WO2021174906A1 - 智能割草机及其割草方法 - Google Patents

智能割草机及其割草方法 Download PDF

Info

Publication number
WO2021174906A1
WO2021174906A1 PCT/CN2020/128739 CN2020128739W WO2021174906A1 WO 2021174906 A1 WO2021174906 A1 WO 2021174906A1 CN 2020128739 W CN2020128739 W CN 2020128739W WO 2021174906 A1 WO2021174906 A1 WO 2021174906A1
Authority
WO
WIPO (PCT)
Prior art keywords
boundary
lawn mower
walking
backward
intelligent
Prior art date
Application number
PCT/CN2020/128739
Other languages
English (en)
French (fr)
Inventor
查霞红
赵凤丽
程坤
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2021174906A1 publication Critical patent/WO2021174906A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G3/00Cutting implements specially adapted for horticultural purposes; Delimbing standing trees
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the invention relates to the field of intelligent control, in particular to an intelligent lawn mower and a lawn mowing method.
  • the intelligent lawn mower has an automatic walking function, can complete the work of mowing the lawn independently, without direct human control and operation, and greatly reduces manual operation. It is a tool suitable for lawn mowing and maintenance in home gardens, public green spaces and other places.
  • An intelligent lawn mower mowing method is used for mowing grass within a working range limited by a boundary, and includes the following steps:
  • the boundary When the boundary is detected for the first time, it walks backward and turns according to a predetermined radius during the backward process, so that the retreating direction of the lawn mower is consistent with a second direction perpendicular to the boundary, wherein the second direction is the same as the second direction perpendicular to the boundary.
  • One direction is opposite;
  • the above-mentioned mowing method can reduce the wear on the lawn by synchronously turning during the backward process, so as to achieve the effect of not grinding the grass. At the same time, after the backward turning is completed, the reverse cutting is performed again to reduce the missing cutting area and ensure the cutting efficiency.
  • the turning radius in the backward walking is 1m-5m; when the boundary is detected for the first time, the walking backwards, and the predetermined radius is turned during the backward walking, so that the The retreat direction of the lawn mower is consistent with a second direction perpendicular to the boundary, wherein in the step of the second direction being opposite to the first direction, the lawn mower is retreated to the retreat direction perpendicular to the boundary
  • the second direction is consistent, which specifically includes: making the smart lawn mower retreat a distance S along two tangent arc paths, the Wherein, R is the turning radius, L is the cutting diameter; the smart lawn mower is a wheeled smart lawn mower; the retreat direction of the lawn mower is consistent with the second direction perpendicular to the boundary, wherein the first In the steps in which the two directions are opposite to the first direction, the intelligent lawnmower accelerates the walking during the backward process; the boundary is an electronic boundary or a physical boundary; and the working range defined by the boundary is a
  • An intelligent lawn mower including:
  • the cutting assembly is arranged under the shell
  • the boundary detection module is used to detect the boundary when mowing and send out detection signals
  • the control module is electrically connected to the walking component and the boundary detection module, wherein the control module is used to: control the lawn mower to walk toward the boundary in a first direction perpendicular to the boundary; the first detection Treatment when the boundary is reached, and turn at a predetermined radius during the retreating process, so that the retreating direction of the lawn mower is consistent with a second direction perpendicular to the boundary, wherein the second direction is opposite to the first direction; switch to Walk toward the boundary in the first direction again; switch to walking away from the boundary in the second direction when the boundary is detected for the second time until the next boundary is detected.
  • the way that the shell realizes the synchronous steering during the backward process can reduce the wear on the lawn, so as to achieve the effect of not grinding the grass.
  • the reverse cutting is performed again to reduce the missing cutting area and ensure the cutting efficiency. So as to achieve high cutting efficiency and avoid grazing when turning.
  • the walking assembly includes a front wheel set and a rear wheel set
  • the front wheel set includes two drive wheels respectively arranged on both sides of the front end of the housing, defined as front drive wheels
  • the wheel set includes two driving wheels respectively arranged on both sides of the rear end of the casing, which are defined as rear driving wheels, wherein each driving wheel has an independent suspension structure and a driving motor.
  • the independent independent suspension structure includes a single longitudinal arm rotatably connected to the housing, a spring damper connecting the single longitudinal arm and the housing, and the drive wheel is fixed to the single longitudinal arm.
  • the trailing arm, the drive motor and the drive wheel are assembled together.
  • the single trailing arm is rotatably connected to a trailing arm fixed shaft through a bearing, and the trailing arm fixed shaft is fixed to the housing.
  • the turning radius of the walking assembly during the backward process is 1m-5m.
  • Fig. 1 is a flowchart of a mowing method according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a cutting process of a mowing method according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of calculating the backward distance in the lawn mower method according to an embodiment of the present invention.
  • Fig. 4 is a side view of an intelligent lawn mower according to an embodiment of the present invention.
  • Fig. 5 is a top view of a smart lawn mower according to an embodiment of the invention.
  • Fig. 6 is a rear view of the smart lawn mower according to an embodiment of the present invention.
  • Fig. 7 is a cross-sectional view taken along the line B-B in Fig. 4.
  • Working range 110, the first boundary; 120, the second boundary; 130, the third boundary; 140, the fourth boundary; 200, the intelligent lawn mower; 210, the housing; 220, the walking component; 221, the front drive Wheel; 222, rear drive wheel; 230, cutting assembly; 231, cutting blade; 240, limit detection module; 250, control module; 260, independent suspension structure; 261, single trailing arm; 262, spring damping; 263, Upper fixing seat; 264, lower fixing seat; 265, bearing; 266, trailing arm fixing shaft; 267, compression screw; 270, drive motor.
  • the present invention provides an intelligent lawn mower mowing method, which is used to mow the grass within the working range defined by the boundary, and can realize the turning without grazing the grass and the cutting efficiency is high.
  • Fig. 1 is a flow chart of a method for mowing the lawn of an intelligent lawn mower according to an embodiment of the present invention, which will be described in detail below with reference to specific steps.
