WO2021174422A1 - 透明天线及其制作方法、电子设备 - Google Patents

透明天线及其制作方法、电子设备 Download PDF

Info

Publication number
WO2021174422A1
WO2021174422A1 PCT/CN2020/077647 CN2020077647W WO2021174422A1 WO 2021174422 A1 WO2021174422 A1 WO 2021174422A1 CN 2020077647 W CN2020077647 W CN 2020077647W WO 2021174422 A1 WO2021174422 A1 WO 2021174422A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
transparent substrate
antenna
photoresist layer
trench
Prior art date
Application number
PCT/CN2020/077647
Other languages
English (en)
French (fr)
Inventor
唐根初
陈禄禄
许建勇
杨伟庆
陈汝文
Original Assignee
安徽精卓光显技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽精卓光显技术有限责任公司 filed Critical 安徽精卓光显技术有限责任公司
Priority to PCT/CN2020/077647 priority Critical patent/WO2021174422A1/zh
Publication of WO2021174422A1 publication Critical patent/WO2021174422A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect

Definitions

  • the present invention relates to the field of antennas, in particular to a transparent antenna, a manufacturing method thereof, and electronic equipment.
  • wireless communication technology has developed from 2G/3G to the widely used 4G; 4G and previous communication technologies require a single antenna to send and receive radio signals, and realize multimedia such as audio and video.
  • 5G network communication is to realize the real-time transmission of clearer, larger data volume video signals.
  • the transmission of wireless electrical signals if the antenna structure is not changed, in order to achieve greater data transmission, it can only be improved by increasing the frequency of the radio signal and increasing the compression rate of the signal encoding. Based on the development of this method, high-frequency signals The transmission distance is short and the penetration is poor.
  • the 5G network needs to lay dozens of times the base station of the 4G network to increase the signal coverage area, which is unacceptable in terms of technical cost and environmental compatibility. Therefore, the technical core of 5G network, on the basis of not changing the existing 4G network technology base station scheme, increase the number of antennas on terminal equipment (mobile phones, bracelets, electronic watches, tablet computers, etc.), with a single antenna Change to an array composed of multiple antennas to realize the reception and transmission of network signals, increase the rate of signal transmission, and become a more feasible 5G network core solution.
  • the existing 4G single antenna taking the mobile phone as an example, is arranged under the black frame of the front cover or the upper and lower parts of the back cover of the mobile phone.
  • the space left for antennas is getting smaller and smaller. If the antenna is changed from a single antenna to a 5G antenna array, the space where the antenna can be arranged will be smaller.
  • the industry has proposed a transparent antenna solution that can be mounted on the display screen.
  • the current transparent conductive materials but the resistance is too high to meet the basic needs; and the antennas made by the existing methods are generally not resistant to friction , When used in 3D or 2.5D, the performance cannot meet the demand.
  • an electronic device is also provided.
  • a method of making a transparent antenna includes the following steps:
  • a conductive layer is formed on the surface of the photoresist layer away from the transparent substrate and the second trench through an electroplating process
  • the photoresist layer is away from the conductive layer on the surface of the transparent substrate and the photoresist layer is removed to form an antenna pattern.
  • a transparent antenna manufactured by the above-mentioned method is a transparent antenna manufactured by the above-mentioned method.
  • An electronic device includes the above-mentioned transparent antenna.
  • FIG. 1 is a schematic flowchart of a method for manufacturing an antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a manufacturing process of an antenna pattern according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a manufacturing process of an antenna pattern according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an antenna pattern according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a transparent metal mesh antenna formed by an embodiment of the present invention.
  • Fig. 1 is a schematic flow chart of a manufacturing method according to an embodiment of the present invention. It should be understood that although the various steps in the flowchart of FIG. 1 are displayed in sequence as indicated by the arrows, these steps are not necessarily performed in sequence in the order indicated by the arrows. Unless there is a clear description in this article, the execution of these steps is not executed in a strict order, and they can be executed in other orders. Moreover, at least part of the steps in FIG. 1 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but can be executed at different times, and the order of execution is not necessarily sequential. Instead, it may be executed alternately or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • an embodiment of a transparent antenna manufacturing method can produce more resistant to friction, better reliability, high transparency, low impedance, and can be applied to different surface shapes such as 2.5D ⁇ 3D
  • the antenna of the enclosure can be set on the surface of the electronic device, as an antenna, to realize the transmission and reception of radio signals.
  • the manufacturing method of the antenna 100 includes the following steps S110 to S170:
  • the antenna formed by using the transparent substrate 110 has the characteristics of light transparency; the transparent substrate 110 has two opposite surfaces, one of which is the mounting surface 111;
  • the material of the transparent substrate 110 can be glass, PC board, PET, COP, PMMA board, composite board of PC and PMMA, TPU, POL, etc.
  • the transparent substrate 110 selected from the above materials is all optical
  • the material with excellent performance has higher strength and surface effect, and is more suitable for large-size touch panels;
  • the transparent substrate 110 can be a cover plate, and the specific shape of the transparent substrate 110 is not particularly limited, and can be 3D ⁇ 2D ⁇ plane design; specifically, for example, a 3D arc shell, those skilled in the art can design the shape of the transparent substrate 110 according to actual needs.
  • a photoresist layer 120 is provided on the mounting surface 111 of the transparent substrate 110, and the photoresist layer 120 completely covers the mounting surface 111; specifically, the coated photoresist can be a positive photoresist or a negative photoresist as required, and the coated photoresist To coat uniformly, use positive photoresist, and the exposed part is removed by the developer in the developing step; use negative photoresist, and the unexposed part is removed by the developer in the developing step; in one specific example, the mounting surface A layer of negative photoresist is coated on 111 to form a photoresist layer 120.
  • the thickness of the photoresist layer 120 is 1.5 ⁇ m-10 ⁇ m, specifically, the thickness of the photoresist layer 120 is 1.5 ⁇ m, 3.5 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7.5 ⁇ m, or 10 ⁇ m.
  • the setting of this thickness facilitates the subsequent electroplating of the conductive layer of the photoresist layer, and facilitates stripping to form an antenna with low impedance; the photoresist layer 120 is too thin, and then the conductive layer is plated to ensure that the conductive layer is thinner than the photoresist layer, otherwise The first conductive layer on the photoresist layer 120 will be connected to the second conductive layer in the second trench.
  • the photoresist layer is coated on the mounting surface 111 of the transparent substrate 110 by a coating method, and the coating method is commonly used in the art.
  • the coating may be electrostatic spraying, spin coating, or the like, so as to uniformly cover the photoresist layer 120 on the transparent substrate 110.
  • the first trench 121 is formed in the photoresist layer 120 through a process of exposure and development; the process of exposure and development can be implemented by a process commonly used in the art.
  • the first trench 121 is a grid trench, and the width of the first trench 121 is 1.5 ⁇ m to 15 ⁇ m.
  • the setting of such a width can form an antenna with a lower impedance and facilitate subsequent electroplating of the conductive layer.
  • the width of the first trench 121 may be 1.5 ⁇ m, 3.5 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7.5 ⁇ m, 10 ⁇ m, 12 ⁇ m, or 15 ⁇ m.
  • the shape of the grid may be a polygonal shape such as a rectangle, a rhombus, a hexagon, and an irregular quadrilateral.
  • the depth of the second trench 122 is 1 ⁇ m to 5 ⁇ m, and the depth of the second trench 122 may be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, or 5 ⁇ m.
