。第1のジアミンには、芳香族ジアミン以外のジアミンを含んでいてもよい。
 工程1-1において、テトラカルボン酸二無水物に対するジアミンは、1.01~2モルであることが好ましく、1.05~1.9モルであることがより好ましく、1.1~1.7モルであることが更に好ましい。
[Step 1-1]
Step 1-1 is a step in which the first tetracarboxylic dianhydride constituting the imide moiety and the first diamine are reacted in the presence of a solvent to obtain an imide oligomer.
The first tetracarboxylic dianhydride used in step 1-1 preferably includes aromatic tetracarboxylic dianhydride, more preferably aromatic tetracarboxylic dianhydride. Further, it preferably contains a compound represented by the above formula (a2). The first tetracarboxylic dianhydride may contain a tetracarboxylic dianhydride other than the aromatic tetracarboxylic dianhydride.
The first diamine used in step 1-1 preferably includes an aromatic diamine, more preferably an aromatic diamine. Further, it preferably contains a compound represented by the above formula (b1), and more preferably contains a compound represented by the above formula (b11). The first diamine may contain diamines other than aromatic diamines.
In step 1-1, the amount of diamine relative to the tetracarboxylic dianhydride is preferably 1.01 to 2 mol, more preferably 1.05 to 1.9 mol, and 1.1 to 1.7 mol. More preferably, it is in moles.
 工程1-1でイミドオリゴマーを得るための、第1のテトラカルボン酸二無水物と第1のジアミンとを反応させる方法には特に制限はなく、公知の方法を用いることができる。
 具体的な反応方法としては、(1)テトラカルボン酸二無水物、ジアミン、及び溶媒を反応器に仕込み、10~110℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(2)ジアミン及び溶媒を反応器に仕込んで溶解させた後、テトラカルボン酸二無水物を仕込み、必要に応じて10~110℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(3)テトラカルボン酸二無水物、ジアミン、及び溶媒を反応器に仕込み、直ちに昇温してイミド化反応を行う方法等が挙げられる。
There is no particular restriction on the method of reacting the first tetracarboxylic dianhydride and the first diamine to obtain the imide oligomer in step 1-1, and any known method can be used.
The specific reaction method is as follows: (1) Tetracarboxylic dianhydride, diamine, and solvent are charged into a reactor, stirred at 10 to 110°C for 0.5 to 30 hours, and then heated to imidize. Method for carrying out the reaction, (2) After charging the diamine and the solvent into a reactor and dissolving them, charging the tetracarboxylic dianhydride, stirring at 10 to 110°C for 0.5 to 30 hours as necessary, and then (3) A method in which tetracarboxylic dianhydride, diamine, and a solvent are charged into a reactor, and the temperature is immediately raised to carry out an imidization reaction.
 イミド化反応では、ディーンスターク装置などを用いて、製造時に生成する水を除去しながら反応を行うことが好ましい。このような操作を行うことで、重合度及びイミド化率をより上昇させることができる。 In the imidization reaction, it is preferable to use a Dean-Stark apparatus or the like to conduct the reaction while removing water generated during production. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.
 上記のイミド化反応においては、公知のイミド化触媒を用いることができる。イミド化触媒としては、塩基触媒又は酸触媒が挙げられる。
 塩基触媒としては、ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、2,4-ルチジン、2,6-ルチジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、イミダゾール、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の有機塩基触媒、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の無機塩基触媒が挙げられる。
 また、酸触媒としては、クロトン酸、アクリル酸、トランス-3-ヘキセノイック酸、桂皮酸、安息香酸、メチル安息香酸、オキシ安息香酸、テレフタル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸等が挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
 上記のうち、取り扱い性の観点から、塩基触媒が好ましく、有機塩基触媒がより好ましく、トリエチルアミン及びトリエチレンジアミンから選ばれる1種以上が更に好ましく、トリエチルアミンがより更に好ましい。
In the above imidization reaction, a known imidization catalyst can be used. Examples of imidization catalysts include base catalysts and acid catalysts.
Base catalysts include pyridine, quinoline, isoquinoline, α-picoline, β-picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, imidazole, N,N Examples include organic base catalysts such as -dimethylaniline and N,N-diethylaniline, and inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, and sodium hydrogen carbonate.
In addition, examples of acid catalysts include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc. can be mentioned. The above imidization catalysts may be used alone or in combination of two or more.
Among the above, from the viewpoint of ease of handling, base catalysts are preferred, organic base catalysts are more preferred, one or more selected from triethylamine and triethylenediamine are still more preferred, and triethylamine is even more preferred.
 イミド化反応の温度は、反応率及びゲル化等の抑制の観点から、好ましくは120~250℃、より好ましくは160~200℃である。また、反応時間は、生成水の留出開始後、好ましくは0.5~10時間である。 The temperature of the imidization reaction is preferably 120 to 250°C, more preferably 160 to 200°C from the viewpoint of reaction rate and suppression of gelation and the like. Further, the reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
 上記方法により、溶媒に溶解したイミドオリゴマーを含む溶液が得られる。工程1-1で得られたイミドオリゴマーを含む溶液には、本発明の効果を損なわない範囲で、工程1-1において第1のテトラカルボン酸二無水物や第1のジアミンとして使用した成分の少なくとも一部が未反応モノマーとして含有されていてもよい。 By the above method, a solution containing an imide oligomer dissolved in a solvent is obtained. The solution containing the imide oligomer obtained in Step 1-1 contains the components used as the first tetracarboxylic dianhydride and the first diamine in Step 1-1 to the extent that the effects of the present invention are not impaired. At least a portion may be contained as an unreacted monomer.
〔工程1-2〕
 本発明の製造方法における工程1-2は、工程1-1で得られたイミドオリゴマー、第2のテトラカルボン酸二無水物、第2のジアミン及びtert-ブタノールを混合し、重合させる工程である。
[Step 1-2]
Step 1-2 in the production method of the present invention is a step in which the imide oligomer obtained in Step 1-1, the second tetracarboxylic dianhydride, the second diamine, and tert-butanol are mixed and polymerized. .
 工程1-2で使用する第2のテトラカルボン酸二無水物としては、好ましくは芳香族テトラカルボン酸二無水物を含み、より好ましくは芳香族テトラカルボン酸二無水物である。また、好ましくは前記式(a1)で表される化合物を含む。第2のテトラカルボン酸二無水物には、芳香族テトラカルボン酸二無水物以外のテトラカルボン酸二無水物を含んでいてもよい。
 工程1-2で使用する第2のジアミンとしては、好ましくは芳香族ジアミンを含み、より好ましくは芳香族ジアミンである。また、好ましくは前記式(b1)で表される化合物を含み、より好ましくは前記式(b11)で表される化合物を含む。第2のジアミンには、芳香族ジアミン以外のジアミンを含んでいてもよい。
 工程1-1及び工程1-2全体におけるテトラカルボン酸二無水物に対するジアミンのモル比(ジアミン/テトラカルボン酸二無水物)は1.00以上、1.03未満であるため、工程1-2における、テトラカルボン酸二無水物に対するジアミンのモル比は、前記工程1-1で用いたそれぞれの量を考慮して、工程1-1及び工程1-2全体における比が1.00以上、1.03未満となるように決定する。なかでも、工程1-2における、テトラカルボン酸二無水物に対するジアミンのモル比は、0.70~1.00モルであることが好ましく、0.80~0.95モルであることがより好ましく、0.85~0.90モルであることが更に好ましい。
The second tetracarboxylic dianhydride used in step 1-2 preferably includes aromatic tetracarboxylic dianhydride, more preferably aromatic tetracarboxylic dianhydride. Further, it preferably contains a compound represented by the above formula (a1). The second tetracarboxylic dianhydride may contain a tetracarboxylic dianhydride other than the aromatic tetracarboxylic dianhydride.
The second diamine used in step 1-2 preferably includes an aromatic diamine, more preferably an aromatic diamine. Further, it preferably contains a compound represented by the above formula (b1), and more preferably contains a compound represented by the above formula (b11). The second diamine may contain diamines other than aromatic diamines.
Since the molar ratio of diamine to tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1-1 and Step 1-2 as a whole is 1.00 or more and less than 1.03, Step 1-2 The molar ratio of diamine to tetracarboxylic dianhydride in Step 1-1 and Step 1-2 as a whole is 1.00 or more, taking into account the respective amounts used in Step 1-1. It is determined to be less than .03. Among these, the molar ratio of diamine to tetracarboxylic dianhydride in step 1-2 is preferably 0.70 to 1.00 mol, more preferably 0.80 to 0.95 mol. , more preferably 0.85 to 0.90 mol.
 工程1-2においては、前記イミドオリゴマー、第2のテトラカルボン酸二無水物、第2のジアミンに加え、tert-ブタノールを混合する。工程1-2で用いられるtert-ブタノールの量には制限はないが、工程1-1と工程1-2全体におけるテトラカルボン酸二無水物の全量に対し、好ましくは2モル%以上であり、より好ましくは2.5モル%以上であり、更に好ましくは3モル%以上である。また、好ましくは5モル%以下であり、より好ましくは4モル%以下であり、更に好ましくは3.5モル%以下である。工程1-2におけるtert-ブタノールの量を前記範囲とすることによって、高分子量の重合体を含むにもかかわらず、粘度上昇が少なく、保存安定性に優れるワニスを得ることができる。 In step 1-2, tert-butanol is mixed in addition to the imide oligomer, the second tetracarboxylic dianhydride, and the second diamine. There is no limit to the amount of tert-butanol used in Step 1-2, but it is preferably 2 mol% or more based on the total amount of tetracarboxylic dianhydride in Step 1-1 and Step 1-2. More preferably it is 2.5 mol% or more, and still more preferably 3 mol% or more. Moreover, it is preferably 5 mol% or less, more preferably 4 mol% or less, and still more preferably 3.5 mol% or less. By setting the amount of tert-butanol in step 1-2 within the above range, it is possible to obtain a varnish with little increase in viscosity and excellent storage stability despite containing a high molecular weight polymer.
 工程1-2において、工程1-1で得られたイミドオリゴマー、第2のテトラカルボン酸二無水物、第2のジアミンを重合させる方法には特に制限はなく、公知の方法を用いることができる。
 具体的な反応方法としては、(1)イミドオリゴマー、第2のテトラカルボン酸二無水物、第2のジアミン及びtert-ブタノールを反応器に仕込み、0~120℃、好ましくは5~80℃の範囲で1~72時間撹拌する方法、(2)イミドオリゴマー及び溶媒を反応器に仕込んで溶解させた後、第2のテトラカルボン酸二無水物、第2のジアミン及びtert-ブタノールを仕込み、0~120℃、好ましくは5~80℃の範囲で1~72時間撹拌する方法、等が挙げられる。
 なお、いずれの方法においても、ジアミンは予め溶媒に溶解しておくことが好ましい。
 80℃以下で反応させる場合には、工程1-2で得られる共重合体の分子量が重合時の温度履歴に依存して変動することなく、また熱イミド化の進行も抑制できるため、当該共重合体を安定して製造できる。
In Step 1-2, the method for polymerizing the imide oligomer obtained in Step 1-1, the second tetracarboxylic dianhydride, and the second diamine is not particularly limited, and any known method can be used. .
As a specific reaction method, (1) the imide oligomer, the second tetracarboxylic dianhydride, the second diamine, and tert-butanol are charged into a reactor, and the temperature is heated at 0 to 120°C, preferably 5 to 80°C. (2) After charging the imide oligomer and the solvent into a reactor and dissolving them, charging the second tetracarboxylic dianhydride, second diamine and tert-butanol, Examples include a method of stirring at a temperature of 1 to 120°C, preferably 5 to 80°C for 1 to 72 hours.
In either method, it is preferable that the diamine be dissolved in a solvent in advance.
When the reaction is carried out at 80°C or lower, the molecular weight of the copolymer obtained in step 1-2 does not vary depending on the temperature history during polymerization, and the progress of thermal imidization can be suppressed. Polymers can be produced stably.
 得られる溶液中の共重合体の濃度は、通常1~50質量%であり、好ましくは3~35質量%、より好ましくは5~30質量%の範囲である。 The concentration of the copolymer in the resulting solution is usually 1 to 50% by weight, preferably 3 to 35% by weight, and more preferably 5 to 30% by weight.
 前記製造方法で得られるイミド-アミド酸共重合体の重量平均分子量(Mw)は、得られるポリイミドフィルムの機械的強度の観点から、300,000以上であり、好ましくは400,000以上であり、より好ましくは500,000以上である。また、上限には制限はないが、好ましくは1,000,000以下であり、より好ましくは700,000以下である。また、数平均分子量は、同様の観点から、好ましくは50,000~500,000である。なお、当該共重合体の重量平均分子量及び数平均分子量は、ゲルろ過クロマトグラフィー測定による標準ポリスチレン(PS)換算値より求めることができる。 The weight average molecular weight (Mw) of the imide-amic acid copolymer obtained by the above production method is 300,000 or more, preferably 400,000 or more, from the viewpoint of the mechanical strength of the obtained polyimide film, More preferably, it is 500,000 or more. Although there is no upper limit to the upper limit, it is preferably 1,000,000 or less, more preferably 700,000 or less. Further, from the same viewpoint, the number average molecular weight is preferably 50,000 to 500,000. Note that the weight average molecular weight and number average molecular weight of the copolymer can be determined from standard polystyrene (PS) equivalent values determined by gel filtration chromatography measurement.
(ポリアミド酸の製造方法)
 アミド酸単位を含む重合体(ポリアミド酸ともいう)である場合の好ましい製造方法は、前記工程1が、ジアミンと溶媒を含む溶液と、テトラカルボン酸二無水物及びtert-ブタノールとを混合し、重合させる工程である。
(Method for producing polyamic acid)
In the case of a polymer containing an amic acid unit (also referred to as a polyamic acid), a preferred manufacturing method is such that step 1 mixes a solution containing a diamine and a solvent, a tetracarboxylic dianhydride and tert-butanol, This is a polymerization step.
 工程1で使用するテトラカルボン酸二無水物としては、前記のとおり、好ましくは芳香族テトラカルボン酸二無水物を含み、より好ましくは芳香族テトラカルボン酸二無水物である。また、好ましくは前記式(a1)で表される化合物を含む。テトラカルボン酸二無水物には、芳香族テトラカルボン酸二無水物以外のテトラカルボン酸二無水物を含んでいてもよい。
 工程1で使用するジアミンとしては、前記のとおり、好ましくは芳香族ジアミンを含み、より好ましくは芳香族ジアミンである。また、好ましくは前記式(b1)で表される化合物を含み、より好ましくは前記式(b11)で表される化合物を含む。ジアミンには、芳香族ジアミン以外のジアミンを含んでいてもよい。
As described above, the tetracarboxylic dianhydride used in Step 1 preferably includes aromatic tetracarboxylic dianhydride, more preferably aromatic tetracarboxylic dianhydride. Further, it preferably contains a compound represented by the above formula (a1). The tetracarboxylic dianhydride may contain a tetracarboxylic dianhydride other than the aromatic tetracarboxylic dianhydride.
As mentioned above, the diamine used in Step 1 preferably includes an aromatic diamine, and more preferably an aromatic diamine. Further, it preferably contains a compound represented by the above formula (b1), and more preferably contains a compound represented by the above formula (b11). The diamine may include diamines other than aromatic diamines.
 すなわち、本発明の製造方法で得られる重合体がポリアミド酸である場合、好ましくは前記テトラカルボン酸二無水物が下記式(a1)で表される化合物を含み、前記ジアミンが下記一般式(b1)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000010