  • the intelligent lawn mower is preferably a wheeled lawn mower, that is, an intelligent lawn mower whose walking component is a walking wheel train.
  • the contact area between the wheel mower and the lawn is relatively small, which can reduce the friction on the lawn when turning.
  • the smart lawn mower can also be considered as a crawler lawn mower.
  • the intelligent lawn mower is a lawn mower that can walk forward and backward, that is, it can walk forward and backward. The reverse walk is relative to the forward direction, specifically referring to backward walking without turning around.
  • the working range 100 is specifically a rectangular working area. Take this working area as an example: the initial position of the smart lawn mower is at the corner between the second boundary 120 and the third boundary 130. After the smart lawn mower is started, the edge is perpendicular to the first boundary 110. Walk toward the first boundary 110 in the first direction and mow the grass. The first direction is upward as indicated by arrow 1 in FIG. 2. That is, the smart lawn mower walks in a straight line and gradually approaches the first boundary 110, and the first direction is perpendicular to the first boundary 110.
  • a gyroscope can be used to sense the walking direction of the smart lawn mower and control the smart lawn mower to walk in a predetermined direction to achieve straight-line walking. I won't repeat it here.
  • the same is true for making the first direction perpendicular to the first boundary 110 for example, it can be achieved by using a machine vision positioning with the aid of a visual reference set at the first boundary 110.
  • the longitudinal center axis of the smart lawn mower can be aligned with the visual reference object. It is also possible to monitor the distance between the smart lawn mower and the second boundary 120 in real time, and to achieve walking perpendicular to the first boundary 110 by keeping the distance constant during the advancing process.
  • the above-mentioned four boundaries are the periphery of the entire working area, which are usually connected end to end to enclose the working area.
  • the boundary can be a physical boundary or an electronic boundary, that is, a boundary can be formed by walls, fences, railings, etc., or a virtual boundary signal, such as an electromagnetic signal or an optical signal, can be sent by the boundary signal generator.
  • the retreat timing of the intelligent lawn mower can be realized automatically according to a preset program; it can also be started after receiving an external command, that is, semi-automatic work.
  • a limit detection module is provided on the smart lawn mower.
  • the boundary detection module is used to monitor the position information between the lawn mower and the boundary, which may specifically include one or more of the distance, angle, and the inner and outer directions of the boundary.
  • the composition and principle of the limit detection module can be selected from a variety of existing technologies, such as infrared, ultrasonic, collision detection, magnetic induction, and so on.
  • the limit detection module may be a distance sensor.
  • the control module of the intelligent lawn mower controls the walking component to move backward and turn synchronously.
  • the steering of the intelligent lawn mower can be realized by the differential movement of the walking components, which is similar to the steering principle of the car.
  • the turning radius during the backward process is set to 1m-5m.
  • the smart lawn mower accelerates the walking during the backward walking process.
  • the accelerated walking here is compared with the walking speed of the smart lawn mower in step S100.
  • the intelligent lawn mower accelerates the walking during the backward process, can quickly complete the steering, reduce the contact time with the lawn, and reduce the wear on the lawn when turning.
  • the smart lawn mower After the smart lawn mower detects the boundary, it turns to continue cutting the new area to be cut. However, during the turning process, there will inevitably be a missing cut area between the smart lawn mower and the boundary.
  • the intelligent lawn mower is controlled to move backwards along the walking path 2 shown by the arrow 2 until the backward direction is exactly the same as a second direction.
  • the second direction is the direction shown by arrow 3 in FIG. 2, and the direction is downward, which is just opposite to the first direction, so it is also perpendicular to the first boundary 110. That is, at this time, the smart lawn mower just re-aligns the direction, the longitudinal center axis of the smart lawn mower is perpendicular to the first boundary 110, and the walking direction of the smart lawn mower is opposite to and perpendicular to the first boundary 110.
  • the retreating direction of the lawn mower is consistent with the second direction perpendicular to the boundary, wherein the second direction is opposite to the first direction, which specifically includes:
  • R is the turning radius and L is the cutting diameter. That is to say, in this embodiment, according to the turning radius R and cutting diameter L of the smart lawn mower, the smart lawn mower is controlled to retreat a predetermined distance S through two turns. At this time, it can be determined that the smart lawn mower just re-swings. Positive direction.
  • the distance that the smart lawn mower retreats in the second direction is defined as S, which can be understood as the distance that the same point A on the housing moves in the second direction before and after the smart lawn mower retreats.
  • S the distance that the same point A on the housing moves in the second direction before and after the smart lawn mower retreats.
  • L the distance that the same point A on the casing of the smart lawn mower moves in the lateral direction.
  • the value of the distance that the smart lawn mower moves laterally is set to be exactly equal to the value of the cutting diameter.
  • the cutting range just coincides with the cutting range when walking and cutting along the walking path 1. In this way, there is no repeated cutting between the cutting after the steering is completed and the cutting before the steering, and the cutting efficiency is improved.
  • the smart lawn mower achieves the path shown by arrow 2 in Figure 2 through two turns.
  • the smart lawn mower when the smart lawn mower just starts to move back, it first turns to the side of the uncut area according to the turning radius R.
  • the walking path is a circular arc path as shown by arrow M; then turn toward the cut area according to the turning radius R.
  • the walking path is a circular arc path as shown by the arrow N, in which the circular arc path N and M are tangent.
  • step S300 Switch to walking toward the boundary in the first direction again.
  • the numerical value of the lateral movement distance of the smart lawn mower is set to be just equal to the numerical value of the cutting diameter.
  • the cutting range just coincides with the cutting range when walking and cutting along the walking path 1. In this way, there is no repeated cutting between the cutting after the steering is completed and the cutting before the steering, and the cutting efficiency is improved.
  • the unit of size in Fig. 2 is mm.
  • the five walking paths of the intelligent lawn mower are shown by arrows 1-2-3-4-5 in sequence.