  • the etching liquid will etch in multiple directions. The deeper the depth, the wider the width (line width) of the corresponding etching trench, which leads to the problem of visible line width and reduced transmittance. The shallower the depth , The subsequent electroplating to form the conductive layer has poor conductivity and relatively large impedance.
  • the second trench 122 and the first trench 121 have the same shape and width, which is convenient for etching.
  • the second trench 122 is etched by an etching method commonly used in the art, for example, a chemical reagent (hydrofluoric acid, etc.) can be used to etch the mounting surface 111 of the transparent substrate 110 Out the second groove 122.
  • a chemical reagent hydrofluoric acid, etc.
  • step S150 includes:
  • Step S151 forming a first conductive layer 130 on the surface of the photoresist layer far away from the transparent substrate and the second trench through an evaporation process;
  • the thickness of the first conductive layer is 150 nm or less.
  • the thickness of the first conductive layer may be 100 nm, 110 nm, or 120 nm.
  • a thin conductive layer is formed by vapor deposition first to form an electric current to facilitate subsequent electroplating.
  • Step S152 forming a second conductive layer 131 on the surface of the first conductive layer 130 at the second trench away from the transparent substrate by an electroplating process other than evaporation;
  • the second conductive layer uses other electroplating processes other than evaporation. Since the principle of the electroplating process is to deposit a metal or alloy layer on the surface of the conductor using the principle of electrolysis, it needs to be evaporated to form a thin first conductive layer. ;
  • the thinner conductive layer is usually formed by an evaporation process, and it takes a long time for the evaporation to thicken, such as making it thicker It takes more than N times to make and evaporate conductive materials that are too thick, which can easily cause the material to wrinkle; the efficiency of electroplating is high, but electroplating needs to be connected to electricity, so it is necessary to vaporize a thinner layer of conductive material to power on; it can reduce the time used for electroplating ,Improve efficiency.
  • the thickness of the second conductive layer 131 is 1 ⁇ m to 5 ⁇ m; the thickness of the conductive layer is selected within the above range to obtain an antenna with a smaller impedance, until the conductive layer is too thin, the conductivity is poor, and the impedance is relatively large; the conductive layer is too thick , It is easy to cause wrinkling of the conductive layer, which affects the appearance and subsequent use effect; in a specific example, the thickness of the second conductive layer may be 1 ⁇ m, 1.5 ⁇ m, 3.5 ⁇ m, 5 ⁇ m.
  • the material of the conductive layer can be a metal or a synthetic metal with excellent electrical conductivity, such as Cu, Cu-Ni alloy, Ag, Cu-ITO, Au, Ni, Al, etc.
  • a metal or a synthetic metal with excellent electrical conductivity such as Cu, Cu-Ni alloy, Ag, Cu-ITO, Au, Ni, Al, etc.
  • the electroplating process used for the second conductive layer can be vacuum plating, water plating, and sputtering.
  • the second conductive layer may be formed on the surface of the first conductive layer 130 at the second trench by water plating.
  • the conductive layer formed by the electroplating process is flatter, uniform, and more efficient, so that the manufactured antenna has higher quality and better surface flatness.
  • step S152 of this embodiment can also be formed by adopting the following step S152':
  • This method of electroplating can form a second conductive layer 131 that is uniformly electroplated on the entire surface.
  • the electroplating method is as described above.
  • S160 Remove the conductive layer of the photoresist layer 120 away from the surface of the transparent substrate 110 and the photoresist layer 120 to form an antenna pattern.
  • the photoresist layer 120 is removed, leaving only the first conductive layer 130 and the second conductive layer 131 at the second trench 122 to form a transparent conductive metal grid; Metal grid to form antenna pattern.
  • the removal method adopts the conventional stripping process in the field, and the stripping uses chemical reagents to strip the photoresist layer together to form a full-surface transparent grid line; in a specific example, the stripping liquid uses isopropanol , And combined with ultrasonic technology for peeling. This method has high peeling efficiency and relatively thorough peeling.
  • step S160 remove both the conductive layer and the photoresist layer of the photoresist layer 120 away from the surface of the transparent substrate 110 to form an antenna pattern.
  • the method of removal is as described above.
  • the specific type of antenna pattern is not particularly limited, such as the circuit of the mobile phone antenna, the circuit loop of the NFC antenna, etc., and those skilled in the art can select and design accordingly according to the actual function of the antenna.
  • the antenna pattern is a transparent grid line.
  • S170 Cut and separate the antenna pattern to form an antenna area and an ineffective area to form an antenna.
  • the antenna pattern is cut and separated by a laser process to form an antenna area and an invalid area.
  • the method of manufacturing the antenna may also include other steps, specifically including cleaning the surface of the transparent substrate 110 to clean oxides, impurities, oils or water molecules on the surface of the transparent substrate 110. .
  • the specific type of the antenna 100 manufactured by the manufacturing method of the foregoing embodiment is not particularly limited, such as 5G antennas, NFC antennas, etc., and those skilled in the art can make corresponding selections according to the actual use requirements of the antenna 100. Here, No longer.
  • the antenna is made into a metal mesh transparent antenna, which has the characteristics of low impedance and transparency.
  • the conductive layer formed by the electroplating process is flatter and uniform, so that the manufactured antenna has a higher quality and surface
  • the flatness is better, and it can be set on the surface of electronic equipment as an antenna to realize the transmission and reception of radio signals. It provides a wider optional placement area for the antenna of the electronic product; the antenna can be arranged in a larger space, and the production
  • the method is simple in operation and simple in process.
  • the metal mesh conductive layer is embedded in the transparent substrate 110, which protrudes from the surface of the substrate compared to the existing conductive layer , More resistance to friction, better reliability, so as not to affect subsequent performance.
  • the metal mesh antenna produced by the method of this embodiment is suitable for substrates or cover designs of different shapes, such as 2.5D ⁇ 3D, etc., and will not cause the appearance of color difference between the curved surface area and the flat area, and the scope of application is more wide.
  • the thinner conductive layer is usually formed by the evaporation process, because the evaporation thickening takes a long time , 120nm takes about half an hour; if it is thicker, it takes more than N times to make and the evaporation of conductive material is too thick, which will cause the material to wrinkle; the efficiency of electroplating is high, but the electroplating needs to be connected to electricity, so a thinner layer needs to be evaporated first
  • the conductive material is energized; the time used for electroplating can be reduced, and the efficiency can be improved; in addition, it can avoid the direct electroplating that may cause the conductive layer to wrinkle.
  • the electronic device of an embodiment includes the antenna manufactured by the manufacturing method of the above-mentioned embodiment.
  • the specific type of the electronic device is not particularly limited, such as a mobile phone, a tablet computer, a smart watch, etc., and those skilled in the art can make a corresponding selection according to the specific use of the electronic device, which will not be repeated here.
  • the electronic device also includes other necessary components and structures. Taking a mobile phone as an example, specific examples include a display device, a processor, a memory, a battery, a circuit board, a camera, etc. Those skilled in the art can make corresponding designs and supplements according to the specific type of the electronic device, which will not be repeated here.
  • a transparent substrate 110 made of glass is provided; the transparent substrate 110 has two opposite surfaces, one of which is the mounting surface 111.
  • a rectangular grid first groove 121 with a width of 1.5 ⁇ m is developed by exposure and development, exposing the transparent substrate 110;
