WO2021172456A1 - 電気化学デバイス用電解液、可塑性組成物、用途及び製造方法 - Google Patents

電気化学デバイス用電解液、可塑性組成物、用途及び製造方法 Download PDF

Info

Publication number
WO2021172456A1
WO2021172456A1 PCT/JP2021/007174 JP2021007174W WO2021172456A1 WO 2021172456 A1 WO2021172456 A1 WO 2021172456A1 JP 2021007174 W JP2021007174 W JP 2021007174W WO 2021172456 A1 WO2021172456 A1 WO 2021172456A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion
electrolytic solution
group
electrochemical device
plastic composition
Prior art date
Application number
PCT/JP2021/007174
Other languages
English (en)
French (fr)
Inventor
裕之 米丸
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US17/904,595 priority Critical patent/US20230109546A1/en
Priority to CN202180015495.3A priority patent/CN115136376A/zh
Priority to JP2022503710A priority patent/JPWO2021172456A1/ja
Priority to KR1020227029076A priority patent/KR20220148817A/ko
Priority to EP21761718.2A priority patent/EP4113652A1/en
Publication of WO2021172456A1 publication Critical patent/WO2021172456A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic solution for an electrochemical device, a plastic composition, an electrode sheet for an electrochemical device, an insulating layer for an electrochemical device, a method for producing these, and an electrochemical device.
  • the electrolytic solution used as a component of the electrochemical device a so-called high-concentration electrolytic solution having an extremely high salt concentration compared to the salt concentration which was conventionally considered to be optimal is known. It has been reported that the high-concentration electrolytic solution may have effects such as improvement of withstand voltage, reduction of combustibility, improvement of transport number, etc., as compared with the conventional dilute electrolytic solution (Patent Document 1). And non-patent document 1). Therefore, when such an electrolytic solution is applied to an electrochemical device, it is expected that the effects of extending the life of the device, shortening the combustion, and increasing the potential can be obtained.
  • the high-concentration electrolytic solution has an extremely high salt concentration, salting out is likely to occur, and salt crystals once formed by salting out are difficult to be redissolved. If such salting out occurs in the electrolyte in the electrochemical device and the presence of crystals is maintained without being redissolved, problems such as deterioration of electrolyte performance and damage to the device due to salt crystals may occur. .. In particular, the device may be temporarily exposed to a temperature environment well below normal temperature during transportation and storage. Further, if such salting out occurs in the electrolytic solution prior to the production of the electrochemical device, the concentration fluctuates, the fluidity decreases, and the like, which hinders the production.
  • the high-concentration electrolytic solution has a higher viscosity than the conventional dilute electrolytic solution. Therefore, in manufacturing an electrochemical device, it is difficult to perform an operation such as injecting it into a gap in the housing of the device, as in the case of a conventional electrolytic solution.
  • an object of the present invention is an electrochemical in which the occurrence of salting is suppressed while enjoying the advantageous effects of a high-concentration electrolytic solution such as improvement of withstand voltage, reduction of flammability, improvement of transport number, and the like. It is an object of the present invention to provide an electrolytic solution for a device, a material for constituting an electrochemical device in which such an electrolytic solution is easily available, and a method for producing the same.
  • a further object of the present invention is an electrode sheet for an electrochemical device, an insulating layer for an electrochemical device, which can obtain effects such as a longer life of the device, a shorter combustion, and a higher potential, and can be easily manufactured.
  • the purpose is to provide a manufacturing method and an electrochemical device.
  • a high-concentration electrolytic solution containing such a polymer will have a higher viscosity, and as a solution to this, the present inventor further uses such a high-concentration electrolytic solution as a solid substance such as an active material.
  • the idea was to mix with and to make a plastic composition. That is, in the production of a component of a device such as an electrode, the plastic composition can be easily manufactured by molding the plastic composition into a desired component shape. Based on these findings, the present inventor has completed the present invention. That is, the present invention is as follows.
  • the content ratio of the solvent (SO) to 1 mol of the cation (C) is 0.5 to 4 mol.
  • An electrolytic solution in which the content ratio of the polymer (P) is 0.5% by mass or more.
  • the electrolytic solution according to [1] which has a viscosity of 500 cP or more.
  • the anion (A) is, (B (R X) n1 -F) - consisting of and mixtures thereof -, (P (R X) n2 -F) -, (B (R X) n3) Contains anions selected from the group RX is a monovalent group or a divalent group which may be the same or different from each other when there are a plurality of RX.
  • the monovalent group is a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, or a monovalent organic ether group.
  • the divalent group is an alkylene group, an alkenylene group, an alkynylene group, a divalent organic ether group or an oxo group.
  • the alkyl group, alkenyl group, alkynyl group, monovalent organic ether group, alkylene group, alkenylene group, alkynylene group, and divalent organic ether group may be substituted with a halogen atom or an oxo group.
  • n1 when R X are all monovalent is 3, if the other is one of R X is a bivalent is monovalent is 2, n2, when R X are all monovalent is 5, when the other is one of R X is a bivalent is monovalent is 4, is a two divalent among R X Other Is 3 if is monovalent, n3, when R X are all monovalent is 4, when the other is one of R X is a bivalent is monovalent is 3, when two of R X is divalent Is 2, The electrolytic solution according to [3].
  • the anion (A) is, PF 6 -, BF 4 -, difluoro (oxalato) borate ion, bis (oxalato) borate ion, and an anion selected from the group consisting of mixtures, in [4] The electrolyte described.
  • the solvent (SO) is trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, trimethyl phosphite, triethyl phosphite, tripropyl phosphite, tributyl phosphite, phosphoric acid.
  • the method for producing an electrolytic solution according to any one of [1] to [9]. A production method comprising a step of dissolving one or more kinds of materials containing the cation (C) and the anion (A) and the polymer (P) in the solvent (SO).
  • the anion (A) includes a first anion (A1) and a second anion (A2).
  • the first anion (A1) is an anion having the largest molar content in the anion (A).
  • the second anion (A2) is an anion in the anion (A) having the second largest molar content after the first anion.
  • the step according to [10] which comprises a step of adding a salt containing the second anion (A2) to the solvent (SO), and then a step of adding a salt containing the first anion (A1).
  • Production method. [12] [10] or [11], which comprises dissolving the salt containing the cation (C) and the anion (A) in the solvent (SO) and then distilling off the solvent (SO). ]
  • the manufacturing method described in. [13] A plastic composition for an electrochemical device, which comprises the electrolytic solution and the solid matter according to any one of [1] to [9] and has plasticity.
  • the solid contains a particulate solid and a fibrous substance, and the fibrous substance exists in a state of bridging the particles of the particulate solid [13] to [19].
  • a method for producing an electrode sheet for an electrochemical device which comprises molding the plastic composition according to any one of [13] to [20] into the shape of the electrode sheet.
  • a method for producing an insulating layer for an electrochemical device which comprises molding the plastic composition according to any one of [13] to [20] into the shape of the insulating layer.
  • An electrochemical device comprising the electrode sheet for an electrochemical device according to [21], the insulating layer for an electrochemical device according to [22], or both.
  • the electrochemical device according to [25] which is a bipolar type.
  • an electrochemical device in which the occurrence of salting is suppressed while enjoying the advantageous effects of a high-concentration electrolytic solution such as improvement of withstand voltage, reduction of flammability, improvement of transport number, and the like.
  • a high-concentration electrolytic solution such as improvement of withstand voltage, reduction of flammability, improvement of transport number, and the like.
  • an electrolytic solution a plastic composition for constructing an electrochemical device in which such an electrolytic solution is easily available, and a method for producing the same.
  • the electrode sheet for an electrochemical device the insulating layer for an electrochemical device, and the like, which can obtain the effects of extending the life of the device, shortening the combustion, and increasing the potential, and can be easily manufactured, and the like. Manufacturing methods and electrochemical devices are provided.
  • the electrolytic solution of the present invention is an electrolytic solution for an electrochemical device containing a specific cation (C), an anion (A), a specific solvent (SO), and a specific polymer (P).
  • the cation (C) is a mono-trivalent metal ion. That is, the cation (C) can be one or more types of monovalent metal ions, one or more types of divalent metal ions, one or more types of trivalent metal ions, or a combination thereof.
  • the cation (C) may exist in the electrolytic solution in an ionization equilibrium with the anion (A).
  • the cation (C) can form a salt with the anion (A), but is usually in the solvent (SO) under temperature and pressure conditions from the production of the electrolyte to the production of the electrochemical device using it. , At least a part thereof is a compound that can be kept in a dissolved state without salting out.
  • it can be a compound capable of maintaining a state in which at least 1% by mass is dissolved in a solvent (SO) at normal temperature and pressure, for example, 25 ° C. and 1 atm.
  • a solvent SO
  • cation C
  • examples of the cation (C) include cations contained in various known salts that can be used in electrolytes for electrochemical devices.
  • the cation (C) is preferably an ion selected from the group consisting of alkali metal ions, alkaline earth metal ions, aluminum ions, and combinations thereof.
  • alkali metal ions include Li + , Na + , K + , and Cs + .
  • alkaline earth metal ions include Mg 2+ and Ca 2+ .
  • Li + , Mg 2+ and a combination thereof are preferable, and a combination of Li + and Li + and Mg 2+ is more preferable.
  • the electrolytic solution of the present invention may contain a cation other than the cation (C).
  • the ratio of the cation (C) in the entire electrolytic solution is preferably 2.5 mol / L or more in order to exhibit the effect as the electrolytic solution.
  • the upper limit of the ratio of the cation (C) is not particularly limited, but may be, for example, 10 mol / L or less.
  • the cation (C) may contain divalent or trivalent metal ions.
  • it may be preferable to contain a divalent or trivalent metal ion rather than the cation (C) being composed of only a monovalent metal ion.
  • divalent and trivalent metal ions are prone to salting out.
  • by adopting the configuration of the present invention as the electrolytic solution it is possible to suppress salting out while enjoying the effects of such divalent and trivalent metal ions.
  • the precipitation of Li + may be suppressed to improve the cycle characteristics, or the strength of the electrode may be increased. be.
  • the electrolytic solution of the present invention may contain an anion (A).
  • the anion (A) may include an anion introduced into the system as a counter anion to the cation (C) and other optional components of the cation.
  • anion (A) examples include anions contained in various known salts that can be used in an electrolytic solution for an electrochemical device. More specific examples include various anions containing a boron atom, a fluorine atom, a phosphorus atom, or two or more of them.
  • anion contained in the anion (A), (B (R X) n1 -F) -, (P (R X) n2 -F) -, (B (R X) n3) -, and their Examples include anions selected from the group consisting of mixtures of. When these anions are used as the anions (A), the effect of reducing the corrosion of the current collector foil can be obtained.
  • RX is a monovalent group or a divalent group which may be the same or different from each other when there are a plurality of RX.
  • the monovalent group is a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, or a monovalent organic ether group
  • the divalent group is an alkylene group, an alkenylene group, an alkynylene group, or a divalent organic ether. It is a group or an oxo group.
  • alkyl group, alkenyl group, alkynyl group, monovalent organic ether group, alkylene group, alkenylene group, alkynylene group, and divalent organic ether group may be substituted with a halogen atom or an oxo group. It may be present, or a hetero atom may be interposed in a part of the chain.
  • n1 when R X are all monovalent is 3, if the other is one of R X is a bivalent is monovalent is 2, n2 is R X are all monovalent case is 5, when the other is one of R X is a bivalent is monovalent is 4, when the other is two divalent of R X is monovalent is 3, n3, when R X are all monovalent is 4, when the other is one of R X is a bivalent is monovalent is 3, when two of R X is divalent Is 2.
  • R X is a monovalent group, preferable examples thereof include fluorine atom, -CF 3, -C 2 F 5 , include -CN.
  • RX is a divalent group
  • any of the divalent bonds may have a structure bonded to a boron atom or a phosphorus atom.
  • the anion having the largest molar content in the anion (A) is the first anion (A1), and the anion having the second largest molar content after the first anion (A1).
  • the anion having the second largest molar content after the second anion (A2) and the second anion (A2) is called the third anion (A3), and so on.
  • the first anion (A1) it is preferable to select an anion that contributes to ionic conductivity and has high ionic conductivity.
  • FSI fluorosulfonyl imide ion
  • TFSI bis (trifluoromethanesulfonyl) imide ion
  • BF 4 - difluoro (oxalato) borate ion
  • the second anion (A2) can be added in combination with the first anion (A1) for the purpose of exerting an additional effect.
  • effects include suppression of corrosion of the current collector and stabilization by coating the surface of the active material.
  • anions capable of exerting such an effect include BFx-based, PFx-based, difluoro (oxalate) borate ions, bisoxalate borate ions, and mixtures thereof.
  • the BFx system refers to one or a mixture of two or more of various anions including a combination of one boron atom and one to four fluorine atoms in one anion, and is referred to as a PFx system.
  • a PFx system refers to one or a mixture of two or more of various anions in which one anion contains a combination of one phosphorus atom and one to six fluorine atoms.
  • the ratio of the anion (A) in the electrolytic solution of the present invention is not particularly limited, and may be, for example, an equal amount with respect to the cation (C) and the cation as another optional component.
  • the solvent (SO) is a compound having a molecular weight of 1000 or less.
  • the lower limit of the molecular weight of the solvent (SO) is not particularly limited, but may be, for example, 40 or more.
  • the solvent (SO) can be water, a hetero element-containing organic compound (O), or a mixture thereof.
  • the hetero element-containing organic compound (O) can preferably be a compound having no ionic group. That is, the hetero element-containing organic compound (O) can be a compound other than the compound having an ionic group.
  • the compound having an ionic group is a cation or an anion, and includes a compound having a plurality of ionic groups in the molecule and betaine having a positive or negative charge.
  • the solvent (SO) various compounds known to be usable as a solvent in an electrolytic solution for an electrochemical device can be used. From these, one or more compounds having the performance according to the desired application can be appropriately selected and used in combination as necessary.
  • an organic solvent having a low boiling point or a mixed solvent containing an organic solvent having a low boiling point in a high ratio can be used as the solvent (SO).
  • low boiling organic solvents include dimethyl carbonate, monoglime, methyl formate, methyl acetate, methyl alcohols, acetonitrile (AN), and mixtures thereof.
  • At least one solvent is preferably selected from a compound (SO-S) that is solid at room temperature of 1 atm and becomes liquid when mixed with a cation (C) and an anion (A).
  • SO-S a compound
  • C cation
  • A anion
  • room temperature refers to a range of around 25 ° C., more specifically 25 ° C., and is preferably a solid even at a higher temperature.
  • the melting point of the compound is preferably 5 ° C. or higher, more preferably 25 ° C.
  • the ratio of the compound (SO—S) to the whole solvent (SO) is preferably 50 mol% or more, more preferably 60 mol%, further preferably 70 mol% or more, and even 100 mol%.
  • Examples of compounds (SO-S) include ethylene carbonate (EC), N-methyloxazolidone, N, N-dimethylimidazolidinone, sulfolane (SL), dimethyl sulfone, malononitrile, succinonitrile, and dimethyl oxalate. Can be mentioned. Even if the compound (SO—S) is solid at room temperature, it can be dissolved by mixing with a salt to form a liquid and form an electrolytic solution.
  • an organic solvent having a high boiling point and / or water, or a mixed solvent containing an organic solvent having a high boiling point and / or water in a high ratio can be used as the solvent (SO).
  • the boiling point of such a high boiling point organic solvent can be preferably 130 ° C. or higher, more preferably 160 ° C. or higher, and even more preferably 200 ° C. or higher.
  • the upper limit of the boiling point is not particularly limited, but may be, for example, 350 ° C. or lower.
  • organic solvents having a high boiling point include ⁇ -butyrolactone, propylene carbonate, ethylene carbonate (EC), N-methyloxazolidone, N, N-dimethylimidazolidinone, dimethylsulfone (DMS), sulfolane (SL), and dimethyl.
  • examples include sulfone, malononitrile, succinonitrile, dimethyl malonate, dimethyl oxalate, diglime, triglime, tetraglime, and mixtures thereof.
  • a flame-retardant solvent may be used in addition to or instead of an organic solvent having a high boiling point.
  • flame-retardant solvents are trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, trimethyl phosphite, triethyl phosphite, tripropyl phosphite, tributyl phosphite, phosphoric acid. Examples include triphenyl, triphenyl phosphite, and phosphazene-containing compounds. Further examples of flame-retardant solvents include substituents having substituents on some of the hydrocarbon chains of the various compounds.
  • substituents include halogen atoms such as fluorine atom, chlorine atom and bromine atom.
  • the flame retardant is a phosphoric acid ester or a phosphite ester
  • the alkyl group is halogen-substituted because the flame retardant effect is high.
  • Specific examples of the phosphazene-containing compound include monoethoxypentafluorocyclotriphosphazene, diethoxytetrafluorocyclotriphosphazene, and monophenoxypentafluorocyclotriphosphazene.
  • the solvent (SO) contains a flame-retardant solvent
  • the content ratio of the flame-retardant solvent to the entire solvent (SO) can be 0.5 to 20% by mass.
