WO2021175330A1 - 显示基板及其制备方法、显示装置 - Google Patents

显示基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2021175330A1
WO2021175330A1 PCT/CN2021/079546 CN2021079546W WO2021175330A1 WO 2021175330 A1 WO2021175330 A1 WO 2021175330A1 CN 2021079546 W CN2021079546 W CN 2021079546W WO 2021175330 A1 WO2021175330 A1 WO 2021175330A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
pattern
color
unit
substrate
Prior art date
Application number
PCT/CN2021/079546
Other languages
English (en)
French (fr)
Inventor
侯鹏
韩永占
崔国意
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/771,968 priority Critical patent/US20220365618A1/en
Publication of WO2021175330A1 publication Critical patent/WO2021175330A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/14Materials and properties photochromic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display substrate, a preparation method thereof, and a display device.
  • a display substrate in one aspect, includes a substrate and a color filter layer provided on the substrate.
  • the color filter layer includes a plurality of filter units arranged in an array and a light shielding unit arranged between every two adjacent filter units.
  • the light-shielding unit includes a first color filter pattern and a second color filter pattern stacked in a thickness direction of the substrate, and the first color filter pattern is relative to the second color filter pattern. The filter pattern is closer to the substrate.
  • At least one filter unit includes one filter pattern.
  • at least one filter unit includes a filter pattern and a transparent pattern stacked in a thickness direction of the substrate.
  • at least one filter unit includes two filter patterns of the same color stacked in a thickness direction of the substrate.
  • the plurality of filter units include a first filter unit, a second filter unit, and a third filter unit with different colors;
  • the first filter unit includes a filter of a first color Pattern;
  • the second filter unit includes a transparent pattern and a second color filter pattern laminated along the thickness direction of the substrate and away from the substrate;
  • the third filter unit includes A transparent pattern and a third color filter pattern are stacked along the thickness direction of the substrate and away from the substrate.
  • the thickness of the filter pattern of the first color included in the first filter unit is greater than the thickness of the filter pattern of the first color included in the shading unit.
  • the thickness of the transparent pattern included in the second filter unit and the thickness of the transparent pattern included in the third filter unit are both substantially equal to the thickness of the first color included in the shading unit. The thickness of the filter pattern.
  • the first color filter pattern included in the shading unit, the first color filter pattern included in the first filter unit, and the transparent filter pattern included in the second filter unit The pattern and the transparent pattern included in the third filter unit are integrally arranged. And/or, the filter pattern of the second color included in the shading unit and the filter pattern of the second color included in the second filter unit adjacent to the shading unit are integrally arranged.
  • each of the plurality of filter units includes a filter pattern and a transparent pattern that are stacked, and the transparent pattern is closer to the substrate than the filter pattern.
  • the plurality of filter units include a first filter unit, a second filter unit, and a third filter unit with different colors; the first filter unit includes a transparent pattern and a first filter unit. Color filter pattern; the second filter unit includes a transparent pattern and a second color filter pattern; the third filter unit includes a transparent pattern and a third color filter pattern.
  • the filter pattern of the second color included in the shading unit and the filter pattern of the second color included in the second filter unit adjacent to the shading unit are integrated set up.
  • the thickness of the transparent pattern included in the plurality of filter units is substantially equal to the thickness of the filter pattern of the first color included in the shading unit.
  • the material of the filter pattern of the first color included in the filter unit and the shading unit, and the material of the transparent pattern are both photochromic materials, and the photochromic material is It is transparent and colorless without being irradiated by the set light, and is the first color after being irradiated by the set light.
  • the photochromic material includes a photochromic compound, a photosensitizer, and a resin.
  • the filter pattern of the first color is a red filter pattern
  • the filter pattern of the second color is a blue filter pattern; or, the filter pattern of the first color is a blue filter pattern.
  • the color filter pattern, and the second color filter pattern is a red filter pattern.
  • the thickness of the filter unit is greater than the thickness of the filter pattern of the first color and less than the sum of the thickness of the filter pattern of the first color and the thickness of the two filter patterns of the second color.
  • the thickness of the filter unit is substantially equal to the thickness of the shading unit.
  • the surface of the filter unit away from the substrate is flush with the surface of the shading unit away from the substrate.
  • the surface of at least one filter unit away from the substrate has a microstructure.
  • the display substrate further includes a touch layer disposed on a side of the color filter layer away from the substrate, and the touch layer includes a plurality of first touch electrodes and a plurality of first touch electrodes arranged crosswise.
  • a second touch electrode; the orthographic projection of the plurality of first touch electrodes and the plurality of second touch electrodes on the substrate is located on the orthographic projection of the shading unit on the substrate Within range.
  • both the first touch electrode and the second touch electrode include a metal mesh structure.
  • a display device in another aspect, includes: the display substrate as described in any of the above embodiments.
  • a method for preparing a display substrate includes forming a color filter layer on a substrate.
  • the color filter layer includes a plurality of filter units arranged in an array and a light shielding unit arranged between every two adjacent filter units; wherein, the light shielding unit includes stacks arranged along the thickness direction of the substrate. The first color filter pattern and the second color filter pattern, the first color filter pattern is closer to the substrate than the second color filter pattern.
  • the plurality of filter units include a first filter unit, a second filter unit, and a third filter unit with different colors.
  • the forming a color filter layer on a substrate includes: forming a first transparent film on the substrate, and patterning the first transparent film to form a first transparent layer; the first transparent layer includes a first pattern And a second pattern, the thickness of the first pattern is greater than the thickness of the second pattern, the first pattern is formed in the area where the first filter unit is to be formed, and the second pattern is formed in the area where the second filter is to be formed Areas of the light unit, the third filter unit, and the light shielding unit; mask exposure of the first transparent layer so that the color of the first pattern becomes the first color to form the first filter unit, the first The color of the part corresponding to the light shielding unit to be formed in the second pattern is changed to the first color to form a filter pattern of the first color, and the second pattern corresponds to the second filter unit and the third filter unit to be formed Part of the color remains transparent and colorless to form.
  • the plurality of filter units include a first filter unit, a second filter unit, and a third filter unit with different colors.
  • the forming a color filter layer on a substrate includes: forming a second transparent layer on the substrate; the second transparent layer includes a plurality of transparent patterns, and a hollow provided between every two adjacent transparent patterns Section; forming a first color filter pattern on the transparent pattern in the area where the first filter unit is to be formed to form the first filter unit, and the first color filter pattern is formed in the hollow portion;
  • the second color filter pattern is formed on the filter pattern of the first color formed by the hollow portion and the transparent pattern of the area where the second filter unit is to be formed to form the light shielding unit and the second filter Unit; a third color filter pattern is formed on the transparent pattern of the region where the third filter unit is to be formed to form the third filter unit.
  • the method further includes: forming a touch layer on the color filter layer; the touch layer includes a plurality of first touch electrodes and a plurality of second touch electrodes intersected; The orthographic projections of the plurality of first touch electrodes and the plurality of second touch electrodes on the substrate are located within the orthographic projections of the shading unit on the substrate.
  • the forming a touch layer on the color filter layer includes: forming a first metal film on the surface of the shading unit, applying glue and mask exposure to the first metal film , Development and etching processes to form a first metal layer and a photoresist pattern layer covering the first metal layer; bombarding the surface of the filter unit with plasma to make the surface of the filter unit have a microstructure; Removing the photoresist pattern layer; forming an insulating layer on the first metal layer, forming a plurality of via holes in the insulating layer; forming a second metal film on the insulating layer, and connecting the second The metal thin film is patterned to form a second metal layer, and the second metal layer is electrically connected to the first metal layer through the plurality of via holes.
  • one of the first metal layer and the second metal layer includes a plurality of rows of first sub-electrodes and a plurality of columns of second sub-electrodes, and each row of the first sub-electrodes is connected in series to form a first touch electrode;
  • the other of the first metal layer and the second metal layer includes a plurality of connecting portions, and two adjacent second sub-electrodes in each column of second sub-electrodes are electrically connected to the connecting portions through via holes to form a second Touch electrodes.
  • FIG. 1 is a structural diagram of a display device according to some embodiments.
  • FIG. 2 is a structural diagram of a liquid crystal display panel according to some embodiments.
  • FIG. 3 is a structural diagram of another liquid crystal display panel according to some embodiments.
  • FIG. 4 is a structural diagram of still another liquid crystal display panel according to some embodiments.
  • FIG. 5 is a structural diagram of an electroluminescent display panel according to some embodiments.
  • FIG. 6 is a cross-sectional view of a display substrate according to some embodiments.
  • FIG. 7 is a cross-sectional view of another display substrate according to some embodiments.
  • FIG. 8A is a cross-sectional view of still another display substrate according to some embodiments.
  • FIG. 8B is a cross-sectional view of still another display substrate according to some embodiments.
  • FIG. 8C is a cross-sectional view of still another display substrate according to some embodiments.
  • FIG. 9 is a cross-sectional view of still another display substrate according to some embodiments.
  • FIG. 10 is a cross-sectional view of still another display substrate according to some embodiments.
  • FIG. 11 is a structural diagram of a red filter pattern and a blue filter pattern arranged in layers instead of a black matrix according to some embodiments;
  • FIG. 12 is a schematic diagram of transmittance spectra of a red filter pattern and a blue filter pattern stacked in layers according to some embodiments;
  • FIG. 13 is a cross-sectional view of still another display substrate according to some embodiments.
  • FIG. 14 is a top view of a display substrate according to some embodiments.
  • Figure 15 is a cross-sectional view of Figure 14 in the AA' direction;
  • FIG. 16 is a flowchart of a manufacturing method for forming a color filter layer according to some embodiments.
  • 17-20 are diagrams of various steps of a manufacturing method for forming a color filter layer according to some embodiments.
  • 21-24 are diagrams of various steps of another manufacturing method for forming a color filter layer according to some embodiments.
  • FIG. 25 is a flowchart of yet another manufacturing method for forming a color filter layer according to some embodiments.
  • 26-28 are diagrams of steps of yet another manufacturing method for forming a color filter layer according to some embodiments.
  • FIG. 29 is a flowchart of a manufacturing method of forming a touch layer on a color filter layer according to some embodiments.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • the expressions “coupled” and “connected” and their extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more components have direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C", and both include the following combinations of A, B, and C: only A, only B, only C, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • the display device may be a liquid crystal display (Liquid Crystal Display, LCD for short) or an electroluminescent display device.
  • the electroluminescent display device may be an organic light emitting diode (OLED) or a quantum dot electroluminescent display device (Quantum Dot Light Emitting Diodes, Referred to as QLED).
  • the display device provided by some embodiments of the present disclosure may be a product or component with any display function, such as a TV, a digital camera, a mobile phone, and a tablet computer.
  • the display device mainly includes a display panel 1, a circuit board 2, a frame 3, a cover plate 4 and other accessories.
  • the display device is a liquid crystal display device
  • the display device further includes a backlight module.
  • the display panel 1 may be a flexible display panel or a rigid display panel.
  • the display panel 1 is a flexible display panel
  • the display device is a flexible display device.
  • the longitudinal section of the frame 3 is U-shaped, the display panel 1, the circuit board 2 and other accessories are all arranged in the frame 3, and the circuit board 2 is placed under the display panel 1 (that is, the back, away from the display surface of the display panel 1).
  • the cover plate 4 is arranged on the side of the display panel 1 away from the circuit board 2.
  • the display device is a liquid crystal display device, and the liquid crystal display device includes a backlight module, the backlight module may be disposed between the display panel 1 and the circuit board 2.
  • the display panel 1 is a liquid crystal display panel. As shown in FIG. 2, the display panel 1 includes an array substrate 11 and a counter substrate 12, and is disposed between the array substrate 11 and the counter substrate 12. Between the liquid crystal layer 13.
  • the display panel 1 further includes an upper polarizer 14 arranged on the side of the counter substrate 12 away from the liquid crystal layer 13, and an upper polarizer 14 arranged on the side of the array substrate 11 away from the liquid crystal layer 13. ⁇ Polarizer 15.
  • the array substrate 11 includes a substrate 110, a plurality of pixel circuits and a plurality of pixel electrodes 130 disposed on the substrate 110.
  • the array substrate 11 also includes a gate line extending in a certain direction (for example, the direction in which the sub-pixel rows are arranged) on the substrate 110, a data line insulated and crossing the gate line, and a plurality of gate lines and a plurality of data lines are intersected and defined.
  • a gate line extending in a certain direction (for example, the direction in which the sub-pixel rows are arranged) on the substrate 110, a data line insulated and crossing the gate line, and a plurality of gate lines and a plurality of data lines are intersected and defined.
  • Multiple sub-pixels Each sub-pixel has a pixel circuit and a pixel electrode 130, and the pixel circuit is electrically connected to the pixel electrode 130.
  • the pixel circuit includes at least one thin film transistor TFT, and the thin film transistor TFT may adopt a top gate or a bottom gate structure.
  • the thin film transistor TFT When the thin film transistor TFT has a top gate structure, it includes an active layer AL, a gate insulating layer GI, a gate G, an interlayer dielectric layer ILD, and a source and drain (including a source S and a drain D) stacked in sequence.
  • the thin film transistor TFT has a bottom gate structure, it includes a gate G, a gate insulating layer GI, an active layer AL, and a source and drain (including a source S and a drain D) stacked in sequence.
  • the active layer AL of the thin film transistor TFT may be composed of amorphous silicon, single crystal silicon, polycrystalline silicon, or oxide semiconductor.
  • the active layer AL includes a channel region that is not doped with impurities, and a source region and a drain region formed by doping impurities on both sides of the channel region.
  • the doped impurities vary with the type of thin film transistor, and may be N-type impurities or P-type impurities.
  • the gate G of the thin film transistor TFT is connected to the gate line, the source S is connected to the data line, and the drain D can be electrically connected to the pixel electrode 130 through the via hole.
  • the thin film transistor TFT is turned on by the gate voltage applied to the gate line, so that the data voltage applied to the data line is transmitted to the pixel electrode 130, thereby completing the writing of sub-pixel data.
  • the counter substrate 12 includes a substrate 110, and the color filter layer 120 and the common electrode 140 are sequentially stacked on the side of the substrate 110 close to the liquid crystal layer 13.
  • the color filter layer 120 includes a plurality of color resists SZ arranged in an array and a black matrix BM located between every two adjacent color resists SZ.
