WO2021172428A1 - Oxide sputtering target, and production method for oxide sputtering target - Google Patents

Oxide sputtering target, and production method for oxide sputtering target Download PDF

Info

Publication number
WO2021172428A1
WO2021172428A1 PCT/JP2021/007096 JP2021007096W WO2021172428A1 WO 2021172428 A1 WO2021172428 A1 WO 2021172428A1 JP 2021007096 W JP2021007096 W JP 2021007096W WO 2021172428 A1 WO2021172428 A1 WO 2021172428A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
oxide
oxide sputtering
mass
less
Prior art date
Application number
PCT/JP2021/007096
Other languages
French (fr)
Japanese (ja)
Inventor
謙介 井尾
雄也 陸田
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2021172428A1 publication Critical patent/WO2021172428A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to an oxide sputtering target having a cylindrical shape and composed of an oxide containing zirconium, silicon and indium as metal components, and a method for producing the oxide sputtering target.
  • the present application claims priority based on Japanese Patent Application No. 2020-031509 filed in Japan on February 27, 2020, the contents of which are incorporated herein by reference.
  • a shield layer is provided in order to prevent malfunction due to charging of the liquid crystal element, the organic EL element, or the like.
  • the shield layer described above is also required to have an action of allowing a touch signal to reach a sensor portion inside the panel while eliminating noise from the outside. Further, in this shield layer, in order to ensure the visibility of the display panel, it is also required to have high transparency of visible light.
  • Patent Document 1 a transparent conductive film containing indium tin oxide (ITO) as a main component is proposed as the above-mentioned shield layer.
  • ITO indium tin oxide
  • Patent Documents 2 to 4 propose an oxide sputtering target used for forming an oxide film containing zirconium, silicon, and indium as a metal component.
  • Japanese Unexamined Patent Publication No. 2013-142194 Japanese Unexamined Patent Publication No. 2007-327103 Japanese Unexamined Patent Publication No. 2009-062585 Japanese Unexamined Patent Publication No. 2018-040032
  • the oxide sputtering targets disclosed in Patent Documents 2 to 4 are mainly intended to form a dielectric layer and a protective layer of an optical disk which is an information recording medium, and the target sputtering surfaces are compared. It was a small one.
  • a shield layer such as an in-cell type touch panel, it is preferable to use a large sputtering target or a cylindrical sputtering target having a large area of the target sputtering surface.
  • Patent Documents 2 to 4 described above when the cylindrical sputtering target is manufactured, the pressurized state in the axial direction is different, so that the firing is insufficient and the density varies in the axial direction. There is a problem that cracks are likely to occur during bonding or sputtering. In addition, the sputter rate may vary in the axial direction, resulting in a decrease in usage efficiency. Therefore, in Patent Documents 2 to 4, there is a possibility that sputter film formation cannot be stably performed.
  • the present invention has been made in view of the above circumstances, and is an oxide sputtering target capable of stably performing sputtering deposition even with a cylindrical sputtering target, and the oxide sputtering target. It is an object of the present invention to provide the manufacturing method of.
  • the oxide sputtering target according to one aspect of the present invention is an oxide sputtering target having a cylindrical shape and composed of an oxide containing zirconium, silicon and indium as metal components. It is characterized in that the variation in density in the axial direction of the cylindrical shape is within 3%.
  • the oxide sputtering target of the present invention since it is composed of an oxide containing zirconium, silicon and indium as a metal component, it has high resistance and excellent visible light transmission, and is suitable for a shield layer. It is possible to form an oxide film. Since the variation in density of the cylindrical shape in the axial direction is within 3%, the occurrence of cracks during bonding and sputtering can be suppressed, and the variation in sputter rate in the axial direction can be suppressed. .. Therefore, it is possible to stably perform sputter film formation.
  • the variation of the specific resistance in the axial direction of the cylindrical shape is within 10%.
  • the sputtering is stable on the entire target sputtering surface forming the cylindrical surface, and the occurrence of abnormal discharge during sputtering can be suppressed. can.
  • the hole formed on the outer peripheral surface preferably has a diameter of less than 0.5 mm. In this case, since no holes having a diameter of 0.5 mm or more are observed on the outer peripheral surface of the target as the sputtering surface, it is possible to suppress the occurrence of abnormal discharge during sputtering.
  • the total metal component is 100 mass%
  • the Zr content is within the range of 2 mass% or more and 27 mass% or less
  • the In content is within the range of 65 mass% or more and 95 mass% or less.
  • Si content is preferably in the range of 0.5 mass% or more and 15 mass% or less, and unavoidable impurity metal elements are contained in addition to the zirconium, the indium, and the silicon.
  • the metal component is defined as described above, an oxide film having excellent durability, conductivity, and visibility can be formed.
  • the specific resistance value is preferably 1.0 ⁇ 10 -2 ⁇ ⁇ cm or less.
  • the specific resistance value is 1.0 ⁇ 10 -2 ⁇ ⁇ cm or less, it is conductive and can suppress the occurrence of abnormal discharge during sputtering.
  • the method for producing an oxide sputtering target is a method for producing an oxide sputtering target composed of an oxide having a cylindrical shape and containing zirconium, silicon and indium as metal components.
  • a raw material slurry production step of mixing powder, silicon oxide powder and indium oxide powder, adding a binder to form a slurry, and a drying step of drying the raw material slurry by a spray-drying method to obtain a sintered raw material powder are obtained.
  • the obtained sintered raw material powder is filled in a rubber mold using a core metal, and a cylindrical molded body is molded by a cold isotropic pressure method, which is sufficient. It is possible to apply a high pressure to the surface, and it is possible to suppress variations in density in the axial direction.
  • the density variation in the axial direction of the cylindrical molded body is within 3%.
  • the variation in density in the axial direction is suppressed within 3%, so that the occurrence of cracks in the sintering step can be suppressed.
  • the wax in the raw material slurry generation step, it is preferable to add wax in the raw material slurry generation step.
  • the wax since the wax is added together with the binder in the raw material slurry generation step, the wax softens and melts at an early stage and moves to the outside of the molded product in the subsequent degreasing step, and the route to the outside of the binder. Is ensured, and it becomes possible to promote the removal of the binder. Thereby, the generation of holes due to the remaining binder can be suppressed.
  • the core metal is subjected to a surface smoothing treatment.
  • the molded body can be relatively easily removed from the core metal after the molding step. Therefore, it is possible to suppress the occurrence of cracks in the molded product.
  • the arithmetic average roughness Ra of the surface of the core metal is 1.6 ⁇ m or less.
  • the molded body can be relatively easily removed from the core metal after the molding step. Therefore, it is possible to suppress the occurrence of cracks in the molded product.
  • the Vickers hardness of the core metal is 180 Hv or more. In this case, since the deformation of the core metal can be suppressed after the molding step, the molded body can be relatively easily removed from the core metal. Therefore, it is possible to suppress the occurrence of cracks in the molded product.
  • the pressurizing pressure in the molding step is preferably 100 MPa or more.
  • the molded body is sufficiently pressurized, it is possible to improve the density of the sintered body.
  • the specific resistance can be reduced.
  • an oxide sputtering target capable of stably performing sputtering deposition even with a cylindrical sputtering target, and a method for manufacturing the oxide sputtering target.
  • the oxide sputtering target 10 according to the embodiment of the present invention forms an oxide film suitable as a shield layer arranged for antistatic purposes in a liquid crystal display panel, an organic EL display panel, and a display panel such as a touch panel. It is used when doing so.
  • the oxide sputtering target 10 according to the present embodiment is composed of an oxide containing zirconium, silicon, and indium as a metal component.
  • the oxide sputtering target 10 of the present embodiment has a composite oxide phase containing at least a part of the above-mentioned metal elements and an indium oxide phase.
  • the total metal component is 100 mass%
  • the zirconium (Zr) content is in the range of 2 mass% or more and 27 mass% or less
  • the indium (In) content is in the range of 65 mass% or more and 95 mass% or less.
  • the content of silicon (Si) is preferably in the range of 0.5 mass% or more and 15 mass% or less, and unavoidable impurity metal elements may be contained in addition to zirconium, indium, and silicon.
  • Examples of the composite oxide phase in the oxide sputtering target 10 include In 2 Si 2 O 7 .
  • the oxide sputtering target 10 is a cylindrical sputtering target having a cylindrical surface (outer peripheral surface) as a sputtering surface.
  • the oxide sputtering target 10 shown in FIGS. 1A and 1B has a cylindrical shape extending along the axis O.
  • the outer diameter D is within the range of 140 mm ⁇ D ⁇ 200 mm
  • the inner diameter d is 100 mm ⁇ d ⁇ .
  • the length L in the axis O direction is within the range of 80 mm ⁇ L ⁇ 350 mm.
  • the density variation in the axial direction of the cylindrical shape is set to 3% or less.
  • the average value (average density) of the densities measured at a plurality of points is 5.5 g / cm 3 or more.
  • holes (recesses, through holes) having a diameter of 0.5 mm or more are not observed on the outer peripheral surface to be the sputtering surface. That is, it is preferable that all the holes formed on the outer peripheral surface have a diameter of less than 0.5 mm.
  • the variation of the specific resistance in the axial direction of the cylindrical shape is within 10%.
  • the average value (average resistivity) of the specific resistances measured at a plurality of points is 1.0 ⁇ 10 -2 ⁇ ⁇ cm or less.
  • the oxide composition, phase composition, variation in density in the axial direction, variation in resistivity in the axial direction, and holes having a diameter of 0.5 mm or more are described as described above. Show the specified reason.
  • the oxide sputtering target 10 of the present embodiment is composed of an oxide containing zirconium, silicon, and indium as a metal component.
  • the oxide sputtering target 10 having such a composition it is possible to form an oxide film having a sufficiently high resistance value and excellent transparency of visible light.
  • the Zr content is in the range of 2 mass% or more and 27 mass% or less
  • the In content is in the range of 65 mass% or more and 95 mass% or less
  • Si It is preferable that the content is in the range of 0.5 mass% or more and 15 mass% or less, and that the content is an unavoidable impurity metal element.
  • the Zr content is 2 mass% or more, the durability of the formed oxide film can be improved, the hardness becomes hard, and the scratch resistance becomes strong.