  • the solvent (SO) comprises a cyclic carbonate.
  • the irreversible capacity at the time of initial charging of the negative electrode can be obtained by containing the cyclic carbonate as the solvent (SO) in the electrolytic solution.
  • the cyclic carbonate are ethylene carbonate, vinylene carbonate, vinylethylene carbonate, and compounds having a structure thereof.
  • a preferable solvent examples include acetonitrile, ethyl methyl carbonate, ethylene carbonate, sulfolane, dimethyl sulfone, gamma butyrolactone, and fluoro.
  • examples thereof include ethylene carbonate, succinonitrile, N-methyloxazolidone, N, N-dimethyloxazolidinone, trimethyl phosphate, and mixtures thereof.
  • the electrolytic solution of the present invention may contain a liquid compound having a molecular weight of more than 1000 and less than 100,000 in addition to the solvent (SO).
  • the ratio of the cation (C) in the entire electrolytic solution is preferably 2.5 mol / L or more.
  • the content ratio of the solvent (SO) to the cation (C) is within a specific range. That is, the content ratio of the solvent (SO) to 1 mol of the cation (C) is 0.5 mol or more, preferably 1 mol or more, more preferably 1.5 mol or more, while 4 mol or less, preferably 3. It is 5 mol or less, more preferably 3.0 mol or less.
  • the content ratio of the solvent (SO) to the cation (C) is a value larger than the lower limit, the ionic conductivity can be increased and the performance of the electrochemical device can be easily improved.
  • the volatility, flame retardancy, and oxidation resistance of the electrolytic solution can be improved.
  • Polymer (P) Polymer (P), a soluble polymer.
  • the solubility of the polymer (P) as used herein means that the polymer (P) remains dissolved in the electrolytic solution under the temperature and pressure conditions from the production of the electrolytic solution to the production of the electrochemical device using the electrolytic solution. More specifically, when the polymer (P) is added to the solvent (SO) to prepare a solution at normal temperature and pressure, for example, 25 ° C. and 1 atm, at least 1% by mass of the polymer (P) is contained in the solution.
  • a polymer can be a soluble polymer if it can be kept in a dissolved state.
  • the polymer (P) has a mass average molecular weight of more than 10,000, preferably 100,000 or more, more preferably 200,000 or more, even more preferably 300,000 or more, and even more preferably 400,000 or more.
  • the upper limit of the mass average molecular weight can be preferably 10 million or less, more preferably 3 million or less.
  • polymer (P) examples include polyether-based polymers, acrylic-based polymers, polyacrylonitrile-based polymers, polyoxazoline-based polymers, aliphatic polycarbonate-based polymers, and mixtures thereof. More specific examples include polyethylene oxide, ethylene oxide copolymer, side chain ethylene oxide polymer, hydrin rubber, polyvinyl acetate, vinyl chloride / vinyl acetate copolymer, poly2-ethyl-2-oxazoline, and poly2.
  • the polymer (P) preferably has a hetero element in the main chain.
  • the main chain structure having a hetero element include -O- and -N-.
  • Polymers with heteroelements in the main chain have a high affinity for the solvent (SO) and therefore tend to be soluble in the solvent (SO) in the production of electrolytes at low temperatures and with low power. It is preferable because the polymer (P) can be dissolved at a high concentration.
  • preferable polymers include ethylene oxide-based polymers and oxazoline-based polymers.
  • the polymer (P) is more preferably a copolymer.
  • the copolymer tends to have lower crystallinity than the homopolymer, and therefore tends to be more easily dissolved in the solvent (SO) in the production of the electrolytic solution, and the polymer (P) itself tends to be It is particularly preferable because it is less likely to crystallize and precipitate in the electrolytic solution.
  • preferable copolymers include, for example, a polyether-based copolymer such as an ethylene oxide-propylene oxide copolymer, and both (2-ethyl-2-oxazoline)-(2-methyl-2-oxazoline). Examples thereof include oxazoline-based copolymers such as polymers.
  • the content ratio of the polymer (P) in the electrolytic solution of the present invention is 0.5% by mass or more, preferably 1% by mass or more, more preferably 2% by mass or more, preferably 40% by mass or less, more preferably. Is 20% by mass or less.
  • a high salting out suppression effect can be obtained.
  • a large decrease in ionic conductivity can be suppressed, and the liquid state of the electrolytic solution can be easily maintained.
  • the electrolytic solution of the present invention has a viscosity of preferably 500 cP or more, more preferably 700 cP or more, while preferably 10 million cP or less, more preferably 1 million cP or less.
  • a viscosity of the electrolytic solution at 25 ° C. is at least the above lower limit, a high salting out suppression effect can be obtained.
  • a precipitate is formed as a result of salting out, its size can be reduced.
  • such an effect is due to the impediment of solute migration during the salting out process in highly viscous solutions, resulting in precipitation without forming large clumps. It is considered to be.
  • the viscosity of the electrolytic solution is at least the above lower limit, the exudation of the electrolytic solution from the electrode is suppressed, which is effective in the operation stability of the electrochemical device and the suppression of liquid leakage.
  • the viscosity exceeds 700 cP, the time required for injecting liquid into the porous electrode becomes considerably long, so that an electrode manufacturing method in which the liquid injection step is not performed may be selected.
  • the viscosity of the electrolytic solution is not more than the upper limit, the fluid state of the electrolytic solution can be easily maintained.
  • the electrolytic solution can be used as the electrolytic solution of the present invention even if it loses its fluidity and is in a gelled state.
  • the ionic conductivity of the electrolytic solution at 25 ° C. is preferably 10 -4 S / cm or more.
  • the upper limit of the ionic conductivity is not particularly limited, but may be, for example, 10 -1 S / cm or less.
  • the electrolytic solution has fluidity, and the viscosity may be controlled within the above range by raising the processing temperature.
  • the viscosity in the present invention is defined by using an EMS viscometer (EMS-1000S, manufactured by Kyoto Electronics Industry Co., Ltd.) at a rotation speed of 1000 rpm so that the composition of the electrolytic solution does not change under closed conditions and moisture in the air does not get mixed in. Refers to the measured viscosity.
  • the viscosity measured by this measuring method is basically the same as the value measured in accordance with JIS Z8803. If it is difficult to measure at the operating temperature because the viscosity of the electrolytic solution is too high, it can be seen that the viscosity at 25 ° C. is higher than that by raising the temperature to the measurement. It is also possible to measure several points at a high temperature and extrapolate to the operating temperature. If the measurement is still difficult, another viscometer compatible with high viscosity may be used to check the deviation from the viscosity measured by this device before use.
  • the electrolytic solution of the present invention may be produced by any production method, but usually, one or more kinds of materials containing a cation (C) and an anion (A) in a solvent (SO), and two or more kinds of materials, and It can be produced by a production method including a step of dissolving the polymer (P).
  • a production method including a step of dissolving the polymer (P).
  • the material containing the cation (C) and the anion (A) it is preferable to use a salt in which these are paired from the viewpoint of ease of operation and the like.
  • a salt in which these are paired include salts in which any one or more of the above-mentioned specific examples of the cation (C) and any one or more of the above-mentioned specific examples of the anion (A) are paired. Be done. The amount of salt added can be adjusted so that the relative ratio of the solvent (SO) and the cation (C) of the obtained electrolytic solution becomes a desired value.
  • a salt in a crystalline state is usually used. The smaller the particle size of the crystal, the more preferable it is from the viewpoint of promoting dissolution.
  • the crystal size can be preferably 5 mm or less, more preferably 1 mm or less, and even more preferably 500 ⁇ m or less.
  • the size of the crystal referred to here the length in the longest direction can be adopted by observing the crystal from various angles.
  • the lower limit of the crystal size is not particularly limited, but may be, for example, 0.5 ⁇ m or more.
  • the order in which the solute (salt, polymer (P), etc.) is dissolved in the solvent (SO) is not particularly limited, and may be any order in which easy dissolution is achieved.
  • the anion (A) includes the above-mentioned first anion (A1) (that is, the anion having the highest molar content) and the second anion (A2) (that is, the anion having the next highest molar content).
  • a dilute solution may be prepared once, and then a part of the solvent may be distilled off to concentrate the concentration. That is, the time required for the salt and the polymer (P) to dissolve in the solvent (SO) at a high concentration is long, while the time required for the salt and the polymer (P) to dissolve at a low concentration is short, and the solvent can be easily distilled off. In some cases, it is possible to shorten the time required for producing the electrolytic solution by preparing a dilute solution once, distilling off a part of the solvent, and concentrating the concentration.
  • the concentration of the solute in the dilute solution once prepared can be, for example, 1/20 to 1/2 of the desired concentration in the electrolytic solution, more preferably 1/15 to 1/5.
  • the plastic composition of the present invention is a plastic composition for an electrochemical device containing the electrolytic solution and the solid substance of the present invention and having plasticity.
  • a solid is an object that can remain solid in a plastic composition under temperature and pressure conditions during use of the electrochemical device. More specifically, it can be an object that can maintain a solid state in a plastic composition at normal temperature and pressure, for example, 25 ° C. and 1 atm.
  • the plastic composition is a solid having plasticity as a whole, but in reality, it is a mixture of a solid and an electrolytic solution which is a liquid, so that it can be separated and recovered.
  • the plastic composition may contain only one kind of solid matter, or may contain a plurality of kinds of solid matter.
  • the plastic composition becomes a solid having plasticity as a whole by containing the solid substance and the electrolytic solution which is a liquid when not mixed with the solid substance.
  • the solid may specifically include an active material and / or an inorganic solid electrolyte (SE).
  • the active material is a substance that can function as an electrode active material for a positive electrode or a negative electrode in an electrochemical device.
  • Specific examples of the active material include lithium oxide such as lithium cobalt oxide, graphite, activated carbon, graphene, silicon and its oxide, tin and its oxide, sulfur, an organic metal complex, MOF (Metal-Organic-Flamework), and the like.
  • MOF Metal-Organic-Flamework
  • the active material preferably has a particulate shape, more preferably a volume average particle diameter of 30 ⁇ m or less, and even more preferably a 20 ⁇ m or less shape.
  • the lower limit of the particle size is not particularly limited, but may be, for example, 0.05 ⁇ m or more.
  • the contact boundary area with other components of the plastic composition is increased, the strength of the obtained electrode can be increased, and the electrode strength is increased.
  • the ability to carry out an electrochemical reaction can be enhanced.
  • the volume average particle size of the active material and other particles can be measured according to JIS K8825.
  • the inorganic solid electrolyte (SE) is a substance that can function as a component for enhancing the ionic conductivity of the insulating layer in the insulating layer in the electrochemical device, that is, the layer that separates the positive electrode and the negative electrode. Since the inorganic solid electrolyte (SE) is often nonflammable or has low combustibility, the higher the ratio of the inorganic solid electrolyte (SE) to the electrolytic solution, the higher the safety of the electrochemical device.
  • the blending ratio of the inorganic solid electrolyte (SE) per total volume of the electrolytic solution and the inorganic solid electrolyte (SE) is preferably 10 vol% or more, more preferably 30 vol% or more, still more preferably 50 vol% or more, particularly preferably. Is 70 vol% or more.
  • the upper limit of the preferable blending ratio of the inorganic solid electrolyte (SE) per the total volume of the electrolytic solution and the inorganic solid electrolyte (SE) is not particularly limited, but may be, for example, 99 vol% or less.
  • the inorganic solid electrolyte include a lithium ion conductive metal oxide-based inorganic solid electrolyte (SE) and a sodium ion conductive inorganic solid electrolyte (SE).
  • lithium ion conductive metal oxide-based inorganic solid electrolytes include LAGP (Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 ) and LLZ (Li 7 La 3 Zr 2 O).
  • Examples of sodium ion conductive inorganic solid electrolytes (SE) include ⁇ -alumina, Na 2.99 Ba 0.005 O 1 + x Cl 1-2x , and lithium ion conductive sulfide-based inorganic solid electrolytes ( SE) includes LPS (Li 7 P 3 S 11 ), LGPS (Li 10 GeP 2 S 12 ), and Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 .
  • Inorganic solid electrolytes (SEs) are usually crystalline solid particles with these compositions. Further examples of the inorganic solid electrolyte (SE) include crystals in which a small amount of other elements are added to the above composition, and analogs in which the above composition is slightly modified.
  • the intragranular ionic conductivity of the inorganic solid electrolyte (SE) is preferably 10-5 S / cm or more, more preferably 10 -4 S / cm or more, and even more preferably 10 -3 S / cm. It is preferably 10-2 S / cm or more, and most preferably 10-2 S / cm or more.
  • the upper limit of the particle within the ion conductivity of the inorganic solid electrolyte (SE) is not particularly limited, for example, be not more than 10 0 S / cm.
  • the inorganic solid electrolyte (SE) preferably has a particulate shape, more preferably a volume average particle diameter of 20 ⁇ m or less, and even more preferably a shape of 10 ⁇ m or less.
  • the lower limit of the volume average particle size of the inorganic solid electrolyte (SE) is not particularly limited, but may be, for example, 0.01 ⁇ m or more.
  • the inorganic solid electrolyte (SE) can also be a component of a plastic composition for forming an electrode sheet.
  • the inorganic solid electrolyte (SE) is suspended in the electrolytic solution, and the suspension is added as a component of the plastic composition by producing a plastic composition by mixing the suspension with other components. sell.
  • the particle size of the inorganic solid electrolyte (SE) is preferably smaller than that of the active material.
  • the plastic composition may further contain fibrous material.
  • the fibrous material can form part of the solid in plasticity.
  • the fibrous substance may also have a function of an active material or an inorganic solid electrolyte (SE).
  • SE solid electrolyte
  • fibrous substances include polytetrafluoroethylene fibers, cellulose nanofibers, carbon nanotubes, carbon nanofibers, and combinations thereof.
  • the carbon nanotubes are particularly preferably single-walled carbon nanotubes.
  • the fiber diameter of the fibrous substance is preferably nano-sized (maximum diameter is less than 1 ⁇ m).
  • the average fiber diameter of the fibrous substance is preferably 0.4 nm or more, preferably 500 nm or less, and more preferably 100 nm or less.
  • the assembly of the plastic composition is improved, and a molded product having excellent strength can be obtained.
  • the fiber diameter can be measured using a microscope such as a scanning electron microscope or a transmission electron microscope, and the arithmetic mean can be obtained.
  • polytetrafluoroethylene fiber is used as the fibrous substance, it can be molded into such a fibrous shape in the process of manufacturing the plastic composition.
  • particulate polytetrafluoroethylene is added into the system, and a shearing force is further applied by kneading or the like to transform the shape into nano-sized fibers in the system. It can be transformed.
  • the fiber length of the fibrous substance has a fiber length equal to or larger than the volume average particle size of a solid substance other than the fibrous substance.
  • the fiber length of the fibrous substance is more preferably half or more of the average thickness of the member. It is more preferably equal to or greater than the average thickness, and may be equal to or greater than the thickness of the member.
  • the solid contains a particulate solid and a fibrous substance
  • the fibrous substance exists in a state of bridging the particles of the particulate solid. More specifically, when observing the electrodes of the present invention with a microscope, it is preferable that there are 10 or more bridges in a 100 ⁇ m square field of view, and more preferably 20 or more bridges. If volatile organic compounds are present and unsuitable for observation, it is preferable to perform observation after drying. By having such a bridging structure, the assembly of the plastic composition is further improved, and a molded product having further excellent strength can be obtained.
  • the electrode sheet for an electrochemical device of the present invention and the insulating layer for an electrochemical device of the present invention include the plastic composition of the present invention.
  • the method for producing an electrode sheet for an electrochemical device of the present invention includes molding the plastic composition of the present invention into the shape of the electrode sheet, and the method for producing an insulating layer for an electrochemical device of the present invention is described above.
  • the present invention comprises molding the plastic composition of the present invention into the shape of an insulating layer.
  • the electrode sheet can form an electrode by superimposing it on an appropriate layered current collector.
  • a metal foil body such as a copper foil, an aluminum foil, or a stainless steel foil can be used.
  • the shape of the electrode sheet and the insulating layer is not particularly limited and can be a desired shape. From the viewpoint of obtaining a small-sized and high-performance electrochemical device, the electrode sheet and the insulating layer preferably have a thin layered shape. In the case of a layered shape, the thickness is preferably 5 to 200 ⁇ m. By setting the thickness to the above lower limit or more, independence can be easily obtained. By setting the thickness to the above upper limit or less, a small and high-performance electrochemical device can be easily formed.
  • the electrode sheet for an electrochemical device of the present invention and the insulating layer for an electrochemical device of the present invention preferably have independence.
  • the self-supporting property means that the shape can be maintained without being torn even when it is not supported by a support such as a base film.
  • the electrochemical device of the present invention includes the electrode sheet for the electrochemical device of the present invention, the insulating layer for the electrochemical device of the present invention, or both of them.