  • a rectangular grid second groove 122 with a width of 1.5 ⁇ m and a depth of 1 ⁇ m is etched on the mounting surface 111 of the transparent substrate 110 exposed at the bottom end of the first groove 121 by chemical reagents (hydrofluoric acid, etc.);
  • the first conductive layer is formed by evaporating copper on the surface of the photoresist layer 120 away from the transparent substrate 110 and the second trench 122.
  • the thickness of the first conductive layer is 100 nm; the thickness of the first conductive layer 130 at the second trench
  • the surface is then water-plated with copper to form the second conductive layer 131, and the thickness of the second conductive layer 131 is 1 ⁇ m.
  • the photoresist layer and the first conductive layer on the photoresist layer are peeled off together with the chemical reagent isopropanol and combined with the ultrasonic process, leaving only the first conductive layer 130 and the second conductive layer 131 at the second trench 122. That is, the entire surface of the transparent grid line is formed, and the conductive metal grid is cut by laser or other methods to form the antenna pattern.
  • the antenna pattern is cut and separated by a laser process to form an antenna area and an invalid area to form an antenna.
  • a transparent substrate 110 of the PMMA board is provided; one surface of the transparent substrate 110 is the mounting surface 111, and the transparent substrate 110 is a 3D design.
  • the first groove 121 of a square grid with a width of 3.5 ⁇ m is developed by exposure and development, exposing the transparent substrate 110;
  • a second groove 122 of a square grid with a width of 3.5 ⁇ m and a depth of 3.5 ⁇ m is etched;
  • the first conductive layer is formed by evaporating copper on the surface of the photoresist layer away from the transparent substrate and the second trench 122, the thickness of the first conductive layer is 110 nm; the surface of the first conductive layer 130 at the trench is water-plated Copper forms the second conductive layer 131, and the thickness of the second conductive layer 131 is 2.5 ⁇ m.
  • the photoresist layer is peeled off by the chemical reagent isopropanol and combined with the ultrasonic process, leaving only the first conductive layer and the second conductive layer at the second trench 122, that is, forming a transparent grid line on the whole surface; by means of laser, etc. Cut the conductive metal grid to form the antenna pattern.
  • the antenna pattern is cut and separated by a laser process to form an antenna area and an invalid area to form an antenna.
  • a transparent substrate 110 of a PC and PMMA composite board is provided; the transparent substrate 110 has two opposite surfaces, one of which is the mounting surface 111.
  • a photoresist layer with a thickness of 6 ⁇ m is sprayed on one surface of the transparent substrate 110 by electrostatic spraying;
  • a rectangular grid groove 121 with a width of 10 ⁇ m is developed by exposure and development, exposing the transparent substrate 110;
  • the first conductive layer 130 is formed by vapor deposition of Cu-Ni alloy on the surface of the photoresist layer away from the transparent substrate and the bottom end of the second trench 122.
  • the thickness of the first conductive layer is 120 nm;
  • the surface of a conductive layer 130 is sputtered with Cu-Ni alloy to form a second conductive layer 131, and the thickness of the second conductive layer 131 is 3.5 ⁇ m.
  • the photoresist layer and the first conductive layer on the photoresist layer are peeled off together with the chemical reagent isopropanol and combined with the ultrasonic process, leaving only the first conductive layer 130 and the second conductive layer 131 at the second trench 122. That is, the entire surface of the transparent grid line is formed; the conductive metal grid is cut by laser and other methods to form the antenna pattern.
  • the antenna pattern is cut and separated by a laser process to form an antenna area and an invalid area to form an antenna.
  • a transparent substrate 110 of a PMMA board is provided; one surface of the transparent substrate 110 is the mounting surface 111, and the transparent substrate 110 is a 2.5D design.
  • the transparent substrate 110 is exposed;
  • a second groove 122 with a rhombic grid with a width of 15 ⁇ m and a depth of 5 ⁇ m is etched;
  • a first conductive layer is formed on the surface of the photoresist layer 120 away from the transparent substrate 110 and the second trench 122 by evaporation of Ni, the thickness of the first conductive layer is 110nm; the first conductive layer at the photoresist layer 120 and the second trench The surface of a conductive layer 130 is then water-plated with Ni to form a second conductive layer 131, and the thickness of the second conductive layer 131 is 5 ⁇ m.
  • the photoresist layer is peeled off by the chemical reagent isopropanol and combined with the ultrasonic process, leaving the first conductive layer 130 and the second conductive layer 131 at the groove, that is, forming a transparent grid line on the whole surface; cutting the conductive layer by means of laser, etc. Metal grid to form antenna pattern.
  • the antenna pattern is cut and separated by a laser process to form an antenna area and an invalid area to form an antenna.
  • Example 1 The difference between this comparative example and Example 1 is only that the thickness of the photoresist layer is 1 ⁇ m.
  • Example 2 The difference between this comparative example and Example 2 is only that the thickness of the second conductive layer is 0.5 ⁇ m.
  • the method of making an antenna in this comparative example adopts a conventional process to make a whole-surface metal material on the surface of a transparent substrate, and then expose and develop a metal grid.
  • the metal grid protrudes on the surface of the substrate or the cover plate.
  • the method of making the antenna in this comparative example adopts a conventional process: coating UV glue on the surface of the substrate, then imprinting nano grooves on the UV glue, and filling the nano grooves with silver through the squeegee completely contacting the surface of the UV glue.
  • the cover is a 3D or 2.5D design
  • the curvature of the cover is inconsistent, resulting in a gap between the squeegee and the UV glue surface.
  • the arc area cannot be filled with silver or the silver filling effect is not good, resulting in appearance chromatic aberration problems and the UV glue itself is soft , Not resistant to friction and puncture, affecting subsequent reliability issues.
  • the method of making the antenna of this comparative example adopts the conventional process: etching the groove on the surface of the substrate, and filling the nano groove with silver through the contact of the squeegee with the glass surface; the substrate is 3D, and the curvature of the cover is inconsistent, causing the squeegee and the glass surface to be inconsistent.
  • the substrate is 3D
  • the curvature of the cover is inconsistent, causing the squeegee and the glass surface to be inconsistent.
  • the transmittance of the antenna is measured by a conventional method; the square resistance is measured by an external meter or a four-probe square resistance meter.
  • Comparative example 2 92 7.6 Comparative example 3 90 6.3 Comparative example 4 91 6.8 Comparative example 5 92 6.4
  • the antenna produced by the present invention has the characteristics of low impedance and high transmittance; and compared with the existing conductive layer protruding from the surface of the substrate, it is more resistant to friction, has better reliability, and does not affect Follow-up performance.
  • Metal mesh antennas are suitable for different shapes of substrates or cover designs such as 2.5D ⁇ 3D, etc., and will not cause the appearance of color difference between the curved surface area and the flat area, and the application range is wider.
  • the thickness of the photoresist layer of Comparative Example 1 is lower than that of the present application.
  • the conductive layer is plated again, it is necessary to ensure that the conductive layer is thinner than the photoresist layer, otherwise the first conductive layer on the photoresist layer will be connected to the second conductive layer in the trench. Subsequent peeling will cause the second conductive layer in the trench to be peeled off together.
  • a thin conductive layer needs to be made, and the impedance of too thin lines is relatively large; the square resistance of Comparative Example 2 is greater than that of the application because the conductive layer is too thin and the conductivity is poor.
  • the impedance is relatively large; comparative examples 3 to 5 use the existing technology to make the antenna. From the test results, it can be seen that the impedance is large, and when using 3D or 2.5D cover plates, there are problems of friction and puncture, which will affect the follow-up reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明涉及透明天线及其制作方法、电子设备,制作方法包括以下步骤:提供透明基材;在所述透明基材的一个表面设置光阻层;在所述光阻层形成第一沟槽,所述第一沟槽底端露出透明基材;在第一沟槽底端露出的透明基材处形成第二沟槽;在所述光阻层远离透明基材的表面以及第二沟槽处均通过电镀工艺形成导电层;将所述光阻层远离透明基材表面的导电层以及所述光阻层去除,形成天线图案。