  • the multiple color resists SZ include at least a red photoresist unit, a green photoresist unit and a blue photoresist unit.
  • the red photoresist unit, the green photoresist unit and the blue photoresist unit respectively correspond to different sub-pixels in a one-to-one correspondence.
  • the black matrix BM is used to space the red photoresist unit, the green photoresist unit and the blue photoresist unit to avoid crosstalk of light emitted from adjacent sub-pixel regions.
  • the common electrode 140 may be a planar electrode.
  • the common electrode 140 is disposed in the array substrate 11, that is, the array substrate 11 includes the common electrode 140 disposed on the substrate 110 in addition to the above-mentioned structure.
  • the pixel electrode 130 and the common electrode 140 are both comb-tooth structures including a plurality of strip-shaped sub-electrodes, and the strip-shaped sub-electrodes of the pixel electrode 130 and the strip-shaped sub-electrodes of the common electrode 140 are arranged at intervals.
  • the pixel electrode 130 and the common electrode 140 may be arranged on the same layer, or may be arranged on different layers.
  • the counter substrate 12 includes a substrate 110 and a color filter layer 120 disposed on the side of the substrate 110 close to the liquid crystal layer 13. The structure of the color filter layer 120 has been described above, and will not be repeated here.
  • the color filter layer 120 is disposed in the array substrate 11. That is, the array substrate 11 includes the above-mentioned structure and the common electrode 140, and also includes the pixel electrode 130 away from the substrate.
  • the color filter layer 120 on the side of the bottom 110, and the structure of the color filter layer 120 has been described above, and will not be repeated here.
  • the array substrate 11 is called a COA substrate (Color filter on Array).
  • the array substrate 11 further includes a flat layer 150 disposed on the side of the pixel electrode 130 away from the substrate 110.
  • the display panel 1 is an electroluminescence display panel. As shown in FIG. 5, the display panel 1 includes a display substrate 16' and an encapsulation layer 17 for encapsulating the display substrate 16'.
  • the packaging layer 17 may be a packaging film or a packaging substrate.
  • the number of layers of the encapsulation film included in the encapsulation layer 17 is not limited.
  • the encapsulation layer 17 may include one layer of encapsulation film, or may include two or more layers of encapsulation films arranged in a stack.
  • the encapsulation layer 17 includes three layers of encapsulation films stacked in sequence.
  • the material of the encapsulation film in the middle layer is an organic material
  • the material of the encapsulation film on both sides is an inorganic material
  • the organic material is not limited, and the organic material may be PMMA (Polymethyl methacrylate), for example.
  • the inorganic material is not limited, and the inorganic material may be one or more of SiN x (silicon nitride), SiO x (silicon oxide), or SiO x N y (silicon oxynitride).
  • the display substrate 16' includes a substrate 110, a plurality of pixel circuits disposed on the substrate 110, and a plurality of light emitting devices.
  • the display substrate 16' also includes a plurality of sub-pixels. Each sub-pixel includes a pixel circuit and a light-emitting device.
  • the pixel circuit is electrically connected to the light-emitting device to drive the light-emitting device to emit light.
  • the display substrate 16' also includes a gate line extending in a certain direction on the substrate 110, a data line insulated and crossed with the gate line, and a common power line.
  • the common power line may be parallel to the data line.
  • the pixel circuit includes a plurality of thin film transistors TFT and at least one capacitor.
  • the capacitor includes a first electrode plate and a second electrode plate, and an interlayer insulating film as a dielectric is arranged between the two electrode plates.
  • a 2T1C structure in which a pixel circuit includes two thin film transistors TFT (ie, a switching thin film transistor and a driving thin film transistor) and a capacitor is taken as an example to illustrate the electrical connection relationship between the inside and outside of the pixel circuit.
  • FIG. 5 only shows the structure and connection relationship of the driving thin film transistor (the structure in the dashed circle in FIG. 5) and the light-emitting device.
  • the gate of the switching thin film transistor is connected to the gate line, the source is connected to the data line, and the drain is connected to the gate of the driving thin film transistor.
  • the source S of the driving thin film transistor is connected to the common power line, and the drain D is connected to the anode 160 of the light emitting device through the via hole.
  • the first plate of the capacitor is connected to the gate G of the driving thin film transistor, and the second plate is connected to the source S of the driving thin film transistor.
  • the switching thin film transistor is turned on by the gate voltage applied to the gate line, thereby transmitting the data voltage applied to the data line to the driving thin film transistor.
  • the voltage corresponding to the absolute value of the difference is stored in the capacitor and stored in the capacitor
  • the current corresponding to the voltage flows into the light-emitting device through the driving thin film transistor, so that the light-emitting device emits light.
  • the light-emitting device includes an anode 160, a light-emitting functional layer 170, and a cathode 180.
  • the anode 160 and the cathode 180 respectively inject holes and electrons into the light-emitting functional layer 170. When the holes and electrons combine to produce excitons, they transition from an excited state to a ground state. When constitutes light.
  • the anode 160 may be formed of a metal with high reflectivity
  • the cathode 180 may be formed of a transparent conductive film.
  • the light of the light-emitting function layer 170 is reflected by the anode 160 and emitted to the outside through the cathode 180, thereby forming a top-emission type light-emitting device.
  • a bottom emission type light emitting device can be formed.
  • a double-sided emission type light emitting device may be formed.
  • the material of the transparent conductive film may be, for example, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide, Indium Zinc Oxide), or IGZO (Indium Gallium Zinc Oxide, Indium Gallium Zinc Oxide).
  • the metal with high reflectance may be Ag, for example.
  • the light-emitting functional layer 170 includes a light-emitting layer. In other embodiments, in addition to the light-emitting layer, the light-emitting functional layer 170 also includes an electron transport layer (election transporting layer, ETL), an electron injection layer (election injection layer, EIL), and a hole transporting layer (hole transporting layer). layer, HTL for short) and one or more of the hole injection layer (HIL for short).
  • ETL electron transport layer
  • EIL electron injection layer
  • hole transporting layer hole transporting layer
  • the display substrate 16' also includes a flat layer 150 disposed between the thin film transistor TFT and the anode 160, and a pixel defining layer 190 disposed on the side of the anode 160 away from the substrate 110.
  • the pixel defining layer 190 includes a plurality of opening areas, and barrier walls arranged around each of the opening areas.
  • the light-emitting layer of one light-emitting device is arranged in an opening area, the anode 160 and the light-emitting layer of adjacent light-emitting devices are separated by the barrier of the pixel defining layer 190, and the cathode 180 of each light-emitting device is connected as a whole, that is, the cathode 180 is one. Whole floor.
  • the light-emitting device includes one or more of the electron transport layer, the electron injection layer, the hole transport layer, and the hole injection layer
  • these film layers can be connected as a whole, that is, a whole layer; Open, that is, only set in the opening area.
  • the display substrate 16' further includes a color filter layer 120 disposed on the encapsulation layer 17.
  • the structure of the color filter layer 120 has been described in the foregoing and will not be repeated here.
  • the display substrate 16' is called a COE substrate (Color filter on Encapsulation, COE for short).
  • the display substrate 16 includes a substrate 110; a color filter layer 120 (Color filter, CF for short) is disposed on the substrate 110, and the color filter layer 120 includes a plurality of filter units 121 arranged in an array. And the light shielding unit 122 provided between every two adjacent filter units 121.
  • the light-shielding unit 122 includes a first color filter pattern 1211 and a second color filter pattern 1212 stacked in the thickness direction of the substrate 110.
  • the first color filter pattern 1211 is opposite to the second color filter pattern 1212. It is closer to the substrate 110.
  • the first color and the second color are not limited.
  • the first color is red and the second color is blue; or, the first color is blue and the second color is red.
  • the light-shielding unit 122 includes a red filter pattern and a blue filter arranged in layers. Light pattern.
  • the first color is red and the second color is green; or, the first color is green and the second color is red.
  • the shading unit 122 includes a red filter pattern and a green filter pattern that are stacked.
  • the first color is blue and the second color is green; or, the first color is green and the second color is blue.
  • the light shielding unit 122 includes a blue filter pattern and a green filter that are stacked. pattern.
  • the first color and the second color include, but are not limited to, the red, blue, and green mentioned above. Any other colors should fall within the protection scope of some embodiments of the present disclosure and will not be here any longer. Go into details one by one.
  • FIG. 6 takes the first color as red and the second color as blue as an example for illustration. It should be understood that the filter pattern further includes a third color, and when the first color is red and the second color is blue, the third color is green.
  • the light-shielding unit 122 in the display substrate 16 provided by some embodiments of the present disclosure includes the first color filter pattern 1211 and the second color filter pattern 1212 stacked in the thickness direction of the substrate 110, the first color filter pattern 1211 The light pattern 1211 is closer to the substrate 110 than the filter pattern 1212 of the second color.
  • the first color filter pattern 1211 and the second color filter pattern 1212 are used to replace the black matrix, thereby reducing the process of independently manufacturing the black matrix, thereby simplifying the process of manufacturing the display substrate 16.
  • the thickness of the filter unit 121 is H
  • the thickness of the filter pattern 1211 of the first color included in the shading unit 122 is d1
  • the thickness of the filter pattern 1212 of the second color included in the shading unit 122 is d1.
  • the thickness H of the filter unit 121 is greater than the thickness d1 of the filter pattern 1211 of the first color, and is smaller than the sum of the thickness d1 of the filter pattern 1211 of the first color and the thickness d2 of the two filter patterns 1212 of the second color, That is, d1 ⁇ H ⁇ d1+2 ⁇ d2.
  • the thickness difference between the shading unit 122 and the filter unit 121 on the color filter layer 120 is smaller, that is, the thickness is more uniform, so that the color filter layer 120 can be made flat.
  • the thickness H of the filter unit 121 is greater than the thickness d1 of the filter pattern 1211 of the first color, and is smaller than the thickness d1 of the filter pattern 1211 of the first color and the filter pattern of the second color.
  • the thickness H of the filter unit 121 is greater than the sum of the thickness d1 of the filter pattern 1211 of the first color and the thickness d2 of the filter pattern 1212 of the second color, and is smaller than the thickness of the filter pattern 1212 of the first color.
  • the thickness of the light filtering unit 121 is substantially equal to the thickness of the light shielding unit 122. In this way, the flatness of the surface of the color filter layer 120 can be further improved.
  • the thickness of the filter unit 121 is approximately equal to the thickness of the light shielding unit 122, that is, the surface of the filter unit 121 away from the substrate 110 is flush with the surface of the light shielding unit 122 away from the substrate 110.
  • the surface of the filter layer 120 is flat.
  • the filter unit 121 may include a filter pattern, or may include a filter pattern and a transparent pattern stacked in the thickness direction of the substrate 110, It may also include two filter patterns of the same color stacked in the thickness direction of the substrate 110.
  • the materials of the two filter patterns with the same color arranged in a layer can be the same or different.
  • At least one filter unit 121 includes a filter pattern.
  • the present disclosure does not limit the number of filter units 121 including one filter pattern, which can be one, two, or more than two.
  • FIG. 6 shows that one filter unit 121 includes one filter pattern
  • FIG. 8A shows The three filter units 121 each include a filter pattern.
  • At least one filter unit 121 includes a filter pattern and a transparent pattern stacked in a thickness direction of the substrate 110.
  • the present disclosure does not limit the number of filter units 121 including one filter pattern and one transparent pattern, which can be one, two, or more than two.
  • FIG. 6 shows that two filter units 121 each include one filter. The light pattern and a transparent pattern.
  • FIG. 7 shows that each of the three filter units 121 includes a filter pattern and a transparent pattern.
  • the transparent pattern may be closer to the substrate 110 relative to the filter pattern, that is, the transparent pattern and the filter pattern are along the thickness direction of the substrate 110 and farther away.
  • the direction of the substrate 110 is stacked.
  • At least one filter unit 121 includes two filter patterns of the same color stacked in a thickness direction of the substrate 110.
  • the present disclosure does not limit the number of filter units 121 including two filter patterns of the same color, which can be one, two, or more than two.
  • FIG. 9 shows that one filter unit 121 includes two filter patterns of the same color.
  • FIG. 10 shows that each of the three filter units 121 includes two filter patterns of the same color.
  • the plurality of filter units 121 include a first filter unit 121a, a second filter unit 121b, and a third filter unit 121c with different colors.
  • the colors of the first filter unit 121a, the second filter unit 121b, and the third filter unit 121c are not limited. As shown in Figure 6, the color of the first filter unit is red (that is, the first filter unit is a red filter unit), and the color of the second filter unit is blue (that is, the second filter unit is a blue filter unit). The color of the light unit) and the third filter unit is green (that is, the third filter unit is a green filter unit).
  • the arrangement of the first filter unit 121a includes but is not limited to the following three:
  • the first type as shown in FIG. 6, the first filter unit 121a includes a filter pattern 1211 of the first color.
  • the first filter unit 121 a includes a transparent pattern 1214 and a first color filter pattern 1211 stacked along the thickness direction of the substrate 110 and away from the substrate 110 in the direction Y.
  • the first filter unit 121 a includes two filter patterns 1211 of the first color stacked along the thickness direction of the substrate 110 and in the direction Y away from the substrate 110.
  • the arrangement of the filter units 121 of different colors may be the same or different.
  • the first filter unit 121a includes a filter pattern 1211 of a first color
  • the second filter unit 121b includes a transparent pattern 1214 and a filter pattern 1212 of a second color.
  • One filter unit 121a includes a filter pattern
  • the second filter unit 121b includes a transparent pattern and a filter pattern.
  • the first filter unit 121a includes a transparent pattern 1214 and a first color filter pattern 1211
  • the second filter unit 121b includes a transparent pattern 1214 and a second color filter pattern 1212, That is, both the first filter unit 121a and the second filter unit 121b include a transparent pattern and a filter pattern.
  • each of the plurality of first filter units 121a includes a first color filter pattern 1211
  • the plurality of second filter units 121b each includes a transparent pattern 1214 and a second color filter pattern 1212.
  • Each of the third filter units 121c includes a transparent pattern 1214 and a third color filter pattern 1213.
  • the first filter unit 121a includes a filter pattern 1211 of the first color
  • the second filter unit 121b includes a direction along the thickness direction of the substrate 110 and away from the substrate 110.