  • the electrode sheet can be provided in the electrochemical device in a state in which the electrodes are formed by superimposing the electrode sheet on an appropriate layered current collector such as the one described above.
  • the insulating layer may be provided between a plurality of electrodes (for example, a positive electrode and a negative electrode) in the electrochemical device.
  • Examples of the electrochemical device of the present invention include primary batteries such as lithium primary batteries; lithium ion secondary batteries, lithium metal secondary batteries, sodium ion secondary batteries, potassium ion secondary batteries, magnesium secondary batteries, and aluminum secondary batteries.
  • Non-aqueous secondary batteries such as secondary batteries; air batteries; solar cells such as dye-sensitized solar cells; capacitors such as electric double layer capacitors and lithium ion capacitors; electrochromic display devices; electrochemical light emitting elements; electric double layer transistors And electrochemical actuators.
  • the electrochemical device of the present invention is a battery, specifically a lithium ion secondary battery. More specifically, a positive electrode current collector such as aluminum foil, a positive electrode sheet, a separator, a negative electrode sheet, and a negative electrode current collector such as copper foil are superposed in this order to form a multi-layered product constituting a battery unit. Batteries can be manufactured by inserting them into a suitable exterior, injecting electrolyte if necessary, and sealing the openings in the exterior.
  • the electrode sheet or the insulating layer of the present invention is adopted as any one or more of the positive electrode sheet, the negative electrode sheet and the separator, and the electrolytic solution and the active material of the lithium ion secondary battery are used as the electrolytic solution and the active material constituting them.
  • a lithium ion secondary battery can be constructed by using a material suitable for the material. Further, when the electrolytic solution is injected into the exterior, the electrolytic solution of the present invention may be used as the electrolytic solution.
  • a step of advancing a reaction such as a cross-linking reaction with the polymer (P) constituting them may be performed in a step after the electrode sheets and / or the insulating layers are laminated. More specifically, after sealing the opening of the exterior, the cross-linking reaction of the polymer (P) can be allowed to proceed by applying some energy from the outside of the exterior. Examples of application of such energy include heating and irradiation of energy rays such as visible light, electron beam, and radiation. Of these, those that can be applied through the exterior can be appropriately selected. Further, in order to achieve such a cross-linking reaction, the electrolytic solution may contain a component such as a polymerization initiator that advances the cross-linking reaction of the polymer (P) in response to the application of such energy.
  • a component such as a polymerization initiator that advances the cross-linking reaction of the polymer (P) in response to the application of such energy.
  • the electrochemical device of the present invention is a bipolar device, and specifically, it may be a bipolar battery.
  • a bipolar device is a device having electrodes having a bipolar structure.
  • An electrode having a bipolar structure is an electrode in which a positive electrode material is provided on one surface of a current collector and a negative electrode agent is provided on the other surface.
  • a structure in which a plurality of bipolar electrodes are stacked a structure in which a plurality of device units are stacked in series can be obtained in one device.
  • a bipolar type battery may have a structure in which a plurality of battery units are stacked in series in one battery pack.
  • a positive electrode current collector such as an aluminum foil, a positive electrode sheet, an insulating layer sheet, a negative electrode sheet, an intermediate foil body such as a stainless steel foil, a positive electrode sheet, and an insulating layer.
  • a battery including a sheet, a negative electrode sheet, and a negative electrode current collector such as a copper foil stacked in this order can be mentioned.
  • two battery units are stacked in series, but one or more combinations of "intermediate foil body such as stainless steel foil, positive electrode sheet, insulating layer sheet, negative electrode sheet" are provided. It is also possible to take a structure in which one or more battery units are stacked in series.
  • LiFSI Lithium bis (fluorosulfonyl) imide (Li + (N (SO 2 F) 2 ) - )
  • LiTFSI Lithium bis (trifluoromethanesulfonyl) imide (Li + (N (SO 2 CF 3 ) 2 ) - )
  • LiBF 4 lithium borofluoride
  • LiDFOB lithium difluoro (oxalato) borate (Li + B (R X) 3) -, two of R X is -F, 1 single is -O-CO-CO-O-)
  • Mg (TFSI) 2 Magnesium bis (trifluoromethanesulfonyl) imide (Mg 2+ ((N (SO 2 CF 3 ) 2 ) - ) 2 )
  • AN acetonitrile
  • EMC ethyl methyl carbonate
  • Precipitation was observed in all examples other than Production Example 12 and Production Example 13.
  • the shape of the precipitate was an angular shape and a needle-like shape, and the dimensions were approximately 1 mm or more. Therefore, when these mixed solutions are used in an electrochemical device, it is considered that the generation of precipitates adversely affects the function of the device.
  • Production Example 14 is an example in which the cation in Production Example 12 and the cation in Production Example 13 are mixed. Although precipitation was not observed in Production Example 12 and Production Example 13, precipitation was observed in Production Example 14, so that precipitation is likely to occur when a plurality of types of cations are mixed. I understand.
  • step (ii) When the polymer (PA) and the polymer (PB) were used, a uniform solution was obtained by allowing to stand for 24 hours in all the examples in the step (i). On the other hand, in step (ii), a uniform solution was obtained by stirring for 30 minutes in all the examples. Furthermore, the viscosity of the obtained electrolytic solution was measured. The viscosity was measured using an EMS viscometer (EMS-1000S, manufactured by Kyoto Electronics Manufacturing Co., Ltd.) at a rotation speed of 1000 rpm so that the composition of the electrolytic solution did not change under closed conditions and moisture in the air was not mixed.
  • EMS viscometer EMS-1000S, manufactured by Kyoto Electronics Manufacturing Co., Ltd.
  • step (i) When the polymer (PC) was used, in any of the examples in the step (i), a transparent insoluble matter remained after standing for 24 hours. Therefore, when the mixture was allowed to stand for another 150 hours, a uniform solution was obtained. was gotten. On the other hand, in step (ii), a uniform solution was obtained by stirring for 3 hours in all the examples.
  • step (i) When the polymer (PE) was used, in step (i), dissolution hardly proceeded even after standing for 24 hours, and dissolution did not proceed even after standing for 150 hours. Therefore, step (i) The electrolytic solution was not prepared by. On the other hand, in step (ii), a uniform solution was obtained by stirring for 20 hours.
  • step (i) When the polymer (PD) was used, and when the polymer (PF) was used, in step (i), dissolution hardly proceeded after standing for 24 hours, and the mixture was allowed to stand for another 150 hours. However, since the dissolution did not proceed, the electrolytic solution was not prepared by the step (i). On the other hand, in step (ii), a uniform solution was obtained by stirring for 3 hours.
  • Example 2 Lithium ion secondary battery
  • the planetary mixer is charged with 100 parts by mass of lithium cobaltate (manufactured by Nippon Kagaku Kogyo Co., Ltd., product name "Celseed C") as an active material and 3 parts by mass of acetylene black as a conductive filler, and the solid content concentration becomes 90% by mass.
  • Lithium ion secondary battery (2-1. Positive electrode)
  • the planetary mixer is charged with 100 parts by mass of lithium cobaltate (manufactured by Nippon Kagaku Kogyo Co., Ltd., product name "Celseed C”) as an active material and 3 parts by mass of acetylene black as a conductive filler, and the solid content concentration becomes 90% by mass.
  • N-methylpyrrolidone was added, and the mixture was stirred for 20 minutes and mixed.
  • a positive electrode (grain: 10 mg / cm 2 , density 3.3 g / cm 3 ) was produced according to a general method for producing an electrode of a lithium ion battery.
  • (2-2. Lithium-ion secondary battery) The positive electrode obtained in (2-1), a PTFE membrane filter having a thickness of 100 ⁇ m as a separator (manufactured by Merck, product name “Omnipore JMWP04700”), and a lithium metal foil having a thickness of 100 ⁇ m as a negative electrode are superposed in this order. , A multi-layered electrode for a lithium ion secondary battery was constructed.
  • a polymer (PB) was added to this mixed solution so as to have a concentration of 0.5% by mass, and the mixture was dissolved to obtain an electrolytic solution.
  • An electrode multi-layered material was inserted into an aluminum laminated exterior material for a battery, an electrolytic solution was injected, and the opening of the exterior was closed to seal the contents to obtain a lithium secondary battery.
  • the obtained secondary battery When the obtained secondary battery was charged / discharged at a speed of 0.2 C in an environment of 25 ° C., it showed a discharge capacity of 140 mAh / g in a voltage range of 4.2-3.0 V, and was charged / discharged. It was possible to repeat.
  • Example 3-1 Evaluation of flame retardancy
  • a polymer (PA) was added to this mixed solution so as to have a concentration of 10% by mass, and the mixture was dissolved to obtain an electrolytic solution.
  • the ratio of trimethyl phosphate in this electrolytic solution was 15.4% by mass.
  • This electrolytic solution corresponds to a part of the DMS of the electrolytic solution of Example 1-9 replaced with TMP.
  • Example 3-2 Evaluation of flame retardancy
  • the same flammability evaluation as (3-1-2) of Example 3-1 was evaluated. went. It was ignited by keeping the flame on for 4 seconds. However, the fire was extinguished spontaneously 2 seconds after ignition. When the fire was extinguished and the flame was applied again, it ignited again, but it was naturally extinguished 2 seconds after the ignition as in the first time. From this, it was found that although this electrolytic solution ignites, the entire amount does not burn and exhibits self-extinguishing property.
  • Example 4 Lithium-ion secondary battery using a plastic composition
  • a polymer (PB) was added to this mixed solution so as to have a concentration of 5% by mass, and the mixture was dissolved to obtain an electrolytic solution.
  • (4-3. Lithium-ion secondary battery) An aluminum foil with a thickness of 25 ⁇ m, a positive electrode sheet obtained in (4-2), a separator impregnated with the electrolytic solution of (4-1) (manufactured by Polypore, product name “Cellguard 2325”), and a thickness of 100 ⁇ m as a negative electrode.
  • the Li metal foil and the copper foil having a thickness of 25 ⁇ m were superposed in this order to obtain an electrode multilayer product for a lithium ion secondary battery.
  • the contents are vacuum-sealed by inserting the electrode multi-layered material into the aluminum-laminated exterior for batteries, degassing in vacuum for 1 minute, and then heat-sealing the opening of the exterior while maintaining the vacuum degassed state.
  • a lithium ion secondary battery was manufactured. No weight loss was observed before and after the vacuum seal. Immediately after production, this battery was charged and discharged at a rate of 0.1 C in an environment of 25 ° C., and showed a discharge capacity of 140 mAh / g in the voltage range of 4.2-3.0 V, and repeated charging and discharging were repeated. It was possible. When the change in capacity was measured by repeating charging and discharging of this battery, the capacity of 90% of the initial capacity was maintained when charging and discharging were repeated up to 200 cycles.
  • Example 5 Ionic conductivity of the electrolytic solution of the present invention
  • the polymer (PA) was added to the electrolytic solution of the prior art prepared in Comparative Example 2 (C2-1) so as to have a concentration of 5% by mass and dissolved to prepare the electrolytic solution of the present invention. ..
  • the ionic conductivity of this electrolytic solution was measured by the same measuring method as in Comparative Example 2 (C2-2). As a result, the ionic conductivity was 1.70 ⁇ 10 -3 S / cm, which was higher than that without the polymer added.
  • This solid electrolyte has an ionic conductivity of 1.5 ⁇ 10 -3 S / cm or more in the uncrushed crystalline state, while the ionic conductivity of the powdered compressed product is applied at a high pressure of 10 MPa. Although it was in a compressed state, it was a low value as described above. It is considered that this is due to the incomplete contact between the powders even in such a pressurized state.
  • Example 6 Ionic conductivity of an insulating layer containing an inorganic solid electrolyte powder
  • 100 mg of the electrolytic solution of the present invention obtained in Example 5 and 10 mg of PTFE fiber as a fibrous substance were weighed, and in addition, the same inorganic solid electrolyte as that used in Comparative Example 3 was added to the inorganic solid in the entire composition.
  • the electrolyte was weighed so as to have a volume fraction of 70% by volume, and these were kneaded well to obtain a set of clay-like plastic composition. This plastic composition had independence and plasticity.
  • This plastic composition was formed into a sheet having a thickness of 200 ⁇ m, punched into a disk shape having a diameter of 12 mm, sandwiched between two disk-shaped SUS plates, and pressurized at a pressure of 0.01 MPa. This pressurized state was maintained, and the ionic conductivity at 25 ° C. was measured. The measurement was performed by the AC impedance method in the frequency range of 1M to 0.1Hz. As a result, the ionic conductivity was 2.29 ⁇ 10 -3 S / cm, which was higher than the ionic conductivity measurement result for the electrolytic solution of Example 5. From this, it is considered that the main component of ionic conduction in this system is the solid electrolyte, and the electrolytic solution acts as an improving agent for the interfacial contact property of the solid electrolyte.
  • PB polymer
  • This plastic composition was thinly rolled to obtain a positive electrode sheet having a thickness of 80 ⁇ m, a thickness accuracy of ⁇ 3%, and a density of 3.9 g / cm 3. Even if this sheet had a rectangular shape of 4 cm square, it could be pinched with tweezers and had high independence.
  • Lithium-ion secondary battery An aluminum foil with a thickness of 25 ⁇ m, a positive electrode sheet obtained in (7-2), an insulating layer sheet obtained in (7-4), a negative electrode sheet obtained in (7-3), and copper having a thickness of 25 ⁇ m.
  • the foils were superposed in this order to obtain an electrode multilayer product for a lithium ion secondary battery.
  • the contents are vacuum-sealed by inserting the electrode multi-layered material into the aluminum-laminated exterior for batteries, degassing in vacuum for 1 minute, and then heat-sealing the opening of the exterior while maintaining the vacuum degassed state. Then, a lithium ion secondary battery was manufactured. No weight loss was observed before and after the vacuum seal.
  • this battery was charged and discharged at a rate of 0.1 C in an environment of 25 ° C., and showed a discharge capacity of 140 mAh / g with respect to the positive electrode weight in the voltage range of 4.2-3.0 V. It was possible to repeat charging and discharging.
  • Example 8 Evaluation of changes in state due to volatilization of electrolytic solution
  • the polymer (PB) was added to the electrolytic solution of the prior art so as to be 5% by mass and dissolved to obtain the electrolytic solution of the present invention.
  • Each of the electrolytic solution of the prior art and the electrolytic solution of the present invention was weighed in a 1 g glass dish and left in a draft of a dry room having a temperature of 18 ° C. and a dew point of ⁇ 40 ° C. or lower.
  • weight loss was confirmed in both electrolytic solutions, and it was considered that 40% of acetonitrile in the electrolytic solutions had volatilized.
  • the formation of crystals was confirmed in the electrolytic solution of the prior art, but not in the electrolytic solution of the present invention.
  • no salt precipitation was still confirmed. From this, it was found that the electrolytic solution of the present invention is less likely to cause salt precipitation even if the solvent is reduced in the long-term use of the electrochemical device.
  • Example 9 Electrochemical device having a bipolar structure
  • a 25 ⁇ m thick aluminum foil, a positive electrode sheet, an insulating layer sheet, a negative electrode sheet, a 20 ⁇ m thick stainless steel foil, a positive electrode sheet, an insulating layer sheet, a negative electrode sheet, and a 25 ⁇ m thick copper foil are laminated in this order to be bipolar.
  • An electrode multilayer product for a battery was obtained.
  • the positive electrode sheet, the insulating layer sheet, and the negative electrode sheet include the positive electrode sheet obtained in (7-2) of Example 7, the insulating layer sheet obtained in (7-4) of Example 7, and the (7-4) of Example 7.
  • the negative electrode sheet obtained in 7-3) was used.
  • the manufactured bipolar battery has a configuration in which two cells are connected in series in the same exterior, and since the fluidity of the electrolytic solution is low, the electrolytic solution does not entangle inside, and 8.4 to 6 V. It was possible to charge and discharge in the voltage range up to.
  • Example 10 Production of an electrolytic solution in which the second salt is dissolved first
  • LiFSI as a first salt containing a first anion
  • LiDFOB as a second salt containing a second anion
  • a second salt of 0.5 mm Albanyl (193.8 mg) was added to ethylene carbonate 20 mm Albanyl (1.761 g) and stirred at 50 ° C. to completely dissolve.
  • 9.5 mmol (1.871 g) of the first salt was added thereto and stirred, and the first salt was completely dissolved in 1 hour to obtain a mixed solution.
  • the polymer (PB) was further added to and dissolved in this mixed solution so as to have a concentration of 5% by weight, and the electrolytic solution of the present invention could be obtained.
  • Example 11 Production of an electrolytic solution including a step of distilling off a solvent
  • An electrolytic solution having the same composition as in Example 1-2 was prepared by mixing the components at once. That is, 187.1 g (1 mol) of LiFSI, 41.1 g (1 mol) of acetonitrile, and 4.66 g of the polymer (PB) were weighed in a glass flask and stirred at room temperature. It took about 3 hours to completely dissolve the ingredients.
  • the amount of acetonitrile was increased 10 times, and 187.1 g (1 mol) of LiFSI, 411 g (10 mol) of acetonitrile, and 4.66 g of the polymer (PB) were weighed in a glass flask and at room temperature. After stirring, a solution in which all the components were completely dissolved was obtained in about 15 minutes. When this solution was heated in an oil bath at 90 ° C. to distill off acetonitrile, 9 mol of acetonitrile could be distilled off after 30 minutes, and as a result, the electrolytic solution of the present invention was obtained. Was made. The total time required for dissolution and distillation was 45 minutes, and the electrolytic solution of the present invention could be produced in a shorter time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)

