WO2021176940A1 - 輸送用冷凍装置および輸送用コンテナ - Google Patents

輸送用冷凍装置および輸送用コンテナ Download PDF

Info

Publication number
WO2021176940A1
WO2021176940A1 PCT/JP2021/004017 JP2021004017W WO2021176940A1 WO 2021176940 A1 WO2021176940 A1 WO 2021176940A1 JP 2021004017 W JP2021004017 W JP 2021004017W WO 2021176940 A1 WO2021176940 A1 WO 2021176940A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
box
heat exchanger
transport
duct
Prior art date
Application number
PCT/JP2021/004017
Other languages
English (en)
French (fr)
Inventor
憲人 渋谷
渉 平田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202180015364.5A priority Critical patent/CN115135939A/zh
Priority to EP21764905.2A priority patent/EP4095461A4/en
Publication of WO2021176940A1 publication Critical patent/WO2021176940A1/ja
Priority to US17/874,914 priority patent/US20220357094A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/003Transport containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices

Definitions

  • This disclosure relates to a transportation refrigeration system and a transportation container.
  • Patent Document 1 discloses a refrigerating device for containers.
  • an inverter box for accommodating the substrate is provided below the condenser formed in a flat plate shape.
  • Heat dissipation fins are provided on the back surface of the inverter box.
  • the heat radiating fins dissipate heat to the air flowing between the back surface of the inverter box and the casing.
  • the inverter box which is an electrical component box
  • the installation position of the electrical component box in the transport refrigerating device such as the container refrigerating device is not limited to the lower part of the condenser.
  • the heat dissipation structure when the electrical component box is provided at a position other than below the condenser has not been studied.
  • An object of the present disclosure is to provide a heat dissipation structure when a box for accommodating an inverter board is arranged on the side of a condenser in a refrigerating apparatus for transportation.
  • the first aspect of the present disclosure is intended for a transport refrigerating apparatus (10), and is arranged on the side of a condenser (32) and the condenser (32) and houses an inverter substrate (70).
  • the box (36) has a facing plate (36e) facing the air inflow surface (32a) of the condenser (32), and is provided on the facing plate (36e).
  • a heat sink (75) that is exposed to the outside of the (36) and cools the heat generating component (71) provided on the inverter board (70) is further provided.
  • the heat sink (75) is provided on the facing plate (36e) of the box (36) arranged on the side of the condenser (32).
  • the heat generated in the heat generating component (71) of the inverter board (70) housed in the box (36) is conducted to the heat sink (75) and dissipated. Therefore, according to this aspect, when the box (36) accommodating the inverter board (70) is arranged on the side of the condenser (32), the heat generated by the heat generating component (71) of the inverter board (70) is generated. Can be released into the air to suppress an excessive temperature rise of the heat generating component (71).
  • the second aspect of the present disclosure is characterized in that, in the first aspect, the duct (80) forming the air passage (85) in which the heat sink (75) is arranged is further provided.
  • the heat conducted from the heat generating component (71) of the inverter board (70) to the heat sink (75) is released to the air flowing through the air passage (85) formed by the duct (80). ..
  • a third aspect of the present disclosure is characterized in that, in the second aspect, the air inlet (83) of the duct (80) is open downward.
  • the air inlet (83) of the duct (80) faces downward, it becomes difficult for rainwater, seawater, etc. to enter the air passage (85) in the duct (80) from the air inlet (83).
  • the air outlet (84) of the duct (80) opens toward the air inflow surface (32a) of the condenser (32). It is characterized by doing.
  • the air endothermic from the heat sink (75) while flowing through the air passage (85) in the duct (80) flows from the air outlet (84) to the air inflow surface (32a) of the condenser (32). It flows toward.
  • a fifth aspect of the present disclosure is that in any one of the second to fourth aspects, the duct (80) has an air inlet (83) and extends in a predetermined direction with a first portion (81).
  • the first portion (81) is provided with a second portion (82) that extends continuously in a direction intersecting the predetermined direction and has an air outlet (84).
  • the air flowing from the air inlet (83) to the air passage (85) passes through the first portion (81) and the second portion (82) of the duct (80) in order, and passes through the air outlet (84). ) Outflow from the air passage (85).
  • the heat sink (75) is a plate-shaped substrate having a mounting surface (77) in contact with the heat generating component (71). 76) and a plurality of plate-shaped fins (78) protruding from a surface different from the mounting surface (77) of the substrate (76), and the air passage (85) formed by the duct (80). ) Is partitioned into a plurality of flow paths (86) by the fins (78).
  • the air passage (85) in the duct (80) is partitioned into a plurality of passages (86) by the fins (78) of the heat sink (75).
  • the air that has flowed into the air passage (85) is divided into a plurality of flow paths (86) and flows into the fins (78).
  • a seventh aspect of the present disclosure is characterized in that, in the sixth aspect, the fins (78) of the heat sink (75) extend in the vertical direction.
  • the air passage (85) in the duct (80) is partitioned into a plurality of flow paths (86) by the fins (78) extending in the vertical direction.
  • An eighth aspect of the present disclosure is, in any one of the first to seventh aspects, further comprising a control substrate (72) housed in the box (36) and for controlling the transport refrigerating apparatus. It is characterized by that.
  • control board (72) is housed in the box (36) together with the inverter board (70).
  • the ninth aspect of the present disclosure is the space (37a) provided in the box (36) and accommodating the inverter board (70) and the control board (72) in the eighth aspect.
  • the space (37b) is partitioned from each other, and a partition plate (90) that suppresses noise propagation from the inverter board (70) to the control board (72) is further provided.
  • the space (37a) in which the inverter board (70) is housed and the space (37b) in which the control board (72) is housed are divided into a partition plate (90).
  • the partition plate (90) suppresses noise propagation from the inverter board (70) to the control board (72). Therefore, the inverter board (70) and the control board (72) can be housed in one electrical component box (36) while operating the control board (72) normally.
  • a tenth aspect of the present disclosure is characterized in that, in the ninth aspect, the partition plate (90) has through holes (93) formed in the upper part and the lower part.
  • the air in the box (36) passes through the through hole (93) of the partition plate (90) and between the two spaces (37a, 37b) partitioned by the partition plate (90).
  • a reactor (74) housed in the box (36) and arranged above the inverter board (70) is further added. It is characterized by being prepared.
  • the reactor (74) is provided above the inverter board (70) in the internal space of the box (36).
  • the condenser (32) has a refrigerant outlet (137) at one end and passes through the heat sink (75). The resulting air passes near the other end of the condenser (32).
  • the air that has passed through the heat sink (75) passes through a portion of the condenser (32) that is relatively distant from the refrigerant outlet (137). Therefore, the temperature of the refrigerant flowing out from the refrigerant outlet (137) of the condenser (32) can be kept low.
  • a thirteenth aspect of the present disclosure is a fork pocket (150) provided above the box (36) in any one of the first to twelfth aspects and into which a fork for lifting a transport refrigerating device is inserted. ) Is further provided, and the space (S23) between the box (36) and the fork pocket (150) is located upstream of the internal space (153) of the fork pocket (150) and the condenser (32). It is characterized by communicating with the space (S21).
  • the air that has passed through the fork pocket (150) flows toward the condenser (32). Therefore, it becomes easy to secure the flow rate of the air flowing toward the condenser (32).
  • the fourteenth aspect of the present disclosure is intended for a transportation container (1), and includes a transportation refrigerating apparatus (10) according to any one of the first to thirteenth aspects, and a container body (2). It is characterized by.
  • the transport refrigerating device (10) and the container body (2) are provided in the transport container (1).
  • FIG. 1 is a perspective view of the transportation container according to the embodiment as viewed from the front side.
  • FIG. 2 is a vertical sectional view schematically showing the internal structure of the transportation container according to the embodiment.
  • FIG. 3 is a piping system diagram of the refrigerant circuit of the transport refrigerating apparatus according to the embodiment.
  • FIG. 4 is a front view of a main part of the transport refrigerating apparatus according to the embodiment, showing a state in which the cover of the external heat exchanger is removed.
  • FIG. 5 is a schematic perspective view of a fork pocket provided in the transport refrigerating apparatus according to the embodiment.
  • FIG. 6 is a cross-sectional view of an electrical component box showing a VI-VI cross section of FIG.
  • FIG. 7 is a cross-sectional view of an electrical component box showing a cross section of VII-VII of FIG.
  • FIG. 8 is a cross-sectional view of an electrical component box showing a main part of the cross section of VIII-VIII of FIG.
  • the present disclosure is a shipping container (1).
  • the transportation container (1) includes a container body (2) and a transportation refrigerating device (10) provided in the container body (2).
  • the shipping container (1) is used for marine transportation.
  • the shipping container (1) is transported by a marine transporter such as a ship.
  • “top”, “bottom”, “left”, “right”, “front” and “rear” are the transport refrigeration equipment (10) viewed from the front unless otherwise specified. It means the direction of time.
  • the container body (2) is formed in a hollow box shape.
  • the container body (2) is formed horizontally.
  • An opening is formed at one end of the container body (2) in the longitudinal direction.
  • the opening of the container body (2) is closed by the transport refrigerating device (10).
  • a storage space (5) for storing the goods to be transported is formed in the container body (2).
  • Goods to be transported are stored in the storage space (5).
  • the temperature of the air in the storage space (5) (also called the air inside the refrigerator) is adjusted by the transport refrigerating device (10).
  • the transport refrigeration system (10) is attached to the opening of the container body (2).
  • the transport refrigeration system (10) includes a casing (11) and a refrigerant circuit (C).
  • the casing (11) includes a partition wall (12) and a partition plate (15).
  • An internal flow path (20) is formed inside the partition wall (12).
  • An outer chamber (S) is formed on the outside of the partition wall (12).
  • the outdoor room (S) corresponds to the accommodation space.
  • the internal flow path (20) and the external chamber (S) are separated by a partition wall (12).
  • the partition wall (12) is provided with an outer wall (13) and an inner wall (14).
  • the outer wall (13) of the refrigerator is located outside the container body (2).
  • the inner wall (14) of the refrigerator is located inside the container body (2).
  • the outer wall (13) and the inner wall (14) of the refrigerator are made of, for example, an aluminum alloy.
  • the outer wall (13) of the refrigerator closes the opening of the container body (2).
  • the outer wall (13) of the refrigerator is attached to the peripheral edge of the opening of the container body (2).
  • the lower part of the outer wall (13) bulges toward the inside of the container body (2).
  • the outer chamber (S) is formed inside the bulging outer wall (13).
  • the inner wall (14) faces the outer wall (13).
  • the inner wall (14) has a shape along the outer wall (13).
  • the inner wall (14) of the refrigerator is arranged at a distance from the outer wall (13) of the refrigerator.
  • a heat insulating material (16) is provided between the inner wall (14) and the outer wall (13).
  • the partition plate (15) is placed inside the container body (2) rather than the inner wall (14) of the refrigerator.
  • An internal flow path (20) is formed between the partition wall (12) and the partition plate (15).
  • An inflow port (21) is formed between the upper end of the partition plate (15) and the top plate of the container body (2).
  • An outlet (22) is formed between the lower end of the partition plate (15) and the lower end of the partition wall (12).
  • the internal flow path (20) is formed from the inflow port (21) to the outflow port (22).
  • the internal flow path (20) includes an upper flow path (23) and a lower flow path (24).
  • the upper flow path (23) is located above the internal flow path (20).
  • the lower flow path (24) is located below the internal flow path (20).
  • the lower flow path (24) is located at a position corresponding to the bulging portion of the partition wall (12).
  • the refrigerant circuit (C) has a refrigerant filled therein.
  • the refrigerant circuit (C) performs a vapor compression refrigeration cycle by circulating the refrigerant.
  • the refrigerant circuit (C) includes a compressor (31), an external heat exchanger (32), an expansion valve (33), an internal heat exchanger (60), and a refrigerant pipe connecting them.
  • the compressor (31) is located on the right side of the first space (S1) corresponding to the lower part of the outdoor chamber (S).
  • the compressor (31) sucks in low-pressure refrigerant and compresses it.
  • the compressor (31) discharges the compressed refrigerant as a high-pressure refrigerant.
  • the outside heat exchanger (32) is located on the left side of the second space (S2) corresponding to the upper part of the outside room (S).
  • the external heat exchanger (32) is a fin-and-tube type.
  • the external heat exchanger (32) is a so-called four-sided heat exchanger.
  • the shape of the external heat exchanger (32) is a substantially rectangular cylinder.
  • the external heat exchanger (32) functions as a condenser or a radiator.
  • the internal heat exchanger (60) is arranged in the internal flow path (20).
  • the internal heat exchanger (60) is supported between the partition wall (12) and the partition plate (15).
  • the internal heat exchanger (60) is a fin-and-tube type.
  • the internal heat exchanger (60) functions as an evaporator.
  • the transport refrigeration system (10) includes one external fan (34).
  • the outside fan (34) is arranged in the second space (S2) of the outside room (S).
  • the external fan (34) is arranged inside the four heat exchange portions of the external heat exchanger (32).
  • the outside fan (34) is a propeller fan.
  • the transport refrigeration system (10) is equipped with two internal fans (35).
  • the internal fan (35) is arranged in the upper flow path (23) of the internal flow path (20).
  • the internal fan (35) is located above the internal heat exchanger (60).
  • the internal fan (35) is arranged on the upstream side of the air flow from the internal heat exchanger (60).
  • the internal fan (35) is a propeller fan.
  • the number of internal fans (35) may be one or three or more.
  • the internal air in the storage space (5) flows from the inflow port (21) into the upper flow path (23) of the internal flow path (20).
  • the air in the upper flow path (23) of the internal flow path (20) passes through the internal heat exchanger (60) and the heater (H) described later, and flows through the lower flow path (24).