  • the Zr content is 27 mass% or less, the increase in the refractive index can be suppressed and the occurrence of unnecessary reflection can be suppressed, so that the decrease in the transmittance of visible light can be suppressed.
  • the total of the metal components is 100 mass%, the lower limit of the Zr content is preferably 5 mass% or more, and the upper limit of the Zr content is preferably 20 mass% or less.
  • the In content is 65 mass% or more, the conductivity of the oxide sputtering target 10 can be ensured, and an oxide film can be formed by direct current (DC) sputtering.
  • DC direct current
  • the In content is 95 mass% or less, it is possible to suppress a decrease in the transmittance of short wavelengths and ensure visibility.
  • the total of the metal components is 100 mass%, the lower limit of the In content is preferably 75 mass% or more, and the upper limit of the In content is preferably 90 mass% or less.
  • the Si content is 0.5 mass% or more, the flexibility of the oxide sputtering target 10 can be ensured and the crack resistance of the film is improved.
  • the Si content is 15 mass% or less, it is possible to suppress a decrease in the conductivity of the film, and it is possible to form an oxide film by direct current (DC) sputtering.
  • the total of the metal components is 100 mass%, the lower limit of the Si content is preferably 2 mass% or more, and the upper limit of the Si content is preferably 7 mass% or less.
  • the oxide sputtering target 10 of the present embodiment has a composite oxide phase containing at least a part of the above-mentioned metal elements and an indium oxide phase.
  • the presence of the indium oxide phase lowers the resistance value of the oxide sputtering target 10 of the present embodiment, and makes it possible to form an oxide film by direct current (DC) sputtering.
  • DC direct current
  • the pressurized state differs in the axial direction (axis O direction) at the time of manufacturing, the firing becomes insufficient, and the density tends to vary.
  • the density varies in the axial direction of the cylindrical shape, cracks may easily occur during bonding or spattering.
  • the sputter rate may vary in the axial direction. Therefore, in the present embodiment, the variation in density in the axial direction of the cylindrical shape is set to 3% or less.
  • the variation in the density of the oxide sputtering target 10 is obtained at an arbitrary plurality of locations (for example, in the circumferential direction of the sputtering surface) at both end portions A and B in the axial direction O direction and the central portion C.
  • the average values of (1), (2), (3), and (4) at intervals of 90 ° in the circumferential direction of the sputter surface are calculated, respectively, and both ends A and B are calculated.
  • the density of the central portion C was used, and the variation in density in the axial direction was calculated.
  • the average value (average density) of the density is preferably 5.5 g / cm 3 or more, and 6.0 g / cm 3 or more. More preferably, it is 6.2 g / cm 3 or more.
  • the variation of the specific resistance in the axial direction of the cylindrical shape is preferably 10% or less, and more preferably 7% or less.
  • the variation in the specific resistance of the oxide sputtering target 10 is an arbitrary plurality of variations in the circumferential direction of the sputtering surface at both end portions A and B in the axial direction O direction and the central portion C.
  • the average value of each of the four points (4 points (1), (2), (3), and (4) at 90 ° intervals in the circumferential direction of the sputter surface) is calculated, and both ends.
  • the variation of the specific resistance in the axial direction was calculated by using the densities of A, B and the central portion C as the densities.
  • the average value of the specific resistance is preferably 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less, preferably 8.5 ⁇ 10. more preferably not more than -3 ⁇ ⁇ cm, more preferably not more than 7.5 ⁇ 10 -3 ⁇ ⁇ cm.
  • the oxide sputtering target 10 of the present embodiment when a hole having a diameter of 0.5 mm or more is not observed, it is possible to further suppress the occurrence of abnormal discharge during sputtering film formation due to the hole. Therefore, in the present embodiment, it is preferable that holes having a diameter of 0.5 mm or more are not observed on the outer peripheral surface to be the sputter surface. In the present embodiment, the presence or absence of holes having a diameter of 0.5 mm or more is confirmed by visually observing the outer peripheral surface of the oxide sputtering target 10.
  • zirconium oxide powder (ZrO 2 powder), silicon oxide powder (SiO 2 powder) and indium oxide powder (In 2 O 3 powder) are prepared.
  • the zirconium oxide powder (ZrO 2 powder), the silicon oxide powder (SiO 2 powder), and the indium oxide powder (In 2 O 3 powder) each have a purity of 99.9% by mass or more and an average particle diameter of 0. It is preferably in the range of 1 ⁇ m or more and 20 ⁇ m or less.
  • the purity of ZrO 2 powder as the metal component, Fe, Si, Ti, the content of Na was measured, with the balance was calculated as being Zr.
  • the ZrO 2 powder of the present embodiment may contain up to 2.5% of HfO 2.
  • oxide powders were weighed so as to have a predetermined composition ratio, and wet pulverized and mixed with an aqueous solvent to which a dispersant was added using a ball mill device or a bead mill device using zirconia balls as a pulverizing medium. A binder and wax were added to the obtained mixture and dispersed by a stirrer to generate a raw material slurry.
  • the dispersant for example, polycarboxylic acid, naphthalene / sulfonic acid and the like can be used.
  • the binder for example, polyvinyl alcohol (PVA), polyacrylamide, acrylic resin and the like can be used.
  • the wax for example, paraffin, microcrystallin and the like can be used.
  • the obtained raw material slurry is dried by a spray-drying method to obtain a sintered raw material powder.
  • the sintered raw material powder is preferably classified to 250 ⁇ m or less. By using this sintered raw material powder, pressure molding becomes possible.
  • the obtained sintered raw material powder is filled in a rubber mold in which a core metal is arranged, and a cylindrical molded body is obtained by a cold isotropic pressure method.
  • the pressurizing pressure in the molding step S03 is preferably 100 MPa or more.
  • a core metal whose surface is smoothed by forming hard Cr plating on the surface of carbon steel, for example.
  • the arithmetic average roughness Ra of the surface of the core metal is 1.6 ⁇ m or less.
  • the Vickers hardness of the core metal is 180 Hv or more. It is preferable to dispose a mold release agent such as BN on the surface of the core metal. Further, in the present embodiment, it is preferable that the density variation in the axial direction of the obtained cylindrical molded product is within 3%.
  • Step S04 Next, the molded body is heated to perform degreasing.
  • heating is performed at a heating rate of 10 ° C./h or more and 100 ° C./h or less, and the temperature is maintained at 350 ° C. or more and 450 ° C. or less for 10 hours, and then to 500 ° C. or more and 600 ° C. or less. It is preferable to heat and hold for 10 hours. As a result, gas is slowly generated and the formation of holes is suppressed. Further, since the wax is added, the wax softens and melts at an early stage and moves to the outside of the molded product during heating, so that a path to the outside of the binder is secured.
  • This molded product is placed in a firing device having an oxygen introduction function, heated while introducing oxygen, and sintered. That is, sintering is performed in an oxygen atmosphere.
  • the amount of oxygen introduced is preferably in the range of 3 L / min or more and 10 L / min or less.
  • the rate of temperature rise is preferably in the range of 50 ° C./h or more and 200 ° C./h or less.
  • the sintering step S05 it is preferable to spread the powder under the molded product.
  • the bedding powder friction during sintering shrinkage can be reduced, and cracking during sintering can be suppressed.
  • the bedding powder one that does not melt at the time of heating and does not react with the molded product can be applied, and in the present embodiment, one of the melted zirconia powder (42-100 mesh) was used.
  • the molded product is sintered by holding it in a temperature range of 1200 ° C. or higher and 1400 ° C. or lower for 3 hours or longer, and then heating and holding it to a temperature exceeding 1400 ° C. (for example, 1500 ° C. or higher). To proceed. Hold for 3 hours or more in a temperature range of 1200 ° C. or higher, which is the temperature at which sintering of the indium oxide powder in the sintering raw material powder is started, and 1400 ° C. or lower, at which sintering proceeds due to the formation of the composite oxide.
  • oxygen gas can be uniformly permeated into the molded body while maintaining the gap channels between the sintered raw material powders during sintering.
  • the upper limit of the holding time in the temperature range of 1200 ° C. or higher and 1400 ° C. or lower is not limited, but is preferably 15 hours or less from the viewpoint of work efficiency. After that, by heating and holding the molded product to a temperature exceeding 1400 ° C., the sintering of the molded product proceeds uniformly.
  • the oxide sputtering target 10 of the present embodiment is manufactured by the above-mentioned process.
  • an oxide film suitable as a shield layer for an in-cell type touch panel or the like is formed.
  • the resistance value is low due to the presence of the indium oxide phase, and the oxide film can be formed by direct current (DC) sputtering. It becomes.
  • the formed oxide film has a composite oxide phase as a whole and has a sufficiently high resistance value, which is particularly suitable as a shield layer. Examples of the composite oxide phase in the oxide film include In 2 Si 2 O 7 .
  • the oxide sputtering target 10 of the present embodiment since it is composed of an oxide containing zirconium, silicon and indium as a metal component, the resistance value is high and the resistance value is high. It has excellent visible light transmittance and makes it possible to form an oxide film suitable for the shield layer.
  • the variation in the density of the cylindrical shape in the axial direction is within 3%, the occurrence of cracks during bonding and sputtering can be suppressed, and the variation in the sputter rate in the axial direction can be suppressed. It can be suppressed. Therefore, it is possible to stably perform sputter film formation.
  • the raw material slurry generation step S01 in which zirconium oxide powder, silicon oxide powder and indium oxide powder are mixed with an aqueous solvent and a binder is added to form a slurry, Since this raw material slurry is dried by a spray-drying method to obtain a sintered raw material powder, a drying step S02 is provided, so that a cylindrical molded body can be molded relatively easily in the subsequent molding step S03. It becomes. Further, since the degreasing step S04 for removing the binder from the molded product is provided, it is possible to prevent the binder from inhibiting sintering.
  • the obtained sintered raw material powder is filled in a rubber mold using a core metal, and a cylindrical molded body is molded by a cold isotropic pressure method, which is sufficient. It is possible to apply a high pressure to the surface, and it is possible to suppress variations in density in the axial direction.
  • the wax when the wax is added together with the binder in the raw material slurry generation step S01, the wax is prematurely softened and melted and moved to the outside of the molded product in the subsequent degreasing step S04.