Abstract

1~3価の金属イオンであるカチオン(C)と、アニオン(A)と、分子量1000以下の化合物である溶媒(SO)と、質量平均分子量が1万超の、溶解性の重合体(P)とを含む、電気化学デバイス用の電解液であって、前記カチオン(C)1モルに対する前記溶媒(SO)の含有割合が0.5~4モルであり、前記重合体(P)の含有割合が0.5質量%以上である、電解液。当該電解液を含む可塑性組成物、電極シート、絶縁層、電気化学デバイス、およびそれらの製造方法も提供される。

Description

電気化学デバイス用電解液、可塑性組成物、用途及び製造方法
 本発明は、電気化学デバイス用電解液、可塑性組成物、電気化学デバイス用電極シート、電気化学デバイス用絶縁層、これらの製造方法、及び電気化学デバイスに関する。
 電気化学デバイスの構成要素として用いる電解液に関し、従来最適だと思われていた塩濃度に比べて極端に高い塩濃度を有する、所謂高濃度電解液が知られている。高濃度電解液は、従来の希薄な電解液に比べて、耐電圧性の向上、燃焼性の低下、輸率の向上等といった効果を有するものとしうる可能性が報告されている(特許文献1及び非特許文献1)。したがって、このような電解液を電気化学デバイスに適用した場合、デバイスの長寿命化、難燃焼化、高電位化といった効果が得られることが期待される。
特開2015-133312号公報
Electrochemistry, 82(12),1085-1090(2014)
 高濃度電解液は、その塩濃度の極端な高さゆえ、塩析を生じ易く、かつ、一旦塩析により生じた塩の結晶が再溶解されにくい。電気化学デバイス中の電解液において、そのような塩析が発生し、再溶解されず結晶の存在が維持された場合、電解液性能の低下、塩の結晶によるデバイスの破損等の問題が生じうる。特に、デバイスの輸送中や保管中においては、一時的に常用の温度よりはるかに低い温度環境にさらされ得る。また、電気化学デバイスの製造に先立って電解液中でそのような塩析が発生すると、濃度の変動、流動性の低下等が発生し、製造の妨げとなる。
 また、高濃度電解液は、従来の希薄な電解液に比べて高粘度である。従って、電気化学デバイスの製造にあたって、従来の電解液と同様に、デバイスの筐体内の空隙に注入するといった操作が困難である。
 したがって、本発明の目的は、耐電圧性の向上、燃焼性の低下、輸率の向上等といった、高濃度電解液の有利な効果を享受しつつ、塩析の発生が抑制された、電気化学デバイス用電解液、そのような電解液を容易に利用可能な態様とした、電気化学デバイスを構成するための材料、並びに、それらの製造方法を提供することにある。
 本発明のさらなる目的は、デバイスの長寿命化、難燃焼化、高電位化といった効果を得ることができ、且つ容易に製造可能な電気化学デバイス用電極シート、電気化学デバイス用絶縁層、それらの製造方法、及び電気化学デバイスを提供することにある。
 本発明者は、上記課題を解決すべく検討した結果、高濃度電解液に、さらに、特定の重合体を添加することにより、塩析を抑制することができることを見出した。
 そのような重合体を含む高濃度電解液は、さらに高い粘度を有することになるが、それに対する解決策として、本発明者はさらに、そのような高濃度電解液を、活物質等の固形物と混合し可塑性組成物とすることを着想した。即ち、電極等のデバイスの構成要素の製造にあたっては、かかる可塑性組成物を、所望の構成要素の形状に成形することにより、容易な製造を行うことが可能となる。これらの知見に基づき、本発明者は、本願発明を完成させた。
 すなわち、本発明は、以下の通りである。
 〔1〕 1~3価の金属イオンであるカチオン(C)と、
 アニオン(A)と、
 分子量1000以下の化合物である溶媒(SO)と、
 質量平均分子量が1万超の、溶解性の重合体(P)とを含む、電気化学デバイス用の電解液であって、
 前記カチオン(C)1モルに対する前記溶媒(SO)の含有割合が0.5~4モルであり、
 前記重合体(P)の含有割合が0.5質量%以上である、電解液。
 〔2〕 粘度が500cP以上である、〔1〕に記載の電解液。
 〔3〕 前記アニオン(A)が、ホウ素原子、フッ素原子、リン原子、又はこれらの2以上を含むアニオンである、〔1〕又は〔2〕に記載の電解液。
 〔4〕 前記アニオン(A)が、(B(Rn1-F)、(P(Rn2-F)、(B(Rn3、及びこれらの混合物からなる群より選択されるアニオンを含み、
 Rは、複数存在する場合は互いに同一であっても異なっていてもよい、一価の基又は二価の基であり、
 前記一価の基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、又は一価の有機エーテル基であり、
 前記二価の基は、アルキレン基、アルケニレン基、アルキニレン基、二価の有機エーテル基又はオキソ基であり、
 前記アルキル基、アルケニル基、アルキニル基、一価の有機エーテル基、アルキレン基、アルケニレン基、アルキニレン基、及び二価の有機エーテル基は、ハロゲン原子で置換されていてもよく、オキソ基で置換されていてもよく、鎖の一部にヘテロ原子が介在していてもよく、
 n1は、Rが全て一価である場合は3であり、Rのうち一つが二価であり他が一価である場合は2であり、
 n2は、Rが全て一価である場合は5であり、Rのうち一つが二価であり他が一価である場合は4であり、Rのうち二つが二価であり他が一価である場合は3であり、
 n3は、Rが全て一価である場合は4であり、Rのうち一つが二価であり他が一価である場合は3であり、Rのうち二つが二価である場合は2である、
 〔3〕に記載の電解液。
 〔5〕 前記アニオン(A)が、PF 、BF 、ジフルオロ(オキサラト)ボレートイオン、ビスオキサレートボレートイオン、及びこれらの混合物からなる群より選択されるアニオンを含む、〔4〕に記載の電解液。
 〔6〕 前記溶媒(SO)が、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリブチル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリプロピル、亜リン酸トリブチル、リン酸トリフェニル、亜リン酸トリフェニル、含ホスファゼン化合物、これらの化合物の炭化水素鎖の一部において置換基を有する置換化合物、及びこれらの混合物からなる群より選択される難燃性の溶媒を含む、〔1〕~〔5〕のいずれか1項に記載の電解液。
 〔7〕 前記重合体(P)が共重合体である、〔1〕~〔6〕のいずれか1項に記載の電解液。
 〔8〕 前記カチオン(C)が、2価又は3価の金属イオンを含む、〔1〕~〔7〕のいずれか1項に記載の電解液。
 〔9〕前記重合体(P)の質量平均分子量が10万以上である、〔1〕~〔8〕のいずれか1項に記載の電解液。
 〔10〕 〔1〕~〔9〕のいずれか1項に記載の電解液の製造方法であって、
 前記溶媒(SO)に、前記カチオン(C)及び前記アニオン(A)を含む1種又は2種類以上の材料、及び前記重合体(P)を溶解する工程を含む、製造方法。
 〔11〕 前記アニオン(A)は、第1のアニオン(A1)及び第2のアニオン(A2)を含み、
 前記第1のアニオン(A1)は、前記アニオン(A)中の、最も含有モル割合が大きいアニオンであり、
 前記第2のアニオン(A2)は、前記アニオン(A)中の、前記第1のアニオンに次いで含有モル割合が大きいアニオンであり、
 前記溶媒(SO)に、前記第2のアニオン(A2)を含む塩を添加する工程、及びその後に、第1のアニオン(A1)を含む塩を添加する工程を含む、〔10〕に記載の製造方法。
 〔12〕 前記溶媒(SO)に対して前記カチオン(C)及び前記アニオン(A)を含む塩を溶解させた後に、前記溶媒(SO)を留去することを含む、〔10〕又は〔11〕に記載の製造方法。
 〔13〕 〔1〕~〔9〕のいずれか1項に記載の電解液と固形物を含み、可塑性を有する、電気化学デバイス用の可塑性組成物。
 〔14〕 前記固形物は活物質を含む、〔13〕に記載の可塑性組成物。
 〔15〕 前記固形物は無機固体電解質(SE)を含む、〔13〕に記載の可塑性組成物。
 〔16〕 前記固形物は繊維状物質を含む、〔13〕~〔15〕のいずれか1項に記載の可塑性組成物。
 〔17〕 前記繊維状物質は100nm以下の平均繊維径を有する、〔16〕に記載の可塑性組成物。
 〔18〕 前記繊維状物質はポリテトラフルオロエチレン繊維、セルロースナノファイバ、カーボンナノチューブ、及びこれらの組み合わせからなる群より選択される、〔16〕又は〔17〕に記載の可塑性組成物。
 〔19〕 前記繊維状物質は単層カーボンナノチューブである、〔16〕~〔18〕のいずれか1項に記載の可塑性組成物。
 〔20〕 前記固形物が、粒子状固形物と繊維状物質とを含み、前記繊維状物質が、前記粒子状固形物の粒子間を橋掛けした状態で存在する、〔13〕~〔19〕のいずれか1項に記載の可塑性組成物。
 〔21〕 〔13〕~〔20〕のいずれか1項に記載の可塑性組成物を含む電気化学デバイス用電極シート。
 〔22〕 〔13〕~〔20〕のいずれか1項に記載の可塑性組成物を含む電気化学デバイス用絶縁層。
 〔23〕 〔13〕~〔20〕のいずれか1項に記載の可塑性組成物を、電極シートの形状に成形することを含む、電気化学デバイス用電極シートの製造方法。
 〔24〕 〔13〕~〔20〕のいずれか1項に記載の可塑性組成物を、絶縁層の形状に成形することを含む、電気化学デバイス用絶縁層の製造方法。
 〔25〕 〔21〕に記載の電気化学デバイス用電極シート、〔22〕に記載の電気化学デバイス用絶縁層、又はこれらの両方を備える、電気化学デバイス。
 〔26〕 バイポーラ型である、〔25〕に記載の電気化学デバイス。
 本発明によれば、耐電圧性の向上、燃焼性の低下、輸率の向上等といった、高濃度電解液の有利な効果を享受しつつ、塩析の発生が抑制された、電気化学デバイス用電解液、そのような電解液を容易に利用可能な態様とした、電気化学デバイスを構成するための可塑性組成物、並びに、それらの製造方法が提供される。
 本発明によれば、さらに、デバイスの長寿命化、難燃焼化、高電位化といった効果を得ることができ、且つ容易に製造可能な電気化学デバイス用電極シート、電気化学デバイス用絶縁層、それらの製造方法、及び電気化学デバイスが提供される。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に説明する実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 〔1.電解液〕
 本発明の電解液は、特定のカチオン(C)と、アニオン(A)と、特定の溶媒(SO)と、特定の重合体(P)とを含む、電気化学デバイス用の電解液である。
 〔1.1.カチオン(C)〕
 カチオン(C)は、1~3価の金属イオンである。即ち、カチオン(C)は、1種類以上の1価の金属イオン、1種類以上の2価の金属イオン、1種類以上の3価の金属イオン、又はこれらの組み合わせとしうる。電解液中においてカチオン(C)は、アニオン(A)と電離平衡を保ち存在しうる。カチオン(C)は、アニオン(A)と塩を構成しうるが、通常、電解液の製造から、それを用いた電気化学デバイスの製造までにおける温度及び圧力条件下において、溶媒(SO)中に、少なくともその一部が、塩析せず溶解した状態を保ちうる化合物である。より具体的には、常温常圧、例えば25℃1気圧で、溶媒(SO)中に、少なくとも1質量%が溶解した状態を保ちうる化合物としうる。カチオン(C)の例としては、電気化学デバイス用の電解液に使用しうる、既知の各種の塩に含まれるカチオンが挙げられる。
 カチオン(C)は、好ましくは、アルカリ金属イオン、アルカリ土類金属イオン、アルミニウムイオン、及びこれらの組み合わせからなる群より選択されるイオンである。
 アルカリ金属イオンの例としては、Li、Na、K、Csが挙げられる。アルカリ土類金属イオンの例としては、Mg2+、Ca2+が挙げられる。中でも、電解液により構成される電気化学デバイスが二次電池である場合、Li、Mg2+及びこれらの組み合わせが好ましく、Li、及びLiとMg2+との組み合わせがより好ましい。
 本発明の電解液は、カチオン(C)以外のカチオンを含みうる。但しその場合も、電解液全体において、カチオン(C)の割合は、2.5mol/L以上であることが、電解液としての効果を発現する上で好ましい。カチオン(C)の割合の上限は、特に限定されないが、例えば10mol/L以下としうる。
 カチオン(C)は、2価又は3価の金属イオンを含むものとしうる。電気化学デバイスの設計上、カチオン(C)を1価の金属イオンのみで構成するより、2価又は3価の金属イオンを含むほうが好ましい場合がある。しかしながら、2価及び3価の金属イオンは塩析を起こしやすい。ここで、電解液として本発明の構成を採用することにより、かかる2価及び3価の金属イオンの効果を享受しながら、塩析を抑制することが可能となる。具体的な例として、カチオン(C)としてLiとMg2+とを組み合わせて用いた場合、Liの析出を抑制させサイクル特性を向上させたり、電極の強度を高めたりすることができる場合がある。
 〔1.2.アニオン(A)〕
 本発明の電解液は、アニオン(A)を含みうる。アニオン(A)は、カチオン(C)及びその他の任意成分としてのカチオンに対するカウンターアニオンとして、系内に投入されたアニオンを含みうる。
 アニオン(A)の例としては、電気化学デバイス用の電解液に使用しうる、既知の各種の塩に含まれるアニオンが挙げられる。より具体的な例としては、ホウ素原子、フッ素原子、リン原子、又はこれらの2以上を含む、各種のアニオンが挙げられる。
 アニオン(A)に含まれるアニオンの好ましい例としては、(B(Rn1-F)、(P(Rn2-F)、(B(Rn3、及びこれらの混合物からなる群より選択されるアニオンが挙げられる。アニオン(A)としてこれらのアニオンを採用した場合、集電箔の腐食を軽減しうるという効果が得られる。
 Rは、複数存在する場合は互いに同一であっても異なっていてもよい、一価の基又は二価の基である。前記一価の基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、又は一価の有機エーテル基であり、前記二価の基は、アルキレン基、アルケニレン基、アルキニレン基、二価の有機エーテル基又はオキソ基である。前記アルキル基、アルケニル基、アルキニル基、一価の有機エーテル基、アルキレン基、アルケニレン基、アルキニレン基、及び二価の有機エーテル基は、ハロゲン原子で置換されていてもよく、オキソ基で置換されていてもよく、鎖の一部にヘテロ原子が介在していてもよい。n1は、Rが全て一価である場合は3であり、Rのうち一つが二価であり他が一価である場合は2であり、n2は、Rが全て一価である場合は5であり、Rのうち一つが二価であり他が一価である場合は4であり、Rのうち二つが二価であり他が一価である場合は3であり、n3は、Rが全て一価である場合は4であり、Rのうち一つが二価であり他が一価である場合は3であり、Rのうち二つが二価である場合は2である。
 Rが一価の基である場合、その好ましい例としては、フッ素原子、-CF、-C、-CNが挙げられる。
 Rが二価の基である場合、その好ましい例としては、オキソ基(=O)、-O-CO-CO-O-、-O-CO-CH-CO-O-が挙げられる。Rが二価の基である場合、その二価の結合手がいずれも、ホウ素原子又はリン原子に結合した構造としうる。
 (B(Rn1-F)、(P(Rn2-F)、及び(B(Rn3のより具体的な例としては、PF (RがいずれもF、n2=5)、BF (RがいずれもF、n3=4)、ジフルオロ(オキサラト)ボレートイオン(DFOB、Rのうち2つは-F、1つは-O-CO-CO-O-、n3=3)、ビスオキサレートボレートイオン(Rのうち2つが-O-CO-CO-O-、n3=2)、及びこれらの混合物が挙げられる。
 アニオン(A)が複数のカチオンを含む場合、アニオン(A)中の、最も含有モル割合が大きいアニオンを第1のアニオン(A1)、第1のアニオン(A1)に次いで含有モル割合が大きいアニオンを第2のアニオン(A2)、第2のアニオン(A2)に次いで含有モル割合が大きいアニオンを第3のアニオン(A3)、・・・という。この場合、第1のアニオン(A1)としては、イオン伝導度に寄与し、高いイオン伝導度を有するアニオンを選択することが好ましい。そのような効果を奏しうる具体的なアニオンの例としては、ビス(フルオロスルホニル)イミドイオン(FSI)、ビス(トリフルオロメタンスルホニル)イミドイオン(TFSI)、BF 、ジフルオロ(オキサラト)ボレートイオン、及びこれらの混合物が挙げられる。