(式(b1)中、R1、R2、R3はそれぞれ独立して、炭素数1~20の有機基を表す。h、i、j、kは0~4の整数である。)
 R1、R2、R3はそれぞれ独立して、炭素数1~20の有機基を表し、好ましくはR1、R2、R3はそれぞれ独立して、メチル基、トリフルオロメチル基である。
 h、i、j、kは0~4の整数であり、h、i、j、kはそれぞれ0が好ましい。
That is, when the polymer obtained by the production method of the present invention is a polyamic acid, preferably the tetracarboxylic dianhydride contains a compound represented by the following formula (a1), and the diamine contains a compound represented by the following general formula (b1). ).
Figure JPOXMLDOC01-appb-C000010

(In formula (b1), R 1 , R 2 , and R 3 each independently represent an organic group having 1 to 20 carbon atoms. h, i, j, and k are integers of 0 to 4.)
R 1 , R 2 and R 3 each independently represent an organic group having 1 to 20 carbon atoms, preferably R 1 , R 2 and R 3 each independently represent a methyl group or a trifluoromethyl group. .
h, i, j, and k are integers from 0 to 4, and each of h, i, j, and k is preferably 0.
 工程1におけるテトラカルボン酸二無水物に対するジアミンのモル比(ジアミン/テトラカルボン酸二無水物)は、前記のとおり、1.00以上、1.03未満である。工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比(ジアミン/テトラカルボン酸二無水物)は、好ましくは1.005以上であり、より好ましくは1.010以上である。また、好ましくは1.025以下であり、より好ましくは1.020以下である。工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比を前記範囲とすることによって、高分子量の重合体を得ることができ、高分子量の重合体を含むにもかかわらず、粘度上昇が少なく、保存安定性に優れるワニスを得ることができる。 As described above, the molar ratio of diamine to tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is 1.00 or more and less than 1.03. The molar ratio of the diamine to the tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is preferably 1.005 or more, more preferably 1.010 or more. Further, it is preferably 1.025 or less, more preferably 1.020 or less. By setting the molar ratio of the diamine to the tetracarboxylic dianhydride in the above range in Step 1, a high molecular weight polymer can be obtained, and even though it contains a high molecular weight polymer, the viscosity does not increase. A varnish with excellent storage stability can be obtained.
 工程1においては、ジアミンと溶媒を含む溶液と、テトラカルボン酸二無水物及びtert-ブタノールを混合し、重合させる。工程1で用いられるtert-ブタノールの量には制限はないが、前記のとおり、工程1におけるテトラカルボン酸二無水物の全量に対し、好ましくは2モル%以上であり、より好ましくは2.5モル%以上であり、更に好ましくは3モル%以上である。また、好ましくは5モル%以下であり、より好ましくは4モル%以下であり、更に好ましくは3.5モル%以下である。工程1におけるtert-ブタノールの量を前記範囲とすることによって、高分子量の重合体を含むにもかかわらず、粘度上昇が少なく、保存安定性に優れるワニスを得ることができる。 In step 1, a solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol are mixed and polymerized. There is no limit to the amount of tert-butanol used in Step 1, but as described above, it is preferably 2 mol% or more, more preferably 2.5% by mole, based on the total amount of tetracarboxylic dianhydride in Step 1. It is mol% or more, more preferably 3 mol% or more. Moreover, it is preferably 5 mol% or less, more preferably 4 mol% or less, and still more preferably 3.5 mol% or less. By setting the amount of tert-butanol in Step 1 within the above range, it is possible to obtain a varnish with little increase in viscosity and excellent storage stability despite containing a high molecular weight polymer.
 工程1において、テトラカルボン酸二無水物とジアミンを重合させる方法には特に制限はなく、公知の方法を用いることができる。
 具体的な反応方法としては、ジアミンと溶媒を含む溶液と、テトラカルボン酸二無水物及びtert-ブタノールを反応器に仕込み、0~120℃、好ましくは5~80℃の範囲で1~72時間撹拌する方法等が挙げられる。
 80℃以下で反応させる場合には、工程1で得られるポリアミド酸の分子量が重合時の温度履歴に依存して変動することなく、また熱イミド化の進行も抑制できるため、当該ポリアミド酸を安定して製造できる。
In Step 1, the method for polymerizing the tetracarboxylic dianhydride and diamine is not particularly limited, and any known method can be used.
A specific reaction method is to charge a solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol into a reactor, and heat the mixture at a temperature of 0 to 120°C, preferably 5 to 80°C, for 1 to 72 hours. Examples include a method of stirring.
When the reaction is carried out at 80°C or lower, the molecular weight of the polyamic acid obtained in step 1 does not vary depending on the temperature history during polymerization, and the progress of thermal imidization can be suppressed, so the polyamic acid is stabilized. It can be manufactured by
 得られる溶液中のポリアミド酸の濃度は、通常1~50質量%であり、好ましくは3~35質量%、より好ましくは5~30質量%の範囲である。 The concentration of polyamic acid in the resulting solution is usually 1 to 50% by weight, preferably 3 to 35% by weight, and more preferably 5 to 30% by weight.
 前記製造方法で得られるポリアミド酸の重量平均分子量(Mw)は、得られるポリイミドフィルムの機械的強度の観点から、300,000以上であり、好ましくは400,000以上であり、より好ましくは500,000以上である。また、上限には制限はないが、好ましくは1,000,000以下であり、より好ましくは700,000以下である。また、数平均分子量は、同様の観点から、好ましくは50,000~500,000である。なお、当該ポリアミド酸の重量平均分子量及び数平均分子量は、ゲルろ過クロマトグラフィー測定による標準ポリスチレン(PS)換算値より求めることができる。 The weight average molecular weight (Mw) of the polyamic acid obtained by the above production method is 300,000 or more, preferably 400,000 or more, more preferably 500,000 or more, from the viewpoint of the mechanical strength of the obtained polyimide film. 000 or more. Although there is no upper limit to the upper limit, it is preferably 1,000,000 or less, more preferably 700,000 or less. Further, from the same viewpoint, the number average molecular weight is preferably 50,000 to 500,000. The weight average molecular weight and number average molecular weight of the polyamic acid can be determined from standard polystyrene (PS) equivalent values determined by gel filtration chromatography.
(ポリイミドの製造方法)
 イミド単位を含む重合体(ポリイミドともいう)である場合の好ましい製造方法は、前記工程1が、ジアミンと溶媒を含む溶液と、テトラカルボン酸二無水物及びtert-ブタノールとを混合し、重合させる工程である。
(Method for manufacturing polyimide)
In the case of a polymer containing imide units (also referred to as polyimide), a preferred manufacturing method is such that step 1 mixes a solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol, and polymerizes the mixture. It is a process.
 工程1で使用するテトラカルボン酸二無水物としては、前記のとおり、好ましくは芳香族テトラカルボン酸二無水物を含み、より好ましくは芳香族テトラカルボン酸二無水物である。また、好ましくは前記式(a1)で表される化合物を含む。テトラカルボン酸二無水物には、芳香族テトラカルボン酸二無水物以外のテトラカルボン酸二無水物を含んでいてもよい。
 工程1で使用するジアミンとしては、前記のとおり、好ましくは芳香族ジアミンを含み、より好ましくは芳香族ジアミンである。また、好ましくは前記式(b1)で表される化合物を含み、より好ましくは前記式(b11)で表される化合物を含む。ジアミンには、芳香族ジアミン以外のジアミンを含んでいてもよい。
 工程1におけるテトラカルボン酸二無水物に対するジアミンのモル比(ジアミン/テトラカルボン酸二無水物)は、前記のとおり、1.00以上、1.03未満である。工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比(ジアミン/テトラカルボン酸二無水物)は、好ましくは1.005以上であり、より好ましくは1.010以上である。また、好ましくは1.025以下であり、より好ましくは1.020以下である。工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比を前記範囲とすることによって、高分子量の重合体を得ることができ、高分子量の重合体を含むにもかかわらず、粘度上昇が少なく、保存安定性に優れるワニスを得ることができる。
As described above, the tetracarboxylic dianhydride used in Step 1 preferably includes aromatic tetracarboxylic dianhydride, more preferably aromatic tetracarboxylic dianhydride. Further, it preferably contains a compound represented by the above formula (a1). The tetracarboxylic dianhydride may contain a tetracarboxylic dianhydride other than the aromatic tetracarboxylic dianhydride.
As mentioned above, the diamine used in Step 1 preferably includes an aromatic diamine, and more preferably an aromatic diamine. Further, it preferably contains a compound represented by the above formula (b1), and more preferably contains a compound represented by the above formula (b11). The diamine may include diamines other than aromatic diamines.
The molar ratio of diamine to tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is 1.00 or more and less than 1.03, as described above. The molar ratio of the diamine to the tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is preferably 1.005 or more, more preferably 1.010 or more. Further, it is preferably 1.025 or less, more preferably 1.020 or less. By setting the molar ratio of the diamine to the tetracarboxylic dianhydride in the above range in Step 1, a high molecular weight polymer can be obtained, and even though it contains a high molecular weight polymer, the viscosity does not increase. A varnish with excellent storage stability can be obtained.
 工程1においては、ジアミンと溶媒を含む溶液と、テトラカルボン酸二無水物及びtert-ブタノールを混合し、重合させる。工程1で用いられるtert-ブタノールの量には制限はないが、前記のとおり、工程1におけるテトラカルボン酸二無水物の全量に対し、好ましくは2モル%以上であり、より好ましくは2.5モル%以上であり、更に好ましくは3モル%以上である。また、好ましくは5モル%以下であり、より好ましくは4モル%以下であり、更に好ましくは3.5モル%以下である。工程1におけるtert-ブタノールの量を前記範囲とすることによって、高分子量の重合体を含むにもかかわらず、粘度上昇が少なく、保存安定性に優れるワニスを得ることができる。 In step 1, a solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol are mixed and polymerized. There is no limit to the amount of tert-butanol used in Step 1, but as described above, it is preferably 2 mol% or more, more preferably 2.5% by mole, based on the total amount of tetracarboxylic dianhydride in Step 1. It is mol% or more, more preferably 3 mol% or more. Moreover, it is preferably 5 mol% or less, more preferably 4 mol% or less, and still more preferably 3.5 mol% or less. By setting the amount of tert-butanol in Step 1 within the above range, it is possible to obtain a varnish with little increase in viscosity and excellent storage stability despite containing a high molecular weight polymer.
 工程1において、テトラカルボン酸二無水物とジアミンを重合させる方法には特に制限はなく、公知の方法を用いることができる。
 具体的な反応方法としては、(1)ジアミンと溶媒を含む溶液と、テトラカルボン酸二無水物及びtert-ブタノールを反応器に仕込み、必要に応じて10~110℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(2)ジアミンと溶媒を含む溶液と、テトラカルボン酸二無水物及びtert-ブタノールを反応器に仕込み、直ちに昇温してイミド化反応を行う方法等が挙げられる。
In Step 1, the method for polymerizing the tetracarboxylic dianhydride and diamine is not particularly limited, and any known method can be used.
A specific reaction method is as follows: (1) A solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol are charged into a reactor, and the reaction is carried out at 10 to 110°C for 0.5 to 30 hours as necessary. A method of stirring and then raising the temperature to perform an imidization reaction, (2) A solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol are charged into a reactor, and the temperature is immediately raised to imidize. Examples include methods for conducting the reaction.
 イミド化反応では、ディーンスターク装置などを用いて、製造時に生成する水を除去しながら反応を行うことが好ましい。このような操作を行うことで、重合度及びイミド化率をより上昇させることができる。 In the imidization reaction, it is preferable to use a Dean-Stark apparatus or the like to conduct the reaction while removing water generated during production. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.
 上記のイミド化反応においては、公知のイミド化触媒を用いることができる。イミド化触媒としては、塩基触媒又は酸触媒が挙げられる。
 塩基触媒としては、ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、2,4-ルチジン、2,6-ルチジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、イミダゾール、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の有機塩基触媒、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の無機塩基触媒が挙げられる。
 また、酸触媒としては、クロトン酸、アクリル酸、トランス-3-ヘキセノイック酸、桂皮酸、安息香酸、メチル安息香酸、オキシ安息香酸、テレフタル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸等が挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
 上記のうち、取り扱い性の観点から、塩基触媒が好ましく、有機塩基触媒がより好ましく、トリエチルアミン及びトリエチレンジアミンから選ばれる1種以上が更に好ましく、トリエチルアミンがより更に好ましい。
In the above imidization reaction, a known imidization catalyst can be used. Examples of imidization catalysts include base catalysts and acid catalysts.
Base catalysts include pyridine, quinoline, isoquinoline, α-picoline, β-picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, imidazole, N,N Examples include organic base catalysts such as -dimethylaniline and N,N-diethylaniline, and inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, and sodium hydrogen carbonate.
In addition, examples of acid catalysts include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, etc. can be mentioned. The above imidization catalysts may be used alone or in combination of two or more.
Among the above, from the viewpoint of ease of handling, base catalysts are preferred, organic base catalysts are more preferred, one or more selected from triethylamine and triethylenediamine are still more preferred, and triethylamine is even more preferred.
 イミド化反応の温度は、反応率及びゲル化等の抑制の観点から、好ましくは120~250℃、より好ましくは160~200℃である。また、反応時間は、生成水の留出開始後、好ましくは0.5~10時間である。 The temperature of the imidization reaction is preferably 120 to 250°C, more preferably 160 to 200°C from the viewpoint of reaction rate and suppression of gelation and the like. Further, the reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
 得られる溶液中のポリイミドの濃度は、通常1~50質量%であり、好ましくは3~35質量%、より好ましくは5~30質量%の範囲である。 The concentration of polyimide in the resulting solution is usually in the range of 1 to 50% by weight, preferably in the range of 3 to 35% by weight, and more preferably in the range of 5 to 30% by weight.
 前記製造方法で得られるポリイミドの重量平均分子量(Mw)は、得られるポリイミドフィルムの機械的強度の中でも特に伸び率の観点から、300,000以上であり、好ましくは400,000以上であり、より好ましくは500,000以上である。また、上限には制限はないが、好ましくは1,000,000以下であり、より好ましくは700,000以下である。また、数平均分子量は、同様の観点から、好ましくは50,000~500,000である。なお、当該ポリイミドの重量平均分子量及び数平均分子量は、ゲルろ過クロマトグラフィー測定による標準ポリスチレン(PS)換算値より求めることができる。
 次に本発明の重合体(イミド-アミド酸共重合体、ポリアミド酸、ポリイミド)の製造方法及びワニスの製造方法で用いられる原料等について説明する。
The weight average molecular weight (Mw) of the polyimide obtained by the above production method is 300,000 or more, preferably 400,000 or more, and more Preferably it is 500,000 or more. Although there is no upper limit to the upper limit, it is preferably 1,000,000 or less, more preferably 700,000 or less. Further, from the same viewpoint, the number average molecular weight is preferably 50,000 to 500,000. Note that the weight average molecular weight and number average molecular weight of the polyimide can be determined from standard polystyrene (PS) equivalent values determined by gel filtration chromatography measurement.
Next, the raw materials used in the method for producing the polymer (imide-amic acid copolymer, polyamic acid, polyimide) and the method for producing the varnish of the present invention will be explained.
〔テトラカルボン酸二無水物〕
 本製造方法における原料として用いられるテトラカルボン酸二無水物として、テトラカルボン酸二無水物であれば、特に制限はないが、好ましくは芳香族テトラカルボン酸二無水物を含み、より好ましくは芳香族テトラカルボン酸二無水物である。
 これらのなかでも、高分子量化を達成させる観点から、好ましくは前記式(a1)で表される化合物及び前記式(a2)で表される化合物からなる群より選ばれる少なくとも1つであり、より好ましくは前記式(a1)で表される化合物である。
 前記重合体がポリアミド酸の場合、前記式(a1)で表される化合物を含むことが好ましい。
 前記重合体がイミド-アミド酸共重合体の場合、ポリイミド単位の原料には、前記式(a2)で表される化合物を含み、ポリアミド酸単位の原料には、前記式(a1)で表される化合物を含むことが好ましい。
 テトラカルボン酸二無水物として、酸二無水物が挙げられるが、それに限られず、前記重合体における構成単位Aを与える範囲であればその誘導体であってもよい。当該誘導体としては、テトラカルボン酸(遊離酸)及び当該テトラカルボン酸のアルキルエステルが挙げられる。これらのなかでも酸二無水物が好ましい。
[Tetracarboxylic dianhydride]
The tetracarboxylic dianhydride used as a raw material in the present production method is not particularly limited as long as it is a tetracarboxylic dianhydride, but preferably contains an aromatic tetracarboxylic dianhydride, more preferably an aromatic tetracarboxylic dianhydride. It is a tetracarboxylic dianhydride.
Among these, from the viewpoint of achieving high molecular weight, at least one compound selected from the group consisting of the compound represented by the formula (a1) and the compound represented by the formula (a2) is preferable, and more Preferably it is a compound represented by the above formula (a1).
When the polymer is a polyamic acid, it preferably contains a compound represented by the formula (a1).
When the polymer is an imide-amic acid copolymer, the raw material for the polyimide unit contains a compound represented by the formula (a2), and the raw material for the polyamic acid unit contains a compound represented by the formula (a1). It is preferable that the compound contains a compound.
Examples of the tetracarboxylic dianhydride include acid dianhydrides, but the invention is not limited thereto, and derivatives thereof may be used as long as they provide the structural unit A in the polymer. Such derivatives include tetracarboxylic acids (free acids) and alkyl esters of the tetracarboxylic acids. Among these, acid dianhydrides are preferred.
〔ジアミン〕
 本製造方法における原料として用いられるジアミンとして、ジアミンであれば、特に制限はないが、好ましくは芳香族ジアミンを含み、より好ましくは芳香族ジアミンであり、更に好ましくは前記式(b1)で表される化合物を含み、より更に好ましくは前記式(b11)で表される化合物を含む。
 ジアミンとして、ジアミンが挙げられるが、それに限られず、前記重合体における構成単位Bを与える範囲であればその誘導体であってもよい。当該誘導体としては、ジアミンに対応するジイソシアネートが挙げられる。これらのなかでもジアミンが好ましい。
[Diamine]
The diamine used as a raw material in this production method is not particularly limited as long as it is a diamine, but preferably contains an aromatic diamine, more preferably an aromatic diamine, and even more preferably a diamine represented by the above formula (b1). It further preferably includes a compound represented by the above formula (b11).
Examples of the diamine include diamine, but the diamine is not limited thereto, and derivatives thereof may be used as long as they provide the structural unit B in the polymer. Examples of such derivatives include diisocyanates corresponding to diamines. Among these, diamines are preferred.
〔末端封止剤〕
 また、重合体の製造には、前述のテトラカルボン酸二無水物、ジアミン及びtert-ブタノールの他に、末端封止剤を用いてもよい。末端封止剤は、前記イミド-アミド酸共重合体の製造においては、工程1-2の際に用いることが好ましい。
 末端封止剤としてはモノアミン類あるいはジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、テトラカルボン酸成分1モルに対して0.0001~0.1モルが好ましく、特に0.001~0.06モルが好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、4-メチルアニリン等が推奨される。これらのうち、ベンジルアミン、アニリンが好適に使用できる。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していてもよい。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸等が推奨される。これらのうち、フタル酸、無水フタル酸が好適に使用できる。