  • the air in the lower flow path (24) flows out from the outlet (22) to the storage space (5).
  • the transport refrigeration system (10) includes a heater (H).
  • the heater (H) is located below the internal heat exchanger (60).
  • the heater (H) is attached to the lower part of the internal heat exchanger (60).
  • the heater (H) operates, the internal heat exchanger (60) is heated.
  • the heat of the heater (H) melts the frost adhering to the internal heat exchanger (60).
  • the heater (H) is used for defrosting the internal heat exchanger (60).
  • the transport refrigerating apparatus (10) has an electrical component box (36).
  • the electrical component box (36) is arranged in the second space (S2) of the outdoor chamber (S).
  • electrical components such as an inverter board (70), a control board (72), a relay board (73), and a reactor (74) are housed inside the electrical component box (36).
  • the refrigerant circuit (C) has a compressor (31), an external heat exchanger (32), an expansion valve (33), and an internal heat exchanger (60) as main parts.
  • the expansion valve (33) is an electronic expansion valve whose opening degree can be adjusted.
  • the refrigerant circuit (C) has a discharge pipe (41) and a suction pipe (42). One end of the discharge pipe (41) is connected to the discharge portion of the compressor (31). The other end of the discharge pipe (41) is connected to the gas end of the external heat exchanger (32). One end of the suction pipe (42) is connected to the suction part of the compressor (31). The other end of the suction pipe (42) is connected to the gas end of the internal heat exchanger (60).
  • the refrigerant circuit (C) includes a liquid pipe (43), a receiver (44), a cooling heat exchanger (45), a first on-off valve (46), a communication pipe (47), a second on-off valve (48), and an injection pipe. It has (49) and an injection valve (50).
  • the receiver (44) is provided in the liquid tube (43).
  • the receiver (44) is a container for storing the refrigerant.
  • the cooling heat exchanger (45) has a first flow path (45a) and a second flow path (45b).
  • the cooling heat exchanger (45) exchanges heat between the refrigerant in the first flow path (45a) and the refrigerant in the second flow path (45b).
  • the cooling heat exchanger (45) is, for example, a plate type heat exchanger.
  • the first flow path (45a) is a part of the liquid pipe (43).
  • the second flow path (45b) is a part of the injection tube (49).
  • the cooling heat exchanger (45) cools the refrigerant flowing through the liquid pipe (43).
  • the first on-off valve (46) is provided in the portion of the liquid pipe (43) between the receiver (44) and the first flow path (45a).
  • the first on-off valve (46) is a solenoid valve that can be opened and closed.
  • the communication pipe (47) communicates the high-pressure line and low-pressure line of the refrigerant circuit (C). One end of the communication pipe (47) is connected to the discharge pipe (41). The other end of the communication pipe (47) is connected to the portion of the liquid pipe (43) between the expansion valve (33) and the internal heat exchanger (60).
  • the second on-off valve (48) is provided in the communication pipe (47).
  • the second on-off valve (48) is a solenoid valve that can be opened and closed.
  • the injection pipe (49) introduces the refrigerant into the medium pressure part of the compressor (31).
  • One end of the injection tube (49) is connected to a portion of the liquid tube (43) between the receiver (44) and the first flow path (45a).
  • the other end of the injection tube (49) is connected to the medium pressure portion of the compressor (31).
  • the intermediate pressure which is the pressure of the medium pressure portion, is the pressure between the suction pressure and the discharge pressure of the compressor (31).
  • the injection valve (50) is provided in the upstream portion of the second flow path (45b) in the injection pipe (49).
  • the injection valve (50) is an electronic expansion valve whose opening degree can be adjusted.
  • the basic operation of the transport refrigeration system (10) will be described.
  • the compressor (31), the outside fan (34), and the inside fan (35) are operated.
  • the first on-off valve (46) opens.
  • the second on-off valve (48) closes.
  • the opening degree of the expansion valve (33) is adjusted.
  • the opening of the injection valve (50) is adjusted.
  • the refrigerant compressed by the compressor (31) flows through the external heat exchanger (32).
  • the refrigerant dissipates heat to the external air and condenses.
  • the condensed refrigerant passes through the receiver (44).
  • a part of the refrigerant that has passed through the receiver (44) flows through the first flow path (45a) of the cooling heat exchanger (45).
  • the rest of the refrigerant that has passed through the receiver (44) flows through the injection pipe (49) and is depressurized to an intermediate pressure at the injection valve (50).
  • the decompressed refrigerant is introduced into the medium pressure portion of the compressor (31).
  • the refrigerant in the second flow path (45b) absorbs heat from the refrigerant in the first flow path (45a) and evaporates. As a result, the refrigerant in the first flow path (45a) is cooled. In other words, the degree of supercooling of the refrigerant flowing through the first flow path (45a) increases.
  • the refrigerant cooled by the cooling heat exchanger (45) is depressurized to a low pressure by the expansion valve (33).
  • the decompressed refrigerant flows through the internal heat exchanger (60).
  • the refrigerant absorbs heat from the internal air and evaporates.
  • the internal heat exchanger (60) cools the internal air.
  • the evaporated refrigerant is sucked into the compressor (31) and compressed again.
  • the air inside the container body (2) circulates between the storage space (5) and the flow path inside the refrigerator (20).
  • the internal air is cooled by the internal heat exchanger (60).
  • the internal air in the storage space (5) can be cooled, and the internal air can be adjusted to a predetermined temperature.
  • an outdoor heat exchanger (32) and an electrical component box (36) are provided in the second space (S2) of the outdoor chamber (S).
  • an external heat exchanger (32) is provided on the left side
  • an electrical component box (36) is provided on the right side. In this way, the electrical component box (36) is located on the side of the external heat exchanger (32).
  • the external heat exchanger (32) is formed in a rectangular tubular shape.
  • the external heat exchanger (32) is formed with four flat portions (101 to 104) and three curved portions (111 to 113).
  • Each flat portion (101 to 104) is a flat portion.
  • Each curved portion (111 to 113) is a portion curved in a quarter arc shape when viewed from the front.
  • the first flat part (101) is located at the lowermost part of the external heat exchanger (32) and extends in the horizontal direction.
  • the first curved portion (111) is continuously curved upward at the left end of the first flat portion (101).
  • the third flat portion (103) extends continuously upward to the upper end of the first curved portion (111).
  • the second curved portion (112) is continuously curved to the right at the upper end of the third flat portion (103).
  • the second flat portion (102) extends continuously to the right at the right end of the second curved portion (112).
  • the third curved portion (113) is continuously curved downward at the right end of the second flat portion (102).
  • the fourth flat portion (104) extends downward continuously to the lower end of the third curved portion (113).
  • the first flat portion (101) and the second flat portion (102) face each other, and the third flat portion (103) and the fourth flat portion (104) face each other.
  • the external heat exchanger (32) is fixed to the partition wall (12) of the casing (11).
  • the first flat portion (101) and the second flat portion (102) extend substantially in the horizontal direction
  • the third flat portion (103) and the fourth flat portion (104) are substantially vertical. It is attached to the casing (11) in a directional extension.
  • a liquid side header (137) and a gas side header (136) are provided at the right end of the first flat portion (101).
  • the liquid side header (137) and the gas side header (136) are connected to the refrigerant pipe (120) of the external heat exchanger (32).
  • the refrigerant flows from the gas side header (136) to the refrigerant pipe (120), and the refrigerant flows from the refrigerant pipe (120) to the liquid side header (137). Leaks out.
  • the liquid side header (137) is a refrigerant outlet.
  • the outward surface is the air inflow surface (32a) and the inward surface is the air outflow surface (32b).
  • the air inflow surface (32a) and the air outflow surface (32b) are virtual surfaces formed by a plurality of arranged fins. In the external heat exchanger (32), air flows from the air inflow surface (32a) to the air outflow surface (32b).
  • the outer part of the outer heat exchanger (32) is the primary side space (S21), and the inner part of the outer heat exchanger (32) is.
  • the primary side space (S21) is the space on the upstream side of the external heat exchanger (32).
  • the secondary side space (S22) is the space on the downstream side of the external heat exchanger (32).
  • the electrical component box (36) is a box formed in a rectangular parallelepiped shape.
  • the electrical equipment box (36) includes a front wall (36a), a rear wall (36b), an upper wall (36c), a bottom wall (36d), a left side wall (36e), and a right side wall (36f).
  • An operation panel (65) is placed on the front wall (36a).
  • the operation panel (65) includes an operation button (66) for the operator to input an ON / OFF switching instruction for the operation of the transport refrigerating device (10), an operating state of the transport refrigerating device (10), and the like. It is provided with a display screen (67) for displaying.
  • the electrical component box (36) is attached to the casing (11) with the front wall (36a) extending in the vertical direction.
  • the left wall (36e) faces the fourth flat portion (104) of the external heat exchanger (32).
  • the left side wall (36e) of the electrical component box (36) is a facing plate facing the air inflow surface (32a) of the external heat exchanger (32).
  • the casing (11) is provided with a pair of fork pockets (150).
  • the fork pocket (150) is a member into which a fork such as a forklift is inserted when lifting the transport refrigerating device (10).
  • One fork pocket (150) is provided above the external heat exchanger (32) and one above the electrical component box (36).
  • the fork pocket (150) is formed in a tubular shape having a rectangular cross section.
  • the fork pocket (150) has open ends at both ends.
  • One of the open ends of the fork pocket (150) serves as an insertion port (151).
  • a communication hole (152) is formed in the bottom wall of the fork pocket.
  • the fork pocket (150) has a casing in which the long side of the insertion port (151) is substantially horizontal and the insertion port (151) is exposed to the front surface of the casing (11). It is attached to (11).
  • the internal space (153) of the fork pocket (150) communicates with the primary side space (S21) of the second space (S2) through the communication hole (152).
  • the internal space (153) of the fork pocket (150) located above the upper wall (36c) of the electrical component box (36) is the electrical component box of the communication hole (152) and the second space (S2). It communicates with the primary space (S21) via the portion located above (36).
  • the electrical component box (36) is a detailed configuration of electrical equipment box- The detailed configuration of the electrical component box (36) will be described with reference to FIGS. 6 to 8 as appropriate.
  • the electrical components such as the inverter board (70), the control board (72), the relay board (73), and the reactor (74) are housed inside the electrical component box (36).
  • the electrical component box (36) is provided with a heat sink (75), a duct (80), and a partition plate (90).
  • the partition plate (90) is a member for partitioning the internal space of the electrical component box (36) to the left and right.
  • the internal space of the electrical component box (36) is divided into a first chamber (37a) located on the left side of the partition plate (90) and a second chamber (37b) located on the right side of the partition plate (90) ( See FIG. 6).
  • the partition plate (90) is a plate-shaped member bent in a staircase shape in a plan view (see FIG. 8). Further, the height of the partition plate (90) is slightly shorter than the distance from the bottom wall (36d) to the upper wall (36c) of the electrical component box (36).
  • the material of the partition plate (90) is metal (for example, steel or stainless steel).
  • the partition plate (90) has a function of shielding noise (electromagnetic waves) generated in the inverter board (70).
  • the partition plate (90) includes two front-facing plate portions (91) and two side-facing plate portions (92) (see FIG. 8).
  • Each of the front facing plate portion (91) and each of the side facing plate portions (92) is formed in a rectangular plate shape.
  • Each forward plate portion (91) and each lateral plate portion (92) are provided in a posture in which their long sides are in the vertical direction.
  • the front-facing plate portion (91) and the side-facing plate portion (92) are alternately arranged.
  • the adjacent front facing plate portion (91) and the side facing plate portion (92) share one long side of each.
  • each vent (93) is a through hole that penetrates the partition plate (90) in the thickness direction.
  • a plurality of ventilation holes (93) are formed in a region near the upper end and a region near the lower end of the lateral plate portion (92).
  • the number of ventilation holes (93) formed in the region near the lower end is larger than the number of ventilation holes (93) formed in the region near the upper end.
  • ventilation holes (93) are formed only in the region near the upper end and the region near the lower end. In other words, in each lateral plate portion (92), the region located in the middle in the vertical direction is a shielding portion in which the ventilation hole (93) is not formed.
  • the heat sink (75) is a member for cooling the power module (71) of the inverter board (70).
  • the heat sink (75) includes one base plate (76) and a plurality of fins (78).
  • the base plate (76) and the fins are integrally formed.
  • the material of the heat sink (75) is a metal (for example, an aluminum alloy).
  • the base plate (76) is a rectangular plate-shaped part.
  • the base plate (76) is a substrate.
  • Each fin (78) is formed in the shape of a rectangular plate.
  • Each fin (78) projects from the front surface of the base plate (76).
  • Each fin (78) has its long side along the long side of the base plate (76) and its short side approximately orthogonal to the surface of the base plate (76).
  • the plurality of fins (78) are arranged at predetermined intervals from each other in the short side direction of the base plate (76).
  • the back surface of the base plate (76) (the surface opposite to the fins (78)) is the mounting surface (77) in contact with the power module (71).
  • the heat sink (75) is attached to the left wall (36e) of the electrical equipment box (36).
  • the heat sink (75) is provided on the left wall (36e) of the electrical component box (36).
  • the heat sink (75) is attached to the left wall (36e) with the long side of the base plate (76) facing up and down.
  • the heat sink (75) is fitted into an opening formed in the left wall (36e) of the electrical component box (36).
  • the base plate (76) of the heat sink (75) covers the opening formed in the left wall (36e) from the inside of the electrical component box (36).
  • the fins (78) of the heat sink (75) project outward from the opening formed in the left wall (36e) and are exposed to the outside of the electrical component box (36). With the heat sink (75) attached to the electrical component box (36), each fin (78) is in a posture in which the long side extends in the vertical direction.