  • a route to the outside of the binder is secured, and it becomes possible to promote the removal of the binder. Thereby, the generation of holes due to the remaining binder can be suppressed.
  • the molded body when the core metal used in the molding step S03 is subjected to a surface smoothing treatment, the molded body can be relatively easily removed from the core metal after the molding step S03. .. Therefore, it is possible to suppress the occurrence of cracks in the molded product. Further, even when the arithmetic mean roughness Ra of the surface of the core metal is 1.6 ⁇ m or less, the molded body can be removed from the core metal relatively easily, and cracks in the molded body occur. Can be suppressed. Further, even when the Vickers hardness of the core metal is 180 Hv or more, the molded body can be removed from the core metal relatively easily, and the occurrence of cracks in the molded body can be suppressed.
  • the pressurizing pressure in the molding step S03 is 100 MPa or more, the molded product is sufficiently pressurized, so that the density of the sintered body can be improved. In addition, the specific resistance can be reduced.
  • ⁇ Oxide sputtering target> As raw material powders, indium oxide powder (In 2 O 3 powder: purity 99.9% by mass or more, average particle size 1 ⁇ m) and silicon oxide powder (SiO 2 powder: purity 99.9% by mass or more, average particle size 2 ⁇ m) And zirconium oxide powder (ZrO 2 powder: purity 99.9% by mass or more, average particle size 2 ⁇ m) were prepared. Incidentally, the purity of ZrO 2 powder as the metal component, Fe, Si, Ti, the content of Na was measured, with the balance was calculated as being Zr.
  • the ZrO 2 powder of the present embodiment may contain up to 2.5% by mass of HfO 2. Then, these were weighed so as to have the compounding ratio shown in the table.
  • each of the weighed raw material powders is subjected to a dispersant (a dispersant using a basket mill device using a zirconia ball having a diameter of 2 mm as a crushing medium or a bead mill device using a zirconia ball having a diameter of 0.5 mm as a crushing medium.
  • a dispersant a dispersant using a basket mill device using a zirconia ball having a diameter of 2 mm as a crushing medium or a bead mill device using a zirconia ball having a diameter of 0.5 mm as a crushing medium.
  • Wet pulverization and mixing were carried out in an aqueous solvent containing (polycarboxylic acid).
  • a binder polyvinyl alcohol
  • wax liquid paraffin
  • the obtained sintered raw material powder was filled in a rubber mold (outer diameter 205 mm, inner diameter 165 mm, height 200 mm) in which a core metal was arranged, and CIP (cold isotropic pressure pressurization method) molding was performed.
  • the conditions for CIP molding were normal temperature (25 ° C.) and the pressurizing pressure shown in Table 1.
  • the core metal shown in the table was used.
  • the molded product was molded by the pressing method.
  • the degreased molded product is placed in a firing device having an oxygen introduction function (internal volume of the device is 27,000 cm 3 ), heated while introducing oxygen, and sintered. At this time, the amount of oxygen introduced was 6 L / min. The rate of temperature rise was 120 ° C./h. Then, when the temperature of the sintering was raised, the temperature was maintained at 1200 ° C. for 3 hours, and the main firing was performed at 1410 ° C. for 5 hours to obtain a sintered body.
  • an oxygen introduction function internal volume of the device is 27,000 cm 3
  • the obtained sintered body was subjected to wet grinding to obtain a target having an outer diameter of 155 mm, an inner diameter of 135 mm, and a height of 150 mm. Four of these were used to make a cylindrical sputtering target with a length of 600 mm.
  • the obtained oxide sputtering target was evaluated for the following items. The evaluation results are shown in Table 2.
  • Metal component composition A sample was cut out from the produced oxide sputtering target, pulverized, pretreated with an acid, and then the metal components of Zr, Si, and In were analyzed by ICP-AES. The content of each metal component relative to the content was calculated and shown in Table 2.
  • the X axis is the arbitrary end face direction
  • the Y axis is the end face direction that intersects the X axis perpendicularly
  • the Z axis is the axis direction.
  • the dimensional density of the obtained 12 blocks of 10 mm ⁇ 10 mm ⁇ 10 mm was measured. Then, the average value of the densities of these 12 samples is shown in the table.
  • the obtained oxide sputtering target was soldered to the backing tube using In solder, and mounted on a magnetron sputtering apparatus. Then, using Ar gas as the sputter gas by the magnetron sputtering device, the flow rate is 50 sccm, the pressure is 0.67 Pa, and the input power is 5 W / cm 2 for 1 hour of sputtering, which is provided in the DC power supply device. The number of abnormal discharges was measured by the arc count function. In addition, the oxide sputtering target after sputtering was visually observed to evaluate the presence or absence of cracks.
  • Comparative Example 1 in which the sintered raw material powder was obtained without adding a binder, a cylindrical molded product could not be obtained in the molding step.
  • Comparative Example 2 in which the molded product was formed by press molding, the variation in the density of the oxide sputtering target in the axial direction was as large as 5.1%. Therefore, cracking was confirmed during spattering.
  • Example 1 to 7 of the present invention the variation in density in the axial direction was 3% or less, cracks were not confirmed during sputtering, and stable film formation was possible.
  • Example 2 of the present invention to which no wax was added, five or more holes having a diameter of 0.5 mm or more were confirmed on the outer peripheral surface of the oxide sputtering target, and some abnormal discharges were observed, but at a level where there was no problem. there were.
  • Example 3 of the present invention in which the pressurizing pressure during molding was 50 MPa the density of the oxide sputtering target was slightly low, the specific resistance value was large, and some abnormal discharge was observed, but there was no problem. Met.
  • Example 4 of the present invention in which the arithmetic average roughness Ra of the surface of the core metal was 3.2 ⁇ m and the Vickers hardness was 150 Hv without performing the surface smoothing treatment on the core metal, minute cracks were confirmed in the molded body. However, it was a level without problems.
  • an oxide sputtering target capable of stably performing sputtering deposition even with a cylindrical sputtering target, and a method for producing the oxide sputtering target. It was confirmed that it was possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

An oxide sputtering target according to the present invention has a cylindrical shape and comprises an oxide containing zirconium, silicon, and indium as metal components, wherein the variation in the density of the cylindrical shape in the axial direction is less than 3%.

Description

酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法Oxide sputtering target and manufacturing method of oxide sputtering target
 本発明は、円筒形状をなし、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲット、及び、この酸化物スパッタリングターゲットの製造方法に関するものである。
 本願は、2020年2月27日に、日本に出願された特願2020-031509号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an oxide sputtering target having a cylindrical shape and composed of an oxide containing zirconium, silicon and indium as metal components, and a method for producing the oxide sputtering target.
The present application claims priority based on Japanese Patent Application No. 2020-031509 filed in Japan on February 27, 2020, the contents of which are incorporated herein by reference.
 液晶ディスプレイ、有機ELディスプレイ、及び、タッチパネル等のディスプレイパネルにおいては、液晶素子や有機EL素子等の帯電による誤動作を防止するために、シールド層を配設している。特に、インセル型のタッチパネルにおいては、上述のシールド層には、外部からのノイズは排除しながら、タッチ信号をパネル内部のセンサー部分に到達させる作用も求められる。
 また、このシールド層においては、ディスプレイパネルの視認性を確保するために、可視光の透過性が高いことも求められる。
In a display panel such as a liquid crystal display, an organic EL display, and a touch panel, a shield layer is provided in order to prevent malfunction due to charging of the liquid crystal element, the organic EL element, or the like. In particular, in an in-cell type touch panel, the shield layer described above is also required to have an action of allowing a touch signal to reach a sensor portion inside the panel while eliminating noise from the outside.
Further, in this shield layer, in order to ensure the visibility of the display panel, it is also required to have high transparency of visible light.
 ここで、例えば、特許文献1においては、上述のシールド層として、酸化インジウムスズ(ITO)を主成分とした透明導電膜が提案されている。
 ところで、酸化インジウムスズ(ITO)を主成分とした透明導電膜においては、可視光での透過率が低いために、黄色味が掛かっているように見えてしまい、視認性が劣化するおそれがあった。
Here, for example, in Patent Document 1, a transparent conductive film containing indium tin oxide (ITO) as a main component is proposed as the above-mentioned shield layer.
By the way, in a transparent conductive film containing indium tin oxide (ITO) as a main component, since the transmittance in visible light is low, it may appear yellowish and the visibility may be deteriorated. rice field.
 そこで、上述のシールド層として、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物膜を適用することが考えられる。
 例えば、特許文献2~4には、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物膜を成膜する際に用いられる酸化物スパッタリングターゲットが提案されている。
Therefore, it is conceivable to apply an oxide film containing zirconium, silicon and indium as a metal component as the shield layer described above.
For example, Patent Documents 2 to 4 propose an oxide sputtering target used for forming an oxide film containing zirconium, silicon, and indium as a metal component.
特開2013-142194号公報Japanese Unexamined Patent Publication No. 2013-142194 特開2007-327103号公報Japanese Unexamined Patent Publication No. 2007-327103 特開2009-062585号公報Japanese Unexamined Patent Publication No. 2009-062585 特開2018-040032号公報Japanese Unexamined Patent Publication No. 2018-040032
 ところで、特許文献2~4に開示された酸化物スパッタリングターゲットは、主に、情報記録媒体である光ディスクの誘電体層及び保護層を成膜することを想定したものであり、ターゲットスパッタ面が比較的小さいものであった。
 ここで、インセル型のタッチパネル等のシールド層を成膜する際には、ターゲットスパッタ面の面積が大きい大型のスパッタリングターゲットや円筒型スパッタリングターゲットを用いることが好ましい。
By the way, the oxide sputtering targets disclosed in Patent Documents 2 to 4 are mainly intended to form a dielectric layer and a protective layer of an optical disk which is an information recording medium, and the target sputtering surfaces are compared. It was a small one.
Here, when forming a shield layer such as an in-cell type touch panel, it is preferable to use a large sputtering target or a cylindrical sputtering target having a large area of the target sputtering surface.