  • the smart lawn mower walks and cuts at a turning radius of 3m.
  • the walking path is walking path 2.
  • the length of the missing cutting area is 1.873m .
  • walk in a straight line in the reverse direction ie, walking path 3, to cut off a part of the missing cut area; then walk in a straight line in the reverse direction to complete walking path 4 and walking path 5 in turn, where walking path 3 and walking path 4 correspond to the same lawn area .
  • S400 Switch to walking in the second direction when the boundary is detected for the second time until the next boundary is detected.
  • the smart lawn mower cuts the missing cut area according to the walking path shown by arrow 3 until it detects the first boundary 110 again, and then walks backward, that is, walks toward the second boundary 120 in the second direction.
  • the above steps S100-S400 are repeated, so as to realize cyclic cutting.
  • the synchronous turning during the backward process can reduce the wear on the lawn, so as to achieve the effect of not grinding the grass.
  • the reverse cutting is performed after the backward turning is completed. So as to achieve high cutting efficiency and avoid grazing when turning.
  • the embodiment of the present invention also provides an intelligent lawn mower 200, as shown in FIG. Among them, the walking component is used to drive the smart lawn mower to walk and turn, and the cutting component 230 is arranged under the housing 10 for cutting the lawn.
  • the limit detection module 240 may be disposed on the outer side wall of the casing 10.
  • the boundary detection module 240 is used for monitoring the position information between the lawn mower and the boundary, and the control module 250 is used for receiving signals from the boundary detection module 240 and used for controlling the operation of the walking assembly 220 and the cutting assembly 230.
  • the control module 250 is electrically connected to the walking component 220 and the limit detection module 240.
  • the control module 250 is configured to: control the smart lawn mower to walk toward the boundary in a first direction perpendicular to the boundary; when the boundary is detected, walk backward, and turn at a predetermined radius during the backward process to make the lawn mower move backward.
  • the direction is the same as the second direction perpendicular to the boundary, wherein the second direction is opposite to the first direction; switch to walk toward the boundary in the first direction again; switch to move along the first direction when the boundary is detected again Walk away from the boundary in two directions until the next boundary is detected.
  • control module 250 includes a memory and a processor, wherein a computer program is stored in the memory, and when the computer program is executed by the processor, the aforementioned steps S100-S400 can be executed.
  • the processor may be an embedded digital signal processor (Digital Signal Processor, DSP), a microprocessor (Micro Processor Unit, MPU), etc., which are not specifically limited in this embodiment.
  • the above-mentioned smart lawn mower can cut cyclically within the working range limited by the boundary. It adopts the method of synchronous steering during the backward process, which can reduce the wear on the lawn, so as to achieve the effect of not grinding the grass, and at the same time for the purpose of reversing after the completion of the backward steering. Reverse cutting to reduce the missing cutting area and ensure cutting efficiency, so as to achieve high cutting efficiency and avoid grass grinding when turning.
  • the smart lawn mower 200 is a wheeled lawn mower.
  • the walking assembly 220 includes a front wheel set and a rear wheel set.
  • the front wheel set includes two drive wheels respectively arranged on both sides of the front end of the housing 10, which are defined as front drive wheels 221;
  • the front wheel set includes two driving wheels respectively arranged on both sides of the rear end of the housing, which are defined as rear driving wheels 222.
  • each driving wheel has an independent suspension structure 260 and a driving motor 270, respectively.
  • the four wheels of the smart lawn mower 200 are all driving wheels, and each driving wheel provides traction. It can maintain sufficient traction even in steep, uneven terrain, non-skidding, high cutting efficiency, and realizing no grass grinding. Effect.
  • each driving wheel of the smart lawn mower is independently suspended.
  • each driving wheel can swing up and down, so that each driving wheel is in contact with the ground when driving, so as to avoid slipping and grazing.
  • a rear driving wheel 222 is taken as an example to introduce the structure of the independent independent suspension structure 260.
  • the independent suspension structure includes a single trailing arm 261 rotatably connected to the housing, a spring damper 262 connecting the single trailing arm 261 and the housing 210, the rear drive wheel 222 is fixed to the single trailing arm 261, and the drive motor 270 and the rear drive wheel 222 are installed. Together.
  • One end of the spring damper 262 is fixed to the housing 110 through the upper fixing base 263, and the other end of the spring damper 262 is fixed to the single trailing arm 261 through the lower fixing base 264.
  • the independent suspension structure 260 and the driving motor 270 are arranged in the same manner. In this way, when encountering uneven roads, the single trailing arm 261 swings up and down under the combined action of gravity and the spring damping 262, so that each driving wheel is in contact with the ground during driving, so as to avoid slipping and to avoid grazing.
  • the single trailing arm 261 of the rear drive wheel 222 is rotatably connected to a trailing arm fixed shaft 266 through a bearing 265, and the trailing arm fixed shaft 266 is It is fixed to the housing 210 by a compression screw 267.
  • the single trailing arm 261 of the front driving wheel 221 is also rotatably connected to another trailing arm fixed shaft 266 through a bearing 265, and the other trailing arm fixed shaft 266 is fixed to the housing 210. In this way, the rigidity of the whole machine is better, and the purpose of good lateral stability of the whole machine is realized.
  • the weight of the entire intelligent lawn mower is preferably 15kg-30kg.
  • the diameter range of the driving wheel is controlled to 200mm-250mm to achieve a small size of the whole machine while also having a certain obstacle crossing ability; at the same time, the travel range of the spring damping 262 is 20mm-50mm.
  • the overall size of the smart lawn mower 200 is small and has a certain obstacle crossing ability. After testing, the ultimate obstacle crossing height can be 100mm larger.
  • the cutting assembly 230 includes a cutting blade 231, which is disposed at an intermediate position under the housing 210.
  • the cutting range of the cutting assembly is 150mm-400mm.
  • the cutting assembly 230 specifically includes two cutting blades 231, and the diameter of the cutting circle formed by the two cutting blades 231 ranges from 150 mm to 400 mm.
  • the cutting assembly 2130 may be a structure of a single cutting cutter head.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Forests & Forestry (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Harvester Elements (AREA)