  • the duct (80) is a member for guiding air to the fins (78) of the heat sink (75).
  • the duct (80) is formed in an inverted L-shaped cover shape.
  • the duct (80) is attached to the outer surface of the left wall (36e) of the electrical equipment box (36).
  • the duct (80) is provided on the outer surface of the left side wall (36e) of the electrical component box (36).
  • the duct (80) forms an air passage (85) with the left wall (36e).
  • the duct (80) covers the fins (78) of the heat sink (75) exposed to the outside of the electrical component box (36). Therefore, the fins (78) of the heat sink (75) are housed in the air passage (85) formed by the duct (80).
  • the duct (80) includes a first portion (81) extending vertically and a second portion (82) extending laterally from the first portion (81).
  • the first portion (81) is formed in a vertically extending channel shape and covers the fins (78) of the heat sink (75).
  • the lower end of the first portion (81) forms an air inlet (83) for introducing air into the air passage (85).
  • the second portion (82) is formed in a tubular shape extending laterally (left in FIG. 6) from the upper end of the first portion (81).
  • the open end located at the tip of the second portion (82) forms an air outlet (84) for wicking air from the air passage (85).
  • the air outlet (84) faces the air inflow surface (32a) of the fourth flat portion (104) of the external heat exchanger (32).
  • a sheet-shaped sealing material (87) is attached to the inner surface of the first portion (81) of the duct (80).
  • the material of the sealing material (87) is, for example, a flexible foamed resin.
  • the sealing material (87) contacts the tip of the fin (78) of the heat sink (75) and closes the gap between the tip of the fin (78) and the inner surface of the first portion (81).
  • the air passage (85) in the duct (80) is partitioned into a plurality of flow paths (86) by fins (78) whose tips are in contact with the sealing material (87).
  • Each of the plurality of channels (86) is surrounded by adjacent fins (78), a base plate (76), and a sealing material (87).
  • the electrical component box (36) houses the inverter board (70), the control board (72), the relay board (73), and the reactor (74), which are electrical components. ..
  • the inverter board (70) and the reactor (74) are provided in the first chamber (37a).
  • the control board (72) and the relay board (73) are provided in the second chamber (37b).
  • the inverter board (70) is provided with a power module (71), which is a heat generating component.
  • the power module (71) supplies alternating current to the motor of the compressor (31).
  • the rotation speed of the compressor (31) changes, and as a result, the refrigerating capacity obtained by the refrigerating cycle of the refrigerant circuit (C) changes.
  • the inverter board (70) is provided so as to face the mounting surface (77) of the base plate (76) of the heat sink (75).
  • the power module (71) of the inverter board (70) is thermally connected to the base plate (76) of the heat sink (75).
  • the power module (71) is in contact with the mounting surface (77) of the base plate (76) of the heat sink (75).
  • the heat generated in the power module (71) is conducted to the heat sink (75).
  • two reactors (74) are attached to the left wall (36e), and one reactor (74) is attached to the rear wall (36b). These three reactors (74) are provided above the inverter board (70). Further, these three reactors (74) are located on the side of the ventilation hole (93) formed in the region near the upper end of the partition plate (90).
  • the control board (72) is attached to the right wall of the electrical equipment box (36).
  • the control board (72) is provided at the position farthest from the inverter board (70).
  • the relay board (73) is attached to the rear wall of the electrical component box (36).
  • the outside fan (34) When the outside fan (34) operates, the outside air flows into the primary side space (S21) of the second space (S2) and flows toward the outside heat exchanger (32). A part of the outside air that has flowed into the primary space (S21) flows into the air passage (85) in the duct (80).
  • the air flowing from the air inlet (83) of the duct (80) into the air passage (85) is divided into a plurality of flow paths (86) partitioned by the fins (78) of the heat sink (75), and each flow flows. It flows upward on the road (86).
  • the air flowing through each flow path (86) is endothermic from the heat sink (75).
  • the heat conducted from the power module (71) to the heat sink (75) is released to the air flowing through the air passage (85). As a result, an excessive temperature rise of the power module (71) is suppressed.
  • the air absorbed from the heat sink (75) flows out from the air passage (85) through the air outlet (84).
  • the air outlet (84) of the duct (80) faces the fourth flat portion (104) of the external heat exchanger (32). Therefore, the air absorbed from the heat sink (75) flows from the air outlet (84) toward the fourth flat portion (104) of the external heat exchanger (32), and the air inflow surface passes through the fourth flat portion (104). It passes from (32a) toward the air outflow surface (32b).
  • the inverter board (70) and the relay (74), which are relatively hot during operation, are housed in the first chamber (37a), and the control board (72), which is not so hot during operation.
  • the relay board (73) are housed in the second chamber (37b). Therefore, during the operation of the transport refrigerating apparatus (10), the air temperature in the first chamber (37a) is usually higher than the air temperature in the second chamber (37b).
  • ventilation holes (93) are formed only in the region near the upper end and the region near the lower end. Therefore, inside the electrical component box (36), an air flow that circulates between the first chamber (37a) and the second chamber (37b) is generated.
  • the air in the first chamber (37a) is heated by the inverter board (70) and the reactor (74).
  • the air in the warmed first chamber (37a) flows upward and flows out to the second chamber (37b) through the ventilation holes (93) formed near the upper end of the partition plate (90).
  • the temperature of the air in the second chamber (37b) is lower than the temperature of the air in the first chamber (37a). Therefore, when an upward air flow is generated in the first chamber (37a), the air in the second chamber (37b) is first passed through the ventilation hole (93) formed near the lower end of the partition plate (90). It flows into the room (37a). As a result, an excessive rise in the temperature in the first room (37a) is suppressed.
  • a reactor (74) is provided above the inverter board (70).
  • the temperature of the inverter board (70) during operation and the temperature of the reactor (74) during operation are both approximately 60 ° C. to 70 ° C. Also, the temperature of the operating reactor (74) is slightly higher than the temperature of the operating inverter board (70).
  • a reactor (74) having a temperature higher than that of the inverter board (70) is provided above the inverter board (70).
  • an upward airflow is generated in the first chamber (37a). Therefore, the heat generated in the reactor (74) is less likely to be transferred to the inverter board (70), and the temperature rise of the inverter board (70) is suppressed.
  • the electrical component box (36) is arranged on the side of the external heat exchanger (32).
  • the inverter board (70) is housed in the electrical component box (36).
  • the left wall (36e) of the electrical component box (36) faces the air inflow surface (32a) of the external heat exchanger (32).
  • a heat sink (75) is provided on the left wall (36e) of the electrical component box (36). The heat generated in the power module (71) of the inverter board (70) is conducted to the heat sink (75) and dissipated.
  • the electrical component box (36) accommodating the inverter board (70) is arranged on the side of the external heat exchanger (32), the power module (71) of the inverter board (70) is arranged.
  • the heat generated in the above can be released to the air, and the excessive temperature rise of the power module (71) can be suppressed. Therefore, according to the present embodiment, in the transport refrigerating apparatus (10), the heat dissipation structure when the electrical component box (36) accommodating the inverter board (70) is arranged on the side of the external heat exchanger (32). Can be provided.
  • the transport refrigerating apparatus (10) of the present embodiment includes a duct (80).
  • the duct (80) forms an air passage (85) in which the heat sink (75) is located.
  • the heat conducted from the power module (71) of the inverter board (70) to the heat sink (75) is released to the air flowing through the air passage (85) formed by the duct (80).
  • the air inlet (83) of the duct (80) opens downward. Therefore, it becomes difficult for rainwater, seawater, etc. to enter the air passage (85) in the duct (80) from the air inlet (83). As a result, corrosion of the heat sink (75) provided in the air passage (85) can be suppressed, and the reliability of the transport refrigerating device (10) can be ensured.
  • the air outlet (84) of the duct (80) opens toward the air inflow surface (32a) of the external heat exchanger (32). Therefore, the air absorbed from the heat sink (75) while flowing through the air passage (85) in the duct (80) goes from the air outlet (84) to the air inflow surface (32a) of the external heat exchanger (32). Flows.
  • the duct (80) includes a first portion (81) and a second portion (82).
  • the first portion (81) has an air inlet (83) and extends in the vertical direction.
  • the second portion (82) is continuously formed on the first portion (81), extends laterally from the first portion (81), and has an air outlet (84).
  • the air flowing from the air inlet (83) to the air passage (85) passes through the first part (81) and the second part (82) of the duct (80) in order, and passes through the air outlet (84) to pass through the air passage. It flows out from (85).
  • an air inlet (83) is formed at the lower end of the first portion (81), and at the tip of the second portion (82) extending laterally from the first portion (81).
  • An air outlet (84) is formed. Therefore, according to the present embodiment, it becomes difficult for rainwater, seawater, or the like to enter the air passage (85) in the duct (80). As a result, corrosion of the heat sink (75) provided in the air passage (85) can be suppressed, and the reliability of the transport refrigerating device (10) can be ensured.
  • the air outlet (84) located at the tip of the second part (82) faces the internal heat exchanger (60). Therefore, the air flowing out from the air outlet (84) flows toward the internal heat exchanger (60), and the air flows from the air inlet (83) in the air passage (85) in the duct (80). It surely flows toward the exit (84). Therefore, the amount of heat released from the heat sink (75) to the air can be secured, and the temperature of the power module (71) can be kept within an appropriate range.
  • the heat sink (75) includes one base plate (76) and a plurality of fins (78).
  • the plate-shaped base plate (76) has a mounting surface (77) in contact with the power module (71).
  • the plate-shaped fins (78) project from a surface different from the mounting surface (77) of the base plate (76).
  • the air passage (85) formed by the duct (80) is partitioned into a plurality of passages (86) by fins (78).
  • the air that has flowed into the air passage (85) is divided into a plurality of flow paths (86) and flows into the fins (78). Therefore, according to the present embodiment, the amount of heat released from the heat sink (75) to the air can be secured by ensuring that the air is brought into contact with the fins (78), and as a result, the temperature of the power module (71) is kept within an appropriate range. Can be kept.
  • the fins (78) of the heat sink (75) extend in the vertical direction. Therefore, even if water enters the air passage (85), the invaded water does not collect on the fins (78). Therefore, according to the present embodiment, the corrosion of the heat sink (75) can be suppressed, and the reliability of the transport refrigerating apparatus (10) can be ensured.
  • control board (72) is housed in the electrical component box (36).
  • the control board (72) controls the constituent equipment of the transport refrigerating device (10).
  • the internal space of the electrical component box (36) is divided into a first chamber (37a) and a second chamber (37b) by a partition plate (90).
  • the inverter board (70) is housed in the first chamber (37a).
  • the control board (72) is housed in the second chamber (37b).
  • the metal partition plate (90) suppresses noise propagation from the inverter board (70) to the control board (72). Therefore, according to the present embodiment, the inverter board (70) and the control board (72) can be housed in one electrical component box (36) while operating the control board (72) normally.
  • the partition plate (90) of the electrical component box (36) is formed with ventilation holes (93) at the upper and lower portions. Therefore, as described above, in the internal space of the electrical component box (36), an air flow that circulates between the first chamber (37a) and the second chamber (37b) is generated. As a result, an excessive rise in the air temperature in the first chamber (37a) can be suppressed, and the temperature of the inverter substrate (70) can be kept within an appropriate range.
  • the reactor (74) is housed in the electrical component box (36).
  • the reactor (74) is located above the inverter board (70). Therefore, the amount of heat transferred from the reactor (74) to the inverter board (70) can be suppressed to a low level, and the temperature rise of the inverter board (70) can be suppressed.
  • the external heat exchanger (32) is provided with a liquid side header (137) which is a refrigerant outlet at one end.
  • the air that has passed through the heat sink (75) passes near the other end of the external heat exchanger (32).
  • the air absorbed from the heat sink (75) flows through the portion of the external heat exchanger (32) away from the liquid side header (137) which is the refrigerant outlet. Therefore, according to the present embodiment, even when the air absorbed from the heat sink (75) passes through the external heat exchanger (32), the temperature of the refrigerant flowing out from the external heat exchanger (32) is adjusted. It can be kept low.
  • a fork pocket (150) is provided above the electrical component box (36).
  • a fork for lifting the transport refrigerating device (10) is inserted into the fork pocket (150).
  • the space (S23) between the electrical equipment box (36) and the fork pocket (150) is the "internal space (153) of the fork pocket (150)” and the "primary space (S21) of the second space (S2)". ".
  • the air that has passed through the fork pocket (150) flows toward the external heat exchanger (32). Therefore, it becomes easy to secure the flow rate of the air flowing toward the external heat exchanger (32).
  • the transportation container (1) of the present embodiment may be used for land transportation.
  • the transportation container (1) is transported by a land transporter such as a vehicle.
  • the shipping container (1) is mounted on the trailer.
  • the ventilation holes (93) may be formed only in the forward-facing plate portion (91).
  • Vents (93) may be formed in both the front facing plate portion (91) and the side facing plate portion (92).
  • the present disclosure is useful for transport refrigeration equipment and transport containers.
  • Transport container 10
  • Transport refrigeration device 32
  • External heat exchanger (condenser) 32a Air inflow surface 36
  • Electrical equipment box (box) 37a Room 1 (space) 37b Room 2 (space) 36e
  • Opposing plate 70
  • Inverter board 71
  • Power module (heat generating component) 72
  • Control board 74
  • Reactor 75
  • Heat sink 76
  • Base plate (base) 77
  • Mounting surface 78
  • Duct 81 1st part
  • 2nd part 83
  • Air inlet 84
  • Air outlet 85
  • Air passage 86
  • Partition plate 93 Through hole 137
  • Liquid side header (refrigerant outlet) 150
  • Fork pocket S21 Primary space S23 Space