Description

透明天线及其制作方法、电子设备 技术领域
本发明涉及天线领域,特别是涉及一种透明天线及其制作方法、电子设备。
背景技术
随着网络技术的不断发展,无线通讯技术已有2G/3G发展到了目前广泛应用的4G;4G及其之前的通讯技术,对天线的要求为单支天线收发无线电信号,实现音频、视频等多媒体信号的实时传输,5G网络通信是要实现更加清晰的、数据量更大视频信号的实时传输。无限电信号的传输,如果不对天线结构做改变,为了实现更大数据量的传输,只能通过提高无线电信号的频率和提高信号编码的压缩率来提高,基于这种方式的发展,高频信号的传输距离短、穿透力差,5G网络需要铺设数十倍于4G网络的基站来提高信号覆盖区域,在技术成本和环境兼容性上是无法接受的。因此,5G网络的技术核心,在不改变现有4G网络技术基站方案的基础上,在终端设备上(手机、手环、电子手表、平板电脑等),增加天线的个数,由单支天线变化为多支天线组成的阵列,实现对网络信号的接收和发送,提高信号传输的速率,成为更加可行的5G网络核心方案。
现有的4G单支天线,以手机为例,是设置在前盖板的黑框下方或者手机后盖上下部位的。但是随着全面屏和无线充电技术的应用,留给天线的空间越来越小,如果将天线由单支变化为5G天线阵列,天线可以布置的空间将更小。为了解决这一难题,业界提出了可以搭载在显示屏幕上的透明天线方案,但是目前透明导电材料,然而电阻过高,不能满足基本的需求;且现有的方法制作的天线普遍存在不耐摩擦,用于3D或者2.5D时,性能不能满足需求。
发明内容
基于此,有必要提供一种低阻抗、透明、耐摩擦、适用范围广的透明天线及其制作方法。
此外,还提供了一种电子设备。
一种制作透明天线的方法,包括以下步骤:
提供透明基材;
在所述透明基材的一个表面设置光阻层;
在所述光阻层形成第一沟槽,所述第一沟槽底端露出透明基材;
在第一沟槽底端露出的透明基材处形成第二沟槽;
在所述光阻层远离透明基材的表面以及第二沟槽处均通过电镀工艺形成导电层;
将所述光阻层远离透明基材表面的导电层以及所述光阻层去除,形成天线图案。
一种透明天线,采用上述的方法制作而成。
一种电子设备,包括上述的透明天线。
本发明的一个或多个实施例的细节在下面的描述中提出。本发明的其它特征、目的和优点将从说明书、以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式任何一者的范围的限制。
图1为本发明一实施方式的制作天线的方法流程示意图;
图2为本发明一实施方式的天线图案的制作流程示意图;
图3为本发明另一实施方式的天线图案的制作流程示意图;
图4为本发明一实施方式的天线图案的示意图;
图5为本发明一实施方式形成的透明金属网格天线示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
图1为本发明一个实施例的制作方法流程示意图。应当理解的是,虽然图1的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序执行,其可以以其它的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或多个阶段,这些子步骤或阶段并不必然在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次执行,而是可以与其它步骤或其它步骤的子步骤或阶段的至少一部分轮流或者交替的执行。
如图1~5所示,一实施方式的一种透明天线的制作方法,能够制作出更耐摩擦,可靠性更佳、透明度高、低阻抗且能够适用于2.5D\3D等不同表面形状的外壳的天线。其中,天线100能够设置在电子设备表面,作为天线,实现对无线电信号的收发。具体地,请参阅图1~图3,天线100的制作方法包括如下步骤S110~S170:
S110:提供透明基材110;
具体地,选用透明基材110制作形成的天线具有光透明的特性;透明基材 110具有两个相对的表面,其中一个表面为安装面111;
在其中一个实施例中,透明基材110的材质可采用玻璃、PC板、PET、COP、PMMA板、PC与PMMA的复合板、TPU、POL等,选用上述材质的透明基材110均为光学性能优异的材料,具有更高的强度和表面效果,更适用于大尺寸触控面板;透明基材110可以为盖板,透明基材110的具体形状也不受特别的限制,可以是3D\2D\平面设计;具体例如3D圆弧的外壳,本领域技术人员可根据实际需要设计透明基材110的形状。
S120:在透明基材110的一个表面设置光阻层;
在透明基材110的安装面111设置光阻层120,光阻层120完全覆盖安装面111;具体地,涂布的光阻根据需要选用正光阻剂或负光阻剂,所涂的光阻要涂布均匀,采用正光阻剂,曝光的部分在显影步骤被显影液去除;采用负光阻,未曝光的部分在显影步骤被显影液去除;在其中一个具体的示例中,所述安装面111上涂敷一层负光阻剂形成光阻层120。
在其中一个实施例中,光阻层120的厚度为1.5μm~10μm,具体地,光阻层120的厚度为1.5μm、3.5μm、5μm、6μm、7.5μm或者10μm。此种厚度的设置,利于光阻层后续进行电镀的导电层,以及便于剥离,形成阻抗小的天线;光阻层120过薄,再进行镀导电层需保证导电层比光阻层薄,否则光阻层120上第一导电层会与第二沟槽内的第二导电层相连,后续剥离会导致沟槽内的第二导电层一起剥离,且过薄线路阻抗比较大,太厚会导致光阻层坍塌,影响后续第一沟槽与第二沟槽的制作。
具体地,在所述透明基材的一个表面设置光阻层的步骤,采用涂布方式将光阻层涂布于透明基材110的安装面111处,涂布采用本领域常用的涂布方法,具体地,涂布可以为静电喷涂、旋转涂布等方式涂布,以将光阻层120均匀地覆盖于透明基材110上。