Abstract

一种智能割草机(200)的割草方法,用于在边界限定的工作范围内割草,包括以下步骤:沿垂直于边界的第一方向朝所述边界行走;第一次侦测到所述边界时后退行走,且后退过程中按预定半径转向,使所述割草机(200)后退方向与垂直于所述边界的第二方向一致,其中所述第二方向与第一方向相反;切换至重新以第一方向朝向所述边界行走;第二次侦测到所述边界时切换至沿第二方向行走直到侦测到下一边界。采取后退过程中同步转向的方式能够减小对草坪的磨损,以实现不磨草的效果,同时后退转向完成后再次反向切割以减小漏割区域,保证切割效率。此外,还提出了一种可实现上述割草方法的智能割草机。

Description

智能割草机及其割草方法
本申请要求了申请日为2020年03月06日,申请号为202010151949.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及智能控制领域,特别是涉及一种智能割草机及其割草方法。
背景技术
智能割草机具备自动行走功能,能够自主完成修剪草坪的工作,无须人为直接控制和操作,大幅度降低人工操作,是一种适合家庭庭院、公共绿地等场所进行草坪修剪维护的工具。
传统轮式割草机,如专利文献EP1745686所揭示的,左侧前后两轮与右侧前后两轮分别独立驱动以提供足够的牵引力,左右两侧差速转向。发明人在实施该传统技术时发现,这种割草机随机行走,即沿直线在工作范围内行走,遇边界后随机转向,转向时存在磨草风险;另外转向处的草可能不能被及时切割,导致切割效率低。
发明内容
基于此,有必要提供一种使切割效率高且避免转向时磨草的智能割草机的割草方法。
一种智能割草机的割草方法,用于在边界限定的工作范围内割草,包括以下步骤:
沿垂直于边界的第一方向朝所述边界行走;
第一次侦测到所述边界时后退行走,且后退过程中按预定半径转向,使所 述割草机后退方向与垂直于所述边界的第二方向一致,其中所述第二方向与第一方向相反;
切换至重新以第一方向朝向所述边界行走;
第二次侦测到所述边界时切换至沿第二方向行走直到侦测到下一边界
上述割草方法,采取后退过程中同步转向的方式能够减小对草坪的磨损,以实现不磨草的效果,同时后退转向完成后再次反向切割以减小漏割区域,保证切割效率,从而实现切割效率高且避免转向时磨草;所述后退行走中的转向半径为1m-5m;所述第一次侦测到所述边界时后退行走,且后退过程中按预定半径转向,使所述割草机后退方向与垂直于所述边界的第二方向一致,其中所述第二方向与第一方向相反的步骤中,使所述割草机后退至后退方向与垂直于所述边界的第二方向一致,具体包括:使智能割草机沿两个相切的圆弧路径后退距离S,所述
Figure PCTCN2020128739-appb-000001
其中,R为转向半径,L为切割直径;所述智能割草机为轮式智能割草机;使所述割草机后退方向与垂直于所述边界的第二方向一致,其中所述第二方向与第一方向相反的步骤中,智能割草机后退过程加速行走;所述边界为电子边界或物理边界;所述边界限定的工作范围为矩形。
还提出一种智能割草机,包括:
壳体;
行走组件,用于带动所述智能割草机行走和转向;
切割组件,设置在壳体的下方;
界限侦测模块,用于侦测割草时的边界并发出侦测信号;
控制模块,与所述行走组件和界限侦测模块电性连接,其中所述控制模块用于:控制所述割草机沿垂直于边界的第一方向朝所述边界行走;第一次侦测到所述边界时后退,且后退过程同时按预定半径转向,使所述割草机后退方向 与垂直于所述边界的第二方向一致,其中所述第二方向与第一方向相反;切换至重新以第一方向朝向所述边界行走;第二次侦测到所述边界时切换至沿第二方向远离所述边界行走直到侦测到下一边界。
上述割草机,壳实现后退过程中同步转向的方式能够减小对草坪的磨损,以实现不磨草的效果,同时后退转向完成后再次反向切割以减小漏割区域,保证切割效率,从而实现切割效率高且避免转向时磨草。
在其中一个实施例中,所述行走组件包括前轮组和后轮组,所述前轮组包括分别设置在壳体的前端两侧的两个驱动轮,定义为前驱动轮;所述前轮组包括分别设置在壳体的后端的两侧的两个驱动轮,定义为后驱动轮,其中每个驱动轮分别具有独立悬挂结构及驱动马达。
在其中一个实施例中,所述独立独悬挂结构包括转动连接于所述壳体的单纵臂、连接所述单纵臂与所述壳体的弹簧阻尼,所述驱动轮固定于所述单纵臂,驱动马达与所述驱动轮组装在一起。
在其中一个实施例中,所述单纵臂通过轴承转动连接于一纵臂固定轴,所述纵臂固定轴固定于所述壳体。
在其中一个实施例中,所述后退过程中行走组件的转向半径为1m-5m。
附图说明
图1为本发明一实施例的割草方法的流程图。
图2为本发明一实施例的割草方法的切割过程的示意图。
图3为本发明一实施例的割草机方法中,后退距离的计算原理图。
图4为本发明一实施例的智能割草机的侧视图。
图5为本发明一实施例的智能割草机的俯视图。
图6为本发明一实施例的智能割草机的后视图。
图7为图4中B-B向的剖视图。
图中的相关元件对应编号如下:
100、工作范围;110、第一边界;120、第二边界;130、第三边界;140、第四边界;200、智能割草机;210、壳体;220、行走组件;221、前驱动轮;222、后驱动轮;230、切割组件;231、切割刀盘;240、界限侦测模块;250、控制模块;260、独立悬挂结构;261、单纵臂;262、弹簧阻尼;263、上固定座;264、下固定座;265、轴承;266、纵臂固定轴;267、压紧螺钉;270、驱动马达。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的优选实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反的,提供这些实施方式的目的是为了对本发明的公开内容理解得更加透彻全面。
需要说明的是,当部被称为“固定于”另一个部,它可以直接在另一个部上也可以存在居中的部。当一个部被认为是“连接”到另一个部,它可以是直接连接到另一个部或者可能同时存在居中部。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“厚度”、“高度”、“深度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“周向”等指示的方位或位置关系 为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