[Terminal sealing agent]
Furthermore, in addition to the above-mentioned tetracarboxylic dianhydride, diamine, and tert-butanol, a terminal capping agent may be used in the production of the polymer. The terminal capping agent is preferably used in step 1-2 in the production of the imide-amic acid copolymer.
As the terminal capping agent, monoamines or dicarboxylic acids are preferable. The amount of the terminal capping agent to be introduced is preferably 0.0001 to 0.1 mol, particularly preferably 0.001 to 0.06 mol, per 1 mol of the tetracarboxylic acid component. Examples of monoamine terminal capping agents include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline, etc. are recommended. Among these, benzylamine and aniline can be preferably used. As the dicarboxylic acid terminal capping agent, dicarboxylic acids are preferred, and a portion thereof may be ring-closed. For example, phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenone dicarboxylic acid, 3,4-benzophenone dicarboxylic acid, cyclopentane-1,2-dicarboxylic acid, 4-cyclohexene-1 , 2-dicarboxylic acid, etc. are recommended. Among these, phthalic acid and phthalic anhydride can be preferably used.
〔溶媒〕
 重合体の製造方法に用いられる溶媒は、生成する重合体を溶解できるものであればよい。例えば、非プロトン性溶媒、フェノール系溶媒、エーテル系溶媒、カーボネート系溶媒等が挙げられ、非プロトン性溶媒、フェノール系溶媒、エーテル系溶媒及びカーボネート系溶媒からなる群より選ばれる少なくとも1種が好ましい。
〔solvent〕
The solvent used in the method for producing a polymer may be any solvent as long as it can dissolve the produced polymer. Examples include aprotic solvents, phenolic solvents, ether solvents, carbonate solvents, etc., and at least one selected from the group consisting of aprotic solvents, phenol solvents, ether solvents, and carbonate solvents is preferred. .
 非プロトン性溶媒の具体例としては、環状アミドや鎖状アミドであるアミド系溶媒、含リン系アミド系溶媒、含硫黄系溶媒、ケトン系溶媒、環状エステルを含むエステル系溶媒等が挙げられる。
 これらのなかでも、溶媒は、好ましくは環状アミド、鎖状アミド及び環状エステルからなる群より選ばれる少なくとも一種を含み、より好ましくは環状アミドを含む。
 環状アミドとしては、N-メチルピロリドン、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン等が挙げられ、N-メチルピロリドンが好ましい。
 鎖状アミドとしては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素等が挙げられる。
 環状エステルとしては、γ-ブチロラクトン、γ-バレロラクトン等が挙げられる。
 その他のエステル系溶媒としては、酢酸(2-メトキシ-1-メチルエチル)等が挙げられる。
 含リン系アミド系溶媒としては、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等が挙げられる。
 含硫黄系溶媒としては、ジメチルスルホン、ジメチルスルホキシド、スルホラン等が挙げられる。
 ケトン系溶媒としては、アセトン、メチルエチルケトン、シクロヘキサノン、メチルシクロヘキサノン等が挙げられる。
Specific examples of the aprotic solvent include amide solvents such as cyclic amides and chain amides, phosphorus-containing amide solvents, sulfur-containing solvents, ketone solvents, and ester solvents containing cyclic esters.
Among these, the solvent preferably contains at least one selected from the group consisting of a cyclic amide, a chain amide, and a cyclic ester, and more preferably a cyclic amide.
Examples of the cyclic amide include N-methylpyrrolidone, N-methylcaprolactam, and 1,3-dimethylimidazolidinone, with N-methylpyrrolidone being preferred.
Examples of the chain amide include N,N-dimethylformamide, N,N-dimethylacetamide, and tetramethylurea.
Examples of the cyclic ester include γ-butyrolactone and γ-valerolactone.
Other ester solvents include acetic acid (2-methoxy-1-methylethyl) and the like.
Examples of the phosphorus-containing amide solvent include hexamethylphosphoric amide, hexamethylphosphine triamide, and the like.
Examples of the sulfur-containing solvent include dimethylsulfone, dimethylsulfoxide, and sulfolane.
Examples of the ketone solvent include acetone, methyl ethyl ketone, cyclohexanone, methyl cyclohexanone, and the like.
 フェノール系溶媒の具体例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。
 エーテル系溶媒の具体例としては、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス〔2-(2-メトキシエトキシ)エチル〕エーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 カーボネート系溶媒の具体的な例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
 上記溶媒の中でも、好ましくは環状アミド、鎖状アミド及び環状エステルからなる群より選ばれる少なくとも一種を含み、より好ましくは環状アミドを含み、更に好ましくはN-メチルピロリドンを含む。上記の溶媒は単独で又は2種以上混合して用いてもよい。
Specific examples of phenolic solvents include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4 -xylenol, 3,5-xylenol, etc.
Specific examples of ether solvents include 1,2-dimethoxyethane, bis(2-methoxyethyl)ether, 1,2-bis(2-methoxyethoxy)ethane, and bis[2-(2-methoxyethoxy)ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
Specific examples of carbonate solvents include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and the like.
Among the above solvents, it preferably contains at least one selected from the group consisting of cyclic amides, chain amides, and cyclic esters, more preferably contains cyclic amides, and still more preferably contains N-methylpyrrolidone. The above solvents may be used alone or in combination of two or more.
[ワニス]
 本発明のワニスは、前記製造方法により得られる重合体と、溶媒を含む。
 溶媒は重合体が溶解するものであればよく、特に限定されないが、重合体の製造に用いられる溶媒として上述した化合物を、単独又は2種以上を混合して用いることが好ましい。上記溶媒の中でも、好ましくは環状アミド、鎖状アミド及び環状エステルからなる群より選ばれる少なくとも一種を含み、より好ましくは環状アミドを含み、更に好ましくはN-メチルピロリドンを含む。
 本発明のワニスは、上述の重合体の製造方法で得られた重合体溶液そのものであってもよいし、更に溶媒を追加したものであってもよく、濃縮等によって溶媒を低減したものでもよい。
[varnish]
The varnish of the present invention contains the polymer obtained by the above manufacturing method and a solvent.
The solvent is not particularly limited as long as it dissolves the polymer, but it is preferable to use the above-mentioned compounds alone or in a mixture of two or more as the solvent used for producing the polymer. Among the above solvents, it preferably contains at least one selected from the group consisting of cyclic amides, chain amides, and cyclic esters, more preferably contains cyclic amides, and still more preferably contains N-methylpyrrolidone.
The varnish of the present invention may be the polymer solution itself obtained by the above-mentioned polymer production method, may have a solvent added thereto, or may have a reduced amount of solvent by concentration or the like. .
 本発明のワニスに含まれる重合体がポリアミド酸又はイミド-アミド酸共重合体であって、アミド酸部分を含む場合、アミド酸部分のイミド化を効率よく進行させる観点から、本発明のワニスには、更にイミド化触媒及び脱水触媒を含有させることができる。イミド化触媒としては、沸点が40℃以上180℃以下であるイミド化触媒であればよく、沸点が180℃以下のアミン化合物が好ましいものとして挙げられる。沸点が180℃以下のイミド化触媒であれば、フィルム形成後、高温での乾燥時に該フィルムが着色し、外観が損なわれるおそれがない。また、沸点が40℃以上のイミド化触媒であれば、十分にイミド化が進行する前に揮発する可能性を回避できる。
 イミド化触媒として好適に用いられるアミン化合物としては、ピリジン又はピコリンが挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
 脱水触媒としては、無水酢酸、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等の酸無水物;ジシクロヘキシルカルボジイミド等のカルボジイミド化合物;等を挙げることができる。これらは単独で又は2種以上を組み合わせて用いてもよい。
When the polymer contained in the varnish of the present invention is a polyamic acid or an imide-amic acid copolymer and contains an amic acid moiety, the varnish of the present invention may further contain an imidization catalyst and a dehydration catalyst. The imidization catalyst may be any imidization catalyst having a boiling point of 40° C. or higher and 180° C. or lower, and amine compounds having a boiling point of 180° C. or lower are preferred. If the imidization catalyst has a boiling point of 180° C. or lower, there is no risk that the film will be colored during drying at a high temperature after film formation and the appearance will be impaired. Moreover, if the imidization catalyst has a boiling point of 40° C. or higher, it is possible to avoid the possibility of volatilization before imidization sufficiently progresses.
An amine compound suitably used as an imidization catalyst includes pyridine or picoline. The above imidization catalysts may be used alone or in combination of two or more.
Examples of the dehydration catalyst include acid anhydrides such as acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, and trifluoroacetic anhydride; carbodiimide compounds such as dicyclohexylcarbodiimide; and the like. These may be used alone or in combination of two or more.
 本発明のワニスに含まれる重合体は溶媒溶解性を有しているため、高濃度のワニスとすることができる。本発明のワニスは、重合体を3~40質量%含むことが好ましく、5~40質量%含むことがより好ましく、10~30質量%含むことが更に好ましい。ワニスの粘度は1~200Pa・sが好ましく、2~20Pa・sがより好ましい。ワニスの粘度は、E型粘度計を用いて25℃で測定された値である。
 また、本発明のワニスは、ポリイミドフィルムの要求特性を損なわない範囲で、無機フィラー、接着促進剤、剥離剤、難燃剤、紫外線安定剤、界面活性剤、レベリング剤、消泡剤、蛍光増白剤、架橋剤、重合開始剤、感光剤等の各種添加剤を含んでもよい。
Since the polymer contained in the varnish of the present invention has solvent solubility, it can be made into a highly concentrated varnish. The varnish of the present invention preferably contains 3 to 40% by mass of the polymer, more preferably 5 to 40% by mass, and even more preferably 10 to 30% by mass. The viscosity of the varnish is preferably 1 to 200 Pa·s, more preferably 2 to 20 Pa·s. The viscosity of the varnish is a value measured at 25°C using an E-type viscometer.
In addition, the varnish of the present invention may contain inorganic fillers, adhesion promoters, release agents, flame retardants, ultraviolet stabilizers, surfactants, leveling agents, antifoaming agents, optical brighteners, within the range that does not impair the required properties of the polyimide film. It may also contain various additives such as a cross-linking agent, a polymerization initiator, and a photosensitizer.
 本発明のワニスは、高分子量の樹脂を含むにもかかわらず、幅広い粘度範囲においても粘度上昇が少なく、保存安定性に優れる。そのため、23℃保管7日目の粘度の増加率は、0日目の粘度に対して、好ましくは20%以下であり、より好ましくは15%以下であり、更に好ましくは12%以下であり、より更に好ましくは9%以下である。 Although the varnish of the present invention contains a high molecular weight resin, there is little increase in viscosity even in a wide viscosity range, and it has excellent storage stability. Therefore, the rate of increase in viscosity on the 7th day of storage at 23°C is preferably 20% or less, more preferably 15% or less, and still more preferably 12% or less, with respect to the viscosity on day 0. Even more preferably, it is 9% or less.
[ポリイミドフィルムの製造方法]
 前記ワニスを用いてポリイミドフィルムを製造することができる。前記ワニスには高分子量の樹脂を含むため、高強度のフィルムを製造することができる。また、前記ワニスは高分子量の樹脂を含むにもかかわらず、幅広い粘度範囲においても粘度上昇が少なく、保存安定性に優れるため、長期保存後にも安定して高強度のフィルムを製造することができる。
[Method for manufacturing polyimide film]
A polyimide film can be manufactured using the varnish. Since the varnish contains a high molecular weight resin, a high strength film can be produced. In addition, even though the varnish contains a high molecular weight resin, there is little increase in viscosity even in a wide viscosity range, and it has excellent storage stability, so it is possible to stably produce a high-strength film even after long-term storage. .
 本発明のワニスを用いてポリイミドフィルムを製造する方法には特に制限はないが、次の方法によることが好ましい。
 すなわち、好適なポリイミドフィルムの製造方法は、上述のワニスを基材にキャストする工程と、キャストしたワニスを乾燥して、重合体フィルムを形成する工程とを含む。
Although there are no particular limitations on the method for producing a polyimide film using the varnish of the present invention, the following method is preferred.
That is, a suitable method for producing a polyimide film includes the steps of casting the above-mentioned varnish onto a substrate, and drying the cast varnish to form a polymer film.
 基材としては、平滑な板状物が挙げられ、例えば、平滑なガラス板、金属板、プラスチック板などが挙げられる。
 「基材にキャストする」とは、「基材上に塗布する」の意味であり、基材上にワニスを流し込み、フィルム状に成形することをいう。
 ワニスを基材にキャストした後、該ワニス中に含まれる溶媒を加熱により除去して乾燥し、重合体フィルムを形成する。更に重合体フィルムを用いた溶媒の沸点以上の温度で乾燥する工程によって、ポリイミドフィルムを製造することが好ましい。
 重合体フィルムを基材から剥離した後に溶媒の沸点以上の温度で乾燥してポリイミドフィルムを得てもよいし、重合体フィルムを基材から剥離する前に溶媒の沸点以上の温度で乾燥した後、基材から剥離することにより、ポリイミドフィルムを得てもよい。また前記重合体フィルム中の重合体にアミド酸部分がある場合も同様に、溶媒の沸点以上の温度で加熱することによりイミド化(脱水閉環)してポリイミドフィルムを得ることができる。
 前記製造方法で得られるポリイミドフィルムに含まれるポリイミドの重量平均分子量(Mw)は、ポリイミドフィルムの機械的強度の中でも特に伸び率の観点から、300,000以上であり、好ましくは400,000以上であり、より好ましくは500,000以上である。また、上限には制限はないが、好ましくは1,000,000以下であり、より好ましくは700,000以下である。また、数平均分子量は、同様の観点から、好ましくは50,000~500,000である。なお、当該ポリイミドの重量平均分子量及び数平均分子量は、ゲルろ過クロマトグラフィー測定による標準ポリスチレン(PS)換算値より求めることができる。
Examples of the base material include smooth plate-like objects, such as smooth glass plates, metal plates, and plastic plates.
"Cast on a base material" means "to apply on a base material" and refers to pouring varnish onto a base material and forming it into a film.
After the varnish is cast onto a substrate, the solvent contained in the varnish is removed by heating and dried to form a polymer film. Furthermore, it is preferable to produce a polyimide film by a step of drying the polymer film at a temperature higher than the boiling point of the solvent.
A polyimide film may be obtained by peeling the polymer film from the base material and then drying it at a temperature higher than the boiling point of the solvent, or by drying the polymer film at a temperature higher than the boiling point of the solvent before peeling it from the base material. A polyimide film may be obtained by peeling the polyimide film from the base material. Furthermore, even if the polymer in the polymer film has an amic acid moiety, it can be imidized (dehydration ring closed) by heating at a temperature equal to or higher than the boiling point of the solvent to obtain a polyimide film.
The weight average molecular weight (Mw) of the polyimide contained in the polyimide film obtained by the above manufacturing method is 300,000 or more, preferably 400,000 or more, especially from the viewpoint of elongation among the mechanical strength of the polyimide film. Yes, more preferably 500,000 or more. Although there is no upper limit to the upper limit, it is preferably 1,000,000 or less, more preferably 700,000 or less. Further, from the same viewpoint, the number average molecular weight is preferably 50,000 to 500,000. Note that the weight average molecular weight and number average molecular weight of the polyimide can be determined from standard polystyrene (PS) equivalent values determined by gel filtration chromatography measurement.
 本発明のワニスを乾燥させて重合体フィルムを得る際の加熱温度としては、好ましくは50~150℃である。加熱時間は、通常1分間~6時間であり、好ましくは5分間~2時間、より好ましくは15分間~1時間である。 The heating temperature when drying the varnish of the present invention to obtain a polymer film is preferably 50 to 150°C. The heating time is usually 1 minute to 6 hours, preferably 5 minutes to 2 hours, more preferably 15 minutes to 1 hour.
 ワニス中に含まれる溶媒を加熱により除去した後の重合体フィルムを、更に、用いた溶媒の沸点以上の温度で乾燥する工程を含むことが好ましい。重合体フィルム中の重合体にアミド酸部分がある場合、化学イミド化等によってイミド化した後に、溶媒の沸点以上の温度で乾燥してもよいが、本乾燥工程で熱イミド化(脱水閉環)してポリイミドフィルムとすることが好ましい。
 重合体フィルムを更に乾燥する際の加熱温度としては、好ましくは100~500℃であり、より好ましくは200~450℃であり、更に好ましくは300~430℃である。また、加熱時間は、通常1分間~6時間であり、好ましくは5分間~2時間、より好ましくは15分間~1時間である。
 前記重合体フィルムを溶媒の沸点以上の温度で乾燥する際、加熱を2段階以上に分けることができる。加熱を2段階以上に分ける場合、好ましくは2段階以上である。上限には制限はないが、好ましくは5段階以下である。
 特に限定はされないが、例えば2段階以上に分ける場合、最初の段階の加熱温度は、好ましくは100~300℃であり、加熱時間は、好ましくは1分間~6時間である。最後の段階の加熱温度は、好ましくは300~500℃であり、加熱時間は、好ましくは1分間~6時間である。2段階に分ける場合、1段階目の加熱温度は、好ましくは100~300℃であり、加熱時間は、好ましくは1分間~6時間である。2段階目の加熱温度は、好ましくは300~500℃であり、加熱時間は、好ましくは1分間~6時間である。
 重合体フィルムを更に乾燥する際の雰囲気は、空気ガス、窒素ガス、酸素ガス、水素ガス、窒素/水素混合ガス等が挙げられるが、得られるポリイミドフィルムの着色を抑えるためには、酸素濃度が100ppm以下である窒素ガス、水素を水素濃度0.5%以下の量で含む窒素/水素混合ガスが好ましい。
It is preferable to further include a step of drying the polymer film after removing the solvent contained in the varnish by heating at a temperature equal to or higher than the boiling point of the solvent used. If the polymer in the polymer film has an amic acid moiety, it may be imidized by chemical imidization or the like and then dried at a temperature higher than the boiling point of the solvent, but thermal imidization (dehydration ring closure) may occur in the main drying step. It is preferable to prepare a polyimide film.
The heating temperature for further drying the polymer film is preferably 100 to 500°C, more preferably 200 to 450°C, and even more preferably 300 to 430°C. The heating time is usually 1 minute to 6 hours, preferably 5 minutes to 2 hours, more preferably 15 minutes to 1 hour.
When drying the polymer film at a temperature higher than the boiling point of the solvent, heating can be divided into two or more stages. When heating is divided into two or more stages, it is preferably two or more stages. Although there is no upper limit, it is preferably 5 or less.
Although not particularly limited, for example, when dividing into two or more stages, the heating temperature in the first stage is preferably 100 to 300°C, and the heating time is preferably 1 minute to 6 hours. The heating temperature in the final stage is preferably 300 to 500°C, and the heating time is preferably 1 minute to 6 hours. When dividing into two stages, the heating temperature in the first stage is preferably 100 to 300°C, and the heating time is preferably 1 minute to 6 hours. The heating temperature in the second stage is preferably 300 to 500°C, and the heating time is preferably 1 minute to 6 hours.
The atmosphere for further drying the polymer film includes air gas, nitrogen gas, oxygen gas, hydrogen gas, nitrogen/hydrogen mixed gas, etc., but in order to suppress the coloring of the resulting polyimide film, the oxygen concentration must be Preferred are nitrogen gas having a concentration of 100 ppm or less, and a nitrogen/hydrogen mixed gas containing hydrogen at a hydrogen concentration of 0.5% or less.
 本発明のポリイミドフィルムの厚さは用途等に応じて適宜選択することができるが、好ましくは1~250μmであり、より好ましくは5~100μmであり、更に好ましくは5~50μmである。厚さが1~250μmであることで、自立膜としての実用的な使用が可能となる。