S130:在光阻层120形成第一沟槽121,以使第一沟槽121底端露出透明基材110;
在其中一个实施例中,通过曝光显影的工艺在光阻层120形成第一沟槽121;曝光显影的工艺可以采用本领域常用的工艺实现。
在其中一个实施例中,第一沟槽121为网格沟槽,第一沟槽121宽度为1.5μm~15μm。此种宽度的设置,能够形成阻抗较小的天线,且便于后续电镀导电层。具体地,第一沟槽121宽度可以为1.5μm、3.5μm、5μm、6μm、7.5μm、10μm、12μm或15μm。
在其中一个实施例中,网格的形状可以为长方形、菱形、六边形、不规则四边形等多边形形状。
S140:在第一沟槽121底端露出的透明基材110处形成第二沟槽122;
具体地,第二沟槽122的深度为1μm~5μm,第二沟槽122的深度可以为1μm、2μm、3μm、4μm或5μm。由于在形成第二沟槽122过程中,蚀刻液体蚀刻会多方向蚀刻,深度越深,对应的蚀刻沟槽宽度(线宽)越宽,导致线宽可见及透过率降低问题,深度越浅,后续进行电镀形成导电层的导电性差,阻抗比较大。
具体地,第二沟槽122与第一沟槽121的形状与宽度均相同,便于进行刻蚀。
在其中一个实施例中,刻蚀第二沟槽122的方法采用本领域常用的刻蚀方法进行刻蚀,如可通过化学试剂(氢氟酸等)在透明基材110的安装面111上蚀刻出第二沟槽122。
S150:在光阻层120远离透明基材110的表面以及第二沟槽122通过电镀工艺形成导电层;
具体地,步骤S150包括:
步骤S151:在光阻层远离透明基材的表面以及第二沟槽均通过蒸镀工艺形成第一导电层130;
具体地,第一导电层的厚度为150nm以下,在具体的示例中,第一导电层的厚度可以为100nm、110nm、120nm。本实施方式先蒸镀形成一薄层的导电层,形成通电,以便于后续进行电镀。
步骤S152:在第二沟槽处的第一导电层130远离所述透明基材的表面通过蒸镀以外的电镀工艺形成第二导电层131;
具体地,第二导电层采用除蒸镀以外的其它电镀工艺,由于电镀工艺的原理是利用电解原理在导电体表面沉积金属或合金层,因此需要先进行蒸镀形成 一薄的第一导电层;
通过先设置有较薄的第一导电层,再设置较厚的第二导电层,较薄的导电层通常通过蒸镀的工艺形成,由于蒸镀加厚需很长时间,如做到更厚N倍以上的时间制作及蒸镀导电材料过厚易导致材料起皱;电镀的效率高,但电镀需接电,故需先蒸镀一层较薄的导电材料通电;可以减少电镀所用的时间,提升效率。
进一步地,第二导电层131的厚度为1μm~5μm;导电层的厚度选用在上述范围内,可获得阻抗较小的天线,到导电层过薄,导电性差,阻抗比较大;导电层过厚,容易引起导电层起皱,影响外观以及后续使用效果;在具体的示例中,第二导电层的厚度可以为1μm、1.5μm、3.5μm、5μm。
具体地,导电层的材质可以选用导电性能优异的金属或合成金属,具体例如Cu、Cu-Ni合金、Ag、Cu-ITO、Au、Ni、Al等。本领域技术人员可根据该天线所需要的发射和接收信号进行相应地选择。
第二导电层所采用的电镀工艺可采用真空镀、水镀、溅镀。具体的示例中,可通过水镀在第二沟槽处的第一导电层130的表面形成第二导电层。采用电镀的工艺形成的导电层更平整、均匀,效率更高,从而使得制成的天线质量更高和表面平整性更好。
如图3所示,本实施方式的步骤S152还可以采用以下步骤S152'形成:
S152':在第二沟槽以及光阻层表面的第一导电层130的表面均形成第二导电层131;
该种方式的电镀可形成整面都均匀的电镀一层第二导电层131。
电镀方式如前述所述。
S160:将光阻层120远离透明基材110表面的导电层以及光阻层120去除,形成天线图案。
具体地,如图4所示,将光阻层120去除,只保留第二沟槽122处的第一导电层130和第二导电层131,形成透明导电金属网格;通过激光等方式切割导电金属网格,形成天线图案。
在其中一些实施例中,去除的方法采用本领域常规的剥离工艺,剥离通过 化学试剂将光阻层一起剥离即形成整面透明网格线路;在具体的一个示例中,剥离液采用异丙醇,并结合超声工艺进行剥离。该方法剥离效率高,且剥离比较彻底。
当采用步骤S152'形成第二导电层131时,步骤S160:将光阻层120远离透明基材110表面的导电层以及光阻层均去除,形成天线图案。去除的方式如上所述。
天线图案的具体种类不受特别的限制,具体例如手机天线的电路、NFC天线的电路回路等等,本领域技术人员可根据该天线的实际作用进行相应地选择和设计,在具体的示例中,天线图案为透明网格线路。
S170:将天线图案切割分离形成天线区域和无效区域,以形成天线。
具体地,通过采用镭射工艺将天线图案切割分离形成天线区域和无效区域。
需要说明的是,制作天线的方法除了包括上述步骤以外,还可以包括其他步骤,具体例如包括清洗透明基材110的表面,以清洗透明基材110表面的氧化物、杂质、油质或水分子。
上述实施方式制作方法制作而成的天线100的具体种类不受特别的限制,具体例如5G天线、NFC天线等等,本领域技术人员可根据该天线100的实际使用要求进行相应地选择,在此不再赘述。
上述的透明天线至少具有以下优点:
1)如图5所示,将天线制作成金属网格透明天线,具备低阻抗、透明的特性,采用电镀的工艺形成的导电层更平整、均匀,从而使得制成的天线质量更高和表面平整性更好,可以设置在电子设备表面,作为天线,实现对无线电信号的收发,为电子产品的天线,提供了更宽的可选择放置的区域;天线可以布置的空间更大,且该制作方法操作简便、工艺简单。
2)通过在透明基材110上形成第二沟槽122,再形成金属网格导电层,使得金属网格导电层嵌入透明基材110内部,相对于现有的导电层凸出于基材表面,更耐摩擦,可靠性更佳,从而不影响后续性能。