 上述の特許文献2~4においては、円筒型スパッタリングターゲットを製造した場合には、軸線方向での加圧状態が異なるため、焼成が不十分となって、軸線方向で密度のばらつきが発生し、ボンディング時やスパッタ時に割れが生じ易くなるといった問題があった。また、スパッタレートが軸線方向でばらつき、使用効率が低下するおそれがあった。このため、特許文献2~4においては、安定してスパッタ成膜を行うことができないおそれがあった。 In Patent Documents 2 to 4 described above, when the cylindrical sputtering target is manufactured, the pressurized state in the axial direction is different, so that the firing is insufficient and the density varies in the axial direction. There is a problem that cracks are likely to occur during bonding or sputtering. In addition, the sputter rate may vary in the axial direction, resulting in a decrease in usage efficiency. Therefore, in Patent Documents 2 to 4, there is a possibility that sputter film formation cannot be stably performed.
 この発明は、前述した事情に鑑みてなされたものであって、円筒型スパッタリングターゲットであっても、安定してスパッタ成膜を行うことが可能な酸化物スパッタリングターゲット、および、この酸化物スパッタリングターゲットの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is an oxide sputtering target capable of stably performing sputtering deposition even with a cylindrical sputtering target, and the oxide sputtering target. It is an object of the present invention to provide the manufacturing method of.
 上記課題を解決するために、本発明の一態様に係る酸化物スパッタリングターゲットは、円筒形状をなし、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲットであって、前記円筒形状の軸線方向における密度のばらつきが3%以内とされていることを特徴としている。 In order to solve the above problems, the oxide sputtering target according to one aspect of the present invention is an oxide sputtering target having a cylindrical shape and composed of an oxide containing zirconium, silicon and indium as metal components. It is characterized in that the variation in density in the axial direction of the cylindrical shape is within 3%.
 本発明の酸化物スパッタリングターゲットによれば、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物で構成されているので、抵抗が高く、かつ、可視光の透過性に優れ、シールド層に適した酸化物膜を成膜することが可能となる。
 そして、前記円筒形状の軸線方向における密度のばらつきが3%以内とされているので、ボンディング時やスパッタ時における割れの発生を抑制でき、かつ、軸線方向でのスパッタレートのばらつきを抑えることができる。よって、安定してスパッタ成膜を行うことが可能となる。
According to the oxide sputtering target of the present invention, since it is composed of an oxide containing zirconium, silicon and indium as a metal component, it has high resistance and excellent visible light transmission, and is suitable for a shield layer. It is possible to form an oxide film.
Since the variation in density of the cylindrical shape in the axial direction is within 3%, the occurrence of cracks during bonding and sputtering can be suppressed, and the variation in sputter rate in the axial direction can be suppressed. .. Therefore, it is possible to stably perform sputter film formation.
 ここで、本発明の酸化物スパッタリングターゲットにおいては、前記円筒形状の軸線方向における比抵抗のばらつきが10%以内とされていることが好ましい。
 この場合、前記円筒形状の軸線方向における比抵抗のばらつきが10%以内とされているので、円筒面をなすターゲットスパッタ面全体でスパッタが安定し、スパッタ時における異常放電の発生を抑制することができる。
Here, in the oxide sputtering target of the present invention, it is preferable that the variation of the specific resistance in the axial direction of the cylindrical shape is within 10%.
In this case, since the variation of the specific resistance in the axial direction of the cylindrical shape is within 10%, the sputtering is stable on the entire target sputtering surface forming the cylindrical surface, and the occurrence of abnormal discharge during sputtering can be suppressed. can.
 また、本発明の酸化物スパッタリングターゲットにおいては、外周面に形成される穴は、直径が0.5mm未満であることが好ましい。
 この場合、該ターゲットのスパッタ面となる外周面に直径0.5mm以上の穴が観察されていないことから、スパッタ時における異常放電の発生を抑制することができる。
Further, in the oxide sputtering target of the present invention, the hole formed on the outer peripheral surface preferably has a diameter of less than 0.5 mm.
In this case, since no holes having a diameter of 0.5 mm or more are observed on the outer peripheral surface of the target as the sputtering surface, it is possible to suppress the occurrence of abnormal discharge during sputtering.
 さらに、本発明の酸化物スパッタリングターゲットにおいては、金属成分の合計を100mass%として、Zrの含有量が2mass%以上27mass%以下の範囲内、Inの含有量が65mass%以上95mass%以下の範囲内、Siの含有量が0.5mass%以上15mass%以下の範囲内であり、前記ジルコニウム、前記インジウム、前記ケイ素以外に不可避不純物金属元素が含有されていることが好ましい。
 この場合、金属成分が上述のように規定されているので、耐久性、導電性、視認性に優れた酸化物膜を成膜することができる。
Further, in the oxide sputtering target of the present invention, the total metal component is 100 mass%, the Zr content is within the range of 2 mass% or more and 27 mass% or less, and the In content is within the range of 65 mass% or more and 95 mass% or less. , Si content is preferably in the range of 0.5 mass% or more and 15 mass% or less, and unavoidable impurity metal elements are contained in addition to the zirconium, the indium, and the silicon.
In this case, since the metal component is defined as described above, an oxide film having excellent durability, conductivity, and visibility can be formed.
 また、本発明の酸化物スパッタリングターゲットにおいては、比抵抗値が1.0×10-2Ω・cm以下であることが好ましい。
 この場合、比抵抗値が1.0×10-2Ω・cm以下であるので、導電性があり、スパッタ時における異常放電の発生を抑制することができる。
Further, in the oxide sputtering target of the present invention, the specific resistance value is preferably 1.0 × 10 -2 Ω · cm or less.
In this case, since the specific resistance value is 1.0 × 10 -2 Ω · cm or less, it is conductive and can suppress the occurrence of abnormal discharge during sputtering.
 本発明の一態様に係る酸化物スパッタリングターゲットの製造方法は、円筒形状をなし、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲットの製造方法であって、酸化ジルコニウム粉、酸化ケイ素粉および酸化インジウム粉を混合し、バインダーを添加してスラリー化する原料スラリー生成工程と、この原料スラリーをスプレードライ法によって乾燥して焼結原料粉を得る乾燥工程と、得られた前記焼結原料粉を、芯金を配置したゴム型に充填して、冷間等方圧加圧法によって円筒形状の成形体を得る成形工程と、前記成形体から前記バインダーを除去する脱脂工程と、脱脂した前記成形体を酸素雰囲気下で焼結して焼結体を得る焼結工程と、を備えていることを特徴としている。 The method for producing an oxide sputtering target according to one aspect of the present invention is a method for producing an oxide sputtering target composed of an oxide having a cylindrical shape and containing zirconium, silicon and indium as metal components. A raw material slurry production step of mixing powder, silicon oxide powder and indium oxide powder, adding a binder to form a slurry, and a drying step of drying the raw material slurry by a spray-drying method to obtain a sintered raw material powder are obtained. A molding step of filling a rubber mold in which a core metal is arranged to obtain a cylindrical molded body by a cold isotropic pressure method, and a degreasing step of removing the binder from the molded body. It is characterized by comprising a sintering step of sintering the degreased molded body in an oxygen atmosphere to obtain a sintered body.
 この構成の酸化物スパッタリングターゲットの製造方法によれば、酸化ジルコニウム粉、酸化ケイ素粉および酸化インジウム粉を水溶媒にて混合し、バインダーを添加してスラリー化する原料スラリー生成工程と、この原料スラリーをスプレードライ法によって乾燥して焼結原料粉を得る乾燥工程と、を備えているので、その後の成形工程において、円筒形状の成形体を比較的容易に成形することが可能となる。また、前記成形体から前記バインダーを除去する脱脂工程を備えているので、バインダーが焼結を阻害することを抑制できる。
 そして、成形工程では、得られた前記焼結原料粉を、芯金を用いたゴム型に充填して、冷間等方圧加圧法によって、円筒形状の成形体を成形しているので、十分に高い圧力を付与することができ、軸線方向の密度のばらつきを抑えることが可能となる。
According to the method for producing an oxide sputtering target having this configuration, a raw material slurry generation step of mixing zirconium oxide powder, silicon oxide powder and indium oxide powder with an aqueous solvent and adding a binder to form a slurry, and this raw material slurry Is provided with a drying step of obtaining a sintered raw material powder by a spray-drying method, so that a cylindrical molded body can be molded relatively easily in a subsequent molding step. Further, since the degreasing step of removing the binder from the molded product is provided, it is possible to prevent the binder from inhibiting sintering.
Then, in the molding step, the obtained sintered raw material powder is filled in a rubber mold using a core metal, and a cylindrical molded body is molded by a cold isotropic pressure method, which is sufficient. It is possible to apply a high pressure to the surface, and it is possible to suppress variations in density in the axial direction.
 ここで、本発明の酸化物スパッタリングターゲットの製造方法においては、円筒形状をなす前記成形体の軸線方向における密度のばらつきが3%以内であることが好ましい。
 この場合、成形工程で得られた成形体において、軸線方向における密度のばらつきが3%以内に抑えられているので、焼結工程時における割れの発生を抑制することが可能となる。
Here, in the method for producing an oxide sputtering target of the present invention, it is preferable that the density variation in the axial direction of the cylindrical molded body is within 3%.
In this case, in the molded product obtained in the molding step, the variation in density in the axial direction is suppressed within 3%, so that the occurrence of cracks in the sintering step can be suppressed.
 また、本発明の酸化物スパッタリングターゲットの製造方法においては、前記原料スラリー生成工程において、ワックスを添加することが好ましい。
 この場合、前記原料スラリー生成工程においてバインダーとともにワックスを添加しているので、その後の脱脂工程において、ワックスが早期に軟化溶融して成形体の外側に移動することになり、バインダーの外部までの経路が確保され、バインダーの除去を促進することが可能となる。これにより、バインダーの残存による穴の発生を抑制することができる。
Further, in the method for producing an oxide sputtering target of the present invention, it is preferable to add wax in the raw material slurry generation step.
In this case, since the wax is added together with the binder in the raw material slurry generation step, the wax softens and melts at an early stage and moves to the outside of the molded product in the subsequent degreasing step, and the route to the outside of the binder. Is ensured, and it becomes possible to promote the removal of the binder. Thereby, the generation of holes due to the remaining binder can be suppressed.
 さらに、本発明の酸化物スパッタリングターゲットの製造方法においては、前記芯金に表面平滑化処理が施されていることが好ましい。
 この場合、成形工程後に、成形体を芯金から比較的容易に取り外すことが可能となる。よって、成形体の割れ等の発生を抑制できる。
Further, in the method for producing an oxide sputtering target of the present invention, it is preferable that the core metal is subjected to a surface smoothing treatment.