 ポリイミドフィルムの厚さは、ワニスの固形分濃度や粘度、キャストする際のワニスの量を調整することにより、容易に制御することができる。
The thickness of the polyimide film of the present invention can be appropriately selected depending on the intended use, but is preferably 1 to 250 μm, more preferably 5 to 100 μm, and still more preferably 5 to 50 μm. A thickness of 1 to 250 μm allows practical use as a self-supporting film.
The thickness of the polyimide film can be easily controlled by adjusting the solid content concentration and viscosity of the varnish, and the amount of varnish used during casting.
 本発明のポリイミドフィルムは、カラーフィルター、フレキシブルディスプレイ、半導体部品、光学部材等の各種部材用のフィルムとして好適に用いられる。本発明のポリイミドフィルムは、液晶ディスプレイやOLEDディスプレイ等の画像表示装置の基板として、特に好適に用いられる。 The polyimide film of the present invention is suitably used as a film for various members such as color filters, flexible displays, semiconductor parts, and optical members. The polyimide film of the present invention is particularly suitably used as a substrate for image display devices such as liquid crystal displays and OLED displays.
 以下に、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。
 実施例及び比較例で得たワニスの評価は以下に示す方法によって行った。
The present invention will be specifically explained below using Examples. However, the present invention is not limited to these Examples in any way.
The varnishes obtained in Examples and Comparative Examples were evaluated by the method shown below.
(1)重合体の含有量
 実施例及び比較例で得られたワニスを約3g取り、その質量を精秤した。次に当該ワニスを乾燥機にて、窒素下320℃の条件にて十分乾燥させ、乾燥後のワニス(重合体)の質量を精秤した。乾燥前のワニスの質量を(A)とし、乾燥後のワニス(重合体)の質量を(B)とした。下式を用いて、ワニス中の重合体の含有量(%)を算出した。
  重合体の含有量(%)=(B)/(A)×100
 各実施例及び各比較例のワニス中の重合体の含有量を表1-1及び表1-2に示す。
(1) Content of polymer Approximately 3 g of the varnishes obtained in Examples and Comparative Examples were taken and their mass was precisely weighed. Next, the varnish was sufficiently dried in a dryer at 320° C. under nitrogen, and the mass of the dried varnish (polymer) was precisely weighed. The mass of the varnish before drying was designated as (A), and the mass of the varnish (polymer) after drying was designated as (B). The content (%) of the polymer in the varnish was calculated using the formula below.
Polymer content (%) = (B)/(A) x 100
The content of the polymer in the varnish of each Example and each Comparative Example is shown in Table 1-1 and Table 1-2.
(2)重合体の重量平均分子量
 各実施例及び各比較例で得られたワニスに含まれる重合体の重量平均分子量は、ゲルろ過クロマトグラフィー測定による標準ポリスチレン(東ソー株式会社製)換算値により求めた。溶離液は、DMF(富士フイルム和光純薬株式会社製、高速液体クロマトグラフ用)に対して24.8mMのLiBr・H2O(富士フイルム和光純薬株式会社製、純度99.5%)と63.2mMのリン酸(富士フイルム和光純薬株式会社製、高速液体クロマトグラフ用)を添加したものを使用した。装置はShodex101(昭和電工株式会社製)、カラムはKD-806M(昭和電工株式会社製)、流速は1.0mL/min、カラム温度は40℃とした。
 各実施例及び各比較例のワニスに含まれる重合体の分子量を表1-1及び表1-2に示す。
(2) Weight average molecular weight of polymer The weight average molecular weight of the polymer contained in the varnish obtained in each Example and each Comparative Example was determined by standard polystyrene (manufactured by Tosoh Corporation) converted value by gel filtration chromatography measurement. Ta. The eluent was 24.8mM LiBr H 2 O (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity 99.5%) and DMF (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., for high-performance liquid chromatography). The one to which 63.2 mM phosphoric acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., for high performance liquid chromatography) was added was used. The apparatus was Shodex 101 (manufactured by Showa Denko KK), the column was KD-806M (manufactured by Showa Denko KK), the flow rate was 1.0 mL/min, and the column temperature was 40°C.
The molecular weight of the polymer contained in the varnish of each Example and each Comparative Example is shown in Table 1-1 and Table 1-2.
(3)保存安定性評価
 各実施例及び各比較例で得られたワニスを、表1-1及び表1-2に示した粘度、又は重合体含有量(重合体濃度)になるようNMP(N-メチル-2-ピロリドン)で希釈した。希釈直後(保管前)の溶液の粘度を保管0日目の粘度(A)とした。希釈後の溶液をガラス製のスクリュー管に入れて、窒素パージをした後、23℃、50%湿度下にて保管をした。保管7日目に再度粘度を測定し、保管7日目の粘度(B)とした。増粘率は下式を用いて算出した。
  増粘率(%)=[(B)-(A)]/(A)×100
 各実施例及び各比較例のワニスの保存安定性評価の結果を表1-1及び表1-2に示す。増粘率の値が小さいものほど、保存安定性に優れる。
(3) Storage stability evaluation The varnish obtained in each example and each comparative example was treated with NMP ( diluted with N-methyl-2-pyrrolidone). The viscosity of the solution immediately after dilution (before storage) was defined as the viscosity (A) on day 0 of storage. The diluted solution was put into a glass screw tube, purged with nitrogen, and then stored at 23° C. and 50% humidity. The viscosity was measured again on the 7th day of storage, and was defined as the viscosity (B) on the 7th day of storage. The viscosity increase rate was calculated using the following formula.
Thickening rate (%) = [(B) - (A)] / (A) x 100
The results of the storage stability evaluation of the varnishes of each Example and each Comparative Example are shown in Table 1-1 and Table 1-2. The smaller the value of the thickening rate, the better the storage stability.
(4)引張伸び率評価
 実施例及び比較例で得られたワニスから下記ポリイミドフィルムの製造に記載した方法で得られたポリイミドフィルムを用いて、フィルム物性である引張伸び率を評価した。
 引張伸び率は、JIS K7127:1999に準拠し、引張試験機「ストログラフVG-1E」(東洋精機株式会社製)を用いて測定した。チャック間距離は50mm、試験片サイズは10mm×70mm、試験速度は20mm/min、試験回数は5回とした。得られた伸び率の平均値が10%以上のものをA、10%未満のものをBとした。伸び率の平均値が大きいものほど、引張伸び率に優れ、フィルムの物性が良好である。
 評価結果を表1-1及び表1-2に示す。
(4) Tensile elongation evaluation Tensile elongation, which is a film physical property, was evaluated using polyimide films obtained from the varnishes obtained in Examples and Comparative Examples by the method described in the production of polyimide films below.
The tensile elongation rate was measured in accordance with JIS K7127:1999 using a tensile tester "Strograph VG-1E" (manufactured by Toyo Seiki Co., Ltd.). The distance between the chucks was 50 mm, the test piece size was 10 mm x 70 mm, the test speed was 20 mm/min, and the number of tests was 5 times. Those with an average elongation rate of 10% or more were rated A, and those less than 10% were rated B. The larger the average value of elongation, the better the tensile elongation and the better the physical properties of the film.
The evaluation results are shown in Table 1-1 and Table 1-2.
 実施例及び比較例にて使用したテトラカルボン酸成分及びジアミン成分、並びにその略号等は下記の通りである。
<テトラカルボン酸二無水物>
BPAF:9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製;式(a2)で表される化合物)
s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(三菱ケミカル株式会社製、式(a1s)で表される化合物)
<ジアミン>
4-BAAB:4-アミノフェニル-4-アミノベンゾエート(日本純良薬品株式会社製;式(b11)で表される化合物)
The tetracarboxylic acid component and diamine component used in Examples and Comparative Examples, and their abbreviations are as follows.
<Tetracarboxylic dianhydride>
BPAF: 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (manufactured by JFE Chemical Co., Ltd.; compound represented by formula (a2))
s-BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride (manufactured by Mitsubishi Chemical Corporation, compound represented by formula (a1s))
<Diamine>
4-BAAB: 4-aminophenyl-4-aminobenzoate (manufactured by Nihon Junryo Pharmaceutical Co., Ltd.; compound represented by formula (b11))
 実施例及び比較例において使用した、溶媒及び触媒の略号等は下記の通りである。
NMP:N-メチル-2-ピロリドン(東京純薬工業株式会社製)
TEA:トリエチルアミン(関東化学株式会社製)
The abbreviations of solvents and catalysts used in Examples and Comparative Examples are as follows.
NMP: N-methyl-2-pyrrolidone (manufactured by Tokyo Pure Chemical Industries, Ltd.)
TEA: Triethylamine (manufactured by Kanto Kagaku Co., Ltd.)
〈実施例1:ポリアミド酸ワニスの製造〉
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた500mLの5つ口丸底フラスコに、4-BAAB 26.101g(0.114モル)及びNMP 192.000gを投入し、窒素雰囲気下、系内温度70℃とし、回転数200rpmで撹拌して溶液を得た。
 この溶液に、tert-ブタノール 0.254g(0.003モル)及びNMP 24.000gを添加し、更にs-BPDA 33.645g(0.114モル)及びNMP 24.000gを添加して、70℃で4時間撹拌させることでポリアミド酸を含む溶液を得た。これにNMPを添加して、25℃の粘度を3Pa・sとして、保存安定性評価用のワニスとした。
<Example 1: Production of polyamic acid varnish>
26.101 g (0.114 mol) of 4-BAAB was placed in a 500 mL 5-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap. ) and 192.000 g of NMP were added, the system temperature was set to 70° C. under a nitrogen atmosphere, and the mixture was stirred at a rotational speed of 200 rpm to obtain a solution.
To this solution, 0.254 g (0.003 mol) of tert-butanol and 24.000 g of NMP were added, and further 33.645 g (0.114 mol) of s-BPDA and 24.000 g of NMP were added, and the mixture was heated at 70°C. A solution containing polyamic acid was obtained by stirring for 4 hours. NMP was added to this to give a viscosity of 3 Pa·s at 25° C., thereby preparing a varnish for storage stability evaluation.
〈実施例2:イミド-アミド酸共重合体ワニスの製造〉
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた500mLの5つ口丸底フラスコに、4-BAAB 7.449g(0.033モル)及びNMP 49.695gを投入し、窒素雰囲気下、系内温度70℃とし、回転数200rpmで撹拌して溶液を得た。
 この溶液に、BPAF 9.974g(0.022モル)及びNMP 15.000gを一括で添加した後、イミド化触媒としてTEA 0.110g、及びNMP 5.000gを投入し、マントルヒーターで加熱し、約20分間かけて反応系内温度を190℃まで上げた。留去される成分を捕集しつつ、反応系内温度を190℃に保持して1時間還流した。その後、NMPを135.065g添加して、反応系内温度を50℃まで冷却し、イミド繰り返し構造単位を有するオリゴマーを含む溶液を得た。
 得られた溶液に、4-BAAB 17.754g(0.078モル)及びNMP 15.000gを添加し、次いでtert-ブタノール 0.242g(0.003モル)及びNMP 5.000gを添加し、更にs-BPDA 25.606g(0.087モル)及びNMP 15.000gを添加して、70℃で4時間撹拌させることで、イミド-アミド酸共重合体を含む溶液を得た。これにNMPを添加して、25℃の粘度を3Pa・sとして、保存安定性評価用のワニスとした。
<Example 2: Production of imide-amic acid copolymer varnish>
7.449 g (0.033 mol) of 4-BAAB was placed in a 500 mL 5-necked round-bottomed flask equipped with a stainless steel half-moon stirring blade, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap. ) and 49.695 g of NMP were added, the system temperature was set to 70° C. under a nitrogen atmosphere, and the mixture was stirred at a rotational speed of 200 rpm to obtain a solution.
After adding 9.974 g (0.022 mol) of BPAF and 15.000 g of NMP in one batch to this solution, 0.110 g of TEA as an imidization catalyst and 5.000 g of NMP were added, and heated with a mantle heater. The temperature inside the reaction system was raised to 190°C over about 20 minutes. While collecting the components to be distilled off, the temperature inside the reaction system was maintained at 190°C and refluxed for 1 hour. Thereafter, 135.065 g of NMP was added and the temperature inside the reaction system was cooled to 50° C. to obtain a solution containing an oligomer having an imide repeating structural unit.
To the resulting solution were added 17.754 g (0.078 mol) of 4-BAAB and 15.000 g of NMP, then 0.242 g (0.003 mol) of tert-butanol and 5.000 g of NMP, and then A solution containing an imido-amic acid copolymer was obtained by adding 25.606 g (0.087 mol) of s-BPDA and 15.000 g of NMP and stirring at 70° C. for 4 hours. NMP was added to this to give a viscosity of 3 Pa·s at 25° C., thereby preparing a varnish for storage stability evaluation.
〈実施例3:イミド-アミド酸共重合体ワニスの製造〉
 実施例2において、4-BAABの量を表1-1に示したように変更した以外は、実施例2と同様にして、イミド-アミド酸共重合体を含む溶液を得た。これにNMPを25℃の粘度が3Pa・sとなるように添加して、保存安定性評価用のワニスとした。
<Example 3: Production of imide-amic acid copolymer varnish>
A solution containing an imide-amic acid copolymer was obtained in the same manner as in Example 2, except that the amount of 4-BAAB was changed as shown in Table 1-1. NMP was added to this so that the viscosity at 25° C. was 3 Pa·s to obtain a varnish for storage stability evaluation.
〈実施例4及び5:イミド-アミド酸共重合体ワニスの製造〉
 実施例3と同様にして、イミド-アミド酸共重合体を含む溶液を得た。これにNMPを固形分(ワニス中の重合体の濃度)がそれぞれ15質量%、20質量%となるように添加して、保存安定性評価用のワニスとした。
<Examples 4 and 5: Production of imide-amic acid copolymer varnish>
In the same manner as in Example 3, a solution containing an imide-amic acid copolymer was obtained. NMP was added to this so that the solid content (concentration of the polymer in the varnish) was 15% by mass and 20% by mass, respectively, to prepare a varnish for storage stability evaluation.
〈比較例1:ポリアミド酸ワニスの製造〉
 実施例1において、tert-ブタノールを用いなかった以外は、実施例1と同様にして、ポリアミド酸を含む溶液を得た。これにNMPを25℃の粘度が3Pa・sとなるように添加して、保存安定性評価用のワニスとした。
<Comparative Example 1: Production of polyamic acid varnish>
A solution containing polyamic acid was obtained in the same manner as in Example 1, except that tert-butanol was not used. NMP was added to this so that the viscosity at 25° C. was 3 Pa·s to obtain a varnish for storage stability evaluation.
〈比較例2:ポリアミド酸ワニスの製造〉
 比較例1と同様にして、ポリアミド酸を含む溶液を得た。これにNMPを固形分(ワニス中の重合体の濃度)が15質量%となるように添加して、保存安定性評価用のワニスとした。
<Comparative Example 2: Production of polyamic acid varnish>
A solution containing polyamic acid was obtained in the same manner as in Comparative Example 1. NMP was added to this so that the solid content (concentration of the polymer in the varnish) was 15% by mass to prepare a varnish for storage stability evaluation.
〈比較例3及び4:ポリアミド酸ワニスの製造〉
 実施例1において、tert-ブタノールに替えて、メタノール又はエタノールを用いた以外は、実施例1と同様にして、ポリアミド酸を含む溶液を得た。これにNMPを25℃の粘度が3Pa・sとなるように添加して、保存安定性評価用のワニスとした。
<Comparative Examples 3 and 4: Production of polyamic acid varnish>
A solution containing polyamic acid was obtained in the same manner as in Example 1, except that methanol or ethanol was used instead of tert-butanol. NMP was added to this so that the viscosity at 25° C. was 3 Pa·s to obtain a varnish for storage stability evaluation.
〈比較例5:イミド-アミド酸共重合体ワニスの製造〉
 実施例2において、tert-ブタノールを用いなかった以外は、実施例2と同様にして、イミド-アミド酸共重合体を含む溶液を得た。これにNMPを25℃の粘度が3Pa・sとなるように添加して、保存安定性評価用のワニスとした。
<Comparative Example 5: Production of imide-amic acid copolymer varnish>
A solution containing an imide-amic acid copolymer was obtained in the same manner as in Example 2, except that tert-butanol was not used. NMP was added to this so that the viscosity at 25° C. was 3 Pa·s to obtain a varnish for storage stability evaluation.
〈比較例6及び7:イミド-アミド酸共重合体ワニスの製造〉
 比較例5と同様にして、イミド-アミド酸共重合体を含む溶液を得た。これにNMPを固形分(ワニス中の重合体の濃度)がそれぞれ15質量%、20質量%となるように添加して、保存安定性評価用のワニスとした。
<Comparative Examples 6 and 7: Production of imide-amic acid copolymer varnish>
In the same manner as in Comparative Example 5, a solution containing an imide-amic acid copolymer was obtained. NMP was added to this so that the solid content (concentration of the polymer in the varnish) was 15% by mass and 20% by mass, respectively, to prepare a varnish for storage stability evaluation.
〈比較例8:イミド-アミド酸共重合体ワニスの製造〉
 比較例5において、s-BPDAの量を表1-2に示したように変更した以外は、比較例5と同様にして、イミド-アミド酸共重合体を含む溶液を得た。これにNMPを25℃の粘度が3Pa・sとなるように添加して、保存安定性評価用のワニスとした。
<Comparative Example 8: Production of imide-amic acid copolymer varnish>
A solution containing an imide-amic acid copolymer was obtained in the same manner as in Comparative Example 5, except that the amount of s-BPDA was changed as shown in Table 1-2. NMP was added to this so that the viscosity at 25° C. was 3 Pa·s to obtain a varnish for storage stability evaluation.
〈比較例9:イミド-アミド酸共重合体ワニスの製造〉
 実施例3において、tert-ブタノールを用いなかった以外は、実施例3と同様にして、イミド-アミド酸共重合体を含む溶液を得た。これにNMPを25℃の粘度が3Pa・sとなるように添加して、保存安定性評価用のワニスとした。
<Comparative Example 9: Production of imide-amic acid copolymer varnish>
A solution containing an imido-amic acid copolymer was obtained in the same manner as in Example 3, except that tert-butanol was not used. NMP was added to this so that the viscosity at 25° C. was 3 Pa·s to obtain a varnish for storage stability evaluation.
〈比較例10:イミド-アミド酸共重合体ワニスの製造〉
 比較例5において、4-BAABの量を表1-2に示したように変更した以外は、比較例5と同様にして、イミド-アミド酸共重合体を含む溶液を得た。これにNMPを25℃の粘度が3Pa・sとなるように添加して、保存安定性評価用のワニスとした。
<Comparative Example 10: Production of imide-amic acid copolymer varnish>
A solution containing an imide-amic acid copolymer was obtained in the same manner as in Comparative Example 5, except that the amount of 4-BAAB was changed as shown in Table 1-2. NMP was added to this so that the viscosity at 25° C. was 3 Pa·s to obtain a varnish for storage stability evaluation.
〈ポリイミドフィルムの製造〉
 前記引張伸び率評価に用いたポリイミドフィルムは次のようにして製造した。
 前記実施例及び比較例で製造したワニスを、ガラス板上にスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、熱風乾燥機に移し、窒素雰囲気下、昇温速度5℃/分で420℃まで昇温し、窒素雰囲気下、熱風乾燥機中420℃で60分間加熱し、溶媒を蒸発させ、熱イミド化させ、ポリイミドフィルムを得た。
<Production of polyimide film>
The polyimide film used in the tensile elongation evaluation was manufactured as follows.
The varnishes produced in the above Examples and Comparative Examples were applied onto a glass plate by spin coating, held at 80°C for 20 minutes on a hot plate, then transferred to a hot air dryer, and heated at a temperature increase rate of 5°C under a nitrogen atmosphere. The temperature was raised to 420° C./min at 420° C. in a hot air dryer under a nitrogen atmosphere for 60 minutes to evaporate the solvent and thermally imidize the mixture to obtain a polyimide film.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1-1及び表1-2に示すように、本発明の製造方法で得られた重合体を含むワニスは、高分子量の樹脂(ポリイミド前駆体)を含むにもかかわらず、幅広い粘度範囲においても粘度上昇が少なく、保存安定性に優れるワニスを得ることができることがわかる。なお、比較例8及び10は、樹脂の分子量が低いものである。 As shown in Tables 1-1 and 1-2, the varnish containing the polymer obtained by the production method of the present invention has a wide viscosity range despite containing a high molecular weight resin (polyimide precursor). It can be seen that a varnish with little increase in viscosity and excellent storage stability can be obtained. In addition, in Comparative Examples 8 and 10, the molecular weight of the resin is low.