3)采用本实施方式的方法制作的金属网格天线适用于不同形貌的基材或者盖板设计如2.5D\3D等,不会导致外观弧面区域与平面区域外观色差问题, 适用范围更广。
4)通过先设置先设置有较薄的第一导电层130,再设置较厚的第二导电层131,较薄的导电层通常通过蒸镀的工艺形成,由于蒸镀加厚需很长时间,120nm大概需要半小时;如做更厚需要N倍以上时间制作及蒸镀导电材料过厚易导致材料起皱;电镀的效率高,但电镀需接电,故需先蒸镀一层较薄的导电材料通电;可以减少电镀所用的时间,提升效率;另外,可避免直接电镀过厚易导致导电层起皱。
一实施方式的电子设备,包括上述实施方式的制作方法制作而成的天线。电子设备的具体类型不受特别的限制,具体例如手机、平板电脑、智能手表等,本领域技术人员可根据该电子设备的具体用途进行相应地选择,在此不再赘述。需要说明的是,该电子设备除了包括上述的天线100以外,还包括其他必要的部件和结构,以手机为例,具体例如显示装置、处理器、存储器、电池、电路板、摄像头等等,本领域技术人员可根据该电子设备的具体种类进行相应地设计和补充,在此不再赘述。
以下为具体实施例部分。
实施例1
本实施例的透明天线的制作方法,包括以下步骤:
提供玻璃材质的透明基材110;透明基材110具有两个相对的表面,其中一个表面为安装面111。
在透明基材110的安装面111通过旋转涂布一层厚度为1.5μm的光阻层;
通过曝光显影出宽度为1.5μm的长方形网格第一沟槽121,露出透明基材110;
通过化学试剂(氢氟酸等)在在第一沟槽121底端露出的透明基材110的安装面111上蚀刻出宽度为1.5μm,深度为1μm的长方形网格第二沟槽122;
在光阻层120远离透明基材110的表面以及第二沟槽122通过蒸镀铜形成第一导电层,第一导电层的厚度为100nm;在第二沟槽处的第一导电层130的表面再进行水镀铜形成第二导电层131,第二导电层131的厚度为1μm。
通过化学试剂异丙醇,并结合超声工艺进将光阻层以及光阻层上的第一导 电层一起剥离,只保留第二沟槽122处的第一导电层130和第二导电层131,即形成整面透明网格线路,通过激光等方式切割导电金属网格,形成天线图案。
最后通过镭射工艺将天线图案切割分离形成天线区域和无效区域,以形成天线。
实施例2
本实施例的天线的制作方法,包括以下步骤:
提供PMMA板的透明基材110;透明基材110的一个表面为安装面111,透明基材110为3D设计。
在透明基材110的一个表面通过旋转涂布一层厚度为3.5μm的光阻层;
通过曝光显影出宽度为3.5μm的正方形网格第一沟槽121,露出透明基材110;
通过化学试剂(氢氟酸等)在在第一沟槽121底端露出的透明基材110的安装面111上蚀刻出宽度为3.5μm,深度为3.5μm的正方形网格第二沟槽122;
在光阻层远离透明基材的表面以及第二沟槽122通过蒸镀铜形成第一导电层,第一导电层的厚度为110nm;在沟槽处的第一导电层130的表面进行水镀铜形成第二导电层131,第二导电层131的厚度为2.5μm。
通过化学试剂异丙醇,并结合超声工艺进将光阻层剥离,只保留第二沟槽122处的第一导电层和第二导电层,即形成整面透明网格线路;通过激光等方式切割导电金属网格,形成天线图案。
最后通过镭射工艺将天线图案切割分离形成天线区域和无效区域,以形成天线。
实施例3
本实施例的天线的制作方法,包括以下步骤:
提供PC与PMMA复合板的透明基材110;透明基材110具有两个相对的表面,其中一个表面为安装面111。
在透明基材110的一个表面通过静电喷涂一层厚度为6μm的光阻层;
通过曝光显影出宽度为10μm的长方形网格沟槽121,露出透明基材110;
通过化学试剂(氢氟酸等)在在第一沟槽121底端露出的透明基材110的 安装面111上蚀刻出宽度为10μm,深度为3.5μm的长方形网格第二沟槽122;
在光阻层远离透明基材的表面以及第二沟槽122底端通过蒸镀Cu-Ni合金形成第一导电层130,第一导电层的厚度为120nm;在第二沟槽121处的第一导电层130的表面再进行溅镀Cu-Ni合金形成第二导电层131,第二导电层131的厚度为3.5μm。
通过化学试剂异丙醇,并结合超声工艺进将光阻层以及光阻层上的第一导电层一起剥离,只保留第二沟槽122处的第一导电层130和第二导电层131,即形成整面透明网格线路;通过激光等方式切割导电金属网格,形成天线图案。
最后通过镭射工艺将天线图案切割分离形成天线区域和无效区域,以形成天线。
实施例4
本实施例的天线的制作方法,包括以下步骤:
提供PMMA板的透明基材110;透明基材110的一个表面为安装面111,透明基材110为2.5D设计。
在透明基材110的一个表面通过旋转涂布一层厚度为10μm的光阻层;
通过曝光显影出宽度为15μm的菱形网格沟槽121,露出透明基材110;
通过化学试剂(氢氟酸等)在在第一沟槽121底端露出的透明基材110的安装面111上蚀刻出宽度为15μm,深度为5μm的菱形网格第二沟槽122;
在光阻层120远离透明基材110的表面及第二沟槽122通过蒸镀Ni形成第一导电层,第一导电层的厚度为110nm;在光阻层120以及第二沟槽处的第一导电层130的表面再进行水镀Ni形成第二导电层131,第二导电层131的厚度为5μm。
通过化学试剂异丙醇,并结合超声工艺进将光阻层剥离,保留沟槽处的第一导电层130和第二导电层131,即形成整面透明网格线路;通过激光等方式切割导电金属网格,形成天线图案。
最后通过镭射工艺将天线图案切割分离形成天线区域和无效区域,以形成天线。
对比例1
本对比例与实施例1的区别仅在于,光阻层的厚度为1μm。
对比例2
本对比例与实施例2的区别仅在于,所述第二导电层的厚度为0.5μm。
对比例3
本对比例制作天线的方法采用常规工艺为在透明基材表面制作整面金属材料,再曝光显影出金属网格,金属网格凸起在基材或者盖板表面。