  • the third filter unit 121c includes one transparent pattern 1214 and one second color stacked along the thickness direction of the substrate 110 and away from the substrate 110.
  • the filter pattern 1213 of the third color Taking the first color as red, the second color as blue, and the third color as green as examples, the first filter unit 121a includes a red filter pattern, that is, the red filter unit.
  • the second filter unit 121b includes a transparent pattern and a blue filter pattern stacked along the thickness direction of the substrate 110 and a direction Y away from the substrate 110, that is, the blue filter unit.
  • the third filter unit 121c includes a transparent pattern and a green filter pattern stacked along the thickness direction of the substrate 110 and away from the substrate 110, which is a green filter unit.
  • the color filter layer 120 includes a first filter layer and a second filter layer stacked along the thickness direction of the substrate 110 and a direction Y away from the substrate 110.
  • the first filter layer includes transparent patterns 1214 included in the second filter unit 121b and the third filter unit 121c, and filter patterns 1211 of the first color included in the first filter unit 121a and the light shielding unit 122.
  • the second filter layer includes the second color filter pattern 1212 included in the light shielding unit 122 and the second filter unit 121b, and the third color filter pattern 1213 included in the third filter unit 121c, that is, two Color filter pattern.
  • the thickness of the filter pattern 1211 of the first color included in the first filter unit 121a is h1, that is, the thickness H of the first filter unit 121a, and the first filter pattern 1211 included in the light shielding unit 122
  • the thickness of the filter pattern 1211 of one color is d1
  • the thickness h1 of the filter pattern 1211 of the first color included in the first filter unit 121a is greater than the thickness d1 of the filter pattern 1211 of the first color included in the shading unit 122 , That is, h1>d1.
  • a half-depth process can be used to simultaneously form the first filter unit 121a, the first color filter pattern 1211 included in the shading unit 122, and the transparent pattern included in the second filter unit 121b and the third filter unit 121c. 1214, simplify the production process.
  • the thickness of the transparent pattern 1214 included in the second filter unit 121b and the thickness of the transparent pattern 1214 included in the third filter unit 121c are both substantially equal to the first color filter pattern 1211 included in the shading unit 122 thickness of.
  • the surface of the first filter layer away from the substrate 110 can be made relatively flat, which can further improve the flatness of the surface of the second filter layer formed thereon away from the substrate 110.
  • the first color filter pattern 1211 included in the shading unit 122, the first color filter pattern 1211 included in the first filter unit 121a, and the transparent pattern included in the second filter unit 121b 1214, and the transparent pattern 1214 included in the third filter unit 121c are integrally arranged. In this way, when the first filter layer of the color filter layer is formed, the accuracy of the opening of the mask can be reduced, thereby facilitating the production of the color filter layer.
  • the second color filter pattern 1212 included in the shading unit 122 and the second color filter pattern 1212 included in the second filter unit 121b adjacent to the shading unit 122 are integrated set up. In this way, when the second filter layer of the color filter layer is formed, the accuracy of the opening of the mask can be reduced, thereby facilitating the production of the color filter layer.
  • each of the plurality of filter units 121 includes a filter pattern and a transparent pattern 1214 that are stacked, and the transparent pattern 1214 is closer to the substrate 110 than the filter pattern.
  • the transparent patterns 1214 included in the plurality of filter units 121 are all close to one side of the substrate 110, so the transparent patterns 1214 in the plurality of filter units 121 can be manufactured at the same time, which simplifies the manufacturing process.
  • the plurality of filter units 121 include a first filter unit 121a, a second filter unit 121b, and a third filter unit 121c with different colors.
  • the first filter unit 121a includes a transparent pattern 1214 and a first color.
  • the second filter unit 121b includes a transparent pattern 1214 and a second color filter pattern 1212, and the third filter unit 121c includes a transparent pattern 1214 and a third color filter pattern 1213.
  • the thickness of the filter pattern included in the plurality of filter units 121 is h1
  • the thickness of the transparent pattern 1214 is h2
  • the thickness h2 of the transparent pattern 1214 included in the plurality of filter units 121 is substantially equal to the thickness d1 of the filter pattern 1211 of the first color included in the light shielding unit 122.
  • the color filter layer 120 includes a first filter layer and a second filter layer stacked along the thickness direction of the substrate 110 and in a direction Y away from the substrate 110.
  • the first filter layer includes transparent patterns 1214 included in the first filter unit 121a, the second filter unit 121b, and the third filter unit 121c, and the filter pattern 1211 of the first color included in the light shielding unit 122.
  • the second filter layer includes a first color filter pattern 1211 included in the first filter unit 121a, a second color filter pattern 1212 included in the light shielding unit 122 and the second filter unit 121b, and a third filter The filter pattern 1213 of the third color included in the light unit 121c, that is, the filter pattern of three colors.
  • the second color filter pattern 1212 included in the shading unit 122 and the second color filter pattern 1212 included in the second filter unit 121b adjacent to the shading unit 122 are integrally provided. In this way, when the second filter layer of the color filter layer is formed, the accuracy of the opening of the mask can be reduced, thereby facilitating the production of the color filter layer.
  • the filter pattern 1211 of the first color is a red filter pattern
  • the filter pattern 1212 of the second color is a blue filter pattern
  • the filter pattern of the first color 1211 is a blue filter pattern
  • the second color filter pattern 1212 is a red filter pattern. That is, the light shielding unit 122 includes a red filter pattern and a blue filter pattern that are stacked.
  • FIG. 12 is a schematic diagram of the transmittance spectrum of the red filter pattern and the blue filter pattern that are stacked.
  • the 400nm ⁇ 800nm range has a very small transmittance, which is equivalent to the black matrix (BM). Therefore, the red filter pattern and the blue filter pattern are stacked to replace the black matrix, which can make
  • the shading unit 122 and the filter unit 121 are manufactured at the same time, which reduces the process of independently manufacturing the black matrix, and further simplifies the process of manufacturing the display substrate 16.
  • the material of the filter pattern 1211 of the first color and the material of the transparent pattern 1214 are both photochromic materials, and the photochromic materials are transparent and colorless without being irradiated by ultraviolet light. It becomes the first color after being irradiated with ultraviolet light.
  • the photochromic material includes a photochromic compound, a photosensitizer, and a resin.
  • a photochromic compound is a compound that undergoes a photochemical reaction under ultraviolet light to change from transparent to colored.
  • the filter pattern 1211 of the first color is red
  • the material of the red filter pattern undergoes a photochemical reaction under ultraviolet light (UV light) and then changes from transparent to red
  • the filter pattern 1211 of the first color is In the case of blue, the material of the blue filter pattern undergoes a photochemical reaction under ultraviolet light and becomes transparent to blue.
  • the photochromic compound is not limited.
  • the photochromic compounds of the red filter pattern can be naphthopyrans, phenanthropyrans (after ultraviolet light, strong absorption occurs at 450nm-550nm, showing red), spironaphthopyrans (after ultraviolet light, Ring opening occurs, strong absorption occurs at 400nm-550nm, showing red), spirooxazines, ethylenediamine polymolybdates, dithienyl olefin compounds, etc.
  • the photochromic compound of the blue filter pattern may be an organic compound and/or an inorganic compound.
  • the organic compound can be, for example, spiropyran compounds (under light stimulation, the chemical bonds in the molecule are split, and strong absorption occurs at 500nm-600nm, appearing blue), diarylethene compounds (under ultraviolet light irradiation, caused by The open-ring state turns into a closed-ring state, achieving blue), vinyl thiophene compounds, etc.
  • the inorganic compound may be, for example, a molybdenum trioxide-titanium dioxide (MoO3-TiO2) discoloration system, a molybdenum phosphate-silica discoloration system, a phosphotungstic acid (PWA) or phosphomolybdic acid (PMoA) discoloration system, a tungstosilicic acid discoloration system, and the like.
  • MoO3-TiO2 molybdenum trioxide-titanium dioxide
  • PWA phosphotungstic acid
  • PMoA phosphomolybdic acid
  • the photosensitizers provided in some embodiments of the present disclosure are all positive photosensitizers.
  • the positive photosensitive agent is a photoacid generator, such as tert-Butylphenyliodonium Perfluorooctanesulfonate (TBI-PFOS), Triphenylsulfonium Perfluorobutanesulfonate ( Triphenylsulfonium-Perfluorobutanesulfonate, TPS-PFBS) and so on.
  • TBI-PFOS tert-Butylphenyliodonium Perfluorooctanesulfonate
  • TPS-PFBS Triphenylsulfonium-Perfluorobutanesulfonate
  • the resin may be, for example, polyethylene terephthalate (PET) or polyimide film (PI).
  • PET polyethylene terephthalate
  • PI polyimide film
  • the surface of the filter unit 121 away from the substrate 110 has a microstructure, so that the surface of the filter unit 121 away from the substrate 110 may be rough.
  • the microstructure includes a plurality of protrusions and/or depressions, and the magnitude of the size of the protrusions and/or depressions in the thickness direction of the substrate 110 is, for example, ⁇ m or nm.
  • the filter unit 121 that is, the light-emitting surface
  • the surface of the light-emitting surface has a microstructure, that is, the light-emitting surface is rough.
  • the light emitted by the light emitting layer has different exit angles on the light exit surface, which can increase the light exit viewing angle; at the same time, the rough light exit surface can diffusely reflect the external incident light, thereby reducing the intensity of specular reflection.
  • Fig. 15 is a cross-sectional view of Fig. 14 in the AA' direction.
  • the display substrate 16 further includes a touch layer 18 disposed on a side of the color filter layer 120 away from the substrate 110, and the touch layer 18 includes a plurality of first touch electrodes 181 and a plurality of second touch electrodes 182 arranged crosswise;
  • the orthographic projections of the plurality of first touch electrodes 181 and the plurality of second touch electrodes 182 on the substrate 110 are located within the orthographic projections of the shading unit 122 on the substrate 110.
  • the first touch electrode 181 includes a plurality of first sub-electrodes connected in series
  • the second touch electrode 182 includes a plurality of second sub-electrodes 1821 and a connecting portion 1822.
  • the connecting portion 1822 is used to connect two adjacent second sub-electrodes 1821 connect.
  • first touch electrode 181 and the second touch electrode 182 are metal meshes.
  • the first touch electrode 181 may be Tx (Transmit, touch transmitting electrode), and the second touch electrode 182 may be Rx (Receive, touch receiving electrode), which is not limited in the present disclosure.
  • the touch layer 18 further includes an insulating layer 183 disposed between the first touch electrode 181 and the second sub-electrode 1821 and the connecting portion 1822.
  • the insulating layer 183 has a via 1831, and the connecting portion 1822 is connected to the second
  • the sub-electrode 1821 is connected through the via 1831 on the insulating layer 183.
  • the first touch electrode 181 and the second sub-electrode 1821 may be disposed on the side closer to the substrate 110 relative to the connecting portion 1822; or the first touch electrode 181 and the second sub-electrode 1821 may be disposed opposite to each other.
  • the portion 1822 is disposed on the side away from the substrate 110.
  • FIG. 15 in some embodiments of the present disclosure takes as an example the first touch electrode 181 and the second sub-electrode 1821 are disposed on the side close to the substrate 110 relative to the connection portion 1822 as an example.
  • the display substrate 16 further includes the touch layer 18 disposed on the side of the color filter layer 120 away from the substrate 110, and the touch layer 18 includes the first touch electrode 181 and the second touch electrode
  • the orthographic projection of the 182 on the substrate 110 is within the scope of the orthographic projection of the shading unit 122 of the color filter layer 120 on the substrate 110, so that the display device can not only realize the touch function, but also will not affect the display effect.
  • Some embodiments of the present disclosure provide a method for preparing the display substrate 16 for preparing the above-mentioned display substrate 16.
  • the preparation method of the display substrate 16 includes:
  • a color filter layer 120 is formed on the substrate 110.
  • the color filter layer 120 includes a plurality of filter units 121 arranged in an array and a light shielding unit 122 arranged between every two adjacent filter units 121;
  • the unit 122 includes a first color filter pattern 1211 and a second color filter pattern 1212 stacked in the thickness direction of the substrate 110.
  • the first color filter pattern 1211 is more than the second color filter pattern 1212. Close to the substrate 110.
  • the preparation method of the display substrate 16 provided by the embodiments of the present disclosure has the same beneficial effects as the display substrate 16 provided by the above-mentioned embodiments, and reference may be made to the above-mentioned embodiments, which will not be repeated here.
  • the plurality of filter units 121 include: a first filter unit 121a, a second filter unit 121b, and a third filter unit 121c with different colors.
  • forming the color filter layer 120 on the substrate 110 includes:
  • the first transparent layer 100 includes a first pattern 111 and a second pattern 112.
  • the first pattern The thickness of 111 is greater than the thickness of the second pattern 112.
  • the first pattern 111 is formed in the area where the first filter unit 121a is to be formed, and the second pattern 112 is formed in the area where the second filter unit 121b, the third filter unit 121c, and the second filter unit 121b are to be formed.
  • the area of the shading unit 122 is formed in the area where the first filter unit 121a is to be formed, and the second pattern 112 is formed in the area where the second filter unit 121b, the third filter unit 121c, and the second filter unit 121b are to be formed.
  • a second color filter pattern 1212 on the filter pattern 1211 corresponding to the first color of the light shielding unit 122 to be formed and the transparent pattern 1214 corresponding to the second filter unit 121b to be formed to form the light shielding unit 122 and the second filter unit 121b; a third color filter pattern 1213 is formed on the transparent pattern 1214 corresponding to the third filter unit 121c to be formed to form the third filter unit 121c.
  • the colors of the first filter unit, the second filter unit, and the third filter unit are not limited.
  • the first filter unit is a red filter unit
  • the second filter unit is a blue filter unit
  • the third filter unit is a green filter unit as examples.
  • the light-shielding unit 122 includes the first color filter pattern 1211 and the second color filter pattern 1212 stacked in the thickness direction of the substrate 110, the first color filter pattern 1211 is relative to the second color filter pattern 1211. 1212 is closer to the substrate 110.
  • the light shielding unit 122 includes a red filter pattern and a blue filter pattern stacked in a thickness direction of the substrate 110.
  • the first color is blue
  • the second color is red
  • the third color is green.