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

輸送用冷凍装置(10)において、インバータ基板(70)を収容する電装品箱(36)を、庫外熱交換器(32)の側方に配置する。電装品箱(36)は、庫外熱交換器(32)の空気流入面(32a)に対向する対向板(36e)を有する。電装品箱(36)の対向板(36e)に、ヒートシンク(75)が設けられる。ヒートシンク(75)は、電装品箱(36)の外部に露出し、インバータ基板(70)に設けられたパワーモジュール(71)を冷却する。

Description

輸送用冷凍装置および輸送用コンテナ
 本開示は、輸送用冷凍装置および輸送用コンテナに関するものである。
 特許文献1には、コンテナ用冷凍装置が開示されている。このコンテナ用冷凍装置では、基板を収容するインバータボックスが、平板状に形成された凝縮器の下方に設けられる。インバータボックスの背面には、放熱フィンが設けられる。このコンテナ冷凍装置において、放熱フィンは、インバータボックスの背面とケーシングの間を流れる空気へ放熱する。
特開2015-127630号公報
 特許文献1のコンテナ用冷凍装置において、電装品箱であるインバータボックスは、凝縮器の上流側で且つ凝縮器の下方に配置される。しかし、コンテナ用冷凍装置等の輸送用冷凍装置における電装品箱の設置位置は、凝縮器の下方に限定されない。そして、凝縮器の下方以外の位置に電装品箱を設けた場合における放熱構造については検討されていなかった。
 本開示の目的は、輸送用冷凍装置においてインバータ基板を収容する箱を凝縮器の側方に配置した場合の放熱構造を提供することにある。
 本開示の第1の態様は、輸送用冷凍装置(10)を対象とし、凝縮器(32)と、上記凝縮器(32)の側方に配置され、インバータ基板(70)を収容する箱(36)とを備え、上記箱(36)は、上記凝縮器(32)の空気流入面(32a)に対向する対向板(36e)を有し、上記対向板(36e)に設けられ、上記箱(36)の外部に露出して上記インバータ基板(70)に設けられた発熱部品(71)を冷却するヒートシンク(75)をさらに備えることを特徴とする。
 第1の態様では、凝縮器(32)の側方に配置された箱(36)の対向板(36e)にヒートシンク(75)が設けられる。箱(36)に収容されたインバータ基板(70)の発熱部品(71)において生じた熱は、ヒートシンク(75)に伝導して放熱される。従って、この態様によれば、インバータ基板(70)を収容する箱(36)を凝縮器(32)の側方に配置した場合において、インバータ基板(70)の発熱部品(71)で生じた熱を空気へ放出し、発熱部品(71)の過剰な温度上昇を抑制できる。
 本開示の第2の態様は、上記第1の態様において、上記ヒートシンク(75)が配置される空気通路(85)を形成するダクト(80)をさらに備えることを特徴とする。
 第2の態様において、インバータ基板(70)の発熱部品(71)からヒートシンク(75)に伝導した熱は、ダクト(80)によって形成された空気通路(85)を流れる空気に対して放出される。
 本開示の第3の態様は、上記第2の態様において、上記ダクト(80)の空気入口(83)は、下方に向かって開口していることを特徴とする。
 第3の態様では、ダクト(80)の空気入口(83)が下向きであるため、空気入口(83)からダクト(80)内の空気通路(85)へ雨水や海水などが浸入しにくくなる。
 本開示の第4の態様は、上記第2又は第3の態様において、上記ダクト(80)の空気出口(84)は、上記凝縮器(32)の上記空気流入面(32a)に向かって開口していることを特徴とする。
 第4の態様において、ダクト(80)内の空気通路(85)を流れる間にヒートシンク(75)から吸熱した空気は、空気出口(84)から凝縮器(32)の空気流入面(32a)に向かって流れる。
 本開示の第5の態様は、上記第2~第4のいずれか一つの態様において、上記ダクト(80)は、空気入口(83)を有しかつ所定方向に延びる第1部分(81)と、該第1部分(81)に連続して上記所定方向と交差する方向に延びかつ空気出口(84)を有する第2部分(82)とを備えることを特徴とする。
 第5の態様において、空気入口(83)から空気通路(85)へ流入した空気は、ダクト(80)の第1部分(81)と第2部分(82)を順に通過し、空気出口(84)を通って空気通路(85)から流出する。
 本開示の第6の態様は、上記第2~第5のいずれか一つの態様において、上記ヒートシンク(75)は、上記発熱部品(71)と接する装着面(77)を有する板状の基体(76)と、該基体(76)の上記装着面(77)とは異なる面から突出する複数の板状のフィン(78)とを備え、上記ダクト(80)によって形成された上記空気通路(85)が、上記フィン(78)によって複数の流路(86)に仕切られることを特徴とする。
 第6の態様では、ダクト(80)内の空気通路(85)が、ヒートシンク(75)のフィン(78)によって複数の流路(86)に仕切られる。空気通路(85)へ流入した空気は、複数の流路(86)へ分かれて流入してフィン(78)と接触する。
 本開示の第7の態様は、上記第6の態様において、上記ヒートシンク(75)の上記フィン(78)は、上下方向に延びていることを特徴とする。
 第7の態様では、上下方向に延びるフィン(78)によって、ダクト(80)内の空気通路(85)が複数の流路(86)に仕切られる。
 本開示の第8の態様は、上記第1~第7のいずれか一つの態様において、上記箱(36)に収容され、上記輸送用冷凍装置を制御するための制御基板(72)をさらに備えることを特徴とする。
 第8の態様では、制御基板(72)がインバータ基板(70)と共に箱(36)に収容される。
 本開示の第9の態様は、上記第8の態様において、上記箱(36)内に設けられ、上記インバータ基板(70)が収容される空間(37a)と、上記制御基板(72)が収容される空間(37b)とを互いに仕切ると共に、上記インバータ基板(70)から上記制御基板(72)へのノイズ伝搬を抑制する区画板(90)をさらに備えることを特徴とする。
 第9の態様では、箱(36)の内部空間において、インバータ基板(70)が収容される空間(37a)と、制御基板(72)が収容される空間(37b)とが、区画板(90)によって仕切られる。区画板(90)は、インバータ基板(70)から制御基板(72)へのノイズ伝搬を抑制する。そのため、制御基板(72)を正常に作動させつつ、一つの電装品箱(36)にインバータ基板(70)と制御基板(72)を収容できる。
 本開示の第10の態様は、上記第9の態様において、上記区画板(90)は、上部と下部に貫通孔(93)が形成されていることを特徴とする。
 第10の態様では、箱(36)内の空気は、区画板(90)の貫通孔(93)を通って、区画板(90)によって仕切られた二つの空間(37a,37b)の間を移動する。
 本開示の第11の態様は、上記第1~第10のいずれか一つの態様において、上記箱(36)に収容され、上記インバータ基板(70)の上方に配置されるリアクトル(74)をさらに備えることを特徴とする。
 第11の態様では、箱(36)の内部空間において、インバータ基板(70)の上方にリアクトル(74)が設けられる。
 本開示の第12の態様は、上記第1~第11のいずれか一つの態様において、上記凝縮器(32)は、一端部に冷媒出口(137)を有し、上記ヒートシンク(75)を通過した空気は、上記凝縮器(32)の他端寄りを通過することを特徴とする。
 第12の態様において、ヒートシンク(75)を通過した空気は、凝縮器(32)のうち冷媒出口(137)から比較的離れた部分を通過する。そのため、凝縮器(32)の冷媒出口(137)から流出する冷媒の温度を低く抑えることができる。
 本開示の第13の態様は、上記第1~第12のいずれか一つの態様において、上記箱(36)の上方に設けられ、輸送用冷凍装置を持ち上げるためのフォークが差し込まれるフォークポケット(150)をさらに備え、上記箱(36)と上記フォークポケット(150)との間の空間(S23)は、該フォークポケット(150)の内部空間(153)および上記凝縮器(32)の上流側の空間(S21)と連通していることを特徴とする。
 第13の態様では、フォークポケット(150)を通った空気が、凝縮器(32)に向かって流れる。そのため凝縮器(32)へ向かって流れる空気の流量を確保しやすくなる。
 本開示の第14の態様は、輸送用コンテナ(1)を対象とし、上記第1~第13のいずれか一つの態様の輸送用冷凍装置(10)と、コンテナ本体(2)とを備えることを特徴とする。
 第14の態様では、輸送用冷凍装置(10)とコンテナ本体(2)とが輸送用コンテナ(1)に設けられる。
図1は、実施形態に係る輸送用コンテナを前側から視た斜視図である。 図2は、実施形態に係る輸送用コンテナの内部構造を模式的に示す縦断面図である。 図3は、実施形態に係る輸送用冷凍装置の冷媒回路の配管系統図である。 図4は、実施形態に係る輸送用冷凍装置の要部の正面図であって、庫外熱交換器のカバーを取り外した状態を示す図である。 図5は、実施形態に係る輸送用冷凍装置に設けられたフォークポケットの概略斜視図である。 図6は、図7のVI-VI断面を示す電装品箱の断面図である。 図7は、図6のVII-VII断面を示す電装品箱の断面図である。 図8は、図6のVIII-VIII断面の要部を示す電装品箱の断面図である。
 以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《実施形態》
 本開示は、輸送用コンテナ(1)である。図1に示すように、輸送用コンテナ(1)は、コンテナ本体(2)と、コンテナ本体(2)に設けられる輸送用冷凍装置(10)とを備える。輸送用コンテナ(1)は、海上輸送に用いられる。輸送用コンテナ(1)は、船舶などの海上輸送体によって搬送される。なお、以下の説明において、「上」、「下」、「左」、「右」、「前」および「後」は、特にことわりのない限り、輸送用冷凍装置(10)を正面から見たときの方向を意味する。
  -コンテナ本体-
 コンテナ本体(2)は、中空の箱状に形成される。コンテナ本体(2)は、横長に形成される。コンテナ本体(2)の長手方向の一端には、開口が形成される。コンテナ本体(2)の開口は、輸送用冷凍装置(10)によって塞がれる。コンテナ本体(2)の庫内には、輸送対象物品を収納するための収納空間(5)が形成される。収納空間(5)には、輸送対象物品が収納される。収納空間(5)の空気(庫内空気ともいう)の温度は、輸送用冷凍装置(10)によって調節される。
  -輸送用冷凍装置-
 輸送用冷凍装置(10)は、コンテナ本体(2)の開口に取り付けられる。輸送用冷凍装置(10)は、ケーシング(11)と冷媒回路(C)とを備える。
   〈ケーシング〉
 図2に模式的に示すように、ケーシング(11)は、隔壁(12)と仕切板(15)とを備える。
 隔壁(12)の内側には、庫内流路(20)が形成される。隔壁(12)の外側には、庫外室(S)が形成される。庫外室(S)は収容空間に対応する。庫内流路(20)と庫外室(S)とは、隔壁(12)によって仕切られる。
 隔壁(12)は、庫外壁(13)と庫内壁(14)とを備える。庫外壁(13)は、コンテナ本体(2)の外側に位置する。庫内壁(14)は、コンテナ本体(2)の内側に位置する。庫外壁(13)及び庫内壁(14)は、例えば、アルミニウム合金によって構成される。
 庫外壁(13)は、コンテナ本体(2)の開口を塞いでいる。庫外壁(13)は、コンテナ本体(2)の開口の周縁部に取り付けられる。庫外壁(13)の下部は、コンテナ本体(2)の内側に向かって膨出する。庫外室(S)は、この膨出した庫外壁(13)の内側に形成される。