传统的智能割草机的割草过程中,遇边界转向时容易产生磨草现象,且转向处的草容易较多漏割,需要多次反复切割,导致切割效率较低。针对上述问题,本发明提供了一种智能割草机的割草方法,用于在边界限定的工作范围内割草,能够实现转向不磨草且切割效率高。
图1为本发明一实施例的智能割草机的割草方法的流程图,下面结合具体步骤详细描述。
S100、沿垂直于边界的第一方向朝边界行走。
智能割草机优选为轮式割草机,即行走组件为行走轮系的智能割草机。轮式割草机与草坪的接触面积相对较小,可以减小转向时对草坪的摩擦。在其他的实施例中,智能割草机也可以考虑选用履带式割草机。智能割草机为能够正反向行走的割草机,即可以正向行走及反向行走,其中反向行走为相对于正向而言,具体指不需要掉头的后退行走。
如图2所示,示意了智能割草机在第一边界110、第二边界120、第三边界130、第四边界140限定的工作范围100内的切割过程。工作范围100具体为矩形的工作区域。以该工作区域完全未被切割为例:智能割草机的初始位置时是位于第二边界120与第三边界130之间的拐角处,智能割草机启动后沿垂直于 第一边界110的第一方向朝向第一边界110行走并割草。第一方向如图2中箭头1所示的方向向上。也就是说,智能割草机沿直线行走并逐步靠近第一边界110,第一方向垂直于第一边界110。
实现智能割草机的直线行走的技术手段本身为本领域技术人员所知,例如可以利用陀螺仪感知智能割草机的行走方向,并控制智能割草机按预定方向行走以实现直线行走,此处不再赘述。类似地,使第一方向垂直于第一边界110同样如此,例如,可以借助设置在第一边界110处的视觉参照物,利用机器视觉定位实现。具体的,可以使智能割草机的纵向中轴线与视觉参照物对齐。还可以是通过实时监测智能割草机与第二边界120之间的间距,通过在前进过程中保持该间距不变来实现垂直于第一边界110行走。
上述的四个边界是整个工作区域的外围,通常首尾相连,将工作区域封闭。边界可以是实体边界,也可以是电子边界,即可以由墙壁、篱笆,栏杆等形成边界,也可以由边界信号发生装置发出虚拟边界信号,如电磁信号或光信号。
S200、第一次侦测到边界时后退行走,且后退过程中按预定半径转向,使到所述割草机后退方向与垂直于所述边界的第二方向一致,其中所述第二方向与第一方向相反。如图2所示,当智能割草机靠近第一边界110并第一次侦测到第一边界110后,割草机后退且按预定半径转向,其行走路径的方向大致如箭头2所示。上述过程中,割草机后退且同步转向,可避免原地转向导致的磨草。
智能割草机的后退时机可以根据预设程序自动实现;还可以是接收外界指令后启动,即半自动化工作。具体的,智能割草机上设置有界限侦测模块。界限侦测模块用于监测割草机与边界之间的位置信息,具体可能包括距离、角度,界限内外方位中的一种或几种。界限侦测模块的组成和原理可以从多种现有技 术中选取,如可以为红外线式、超声波式、碰撞检测式,磁感应式等等。例如,界限侦测模块可以是距离传感器。,当距离传感器检测到割草机与边界之间的距离达到预定标准时,智能割草机的控制模块控制行走组件后退行走且同步转向。智能割草机的转向可通过行走组件的差速运动实现,与汽车的转向原理类似。
为了进一步地提高转向过程提高不磨草的效果。一实施例中,后退过程中的转向半径设置为1m-5m。发明人经过研究,对于智能割草机而言,依照上述范围的转向半径转弯即属于“转大弯”,能够有效地减小转向时对草坪的磨损。
在一个优选的实施例中,智能割草机后退行走过程加速行走。此处的加速行走是相较于步骤S100中智能割草机的行走速度而言。智能割草机后退过程加速行走,能够迅速地完成转向,减小与草坪的接触时间,减小转向时对草坪的磨损。
智能割草机侦测到边界后转向以继续切割新的待切割区域,然而转向过程中,在智能割草机与边界之间不可避免地会存在漏割区域。
为解决上述问题,本步骤中,控制智能割草机依箭头2所示的行走路径2后退行走,直到后退方向刚好与一第二方向一致。第二方向如图2中箭头3所示方向,方向向下,其与第一方向刚好相反,故也垂直于第一边界110。也就是说,此时智能割草机刚好重新摆正方向,智能割草机的纵向的中轴线垂直于第一边界110,智能割草机的行走方向背对且垂直于第一边界110。
接下来,使智能割草机再次反向行走,即切换回以第一方向朝向第一边界110行走,如图2中箭头3所示的行走路径。通过上述措施,智能割草机在完成后退及转向动作后,再次反向行走切割,充分利用其切割范围,能够切割掉一部分的之前的漏割区域,因此减小了漏割区域,能够提高切割效率。
一优选的实施例中,S200中使割草机后退至后退方向与垂直于所边界的第 二方向一致,其中所述第二方向与第一方向相反,具体包括:
使智能割草机沿两个相切的圆弧路径后退距离S,所述
Figure PCTCN2020128739-appb-000002
其中,R为转向半径,L为切割直径。也就是说,本实施例中,根据智能割草机的转向半径R、切割直径L,控制智能割草机通过两次转向实现后退预定距离S,此时可确定为智能割草机刚好重新摆正方向。
具体的,智能割草机后退且转向过程中,其运动路径总体如图2中箭头2所示。因此,智能割草机在第二方向上后退的距离定义为S,S可理解为智能割草机后退前后,壳体上的同一点A在第二方向上移动的距离。而在垂直于第二方向的方向上,即图2中左右方向上,智能割草机的壳体上的同一点A在横向移动的距离定义为L。智能割草机横向移动的距离的数值大小设定为刚好等于切割直径的数值大小。也就是说,智能割草机完成后退且转向后,再当沿箭头3或4所示路径切割时,切割范围刚好与沿行走路径1行走切割时的切割范围衔接。这样,转向完成后的切割与转向之前的切割,不存在重复切割,提高切割效率。
如图3所示,智能割草机通过两次转向实现图2中箭头2所示的路径。结合图2,其中,智能割草机刚开始后退时,先按照转向半径R先朝向未切割区域一侧转向,在图2中的切割示意图中,将表现为割草机的后端朝向右侧倾斜,行走路径为如箭头M所示的圆弧路径;然后再按照转向半径R朝向已切割区域一侧转向,在图2中的切割示意图中,将表现为割草机的后端朝向左侧倾斜,行走路径为如箭头N所示的圆弧路径,其中圆弧路径N与M是相切的。
如图3所示的原理图,其中虚线圆的大小示意了智能割草机的转向半径的大小,图中d=L,b=R,因此
Figure PCTCN2020128739-appb-000003
根据勾股定理,可得