  • the material with the bluing effect that is, the material of the blue filter pattern, including the photochromic compound, the photosensitizer, and the resin
  • the material of the blue filter pattern including the photochromic compound, the photosensitizer, and the resin
  • a first transparent film 10 is coated on a substrate 110, and mask exposure is performed on the first transparent film 10 to form a first transparent layer 100 as shown in FIG. 18.
  • the first patterning process is also called a half-depth mask.
  • the transmittance change of the material of the first transparent film 10 between 550nm and 750nm is less than 0.5%, when the thickness of the first pattern 111 is greater than the thickness of the second pattern 112, the first transparent layer 100 The transmittance changes of the first pattern 111 and the second pattern 112 are almost the same, so that the display effect will not be affected.
  • the red filter pattern is formed on the blue filter pattern corresponding to the light shielding unit 122 to be formed and the transparent pattern 1214 corresponding to the red filter unit to be formed, and the red filter pattern is formed on the transparent pattern 1214 corresponding to the green filter unit to be formed.
  • a green filter pattern is formed on the transparent pattern 1214.
  • the method of forming the red filter pattern in the region corresponding to the light shielding unit 122 to be formed and the region corresponding to the red filter unit to be formed may include the following two methods.
  • the first method apply a material with a photo-reddening effect to the area corresponding to the shading unit 122 to be formed and the area corresponding to the red filter unit to be formed to form a thin film, and mask the thin film to form a red filter pattern .
  • the second type coating a red resin material on the area corresponding to the shading unit 122 to be formed and the area corresponding to the red filter unit to be formed to form a red filter pattern.
  • a green resin material is coated on an area corresponding to the green filter unit to be formed to form a green filter pattern.
  • the red filter pattern is close to the substrate 110 relative to the blue filter pattern
  • the first color is red
  • the second color is blue
  • the third color is green.
  • the first transparent film is photo-induced.
  • the red-effect material that is, the material of the red filter pattern, including the photochromic compound, the sensitizer, and the resin
  • a first transparent film 10 is coated on a substrate 110, and mask exposure is performed on the first transparent film 10 to form a first transparent layer 100 as shown in FIG. 22.
  • mask exposure is performed on the first transparent layer 100.
  • the color of the filter pattern near the substrate 110 in the shading unit 122 and the color of the red filter unit change to red; and the blue filter
  • the filter pattern of the cell and the green filter cell close to the substrate 110 is a transparent pattern 1214.
  • the blue filter pattern is formed on the red filter pattern corresponding to the shading unit 122 to be formed and the transparent pattern 1214 corresponding to the blue filter unit to be formed, and the blue filter pattern is formed on the transparent pattern 1214 corresponding to the formation of the green filter unit.
  • a green filter pattern is formed on the transparent pattern 1214.
  • the method of forming the blue filter pattern is the same as the method of forming the red filter pattern in the above-mentioned embodiment, and reference may be made to the above-mentioned embodiment, which will not be repeated here.
  • the material for preparing the color filter layer 120 is a material that does not have a photochromic effect.
  • the plurality of filter units 121 include: a first filter unit 121a, a second filter unit 121b, and a third filter unit 121c with different colors. As shown in FIG. 25, forming the color filter layer 120 on the substrate 110 includes:
  • a second transparent layer 21 is formed on the substrate 110.
  • the second transparent layer 21 includes a plurality of mutually spaced transparent patterns 1214 and a plurality of hollow portions for spacing the transparent patterns 1214.
  • the material of the second transparent layer 21 is not limited, and the material of the second transparent layer 21 may be, for example, a transparent photoresist.
  • the first filter unit 121a is a red filter unit
  • the second filter unit 121b is a blue filter unit
  • the third filter unit 121c is a green filter unit; Light pattern and blue filter pattern.
  • a second transparent film 20 is formed on the substrate 110, and the second transparent film 20 is exposed and developed to form a second transparent layer 21 as shown in FIG. 27; as shown in FIG. 28, A red filter pattern is formed at the position of the hollow portion and the red filter unit, and then a blue filter pattern is formed on the transparent pattern 1214 of the red filter pattern and the blue filter unit formed in the hollow portion to form the light shielding unit 122 and the blue filter pattern. The color filter unit, and finally a green filter pattern is formed on the transparent pattern 1214 of the green filter unit to form a green filter unit.
  • the preparation method of the color filter layer 120 is the same as that of the above-mentioned embodiment, and will not be repeated here.
  • the preparation method of the display substrate 16 further includes:
  • the touch layer 18 includes a plurality of first touch electrodes 181 and a plurality of second touch electrodes 182 arranged crosswise; the orthographic projections of the first touch electrodes 181 and the second touch electrodes 182 on the substrate 110 are located on the color filter.
  • the shading unit 122 of the optical layer 120 is in an orthographic projection on the substrate 110.
  • the preparation method for forming the touch layer 18 has the same technical features and beneficial effects as the touch layer 18 of the above-mentioned embodiments. You can refer to the above-mentioned embodiments, and will not be repeated here.
  • forming the touch layer 18 on the color filter layer 120 includes:
  • a first metal film is formed on the surface of the shading unit 122, and the first metal film is applied with glue, mask exposure, development, and etching processes to form a first metal layer and a photoresist pattern layer covering the first metal layer .
  • S301 Use plasma to bombard the surface of the filter unit 121 to make the surface of the filter unit 121 have a micro structure.
  • Plasma is a form of matter mainly composed of free electrons and charged ions. It is widely present in the universe and is often regarded as the fourth state of matter. It is called the plasma state, or "super gas state.” Also called “plasma”.
  • the surface of the filter unit 121 can be roughened by bombarding the surface of the filter unit 121 with a reactive gas such as oxygen (O 2) or an inert gas in a vacuum state.
  • a reactive gas such as oxygen (O 2) or an inert gas in a vacuum state.
  • the inert gas may be, for example, argon (Ar), helium (He), neon (Ne), or the like.