 庫内壁(14)は、庫外壁(13)と対向する。庫内壁(14)は、庫外壁(13)に沿った形状を有する。庫内壁(14)は、庫外壁(13)と間隔を置いて配置される。庫内壁(14)と庫外壁(13)との間には、断熱材(16)が設けられる。
 仕切板(15)は、庫内壁(14)よりもコンテナ本体(2)の内側に配置される。隔壁(12)と仕切板(15)との間には、庫内流路(20)が形成される。仕切板(15)の上端とコンテナ本体(2)の天板との間には、流入口(21)が形成される。仕切板(15)の下端と隔壁(12)の下端との間には、流出口(22)が形成される。庫内流路(20)は、流入口(21)から流出口(22)に亘って形成される。
 庫内流路(20)は、上部流路(23)と下部流路(24)とを含む。上部流路(23)は、庫内流路(20)の上部に位置する。下部流路(24)は、庫内流路(20)の下部に位置する。下部流路(24)は、隔壁(12)の膨出した部分に対応する位置にある。
   〈冷媒回路の要素部品〉
 冷媒回路(C)は、それに充填された冷媒を有する。冷媒回路(C)は、冷媒が循環することで蒸気圧縮式の冷凍サイクルを行う。冷媒回路(C)は、圧縮機(31)、庫外熱交換器(32)、膨張弁(33)、庫内熱交換器(60)、及びこれらを接続する冷媒配管を含む。
 圧縮機(31)は、庫外室(S)の下部に対応する第1空間(S1)の右寄りに配置される。圧縮機(31)は、低圧の冷媒を吸い込んで圧縮する。圧縮機(31)は、圧縮した冷媒を高圧の冷媒として吐出する。
 庫外熱交換器(32)は、庫外室(S)の上部に対応する第2空間(S2)の左寄りに配置される。庫外熱交換器(32)は、フィンアンドチューブ式である。庫外熱交換器(32)は、いわゆる4面式の熱交換器である。庫外熱交換器(32)の形状は、概ね矩形の筒状である。庫外熱交換器(32)は、凝縮器、あるいは放熱器として機能する。
 庫内熱交換器(60)は、庫内流路(20)に配置される。庫内熱交換器(60)は、隔壁(12)と仕切板(15)との間に支持される。庫内熱交換器(60)は、フィンアンドチューブ式である。庫内熱交換器(60)は、蒸発器として機能する。
   〈庫外ファン〉
 輸送用冷凍装置(10)は、1つの庫外ファン(34)を備える。庫外ファン(34)は、庫外室(S)の第2空間(S2)に配置される。庫外ファン(34)は、庫外熱交換器(32)の4つの熱交換部の内側に配置される。庫外ファン(34)は、プロペラファンである。
 庫外ファン(34)が運転すると、庫外空気は庫外熱交換器(32)の外部から内部へ流れる。庫外熱交換器(32)の内部の空気は、ケーシング(11)の外部へ吹き出される。
   〈庫内ファン〉
 輸送用冷凍装置(10)は、2つの庫内ファン(35)を備える。庫内ファン(35)は、庫内流路(20)の上部流路(23)に配置される。庫内ファン(35)は、庫内熱交換器(60)の上側に配置される。庫内ファン(35)は、庫内熱交換器(60)よりも空気流れの上流側に配置される。庫内ファン(35)は、プロペラファンである。庫内ファン(35)の数量は1つ又は3つ以上であってもよい。
 庫内ファン(35)が運転すると、収納空間(5)の庫内空気は流入口(21)から庫内流路(20)の上部流路(23)に流入する。庫内流路(20)の上部流路(23)の空気は、庫内熱交換器(60)と、後述するヒータ(H)とを通過し、下部流路(24)を流れる。下部流路(24)の空気は、流出口(22)から収納空間(5)へ流出する。
   〈ヒータ〉
 輸送用冷凍装置(10)は、ヒータ(H)を備える。ヒータ(H)は、庫内熱交換器(60)の下側に配置される。ヒータ(H)は、庫内熱交換器(60)の下部に取り付けられる。ヒータ(H)が動作すると、庫内熱交換器(60)が加熱される。ヒータ(H)の熱により、庫内熱交換器(60)に付着した霜が融ける。ヒータ(H)は、庫内熱交換器(60)の除霜のために用いられる。
   〈電装品箱〉
 図1に示すように、輸送用冷凍装置(10)は、電装品箱(36)を有する。電装品箱(36)は、庫外室(S)の第2空間(S2)に配置される。詳しくは後述するが、電装品箱(36)の内部には、インバータ基板(70)、制御基板(72)、リレー基板(73)、及びリアクトル(74)等の電気部品が収容される。
  -冷媒回路の詳細-
 図3を参照しながら冷媒回路(C)の詳細を説明する。図3において、破線で囲んだ部分は庫内側を示し、それ以外の部分は庫外側を示す。
 冷媒回路(C)は、主要部品として、圧縮機(31)と、庫外熱交換器(32)と、膨張弁(33)と、庫内熱交換器(60)とを有する。膨張弁(33)は、その開度が調節可能な電子膨張弁である。
 冷媒回路(C)は、吐出管(41)と吸入管(42)とを有する。吐出管(41)の一端は圧縮機(31)の吐出部に接続する。吐出管(41)の他端は、庫外熱交換器(32)のガス端に接続する。吸入管(42)の一端は、圧縮機(31)の吸入部に接続する。吸入管(42)の他端は、庫内熱交換器(60)のガス端に接続する。
 冷媒回路(C)は、液管(43)、レシーバ(44)、冷却熱交換器(45)、第1開閉弁(46)、連通管(47)、第2開閉弁(48)、インジェクション管(49)、及びインジェクション弁(50)を有する。
 液管(43)の一端は、庫外熱交換器(32)の液端に接続する。液管(43)の他端は、庫内熱交換器(60)の液端に接続する。レシーバ(44)は、液管(43)に設けられる。レシーバ(44)は、冷媒を貯留する容器である。
 冷却熱交換器(45)は、第1流路(45a)と第2流路(45b)とを有する。冷却熱交換器(45)は、第1流路(45a)の冷媒と、第2流路(45b)の冷媒とを熱交換させる。冷却熱交換器(45)は、例えばプレート式の熱交換器である。第1流路(45a)は、液管(43)の一部である。第2流路(45b)は、インジェクション管(49)の一部である。冷却熱交換器(45)は、液管(43)を流れる冷媒を冷却する。
 第1開閉弁(46)は、液管(43)におけるレシーバ(44)と第1流路(45a)との間の部分に設けられる。第1開閉弁(46)は、開閉可能な電磁弁である。
 連通管(47)は、冷媒回路(C)の高圧ライン及び低圧ラインを連通させる。連通管(47)の一端は、吐出管(41)に接続する。連通管(47)の他端は、液管(43)における膨張弁(33)と庫内熱交換器(60)との間の部分に接続する。
 第2開閉弁(48)は、連通管(47)に設けられる。第2開閉弁(48)は、開閉可能な電磁弁である。
 インジェクション管(49)は、圧縮機(31)の中圧部に冷媒を導入する。インジェクション管(49)の一端は、液管(43)におけるレシーバ(44)と第1流路(45a)との間の部分に接続する。インジェクション管(49)の他端は、圧縮機(31)の中圧部に接続する。中圧部の圧力である中間圧力は、圧縮機(31)の吸入圧力と吐出圧力との間の圧力である。
 インジェクション弁(50)は、インジェクション管(49)における第2流路(45b)の上流側の部分に設けられる。インジェクション弁(50)は、その開度が調節可能な電子膨張弁である。
  -輸送用冷凍装置の運転動作-
 輸送用冷凍装置(10)の基本的な運転動作について説明する。輸送用冷凍装置(10)の運転時には、圧縮機(31)、庫外ファン(34)、庫内ファン(35)が運転する。第1開閉弁(46)が開く。第2開閉弁(48)が閉じる。膨張弁(33)の開度が調節される。インジェクション弁(50)の開度が調節される。
 圧縮機(31)で圧縮された冷媒は、庫外熱交換器(32)を流れる。庫外熱交換器(32)では、冷媒が庫外空気へ放熱し、凝縮する。凝縮した冷媒は、レシーバ(44)を通過する。レシーバ(44)を通過した冷媒の一部は、冷却熱交換器(45)の第1流路(45a)を流れる。レシーバ(44)を通過した冷媒の残部は、インジェクション管(49)を流れ、インジェクション弁(50)において中間圧力まで減圧される。減圧された冷媒は、圧縮機(31)の中圧部に導入される。
 冷却熱交換器(45)では、第2流路(45b)の冷媒が第1流路(45a)の冷媒から吸熱し、蒸発する。これにより、第1流路(45a)の冷媒が冷却される。言い換えると、第1流路(45a)を流れる冷媒の過冷却度が大きくなる。
 冷却熱交換器(45)で冷却された冷媒は、膨張弁(33)で低圧まで減圧される。減圧された冷媒は、庫内熱交換器(60)を流れる。庫内熱交換器(60)では、冷媒が庫内空気から吸熱し、蒸発する。この結果、庫内熱交換器(60)は、庫内空気を冷却する。蒸発した冷媒は、圧縮機(31)に吸入され、再び圧縮される。
 コンテナ本体(2)の庫内空気は、収納空間(5)と庫内流路(20)とを循環する。庫内流路(20)では、庫内空気が庫内熱交換器(60)によって冷却される。これにより、収納空間(5)の庫内空気を冷却でき、庫内空気を所定温度に調節できる。
  -庫外熱交換器および電装品箱の形状と配置-
 図4に示すように、庫外室(S)の第2空間(S2)には、庫外熱交換器(32)と電装品箱(36)とが設けられる。第2空間(S2)では、左寄りに庫外熱交換器(32)が設けられ、右寄りに電装品箱(36)が設けられる。このように、電装品箱(36)は、庫外熱交換器(32)の側方に位置する。
   〈庫外熱交換器の形状と配置〉
 庫外熱交換器(32)は、矩形の筒状に形成される。庫外熱交換器(32)には、四つの平坦部(101~104)と、三つの湾曲部(111~113)とが形成される。各平坦部(101~104)は、平らな部分である。各湾曲部(111~113)は、正面から見て1/4円弧状に湾曲した部分である。
 第1平坦部(101)は、庫外熱交換器(32)の最も下方に位置し、概ね水平方向へ延びる。第1湾曲部(111)は、第1平坦部(101)の左端に連続して上向きに湾曲する。第3平坦部(103)は、第1湾曲部(111)の上端に連続して上方へ延びる。第2湾曲部(112)は、第3平坦部(103)の上端に連続して右向きに湾曲する。第2平坦部(102)は、第2湾曲部(112)の右端に連続して右方に延びる。第3湾曲部(113)は、第2平坦部(102)の右端に連続して下向きに湾曲する。第4平坦部(104)は、第3湾曲部(113)の下端に連続して下方に延びる。庫外熱交換器(32)では、第1平坦部(101)と第2平坦部(102)が向かい合い、第3平坦部(103)と第4平坦部(104)が向かい合う。
 庫外熱交換器(32)は、ケーシング(11)の隔壁(12)に固定される。庫外熱交換器(32)は、第1平坦部(101)及び第2平坦部(102)が概ね水平方向に延び、第3平坦部(103)及び第4平坦部(104)が概ね鉛直方向に延びる姿勢で、ケーシング(11)に取り付けられる。
 庫外熱交換器(32)では、第1平坦部(101)の右端部に液側ヘッダ(137)とガス側ヘッダ(136)とが設けられる。液側ヘッダ(137)及びガス側ヘッダ(136)は、庫外熱交換器(32)の冷媒管(120)に接続する。凝縮器または放熱器として機能する庫外熱交換器(32)では、ガス側ヘッダ(136)から冷媒管(120)へ冷媒が流入し、冷媒管(120)から液側ヘッダ(137)へ冷媒が流出する。液側ヘッダ(137)は、冷媒出口である。
 庫外熱交換器(32)は、外向きの面が空気流入面(32a)であり、内向きの面が空気流出面(32b)である。空気流入面(32a)及び空気流出面(32b)は、配列された複数のフィンによって形成される仮想の面である。庫外熱交換器(32)では、空気流入面(32a)から空気流出面(32b)に向かって空気が流れる。
 庫外室(S)の第2空間(S2)は、庫外熱交換器(32)の外側の部分が一次側空間(S21)であり、庫外熱交換器(32)の内側の部分が二次側空間(S22)である。一次側空間(S21)は、庫外熱交換器(32)の上流側の空間である。二次側空間(S22)は、庫外熱交換器(32)の下流側の空間である。