In this case, the molded body can be relatively easily removed from the core metal after the molding step. Therefore, it is possible to suppress the occurrence of cracks in the molded product.
 また、本発明の酸化物スパッタリングターゲットの製造方法においては、前記芯金の表面の算術平均粗さRaが1.6μm以下とされていることが好ましい。
 この場合、成形工程後に、成形体を芯金から比較的容易に取り外すことが可能となる。よって、成形体の割れ等の発生を抑制できる。
Further, in the method for producing an oxide sputtering target of the present invention, it is preferable that the arithmetic average roughness Ra of the surface of the core metal is 1.6 μm or less.
In this case, the molded body can be relatively easily removed from the core metal after the molding step. Therefore, it is possible to suppress the occurrence of cracks in the molded product.
 さらに、本発明の酸化物スパッタリングターゲットの製造方法においては、前記芯金のビッカース硬さが180Hv以上であることが好ましい。
 この場合、成形工程後に、芯金の変形が抑制できるため、成形体を芯金から比較的容易に取り外すことが可能となる。よって、成形体の割れ等の発生を抑制できる。
Further, in the method for producing an oxide sputtering target of the present invention, it is preferable that the Vickers hardness of the core metal is 180 Hv or more.
In this case, since the deformation of the core metal can be suppressed after the molding step, the molded body can be relatively easily removed from the core metal. Therefore, it is possible to suppress the occurrence of cracks in the molded product.
 また、本発明の酸化物スパッタリングターゲットの製造方法においては、前記成形工程における加圧圧力が100MPa以上であることが好ましい。
 この場合、成形体が十分に加圧されているので、焼結体の密度の向上を図ることが可能となる。また、比抵抗も低下させることができる。
Further, in the method for producing an oxide sputtering target of the present invention, the pressurizing pressure in the molding step is preferably 100 MPa or more.
In this case, since the molded body is sufficiently pressurized, it is possible to improve the density of the sintered body. In addition, the specific resistance can be reduced.
 本発明によれば、円筒型スパッタリングターゲットであっても、安定してスパッタ成膜を行うことが可能な酸化物スパッタリングターゲット、及び、この酸化物スパッタリングターゲットの製造方法を提供することができる。 According to the present invention, it is possible to provide an oxide sputtering target capable of stably performing sputtering deposition even with a cylindrical sputtering target, and a method for manufacturing the oxide sputtering target.
本発明の一実施形態に係る酸化物スパッタリングターゲットの概略説明図である。It is the schematic explanatory drawing of the oxide sputtering target which concerns on one Embodiment of this invention. 本発明の一実施形態に係る酸化物スパッタリングターゲットの概略説明図である。It is the schematic explanatory drawing of the oxide sputtering target which concerns on one Embodiment of this invention. 本発明の一実施形態に係る酸化物スパッタリングターゲットの製造方法を示すフロー図である。It is a flow chart which shows the manufacturing method of the oxide sputtering target which concerns on one Embodiment of this invention.
 以下に、本発明の実施形態である酸化物スパッタリングターゲット10、及び、酸化物スパッタリングターゲット10の製造方法について添付した図面を参照して説明する。
 本実施形態に係る酸化物スパッタリングターゲット10は、液晶ディスプレイパネル、有機ELディスプレイパネル、及び、タッチパネル等のディスプレイパネルにおいて、帯電防止のために配設されるシールド層として適した酸化物膜を成膜する際に用いられるものである。
Hereinafter, the oxide sputtering target 10 according to the embodiment of the present invention and the method for producing the oxide sputtering target 10 will be described with reference to the attached drawings.
The oxide sputtering target 10 according to the present embodiment forms an oxide film suitable as a shield layer arranged for antistatic purposes in a liquid crystal display panel, an organic EL display panel, and a display panel such as a touch panel. It is used when doing so.
 本実施形態に係る酸化物スパッタリングターゲット10は、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物で構成されている。本実施形態の酸化物スパッタリングターゲット10においては、上述の金属元素の少なくとも一部を含む複合酸化物相と酸化インジウム相とを有している。
 なお、本実施形態では、金属成分の合計を100mass%として、ジルコニウム(Zr)の含有量が2mass%以上27mass%以下の範囲内、インジウム(In)の含有量が65mass%以上95mass%以下の範囲内、ケイ素(Si)の含有量が0.5mass%以上15mass%以下の範囲内であることが好ましく、ジルコニウム、インジウム、ケイ素以外に不可避不純物金属元素が含有されていてもよい。酸化物スパッタリングターゲット10における複合酸化物相は、例えばInSiなどが挙げられる。
The oxide sputtering target 10 according to the present embodiment is composed of an oxide containing zirconium, silicon, and indium as a metal component. The oxide sputtering target 10 of the present embodiment has a composite oxide phase containing at least a part of the above-mentioned metal elements and an indium oxide phase.
In the present embodiment, the total metal component is 100 mass%, the zirconium (Zr) content is in the range of 2 mass% or more and 27 mass% or less, and the indium (In) content is in the range of 65 mass% or more and 95 mass% or less. Among them, the content of silicon (Si) is preferably in the range of 0.5 mass% or more and 15 mass% or less, and unavoidable impurity metal elements may be contained in addition to zirconium, indium, and silicon. Examples of the composite oxide phase in the oxide sputtering target 10 include In 2 Si 2 O 7 .
 本実施形態に係る酸化物スパッタリングターゲット10は、図1A、1Bに示すように、円筒面(外周面)がスパッタ面とされた円筒型スパッタリングターゲットとされている。
 図1A、1Bに示す酸化物スパッタリングターゲット10においては、軸線Oに沿って延在する円筒形状をなしており、例えば外径Dが140mm≦D≦200mmの範囲内、内径dが100mm≦d≦180mmの範囲内、軸線O方向長さLが80mm≦L≦350mmの範囲内とされている。
As shown in FIGS. 1A and 1B, the oxide sputtering target 10 according to the present embodiment is a cylindrical sputtering target having a cylindrical surface (outer peripheral surface) as a sputtering surface.
The oxide sputtering target 10 shown in FIGS. 1A and 1B has a cylindrical shape extending along the axis O. For example, the outer diameter D is within the range of 140 mm ≦ D ≦ 200 mm, and the inner diameter d is 100 mm ≦ d ≦. Within the range of 180 mm, the length L in the axis O direction is within the range of 80 mm ≦ L ≦ 350 mm.
 そして、本実施形態に係る酸化物スパッタリングターゲット10においては、円筒形状の軸線方向における密度のばらつきが3%以内とされている。
 なお、本実施形態においては、複数の箇所で測定した密度の平均値(平均密度)が5.5g/cm以上であることが好ましい。
 さらに、本実施形態に係る酸化物スパッタリングターゲット10においては、スパッタ面となる外周面に直径0.5mm以上の穴(凹部、貫通孔)が観察されないことが好ましい。つまり、外周面に形成される穴は、いずれも直径が0.5mm未満であることが好ましい。
In the oxide sputtering target 10 according to the present embodiment, the density variation in the axial direction of the cylindrical shape is set to 3% or less.
In this embodiment, it is preferable that the average value (average density) of the densities measured at a plurality of points is 5.5 g / cm 3 or more.
Further, in the oxide sputtering target 10 according to the present embodiment, it is preferable that holes (recesses, through holes) having a diameter of 0.5 mm or more are not observed on the outer peripheral surface to be the sputtering surface. That is, it is preferable that all the holes formed on the outer peripheral surface have a diameter of less than 0.5 mm.
 また、本実施形態に係る酸化物スパッタリングターゲット10においては、円筒形状の軸線方向における比抵抗のばらつきが10%以内とされていることが好ましい。
 なお、本実施形態においては、複数の箇所で測定した比抵抗の平均値(平均比抵抗)が1.0×10-2Ω・cm以下であることが好ましい。
Further, in the oxide sputtering target 10 according to the present embodiment, it is preferable that the variation of the specific resistance in the axial direction of the cylindrical shape is within 10%.
In this embodiment, it is preferable that the average value (average resistivity) of the specific resistances measured at a plurality of points is 1.0 × 10 -2 Ω · cm or less.
 以下に、本実施形態の酸化物スパッタリングターゲット10において、酸化物の組成、相構成、軸線方向における密度のばらつき、軸線方向における比抵抗のばらつき、直径0.5mm以上の穴について、上述のように規定した理由を示す。 Hereinafter, in the oxide sputtering target 10 of the present embodiment, the oxide composition, phase composition, variation in density in the axial direction, variation in resistivity in the axial direction, and holes having a diameter of 0.5 mm or more are described as described above. Show the specified reason.
(酸化物組成)
 本実施形態である酸化物スパッタリングターゲット10においては、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物で構成されている。このような組成の酸化物スパッタリングターゲット10においては、抵抗値が十分に高く、かつ、可視光の透過性に優れた酸化物膜を成膜することが可能となる。
 ここで、本実施形態においては、金属成分の合計を100mass%として、Zrの含有量が2mass%以上27mass%以下の範囲内、Inの含有量が65mass%以上95mass%以下の範囲内、Siの含有量が0.5mass%以上15mass%以下の範囲内、及び不可避不純物金属元素とされていることが好ましい。
(Oxide composition)
The oxide sputtering target 10 of the present embodiment is composed of an oxide containing zirconium, silicon, and indium as a metal component. In the oxide sputtering target 10 having such a composition, it is possible to form an oxide film having a sufficiently high resistance value and excellent transparency of visible light.
Here, in the present embodiment, assuming that the total of the metal components is 100 mass%, the Zr content is in the range of 2 mass% or more and 27 mass% or less, the In content is in the range of 65 mass% or more and 95 mass% or less, and Si. It is preferable that the content is in the range of 0.5 mass% or more and 15 mass% or less, and that the content is an unavoidable impurity metal element.