  • one of the first metal layer and the second metal layer includes a plurality of rows of first sub-electrodes and a plurality of columns of second sub-electrodes, and each row of the first sub-electrodes is connected in series to form a first touch electrode 181; a first metal layer And the other of the second metal layer includes a plurality of connecting portions 1822, and two adjacent second sub-electrodes 1821 in each column of second sub-electrodes 1821 are electrically connected to the connecting portion 1822 through vias 1831 to form a second touch Electrode 182.
  • the insulating layer 183 can be provided as a whole layer; it can also be provided only at the position of the shading unit 122.
  • the red filter pattern and the blue filter pattern can be formed at the same time as the filter unit 121, which can reduce the number of separate productions.
  • the black matrix process; and the thickness of the shading unit 122 and the thickness of the filter unit 121 are equal, so that the production of a flat layer can be reduced, thereby simplifying the preparation process of the display substrate 16.
  • the touch layer 18 is disposed on the color filter layer 120, in the process of forming the first metal layer, when the photoresist is not stripped, the surface of the filter unit 121 is roughened with plasma gas. Then, the photoresist is peeled off, so that the surface of the first metal layer will not be damaged, and the independent Descum (that is, the surface roughening of the filter unit 121) process can be reduced, thereby further simplifying the display substrate 16 Preparation Process.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示基板,包括衬底和设置在衬底上的彩色滤光层。彩色滤光层包括阵列排布的多个滤光单元和设置在每相邻两个滤光单元之间的遮光单元。其中,遮光单元包括沿衬底的厚度方向层叠设置的第一颜色的滤光图案和第二颜色的滤光图案,第一颜色的滤光图案相对于第二颜色的滤光图案更靠近衬底。

Description

显示基板及其制备方法、显示装置
本申请要求于2020年3月6日提交的、申请号为202010153029.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板及其制备方法、显示装置。
背景技术
随着显示技术的发展,触控显示一体化(Flexible Metal Layer On Cell,简称FMLOC)结构的显示装置逐渐进入市场,将触控技术整合到显示器件中,也是目前显示器件多功能发展的主流方向之一,有助于实现全面的柔性化,进一步增加显示器件的功能优势。
发明内容
一方面,提供一种显示基板。所述显示基板包括衬底和设置在所述衬底上的彩色滤光层。所述彩色滤光层包括阵列排布的多个滤光单元和设置在每相邻两个滤光单元之间的遮光单元。其中,所述遮光单元包括沿所述衬底的厚度方向层叠设置的第一颜色的滤光图案和第二颜色的滤光图案,所述第一颜色的滤光图案相对于所述第二颜色的滤光图案更靠近所述衬底。
在一些实施例中,至少一个滤光单元包括一个滤光图案。或者,至少一个滤光单元包括沿所述衬底的厚度方向层叠设置的一个滤光图案和一个透明图案。或者,至少一个滤光单元包括沿所述衬底的厚度方向层叠设置的颜色相同的两个滤光图案。
在一些实施例中,所述多个滤光单元包括颜色不同的第一滤光单元、第二滤光单元和第三滤光单元;所述第一滤光单元包括一个第一颜色的滤光图案;所述第二滤光单元包括沿所述衬底的厚度方向且远离所述衬底的方向层叠设置的一个透明图案和一个第二颜色的滤光图案;所述第三滤光单元包括沿所述衬底的厚度方向且远离所述衬底的方向层叠设置的一个透明图案和一个第三颜色的滤光图案。
在一些实施例中,所述第一滤光单元所包括的第一颜色的滤光图案的厚度,大于所述遮光单元所包括的第一颜色的滤光图案的厚度。
在一些实施例中,所述第二滤光单元所包括的透明图案的厚度和所述第三滤光单元所包括的透明图案的厚度,均大致等于所述遮光单元所包括的第一颜色的滤光图案的厚度。
在一些实施例中,所述遮光单元所包括的第一颜色的滤光图案,所述第一滤光单元所包括的第一颜色的滤光图案,所述第二滤光单元所包括的透明图案,和所述第三滤光单元所包括的透明图案,呈一体设置。和/或,所述遮光单元所包括的第二颜色的滤光图案,和与所述遮光单元相邻的所述第二滤光单元所包括的第二颜色的滤光图案,呈一体设置。
在一些实施例中,所述多个滤光单元均包括层叠设置的一个滤光图案和一个透明图案,且所述透明图案相比于所述滤光图案更靠近所述衬底。
在一些实施例中,所述多个滤光单元包括颜色不同的第一滤光单元、第二滤光单元和第三滤光单元;所述第一滤光单元包括一个透明图案和一个第一颜色的滤光图案;所述第二滤光单元包括一个透明图案和一个第二颜色的滤光图案;所述第三滤光单元包括一个透明图案和一个第三颜色的滤光图案。
在一些实施例中,所述遮光单元所包括的第二颜色的滤光图案,和与所述遮光单元相邻的所述第二滤光单元所包括的第二颜色的滤光图案,呈一体设置。
在一些实施例中,所述多个滤光单元所包括的透明图案的厚度,均大致等于所述遮光单元所包括的第一颜色的滤光图案的厚度。
在一些实施例中,所述滤光单元和所述遮光单元所包括的第一颜色的滤光图案的材料,和所述透明图案的材料均为光致变色材料,所述光致变色材料在未受设定光线照射的情况下呈透明无色态,在经设定光线照射后呈第一颜色。
在一些实施例中,所述光致变色材料包括光致变色化合物、感光剂、树脂。
在一些实施例中,所述第一颜色的滤光图案为红色滤光图案,所述第二颜色的滤光图案为蓝色滤光图案;或者,所述第一颜色的滤光图案为蓝色滤光图案,所述第二颜色的滤光图案为红色滤光图案。
在一些实施例中,所述滤光单元的厚度大于第一颜色的滤光图案的厚度且小于第一颜色的滤光图案的厚度与两个第二颜色的滤光图案的厚度之和。
在一些实施例中,所述滤光单元的厚度大致等于遮光单元的厚度。
在一些实施例中,所述滤光单元远离所述衬底的表面与所述遮光单元远离所述衬底的表面平齐。
在一些实施例中,至少一个滤光单元远离所述衬底的表面具有微结构。
在一些实施例中,所述显示基板还包括设置在所述彩色滤光层远离所述衬底一侧的触控层,所述触控层包括交叉设置的多个第一触控电极和多个第 二触控电极;所述多个第一触控电极和所述多个第二触控电极在所述衬底上的正投影位于所述遮光单元在所述衬底上的正投影的范围内。
在一些实施例中,第一触控电极和第二触控电极均包括金属网格结构。
另一方面,提供一种显示装置。所述显示装置包括:如上述任一实施例所述的显示基板。
又一方面,提供一种显示基板的制备方法。所述方法包括:在衬底上形成彩色滤光层。所述彩色滤光层包括阵列排布的多个滤光单元和设置在每相邻两个滤光单元之间的遮光单元;其中,所述遮光单元包括沿所述衬底的厚度方向层叠设置的第一颜色的滤光图案和第二颜色的滤光图案,所述第一颜色的滤光图案相对于所述第二颜色的滤光图案更靠近所述衬底。
在一些实施例中,所述多个滤光单元包括颜色不同的第一滤光单元、第二滤光单元和第三滤光单元。所述在衬底上形成彩色滤光层,包括:在衬底上形成第一透明薄膜,将所述第一透明薄膜图案化以形成第一透明层;所述第一透明层包括第一图案和第二图案,所述第一图案的厚度大于所述第二图案的厚度,所述第一图案形成于待形成第一滤光单元的区域,所述第二图案形成于待形成第二滤光单元、第三滤光单元及遮光单元的区域;对所述第一透明层进行掩膜曝光,使得所述第一图案的颜色变成第一颜色以形成第一滤光单元,所述第二图案中对应于待形成遮光单元的部分的颜色变成第一颜色以形成第一颜色的滤光图案,所述第二图案中对应于待形成第二滤光单元和第三滤光单元的部分的颜色保持透明无色态以形成透明图案;在对应于待形成遮光单元的第一颜色的滤光图案上和对应于待形成第二滤光单元的透明图案上形成第二颜色的滤光图案,以形成所述遮光单元和所述第二滤光单元;在对应于待形成第三滤光单元的透明图案上形成第三颜色的滤光图案,以形成所述第三滤光单元。
在一些实施例中,所述多个滤光单元包括颜色不同的第一滤光单元、第二滤光单元和第三滤光单元。所述在衬底上形成彩色滤光层,包括:在衬底上形成第二透明层;所述第二透明层包括多个透明图案,以及设置在每相邻两个透明图案之间的镂空部;在待形成第一滤光单元的区域的透明图案上形成第一颜色的滤光图案,以形成第一滤光单元,并在所述镂空部形成第一颜色的滤光图案;在所述镂空部形成的第一颜色的滤光图案上,以及待形成第二滤光单元的区域的透明图案上形成第二颜色的滤光图案,以形成所述遮光单元和所述第二滤光单元;在待形成第三滤光单元的区域的透明图案上形成第三颜色的滤光图案,以形成所述第三滤光单元。
在一些实施例中,所述方法还包括:在所述彩色滤光层上形成触控层;所述触控层包括交叉设置的多个第一触控电极和多个第二触控电极;所述多个第一触控电极和所述多个第二触控电极在所处衬底上的正投影位于所述遮光单元在所述衬底上的正投影内。
在一些实施例中,所述在所述彩色滤光层上形成触控层,包括:在所述遮光单元的表面形成第一金属薄膜,对所述第一金属薄膜进行涂胶、掩膜曝光、显影以及刻蚀工艺,以形成第一金属层和覆盖所述第一金属层的光刻胶图案层;利用等离子体轰击滤光单元的表面以使得所述滤光单元的表面具有微结构;去除所述光刻胶图案层;在所述第一金属层上形成绝缘层,在所述绝缘层中形成多个过孔;在所述绝缘层上形成第二金属薄膜,将所述第二金属薄膜进行图案化以形成第二金属层,所述第二金属层通过所述多个过孔与所述第一金属层电连接。其中,所述第一金属层和所述第二金属层中的一者包括多行第一子电极和多列第二子电极,每行第一子电极串接形成第一触控电极;所述第一金属层和所述第二金属层中的另一者包括多个连接部,每列第二子电极中相邻两个第二子电极通过过孔与连接部电连接,形成第二触控电极。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种显示装置的结构图;
图2为根据一些实施例的一种液晶显示面板的结构图;
图3为根据一些实施例的另一种液晶显示面板的结构图;
图4为根据一些实施例的又一种液晶显示面板的结构图;
图5为根据一些实施例的一种电致发光显示面板的结构图;
图6为根据一些实施例的一种显示基板的剖面图;
图7为根据一些实施例的另一种显示基板的剖面图;
图8A为根据一些实施例的又一种显示基板的剖面图;
图8B为根据一些实施例的又一种显示基板的剖面图;
图8C为根据一些实施例的又一种显示基板的剖面图;
图9为根据一些实施例的又一种显示基板的剖面图;
图10为根据一些实施例的又一种显示基板的剖面图;
图11为根据一些实施例的一种层叠设置的红色滤光图案和蓝色滤光图案替代黑矩阵的结构图;
图12为根据一些实施例的一种层叠设置的红色滤光图案和蓝色滤光图案透过率光谱的示意图;
图13为根据一些实施例的又一种显示基板的剖面图;
图14为根据一些实施例的一种显示基板的俯视图;
图15为图14在AA’向的剖面图;
图16为根据一些实施例的形成彩色滤光层的一种制备方法的流程图;
图17~图20为根据一些实施例的形成彩色滤光层的一种制备方法的各步骤图;
图21~图24为根据一些实施例的形成彩色滤光层的另一种制备方法的各步骤图;
图25为根据一些实施例的形成彩色滤光层的又一种制备方法的流程图;
图26~图28为根据一些实施例的形成彩色滤光层的又一种制备方法的各步骤图;
图29为根据一些实施例的在彩色滤光层上形成触控层的制备方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结 构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本公开一些实施例的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本公开的一些实施例提供一种显示装置,显示装置可以是液晶显示装置(Liquid Crystal Display,简称LCD),也可以是电致发光显示装置。在显示装置为电致发光显示装置的情况下,电致发光显示装置可以是有机电致发光显示装置(Organic Light Emitting Diode,简称OLED)或量子点电致发光显示装置(Quantum Dot Light Emitting Diodes,简称QLED)。
此外,本公开的一些实施例提供的显示装置可以为电视、数码相机、手机、平板电脑等具有任何显示功能的产品或者部件。
如图1所示,显示装置主要包括显示面板1、电路板2、框架3以及盖板4等其它配件。在显示装置为液晶显示装置的情况下,显示装置还包括背光模组。此处,显示面板1可以为柔性显示面板,也可以为刚性显示面板。在显示面板1为柔性显示面板的情况下,显示装置为柔性显示装置。
其中,框架3的纵截面呈U型,显示面板1、电路板2以及其它配件均设置于框架3内,电路板2置于显示面板1的下方(即背面,背离显示面板1的显示面的一面),盖板4设置于显示面板1远离电路板2的一侧。在显示装置为液晶显示装置,液晶显示装置包括背光模组的情况下,背光模组可设置于显示面板1和电路板2之间。
在显示装置为液晶显示装置的情况下,显示面板1为液晶显示面板,如图2所示,显示面板1包括阵列基板11和对置基板12,以及设置在阵列基板11和对置基板12之间的液晶层13。
在一些实施例中,如图3和图4所示,显示面板1还包括设置在对置基板12远离液晶层13一侧的上偏光片14,以及设置在阵列基板11远离液晶层13一侧的下偏光片15。
如图2所示,示例性地,阵列基板11包括衬底110,设置在衬底110上的多个像素电路和多个像素电极130。
阵列基板11还包括在衬底110上沿着某一方向(例如子像素行排列的方向)延伸的栅线、与栅线绝缘交叉的数据线,多条栅线和多条数据线交叉设置定义出多个子像素。每个子像素均具有像素电路和像素电极130,像素电路与像素电极130电连接。
像素电路包括至少一个薄膜晶体管TFT,薄膜晶体管TFT可以采用顶栅或者底栅结构。薄膜晶体管TFT为顶栅结构时,包括依次层叠设置的有源层AL、栅极绝缘层GI、栅极G、层间介质层ILD、源漏极(包括源极S和漏极D)。薄膜晶体管TFT为底栅结构时,包括依次层叠设置的栅极G、栅极绝缘层GI、有源层AL、源漏极(包括源极S和漏极D)。
薄膜晶体管TFT的有源层AL可以由非晶硅、单晶硅、多晶硅或氧化物半导体构成。有源层AL包括未掺杂有杂质的沟道区和沟道区的两边通过掺杂杂质形成的源区域以及漏区域。所掺杂的杂质随着薄膜晶体管种类而不同,可以为N型杂质或P型杂质。
薄膜晶体管TFT的栅极G与栅线连接,源极S与数据线连接,漏极D可 以通过过孔与像素电极130电连接。通过施加到栅线的栅极电压使薄膜晶体管TFT打开,从而将施加到数据线的数据电压传输到像素电极130,从而完成子像素数据的写入。
请继续参见图2,示例性地,对置基板12包括衬底110,依次层叠设置在衬底110靠近液晶层13一侧的彩色滤光层120和公共电极140。彩色滤光层120包括多个阵列排布的彩色色阻SZ和位于每相邻两个彩色色阻SZ之间的黑矩阵BM。多个彩色色阻SZ至少包括红色光阻单元、绿色光阻单元以及蓝色光阻单元,红色光阻单元、绿色光阻单元以及蓝色光阻单元分别与不同的子像素一一对应。黑矩阵BM用于将红色光阻单元、绿色光阻单元以及蓝色光阻单元间隔开,以避免从相邻子像素区出射的光相互串扰。公共电极140可为面状电极。