   〈電装品箱の形状と配置〉
 電装品箱(36)は、直方体状に形成された箱である。電装品箱(36)は、前壁(36a)、後壁(36b)、上壁(36c)、底壁(36d)、左側壁(36e)、及び右側壁(36f)を備える。
 前壁(36a)には、操作パネル(65)が配置される。操作パネル(65)は、輸送用冷凍装置(10)の運転のON/OFFの切り換え指示などを作業者が入力するための操作ボタン(66)と、輸送用冷凍装置(10)の運転状態などを表示する表示画面(67)とを備える。
 電装品箱(36)は、前壁(36a)が概ね鉛直方向に延びる姿勢で、ケーシング(11)に取り付けられる。ケーシング(11)に取り付けられた電装品箱(36)は、左側壁(36e)が庫外熱交換器(32)の第4平坦部(104)と向かい合う。電装品箱(36)の左側壁(36e)は、庫外熱交換器(32)の空気流入面(32a)と向かい合う対向板である。
  -フォークポケット-
 図4に示すように、ケーシング(11)には、一対のフォークポケット(150)が設けられる。フォークポケット(150)は、輸送用冷凍装置(10)を持ち上げる際にフォークリフト等のフォークが差し込まれる部材である。フォークポケット(150)は、庫外熱交換器(32)の上方と、電装品箱(36)の上方とに、一つずつ設けられる。
 図5に示すように、フォークポケット(150)は、断面が矩形の筒状に形成される。フォークポケット(150)は、両端が開口端となっている。フォークポケット(150)は、一方の開口端が差込口(151)となる。フォークポケットの底壁部には、連通穴(152)が形成される。
 図4に示すように、フォークポケット(150)は、差込口(151)の長辺が概ね水平方向となり、且つ差込口(151)がケーシング(11)の前面に露出する姿勢で、ケーシング(11)に取り付けられる。フォークポケット(150)の内部空間(153)は、連通穴(152)を介して第2空間(S2)の一次側空間(S21)と連通する。特に、電装品箱(36)の上壁(36c)の上方に位置するフォークポケット(150)の内部空間(153)は、連通穴(152)と、第2空間(S2)のうち電装品箱(36)の上方に位置する部分とを介して、一次側空間(S21)と連通する。
  -電装品箱の詳細な構成-
 電装品箱(36)の詳細な構成について、図6~図8を適宜参照しながら説明する。上述したように、電装品箱(36)の内部には、インバータ基板(70)、制御基板(72)、リレー基板(73)、及びリアクトル(74)等の電気部品が収容される。また、電装品箱(36)には、ヒートシンク(75)と、ダクト(80)と、区画板(90)とが設けられる。
   〈区画板〉
 区画板(90)は、電装品箱(36)の内部空間を左右に仕切るための部材である。電装品箱(36)の内部空間は、区画板(90)の左側に位置する第1室(37a)と、区画板(90)の右側に位置する第2室(37b)とに仕切られる(図6を参照)。
 区画板(90)は、平面視で階段状に折れ曲がった板状の部材である(図8を参照)。また、区画板(90)の高さは、電装品箱(36)の底壁(36d)から上壁(36c)までの距離よりも僅かに短い。区画板(90)の材質は、金属(例えば、鋼やステンレスなど)である。区画板(90)は、インバータ基板(70)において発生したノイズ(電磁波)を遮蔽する機能を有する。
 具体的に、区画板(90)は、前向き板部(91)と横向き板部(92)とを二つずつ備える(図8を参照)。各前向き板部(91)と各横向き板部(92)のそれぞれは、長方形板状に形成される。各前向き板部(91)と各横向き板部(92)は、それぞれの長辺が上下方向となる姿勢で設けられる。区画板(90)では、前向き板部(91)と横向き板部(92)とが交互に配置される。隣り合う前向き板部(91)と横向き板部(92)は、それぞれの一方の長辺を共有する。
 図7に示すように、区画板(90)の各横向き板部(92)には、複数の通気孔(93)が形成される。各通気孔(93)は、区画板(90)を厚さ方向に貫通する貫通孔である。通気孔(93)は、横向き板部(92)の上端寄りの領域と下端寄りの領域とに複数ずつ形成される。各横向き板部(92)では、下端寄りの領域に形成された通気孔(93)の数が、上端寄りの領域に形成された通気孔(93)の数よりも多い。また、各横向き板部(92)では、上端寄りの領域と下端寄りの領域だけに通気孔(93)が形成される。言い換えると、各横向き板部(92)において、上下方向の中間に位置する領域は、通気孔(93)が形成されない遮蔽部である。
   〈ヒートシンク〉
 ヒートシンク(75)は、インバータ基板(70)のパワーモジュール(71)を冷却するための部材である。
 図6及び図8に示すように、ヒートシンク(75)は、一つのベース板(76)と、複数のフィン(78)とを備える。ベース板(76)とフィンとは、一体に形成される。ヒートシンク(75)の材質は、金属(例えば、アルミニウム合金)である。
 ベース板(76)は、長方形板状の部分である。ベース板(76)は、基体である。各フィン(78)は、長方形板状に形成される。各フィン(78)は、ベース板(76)の表(おもて)面から突出する。各フィン(78)は、それぞれの長辺がベース板(76)の長辺に沿い、それぞれの短辺がベース板(76)の表面と概ね直交する。ヒートシンク(75)において、複数のフィン(78)は、ベース板(76)の短辺方向に、互いに所定の間隔をおいて配置される。ベース板(76)の裏面(フィン(78)とは逆側の面)は、パワーモジュール(71)と接する装着面(77)である。
 ヒートシンク(75)は、電装品箱(36)の左側壁(36e)に取り付けられる。ヒートシンク(75)は、電装品箱(36)の左側壁(36e)に設けられる。ヒートシンク(75)は、ベース板(76)の長辺が上下方向となる姿勢で、左側壁(36e)に取り付けられる。具体的に、ヒートシンク(75)は、電装品箱(36)の左側壁(36e)に形成された開口に嵌め込まれる。ヒートシンク(75)のベース板(76)は、左側壁(36e)に形成された開口を、電装品箱(36)の内側から覆う。ヒートシンク(75)のフィン(78)は、左側壁(36e)に形成された開口から外側へ突出し、電装品箱(36)の外側に露出する。ヒートシンク(75)を電装品箱(36)に取り付けた状態で、各フィン(78)は、長辺が上下方向に延びる姿勢となる。
   〈ダクト〉
 ダクト(80)は、ヒートシンク(75)のフィン(78)に空気を導くための部材である。
 図6に示すように、ダクト(80)は、逆L字型のカバー状に形成される。ダクト(80)は、電装品箱(36)の左側壁(36e)の外面に取り付けられる。ダクト(80)は、電装品箱(36)の左側壁(36e)の外面に設けられる。ダクト(80)は、左側壁(36e)との間に空気通路(85)を形成する。ダクト(80)は、電装品箱(36)の外部に露出したヒートシンク(75)のフィン(78)を覆う。従って、ヒートシンク(75)のフィン(78)は、ダクト(80)によって形成された空気通路(85)に収容された状態になる。
 ダクト(80)は、上下に延びる第1部分(81)と、第1部分(81)から側方へ延びる第2部分(82)とを備える。第1部分(81)は、上下に延びるチャネル状に形成され、ヒートシンク(75)のフィン(78)を覆う。第1部分(81)の下端は、空気通路(85)へ空気を導入するための空気入口(83)を形成する。第2部分(82)は、第1部分(81)の上端から側方(図6における左方)へ延びる筒状に形成される。第2部分(82)の突端に位置する開口端は、空気通路(85)から空気を導出するための空気出口(84)を形成する。図4に示すように、この空気出口(84)は、庫外熱交換器(32)の第4平坦部(104)の空気流入面(32a)と向かい合う。
 図8に示すように、ダクト(80)の第1部分(81)の内面には、シート状のシール材(87)が貼り付けられる。シール材(87)の材質は、例えば柔軟な発泡樹脂である。シール材(87)は、ヒートシンク(75)のフィン(78)の突端と接し、フィン(78)の突端と第1部分(81)の内面との隙間を塞ぐ。ダクト(80)内の空気通路(85)は、突端がシール材(87)と接するフィン(78)によって、複数の流路(86)に仕切られる。複数の流路(86)のそれぞれは、隣り合うフィン(78)と、ベース板(76)と、シール材(87)とによって囲まれる。
   〈電気部品〉
 図6及び図8に示すように、電装品箱(36)には、電気部品であるインバータ基板(70)、制御基板(72)、リレー基板(73)、及びリアクトル(74)が収容される。インバータ基板(70)及びリアクトル(74)は、第1室(37a)に設けられる。制御基板(72)及びリレー基板(73)は、第2室(37b)に設けられる。
 インバータ基板(70)には、発熱部品であるパワーモジュール(71)が設けられる。パワーモジュール(71)は、圧縮機(31)の電動機に対して交流を供給する。パワーモジュール(71)の出力周波数を変更すると、圧縮機(31)の回転速度が変化し、その結果、冷媒回路(C)の冷凍サイクルによって得られる冷凍能力が変化する。
 インバータ基板(70)は、ヒートシンク(75)のベース板(76)の装着面(77)と向かい合うように設けられる。インバータ基板(70)のパワーモジュール(71)は、ヒートシンク(75)のベース板(76)と熱的に接続される。本実施形態では、パワーモジュール(71)がヒートシンク(75)のベース板(76)の装着面(77)と接する。パワーモジュール(71)において発生した熱は、ヒートシンク(75)に伝導する。
 電装品箱(36)では、左側壁(36e)に二つのリアクトル(74)が取り付けられ、後壁(36b)に一つのリアクトル(74)が取り付けられる。これら三つのリアクトル(74)は、インバータ基板(70)よりも上方に設けられる。また、これら三つのリアクトル(74)は、区画板(90)の上端寄りの領域に形成された通気孔(93)の側方に位置する。
 制御基板(72)は、電装品箱(36)の右側壁に取り付けられる。制御基板(72)は、インバータ基板(70)から最も離れた位置に設けられる。リレー基板(73)は、電装品箱(36)の後壁に取り付けられる。
  -冷却用の空気の流れ-
 インバータ基板(70)を冷却する空気の流れについて説明する。
 庫外ファン(34)が作動すると、庫外空気が第2空間(S2)の一次側空間(S21)へ流入し、庫外熱交換器(32)へ向かって流れる。一次側空間(S21)へ流入した庫外空気は、その一部がダクト(80)内の空気通路(85)へ流入する。
 ダクト(80)の空気入口(83)から空気通路(85)へ流入した空気は、ヒートシンク(75)のフィン(78)によって仕切られた複数の流路(86)へ分かれて流入し、各流路(86)を上方へ向かって流れる。各流路(86)を流れる空気は、ヒートシンク(75)から吸熱する。パワーモジュール(71)からヒートシンク(75)に伝導した熱は、空気通路(85)を流れる空気へ放出される。その結果、パワーモジュール(71)の過度な温度上昇が抑えられる。
 ヒートシンク(75)から吸熱した空気は、空気出口(84)を通って空気通路(85)から流出する。ダクト(80)の空気出口(84)は、庫外熱交換器(32)の第4平坦部(104)と向かい合っている。そのため、ヒートシンク(75)から吸熱した空気は、空気出口(84)から庫外熱交換器(32)の第4平坦部(104)へ向かって流れ、第4平坦部(104)を空気流入面(32a)から空気流出面(32b)へ向かって通過する。
  -電装品箱の内部における空気の流れ-
 電装品箱(36)の内部における空気の流れを説明する。