Claims (14)

  1.  ジアミンとテトラカルボン酸二無水物を重合させて重合体を得る工程1を有する重合体の製造方法であって、
     前記工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比(ジアミン/テトラカルボン酸二無水物)が1.00以上、1.03未満であり、
     前記工程1が、ジアミンとテトラカルボン酸二無水物を、tert-ブタノールと溶媒存在下で重合させる工程であり、
     前記重合体が、アミド酸単位及びイミド単位からなる群より選ばれる少なくとも1つを繰り返し単位とし、重量平均分子量が300,000以上である、重合体の製造方法。
    A method for producing a polymer, comprising Step 1 of obtaining a polymer by polymerizing a diamine and a tetracarboxylic dianhydride,
    The molar ratio of the diamine to the tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is 1.00 or more and less than 1.03,
    The step 1 is a step of polymerizing diamine and tetracarboxylic dianhydride in the presence of tert-butanol and a solvent,
    A method for producing a polymer, wherein the polymer has at least one repeating unit selected from the group consisting of amic acid units and imide units, and has a weight average molecular weight of 300,000 or more.
  2.  前記重合体が、ポリアミド酸、ポリイミド、及びイミド-アミド酸共重合体からなる群より選ばれる少なくとも一種である、請求項1に記載の重合体の製造方法。 The method for producing a polymer according to claim 1, wherein the polymer is at least one selected from the group consisting of polyamic acid, polyimide, and imido-amic acid copolymers.
  3.  前記重合体がポリアミド酸であって、工程1が、ジアミンと溶媒を含む溶液と、テトラカルボン酸二無水物及びtert-ブタノールとを混合し、重合させる工程である、請求項1又は2に記載の重合体の製造方法。 3. The polymer is a polyamic acid, and step 1 is a step of mixing a solution containing a diamine and a solvent, a tetracarboxylic dianhydride, and tert-butanol, and polymerizing the mixture. A method for producing a polymer.
  4.  前記重合体がポリアミド酸であって、前記テトラカルボン酸二無水物が下記式(a1)で表される化合物を含み、前記ジアミンが下記一般式(b1)で表される化合物を含む、請求項1~3のいずれか1つに記載の重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式(b1)中、R1、R2、R3はそれぞれ独立して、炭素数1~20の有機基を表す。h、i、j、kは0~4の整数である。)
    A claim in which the polymer is a polyamic acid, the tetracarboxylic dianhydride contains a compound represented by the following formula (a1), and the diamine contains a compound represented by the following general formula (b1). A method for producing a polymer according to any one of 1 to 3.
    Figure JPOXMLDOC01-appb-C000001