 Zrの含有量を2mass%以上とした場合には、成膜した酸化物膜の耐久性を向上させることができるとともに、硬度が硬くなり、ひっかき傷に強くなる。一方、Zrの含有量を27mass%以下とした場合には、屈折率が増大することを抑制でき、不要な反射の発生を抑制できるので、可視光の透過率が低下することを抑制できる。
 なお、金属成分の合計を100mass%として、Zrの含有量の下限は5mass%以上とすることが好ましく、Zrの含有量の上限は20mass%以下とすることが好ましい。
When the Zr content is 2 mass% or more, the durability of the formed oxide film can be improved, the hardness becomes hard, and the scratch resistance becomes strong. On the other hand, when the Zr content is 27 mass% or less, the increase in the refractive index can be suppressed and the occurrence of unnecessary reflection can be suppressed, so that the decrease in the transmittance of visible light can be suppressed.
The total of the metal components is 100 mass%, the lower limit of the Zr content is preferably 5 mass% or more, and the upper limit of the Zr content is preferably 20 mass% or less.
 Inの含有量を65mass%以上とした場合には、酸化物スパッタリングターゲット10の導電性を確保でき、直流(DC)スパッタによって酸化物膜を成膜することが可能となる。一方、Inの含有量を95mass%以下とした場合には、短波長の透過率が低下することを抑制でき、視認性を確保することができる。
 なお、金属成分の合計を100mass%として、Inの含有量の下限は75mass%以上とすることが好ましく、Inの含有量の上限は90mass%以下とすることが好ましい。
When the In content is 65 mass% or more, the conductivity of the oxide sputtering target 10 can be ensured, and an oxide film can be formed by direct current (DC) sputtering. On the other hand, when the In content is 95 mass% or less, it is possible to suppress a decrease in the transmittance of short wavelengths and ensure visibility.
The total of the metal components is 100 mass%, the lower limit of the In content is preferably 75 mass% or more, and the upper limit of the In content is preferably 90 mass% or less.
 Siの含有量を0.5mass%以上とした場合には、酸化物スパッタリングターゲット10の柔軟性を確保でき、膜の割れ耐性が向上する。一方、Siの含有量を15mass%以下とした場合には、膜の導電性が低下することを抑制でき、直流(DC)スパッタによって酸化物膜を成膜することが可能となる。
 なお、金属成分の合計を100mass%として、Siの含有量の下限は2mass%以上とすることが好ましく、Siの含有量の上限は7mass%以下とすることが好ましい。
When the Si content is 0.5 mass% or more, the flexibility of the oxide sputtering target 10 can be ensured and the crack resistance of the film is improved. On the other hand, when the Si content is 15 mass% or less, it is possible to suppress a decrease in the conductivity of the film, and it is possible to form an oxide film by direct current (DC) sputtering.
The total of the metal components is 100 mass%, the lower limit of the Si content is preferably 2 mass% or more, and the upper limit of the Si content is preferably 7 mass% or less.
(相構成)
 本実施形態である酸化物スパッタリングターゲット10においては、上述の金属元素の少なくとも一部を含む複合酸化物相と酸化インジウム相とを有している。
 ここで、酸化インジウム相が存在することにより、本実施形態である酸化物スパッタリングターゲット10の抵抗値が低くなり、直流(DC)スパッタによって酸化物膜を成膜することが可能となる。
(Phase composition)
The oxide sputtering target 10 of the present embodiment has a composite oxide phase containing at least a part of the above-mentioned metal elements and an indium oxide phase.
Here, the presence of the indium oxide phase lowers the resistance value of the oxide sputtering target 10 of the present embodiment, and makes it possible to form an oxide film by direct current (DC) sputtering.
(軸線方向の密度のばらつき)
 円筒型スパッタリングターゲットにおいては、製造時に軸線方向(軸線O方向)で加圧状態が異なり、焼成が不十分となって、密度ばらつきが生じやすい傾向になる。ここで、円筒形状の軸線方向において密度のばらつきが生じると、ボンディング時やスパッタ時に割れが生じ易くなるおそれがある。また、スパッタレートが軸線方向でばらつくおそれがある。
 そこで、本実施形態においては、円筒形状の軸線方向における密度のばらつきを3%以内としている。
 なお、本実施形態においては、密度のばらつきは、複数の箇所で測定した密度の最大値と最小値から、以下の式で定義した。
 密度のばらつき = (最大値-最小値)/(最大値+最小値) ×100(%)
(Variation of density in the axial direction)
In the cylindrical sputtering target, the pressurized state differs in the axial direction (axis O direction) at the time of manufacturing, the firing becomes insufficient, and the density tends to vary. Here, if the density varies in the axial direction of the cylindrical shape, cracks may easily occur during bonding or spattering. In addition, the sputter rate may vary in the axial direction.
Therefore, in the present embodiment, the variation in density in the axial direction of the cylindrical shape is set to 3% or less.
In this embodiment, the density variation is defined by the following formula from the maximum and minimum values of the densities measured at a plurality of points.
Density variation = (maximum value-minimum value) / (maximum value + minimum value) x 100 (%)
 ここで、酸化物スパッタリングターゲット10の密度のばらつきは、図1に示すように、軸線O方向の両端部A,Bと中心部Cにおいて、スパッタ面の円周方向に任意の複数の箇所(例えば、本実施形態では、スパッタ面の円周方向に90°間隔の(1)、(2)、(3)、(4)の4点)の平均値をそれぞれ算出して、両端部A,Bおよび中心部Cの密度とし、軸線方向における密度のばらつきを算出した。 Here, as shown in FIG. 1, the variation in the density of the oxide sputtering target 10 is obtained at an arbitrary plurality of locations (for example, in the circumferential direction of the sputtering surface) at both end portions A and B in the axial direction O direction and the central portion C. In this embodiment, the average values of (1), (2), (3), and (4) at intervals of 90 ° in the circumferential direction of the sputter surface are calculated, respectively, and both ends A and B are calculated. And the density of the central portion C was used, and the variation in density in the axial direction was calculated.
 なお、本実施形態である酸化物スパッタリングターゲット10においては、密度の平均値(平均密度)が5.5g/cm以上とされていることが好ましく、6.0g/cm以上であることがさらに好ましく、6.2g/cm以上であることがより好ましい。 In the oxide sputtering target 10 of the present embodiment, the average value (average density) of the density is preferably 5.5 g / cm 3 or more, and 6.0 g / cm 3 or more. More preferably, it is 6.2 g / cm 3 or more.
(軸線方向の比抵抗のばらつき)
 円筒形状の軸線方向において比抵抗のばらつきを抑えることにより、スパッタ成膜時における異常放電の発生をさらに抑制することが可能となる。
 そこで、本実施形態においては、円筒形状の軸線方向における比抵抗のばらつきを10%以内とすることが好ましく、7%以下とすることがさらに好ましい。
(Variation of resistivity in the axial direction)
By suppressing the variation in resistivity in the axial direction of the cylindrical shape, it is possible to further suppress the occurrence of abnormal discharge during sputter film formation.
Therefore, in the present embodiment, the variation of the specific resistance in the axial direction of the cylindrical shape is preferably 10% or less, and more preferably 7% or less.
 なお、本実施形態においては、比抵抗のばらつきは、複数の箇所で測定した比抵抗の最大値と最小値から、以下の式で定義した。
 比抵抗のばらつき = (最大値-最小値)/(最大値+最小値) ×100(%)
In this embodiment, the variation in resistivity is defined by the following formula from the maximum and minimum values of resistivity measured at a plurality of points.
Variation in resistivity = (maximum value-minimum value) / (maximum value + minimum value) x 100 (%)
 ここで、酸化物スパッタリングターゲット10の比抵抗のばらつきは、図1A、1Bに示すように、軸線O方向の両端部A,Bと中心部Cにおいて、スパッタ面の円周方向に任意の複数の箇所(例えば、本実施形態では、スパッタ面の円周方向に90°間隔の(1)、(2)、(3)、(4)の4点)の平均値をそれぞれ算出して、両端部A,Bおよび中心部Cの密度とし、軸線方向における比抵抗のばらつきを算出した。 Here, as shown in FIGS. 1A and 1B, the variation in the specific resistance of the oxide sputtering target 10 is an arbitrary plurality of variations in the circumferential direction of the sputtering surface at both end portions A and B in the axial direction O direction and the central portion C. For example, in the present embodiment, the average value of each of the four points (4 points (1), (2), (3), and (4) at 90 ° intervals in the circumferential direction of the sputter surface) is calculated, and both ends. The variation of the specific resistance in the axial direction was calculated by using the densities of A, B and the central portion C as the densities.
 なお、本実施形態である酸化物スパッタリングターゲット10においては、比抵抗の平均値(平均比抵抗)が1.0×10-2Ω・cm以下とされていることが好ましく、8.5×10-3Ω・cm以下であることがより好ましく、7.5×10-3Ω・cm以下であればさらに好ましい。 In the oxide sputtering target 10 of the present embodiment, the average value of the specific resistance (average specific resistance) is preferably 1.0 × 10 −2 Ω · cm or less, preferably 8.5 × 10. more preferably not more than -3 Ω · cm, more preferably not more than 7.5 × 10 -3 Ω · cm.
(外周面の穴)
 本実施形態である酸化物スパッタリングターゲット10において、直径が0.5mm以上の穴が観察されない場合には、穴に起因したスパッタ成膜時における異常放電の発生をさらに抑制することが可能となる。
 そこで、本実施形態においては、スパッタ面となる外周面に直径0.5mm以上の穴が観察されないことが好ましい。
 なお、本実施形態では、酸化物スパッタリングターゲット10の外周面を目視観察することで、直径が0.5mm以上の穴の有無を確認している。
(Hole on the outer circumference)
In the oxide sputtering target 10 of the present embodiment, when a hole having a diameter of 0.5 mm or more is not observed, it is possible to further suppress the occurrence of abnormal discharge during sputtering film formation due to the hole.
Therefore, in the present embodiment, it is preferable that holes having a diameter of 0.5 mm or more are not observed on the outer peripheral surface to be the sputter surface.
In the present embodiment, the presence or absence of holes having a diameter of 0.5 mm or more is confirmed by visually observing the outer peripheral surface of the oxide sputtering target 10.
 次に、上述した本実施形態である酸化物スパッタリングターゲット10の製造方法について、図2を参照して説明する。 Next, the method for manufacturing the oxide sputtering target 10 according to the present embodiment described above will be described with reference to FIG.