 電装品箱(36)では、作動中に温度が比較的高くなるインバータ基板(70)及びリアクトル(74)が第1室(37a)に収容され、作動中に温度がそれほど高くならない制御基板(72)及びリレー基板(73)が第2室(37b)に収容される。そのため、輸送用冷凍装置(10)の運転中には、通常、第1室(37a)内の気温が第2室(37b)内の気温よりも高くなる。
 一方、区画板(90)の横向き板部(92)では、その上端寄りの領域と下端寄りの領域だけに通気孔(93)が形成される。そのため、電装品箱(36)の内部では、第1室(37a)と第2室(37b)の間を循環する空気の流れが生じる。
 具体的に、第1室(37a)内の空気は、インバータ基板(70)とリアクトル(74)とによって温められる。暖められた第1室(37a)内の空気は、上方へ流れ、区画板(90)の上端寄りに形成された通気孔(93)を通って第2室(37b)へ流出する。第2室(37b)内の空気の温度は、第1室(37a)内の空気の温度よりも低い。そのため、第1室(37a)内で上向きの気流が生じると、区画板(90)の下端寄りに形成された通気孔(93)を通って、第2室(37b)内の空気が第1室(37a)へ流れ込む。その結果、第1室(37a)内の気温の過度な上昇が抑えられる。
 また、第1室(37a)では、インバータ基板(70)の上方にリアクトル(74)が設けられる。作動中のインバータ基板(70)の温度と、作動中のリアクトル(74)の温度は、どちらも概ね60℃~70℃程度である。また、作動中のリアクトル(74)の温度は、作動中のインバータ基板(70)の温度よりも若干高い。
 このように、第1室(37a)では、インバータ基板(70)よりも高温になるリアクトル(74)が、インバータ基板(70)の上方に設けられる。一方、上述したように、第1室(37a)では、上向きの気流が生じる。そのため、リアクトル(74)において生じた熱がインバータ基板(70)に伝わりにくくなり、インバータ基板(70)の温度上昇が抑えられる。
  -実施形態の特徴(1)-
 本実施形態の輸送用冷凍装置(10)では、庫外熱交換器(32)の側方に電装品箱(36)が配置される。電装品箱(36)には、インバータ基板(70)が収容される。電装品箱(36)の左壁(36e)は、庫外熱交換器(32)の空気流入面(32a)に対向する。電装品箱(36)の左壁(36e)には、ヒートシンク(75)が設けられる。インバータ基板(70)のパワーモジュール(71)において生じた熱は、ヒートシンク(75)に伝導して放熱される。
 本実施形態によれば、インバータ基板(70)を収容する電装品箱(36)を庫外熱交換器(32)の側方に配置した場合において、インバータ基板(70)のパワーモジュール(71)で生じた熱を空気へ放出し、パワーモジュール(71)の過剰な温度上昇を抑制できる。従って、本実施形態によれば、輸送用冷凍装置(10)においてインバータ基板(70)を収容する電装品箱(36)を庫外熱交換器(32)の側方に配置した場合の放熱構造を提供できる。
  -実施形態の特徴(2)-
 本実施形態の輸送用冷凍装置(10)は、ダクト(80)を備える。ダクト(80)は、ヒートシンク(75)が配置される空気通路(85)を形成する。インバータ基板(70)のパワーモジュール(71)からヒートシンク(75)に伝導した熱は、ダクト(80)によって形成された空気通路(85)を流れる空気に対して放出される。
  -実施形態の特徴(3)-
 本実施形態の輸送用冷凍装置(10)において、ダクト(80)の空気入口(83)は、下方に向かって開口する。そのため、空気入口(83)からダクト(80)内の空気通路(85)へ雨水や海水などが浸入しにくくなる。その結果、空気通路(85)に設けられたヒートシンク(75)の腐食を抑えることができ、輸送用冷凍装置(10)の信頼性を確保することができる。
  -実施形態の特徴(4)-
 本実施形態の輸送用冷凍装置(10)において、ダクト(80)の空気出口(84)は、庫外熱交換器(32)の空気流入面(32a)に向かって開口する。そのため、ダクト(80)内の空気通路(85)を流れる間にヒートシンク(75)から吸熱した空気は、空気出口(84)から庫外熱交換器(32)の空気流入面(32a)に向かって流れる。
  -実施形態の特徴(5)-
 本実施形態の輸送用冷凍装置(10)において、ダクト(80)は、第1部分(81)と第2部分(82)とを備える。第1部分(81)は、空気入口(83)を有し且つ上下方向に延びる。第2部分(82)は、第1部分(81)に連続して形成され、第1部分(81)から側方に延び且つ空気出口(84)を有する。空気入口(83)から空気通路(85)へ流入した空気は、ダクト(80)の第1部分(81)と第2部分(82)を順に通過し、空気出口(84)を通って空気通路(85)から流出する。
 特に、本実施形態のダクト(80)では、第1部分(81)の下端に空気入口(83)が形成され、第1部分(81)から側方に延びる第2部分(82)の突端に空気出口(84)が形成される。そのため、本実施形態によれば、ダクト(80)内の空気通路(85)へ雨水や海水などが浸入しにくくなる。その結果、空気通路(85)に設けられたヒートシンク(75)の腐食を抑えることができ、輸送用冷凍装置(10)の信頼性を確保することができる。
 更に、本実施形態のダクト(80)では、第2部分(82)の突端に位置する空気出口(84)が庫内熱交換器(60)と向かい合う。そのため、空気出口(84)から流出した空気が庫内熱交換器(60)へ向かって流れることになり、ダクト(80)内の空気通路(85)において、空気が空気入口(83)から空気出口(84)に向かって確実に流れる。そのため、ヒートシンク(75)が空気へ放出する熱量を確保でき、パワーモジュール(71)の温度を適正範囲に保つことができる。
  -実施形態の特徴(6)-
 本実施形態の輸送用冷凍装置(10)において、ヒートシンク(75)は、一つのベース板(76)と、複数のフィン(78)とを備える。板状のベース板(76)は、パワーモジュール(71)と接する装着面(77)を有する。板状のフィン(78)は、ベース板(76)の装着面(77)とは異なる面から突出する。
 本実施形態の輸送用冷凍装置(10)では、ダクト(80)によって形成された空気通路(85)が、フィン(78)によって複数の流路(86)に仕切られる。空気通路(85)へ流入した空気は、複数の流路(86)へ分かれて流入してフィン(78)と接触する。従って、本実施形態によれば、フィン(78)に空気を確実に接触させることによってヒートシンク(75)が空気へ放出する熱量を確保でき、その結果、パワーモジュール(71)の温度を適正範囲に保つことができる。
  -実施形態の特徴(7)-
 本実施形態の輸送用冷凍装置(10)において、ヒートシンク(75)のフィン(78)は、上下方向に延びる。そのため、仮に空気通路(85)へ水が浸入しても、浸入した水はフィン(78)の上に溜まらない。従って、本実施形態によれば、ヒートシンク(75)の腐食を抑えることができ、輸送用冷凍装置(10)の信頼性を確保することができる。
  -実施形態の特徴(8)-
 本実施形態の輸送用冷凍装置(10)では、電装品箱(36)に制御基板(72)が収容される。制御基板(72)は、輸送用冷凍装置(10)の構成機器の制御を行う。
  -実施形態の特徴(9)-
 本実施形態の輸送用冷凍装置(10)において、電装品箱(36)の内部空間は、区画板(90)によって第1室(37a)と第2室(37b)に仕切られる。第1室(37a)には、インバータ基板(70)が収容される。第2室(37b)には、制御基板(72)が収容される。金属製の区画板(90)は、インバータ基板(70)から制御基板(72)へのノイズ伝搬を抑制する。そのため、本実施形態によれば、制御基板(72)を正常に作動させつつ、一つの電装品箱(36)にインバータ基板(70)と制御基板(72)を収容できる。
  -実施形態の特徴(10)-
 本実施形態の輸送用冷凍装置(10)において、電装品箱(36)の区画板(90)は、上部と下部に通気孔(93)が形成される。そのため、上述したように、電装品箱(36)の内部空間では、第1室(37a)と第2室(37b)の間を循環する空気の流れが生じる。その結果、第1室(37a)内の気温の過度な上昇が抑えることができ、インバータ基板(70)の温度を適正範囲に保つことができる。
  -実施形態の特徴(11)-
 本実施形態の輸送用冷凍装置(10)では、電装品箱(36)にリアクトル(74)が収容される。リアクトル(74)は、インバータ基板(70)の上方に配置される。そのため、リアクトル(74)からインバータ基板(70)に伝わる熱量を低く抑えることができ、インバータ基板(70)の温度上昇が抑えることができる。
  -実施形態の特徴(12)-
 本実施形態の輸送用冷凍装置(10)において、庫外熱交換器(32)は、一端部に冷媒出口である液側ヘッダ(137)を備える。ヒートシンク(75)を通過した空気は、庫外熱交換器(32)の他端寄りを通過する。
 このように、本実施形態において、ヒートシンク(75)から吸熱した空気は、庫外熱交換器(32)のうち冷媒出口である液側ヘッダ(137)から離れた部分を流れる。そのため、本実施形態によれば、ヒートシンク(75)から吸熱した空気が庫外熱交換器(32)を通過する場合であっても、庫外熱交換器(32)から流出する冷媒の温度を低く抑えることができる。
  -実施形態の特徴(13)-
 本実施形態の輸送用冷凍装置(10)では、電装品箱(36)の上方にフォークポケット(150)が設けられる。フォークポケット(150)には、輸送用冷凍装置(10)を持ち上げるためのフォークが差し込まれる。電装品箱(36)とフォークポケット(150)との間の空間(S23)は、“フォークポケット(150)の内部空間(153)”および“第2空間(S2)の一次側空間(S21)”と連通する。
 本実施形態の輸送用冷凍装置(10)では、フォークポケット(150)を通った空気が、庫外熱交換器(32)に向かって流れる。そのため、庫外熱交換器(32)へ向かって流れる空気の流量を確保しやすくなる。
  -実施形態の変形例1-
 本実施形態の輸送用コンテナ(1)は、陸上輸送に用いられてもよい。この場合、輸送用コンテナ(1)は、車両などの陸上輸送体によって搬送される。具体的には、輸送用コンテナ(1)は、トレーラに搭載される。
  -実施形態の変形例2-
 本実施形態の輸送用冷凍装置(10)の電装品箱(36)に設けられた区画板(90)では、前向き板部(91)だけに通気孔(93)が形成されていてもよいし、前向き板部(91)と横向き板部(92)の両方に通気孔(93)が形成されていてもよい。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 以上説明したように、本開示は、輸送用冷凍装置および輸送用コンテナについて有用である。
   1  輸送用コンテナ
  10  輸送用冷凍装置
  32  庫外熱交換器(凝縮器)
  32a  空気流入面
  36  電装品箱(箱)
  37a  第1室(空間)
  37b  第2室(空間)
  36e  対向板
  70  インバータ基板
  71  パワーモジュール(発熱部品)
  72  制御基板
  74  リアクトル
  75  ヒートシンク
  76  ベース板(基体)
  77  装着面
  78  フィン
  80  ダクト
  81  第1部分
  82  第2部分
  83  空気入口
  84  空気出口
  85  空気通路
  86  流路
  90  区画板
  93  貫通孔
  137  液側ヘッダ(冷媒出口)
  150  フォークポケット
  S21  一次側空間
  S23  空間