Figure PCTCN2020128739-appb-000004
进一步地,可得到
Figure PCTCN2020128739-appb-000005
由图3可知,当后退距离S时,割草机的行走方向刚好垂直向下,如箭头P所示,因此智能割草机沿两个相切的圆弧路径后退,且 保证智能割草机后退距离S,则可智能割草机刚好重新摆正方向。
S300、切换至重新以第一方向朝向所述边界行走。步骤S200结束后,智能割草机横向移动的距离的数值大小设定为刚好等于切割直径的数值大小。再当切换至重新以第一方向朝向所述边界行走即沿箭头3所示路径切割时,切割范围刚好与沿行走路径1行走切割时的切割范围衔接。这样,转向完成后的切割与转向之前的切割,不存在重复切割,提高切割效率。
一具体的实施例中,如图2所示,其中图2中尺寸单位为mm。智能割草机的5个行走路径依次为箭头1-2-3-4-5所示。其中智能割草机按3m的转弯半径行走切割,其中沿行走路径1到边界110时,按3m的转弯半径转向且后退,行走路径为行走路径2,此时遗漏的切割区域的长度为1.873m。然后再反向直线行走即行走路径3,以切割掉一部分的漏割区域;再反向直线行走,依次完成行走路径4和行走路径5,其中行走路径3和行走路径4所对应的草坪区域相同。实践表明,依照上述参数值对智能割草机进行设定后进行割草,智能割草机在转向时基本没有磨草现象,漏割区域极小,因此需要智能割草机后续重复切割的区域少,从而提高了切割效率。
S400、第二次侦测到边界时切换至沿第二方向行走直到侦测到下一边界。
如图2所示,智能割草机依箭头3所示的行走路径切割漏割区域知道再次侦测到第一边界110,然后后退行走,即沿第二方向朝向第二边界120行走。当侦测到第二边界120后,则重复上述步骤S100-S400,如此实现循环切割。
上述割草方法,采取后退过程中同步转向的方式能够减小对草坪的磨损,以实现不磨草的效果,同时为了后退转向完成后再次反向切割以减小漏割区域,保证切割效率,从而实现切割效率高且避免转向时磨草。
本发明的实施例还提供一种智能割草机200,如图4所示,包括壳体210、 行走组件220、切割组件230、界限侦测模块240和控制模块250。其中,行走组件用于带动智能割草机行走和转向,切割组件230设置在壳体10下方,用于切割草坪。界限侦测模块240可设置在壳体10的外侧壁。界限侦测模块240用于监测割草机与边界之间的位置信息,控制模块250用于接收界限侦测模块240的信号,及用于控制行走组件220和切割组件230的工作。
控制模块250与行走组件220和界限侦测模块240电性连接。控制模块250被配置为用于:控制智能割草机沿垂直于边界的第一方向朝边界行走;侦测到所述边界时后退行走,且后退过程同时按预定半径转向,使割草机后退方向与垂直于所述边界的第二方向一致,其中所述第二方向与第一方向相反;切换至重新以第一方向朝向所述边界行走;再次侦测到所述边界时切换至沿第二方向远离所述边界行走直到侦测到下一边界。具体的,控制模块250包括存储器和处理器,其中存储器中储存有计算机程序,所述计算机程序被处理器执行时能够执行前述的步骤S100-S400。处理器可以是嵌入式数字信号处理器(Digital Signal Processor,DSP)、微处理器(Micro Processor Unit,MPU)等,本实施例中不作具体限制。
上述智能割草机,能够在边界限定的工作范围内循环切割,其采取后退过程中同步转向的方式,能够减小对草坪的磨损,以实现不磨草的效果,同时为了后退转向完成后再次反向切割以减小漏割区域,保证切割效率,从而实现切割效率高且避免转向时磨草。
一些实施例中,智能割草机200为轮式割草机。具体的,如图5所示,行走组件220包括前轮组和后轮组,其中前轮组包括分别设置在壳体10的前端两侧的两个驱动轮,定义为前驱动轮221;所述前轮组包括分别设置在壳体的后端的两侧的两个驱动轮,定义为后驱动轮222。其中,如图6所示,每个驱动轮分 别具有独立悬挂结构260及驱动马达270。如此,智能割草机200的四轮全为驱动轮,每个驱动轮均提供牵引力,在大坡度、凹凸不太平的地形中也可保持足够牵引力,不打滑,切割效率高,实现不磨草的效果。
另外,智能割草机的四个驱动轮分别采用独立悬挂。智能割草机行走过程中,当遇到凹凸不平路面时,每个驱动轮能够上下摆动,使得每个驱动轮在行驶时均与地面接触,避免打滑,从而避免磨草。
一具体的方案中,如图6所示,以一后驱动轮222处为例介绍独立独悬挂结构260的结构。独立独悬挂结构包括转动连接于壳体的单纵臂261、连接单纵臂261与壳体210的弹簧阻尼262,后驱动轮222固定于单纵臂261,驱动马达270与后驱动轮222装在一起。弹簧阻尼262的一端通过上固定座263固定于壳体110,弹簧阻尼262的另一端通过下固定座264固定在单纵臂261上。其他各驱动轮处,独立独悬挂结构260和驱动马达270的设置方式相同。这样,当遇到凹凸不平路面时,单纵臂261在重力和弹簧阻尼262的共同作用下上下摆动,使得每个驱动轮在行驶时均与地面接触,避免打滑,从而避免磨草。
进一步地,为了提高整机刚性,一优选的方案中,如图7所示,后驱动轮222的单纵臂261通过轴承265转动连接于一纵臂固定轴266,而纵臂固定轴266则通过压紧螺钉267固定于壳体210。类似地,前驱动轮221的单纵臂261也是通过一个轴承265转动连接于另一纵臂固定轴266,而另一纵臂固定轴266则固定于壳体210。这样整机刚性较好,进而实现整机侧向稳定性好的目的。
为了保证智能割草机的运动灵活且减轻对草坪的磨损,一些实施例中,智能割草机的整机重量优先为15kg-30kg。
此外,将驱动轮的直径范围控制为200mm-250mm,以实现整机尺寸小的同时还具备一定的越障能力;同时弹簧阻尼262的行程范围20mm-50mm。通过上述手 段,智能割草机200的整机尺寸较小,且具有一定的越障能力。经测试,最终实现最大越障高度可大100mm。
如图6和图7所示,切割组件230包括切割刀盘231,设置在壳体210下方的中间位置。切割组件的切割范围为150mm-400mm。切割组件230具体包括两个切割刀盘231,两个切割刀盘231所形成的切割圆的直径范围为150mm-400mm。在另外的实施例中,切割组件2130可以是单切割刀盘的结构。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (5)