(原料スラリー生成工程S01)
 まず、酸化ジルコニウム粉(ZrO粉)、酸化ケイ素粉(SiO粉)および酸化インジウム粉(In粉)を準備する。
 ここで、酸化ジルコニウム粉(ZrO粉)、酸化ケイ素粉(SiO粉)および酸化インジウム粉(In粉)は、それぞれ、純度が99.9質量%以上、平均粒子径が0.1μm以上20μm以下の範囲内であることが好ましい。なお、ZrO粉の純度は、金属成分として、Fe、Si、Ti、Naの含有量を測定し、残部がZrであるとして算出されたものである。本実施形態のZrO粉においては、HfOを最大で2.5%含有することがある。
(Raw Material Slurry Generation Step S01)
First, zirconium oxide powder (ZrO 2 powder), silicon oxide powder (SiO 2 powder) and indium oxide powder (In 2 O 3 powder) are prepared.
Here, the zirconium oxide powder (ZrO 2 powder), the silicon oxide powder (SiO 2 powder), and the indium oxide powder (In 2 O 3 powder) each have a purity of 99.9% by mass or more and an average particle diameter of 0. It is preferably in the range of 1 μm or more and 20 μm or less. Incidentally, the purity of ZrO 2 powder as the metal component, Fe, Si, Ti, the content of Na was measured, with the balance was calculated as being Zr. The ZrO 2 powder of the present embodiment may contain up to 2.5% of HfO 2.
 これらの酸化物粉末を、所定の組成比となるように秤量し、粉砕媒体としてジルコニアボールを用いたボールミル装置またはビーズミル装置を用いて、分散剤を添加した水溶媒にて湿式粉砕混合した。
 得られた混合物に、バインダーとワックスを添加して攪拌機にて分散し、原料スラリーを生成した。
These oxide powders were weighed so as to have a predetermined composition ratio, and wet pulverized and mixed with an aqueous solvent to which a dispersant was added using a ball mill device or a bead mill device using zirconia balls as a pulverizing medium.
A binder and wax were added to the obtained mixture and dispersed by a stirrer to generate a raw material slurry.
 ここで、分散剤としては、例えば、ポリカルボン酸、ナフタレン・スルホン酸等を用いることができる。
 また、バインダーとしては、例えば、ポリビニルアルコール(PVA)、ポリアクリルアミド、アクリル系樹脂等を用いることができる。
 さらに、ワックスとしては、例えば、パラフィン、マイクロクリスタリン等を用いることができる。
Here, as the dispersant, for example, polycarboxylic acid, naphthalene / sulfonic acid and the like can be used.
Further, as the binder, for example, polyvinyl alcohol (PVA), polyacrylamide, acrylic resin and the like can be used.
Further, as the wax, for example, paraffin, microcrystallin and the like can be used.
(乾燥工程S02)
 次に、得られた原料スラリーを、スプレードライ法によって乾燥することにより、焼結原料粉を得る。ここで、焼結原料粉は250μm以下に分級することが好ましい。この焼結原料粉を用いることにより、加圧成形が可能となる。
(Drying step S02)
Next, the obtained raw material slurry is dried by a spray-drying method to obtain a sintered raw material powder. Here, the sintered raw material powder is preferably classified to 250 μm or less. By using this sintered raw material powder, pressure molding becomes possible.
(成形工程S03)
 次に、得られた焼結原料粉を、芯金を配置したゴム型に充填して、冷間等方圧加圧法によって円筒形状の成形体を得る。成形工程S03における加圧圧力は100MPa以上であることが好ましい。
 ここで、芯金に成形体が強く密着して離型が困難となると、成形体に割れが生じるおそれがある。このため、芯金は、例えば炭素鋼の表面に硬質Crめっきを形成することによって表面平滑化処理したものを用いることが好ましい。また、芯金の表面の算術平均粗さRaが1.6μm以下とされていることが好ましい。さらに、芯金のビッカース硬さが180Hv以上であることが好ましい。なお、芯金の表面にBN等の離型剤を配設しておくことが好ましい。
 また、本実施形態においては、得られた円筒形状をなす成形体の軸線方向における密度のばらつきが3%以内であることが好ましい。
(Molding step S03)
Next, the obtained sintered raw material powder is filled in a rubber mold in which a core metal is arranged, and a cylindrical molded body is obtained by a cold isotropic pressure method. The pressurizing pressure in the molding step S03 is preferably 100 MPa or more.
Here, if the molded body is strongly adhered to the core metal and it is difficult to release the mold, the molded body may be cracked. Therefore, it is preferable to use a core metal whose surface is smoothed by forming hard Cr plating on the surface of carbon steel, for example. Further, it is preferable that the arithmetic average roughness Ra of the surface of the core metal is 1.6 μm or less. Further, it is preferable that the Vickers hardness of the core metal is 180 Hv or more. It is preferable to dispose a mold release agent such as BN on the surface of the core metal.
Further, in the present embodiment, it is preferable that the density variation in the axial direction of the obtained cylindrical molded product is within 3%.
(脱脂工程S04)
 次に、成形体を加熱して脱脂を行う。この脱脂工程S04においては、昇温速度10℃/h以上100℃/h以下の昇温速度で加熱し、350℃以上450℃以下で10時間保持し、その後、500℃以上600℃以下にまで加熱して10時間保持することが好ましい。これにより、ガスをゆっくり発生させて穴の生成を抑制する。
 また、ワックスを添加しているため、加熱時には、ワックスが早期に軟化溶融して成形体の外側に移動することになり、バインダーの外部までの経路が確保されることになる。
(Degreasing step S04)
Next, the molded body is heated to perform degreasing. In this degreasing step S04, heating is performed at a heating rate of 10 ° C./h or more and 100 ° C./h or less, and the temperature is maintained at 350 ° C. or more and 450 ° C. or less for 10 hours, and then to 500 ° C. or more and 600 ° C. or less. It is preferable to heat and hold for 10 hours. As a result, gas is slowly generated and the formation of holes is suppressed.
Further, since the wax is added, the wax softens and melts at an early stage and moves to the outside of the molded product during heating, so that a path to the outside of the binder is secured.
(焼結工程S05)
 この成形体を、酸素導入機能を有する焼成装置内に装入し、酸素を導入しながら加熱して焼結する。すなわち、酸素雰囲気下で焼結を行う。
 このとき、酸素の導入量は3L/分以上10L/分以下の範囲内とすることが好ましい。また、昇温速度は50℃/h以上200℃/h以下の範囲内とすることが好ましい。
(Sintering step S05)
This molded product is placed in a firing device having an oxygen introduction function, heated while introducing oxygen, and sintered. That is, sintering is performed in an oxygen atmosphere.
At this time, the amount of oxygen introduced is preferably in the range of 3 L / min or more and 10 L / min or less. The rate of temperature rise is preferably in the range of 50 ° C./h or more and 200 ° C./h or less.
 そして、本実施形態では、焼結工程S05においては、成形体の下に敷粉をすることが好ましい。敷粉を用いることで、焼結収縮時の摩擦が低減し、焼結時の割れを抑制することが可能となる。
 なお、敷粉としては、加熱時に溶融せず、かつ、成形体と反応しないものが適用でき、本実施形態では、電融ジルコニア粉(42-100メッシュ)のものを用いた。
Then, in the present embodiment, in the sintering step S05, it is preferable to spread the powder under the molded product. By using the bedding powder, friction during sintering shrinkage can be reduced, and cracking during sintering can be suppressed.
As the bedding powder, one that does not melt at the time of heating and does not react with the molded product can be applied, and in the present embodiment, one of the melted zirconia powder (42-100 mesh) was used.
 なお、焼結工程S05においては、1200℃以上1400℃以下の温度範囲で3時間以上保持し、その後、1400℃を超える温度(例えば1500℃以上)まで加熱して保持し、成形体の焼結を進行させる。
 焼結原料粉中の酸化インジウム粉の焼結が開始される温度である1200℃以上で、かつ、複合酸化物の形成によって焼結が進行する1400℃以下の温度範囲で3時間以上保持することにより、焼結時に焼結原料粉同士の間の隙間チャンネルを保った状態で酸素ガスを、成形体の内部に均一に浸透させることが可能となる。なお、1200℃以上1400℃以下の温度範囲での保持時間の上限に制限はないが、作業効率の観点から15時間以下とすることが好ましい。
 その後、1400℃を超える温度にまで加熱して保持することで、成形体の焼結が均一に進行することになる。
In the sintering step S05, the molded product is sintered by holding it in a temperature range of 1200 ° C. or higher and 1400 ° C. or lower for 3 hours or longer, and then heating and holding it to a temperature exceeding 1400 ° C. (for example, 1500 ° C. or higher). To proceed.
Hold for 3 hours or more in a temperature range of 1200 ° C. or higher, which is the temperature at which sintering of the indium oxide powder in the sintering raw material powder is started, and 1400 ° C. or lower, at which sintering proceeds due to the formation of the composite oxide. As a result, oxygen gas can be uniformly permeated into the molded body while maintaining the gap channels between the sintered raw material powders during sintering. The upper limit of the holding time in the temperature range of 1200 ° C. or higher and 1400 ° C. or lower is not limited, but is preferably 15 hours or less from the viewpoint of work efficiency.
After that, by heating and holding the molded product to a temperature exceeding 1400 ° C., the sintering of the molded product proceeds uniformly.
(機械加工工程S06)
 次に、上述の焼結体に対して旋盤加工等の機械加工を行い、所定サイズの酸化物スパッタリングターゲット10を得る。
(Machining process S06)
Next, the above-mentioned sintered body is subjected to machining such as lathe processing to obtain an oxide sputtering target 10 having a predetermined size.
 上述の工程により、本実施形態である酸化物スパッタリングターゲット10が製造されることになる。 The oxide sputtering target 10 of the present embodiment is manufactured by the above-mentioned process.
 そして、本実施形態である酸化物スパッタリングターゲット10を用いて、スパッタ成膜することにより、インセル型のタッチパネル等のシールド層として適した酸化物膜が成膜される。
 ここで、本実施形態である酸化物スパッタリングターゲット10においては、上述のように、酸化インジウム相が存在することによって抵抗値が低く、直流(DC)スパッタによって酸化物膜を成膜することが可能となる。
 一方、成膜された酸化物膜においては、全体が複合酸化物相となっており、抵抗値が十分に高くなり、シールド層として特に適している。酸化物膜における複合酸化物相は、例えばInSiなどが挙げられる。
Then, by performing a sputtering film formation using the oxide sputtering target 10 of the present embodiment, an oxide film suitable as a shield layer for an in-cell type touch panel or the like is formed.