Claims (14)

  1.  輸送用冷凍装置であって、
     凝縮器(32)と、
     上記凝縮器(32)の側方に配置され、インバータ基板(70)を収容する箱(36)とを備え、
     上記箱(36)は、上記凝縮器(32)の空気流入面(32a)に対向する対向板(36e)を有し、
     上記対向板(36e)に設けられ、上記箱(36)の外部に露出して上記インバータ基板(70)に設けられた発熱部品(71)を冷却するヒートシンク(75)を備える
    ことを特徴とする輸送用冷凍装置。
  2.  請求項1において、
     上記ヒートシンク(75)が配置される空気通路(85)を形成するダクト(80)をさらに備える
    ことを特徴とする輸送用冷凍装置。
  3.  請求項2において、
     上記ダクト(80)の空気入口(83)は、下方に向かって開口している
    ことを特徴とする輸送用冷凍装置。
  4.  請求項2または3において、
     上記ダクト(80)の空気出口(84)は、上記凝縮器(32)の上記空気流入面(32a)に向かって開口している
    ことを特徴とする輸送用冷凍装置。
  5.  請求項2~4のいずれか1項において、
     上記ダクト(80)は、空気入口(83)を有しかつ所定方向に延びる第1部分(81)と、該第1部分(81)に連続して上記所定方向と交差する方向に延びかつ空気出口(84)を有する第2部分(82)とを備える
    ことを特徴とする輸送用冷凍装置。
  6.  請求項2~5のいずれか1項において、
     上記ヒートシンク(75)は、上記発熱部品(71)と接する装着面(77)を有する板状の基体(76)と、該基体(76)の上記装着面(77)とは異なる面から突出する複数の板状のフィン(78)とを備え、
     上記ダクト(80)によって形成された上記空気通路(85)が、上記フィン(78)によって複数の流路(86)に仕切られる
    ことを特徴とする輸送用冷凍装置。
  7.  請求項6において、
     上記ヒートシンク(75)の上記フィン(78)は、上下方向に延びている
    ことを特徴とする輸送用冷凍装置。
  8.  請求項1~7のいずれか1項において、
     上記箱(36)に収容され、上記輸送用冷凍装置を制御するための制御基板(72)をさらに備える
    ことを特徴とする輸送用冷凍装置。
  9.  請求項8において、
     上記箱(36)内に設けられ、上記インバータ基板(70)が収容される空間(37a)と、上記制御基板(72)が収容される空間(37b)とを互いに仕切ると共に、上記インバータ基板(70)から上記制御基板(72)へのノイズ伝搬を抑制する区画板(90)をさらに備える
    ことを特徴とする輸送用冷凍装置。
  10.  請求項9において、
     上記区画板(90)は、上部と下部に貫通孔(93)が形成されている
    ことを特徴とする輸送用冷凍装置。
  11.  請求項1~10のいずれか1項において、
     上記箱(36)に収容され、上記インバータ基板(70)の上方に配置されるリアクトル(74)をさらに備える
    ことを特徴とする輸送用冷凍装置。
  12.  請求項1~11のいずれか1項において、
     上記凝縮器(32)は、一端部に冷媒出口(137)を有し、
     上記ヒートシンク(75)を通過した空気は、上記凝縮器(32)の他端寄りを通過する
    ことを特徴とする輸送用冷凍装置。
  13.  請求項1~12のいずれか1項において、
     上記箱(36)の上方に設けられ、輸送用冷凍装置を持ち上げるためのフォークが差し込まれるフォークポケット(150)をさらに備え、
     上記箱(36)と上記フォークポケット(150)との間の空間(S23)は、該フォークポケット(150)の内部空間(153)および上記凝縮器(32)の上流側の空間(S21)と連通している
    ことを特徴とする輸送用冷凍装置。
  14.  請求項1~13のいずれか1項に記載の輸送用冷凍装置(10)と、
     コンテナ本体(2)とを備える
    ことを特徴とする輸送用コンテナ。
PCT/JP2021/004017 2020-03-06 2021-02-04 輸送用冷凍装置および輸送用コンテナ WO2021176940A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180015364.5A CN115135939A (zh) 2020-03-06 2021-02-04 运输用制冷装置及运输用集装箱
EP21764905.2A EP4095461A4 (en) 2020-03-06 2021-02-04 REFRIGERATOR USED IN TRANSPORTATION AND TRANSPORTATION CONTAINERS
US17/874,914 US20220357094A1 (en) 2020-03-06 2022-07-27 Refrigeration apparatus for transport and transport container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020038692A JP7048905B2 (ja) 2020-03-06 2020-03-06 輸送用冷凍装置および輸送用コンテナ
JP2020-038692 2020-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/874,914 Continuation US20220357094A1 (en) 2020-03-06 2022-07-27 Refrigeration apparatus for transport and transport container

Publications (1)

Publication Number Publication Date
WO2021176940A1 true WO2021176940A1 (ja) 2021-09-10

Family

ID=77614278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004017 WO2021176940A1 (ja) 2020-03-06 2021-02-04 輸送用冷凍装置および輸送用コンテナ

Country Status (5)

Country Link
US (1) US20220357094A1 (ja)
EP (1) EP4095461A4 (ja)
JP (2) JP7048905B2 (ja)
CN (1) CN115135939A (ja)
WO (1) WO2021176940A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579661A (ja) * 1991-09-19 1993-03-30 Mitsubishi Electric Corp 空気調和機の室外ユニツト及びその電気品装置
JP2012164878A (ja) * 2011-02-08 2012-08-30 Sanyo Electric Co Ltd パワーコンディショナ
JP2014048816A (ja) * 2012-08-30 2014-03-17 Nippon Fruehauf Co Ltd 電子機器を納めた建造物の空調システム
JP2015127630A (ja) 2013-09-30 2015-07-09 ダイキン工業株式会社 コンテナ用冷凍装置
WO2017150219A1 (ja) * 2016-02-29 2017-09-08 三菱重工サーマルシステムズ株式会社 熱交換器及び空気調和機
WO2018225846A1 (ja) * 2017-06-09 2018-12-13 ダイキン工業株式会社 冷凍装置の室外ユニット
WO2019244405A1 (ja) * 2018-06-21 2019-12-26 シャープ株式会社 ペット用温度調節装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686976B2 (ja) * 1985-10-17 1994-11-02 ダイキン工業株式会社 コンテナ用冷凍装置
JP2003097881A (ja) * 2001-09-20 2003-04-03 Mitsubishi Heavy Ind Ltd コンテナ用冷凍装置
JP4543333B2 (ja) 2006-03-28 2010-09-15 村田機械株式会社 制御盤
JP5375349B2 (ja) * 2009-06-10 2013-12-25 ダイキン工業株式会社 輸送用冷凍装置
JP2011112267A (ja) * 2009-11-25 2011-06-09 Daikin Industries Ltd コンテナ用冷凍装置
JP2011208909A (ja) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd 冷却装置
US9541322B2 (en) * 2011-12-27 2017-01-10 Mitsubishi Electric Corporation Vehicle air-conditioning apparatus
JP6186578B1 (ja) * 2016-06-20 2017-08-30 三菱重工サーマルシステムズ株式会社 輸送用冷凍ユニット
JP7098991B2 (ja) * 2018-03-20 2022-07-12 株式会社富士通ゼネラル 空気調和機の室外機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579661A (ja) * 1991-09-19 1993-03-30 Mitsubishi Electric Corp 空気調和機の室外ユニツト及びその電気品装置
JP2012164878A (ja) * 2011-02-08 2012-08-30 Sanyo Electric Co Ltd パワーコンディショナ
JP2014048816A (ja) * 2012-08-30 2014-03-17 Nippon Fruehauf Co Ltd 電子機器を納めた建造物の空調システム
JP2015127630A (ja) 2013-09-30 2015-07-09 ダイキン工業株式会社 コンテナ用冷凍装置
WO2017150219A1 (ja) * 2016-02-29 2017-09-08 三菱重工サーマルシステムズ株式会社 熱交換器及び空気調和機
WO2018225846A1 (ja) * 2017-06-09 2018-12-13 ダイキン工業株式会社 冷凍装置の室外ユニット
WO2019244405A1 (ja) * 2018-06-21 2019-12-26 シャープ株式会社 ペット用温度調節装置

Also Published As

Publication number Publication date
CN115135939A (zh) 2022-09-30
EP4095461A1 (en) 2022-11-30
JP2022059617A (ja) 2022-04-13
JP7510069B2 (ja) 2024-07-03
US20220357094A1 (en) 2022-11-10
JP7048905B2 (ja) 2022-04-06
EP4095461A4 (en) 2023-07-12
JP2021139573A (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
JP5375349B2 (ja) 輸送用冷凍装置
KR20150063175A (ko) 냉장고
WO2011114656A1 (ja) 冷蔵庫
TW201738518A (zh) 冰箱
JP2019032142A (ja) 冷凍装置の室外ユニット
WO2021176940A1 (ja) 輸送用冷凍装置および輸送用コンテナ
JP7209554B2 (ja) 冷蔵庫
JP2003287342A (ja) 冷蔵庫
WO2021177076A1 (ja) 輸送用冷凍装置、及び輸送用コンテナ
JP4935474B2 (ja) 自動販売機
JP5260091B2 (ja) 輸送用冷凍装置
JP7001939B2 (ja) 輸送用冷凍装置、及び輸送用コンテナ
WO2023073891A1 (ja) 輸送用冷凍機ユニット
JP2017072317A (ja) 冷蔵庫
JP2011112267A (ja) コンテナ用冷凍装置
JP2011257087A (ja) 冷凍庫用冷凍装置
JP5985942B2 (ja) 冷却庫
JP2010007982A (ja) 冷却ユニット
US12018880B2 (en) Refrigeration apparatus for shipping, and shipping container
CN219063863U (zh) 底部制冷的制冷设备
CN220843852U (zh) 一种集装箱用空调及集装箱
WO2023073888A1 (ja) 輸送用冷凍機ユニット
CN219390180U (zh) 半导体制冷的制冷设备
CN216716690U (zh) 制冷设备
JP2002286360A (ja) コンテナ用冷凍ユニットおよびそれに用いるコントロールボックス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021764905

Country of ref document: EP

Effective date: 20220824

NENP Non-entry into the national phase

Ref country code: DE