  1. 一种智能割草机的割草方法,用于在边界限定的工作范围内割草,其特征在于,包括以下步骤:
    沿垂直于边界的第一方向朝所述边界行走;第一次侦测到所述边界时后退行走,且后退过程中按预定半径转向,使所述割草机后退方向与垂直于所述边界的第二方向一致,其中所述第二方向与第一方向相反;切换至重新以第一方向朝向所述边界行走;
    第二次侦测到所述边界时切换至沿第二方向行走直到侦测到下一边界;
    所述后退行走中的转向半径为1m-5m;所述第一次侦测到所述边界时后退行走,且后退过程中按预定半径转向,使所述割草机后退方向与垂直于所述边界的第二方向一致,其中所述第二方向与第一方向相反的步骤中,使所述割草机后退至后退方向与垂直于所述边界的第二方向一致,具体包括:使智能割草机沿两个相切的圆弧路径后退距离S,所述
    Figure PCTCN2020128739-appb-100001
    其中,R为转向半径,L为切割直径;
    所述智能割草机为轮式智能割草机;所述第一次侦测到所述边界时后退,且后退过程中按预定半径转向,使所述割草机后退方向与垂直于所述边界的第二方向一致,其中所述第二方向与第一方向相反的步骤中,智能割草机后退过程加速行走;所述边界为电子边界或物理边界,所述边界限定的工作范围为矩形。
  2. 一种智能割草机,其特征在于,包括:
    壳体;
    行走组件,用于带动所述智能割草机行走和转向;
    切割组件,设置在壳体的下方;
    界限侦测模块,用于侦测割草时的边界并发出侦测信号;
    控制模块,与所述行走组件和界限侦测模块电性连接,其中所述控制模块用于:控制所述割草机沿垂直于边界的第一方向朝所述边界行走;第一次侦测到所述边界时后退行走,且后退过程同时按预定半径转向,使所述割草机后退方向与垂直于所述边界的第二方向一致,其中所述第二方向与第一方向相反;切换至重新以第一方向朝向所述边界行走;第二次侦测到所述边界时切换至沿第二方向远离所述边界行走直到侦测到下一边界。
  3. 根据权利要求2所述的智能割草机,其特征在于,所述行走组件包括前轮组和后轮组,所述前轮组包括分别设置在壳体的前端两侧的两个驱动轮,定义为前驱动轮;所述前轮组包括分别设置在壳体的后端的两侧的两个驱动轮,定义为后驱动轮,其中每个驱动轮分别具有独立悬挂结构及驱动马达。
  4. 根据权利要求3所述的智能割草机,其特征在于,所述独立独悬挂结构包括转动连接于所述壳体的单纵臂、连接所述单纵臂与所述壳体的弹簧阻尼,所述驱动轮固定于所述单纵臂,驱动马达与所述驱动轮组装在一起。
  5. 根据权利要求2所述的智能割草机,其特征在于,所述后退行走中的转向半径为1m-5m。
PCT/CN2020/128739 2020-03-06 2020-11-13 智能割草机及其割草方法 WO2021174906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010151949.7 2020-03-06
CN202010151949.7A CN113348847B (zh) 2020-03-06 2020-03-06 智能割草机及其割草方法