    (In formula (b1), R 1 , R 2 , and R 3 each independently represent an organic group having 1 to 20 carbon atoms. h, i, j, and k are integers of 0 to 4.)
  5.  前記重合体が、イミド-アミド酸共重合体であって、前記テトラカルボン酸二無水物が、第1のテトラカルボン酸二無水物と第2のテトラカルボン酸二無水物からなり、前記ジアミンが第1のジアミンと第2のジアミンからなり、前記工程1が下記工程1-1及び下記工程1-2からなる、請求項1又は2に記載の重合体の製造方法。
     工程1-1:第1のテトラカルボン酸二無水物と第1のジアミンとを、溶媒存在下で反応させ、イミドオリゴマーを得る工程
     工程1-2:工程1-1で得られたイミドオリゴマー、第2のテトラカルボン酸二無水物、第2のジアミン及びtert-ブタノールとを混合し、重合させる工程
    The polymer is an imide-amic acid copolymer, the tetracarboxylic dianhydride is composed of a first tetracarboxylic dianhydride and a second tetracarboxylic dianhydride, and the diamine is The method for producing a polymer according to claim 1 or 2, comprising a first diamine and a second diamine, and wherein the step 1 comprises the following step 1-1 and the following step 1-2.
    Step 1-1: A step of reacting the first tetracarboxylic dianhydride and the first diamine in the presence of a solvent to obtain an imide oligomer. Step 1-2: The imide oligomer obtained in Step 1-1. A step of mixing and polymerizing the second tetracarboxylic dianhydride, the second diamine, and tert-butanol
  6.  前記重合体が、イミド-アミド酸共重合体であって、前記第1のテトラカルボン酸二無水物が下記式(a1)で表される化合物を含み、前記第2のテトラカルボン酸二無水物が下記式(a2)で表される化合物を含み、前記第1のジアミンおよび前記第2のジアミンが下記式(b1)で表される化合物を含む、請求項5に記載の重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    (式(b1)中、R1、R2、R3はそれぞれ独立して、炭素数1~20の有機基を表す。h、i、j、kは0~4の整数である。)
    The polymer is an imide-amic acid copolymer, the first tetracarboxylic dianhydride contains a compound represented by the following formula (a1), and the second tetracarboxylic dianhydride contains a compound represented by the following formula (a2), and the first diamine and the second diamine contain a compound represented by the following formula (b1), the method for producing a polymer according to claim 5. .
    Figure JPOXMLDOC01-appb-C000002