在一些实施例中,如图3所示,公共电极140设置在阵列基板11中,即阵列基板11除包括上述结构外,还包括设置在衬底110上的公共电极140。在此情况下,像素电极130和公共电极140均为包括多个条状子电极的梳齿结构,像素电极130的条状子电极和公共电极140的条状子电极间隔排布。像素电极130和公共电极140可以设置在同一层,也可以设置在不同层。在此基础上,对置基板12包括衬底110,以及设置在衬底110靠近液晶层13一侧的彩色滤光层120。彩色滤光层120的结构在前文已有描述,在此不再赘述。
在另一些实施例中,如图4所示,彩色滤光层120设置在阵列基板11中,即阵列基板11除包括上述的结构,以及公共电极140外,还包括设置在像素电极130远离衬底110一侧的彩色滤光层120,彩色滤光层120的结构在前文已有描述,在此不再赘述。此时,阵列基板11称为COA基板(Color filter on Array)。
如图2~图4所示,阵列基板11还包括设置在像素电极130远离衬底110一侧的平坦层150。
在显示装置为电致发光显示装置的情况下,显示面板1为电致发光显示面板,如图5所示,显示面板1包括显示基板16’以及用于封装显示基板16’的封装层17。封装层17可以为封装薄膜,也可以为封装基板。
在封装层17为封装薄膜的情况下,对于封装层17包括的封装薄膜的层数不进行限定。在一些实施例中,封装层17可以包括一层封装薄膜,也可以包括层叠设置的两层或两层以上封装薄膜。示例地,封装层17包括依次层叠设置的三层封装薄膜。
示例性地,在封装层17包括依次层叠设置的三层封装薄膜的情况下,位 于中间层的封装薄膜的材料为有机材料,位于两侧的封装薄膜的材料为无机材料。
本文中,对于有机材料不进行限定,有机材料例如可以为PMMA(Polymethyl methacrylate,聚甲基丙烯酸甲酯)。同样地,对于无机材料不进行限定,无机材料可以为SiN x(氮化硅)、SiO x(氧化硅)或SiO xN y(氮氧化硅)中的一种或多种。
显示基板16’包括衬底110、设置在衬底110上的多个像素电路和多个发光器件。显示基板16’还包括多个子像素,每个子像素包括像素电路和发光器件,像素电路与发光器件电连接,用以驱动发光器件发光。
显示基板16’还包括在衬底110上沿着某一方向延伸的栅线、与栅线绝缘交叉的数据线以及公共电源线,公共电源线可与数据线平行。
像素电路包括多个薄膜晶体管TFT和至少一个电容器。
薄膜晶体管TFT的结构在前文已有描述,在此不再赘述。电容器包括第一极板和第二极板,两个极板之间设置有作为电介质的层间绝缘膜。
以一个像素电路包括两个薄膜晶体管TFT(即,开关薄膜晶体管、驱动薄膜晶体管)和一个电容器的2T1C结构为例,来说明像素电路内部和外部的电连接关系。图5中仅显示了驱动薄膜晶体管(如图5虚线圈中的结构)和发光器件的结构及连接关系。
开关薄膜晶体管的栅极与栅线连接,源极与数据线连接,漏极与驱动薄膜晶体管的栅极连接。驱动薄膜晶体管的源极S与公共电源线连接,漏极D通过过孔与发光器件的阳极160连接。电容器的第一极板与驱动薄膜晶体管的栅极G连接,第二极板与驱动薄膜晶体管的源极S连接。
通过施加到栅线的栅极电压使开关薄膜晶体管打开,从而将施加到数据线的数据电压传输到驱动薄膜晶体管。由开关薄膜晶体管传输到驱动薄膜晶体管的数据电压和从公共电源线施加到驱动薄膜晶体管的公共电压之间具有一定的差,与该差的绝对值相当的电压被储存于电容器,与储存于电容器的电压对应的电流通过驱动薄膜晶体管流入发光器件从而使得发光器件发光。
发光器件包括阳极160、发光功能层170以及阴极180,阳极160和阴极180各自向发光功能层170分别注入空穴和电子,当空穴和电子结合产生的激子(exciton)从激发态跃迁到基态时构成发光。
阳极160可以由反射率高的金属形成,阴极180可以由透明的导电膜形成。这种情况下,发光功能层170的光被阳极160反射,通过阴极180向外部射出,由此形成顶发光型发光器件。但并不局限于此,当阳极160由透明 的导电膜形成,而阴极180由反射率高的金属形成时,可以形成底发光型发光器件。当然,当阳极160和阴极180均由透明的导电膜形成时,可以形成双面发光型发光器件。
其中,透明导电膜的材料例如可以为ITO(Indium Tin Oxide,氧化铟锡)、IZO(Indium Zinc Oxide,氧化铟锌)或IGZO(Indium Gallium Zinc Oxide,铟镓锌氧化物)等。反射率高的金属例如可以是Ag。
在一些实施例中,发光功能层170包括发光层。在另一些实施例中,发光功能层170除包括发光层外,还包括电子传输层(election transporting layer,简称ETL)、电子注入层(election injection layer,简称EIL)、空穴传输层(hole transporting layer,简称HTL)以及空穴注入层(hole injection layer,简称HIL)中的一层或多层。
显示基板16’还包括设置在薄膜晶体管TFT和阳极160之间的平坦层150,以及设置在阳极160远离衬底110一侧的像素界定层190。像素界定层190包括多个开口区,以及围绕各个开口区设置的挡墙。一个发光器件的发光层设置在一个开口区中,相邻发光器件的阳极160和发光层被像素界定层190的挡墙分隔开,各发光器件的阴极180连为一体,即阴极180为一整层。
在发光器件包括电子传输层、电子注入层、空穴传输层以及空穴注入层中的一层或多层的情况下,这些膜层可以连为一体,即为一整层;也可以是断开的,即仅设置在开口区内。
如图5所示,显示基板16’还包括设置在封装层17上的彩色滤光层120,彩色滤光层120的结构在前文已有描述,在此不再赘述。此时,显示基板16’称为COE基板(Color filter on Encapsulation,简称COE)。
为了简化制作显示基板的工艺,本公开一些实施例提供一种显示基板16,用于上述的显示装置中。如图6所示,显示基板16包括衬底110;设置在衬底110上的彩色滤光层120(Color filter,简称CF),彩色滤光层120包括阵列排布的多个滤光单元121和设置在每相邻两个滤光单元121之间的遮光单元122。遮光单元122包括沿衬底110的厚度方向层叠设置的第一颜色的滤光图案1211和第二颜色的滤光图案1212,第一颜色的滤光图案1211相对于第二颜色的滤光图案1212更靠近衬底110。
对于第一颜色和第二颜色不进行限定。例如,第一颜色为红色、第二颜色为蓝色;或者,第一颜色为蓝色、第二颜色为红色,在此基础上,遮光单元122包括层叠设置的红色滤光图案和蓝色滤光图案。又例如,第一颜色为红色、第二颜色为绿色;或者,第一颜色为绿色、第二颜色为红色,此时, 遮光单元122包括层叠设置的红色滤光图案和绿色滤光图案。又例如,第一颜色为蓝色、第二颜色为绿色;或者,第一颜色为绿色、第二颜色为蓝色,此时,遮光单元122包括层叠设置的蓝色滤光图案和绿色滤光图案。应当理解到,本公开一些实施例中,第一颜色和第二颜色包括但不限于上述的红色、蓝色以及绿色,任何其它颜色都应在本公开一些实施例的保护范围,此处不再一一赘述。
本公开一些实施例图6中以第一颜色为红色、第二颜色为蓝色为例进行示意。应当理解到,滤光图案还包括第三颜色,在第一颜色为红色、第二颜色为蓝色的情况下,第三颜色为绿色。
由于本公开一些实施例提供的显示基板16中的遮光单元122包括沿衬底110的厚度方向层叠设置的第一颜色的滤光图案1211和第二颜色的滤光图案1212,第一颜色的滤光图案1211相对于第二颜色的滤光图案1212更靠近衬底110。利用层叠设置的第一颜色的滤光图案1211和第二颜色的滤光图案1212代替黑矩阵,从而减少了独立制作黑矩阵的工艺,进而简化了制作显示基板16的工艺。
在一些实施例中,滤光单元121的厚度为H,遮光单元122所包括的第一颜色的滤光图案1211的厚度为d1,遮光单元122所包括的第二颜色的滤光图案1212的厚度为d2。滤光单元121的厚度H大于第一颜色的滤光图案1211的厚度d1,且小于第一颜色的滤光图案1211的厚度d1与两个第二颜色的滤光图案1212的厚度d2之和,即d1<H<d1+2×d2。这样可以使得彩色滤光层120上的遮光单元122和滤光单元121的厚度相差较小,即厚度较均匀,从而可以使得彩色滤光层120较为平坦。
示例地,如图8A所示,滤光单元121的厚度H大于第一颜色的滤光图案1211的厚度d1,且小于第一颜色的滤光图案1211的厚度d1与第二颜色的滤光图案1212的厚度d2之和,即d1<H<d1+d2。
示例地,如图8B所示,滤光单元121的厚度H大于第一颜色的滤光图案1211的厚度d1和第二颜色的滤光图案1212的厚度d2之和,且小于第一颜色的滤光图案1211的厚度d1与两个第二颜色的滤光图案1212的厚度d2之和,即d1+d2<H<d1+2×d2。
在一些实施例中,如图8C所示,滤光单元121的厚度大致等于遮光单元122的厚度。这样可以进一步提高彩色滤光层120表面的平坦程度。
在一些实施例中,由于滤光单元121的厚度大致等于遮光单元122的厚度,即滤光单元121远离衬底110的表面与遮光单元122远离衬底110的表 面平齐,因此能够进一步使彩色滤光层120表面平坦。
在一些实施例中,对于同一个滤光单元121而言,该滤光单元121可以包括一个滤光图案,也可以包括沿衬底110的厚度方向层叠设置的一个滤光图案和一个透明图案,还可以包括沿衬底110的厚度方向层叠设置的颜色相同的两个滤光图案。
本公开一些实施例中,层叠设置的两个颜色相同的滤光图案的材料可以相同,也可以不同。
在一些实施例中,在多个滤光单元121中,至少有一个滤光单元121包括一个滤光图案。本公开对包括一个滤光图案的滤光单元121的数量不作限定,其可以为一个、两个或者多于两个,图6示出了一个滤光单元121包括一个滤光图案,图8A示出了三个滤光单元121均包括一个滤光图案。
在另一些实施例中,在多个滤光单元121中,至少有一个滤光单元121包括沿衬底110的厚度方向层叠设置的一个滤光图案和一个透明图案。本公开对包括一个滤光图案和一个透明图案的滤光单元121的数量不作限定,其可以为一个、两个或者多于两个,图6示出了两个滤光单元121均包括一个滤光图案和一个透明图案,图7示出了三个滤光单元121均包括一个滤光图案和一个透明图案。示例地,对于一个滤光图案和一个透明图案的滤光单元121而言,透明图案可相对于滤光图案更靠近衬底110,即透明图案和滤光图案沿衬底110的厚度方向且远离衬底110的方向层叠设置。
在又一些实施例中,在多个滤光单元121中,至少有一个滤光单元121包括沿衬底110的厚度方向层叠设置的颜色相同的两个滤光图案。本公开对包括颜色相同的两个滤光图案的滤光单元121的数量不作限定,其可以为一个、两个或者多于两个,图9示出了一个滤光单元121包括颜色相同的两个滤光图案,图10示出了三个滤光单元121均包括颜色相同的两个滤光图案。
应当理解到,多个滤光单元121包括颜色不同的第一滤光单元121a、第二滤光单元121b和第三滤光单元121c。对于第一滤光单元121a、第二滤光单元121b和第三滤光单元121c的颜色不进行限定。如图6所示,第一滤光单元的颜色为红色(即第一滤光单元为红色滤光单元)、第二滤光单元的颜色为蓝色(即第二滤光单元为蓝色滤光单元)、第三滤光单元的颜色为绿色(即第三滤光单元为绿色滤光单元)。
以第一滤光单元121a为例,第一滤光单元121a的设置方式包括但不限于以下三种:
第一种:如图6所示,第一滤光单元121a包括一个第一颜色的滤光图案 1211。
第二种:如图7所示,第一滤光单元121a包括沿衬底110的厚度方向且远离衬底110的方向Y层叠设置的一个透明图案1214和一个第一颜色的滤光图案1211。
第三种:如图9所示,第一滤光单元121a包括沿衬底110的厚度方向且远离衬底110的方向Y层叠设置的两个第一颜色的滤光图案1211。
基于上述可知,一个颜色的滤光单元121包括三种设置方式,因此,当多个滤光单元121包括三种颜色的滤光单元121(例如,红色滤光单元、蓝色滤光单元以及绿色滤光单元)时,就会有3×3×3=27种设置方式。
在一些实施例中,不同颜色的滤光单元121的设置方式可以相同,也可以不同。
示例地,如图6所示,第一滤光单元121a包括一个第一颜色的滤光图案1211,第二滤光单元121b包括一个透明图案1214和一个第二颜色的滤光图案1212,即第一滤光单元121a包括一个滤光图案,第二滤光单元121b包括一个透明图案和一个滤光图案。
如图7所示,第一滤光单元121a包括一个透明图案1214和一个第一颜色的滤光图案1211,第二滤光单元121b包括一个透明图案1214和一个第二颜色的滤光图案1212,即第一滤光单元121a和第二滤光单元121b均包括一个透明图案和一个滤光图案。
在一些实施例中,相同颜色的滤光单元121的设置方式相同。示例地,多个第一滤光单元121a均包括一个第一颜色的滤光图案1211,多个第二滤光单元121b均包括一个透明图案1214和一个第二颜色的滤光图案1212,多个第三滤光单元121c均包括一个透明图案1214和一个第三颜色的滤光图案1213。
在一些实施例中,如图6所示,第一滤光单元121a包括一个第一颜色的滤光图案1211,第二滤光单元121b包括沿衬底110的厚度方向且远离衬底110的方向Y层叠设置的一个透明图案1214和一个第二颜色的滤光图案1212,第三滤光单元121c包括沿衬底110的厚度方向且远离衬底110的方向Y层叠设置的一个透明图案1214和一个第三颜色的滤光图案1213。以第一颜色为红色、第二颜色为蓝色、第三颜色为绿色为例,第一滤光单元121a包括一个红色滤光图案,即为红色滤光单元。第二滤光单元121b包括沿衬底110的厚度方向且远离衬底110的方向Y层叠设置的一个透明图案和一个蓝色滤光图案,即为蓝色滤光单元。第三滤光单元121c包括沿衬底110的厚度方向 且远离衬底110的方向Y层叠设置的一个透明图案和一个绿色滤光图案,即为绿色滤光单元。
在此基础上,如图6所示,彩色滤光层120包括沿衬底110的厚度方向且远离衬底110的方向Y层叠设置的第一滤光层和第二滤光层。第一滤光层包括第二滤光单元121b和第三滤光单元121c所包括的透明图案1214,以及第一滤光单元121a和遮光单元122所包括的第一颜色的滤光图案1211。第二滤光层包括遮光单元122和第二滤光单元121b所包括的第二颜色的滤光图案1212,以及第三滤光单元121c所包括的第三颜色的滤光图案1213,即两种颜色的滤光图案。
示例地,如图6所示,第一滤光单元121a所包括的第一颜色的滤光图案1211的厚度为h1,也即第一滤光单元121a的厚度H,遮光单元122所包括的第一颜色的滤光图案1211的厚度为d1,第一滤光单元121a所包括的第一颜色的滤光图案1211的厚度h1大于遮光单元122所包括的第一颜色的滤光图案1211的厚度d1,即h1>d1。这样可采用半深度工艺,同时形成第一滤光单元121a、遮光单元122所包括的第一颜色的滤光图案1211,以及第二滤光单元121b和第三滤光单元121c所包括的透明图案1214,简化制作工艺。
示例地,第二滤光单元121b所包括的透明图案1214的厚度和第三滤光单元121c所包括的透明图案1214的厚度,均大致等于遮光单元122所包括的第一颜色的滤光图案1211的厚度。通过上述设计,可以使得第一滤光层远离衬底110的表面较平坦,这样可进一步提高形成于其上的第二滤光层远离衬底110的表面的平坦程度。
在一些实施例中,遮光单元122所包括的第一颜色的滤光图案1211,第一滤光单元121a所包括的第一颜色的滤光图案1211,第二滤光单元121b所包括的透明图案1214,和第三滤光单元121c所包括的透明图案1214,呈一体设置。这样在形成彩色滤光层的第一滤光层时,可以降低掩膜板的开口的精度,从而便于制作彩色滤光层。
在一些实施例中,遮光单元122所包括的第二颜色的滤光图案1212,和与该遮光单元122相邻的第二滤光单元121b所包括的第二颜色的滤光图案1212,呈一体设置。这样在形成彩色滤光层的第二滤光层时,可以降低掩膜板的开口的精度,从而便于制作彩色滤光层。
在另一些实施例中,如图7所示,多个滤光单元121均包括层叠设置的一个滤光图案和一个透明图案1214,且透明图案1214相比于滤光图案更靠近衬底110。多个滤光单元121所包括的透明图案1214均靠近衬底110的一侧, 因此可以同时制作多个滤光单元121中的透明图案1214,简化制作工艺。
示例地,多个滤光单元121包括颜色不同的第一滤光单元121a、第二滤光单元121b和第三滤光单元121c,第一滤光单元121a包括一个透明图案1214和一个第一颜色的滤光图案1211,第二滤光单元121b包括一个透明图案1214和一个第二颜色的滤光图案1212,第三滤光单元121c包括一个透明图案1214和一个第三颜色的滤光图案1213。
示例地,多个滤光单元121所包括的滤光图案的厚度为h1,透明图案1214的厚度为h2,滤光单元121的厚度H=h1+h2。多个滤光单元121所包括的透明图案1214的厚度h2均大致等于遮光单元122所包括的第一颜色的滤光图案1211的厚度d1。