Publications (1)

Publication Number Publication Date
WO2021174906A1 true WO2021174906A1 (zh) 2021-09-10

Family

ID=77524174

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/128739 WO2021174906A1 (zh) 2020-03-06 2020-11-13 智能割草机及其割草方法
PCT/CN2021/079570 WO2021175331A1 (zh) 2020-03-06 2021-03-08 自移动园艺机器人及其工作方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079570 WO2021175331A1 (zh) 2020-03-06 2021-03-08 自移动园艺机器人及其工作方法

Country Status (2)

Country Link
CN (1) CN113348847B (zh)
WO (2) WO2021174906A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114287255B (zh) * 2022-01-18 2023-10-20 江阴市建园建设工程有限公司 一种绿化带修剪车
CN115136781A (zh) * 2022-06-21 2022-10-04 松灵机器人(深圳)有限公司 割草方法、装置、割草机器人以及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05282036A (ja) * 1992-04-01 1993-10-29 Kawasaki Heavy Ind Ltd 無人芝刈機の誘導方法
CN205812811U (zh) * 2016-05-05 2016-12-21 苏州宝时得电动工具有限公司 智能割草机
US20160366818A1 (en) * 2011-08-11 2016-12-22 Chien Ouyang Robotic lawn mower with boundary stands
CN107102643A (zh) * 2017-06-19 2017-08-29 江西洪都航空工业集团有限责任公司 一种大型智能割草机器人p‑d型路径规划算法
CN107402573A (zh) * 2016-05-19 2017-11-28 苏州宝时得电动工具有限公司 自动工作系统,自移动设备及其控制方法
CN107544483A (zh) * 2016-06-23 2018-01-05 苏州宝时得电动工具有限公司 一种路径控制方法及装置
CN107667648A (zh) * 2017-10-17 2018-02-09 北方民族大学 山地割草机
CN108646743A (zh) * 2018-06-01 2018-10-12 浙江亚特电器有限公司 用于移动载具的路径跟踪方法
CN110537412A (zh) * 2019-08-02 2019-12-06 宁波大叶园林设备股份有限公司 一种智能割草机的路径规划方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083629A (en) * 1990-03-12 1992-01-28 Industrial Technology Research Institute Walking control method for automatic working vehicle
DE4311343C2 (de) * 1993-04-06 1999-12-02 Wilfried Ball Mähmaschine
CN103733801B (zh) * 2014-01-02 2015-10-07 上海大学 一种组合式智能割草机器人
CN204598688U (zh) * 2015-03-09 2015-09-02 罗利伟 一种适合各种复杂地形的万向无人驾驶草坪割草机
JP2018108070A (ja) * 2016-12-28 2018-07-12 田中工機株式会社 農作物移送装置
CN110446425A (zh) * 2017-09-30 2019-11-12 苏州宝时得电动工具有限公司 割草机,智能割草机及刀具组件
CN108156931A (zh) * 2017-12-15 2018-06-15 宁波大叶园林设备股份有限公司 用光伏发电和充电桩在草坪围界内充电的智能园林工作机
CN108706047B (zh) * 2018-06-25 2023-06-20 汕头大学 一种基于利用太阳能的无动力除草小车
CN109362331A (zh) * 2018-12-19 2019-02-22 江西洪都航空工业集团有限责任公司 无人割草车
CN109634285B (zh) * 2019-01-14 2022-03-11 傲基科技股份有限公司 割草机器人及其控制方法
CN209806461U (zh) * 2019-01-29 2019-12-20 中宁县久隆物业服务有限公司 一种带有减震降音功能的园林除草设备
CN109845475B (zh) * 2019-03-01 2021-07-06 重庆火虫创新科技有限公司 智能割草机器人的调头控制方法及系统
CN110326423A (zh) * 2019-08-08 2019-10-15 浙江亚特电器有限公司 一种基于视觉的割草机及其转向控制方法和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05282036A (ja) * 1992-04-01 1993-10-29 Kawasaki Heavy Ind Ltd 無人芝刈機の誘導方法
US20160366818A1 (en) * 2011-08-11 2016-12-22 Chien Ouyang Robotic lawn mower with boundary stands
CN205812811U (zh) * 2016-05-05 2016-12-21 苏州宝时得电动工具有限公司 智能割草机
CN107402573A (zh) * 2016-05-19 2017-11-28 苏州宝时得电动工具有限公司 自动工作系统,自移动设备及其控制方法
CN107544483A (zh) * 2016-06-23 2018-01-05 苏州宝时得电动工具有限公司 一种路径控制方法及装置
CN107102643A (zh) * 2017-06-19 2017-08-29 江西洪都航空工业集团有限责任公司 一种大型智能割草机器人p‑d型路径规划算法
CN107667648A (zh) * 2017-10-17 2018-02-09 北方民族大学 山地割草机
CN108646743A (zh) * 2018-06-01 2018-10-12 浙江亚特电器有限公司 用于移动载具的路径跟踪方法
CN110537412A (zh) * 2019-08-02 2019-12-06 宁波大叶园林设备股份有限公司 一种智能割草机的路径规划方法

Also Published As

Publication number Publication date
WO2021175331A1 (zh) 2021-09-10
CN113348847B (zh) 2023-03-10
CN113348847A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2021174906A1 (zh) 智能割草机及其割草方法
WO2017198066A1 (zh) 动力工具、割草机及其控制方法
WO2015040987A1 (ja) 自走式草刈機
WO2012146195A1 (zh) 自动工作系统、自动行走设备及其转向方法
CN101077050A (zh) 自行式作业机的行驶驱动机构
CN206413414U (zh) 割草机器人
CN106561148A (zh) 割草机
WO2019228461A1 (zh) 自动割草机及其控制方法
CN107168304A (zh) 一种割草机器人控制方法
US20210185911A1 (en) Robotic Lawnmower Cutting Arrangement, Robotic Lawnmower, Cutting Blade, and Methods
WO2015133197A1 (ja) 自走式草刈機
CN206472500U (zh) 割草机器人
CN106982585B (zh) 履带式割草机及其转向方法
WO2020155715A1 (zh) 行走机器人及其转向控制方法、控制系统以及行走机器人工作系统
CN102379185B (zh) 手推式割草机
CN113905608B (zh) 自主式机器人草坪割草机
JP5798053B2 (ja) トラクタ
CN108891498A (zh) 一种自驱式越障机器人
CN209023006U (zh) 一种自驱式越障机器人
JP2020000158A (ja) 草刈機
WO2021103804A1 (zh) 自动割草机
CN112840828A (zh) 自动割草机
WO2021098382A1 (zh) 智能割草机
JPS6368006A (ja) 移動農機の障害物検出装置
CN111591149B (zh) 一种电动车辆及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923341

Country of ref document: EP

Kind code of ref document: A1