    (In formula (b1), R 1 , R 2 , and R 3 each independently represent an organic group having 1 to 20 carbon atoms. h, i, j, and k are integers of 0 to 4.)
  7.  工程1におけるtert-ブタノールの量が、工程1におけるテトラカルボン酸二無水物の全量に対し、2モル%以上である、請求項1~6のいずれか1つに記載の重合体の製造方法。 The method for producing a polymer according to any one of claims 1 to 6, wherein the amount of tert-butanol in step 1 is 2 mol% or more based on the total amount of tetracarboxylic dianhydride in step 1.
  8.  請求項1~7のいずれか1つに記載の製造方法により得られる重合体と、溶媒を含むワニス。 A varnish containing a polymer obtained by the production method according to any one of claims 1 to 7 and a solvent.
  9.  ジアミンとテトラカルボン酸二無水物を重合させて重合体を得る工程1を有するワニスの製造方法であって、
     前記工程1における前記テトラカルボン酸二無水物に対する前記ジアミンのモル比(ジアミン/テトラカルボン酸二無水物)が1.00以上、1.03未満であり、
     前記工程1が、ジアミンとテトラカルボン酸二無水物を、tert-ブタノールと溶媒存在下で重合させる工程であり、
     前記重合体が、アミド酸単位及びイミド単位からなる群より選ばれる少なくとも1つを繰り返し単位とし、重量平均分子量が300,000以上であり、
     前記ワニスが、前記重合体と溶媒を含む、ワニスの製造方法。
    A method for producing a varnish comprising Step 1 of obtaining a polymer by polymerizing a diamine and a tetracarboxylic dianhydride,
    The molar ratio of the diamine to the tetracarboxylic dianhydride (diamine/tetracarboxylic dianhydride) in Step 1 is 1.00 or more and less than 1.03,
    The step 1 is a step of polymerizing diamine and tetracarboxylic dianhydride in the presence of tert-butanol and a solvent,
    The polymer has at least one repeating unit selected from the group consisting of amic acid units and imide units, and has a weight average molecular weight of 300,000 or more,
    A method for producing a varnish, wherein the varnish contains the polymer and a solvent.
  10.  請求項9に記載の製造方法により得られるワニス。 A varnish obtained by the manufacturing method according to claim 9.
  11.  23℃保管7日目の粘度の増加率が、0日目の粘度に対して15%以下である、請求項8又は10に記載のワニス。 The varnish according to claim 8 or 10, wherein the viscosity increase rate on the 7th day of storage at 23°C is 15% or less relative to the viscosity on the 0th day.
  12.  溶媒が、環状アミド、鎖状アミド及び環状エステルからなる群より選ばれる少なくとも一種を含む、請求項8、10又は11に記載のワニス。 The varnish according to claim 8, 10, or 11, wherein the solvent contains at least one selected from the group consisting of a cyclic amide, a chain amide, and a cyclic ester.
  13.  溶媒が、N-メチルピロリドンを含む、請求項8又は10~12のいずれか1つに記載のワニス。 The varnish according to any one of claims 8 or 10 to 12, wherein the solvent contains N-methylpyrrolidone.
  14.  請求項8又は10~13のいずれか1つに記載のワニスを基材にキャストする工程と、キャストしたワニスを乾燥して、重合体フィルムを形成する工程とを含む、ポリイミドフィルムの製造方法。 A method for producing a polyimide film, comprising the steps of casting the varnish according to any one of claims 8 or 10 to 13 on a base material, and drying the cast varnish to form a polymer film.
PCT/JP2023/009565 2022-03-23 2023-03-13 Method for producing polymer, varnish, and method for producing varnish WO2023182038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-047253 2022-03-23
JP2022047253 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023182038A1 true WO2023182038A1 (en) 2023-09-28