对比例4
本对比例制作天线的方法采用常规工艺:在基材表面涂布UV胶,再在UV胶上压印纳米沟槽,通过刮刀完全与UV胶表面接触将银填到纳米沟槽。该种方法当盖板为3D或者2.5D设计,盖板弧度翘起不一致导致刮刀与UV胶表面存在间隙在弧面区域无法填银或者填银效果不佳导致外观色差问题及UV胶本身较软,不耐摩擦及刺穿,影响后续可靠性问题。
对比例5
本对比例制作天线的方法采用常规工艺:在基材表面蚀刻沟槽,在通过刮刀与玻璃表面接触将银填到纳米沟槽;基材为3D,盖板弧度翘起不一致导致刮刀与玻璃表面存在间隙在弧面区域无法填银或者填银效果不佳导致外观色差问题。
测试:
测定实施例1~4及对比例1~5制备而成的天线的透过率和方阻,测定结果详见表1。
其中,采用常规方法测定天线的透过率;采用外用表或四探针方阻仪测试方阻。
表1
透过率(%) 方阻(Ω)
实施例1 96 4.6
实施例2 93 3.3
实施例3 91 2.9
实施例4 92 2.0
对比例1 95 11
对比例2 92 7.6
对比例3 90 6.3
对比例4 91 6.8
对比例5 92 6.4
从表1可以看出,本发明制作得到的天线具备低阻抗、透过率高的特性;且相对于现有的导电层凸出于基材表面,更耐摩擦,可靠性更佳,不影响后续性能。金属网格天线适用于不同形貌的基材或者盖板设计如2.5D\3D等,不会导致外观弧面区域与平面区域外观色差问题,适用范围更广。对比例1的光阻层厚度低于本申请,由于再进行镀导电层需保证导电层比光阻层薄,否则光阻层上第一导电层会与沟槽内的第二导电层相连,后续剥离会导致沟槽内的第二导电层一起剥离,需要制作薄的导电层,而过薄线路阻抗比较大;对比例2的方阻大于本申请,是由于导电层过薄,导电性差,阻抗比较大;对比例3~5采用现有的工艺制作天线,从测试结果可知,其阻抗大,且当使用3D或者2.5D盖板时,均存在不耐摩擦及刺穿问题,进而影响后续可靠性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种制作透明天线的方法,其特征在于,包括以下步骤:
    提供透明基材;
    在所述透明基材的一个表面设置光阻层;
    在所述光阻层形成第一沟槽,所述第一沟槽底端露出透明基材;
    在第一沟槽底端露出的透明基材处形成第二沟槽;
    在所述光阻层远离透明基材的表面以及第二沟槽处均通过电镀工艺形成导电层;
    将所述光阻层远离透明基材表面的导电层以及所述光阻层去除,形成天线图案。
  2. 根据权利要求1所述的方法,其特征在于,在所述光阻层远离透明基材的表面形成导电层步骤包括:
    在所述光阻层远离透明基材的表面以及第二沟槽均通过蒸镀工艺形成第一导电层;
    在所述第二沟槽处的第一导电层远离所述透明基材的表面通过蒸镀以外的电镀工艺形成第二导电层。
  3. 根据权利要求1所述的方法,其特征在于,在所述光阻层远离透明基材的表面形成导电层步骤包括:
    在所述光阻层远离透明基材的表面以及第二沟槽均通过蒸镀工艺形成第一导电层;
    在所述第二沟槽处的第一导电层以及光阻层表面的第一导电层处均通过蒸镀以外的电镀工艺形成第二导电层。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一导电层的厚度小于150nm,所述第二导电层的厚度为1μm~5μm。
  5. 根据权利要求2或3或4所述的方法,其特征在于,所述第二导电层采用水镀或溅镀工艺形成。
  6. 根据权利要求2或3所述的方法,其特征在于,所述第一导电层与第二导 电层的材料为Cu、Cu-Ni合金、Ag、Al、Cu-ITO、Au和Ni中的一种。
  7. 根据权利要求1所述的方法,其特征在于,所述透明基材的材料采用玻璃、PC板、PET、COP、PMMA板、PC与PMMA的复合板、TPU或POL。
  8. 根据权利要求1所述的方法,其特征在于,所述光阻层的厚度为1.5μm~10μm。
  9. 根据权利要求1所述的方法,其特征在于,所述第一沟槽的宽度为1.5μm~15μm。
  10. 根据权利要求1所述的方法,其特征在于,所述第二沟槽的宽度为1.5μm~15μm。
  11. 根据权利要求1所述的方法,其特征在于,所述第二沟槽的深度为1μm~5μm。
  12. 根据权利要求1所述的方法,其特征在于,所述第一沟槽与第二沟槽为网格形状,优选地,所述网格形状为多边形,优选地,多边形为长方形、菱形或六边形。
  13. 根据权利要求1所述的方法,其特征在于,所述将光阻层表面的导电层去除方式采用剥离工艺去除;优选地,采用剥离液异丙醇与超声结合剥离去除光阻层表面的导电层以及光阻层。
  14. 根据权利要求1所述的方法,其特征在于,还包括采用镭射工艺将天线图案分离成天线区域以及无效区域,形成天线。
  15. 一种透明天线,其特征在于,采用权利要求1~14任一项所述的方法制作而成。
  16. 一种电子设备,其特征在于,包括权利要求15所述的透明天线。
PCT/CN2020/077647 2020-03-03 2020-03-03 透明天线及其制作方法、电子设备 WO2021174422A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077647 WO2021174422A1 (zh) 2020-03-03 2020-03-03 透明天线及其制作方法、电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077647 WO2021174422A1 (zh) 2020-03-03 2020-03-03 透明天线及其制作方法、电子设备