 一方、第2のアニオン(A2)は、第1のアニオン(A1)と組み合わせて追加的な効果を奏する目的で添加しうる。かかる効果の例としては、集電体の腐食抑制、及び活物質表面の被覆による安定化が挙げられる。そのような効果を奏しうるアニオンの例としては、BFx系、PFx系、ジフルオロ(オキサラト)ボレートイオン、ビスオキサレートボレートイオン、及びこれらの混合物が挙げられる。ここでBFx系とは、一個のアニオンが、ホウ素原子1個と、1~4個のフッ素原子との組み合わせを含む各種のアニオンのうちの1種又は2種以上の混合物をいい、PFx系とは、一個のアニオンが、リン原子1個と、1~6個のフッ素原子との組み合わせを含む各種のアニオンのうちの1種又は2種以上の混合物をいう。
 本発明の電解液におけるアニオン(A)の割合は、特に限定されず、例えばカチオン(C)及びその他の任意成分としてのカチオンに対する等量としうる。
 〔1.3.溶媒(SO)〕
 溶媒(SO)は、分子量1000以下の化合物である。溶媒(SO)の分子量の下限は、特に限定されないが、例えば40以上としうる。
 溶媒(SO)は、水、ヘテロ元素含有有機化合物(O)、又はこれらの混合物としうる。ヘテロ元素含有有機化合物(O)は、好ましくはイオン基を有しない化合物としうる。即ち、ヘテロ元素含有有機化合物(O)は、イオン基を有する化合物以外の化合物としうる。ここでイオン基を有する化合物とは、カチオン又はアニオンであり、分子内に複数のイオン基を持つ化合物、及び正負の電荷をもつベタインをも包含する。
 溶媒(SO)の例としては、電気化学デバイス用の電解液に溶媒として使用しうるものとして既知の各種の化合物を用いうる。それらの中から、所望の用途に応じた性能を有する1種以上の化合物を適宜選択し、必要に応じて組み合わせて使用しうる。例えば、電解液のイオン伝導度を高めたい場合は、沸点の低い有機溶媒、又は沸点の低い有機溶媒を高い比率で含む混合溶媒を、溶媒(SO)として用いうる。そのような沸点の低い有機溶媒の例としては、ジメチルカーボネート、モノグライム、ギ酸メチル、酢酸メチル、メチルアルコール、アセトニトリル(AN)、及びこれらの混合物が挙げられる。
 少なくとも1種の溶媒は、室温1気圧で固体であり、且つカチオン(C)及びアニオン(A)と混合することにより液状を呈する化合物(SO-S)から選ばれることが好ましい。製造プロセス中での過加熱や電気化学デバイスの故障による発熱等により、溶媒が蒸発して周囲に拡散するような事態が生じた場合でも室温付近で固体となる性質を有している化合物は、固体として凝縮でき、周囲に広く漏洩しないので安全性が高い。ここで室温とは25℃付近の範囲、より具体的には25℃を指し、より高い温度でも固体であることが好ましい。化合物の好ましい融点は5℃以上、より好ましくは25℃以上、さらに好ましくは40℃以上である。融点の上限は、特に限定されないが、例えば200℃以下としうる。化合物(SO-S)が溶媒(SO)全体に占める割合は、50mol%以上であることが好ましく、60mol%であることがさらに好ましく、70mol%以上であることがさらに好ましく、100mol%でもよい。化合物(SO-S)の例としては、エチレンカーボネート(EC)、N-メチルオキサゾリドン、N,N-ジメチルイミダゾリジノン、スルホラン(SL)、ジメチルスルホン、マロノニトリル、スクシノニトリル、及びシュウ酸ジメチルが挙げられる。化合物(SO-S)は、室温で固体であっても塩と混ぜることによって溶解し、液状を呈し電解液を構成しうる。
 電解液の燃焼性を低減したい場合は、沸点の高い有機溶媒及び/又は水、又は沸点の高い有機溶媒及び/又は水を高い比率で含む混合溶媒を、溶媒(SO)として用いうる。そのような沸点の高い有機溶媒の沸点は、好ましくは130℃以上、より好ましくは160℃以上、さらにより好ましくは200℃以上としうる。沸点の上限は、特に限定されないが、例えば350℃以下としうる。沸点の高い有機溶媒の具体例としては、γ-ブチロラクトン、プロピレンカーボネート、エチレンカーボネート(EC)、N-メチルオキサゾリドン、N,N-ジメチルイミダゾリジノン、ジメチルスルホン(DMS)、スルホラン(SL)、ジメチルスルホン、マロノニトリル、スクシノニトリル、マロン酸ジメチル、シュウ酸ジメチル、ジグライム、トリグライム、テトラグライム、及びこれらの混合物が挙げられる。
 沸点の高い有機溶媒に加えて、又はそれに代えて、難燃性の溶媒を用いてもよい。難燃性の溶媒の例としては、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリブチル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリプロピル、亜リン酸トリブチル、リン酸トリフェニル、亜リン酸トリフェニル、及び含ホスファゼン化合物が挙げられる。難燃性の溶媒のさらなる例としては、前記各種の化合物の炭化水素鎖の一部において置換基を有する置換化合物が挙げられる。さらには、前記化合物及び置換化合物の2以上の混合物も用いうる。置換基の例としては、フッ素原子、塩素原子及び臭素原子等のハロゲン原子が挙げられる。難燃剤がリン酸エステル又は亜リン酸エステルである場合は、アルキル基はハロゲン置換されている方が難燃化効果は高いため好ましい。含ホスファゼン化合物の具体例としては、モノエトキシペンタフルオロシクロトリホスファゼン、ジエトキシテトラフルオロシクロトリホスファゼン、及びモノフェノキシペンタフルオロシクロトリホスファゼンが挙げられる。溶媒(SO)が難燃性の溶媒を含む場合、溶媒(SO)全体に対する難燃性溶媒の含有割合は、0.5~20質量%としうる。
 好ましい例において、溶媒(SO)が環状カーボネートを含む。特に、電気化学デバイスの負極材料が黒鉛系材料である場合は、電解液が溶媒(SO)として環状カーボネートを含むことにより、負極の初回充電時の不可逆容量が小さくなるという効果が得られる。環状カーボネートの具体的としては、エチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、及びそれらを構造に有する化合物が好ましい。
 また、電気化学デバイスが、リチウムイオン二次電池等の二次電池である場合における、好ましい溶媒(SO)の例としては、アセトニトリル、エチルメチルカーボネート、エチレンカーボネート、スルホラン、ジメチルスルホン、ガンマブチロラクトン、フルオロエチレンカーボネート、スクシノニトリル、N-メチルオキサゾリドン、N,N-ジメチルオキサゾリジノン、リン酸トリメチル、及びこれらの混合物が挙げられる。
 本発明の電解液は、溶媒(SO)以外に、分子量1000超10万未満の液体の化合物を含みうる。但しその場合も、電解液全体において、カチオン(C)の割合は、2.5mol/L以上であることが好ましい。
 本発明の電解液においては、カチオン(C)に対する溶媒(SO)の含有割合が、特定の範囲内である。即ち、カチオン(C)1モルに対する溶媒(SO)の含有割合は、0.5モル以上、好ましくは1モル以上、より好ましくは1.5モル以上であり、一方4モル以下、好ましくは3.5モル以下、より好ましくは3.0モル以下である。カチオン(C)に対する溶媒(SO)の含有割合を、前記下限以上の大きい値とすることにより、イオン電導度を高めることができ、電気化学デバイスの性能を容易に向上させることができる。カチオン(C)に対する溶媒(SO)の含有割合を、前記上限以下の小さい値とすることにより、電解液の揮発性、難燃焼性、及び耐酸化性を良好なものとすることができる。
 〔1.4.重合体(P)〕
 重合体(P)、溶解性の重合体である。ここでいう重合体(P)の溶解性とは、電解液の製造から、それを用いた電気化学デバイスの製造における温度及び圧力条件下において、電解液中に溶解した状態を保つことをいう。より具体的には、常温常圧、例えば25℃1気圧で、重合体(P)を溶媒(SO)に添加し溶液とした場合、かかる溶液中に、少なくとも重合体(P)1質量%が溶解した状態を保ちうる場合、かかる重合体を、溶解性の重合体としうる。
 重合体(P)は、その質量平均分子量が1万超、好ましくは10万以上、より好ましくは20万以上、さらにより好ましくは30万以上、それよりさらにより好ましくは40万以上である。一方質量平均分子量の上限は、好ましくは1000万以下、より好ましくは300万以下としうる。質量平均分子量を前記下限以上とすることにより、電解液において、少ない添加量で電解液の粘度を大きく高めることができ、塩析を有効に抑制することができる。質量平均分子量を前記上限以下とすることにより、電解液の液体状態を容易に保つことができる。重合体(P)の分子量は、例えばJIS K7252に準拠して測定しうる。
 重合体(P)の例としては、ポリエーテル系重合体、アクリル系重合体、ポリアクリロニトリル系重合体、ポリオキサゾリン系重合体、脂肪族ポリカーボネート系重合体、及びこれらの混合物が挙げられる。より具体的な例としては、ポリエチレンオキサイド、エチレンオキサイド共重合体、側鎖エチレンオキサイド重合体、ヒドリンゴム、ポリ酢酸ビニル、塩化ビニル・酢酸ビニル共重合体、ポリ2-エチル-2-オキサゾリン、ポリ2-メチル-2-オキサゾリン、ポリオキサゾリジノン、側鎖オキサゾリン共重合体、ポリ-N-ビニルアセトアミド、ポリビニルピロリドン、ポリアクリロニトリル、ニトリルゴム、アクリル酸エステル共重合体、ポリメタクリル酸メチル、スチレン・アクリレート共重合体、及びアクリルゴムが挙げられる。これらのポリマーは、1種単独で用いてもよいし、2種以上を併用してもよい。
 重合体(P)は、好ましくは主鎖にヘテロ元素を有するものである。ヘテロ元素を有する主鎖構造としては、-O-、-N-、が挙げられる。主鎖にヘテロ元素を有する重合体は、溶媒(SO)との親和性が高く、したがって電解液の製造において溶媒(SO)への溶解を低い温度及び少ない動力で達成しうる傾向があり、また高い濃度で重合体(P)を溶解することもできるため好ましい。好ましい重合体の例としては、例えば、エチレンオキサイド系重合体、オキサゾリン系重合体、が挙げられる。
 重合体(P)は、さらに好ましくは共重合体である。共重合体は、単独重合体に比べて、結晶性が低い傾向があり、したがって電解液の製造において溶媒(SO)への溶解をより容易に行いうる傾向があり、重合体(P)自体が電解液中で結晶化し析出する可能性もより低いため特に好ましい。好ましい共重合体の例としては、例えば、エチレンオキサイド-プロピレンオキサイド共重合体等のポリエーテル系の共重合体、及び(2-エチル-2-オキサゾリン)-(2-メチル-2-オキサゾリン)共重合体等のオキサゾリン系の共重合体が挙げられる。
 本発明の電解液における、重合体(P)の含有割合は、0.5質量%以上、好ましくは1質量%以上、より好ましくは2質量%以上であり、好ましくは40質量%以下、より好ましくは20質量%以下である。含有割合を前記下限以上とすることにより、高い塩析抑制効果を得ることができる。含有割合を前記上限以下とすることにより、イオン伝導度の大きな低下を抑制することができ、且つ、電解液の液体状態を容易に保つことができる。
 〔1.5.電解液の性状〕
 本発明の電解液は、その粘度が好ましくは500cP以上、より好ましくは700cP以上であり、一方好ましくは1000万cP以下、より好ましくは100万cP以下である。25℃における電解液の粘度が前記下限以上であることにより、高い塩析抑制効果を得ることができる。特に、塩析の結果析出物が生じた場合であっても、その寸法を小さいものとすることができる。特定の理論に拘束されるものではないが、このような効果は、粘度が高い溶液中では塩析の過程において溶質の移動が妨げられ、その結果大きな塊を形成せずに析出するからであるものと考えられる。また、電解液の粘度が前記下限以上であると電極からの電解液の染み出しが抑制されて、電気化学デバイスの動作安定性や液漏れの抑止に効果的である。しかしながら粘度が700cPを超えてくると多孔性電極への注液に要する時間はかなり長くなるため、注液工程を実施しない電極製法を選択してもよい。一方、電解液の粘度が前記上限以下であることにより、電解液の流動状態を容易に保つことができる。電解液は流動性を失って、ゲル化した状態となっていても本発明の電解液としうるが、ゲル化することによりイオン伝導度は低下するので、電解液の外観がどのようであるかに関わらず、25℃における電解液のイオン伝導度が10-4S/cm以上であることが好ましい。かかるイオン伝導度の上限は、特に限定されないが、例えば10-1S/cm以下としうる。
 特に、電気化学デバイスの電極や絶縁層の製造時においては電解液に流動性があることが必須であり、加工の温度を上げることで、上記粘度の範囲に制御を行ってもよい。
 本発明における粘度とは、EMS粘度計(京都電子工業製、EMS-1000S)を用いて密閉条件で電解液の組成が変化せず、空気中の水分が混入しないようにして、回転数1000rpmで測定した粘度を指す。なお、この測定方法で測定した粘度は、基本的には、JIS Z8803に準拠して測定した値と同じ値となる。電解液の粘度が高すぎることにより使用温度における測定が困難であれば温度までを上げて測定すれば、25℃における粘度はそれ以上であることが分かる。また、高い温度において何点かの測定を行い、使用温度に対して外挿して求めることもできる。それでも測定が困難な場合は、高粘度に対応した別の粘度計を用いて、本装置で計測した粘度とのずれを確認した上で使用してもよい。
 〔2.電解液の製造方法〕
 本発明の電解液は、どのような製造方法で製造してもよいが、通常は、溶媒(SO)に、カチオン(C)及びアニオン(A)を含む1種又は2種類以上の材料、及び重合体(P)を溶解する工程を含む製造方法により製造しうる。以下においてこれを本発明の電解液の製造方法として説明する。
 カチオン(C)及びアニオン(A)を含む材料としては、これらが対となった塩を使用することが、操作の容易さ等の点から好ましい。かかる塩の例としては、上に述べたカチオン(C)の具体例のいずれか1以上と、上に述べたアニオン(A)の具体例のいずれか1以上とが対になった塩が挙げられる。塩の添加量は、得られる電解液の溶媒(SO)とカチオン(C)の相対比が所望の値となるよう調整しうる。製造に用いる塩としては、通常、結晶状態となったものを用いる。結晶の粒径は小さいほうが、溶解を促進させる観点から好ましい。具体的には、結晶の寸法は、好ましくは5mm以下、より好ましくは1mm以下、さらにより好ましくは500μm以下としうる。ここでいう結晶の寸法は、結晶を様々な角度から観察し、最も長い方向における長さを採用しうる。結晶の寸法の下限は、特に限定されないが、例えば0.5μm以上としうる。
 溶媒(SO)に溶質(塩、重合体(P)等)を溶解する順序は特に限定されず、容易な溶解が達成される任意の順序としうる。特に、アニオン(A)が、上に述べた第1のアニオン(A1)(即ち最も含有モル割合が大きいアニオン)及び第2のアニオン(A2)(即ち次に含有モル割合が大きいアニオン)を含む場合、先に第2のアニオン(A2)を含む塩を添加し、その後に第1のアニオン(A1)を含む塩を添加することが、容易な溶解を達成しやすいため好ましい。
 溶媒(SO)への溶質の溶解を促進する観点から、一旦希薄な溶液を作製し、それから溶媒の一部を留去し、濃度を濃縮する操作を行ってもよい。即ち、塩及び重合体(P)が、溶媒(SO)中に高濃度に溶解するために要する時間が長く、一方低濃度に溶解するために要する時間が短く、且つ溶媒の留去が容易である場合は、一旦希薄な溶液を作製し、それから溶媒の一部を留去し、濃度を濃縮する操作を行うことにより、電解液の製造に要する時間を短縮することが可能である。一旦作製する希薄な溶液における溶質の濃度は、例えば電解液における所望の濃度の1/20~1/2の濃度、より好ましくは1/15~1/5の濃度としうる。
 〔3.可塑性組成物〕
 本発明の可塑性組成物は、前記本発明の電解液と固形物を含み、可塑性を有する、電気化学デバイス用の可塑性組成物である。固形物とは、電気化学デバイスの使用時における温度及び圧力条件下において、可塑性組成物中で固形の状態を保ちうる物体である。より具体的には、常温常圧、例えば25℃1気圧で、可塑性組成物中で固形の状態を保ちうる物体としうる。可塑性組成物は、それ全体としては、可塑性を有する固体であるが、実態は固形物と、液体である電解液との混合物であるため、分離回収が可能である。
 可塑性組成物は、1種類のみの固形物を含んでいてもよく、複数種類の固形物を含んでいてもよい。可塑性組成物は、かかる固形物と、固形物と混ぜ合わせない状態では液体である電解液とを含むことにより、全体としてそれ自体が可塑性を有する固体となる。
 固形物は、具体的には、活物質、及び/又は無機固体電解質(SE)を含みうる。
 活物質は、電気化学デバイスにおいて正極又は負極の電極活物質として機能しうる物質である。活物質の具体例としては、コバルト酸リチウム等のリチウム酸化物、黒鉛、活性炭、グラフェン、ケイ素及びその酸化物、スズ及びその酸化物、硫黄、有機金属錯体、MOF(Metal-Organic-Framework)、並びにプルシアンブルー類縁体等が挙げられる。