Family

ID=88101437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009565 WO2023182038A1 (en) 2022-03-23 2023-03-13 Method for producing polymer, varnish, and method for producing varnish

Country Status (2)

Country Link
TW (1) TW202402885A (en)
WO (1) WO2023182038A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649207A (en) * 1992-07-30 1994-02-22 Hitachi Ltd Production of electronic device using polyamic acid ester
JP2001092136A (en) * 1999-09-17 2001-04-06 Toshiba Corp Photosensitive composition and semiconductor device
WO2012090055A1 (en) * 2010-12-29 2012-07-05 Director General, Defence Research & Development Organisation Amino functionalised oligoimides with enhanced storage stability
JP2016183333A (en) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 Method for producing resin particle-dispersed polyimide precursor solution, resin particle-dispersed polyimide precursor solution, resin particle-containing polyimide film, method for producing porous polyimide film, and porous polyimide film
WO2017099183A1 (en) * 2015-12-11 2017-06-15 東レ株式会社 Resin composition, method for producing resin, method for producing resin film and method for producing electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649207A (en) * 1992-07-30 1994-02-22 Hitachi Ltd Production of electronic device using polyamic acid ester
JP2001092136A (en) * 1999-09-17 2001-04-06 Toshiba Corp Photosensitive composition and semiconductor device
WO2012090055A1 (en) * 2010-12-29 2012-07-05 Director General, Defence Research & Development Organisation Amino functionalised oligoimides with enhanced storage stability
JP2016183333A (en) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 Method for producing resin particle-dispersed polyimide precursor solution, resin particle-dispersed polyimide precursor solution, resin particle-containing polyimide film, method for producing porous polyimide film, and porous polyimide film
WO2017099183A1 (en) * 2015-12-11 2017-06-15 東レ株式会社 Resin composition, method for producing resin, method for producing resin film and method for producing electronic device

Also Published As

Publication number Publication date
TW202402885A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP6996609B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7392660B2 (en) Imide-amic acid copolymer and its manufacturing method, varnish, and polyimide film
JPWO2019188306A1 (en) Polyimide resin, polyimide varnish and polyimide film
JPWO2019116940A1 (en) Polyimide resin, polyimide varnish and polyimide film
JPWO2019151336A1 (en) Polyimide resin composition and polyimide film
WO2020040057A1 (en) Polyimide resin, polyimide varnish, and polyimide film
JP7375749B2 (en) Polyamide-imide resin, polyamide-imide varnish and polyamide-imide film
WO2022054766A1 (en) Polymer composition, varnish, and polyimide film
WO2021132196A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2021100727A1 (en) Polyimide resin, polyimide varnish, and polyimide film
CN116057109B (en) Polymer composition, varnish, and polyimide film
CN115380059B (en) Imide-amic acid copolymer, process for producing the same, varnish, and polyimide film
WO2022196664A1 (en) Polyimide precursor composition
WO2022210109A1 (en) Polyimide resin composition, polyimide precursor composition, varnish, and polyimide film
WO2021210641A1 (en) Imide-amic acid copolymer and method for producing same, varnish, and polyimide film
JP7255489B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2021132197A1 (en) Polyimide resin, varnish, and polyimide film
WO2023182038A1 (en) Method for producing polymer, varnish, and method for producing varnish
WO2019054297A1 (en) Polyimide, polyimide varnish, and polyimide film
JP7371621B2 (en) Polyimide resin, polyimide varnish and polyimide film
WO2022019226A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2023249021A1 (en) Method for producing polyimide
WO2021153379A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2024058194A1 (en) Method for producing polyimide film
WO2023249023A1 (en) Method for producing polyimide varnish

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774635

Country of ref document: EP

Kind code of ref document: A1