在此基础上,如图7所示,彩色滤光层120包括沿衬底110的厚度方向且远离衬底110的方向Y层叠设置的第一滤光层和第二滤光层。第一滤光层包括第一滤光单元121a、第二滤光单元121b和第三滤光单元121c所包括的透明图案1214,以及遮光单元122所包括的第一颜色的滤光图案1211。第二滤光层包括第一滤光单元121a所包括的第一颜色的滤光图案1211,遮光单元122和第二滤光单元121b所包括的第二颜色的滤光图案1212,以及第三滤光单元121c所包括的第三颜色的滤光图案1213,即三种颜色的滤光图案。
示例地,遮光单元122所包括的第二颜色的滤光图案1212,和与该遮光单元122相邻的第二滤光单元121b所包括的第二颜色的滤光图案1212,呈一体设置。这样在形成彩色滤光层的第二滤光层时,可以降低掩膜板的开口的精度,从而便于制作彩色滤光层。
在一些实施例中,如图11所示,第一颜色的滤光图案1211为红色滤光图案,第二颜色的滤光图案1212为蓝色滤光图案;或者,第一颜色的滤光图案1211为蓝色滤光图案,第二颜色的滤光图案1212为红色滤光图案。也即,遮光单元122包括层叠设置的红色滤光图案和蓝色滤光图案。
需要说明的是,图12为层叠设置的红色滤光图案和蓝色滤光图案透过率光谱的示意图,参考图12可以看出,由于红色滤光图案和蓝色滤光图案的叠合在400nm~800nm区间拥有极小的透过率,作用上相当于黑矩阵(Black Matrix,简称为BM),因此,利用层叠设置的红色滤光图案和蓝色滤光图案代替黑矩阵,从而可以使得遮光单元122与滤光单元121同时制作,减少了独立制作黑矩阵的工艺,进而简化了制作显示基板16的工艺。
在一些实施例中,第一颜色的滤光图案1211的材料和透明图案1214的材料均为光致变色材料,光致变色材料在未受紫外光照射的情况下呈透明无 色态,在经紫外光照射后呈第一颜色。
此处,光致变色材料包含光致变色化合物、感光剂、树脂。
光致变色化合物为在紫外光条件下发生光化学反应由透明变为有色的一种化合物。在第一颜色的滤光图案1211为红色的情况下,红色滤光图案的材料在紫外光(UV光)条件下发生光化学反应后由透明变为红色;在第一颜色的滤光图案1211为蓝色的情况下,蓝色滤光图案的材料在紫外光条件下发生光化学反应后透明变为蓝色。
本公开中对于光致变色化合物不进行限定。红色滤光图案的光致变色化合物可以为萘并吡喃类、菲并吡喃类(紫外光照后,在450nm-550nm出现强吸收,显红色),螺萘并吡喃类(紫外光照后,发生开环,在400nm-550nm出现强吸收,显红色),螺恶嗪类,乙二胺多钼酸盐类,二噻吩基烯类化合物等。
蓝色滤光图案的光致变色化合物可以是有机化合物和/或无机化合物。有机化合物例如可以为螺吡喃类化合物(在光照刺激下,分子中化学键发生异裂,在500nm-600nm出现强吸收,呈现蓝色),二芳基乙烯类化合物(在紫外光照射下,由开环态转变为闭环态,实现蓝色),乙烯基噻吩类化合物等。无机化合物例如可以为三氧化钼-二氧化钛(MoO3-TiO2)变色体系,磷酸钼-二氧化硅变色体系,磷钨酸(PWA)或磷钼酸(PMoA)变色体系,钨硅酸变色体系等。
需要说明的是,本公开一些实施例中,由于光致变色化合物材料需要紫外光的照射才能发生化学反应变成相应的颜色,因此在掩膜曝光时,不需要光照的地方用掩膜板盖住,因而本公开一些实施例提供的感光剂均为正性感光剂。
此处,对于正性感光剂的材料不进行限定。正性感光剂为光致产酸剂,例如可以为叔丁基苯基碘鎓盐全氟辛烷磺酸(Tert-Butylphenyliodonium Perfluorooctanesulfonate,TBI-PFOS)、三苯基锍全氟丁烷磺酸(Triphenylsulfonium-Perfluorobutanesulfonate,TPS-PFBS)等。
此外,树脂例如可以为聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,简称PET),也可以为聚酰亚胺薄膜(PolyimideFilm,简称PI)。
在一些实施例中,如图13所示,滤光单元121远离衬底110的表面具有微结构,这样可以使得滤光单元121远离衬底110的表面粗糙。在一些实施例中,微结构包括多个凸起和/或凹陷,凸起和/或凹陷在衬底110的厚度方向上的尺寸的数量级例如为μm或nm。
本公开一些实施例中,在发光层发出的光经过滤光单元121远离衬底110的表面时(也即出光面),由于出光面的表面具有微结构,即出光面较粗糙,这样一来发光层发出的光在出光面的出射角度不同,从而可以增加出光视角;同时,粗糙的出光面可以使外界入射光发生漫反射,从而能够降低镜面反射强度。
如图14和图15所示,图15为图14在AA’向的剖面图。显示基板16还包括设置在彩色滤光层120远离衬底110一侧的触控层18,触控层18包括交叉设置的多个第一触控电极181和多个第二触控电极182;多个第一触控电极181和多个第二触控电极182在衬底110上的正投影位于遮光单元122在衬底110上的正投影内。
第一触控电极181包括多个串联的第一子电极,第二触控电极182包括多个第二子电极1821以及连接部1822,连接部1822用于将相邻两个第二子电极1821连接。
需要说明的是,第一触控电极181和第二触控电极182为金属网格。第一触控电极181可以为Tx(Transmit,触控发射电极),第二触控电极182可以为Rx(Receive,触控接收电极),本公开对此不作限定。
应当理解到,触控层18还包括设置在第一触控电极181和第二子电极1821与连接部1822之间的绝缘层183,绝缘层183上具有过孔1831,连接部1822与第二子电极1821通过绝缘层183上的过孔1831连接。在此基础上,可以是第一触控电极181和第二子电极1821相对于连接部1822靠近衬底110一侧设置;也可以是第一触控电极181和第二子电极1821相对于连接部1822远离衬底110一侧设置。本公开一些实施例中的图15以第一触控电极181和第二子电极1821相对于连接部1822靠近衬底110一侧设置为例进行示意。
在上述实施例中,由于显示基板16还包括设置在彩色滤光层120远离衬底110一侧的触控层18,且触控层18包括的第一触控电极181和第二触控电极182在衬底110上的正投影位于彩色滤光层120的遮光单元122在衬底110上的正投影的范围内,因此可以使得显示装置不仅能够实现触控功能,还不会影响显示效果。
本公开的一些实施例提供一种显示基板16的制备方法,用于制备上述的显示基板16。显示基板16的制备方法包括:
S10、在衬底110上形成彩色滤光层120,彩色滤光层120包括阵列排布的多个滤光单元121和设置在每相邻两个滤光单元121之间的遮光单元122;遮光单元122包括沿衬底110的厚度方向层叠设置的第一颜色的滤光图案 1211和第二颜色的滤光图案1212,第一颜色的滤光图案1211相对于第二颜色的滤光图案1212更靠近衬底110。
本公开实施例提供的显示基板16的制备方法具有与上述实施例提供的显示基板16具有相同的有益效果,可参考上述实施例,此处不再赘述。
在一些实施例中,多个滤光单元121包括:颜色不同的第一滤光单元121a、第二滤光单元121b和第三滤光单元121c。在此基础上,如图16所示,在衬底110上形成彩色滤光层120包括:
S100、在衬底110上形成第一透明薄膜10,并将第一透明薄膜10图案化以形成第一透明层100,第一透明层100包括第一图案111和第二图案112,第一图案111的厚度大于第二图案112的厚度,第一图案111形成于待形成第一滤光单元121a的区域,第二图案112形成于待形成第二滤光单元121b、第三滤光单元121c及遮光单元122的区域。
S101、对第一透明层100进行掩膜曝光,使得第一图案111的颜色变成第一颜色以形成第一滤光单元121a,第二图案112中对应于待形成遮光单元122的部分的颜色变成第一颜色以形成第一颜色的滤光图案1211,第二图案112中对应于待形成所述第二滤光单元121b和第三滤光单元121c的部分的颜色保持透明无色态以形成透明图案1214。
S102、在对应于待形成遮光单元122的第一颜色的滤光图案1211上和对应于待形成第二滤光单元121b的透明图案1214上形成第二颜色的滤光图案1212,以形成遮光单元122和第二滤光单元121b;在对应于待形成第三滤光单元121c的透明图案1214上形成第三颜色的滤光图案1213,以形成第三滤光单元121c。
对于第一滤光单元、第二滤光单元、第三滤光单元的颜色不进行限定。本公开一些实施例中均以第一滤光单元为红色滤光单元、第二滤光单元为蓝色滤光单元、第三滤光单元为绿色滤光单元为例进行示意。
由于遮光单元122包括沿衬底110的厚度方向层叠设置的第一颜色的滤光图案1211和第二颜色的滤光图案1212,第一颜色的滤光图案1211相对于第二颜色的滤光图案1212更靠近衬底110。在一些实施例中,遮光单元122包括沿衬底110的厚度方向层叠设置的红色滤光图案和蓝色滤光图案。
在蓝色滤光图案相对于红色滤光图案靠近衬底110的情况下,以下以第一颜色为蓝色、第二颜色为红色、第三颜色为绿色,第一透明薄膜10为具有光致变蓝效果的材料(即蓝色滤光图案的材料,包括光致变色化合物、感光剂以及树脂)为例,说明显示基板16的制备过程。
如图17所示,在衬底110上涂覆一层第一透明薄膜10,对第一透明薄膜10进行掩膜曝光形成如图18所示的第一透明层100。此处,对第一透明薄膜10进行构图工艺形成第一透明层100时,第一构图工艺又称为半深度工艺(Half-depth Mask)。
需要说明的是,由于第一透明薄膜10的材料在550nm-750nm间的透过率变化小于0.5%,因此在第一图案111的厚度大于第二图案112的厚度时,第一透明层100中的第一图案111和第二图案112的透过率变化几乎相同,从而不会影响显示效果。
如图19所示,对第一透明层100进行掩膜曝光,此时,遮光单元122中靠近衬底110的滤光图案的颜色以及蓝色滤光单元的颜色变为蓝色;而红色滤光单元和绿色滤光单元靠近衬底110的滤光图案为透明图案1214。
如图20所示,在对应于待形成遮光单元122的蓝色滤光图案上和对应于待形成红色滤光单元的透明图案1214上形成红色滤光图案,在对应于形成绿色滤光单元的透明图案1214上形成绿色滤光图案。
需要说明的是,在对应于待形成遮光单元122的区域以及对应于待形成红色滤光单元的区域形成红色滤光图案的方法可以包括以下两种。
第一种:在对应于待形成遮光单元122的区域以及对应于待形成红色滤光单元的区域涂覆具有光致变红效果的材料以形成薄膜,对薄膜进行掩膜曝光形成红色滤光图案。
第二种:在对应于待形成遮光单元122的区域以及对应于待形成红色滤光单元的区域涂覆红色树脂材料以形成红色滤光图案。
此外,在对应于待形成绿色滤光单元的区域涂覆绿色树脂材料以形成绿色滤光图案。
在红色滤光图案相对于蓝色滤光图案靠近衬底110的情况下,以下以第一颜色为红色、第二颜色为蓝色、第三颜色为绿色,第一透明薄膜为具有光致变红效果的材料(即为红色滤光图案的材料,包括光致变色化合物、感光剂以及树脂)为例,说明显示基板16的制备过程。
如图21所示,在衬底110上涂覆一层第一透明薄膜10,对第一透明薄膜10进行掩膜曝光形成如图22所示的第一透明层100。
如图23所示,对第一透明层100进行掩膜曝光,此时,遮光单元122中靠近衬底110的滤光图案的颜色以及红色滤光单元的颜色变为红色;而蓝色滤光单元和绿色滤光单元靠近衬底110的滤光图案为透明图案1214。
如图24所示,在对应于待形成遮光单元122的红色滤光图案上和对应于 待形成蓝色滤光单元的透明图案1214上形成蓝色滤光图案,在对应于形成绿色滤光单元的透明图案1214上形成绿色滤光图案。
此处,形成蓝色滤光图案方法与上述实施例形成红色滤光图案的方法相同,可以参考上述实施例,此处不再一一赘述。
在一些实施例中,制备彩色滤光层120的材料为不具有光致变色效果的材料。多个滤光单元121包括:颜色不同的第一滤光单元121a、第二滤光单元121b和第三滤光单元121c。如图25所示,在衬底110上形成彩色滤光层120包括:
S200、在衬底110上形成第二透明层21,第二透明层21包括多个相互间隔的透明图案1214以及用于间隔透明图案1214的多个镂空部。
此处,对于第二透明层21的材料不进行限定,第二透明层21的材料例如可以为透明光刻胶。
S201、在待形成第一滤光单元121a的区域的透明图案1214上形成第一颜色的滤光图案1211,以形成第一滤光单元121a,并在镂空部形成第一颜色的滤光图案1211。
S202、在镂空部形成的第一颜色的滤光图案1211上以及待形成第二滤光单元121b的区域的透明图案1214上形成第二颜色的滤光图案1212,以形成遮光单元122和第二滤光单元121b。
S203、在待形成第三滤光单元121c的区域的透明图案1214上形成第三颜色的滤光图案1213,以形成第三滤光单元121c。
应当理解到,第一滤光单元121a为红色滤光单元、第二滤光单元121b为蓝色滤光单元、第三滤光单元121c为绿色滤光单元;遮光单元122包括层叠设置的红色滤光图案和蓝色滤光图案。
以红色滤光图案相对于蓝色滤光图案靠近衬底110为例进行示意,以下提供一种具体的实施方式:
如图26所示,在衬底110上形成第二透明薄膜20,对第二透明薄膜20进行掩模曝光、显影形成如图27所示的第二透明层21;如图28所示,在镂空部以及红色滤光单元的位置处形成红色滤光图案,然后在镂空部形成的红色滤光图案以及蓝色滤光单元的透明图案1214上形成蓝色滤光图案以形成遮光单元122和蓝色滤光单元,最后在绿色滤光单元的透明图案1214上形成绿色滤光图案以形成绿色滤光单元。
需要说明的是,在蓝色滤光图案相对于红色滤光图案靠近衬底110的情况下,彩色滤光层120的制备方法与上述实施例相同,此处不再一一赘述。
在一些实施例中,显示基板16的制备方法还包括:
S30、在彩色滤光层120上形成触控层18。触控层18包括交叉设置的多个第一触控电极181和多个第二触控电极182;第一触控电极181和第二触控电极182在衬底110上的正投影位于彩色滤光层120的遮光单元122在衬底110上的正投影内。
本公开一些实施例中,形成触控层18的制备方法与上述实施例的触控层18具有相同的技术特征和有益效果,可以参考上述实施例,此处不再一一赘述。
如图29所示,在彩色滤光层120上形成触控层18包括:
S300、在遮光单元122的表面形成第一金属薄膜,对第一金属薄膜进行涂胶、掩膜曝光、显影以及刻蚀工艺以形成第一金属层和覆盖第一金属层的光刻胶图案层。
S301、利用等离子体轰击滤光单元121的表面以使得滤光单元121的表面具有微结构。
等离子体(Plasma)是一种由自由电子和带电离子为主要成分的物质形态,广泛存在于宇宙中,常被视为是物质的第四态,被称为等离子态,或者“超气态”,也称“电浆体”。本公开一些实施例中,在真空状态下反应气体例如氧气(O 2)或者惰性气体轰击滤光单元121的表面可以使其粗糙化。
惰性气体例如可以为氩气(Ar)、氦气(He)、氖气(Ne)等。
S302、去除光刻胶图案层。
S303、在第一金属层上形成绝缘层183。
S304、在绝缘层183中形成多个过孔1831。
S305、在绝缘层183上形成第二金属薄膜,对所述第二金属薄膜进行图案化以形成第二金属层,第二金属层通过多个过孔1831与第一金属层电连接
其中,第一金属层和第二金属层中的一者包括多行第一子电极和多列第二子电极,每行第一子电极串接形成第一触控电极181;第一金属层和第二金属层中的另一者包括多个连接部1822,每列第二子电极1821中相邻两个第二子电极1821通过过孔1831与连接部1822电连接,形成第二触控电极182。
对于绝缘层183的设置方式不进行限定。绝缘层183可以设置为一整层;也可以仅在遮光单元122的位置处设置。
本公开实施例中,由于利用红色滤光图案和蓝色滤光图案的叠合代替黑矩阵,而红色滤光图案和蓝色滤光图案可以与滤光单元121同时形成,因此能够减少单独制作黑矩阵的工艺;并且遮光单元122的厚度和滤光单元121 的厚度相等,从而能够减少一层平坦层的制作,进而简化了显示基板16的制备工艺。
在此基础上,将触控层18设置在彩色滤光层120上时,在形成第一金属层的过程中,在未剥离光刻胶时,采用等离子气体对滤光单元121的表面进行粗糙化,然后将光刻胶剥离,这样一来,既不会损坏第一金属层的表面,并且可以减少独立的Descum(即滤光单元121表面粗糙化)工艺,从而能够进一步简化显示基板16的制备工艺。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种显示基板,包括:
    衬底;
    设置在所述衬底上的彩色滤光层,所述彩色滤光层包括阵列排布的多个滤光单元和设置在每相邻两个滤光单元之间的遮光单元;
    其中,所述遮光单元包括沿所述衬底的厚度方向层叠设置的第一颜色的滤光图案和第二颜色的滤光图案,所述第一颜色的滤光图案相对于所述第二颜色的滤光图案更靠近所述衬底。
  2. 根据权利要求1所述的显示基板,其中,
    至少一个滤光单元包括一个滤光图案;或者,
    至少一个滤光单元包括沿所述衬底的厚度方向层叠设置的一个滤光图案和一个透明图案;或者,