 活物質は、粒子状の形状であることが好ましく、体積平均粒子径が30μm以下であることがより好ましく、20μm以下の形状であることがさらにより好ましい。かかる粒子径の下限は、特に限定されないが、例えば0.05μm以上としうる。電極強度を高める観点からは、ナノサイズの活物質を使用することが好ましく、可塑性組成物の他の成分との接触界面積が大きくなり、得られる電極の強度を高めることができ、且つ電極の電気化学反応を進行させる能力を高めることができる。活物質及びその他の粒子の体積平均粒子径は、JIS K8825に準拠して測定しうる。
 無機固体電解質(SE)は、電気化学デバイスにおける絶縁層、即ち正極と負極とを分離する層において、絶縁層のイオン伝導性を高めるための構成要素として機能しうる物質である。無機固体電解質(SE)は、多くの場合、不燃性であるか、もしくは低燃焼性であることから、電解液に対して高い比率で配合されるほど電気化学デバイスの安全性が高くなる。電解液と無機固体電解質(SE)の合計の体積当たりの好ましい無機固体電解質(SE)の配合割合は、好ましくは10vol%以上、より好ましくは30vol%以上、さらにより好ましくは50vol%以上、特に好ましくは70vol%以上である。電解液と無機固体電解質(SE)の合計の体積当たりの好ましい無機固体電解質(SE)の配合割合の上限は、特に限定されないが、例えば99vol%以下としうる。
 無機固体電解質(SE)の具体例としては、リチウムイオン伝導性の金属酸化物系の無機固体電解質(SE)、及びナトリウムイオン伝導性の無機固体電解質(SE)が挙げられる。リチウムイオン伝導性の金属酸化物系の無機固体電解質(SE)の例としては、LAGP(Li1.5Al0.5Ge1.512)、LLZ(LiLaZr12)、LLZTO(Li6.75LaZr1.75Ta0.2512)、LLT(LiLa0.51TaO2.94)、LASTP(LiAlSiPTiO13)、LTAP(Li1.4Ti1.6Al0.412)、及びLi2.99Ba0.0051+xCl1-2xが挙げられる。ナトリウムイオン伝導性の無機固体電解質(SE)の例としては、β―アルミナ、Na2.99Ba0.0051+xCl1-2x、リチウムイオン伝導性の硫化物系の無機固体電解質(SE)として、LPS(Li11)、LGPS(Li10GeP12)、及びLi9.54Si1.741.4411.7Cl0.3が挙げられる。無機固体電解質(SE)は、通常これらの組成を有する結晶状態の固体の粒子である。無機固体電解質(SE)のさらなる例としては、上記の組成にさらに少量の他の元素を加えた結晶、及び上記の組成を若干変更した類縁体が挙げられる。
 無機固体電解質(SE)の粒内イオン伝導度は、10-5S/cm以上であることが好ましく、10-4S/cm以上であることがより好ましく、さらに好ましくは10-3S/cm以上であることが好ましく、10-2S/cm以上であることが最も好ましい。無機固体電解質(SE)の粒内イオン伝導度の上限は、特に限定されないが、例えば10S/cm以下としうる。
 無機固体電解質(SE)は、粒子状の形状であることが好ましく、体積平均粒子径が20μm以下であることがより好ましく、10μm以下の形状であることがさらにより好ましい。無機固体電解質(SE)の体積平均粒子径の下限は、特に限定されないが、例えば0.01μm以上としうる。無機固体電解質(SE)は、電極シートを構成するための可塑性組成物の成分とすることもできる。この場合、無機固体電解質(SE)を電解液中に懸濁した状態とし、かかる懸濁物を他の成分と混合する操作により可塑性組成物を製造することにより、可塑性組成物の成分として添加しうる。無機固体電解質(SE)が電極シートに使用される場合は、無機固体電解質(SE)の粒子径は、活物質よりも小さいことが好ましい。
 可塑性組成物は、さらに、繊維状物質を含みうる。繊維状物質は、可塑性における固形物の一部を構成しうる。また、繊維状物質は、活物質又は無機固体電解質(SE)の機能を兼ねるものであってもよい。可塑性組成物が繊維状物質を含むことにより、可塑性組成物の粘度を所望の範囲に調整したり、可塑性組成物に追加的な機能を付与したりすることができる。
 繊維状物質の例としては、ポリテトラフルオロエチレン繊維、セルロースナノファイバ、カーボンナノチューブ、カーボンナノファイバー、及びこれらの組み合わせが挙げられる。カーボンナノチューブは、特に、単層カーボンナノチューブであることが好ましい。
 繊維状物質の繊維径は、ナノサイズ(最大径が1μm未満)であることが好ましい。繊維状物質の平均繊維径は、好ましくは0.4nm以上であり、また好ましくは500nm以下、より好ましくは100nm以下である。可塑性組成物がナノサイズの繊維成分を含むことにより、可塑性組成物の纏まりが向上し、強度に優れる成形物を得ることができる。繊維径は走査型電子顕微鏡又は透過型電子顕微鏡などの顕微鏡を用いて計測し、算術平均を求めうる。繊維状物質として、ポリテトラフルオロエチレン繊維を用いる場合、可塑性組成物の製造の工程においてこのような繊維形状に成形することが可能である。具体的には、可塑性組成物の製造の工程において、粒子状のポリテトラフルオロエチレンを系内に添加し、さらに混練等により剪断力を加えることにより、系内においてその形状をナノサイズの繊維に変形させうる。
 繊維状物質の繊維長は、繊維状物質以外の固形物の体積平均粒径以上の繊維長を有することが好ましい。また、可塑性組成物を成形して層状の形状を有する部材(電極又は絶縁層等)を形成する場合、繊維状物質の繊維長は、かかる部材の平均厚みの半分以上であることがより好ましく、平均厚み以上であることがさらに好ましく、部材の厚み以上であってもよい。
 好ましい態様において、固形物は、粒子状固形物と繊維状物質とを含み、可塑性組成物において、繊維状物質は、粒子状固形物の粒子間を橋掛けした状態で存在する。より具体的には、顕微鏡で本発明の電極を観察した際に、100μm四方の視野中に10本以上の橋掛けがあることが好ましく、20本以上の橋掛けがあることがより好ましい。揮発性の有機化合物が存在して観察に不適であれば、乾燥を行ってから観察を行うことが好ましい。かかる橋掛け構造を有することにより、可塑性組成物の纏まりがさらに向上し、さらに強度に優れる成形物を得ることができる。
 〔4.電極及び絶縁層、並びにそれらの製造方法〕
 本発明の電気化学デバイス用電極シート、及び本発明の電気化学デバイス用絶縁層は、前記本発明の可塑性組成物を含む。また、本発明の電気化学デバイス用電極シートの製造方法は、前記本発明の可塑性組成物を電極シートの形状に成形することを含み、本発明の電気化学デバイス用絶縁層の製造方法は、前記本発明の可塑性組成物を絶縁層の形状に成形することを含む。
 電極シートは、適切な層状の集電体と重ね合わせることにより、電極を構成しうる。集電体としては、銅箔、アルミニウム箔、ステンレス箔等の、金属の箔体を用いうる。
 電極シート及び絶縁層の形状は、特に限定されず所望の形状としうる。小型で高性能の電気化学デバイスを得る観点からは、電極シート及び絶縁層は、薄い層状の形状であることが好ましい。層状の形状である場合、その厚みは、5~200μmであることが好ましい。厚みを前記下限以上とすることにより、容易に自立性を得ることができる。厚みを前記上限以下とすることにより、小型で高性能の電気化学デバイスを容易に形成することができる。
 本発明の電気化学デバイス用電極シート、及び本発明の電気化学デバイス用絶縁層は、好ましくは自立性を有する。ここで自立性とは、基材フィルム等の支持体により支持されていない状態であっても、破れずにその形状を保ちうることをいい、具体的には、層状の形状を有する電極シート又は絶縁層を矩形の形状に切り出したサンプルを調製し、当該サンプルの辺をピンセットでつまんだ状態で持ち上げることができる程度に、その形状を保持しうることが好ましい。より具体的には、好ましくは1cm角の矩形の形状サンプル、より好ましくは2cm角の矩形の形状のサンプルにおいて、そのような形状の保持が可能であることが好ましい。かかる自立性を有することにより、電気化学デバイスの製造を容易に行うことができ、且つ得られる電気化学デバイスの耐久性を高めることができる。
 〔5.電気化学デバイス〕
 本発明の電気化学デバイスは、前記本発明の電気化学デバイス用電極シート、前記本発明の電気化学デバイス用絶縁層、又はこれらの両方を備える。電極シートは、前述のもの等の適切な層状の集電体と重ね合わせ、電極を構成した状態として、電気化学デバイス中に設けうる。また、絶縁層は、電気化学デバイス中に、複数の電極(例えば正極及び負極)の間に設けうる。
 本発明の電気化学デバイスの例としては、リチウム一次電池等の一次電池;リチウムイオン二次電池、リチウム金属二次電池、ナトリウムイオン二次電池、カリウムイオン二次電池、マグネシウム二次電池、アルミニウム二次電池等の非水系二次電池;空気電池;色素増感型太陽電池等の太陽電池;電気二重層キャパシタ、リチウムイオンキャパシタ等のキャパシタ;エレクトロクロミック表示デバイス;電気化学発光素子;電気二重層トランジスタ;及び電気化学アクチュエータが挙げられる。
 好ましい例において、本発明の電気化学デバイスは、電池であり、具体的にはリチウムイオン二次電池としうる。より具体的には、アルミ箔等の正極集電体、正極シート、セパレータ、負極シート、及び銅箔等の負極集電体をこの順に重ね合わせ、電池単位を構成する複層物とし、これを適当な外装中に挿入し、さらに必要に応じて電解液を注入し、外装の開口を封止することにより、電池を製造しうる。ここで、正極シート、負極シート及びセパレータのいずれか一以上として、本発明の電極シート又は絶縁層を採用し、且つこれらを構成する電解液及び活物質としてリチウムイオン二次電池の電解液及び活物質に適したものを使用することにより、リチウムイオン二次電池を構成しうる。また、外装内に電解液を注入する場合、当該電解液として本発明の電解液を使用してもよい。
 電気化学デバイスの製造においては、電極シート及び/又は絶縁層を重ね合わせた後の工程で、これらを構成する重合体(P)に対し架橋反応等の反応を進行させる工程を行ってもよい。より具体的には、外装の開口を封止した後で、外装の外から、何らかのエネルギーを印加することで、重合体(P)の架橋反応を進行させうる。かかるエネルギーの印加の例としては、加熱、並びに可視光線、電子線、放射線等のエネルギー線の照射が挙げられる。これらのうち、外装を透過した印加が可能なものを適宜選択しうる。また、かかる架橋反応を達成するため、電解液は、かかるエネルギーの印加に応答して重合体(P)の架橋反応を進行させる重合開始剤等の成分を含んでいてもよい。
 好ましい例において、本発明の電気化学デバイスは、バイポーラ型のデバイスであり、具体的にはバイポーラ型の電池としうる。バイポーラ型のデバイスは、バイポーラ構造の電極を備えるデバイスである。バイポーラ構造の電極とは、集電体の一方の面に正極材、他方の面に負極剤を設けた電極である。バイポーラ電極を複数重ねた構造を形成することにより、一つのデバイス内で、複数のデバイス単位が直列に重なった構造を得うる。例えば、バイポーラ型の電池では、一つの電池パックの中に、複数の電池単位が直列に重なった構造としうる。かかるバイポーラ型のデバイスでは、デバイス単位間の電解液の液絡を防止することが大きな課題となるところ、電極及び/又は絶縁層として本発明の電極及び/又は絶縁層を採用することにより、かかる液絡の防止を容易に達成できる。
 バイポーラ型の電池のより具体例としては、電極複層物として、アルミ箔等の正極集電体、正極シート、絶縁層シート、負極シート、ステンレス箔等の中間の箔体、正極シート、絶縁層シート、負極シート、及び銅箔等の負極集電体を、この順に重ね合わせたものを備える電池が挙げられる。この例は、2つの電池単位が直列に重なった構造をとる例であるが、「ステンレス箔等の中間の箔体、正極シート、絶縁層シート、負極シート」の組み合わせをさらに1以上設け、3つ以上の電池単位が直列に重なった構造をとることもできる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り質量基準である。また、以下に説明する操作は、別に断らない限り、室温及び常圧の条件において行った。
 実施例及び比較例で使用した物質に関する略語の意味は、下記の通りである。
 LiFSI:リチウム ビス(フルオロスルホニル)イミド(Li (N(SOF)
 LiTFSI:リチウム ビス(トリフルオロメタンスルホニル)イミド(Li (N(SOCF
 LiBF:ホウフッ化リチウム
 LiDFOB:リチウム ジフルオロ(オキサラト)ボレート(Li B(R、Rのうち2つは-F、1つは-O-CO-CO-O-)
 Mg(TFSI):マグネシウム ビス(トリフルオロメタンスルホニル)イミド(Mg2+ ((N(SOCF
 AN:アセトニトリル
 EMC:エチルメチルカーボネート
 EC:エチレンカーボネート
 SL:スルホラン
 DMS:ジメチルスルホン
 GBL:ガンマブチロラクトン
 FEC:フルオロエチレンカーボネート
 DMC:ジメチルカーボネート
 DEC:ジエチルカーボネート
 TMP:リン酸トリメチル
 PTFE:ポリテトラフルオロエチレン
 重合体(P-A):エチレンオキサイド-プロピレンオキサイド共重合体 質量平均分子量:20万
 重合体(P-B):エチレンオキサイド-プロピレンオキサイド共重合体 質量平均分子量:50万
 重合体(P-C):エチレンオキサイド重合体 質量平均分子量:100万
 重合体(P-D):ポリ(2-エチル-2-オキサゾリン) 質量平均分子量:50万
 重合体(P-E):ポリメチルメタクリレート 質量平均分子量:10万
 重合体(P-F):ポリ(2-エチル-2-オキサゾリジノン) 質量平均分子量:2.5万
 〔製造例1~14〕
 (P1-1.混合液の調製)
 表1に示す、カチオン(C)及びアニオン(A)を含む塩と、溶媒(SO)とを混合し、混合液を得た。混合の割合は、表1及び表2に示すモル数の比率の通りとした。混合に際して、室温では溶解速度が遅い場合は適宜加温を行った。
 (P1-2.析出物の有無の判定)
 (P1-1)で得られた混合液を、15℃にて3日間放置した後、目視で観察し、析出物の有無を判定した。析出「有」と判定した場合、さらに析出物の形状とその寸法を記録した。析出物の寸法としては、析出物を様々な角度から観察し、最も長い方向における長さを採用した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 製造例12及び製造例13以外の全ての例において、析出が見られた。析出物の形状は、角張った形状及び針状の形状であり、寸法が概ね1mm以上であった。したがって、これらの混合液を電気化学デバイス内で使用した場合、析出物の発生がデバイスの機能に悪影響を与えるものと考えられる。製造例14は製造例12におけるカチオンと製造例13におけるカチオンが混在した例である。製造例12及び製造例13では析出が見られなかったにも拘わらず、製造例14では析出が見られたことから、複数種類のカチオンが混在している場合には析出が発生し易くなることが分かる。
 (P1-3.加温による再溶解)
 (P1-2)での判定の後の、製造例1~11及び製造例14の、析出物を含む電解液を、さらに60℃で60分間加温した。どの例においても、全ての析出物を再溶解させることはできなかった。析出サイズが大きいためであると考えられる。
 〔実施例1-1~1-22〕
 製造例1~14の(P1-1)で調製した混合液のそれぞれに、表4に示す重合体(P-A)~(P-F)(表中では単に「A」~「F」と略記する)のそれぞれを添加して溶解させ、電解液を調製した。使用した混合液の種類、重合体の種類、及び重合体の添加の割合(質量%;電解液100質量%中の重合体(P)の百分率)は、表1に示す通りとした。それぞれの実施例において、溶解の工程として、
 工程(i):電解液温度を25℃に保ち、電解液に重合体を添加し静置する。
 工程(ii):電解液温度を60℃に保ち、電解液に重合体を添加し撹拌する。
 の2通りの工程を試みた。
 重合体(P-A)を用いた場合及び重合体(P-B)を用いた場合は、工程(i)ではいずれの実施例でも、24時間の静置により均一な溶液が得られた。一方工程(ii)ではいずれの実施例でも、30分間の撹拌で均一な溶液が得られた。さらに、得られた電解液の粘度を測定した。粘度は、EMS粘度計(京都電子工業製、EMS-1000S)を用いて密閉条件で電解液の組成が変化せず、空気中の水分が混入しないようにして、回転数1000rpmで測定した。
 重合体(P-C)を用いた場合は、工程(i)ではいずれの実施例でも、24時間の静置では透明な不溶解分が残存したため、さらに150時間静置したところ、均一な溶液が得られた。一方工程(ii)ではいずれの実施例でも、3時間の撹拌で均一な溶液が得られた。