Publications (1)

Publication Number Publication Date
WO2021174422A1 true WO2021174422A1 (zh) 2021-09-10

Family

ID=77612861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077647 WO2021174422A1 (zh) 2020-03-03 2020-03-03 透明天线及其制作方法、电子设备

Country Status (1)

Country Link
WO (1) WO2021174422A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140106684A1 (en) * 2012-10-15 2014-04-17 Qualcomm Mems Technologies, Inc. Transparent antennas on a display device
CN109041557A (zh) * 2018-07-16 2018-12-18 苏州维业达触控科技有限公司 一种金属网格及其制作方法
CN109992143A (zh) * 2017-12-29 2019-07-09 南昌欧菲显示科技有限公司 触控屏及其制造方法、触控显示装置和电子装置
CN110519953A (zh) * 2019-07-27 2019-11-29 南昌欧菲光科技有限公司 电子设备及其盖板
CN110519954A (zh) * 2019-07-27 2019-11-29 南昌欧菲光科技有限公司 电子设备及其盖板
CN110519955A (zh) * 2019-07-27 2019-11-29 南昌欧菲光科技有限公司 电子设备及其盖板
CN110808449A (zh) * 2019-10-18 2020-02-18 西安中易建科技有限公司 用于幕墙的透光天线制作方法、透光幕墙
CN210780903U (zh) * 2019-11-27 2020-06-16 南昌欧菲光科技有限公司 盖板组件和移动终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140106684A1 (en) * 2012-10-15 2014-04-17 Qualcomm Mems Technologies, Inc. Transparent antennas on a display device
CN109992143A (zh) * 2017-12-29 2019-07-09 南昌欧菲显示科技有限公司 触控屏及其制造方法、触控显示装置和电子装置
CN109041557A (zh) * 2018-07-16 2018-12-18 苏州维业达触控科技有限公司 一种金属网格及其制作方法
CN110519953A (zh) * 2019-07-27 2019-11-29 南昌欧菲光科技有限公司 电子设备及其盖板
CN110519954A (zh) * 2019-07-27 2019-11-29 南昌欧菲光科技有限公司 电子设备及其盖板
CN110519955A (zh) * 2019-07-27 2019-11-29 南昌欧菲光科技有限公司 电子设备及其盖板
CN110808449A (zh) * 2019-10-18 2020-02-18 西安中易建科技有限公司 用于幕墙的透光天线制作方法、透光幕墙
CN210780903U (zh) * 2019-11-27 2020-06-16 南昌欧菲光科技有限公司 盖板组件和移动终端

Similar Documents

Publication Publication Date Title
KR102326746B1 (ko) 액정 안테나 및 그 제조방법
CN111355026B (zh) 透明天线及其制作方法、电子设备
CN102637636A (zh) 有机薄膜晶体管阵列基板及其制作方法和显示装置
CN103207702A (zh) 触摸屏及其制造方法
CN106019751A (zh) 阵列基板及其制造方法、显示装置
CN103515375B (zh) 阵列基板及其制造方法、以及显示装置
CN105742299A (zh) 一种像素单元及其制作方法、阵列基板及显示装置
CN102263060B (zh) 阵列基板及其制造方法、液晶显示器
CN107479230B (zh) 用于显示器与触控面板的超细铜质网线及其制造方法
CN106354319A (zh) 触摸屏的制备方法、及触控显示装置的制备方法
KR20070106669A (ko) 회로기판 및 그 제조방법
TW201210127A (en) Method for manufacturing antenna
WO2021174422A1 (zh) 透明天线及其制作方法、电子设备
CN111370854B (zh) 天线及其制作方法、电子设备
JPH09147639A (ja) 透明電極材料
CN108682692A (zh) 薄膜晶体管及其制作方法、阵列基板、显示装置
WO2021174426A1 (zh) 天线及其制作方法、电子设备
CN100590801C (zh) 导电膜层的制造方法
JPH11243296A (ja) 電磁波シールド用透明部材とその製造方法
TW490880B (en) Printed-on-display antenna installed on the display of wireless mobile communication terminal
CN102412437A (zh) 天线的制造方法
CN110783275B (zh) 显示基板及其制备方法、显示装置
CN115657352A (zh) 显示面板及显示装置
JPWO2003045127A1 (ja) 電磁波シールド性光透過窓材及びその製造方法
TW200905979A (en) Manufacturing method of planar antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923617

Country of ref document: EP

Kind code of ref document: A1