    至少一个滤光单元包括沿所述衬底的厚度方向层叠设置的颜色相同的两个滤光图案。
  3. 根据权利要求2所述的显示基板,其中,所述多个滤光单元包括颜色不同的第一滤光单元、第二滤光单元和第三滤光单元;
    所述第一滤光单元包括一个第一颜色的滤光图案;
    所述第二滤光单元包括沿所述衬底的厚度方向且远离所述衬底的方向层叠设置的一个透明图案和一个第二颜色的滤光图案;
    所述第三滤光单元包括沿所述衬底的厚度方向且远离所述衬底的方向层叠设置的一个透明图案和一个第三颜色的滤光图案。
  4. 根据权利要求3所述的显示基板,其中,所述第一滤光单元所包括的第一颜色的滤光图案的厚度,大于所述遮光单元所包括的第一颜色的滤光图案的厚度。
  5. 根据权利要求3或4所述的显示基板,其中,所述第二滤光单元所包括的透明图案的厚度和所述第三滤光单元所包括的透明图案的厚度,均大致等于所述遮光单元所包括的第一颜色的滤光图案的厚度。
  6. 根据权利要求3~5中任一项所述的显示基板,其中,所述遮光单元所包括的第一颜色的滤光图案,所述第一滤光单元所包括的第一颜色的滤光图案,所述第二滤光单元所包括的透明图案,和所述第三滤光单元所包括的透明图案,呈一体设置;和/或,
    所述遮光单元所包括的第二颜色的滤光图案,和与所述遮光单元相邻的所述第二滤光单元所包括的第二颜色的滤光图案,呈一体设置。
  7. 根据权利要求2所述的显示基板,其中,所述多个滤光单元均包括层叠设置的一个滤光图案和一个透明图案,且所述透明图案相比于所述滤光图案更靠近所述衬底。
  8. 根据权利要求7所述的显示基板,其中,所述多个滤光单元包括颜色不同的第一滤光单元、第二滤光单元和第三滤光单元;
    所述第一滤光单元包括一个透明图案和一个第一颜色的滤光图案;
    所述第二滤光单元包括一个透明图案和一个第二颜色的滤光图案;
    所述第三滤光单元包括一个透明图案和一个第三颜色的滤光图案。
  9. 根据权利要求8所述的显示基板,其中,所述遮光单元所包括的第二颜色的滤光图案,和与所述遮光单元相邻的所述第二滤光单元所包括的第二颜色的滤光图案,呈一体设置。
  10. 根据权利要求7~9中任一项所述的显示基板,其中,所述多个滤光单元所包括的透明图案的厚度,均大致等于所述遮光单元所包括的第一颜色的滤光图案的厚度。
  11. 根据权利要求3~10任一项所述的显示基板,其中,所述滤光单元和所述遮光单元所包括的第一颜色的滤光图案的材料,和所述透明图案的材料均为光致变色材料,所述光致变色材料在未受设定光线照射的情况下呈透明无色态,在经设定光线照射后呈第一颜色。
  12. 根据权利要求11所述的显示基板,其中,所述光致变色材料包括光致变色化合物、感光剂、树脂。
  13. 根据权利要求1~12中任一项所述的显示基板,其中,所述第一颜色的滤光图案为红色滤光图案,所述第二颜色的滤光图案为蓝色滤光图案;或者,
    所述第一颜色的滤光图案为蓝色滤光图案,所述第二颜色的滤光图案为红色滤光图案。
  14. 根据权利要求1所述的显示基板,其中,所述滤光单元的厚度大于第一颜色的滤光图案的厚度,且小于第一颜色的滤光图案的厚度与两个第二颜色的滤光图案的厚度之和。
  15. 根据权利要求14所述的显示基板,其中,所述滤光单元的厚度大致等于遮光单元的厚度。
  16. 根据权利要求14所述的显示基板,其中,所述滤光单元远离所述衬底的表面与所述遮光单元远离所述衬底的表面平齐。
  17. 根据权利要求1~16中任一项所述的显示基板,其中,至少一个滤光 单元远离所述衬底的表面具有微结构。
  18. 根据权利要求1~17中任一项所述的显示基板,还包括:
    设置在所述彩色滤光层远离所述衬底一侧的触控层,所述触控层包括交叉设置的多个第一触控电极和多个第二触控电极;所述多个第一触控电极和所述多个第二触控电极在所述衬底上的正投影位于所述遮光单元在所述衬底上的正投影的范围内。
  19. 根据权利要求18所述的显示基板,其中,第一触控电极和第二触控电极均包括金属网格结构。
  20. 一种显示装置,包括权利要求1~19中任一项所述的显示基板。
  21. 一种显示基板的制备方法,包括:
    在衬底上形成彩色滤光层;所述彩色滤光层包括阵列排布的多个滤光单元和设置在每相邻两个滤光单元之间的遮光单元;
    其中,所述遮光单元包括沿所述衬底的厚度方向层叠设置的第一颜色的滤光图案和第二颜色的滤光图案,所述第一颜色的滤光图案相对于所述第二颜色的滤光图案更靠近所述衬底。
  22. 根据权利要求21所述的制备方法,其中,所述多个滤光单元包括颜色不同的第一滤光单元、第二滤光单元和第三滤光单元;
    所述在衬底上形成彩色滤光层,包括:
    在衬底上形成第一透明薄膜,将所述第一透明薄膜图案化以形成第一透明层;所述第一透明层包括第一图案和第二图案,所述第一图案的厚度大于所述第二图案的厚度,所述第一图案形成于待形成第一滤光单元的区域,所述第二图案形成于待形成第二滤光单元、第三滤光单元及遮光单元的区域;
    对所述第一透明层进行掩膜曝光,使得所述第一图案的颜色变成第一颜色以形成第一滤光单元,所述第二图案中对应于待形成遮光单元的部分的颜色变成第一颜色以形成第一颜色的滤光图案,所述第二图案中对应于待形成第二滤光单元和第三滤光单元的部分的颜色保持透明无色态以形成透明图案;
    在对应于待形成遮光单元的第一颜色的滤光图案上和对应于待形成第二滤光单元的透明图案上形成第二颜色的滤光图案,以形成所述遮光单元和所述第二滤光单元;在对应于待形成第三滤光单元的透明图案上形成第三颜色的滤光图案,以形成所述第三滤光单元。
  23. 根据权利要求21所述的制备方法,其中,所述多个滤光单元包括颜色不同的第一滤光单元、第二滤光单元和第三滤光单元;
    所述在衬底上形成彩色滤光层,包括:
    在衬底上形成第二透明层;所述第二透明层包括多个透明图案,以及设置在每相邻两个透明图案之间的镂空部;
    在待形成第一滤光单元的区域的透明图案上形成第一颜色的滤光图案,以形成第一滤光单元,并在所述镂空部形成第一颜色的滤光图案;
    在所述镂空部形成的第一颜色的滤光图案上,以及待形成第二滤光单元的区域的透明图案上形成第二颜色的滤光图案,以形成所述遮光单元和所述第二滤光单元;
    在待形成第三滤光单元的区域的透明图案上形成第三颜色的滤光图案,以形成所述第三滤光单元。
  24. 根据权利要求21~23中任一项所述的制备方法,还包括:
    在所述彩色滤光层上形成触控层;所述触控层包括交叉设置的多个第一触控电极和多个第二触控电极;所述多个第一触控电极和所述多个第二触控电极在所处衬底上的正投影位于所述遮光单元在所述衬底上的正投影内。
  25. 根据权利要求24所述的制备方法,其中,所述在所述彩色滤光层上形成触控层,包括:
    在所述遮光单元的表面形成第一金属薄膜,对所述第一金属薄膜进行涂胶、掩膜曝光、显影以及刻蚀工艺,以形成第一金属层和覆盖所述第一金属层的光刻胶图案层;
    利用等离子体轰击滤光单元的表面以使得所述滤光单元的表面具有微结构;
    去除所述光刻胶图案层;
    在所述第一金属层上形成绝缘层,在所述绝缘层中形成多个过孔;
    在所述绝缘层上形成第二金属薄膜,将所述第二金属薄膜进行图案化以形成第二金属层;所述第二金属层通过所述多个过孔与所述第一金属层电连接;
    其中,所述第一金属层和所述第二金属层中的一者包括多行第一子电极和多列第二子电极,每行第一子电极串接形成第一触控电极;所述第一金属层和所述第二金属层中的另一者包括多个连接部,每列第二子电极中相邻两个第二子电极通过过孔与连接部电连接,形成第二触控电极。
PCT/CN2021/079546 2020-03-06 2021-03-08 显示基板及其制备方法、显示装置 WO2021175330A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/771,968 US20220365618A1 (en) 2020-03-06 2021-03-08 Display substrate, manufacturing method therefor and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010153029.9A CN111240078B (zh) 2020-03-06 2020-03-06 一种显示用基板及其制备方法、显示装置
CN202010153029.9 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021175330A1 true WO2021175330A1 (zh) 2021-09-10

Family

ID=70876806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079546 WO2021175330A1 (zh) 2020-03-06 2021-03-08 显示基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20220365618A1 (zh)
CN (1) CN111240078B (zh)
WO (1) WO2021175330A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116632030A (zh) * 2023-05-31 2023-08-22 惠科股份有限公司 显示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240078B (zh) * 2020-03-06 2022-04-15 京东方科技集团股份有限公司 一种显示用基板及其制备方法、显示装置
CN114698385B (zh) * 2020-10-30 2023-10-24 京东方科技集团股份有限公司 显示基板、显示基板制造方法和显示装置
CN114725177B (zh) * 2022-04-13 2024-03-29 业成光电(深圳)有限公司 显示面板及电子装置
CN117055763B (zh) * 2023-10-12 2023-12-19 成都捷翼电子科技有限公司 一种彩色墨水触控屏及其加工工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226299A (zh) * 2007-01-18 2008-07-23 瀚宇彩晶股份有限公司 制作具有光散射效果的彩色滤光层的方法
CN102681067A (zh) * 2011-12-15 2012-09-19 京东方科技集团股份有限公司 彩色滤光片及其制备方法
CN102768378A (zh) * 2011-05-10 2012-11-07 京东方科技集团股份有限公司 一种彩色滤光片及其制造方法
CN103389827A (zh) * 2013-07-05 2013-11-13 南昌欧菲光显示技术有限公司 带触控效果的滤光片、其制备方法及触控显示组件
US20170003786A1 (en) * 2015-06-30 2017-01-05 Lg Display Co., Ltd. Touch sensor integrated display device
CN111240078A (zh) * 2020-03-06 2020-06-05 京东方科技集团股份有限公司 一种显示用基板及其制备方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226299A (zh) * 2007-01-18 2008-07-23 瀚宇彩晶股份有限公司 制作具有光散射效果的彩色滤光层的方法
CN102768378A (zh) * 2011-05-10 2012-11-07 京东方科技集团股份有限公司 一种彩色滤光片及其制造方法
CN102681067A (zh) * 2011-12-15 2012-09-19 京东方科技集团股份有限公司 彩色滤光片及其制备方法
CN103389827A (zh) * 2013-07-05 2013-11-13 南昌欧菲光显示技术有限公司 带触控效果的滤光片、其制备方法及触控显示组件
US20170003786A1 (en) * 2015-06-30 2017-01-05 Lg Display Co., Ltd. Touch sensor integrated display device
CN111240078A (zh) * 2020-03-06 2020-06-05 京东方科技集团股份有限公司 一种显示用基板及其制备方法、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116632030A (zh) * 2023-05-31 2023-08-22 惠科股份有限公司 显示装置
CN116632030B (zh) * 2023-05-31 2024-05-17 惠科股份有限公司 显示装置

Also Published As

Publication number Publication date
US20220365618A1 (en) 2022-11-17
CN111240078A (zh) 2020-06-05
CN111240078B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2021175330A1 (zh) 显示基板及其制备方法、显示装置
KR102037850B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US9601554B2 (en) Transparent display device and method of manufacturing the same
KR101592013B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US7573191B2 (en) Organic EL device having a transflective layer and a light-reflective electrode constituting an optical resonator
US20190189728A1 (en) Display and method of manufacturing the same
EP3876286A1 (en) Display panel and display device including the same
WO2016074372A1 (zh) Amoled显示面板及其制作方法、显示装置
CN111933670A (zh) 一种显示基板及其制备方法、显示装置
CN113690289B (zh) 显示基板及其制备方法、显示装置
CN113241422A (zh) 显示基板和显示装置
US20220393122A1 (en) Display Substrate and Preparation Method thereof, and Display Apparatus
EP4131398A1 (en) Display substrate and preparation method therefor, and display apparatus
KR20060028251A (ko) 유기전계발광 소자 및 그의 제조 방법
KR100725493B1 (ko) 디스플레이장치 및 그 제조방법
KR101591332B1 (ko) 유기전계발광소자
WO2021035442A1 (zh) 显示面板及其制作方法、显示装置
KR102052432B1 (ko) 유기전계발광소자 및 그 제조방법
KR20210102559A (ko) 표시 장치 및 그 제조 방법
KR20180077856A (ko) 전계발광 표시장치
KR20100000405A (ko) 발광 표시 패널 및 그의 제조 방법
KR101999598B1 (ko) 투명 유기전계 발광소자 및 이의 제조 방법
CN215933640U (zh) 显示基板和显示装置
CN115295741A (zh) 显示基板及其制备方法、显示装置
WO2021192242A1 (ja) 表示装置の製造方法、および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21763695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21763695

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21763695

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21763695

Country of ref document: EP

Kind code of ref document: A1