 重合体(P-E)を用いた場合は、工程(i)では24時間の静置では殆ど溶解が進行せず、さらに150時間静置しても溶解が進行しなかったため、工程(i)による電解液の調製は行わなかった。一方工程(ii)では、20時間の撹拌で均一な溶液が得られた。
 重合体(P-D)を用いた場合、及び重合体(P-F)を用いた場合は、工程(i)では24時間の静置では殆ど溶解が進行せず、さらに150時間静置しても溶解が進行しなかったため、工程(i)による電解液の調製は行わなかった。一方工程(ii)では、3時間の撹拌で均一な溶液が得られた。
 得られたそれぞれの電解液を、15℃にて3日間放置した後、目視で観察し、析出物の有無を判定した。結果を表4に示す。また、電解液の粘度の測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表5中、※は、粘度が高すぎて試料を粘度測定機へ導入できず、測定ができなかったことを示す。従って、これらの例においては、室温で測定が可能であった実施例1-13よりも高い粘度であったと考えられる。
 測定温度が25℃より高いものは、25℃において流動性が低く、測定が困難であったため、より高い温度で測定したものである。
 実施例において析出物の有無に関し「あり」と判定された例は、いずれも、ごく微小な析出物が観察されるのみであった。これらの電解液を電気化学デバイスに使用した場合において、そのような微小な析出物が電気化学デバイスに与える悪影響は少ないものと判断された。析出物が観察された電解液を60℃に加温したところ、全ての例において、10分以内に析出物を再び溶解させることができた。
 〔実施例2:リチウムイオン二次電池〕
 (2-1.正極)
 プラネタリーミキサーに、活物質としてコバルト酸リチウム(日本化学工業社製、製品名「セルシードC」)100質量部、導電性フィラーとしてアセチレンブラック3質量部を仕込み、固形分濃度が90質量%となるようにN-メチルピロリドンを添加して、20分間撹拌して混合した。その後、ポリフッ化ビニリデンを固形分基準で1質量部加え、固形分濃度82質量%で90分間混練した後、さらにN-メチルピロリドンを加え、粘度を調整し、スラリーを得た。このスラリーを用いて、リチウムイオン電池の電極の一般的な製造方法に従い正極(目付:10mg/cm、密度3.3g/cm)を製造した。
 (2-2.リチウムイオン二次電池)
 (2-1)で得た正極と、セパレータとしての厚み100μmのPTFEメンブレンフィルター(メルク社製、製品名「オムニポアJMWP04700」)と、負極としての厚み100μmのリチウム金属箔とをこの順に重ね合わせて、リチウムイオン二次電池用の電極複層物を構成した。
 LiFSIと、DMCとを、LiFSI:DMC=1:3の比率(モル比)となるよう混合し、混合液を得た。この混合液に、重合体(P-B)を、濃度が0.5質量%となるように添加し、溶解させ、電解液を得た。電池用のアルミラミネート外装材中に、電極複層物を挿入し、電解液を注液し、外装の開口を閉じて内容物を密閉し、リチウム二次電池を得た。
 得られた二次電池を、25℃の環境下にて0.2Cの速度で充放電試験したところ4.2-3.0Vの電圧範囲において、140mAh/gの放電容量を示し、充放電の繰り返しが可能であった。
 〔実施例3-1:難燃性の評価〕
 (3-1-1.難燃剤含有の電解液の調製)
 LiTFSIと、DMSと、難燃剤としてのTMPとを、LiTFSI:DMS:TMP=1:2.4:0.6の比率(モル比)となるよう混合し、混合液を得た。この混合液に、重合体(P-A)を、濃度が10質量%となるように添加し、溶解させ、電解液を得た。この電解液中のリン酸トリメチルの割合は、15.4質量%であった。この電解液は、実施例1-9の電解液のDMSの一部をTMPに置き換えたものに相当する。
 (3-1-2.難燃性の評価)
 (3-1-1)で得た電解液100mgを直径2cmのステンレス製の皿に入れ、バーナーの炎を当て、着火の状態を観察することにより燃焼性を評価した。その結果、バーナーの炎を当てても着火が起こらなかった。
 〔実施例3-2:難燃性の評価〕
 実施例1-9の電解液(LiTFSI:DMS=1:3、重合体(P-A)10質量%)について、実施例3-1の(3-1-2)と同じ燃焼性の評価を行った。炎を4秒間当て続けることにより着火した。しかし、着火から2秒後に自然に消火した。消火後に再び炎を当てたところ、再び着火したが、1回目と同様に着火から2秒後に自然に消化した。このことから、この電解液は着火はするものの、全量が燃えてしまうことは無く、自己消火性を示すことが分かった。
 〔比較例1〕
 リチウムイオン電池で標準的に使用される、1MのLiPF電解液(溶媒:EC及びDEC、質量比50:50混合物)に対して、TMPを30質量%濃度となるように添加し、難燃性の電解液を得た。この電解液について、実施例3-1の(3-1-2)と同じ燃焼性の評価を行った。炎を当てた直後に、瞬時に着火し、皿中の液体が確認できなくなるまで燃焼が続いた。燃焼終了後、再度炎を当てたが着火は起こらなかったので、全ての電解液が燃焼したと判断した。このことから、この電解液は実施例3-1~3-2の電解液より高い燃焼性を有していると評価された。
 〔実施例4:可塑性組成物を用いた、リチウムイオン二次電池〕
 (4-1.電解液)
 LiFSIと、ECとを、LiFSI:EC=1:2の比率(モル比)となるよう混合し、混合液を得た。この混合液に、重合体(P-B)を、濃度が5質量%となるように添加し、溶解させ、電解液を得た。
 (4-2.可塑性組成物;正極シート)
 (4-1)で得た電解液10質量部、繊維状物質としてのPTFE(三井デュポンフロロケミカル社製粉末状PTFE 6-J、平均粒径470μm、かさ密度470g/l)、以下において同じ)1質量部、コバルト酸リチウム100質量部、及びアセチレンブラック3質量部を量り取り、乳鉢でよく混錬したところ、ひとまとまりの粘土状の可塑性組成物が得られた。この可塑性組成物を薄く延ばして厚み100μm、厚み精度±3%の正極シートを得た。このシートは6cm角の矩形の形状であっても、ピンセットでつまむことができ、高い自立性を有していた。走査型電子顕微鏡で確認したところ、添加したPTFEが数nm程度のナノ繊維となってコバルト酸リチウム及びアセチレンブラックの粒子を橋掛けしている構造が確認された。
 (4-3.リチウムイオン二次電池)
 厚さ25μmのアルミ箔と、(4-2)で得た正極シートと、(4-1)の電解液を含浸したセパレータ(ポリポア製、製品名「セルガード2325」)と、負極としての厚み100μmのLi金属箔と、厚み25μmの銅箔とをこの順に重ね合わせて、リチウムイオン二次電池用の電極複層物を得た。電極複層物を、電池用のアルミラミネート外装中に挿入し、1分間真空で脱気した後に、真空脱気状態を維持したまま外装の開口を熱でシールすることにより、内容物を真空シールし、リチウムイオン二次電池を製造した。真空シールの前後で重量減少は認められなかった。製造後直ちに、この電池を25℃の環境下にて0.1Cレートで充放電したところ、4.2-3.0Vの電圧範囲において、140mAh/gの放電容量を示し、充放電の繰り返しが可能であった。この電池の充放電を繰り返して容量の変化を測定したところ、200サイクルまで充放電を繰り返した時点で、初期の90%の容量を維持していた。
 〔比較例2:従来技術の電解液のイオン伝導度〕
 (C2-1.従来技術の電解液の調製)
 LiFSIと、GBLとを、LiFSI:GBL=1:2の比率(モル比)となるよう混合し、従来技術の電解液を得た。
 (C2-2.イオン伝導度の測定)
 (C2-1)で得た電解液のイオン伝導度を測定した。測定は、25℃において、測定は交流インピーダンス法にて1M~0.1Hzの周波数範囲で行った。その結果、イオン伝導度は1.28×10-3S/cmであった。
 〔実施例5:本発明の電解液のイオン伝導度〕
 比較例2の(C2-1)で調製した従来技術の電解液に、重合体(P-A)を、濃度が5質量%となるよう添加し、溶解させ、本発明の電解液を調製した。この電解液のイオン伝導度を比較例2の(C2-2)と同じ測定方法にて測定した。その結果、イオン伝導度は1.70×10-3S/cmであり、重合体を添加していないものよりも高い値であった。
 〔比較例3:無機固体電解質粉末のみの圧縮物のイオン伝導度〕
 無機固体電解質としてのLTAP(オハラ社製イオン伝導性ガラス LiO-Al-SiO-P-TiO)粉末(体積平均粒径1μm、密度2.8g/cm)200mgを直径10mmの円柱状の測定セルに導入し、上下から、1対のSUSの電極で10MPaの圧力で加圧した。この加圧状態を維持し、25℃におけるイオン伝導度を測定した。測定は交流インピーダンス法にて1M~0.1Hzの周波数範囲で行った。その結果、イオン伝導度は3.54×10-5S/cmであった。
 この固体電解質は粉砕されていない結晶体の状態で、1.5×10-3S/cm以上のイオン伝導度を有する一方、かかる粉末圧縮物のイオン伝導度は、10MPaという高い圧力にて加圧した状態であったにも拘わらず、前記の通り低い値であった。このことは、このように加圧された状態においてもなお、粉末同士の接触が不完全であることによるものと考えられる。
 〔実施例6:無機固体電解質粉末を含む絶縁層のイオン伝導度〕
 実施例5で得た本発明の電解液100mgと、繊維状物質としてのPTFE繊維10mgとを量り取り、加えて、比較例3で使用したものと同じ無機固体電解質を、組成物全体における無機固体電解質の体積分率が70体積%となるように量り取り、これらをよく混錬したところ、ひとまとまりの粘土状の可塑性組成物が得られた。この可塑性組成物は自立性と可塑性を有していた。この可塑性組成物を厚み200μmのシート状に成形し、直径12mmの円盤状に打ち抜き、2枚の円盤状のSUS板で挟み、0.01MPaの圧力で加圧した。この加圧状態を維持し、25℃におけるイオン伝導度を測定した。測定は、交流インピーダンス法にて1M~0.1Hzの周波数範囲で行った。その結果、イオン伝導度は2.29×10-3S/cmであり、実施例5の電解液についてのイオン伝導度測定結果より高い値であった。このことから、この系におけるイオン伝導の主体は固体電解質であると考えられ、電解液は固体電解質の界面接触性の改良剤として働いたと考えられる。
 〔実施例7:繊維状物質を含む電極及び絶縁層を備えるリチウムイオン二次電池〕
 (7-1.電解液)
 LiFSIと、SLとを、LiFSI:SL=1:2の比率(モル比)となるよう混合し、混合液を得た。この混合液に、重合体(P-B)を、濃度が5質量%となるように添加し、溶解させ、電解液を得た。
 (7-2.可塑性組成物;正極シート)
 (7-1)で得た電解液10質量部、導電材と繊維状物質とを兼ねる成分としてのカーボンナノチューブ(ゼオンナノテクノロジー社製、製品名「ZEONANO SG101」、算術平均直径:4nm、算術平均長さ:400μm、BET比表面積:1150m/g、以下において同じ)1質量部、及びコバルト酸リチウム100質量部を量り取り、乳鉢で混錬したところ、ひとまとまりの粘土状の可塑性組成物が得られた。この可塑性組成物を薄く延ばして厚み80μm、厚み精度±3%、密度3.9g/cmの正極シートを得た。このシートは4cm角の矩形の形状であっても、ピンセットでつまむことができ、高い自立性を有していた。
 (7-3.可塑性組成物;負極シート)
 (7-1)で得た電解液10質量部、導電材と繊維状物質とを兼ねる成分としてのカーボンナノチューブ0.4質量部、及び負極活物質としてのグラファイト(日本カーボン社製604A)40質量部を量り取り、乳鉢で混錬したところ、ひとまとまりの粘土状の可塑性組成物が得られた。この可塑性組成物を薄く延ばして厚み80μm、厚み精度±3%の負極シートを得た。このシートは4cm角の矩形の形状であっても、ピンセットでつまむことができ、高い自立性を有していた。
 (7-4.可塑性組成物;絶縁層)
 (7-1)で得た電解液10質量部、繊維状物質としてのPTFE繊維0.1質量部、及び体積平均粒径5μmのアルミナ5質量部を量り取り、乳鉢で混錬したところ、ひとまとまりの粘土状の可塑性組成物が得られた。この可塑性組成物を薄く延ばして厚み50μm、厚み精度±3%の絶縁層シートを得た。このシートは4cm角の矩形の形状であっても、ピンセットでつまむことができ、高い自立性を有していた。
 (7-5.リチウムイオン二次電池)
 厚さ25μmのアルミ箔と、(7-2)で得た正極シートと、(7-4)で得た絶縁層シートと、(7-3)で得た負極シートと、厚さ25μmの銅箔とをこの順に重ね合わせて、リチウムイオン二次電池用の電極複層物を得た。電極複層物を、電池用のアルミラミネート外装中に挿入し、1分間真空で脱気した後に、真空脱気状態を維持したまま外装の開口を熱でシールすることにより、内容物を真空シールし、リチウムイオン二次電池を製造した。真空シールの前後で重量減少は認められなかった。製造後直ちに、この電池を25℃の環境下にて0.1Cレートで充放電したところ、4.2-3.0Vの電圧範囲において、正極重量に対して140mAh/gの放電容量を示し、充放電の繰り返しが可能であった。
 〔実施例8:電解液の揮発に伴う状態の変化の評価〕
 LiFSIと、DMCとを、LiFSI:DMC=1:1の比率(モル比)となるよう混合し、従来技術の電解液を得た。さらに、従来技術の電解液に、重合体(P-B)を5質量%となるよう添加し、溶解させ、本発明の電解液を得た。
 従来技術の電解液及び本発明の電解液のそれぞれを、1gガラス皿に量り取り、温度18℃、露点-40℃以下のドライルームのドラフト内に放置した。放置開始から24時間後に、それらの状態を観察したところ、どちらの電解液においても重量減少が確認され、電解液中の40%のアセトニトリルが揮発したものと考えられた。この時点において、従来技術の電解液においては結晶の生成が確認されたが、本発明の電解液においては確認されなかった。本発明の電解液に対してはさらに試験を延長して、放置開始から48時間後に再び状態を観察したところ、依然塩の析出は確認されなかった。このことから、本発明の電解液は、電気化学デバイスの長期使用での溶媒の減少があっても塩の析出が起きにくいことが分かった。
 〔実施例9:バイポーラ構造の電気化学デバイス〕
 厚さ25μmのアルミ箔、正極シート、絶縁層シート、負極シート、厚さ20μmのステンレス箔、正極シート、絶縁層シート、負極シート、及び厚さ25μmの銅箔を、この順に重ね合わせて、バイポーラ電池用の電極複層物を得た。正極シート、絶縁層シート、及び負極シートとしては、実施例7の(7-2)で得た正極シート、実施例7の(7-4)で得た絶縁層シート、及び実施例7の(7-3)で得た負極シートを用いた。製造したバイポーラ電池は2つのセルが同一の外装内で直列になった構成を有しており、電解液の流動性が低いので内部で電解液が液絡することがなく、8.4から6Vまでの電圧範囲で充放電することができた。
 〔実施例10:第2の塩を先に溶解させる、電解液の製造〕
 第1のアニオンを含む第1の塩としてのLiFSI、及び第2のアニオンを含む第2の塩としてのLiDFOBを用意した。
 第2の塩0.5mmоl(193.8mg)をエチレンカーボネート20mmоl(1.761g)に添加して、50℃で攪拌して完全に溶解させた。続いて、ここへ第1の塩9.5mmol(1.871g)を添加して攪拌したところ、第1の塩が1時間で完全に溶解し、混合液が得られた。この混合液にさらに、重合体(P-B)を、濃度が5重量%となるよう添加し、溶解させ、本発明の電解液を得ることができた。
 一方、第1の塩9.5mmol(1.871g)をエチレンカーボネート20mmоl(1.761g)に添加して、50℃で攪拌して完全に溶解させた。続いて、ここへ第2の塩0.5mmоl(193.8mg)を添加して撹拌したが溶解しなかったため、温度を70℃まで上昇させてさらに撹拌を行った。70℃での撹拌を12時間行ったが、依然として完全な溶解状態は得られなかった。
 〔実施例11:溶媒の留去の工程を含む電解液の製造〕
 実施例1-2と同じ組成の電解液を、成分を一度に混合することにより調製した。即ち、LiFSIを187.1g(1mol)と、アセトニトリル41.1g(1mol)と、重合体(P-B)4.66gとを、ガラス製のフラスコに量り取り、室温で撹拌したところ、全ての成分を完全に溶解させるのに約3時間を要した。
 一方、アセトニトリルの量を10倍にして、LiFSIを187.1g(1mol)と、アセトニトリル411g(10mol)と、重合体(P-B)4.66gとをガラス製のフラスコに量り取り、室温で撹拌しせたところ、約15分に、全ての成分が完全に溶解した溶液を得た。この溶液を90℃のオイルバスで加熱して、アセトニトリルを留去する操作を行ったところ、30分間経過後に、9mol分アセトニトリルを留去することができ、その結果本発明の電解液を得ることができた。溶解と留去にかかった時間は合わせて45分であり、より短い時間で、本発明の電解液の製造を行うことができた。

Claims (26)

  1.  1~3価の金属イオンであるカチオン(C)と、
     アニオン(A)と、
     分子量1000以下の化合物である溶媒(SO)と、
     質量平均分子量が1万超の、溶解性の重合体(P)とを含む、電気化学デバイス用の電解液であって、
     前記カチオン(C)1モルに対する前記溶媒(SO)の含有割合が0.5~4モルであり、
     前記重合体(P)の含有割合が0.5質量%以上である、電解液。
  2.  粘度が500cP以上である、請求項1に記載の電解液。
  3.  前記アニオン(A)が、ホウ素原子、フッ素原子、リン原子、又はこれらの2以上を含むアニオンである、請求項1又は2に記載の電解液。
  4.  前記アニオン(A)が、(B(Rn1-F)、(P(Rn2-F)、(B(Rn3、及びこれらの混合物からなる群より選択されるアニオンを含み、
     Rは、複数存在する場合は互いに同一であっても異なっていてもよい、一価の基又は二価の基であり、
     前記一価の基は、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、又は一価の有機エーテル基であり、
     前記二価の基は、アルキレン基、アルケニレン基、アルキニレン基、二価の有機エーテル基又はオキソ基であり、
     前記アルキル基、アルケニル基、アルキニル基、一価の有機エーテル基、アルキレン基、アルケニレン基、アルキニレン基、及び二価の有機エーテル基は、ハロゲン原子で置換されていてもよく、オキソ基で置換されていてもよく、鎖の一部にヘテロ原子が介在していてもよく、
     n1は、Rが全て一価である場合は3であり、Rのうち一つが二価であり他が一価である場合は2であり、
     n2は、Rが全て一価である場合は5であり、Rのうち一つが二価であり他が一価である場合は4であり、Rのうち二つが二価であり他が一価である場合は3であり、
     n3は、Rが全て一価である場合は4であり、Rのうち一つが二価であり他が一価である場合は3であり、Rのうち二つが二価である場合は2である、
     請求項3に記載の電解液。
  5.  前記アニオン(A)が、PF 、BF 、ジフルオロ(オキサラト)ボレートイオン、ビスオキサレートボレートイオン、及びこれらの混合物からなる群より選択されるアニオンを含む、請求項4に記載の電解液。
  6.  前記溶媒(SO)が、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリブチル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリプロピル、亜リン酸トリブチル、リン酸トリフェニル、亜リン酸トリフェニル、含ホスファゼン化合物、これらの化合物の炭化水素鎖の一部において置換基を有する置換化合物、及びこれらの混合物からなる群より選択される難燃性の溶媒を含む、請求項1~5のいずれか1項に記載の電解液。
  7.  前記重合体(P)が共重合体である、請求項1~6のいずれか1項に記載の電解液。
  8.  前記カチオン(C)が、2価又は3価の金属イオンを含む、請求項1~7のいずれか1項に記載の電解液。
  9.  前記重合体(P)の質量平均分子量が10万以上である、請求項1~8のいずれか1項に記載の電解液。
  10.  請求項1~9のいずれか1項に記載の電解液の製造方法であって、
     前記溶媒(SO)に、前記カチオン(C)及び前記アニオン(A)を含む1種又は2種類以上の材料、及び前記重合体(P)を溶解する工程を含む、製造方法。
  11.  前記アニオン(A)は、第1のアニオン(A1)及び第2のアニオン(A2)を含み、
     前記第1のアニオン(A1)は、前記アニオン(A)中の、最も含有モル割合が大きいアニオンであり、
     前記第2のアニオン(A2)は、前記アニオン(A)中の、前記第1のアニオンに次いで含有モル割合が大きいアニオンであり、
     前記溶媒(SO)に、前記第2のアニオン(A2)を含む塩を添加する工程、及びその後に、第1のアニオン(A1)を含む塩を添加する工程を含む、請求項10に記載の製造方法。
  12.  前記溶媒(SO)に対して前記カチオン(C)及び前記アニオン(A)を含む塩を溶解させた後に、前記溶媒(SO)を留去することを含む、請求項10又は11に記載の製造方法。
  13.  請求項1~9のいずれか1項に記載の電解液と固形物を含み、可塑性を有する、電気化学デバイス用の可塑性組成物。
  14.  前記固形物は活物質を含む、請求項13に記載の可塑性組成物。
  15.  前記固形物は無機固体電解質(SE)を含む、請求項13に記載の可塑性組成物。
  16.  前記固形物は繊維状物質を含む、請求項13~15のいずれか1項に記載の可塑性組成物。
  17.  前記繊維状物質は100nm以下の平均繊維径を有する、請求項16に記載の可塑性組成物。
  18.  前記繊維状物質はポリテトラフルオロエチレン繊維、セルロースナノファイバ、カーボンナノチューブ、及びこれらの組み合わせからなる群より選択される、請求項16又は17に記載の可塑性組成物。
  19.  前記繊維状物質は単層カーボンナノチューブである、請求項16~18のいずれか1項に記載の可塑性組成物。
  20.  前記固形物が、粒子状固形物と繊維状物質とを含み、前記繊維状物質が、前記粒子状固形物の粒子間を橋掛けした状態で存在する、請求項13~19のいずれか1項に記載の可塑性組成物。
  21.  請求項13~20のいずれか1項に記載の可塑性組成物を含む電気化学デバイス用電極シート。
  22.  請求項13~20のいずれか1項に記載の可塑性組成物を含む電気化学デバイス用絶縁層。
  23.  請求項13~20のいずれか1項に記載の可塑性組成物を、電極シートの形状に成形することを含む、電気化学デバイス用電極シートの製造方法。
  24.  請求項13~20のいずれか1項に記載の可塑性組成物を、絶縁層の形状に成形することを含む、電気化学デバイス用絶縁層の製造方法。
  25.  請求項21に記載の電気化学デバイス用電極シート、請求項22に記載の電気化学デバイス用絶縁層、又はこれらの両方を備える、電気化学デバイス。
  26.  バイポーラ型である、請求項25に記載の電気化学デバイス。
PCT/JP2021/007174 2020-02-28 2021-02-25 電気化学デバイス用電解液、可塑性組成物、用途及び製造方法 WO2021172456A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/904,595 US20230109546A1 (en) 2020-02-28 2021-02-25 Electrolyte solution for electrochemical devices, plastic composition, use and production method
CN202180015495.3A CN115136376A (zh) 2020-02-28 2021-02-25 电化学装置用电解液、塑性组合物、用途以及制造方法
JP2022503710A JPWO2021172456A1 (ja) 2020-02-28 2021-02-25
KR1020227029076A KR20220148817A (ko) 2020-02-28 2021-02-25 전기 화학 디바이스용 전해액, 가소성 조성물, 용도 및 제조 방법
EP21761718.2A EP4113652A1 (en) 2020-02-28 2021-02-25 Electrolyte solution for electrochemical devices, themoplastic composition, use and production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020034185 2020-02-28
JP2020-034185 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021172456A1 true WO2021172456A1 (ja) 2021-09-02

Family

ID=77490229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007174 WO2021172456A1 (ja) 2020-02-28 2021-02-25 電気化学デバイス用電解液、可塑性組成物、用途及び製造方法

Country Status (6)

Country Link
US (1) US20230109546A1 (ja)
EP (1) EP4113652A1 (ja)
JP (1) JPWO2021172456A1 (ja)
KR (1) KR20220148817A (ja)
CN (1) CN115136376A (ja)
WO (1) WO2021172456A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167297A1 (ja) * 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池
WO2023190746A1 (ja) * 2022-03-29 2023-10-05 旭化成株式会社 非水系二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022045338A1 (ja) * 2020-08-28 2022-03-03

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359000A (ja) * 2001-03-28 2002-12-13 Toshiba Corp 非水電解液および非水電解液二次電池
JP2015026589A (ja) * 2013-07-29 2015-02-05 富士フイルム株式会社 非水二次電池用電解液および非水二次電池
JP2015133312A (ja) 2013-09-25 2015-07-23 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液
JP2017126500A (ja) * 2016-01-14 2017-07-20 国立大学法人 東京大学 蓄電装置用水系電解液、及び当該水系電解液を含む蓄電装置
JP2017188299A (ja) * 2016-04-05 2017-10-12 旭化成株式会社 非水系二次電池とそれに用いられる非水系電解液
WO2017179682A1 (ja) * 2016-04-15 2017-10-19 国立大学法人東京大学 電解液及びリチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359000A (ja) * 2001-03-28 2002-12-13 Toshiba Corp 非水電解液および非水電解液二次電池
JP2015026589A (ja) * 2013-07-29 2015-02-05 富士フイルム株式会社 非水二次電池用電解液および非水二次電池
JP2015133312A (ja) 2013-09-25 2015-07-23 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液
JP2017126500A (ja) * 2016-01-14 2017-07-20 国立大学法人 東京大学 蓄電装置用水系電解液、及び当該水系電解液を含む蓄電装置
JP2017188299A (ja) * 2016-04-05 2017-10-12 旭化成株式会社 非水系二次電池とそれに用いられる非水系電解液
WO2017179682A1 (ja) * 2016-04-15 2017-10-19 国立大学法人東京大学 電解液及びリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTROCHEMISTRY, vol. 82, no. 12, 2014, pages 1085 - 1090

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167297A1 (ja) * 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池
WO2023190746A1 (ja) * 2022-03-29 2023-10-05 旭化成株式会社 非水系二次電池

Also Published As

Publication number Publication date
EP4113652A1 (en) 2023-01-04
CN115136376A (zh) 2022-09-30
JPWO2021172456A1 (ja) 2021-09-02
KR20220148817A (ko) 2022-11-07
US20230109546A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
WO2021172456A1 (ja) 電気化学デバイス用電解液、可塑性組成物、用途及び製造方法
JP5314885B2 (ja) 非水電解液及びそれを備えた非水電解液二次電源
KR102622015B1 (ko) 전극-형성 조성물
US20030190531A1 (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
Zheng et al. Progress in gel polymer electrolytes for sodium‐ion batteries
JP4911888B2 (ja) 非水電解液及びそれを備えた非水電解液2次電池
KR102027181B1 (ko) 전해액, 전기 화학 디바이스, 리튬 이온 이차 전지, 및 모듈
JP2008053212A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
WO2012090855A1 (ja) リチウムイオン二次電池用ゲル電解質およびリチウムイオン二次電池
WO2007074609A1 (ja) 電池用非水電解液及びそれを備えた非水電解液電池、並びに電気二重層キャパシタ用電解液及びそれを備えた電気二重層キャパシタ
JP2007200605A (ja) 非水電解液及びそれを備えた非水電解液電池
JP7046013B2 (ja) フレキシブル電池
JP3635713B2 (ja) ゲル電解質及び電池
JPWO2018193628A1 (ja) ポリマ電解質組成物及びポリマ二次電池
JP4953605B2 (ja) 二次電池用ポリマーゲル電解質及びそれを用いたポリマー二次電池
JP2020113386A (ja) 電解液、電解質スラリ組成物及び二次電池
CN107508001B (zh) 电池用电解液和电池
JP2010015719A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP4671693B2 (ja) 二次電池の非水電解液用添加剤及び非水電解液二次電池
WO2011132717A1 (ja) 電気デバイス用非水電解液及びそれを用いた二次電池
JPWO2018193627A1 (ja) ポリマ電解質組成物及びポリマ二次電池
JP2006294334A (ja) 非水電解液、非水電解液電池、非水電解液電気二重層キャパシタ、並びに非水電解液の安全性評価方法
JP2006294332A (ja) 非水電解液、非水電解液電池、非水電解液電気二重層キャパシタ、並びに非水電解液の安全性評価方法
JP2010015717A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP6775521B2 (ja) フルオロポリマーフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021761718

Country of ref document: EP

Effective date: 20220928