Here, in the oxide sputtering target 10 of the present embodiment, as described above, the resistance value is low due to the presence of the indium oxide phase, and the oxide film can be formed by direct current (DC) sputtering. It becomes.
On the other hand, the formed oxide film has a composite oxide phase as a whole and has a sufficiently high resistance value, which is particularly suitable as a shield layer. Examples of the composite oxide phase in the oxide film include In 2 Si 2 O 7 .
 以上のような構成とされた本実施形態である酸化物スパッタリングターゲット10によれば、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物で構成されているので、抵抗値が高く、かつ、可視光の透過率に優れ、シールド層に適した酸化物膜を成膜することが可能となる。 According to the oxide sputtering target 10 of the present embodiment having the above configuration, since it is composed of an oxide containing zirconium, silicon and indium as a metal component, the resistance value is high and the resistance value is high. It has excellent visible light transmittance and makes it possible to form an oxide film suitable for the shield layer.
 そして、本実施形態では、円筒形状の軸線方向における密度のばらつきが3%以内とされているので、ボンディング時やスパッタ時における割れの発生を抑制でき、かつ、軸線方向でのスパッタレートのばらつきを抑えることができる。よって、安定してスパッタ成膜を行うことが可能となる。 Further, in the present embodiment, since the variation in the density of the cylindrical shape in the axial direction is within 3%, the occurrence of cracks during bonding and sputtering can be suppressed, and the variation in the sputter rate in the axial direction can be suppressed. It can be suppressed. Therefore, it is possible to stably perform sputter film formation.
 また、本実施形態において、円筒形状の軸線方向における比抵抗のばらつきが10%以内とされている場合には、円筒面をなすターゲットスパッタ面全体でスパッタが安定し、スパッタ時における異常放電の発生を抑制することができる。
 さらに、本実施形態において、比抵抗値が1.0×10-2Ω・cm以下である場合には、導電性があり、スパッタ時における異常放電の発生を抑制することができる。
Further, in the present embodiment, when the variation of the specific resistance in the axial direction of the cylindrical shape is within 10%, the sputtering is stabilized on the entire target sputtering surface forming the cylindrical surface, and abnormal discharge occurs during the sputtering. Can be suppressed.
Further, in the present embodiment, when the specific resistance value is 1.0 × 10 -2 Ω · cm or less, it is conductive and can suppress the occurrence of abnormal discharge during sputtering.
 また、本実施形態において、スパッタ面となる外周面に直径0.5mm以上の穴が観察されない場合には、スパッタ時における異常放電の発生を抑制することができ、さらに安定してスパッタ成膜を行う。 Further, in the present embodiment, when a hole having a diameter of 0.5 mm or more is not observed on the outer peripheral surface to be the sputter surface, it is possible to suppress the occurrence of abnormal discharge during sputtering, and more stably sputter film formation can be performed. conduct.
 本実施形態である酸化物スパッタリングターゲッの製造方法によれば、酸化ジルコニウム粉、酸化ケイ素粉および酸化インジウム粉を水溶媒にて混合し、バインダーを添加してスラリー化する原料スラリー生成工程S01と、この原料スラリーをスプレードライ法によって乾燥して焼結原料粉を得る乾燥工程S02と、を備えているので、その後の成形工程S03において、円筒形状の成形体を比較的容易に成形することが可能となる。また、成形体からバインダーを除去する脱脂工程S04を備えているので、バインダーが焼結を阻害することを抑制できる。
 そして、成形工程S03では、得られた焼結原料粉を、芯金を用いたゴム型に充填して、冷間等方圧加圧法によって、円筒形状の成形体を成形しているので、十分に高い圧力を付与することができ、軸線方向の密度のばらつきを抑えることが可能となる。
According to the method for producing an oxide sputtering target according to the present embodiment, the raw material slurry generation step S01 in which zirconium oxide powder, silicon oxide powder and indium oxide powder are mixed with an aqueous solvent and a binder is added to form a slurry, Since this raw material slurry is dried by a spray-drying method to obtain a sintered raw material powder, a drying step S02 is provided, so that a cylindrical molded body can be molded relatively easily in the subsequent molding step S03. It becomes. Further, since the degreasing step S04 for removing the binder from the molded product is provided, it is possible to prevent the binder from inhibiting sintering.
Then, in the molding step S03, the obtained sintered raw material powder is filled in a rubber mold using a core metal, and a cylindrical molded body is molded by a cold isotropic pressure method, which is sufficient. It is possible to apply a high pressure to the surface, and it is possible to suppress variations in density in the axial direction.
 本実施形態において、成形工程S03で得られた成形体において、軸線方向における密度のばらつきが3%以内に抑えられている場合には、その後の焼結工程S05における割れの発生を抑制することが可能となる。 In the present embodiment, in the molded product obtained in the molding step S03, when the variation in density in the axial direction is suppressed within 3%, the occurrence of cracks in the subsequent sintering step S05 can be suppressed. It will be possible.
 また、本実施形態において、原料スラリー生成工程S01で、バインダーとともにワックスを添加した場合には、その後の脱脂工程S04において、ワックスが早期に軟化溶融して成形体の外側に移動することになり、バインダーの外部までの経路が確保され、バインダーの除去を促進することが可能となる。これにより、バインダーの残存による穴の発生を抑制することができる。 Further, in the present embodiment, when the wax is added together with the binder in the raw material slurry generation step S01, the wax is prematurely softened and melted and moved to the outside of the molded product in the subsequent degreasing step S04. A route to the outside of the binder is secured, and it becomes possible to promote the removal of the binder. Thereby, the generation of holes due to the remaining binder can be suppressed.
 さらに、本実施形態において、成形工程S03で用いられる芯金に表面平滑化処理が施されている場合には、成形工程S03後に、成形体を芯金から比較的容易に取り外すことが可能となる。よって、成形体の割れ等の発生を抑制できる。
 また、芯金の表面の算術平均粗さRaが1.6μm以下とされている場合でも、同様に、成形体を芯金から比較的容易に取り外すことが可能となり、成形体の割れ等の発生を抑制できる。
 また、芯金のビッカース硬さが180Hv以上とされている場合でも、同様に、成形体を芯金から比較的容易に取り外すことが可能となり、成形体の割れ等の発生を抑制できる。
Further, in the present embodiment, when the core metal used in the molding step S03 is subjected to a surface smoothing treatment, the molded body can be relatively easily removed from the core metal after the molding step S03. .. Therefore, it is possible to suppress the occurrence of cracks in the molded product.
Further, even when the arithmetic mean roughness Ra of the surface of the core metal is 1.6 μm or less, the molded body can be removed from the core metal relatively easily, and cracks in the molded body occur. Can be suppressed.
Further, even when the Vickers hardness of the core metal is 180 Hv or more, the molded body can be removed from the core metal relatively easily, and the occurrence of cracks in the molded body can be suppressed.
 さらに、本実施形態において、成形工程S03における加圧圧力が100MPa以上である場合には、成形体が十分に加圧されているので、焼結体の密度の向上を図ることが可能となる。また、比抵抗も低下させることができる。 Further, in the present embodiment, when the pressurizing pressure in the molding step S03 is 100 MPa or more, the molded product is sufficiently pressurized, so that the density of the sintered body can be improved. In addition, the specific resistance can be reduced.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the invention.
 以下に、本発明の有効性を確認するために行った確認実験の結果について説明する。 The results of the confirmation experiment conducted to confirm the effectiveness of the present invention will be described below.
<酸化物スパッタリングターゲット>
 原料粉末として、酸化インジウム粉末(In粉末:純度99.9質量%以上、平均粒径1μm)と、酸化シリコン粉末(SiO粉末:純度99.9質量%以上、平均粒径2μm)と、酸化ジルコニウム粉末(ZrO粉末:純度99.9質量%以上、平均粒径2μm)と、を準備した。なお、ZrO粉の純度は、金属成分として、Fe、Si、Ti、Naの含有量を測定し、残部がZrであるとして算出されたものである。本実施形態のZrO粉においては、HfOを最大で2.5質量%含有することがある。
 そして、これらを、表に示す配合比となるように、秤量した。
<Oxide sputtering target>
As raw material powders, indium oxide powder (In 2 O 3 powder: purity 99.9% by mass or more, average particle size 1 μm) and silicon oxide powder (SiO 2 powder: purity 99.9% by mass or more, average particle size 2 μm) And zirconium oxide powder (ZrO 2 powder: purity 99.9% by mass or more, average particle size 2 μm) were prepared. Incidentally, the purity of ZrO 2 powder as the metal component, Fe, Si, Ti, the content of Na was measured, with the balance was calculated as being Zr. The ZrO 2 powder of the present embodiment may contain up to 2.5% by mass of HfO 2.
Then, these were weighed so as to have the compounding ratio shown in the table.
 秤量した各原料粉末を、表に示すように、直径2mmのジルコニアボールを粉砕媒体としたバスケットミル装置、あるいは、直径0.5mmのジルコニアボールを粉砕媒体としたビーズミル装置を用いて、分散剤(ポリカルボン酸)を添加した水溶媒にて湿式粉砕混合した。
 得られた混合物に、バインダー(ポリビニルアルコール)、ワックス(流動パラフィン)を添加して、撹拌機にて分散させ、原料スラリーを生成した。
 この原料スラリーを乾燥させ、250μmの篩いでジルコニアボールを除去し、焼結原料粉を得た。スプレードライによって乾燥させ、250μmの篩いを実施し、焼結原料粉を得た。
As shown in the table, each of the weighed raw material powders is subjected to a dispersant (a dispersant using a basket mill device using a zirconia ball having a diameter of 2 mm as a crushing medium or a bead mill device using a zirconia ball having a diameter of 0.5 mm as a crushing medium. Wet pulverization and mixing were carried out in an aqueous solvent containing (polycarboxylic acid).
A binder (polyvinyl alcohol) and wax (liquid paraffin) were added to the obtained mixture and dispersed by a stirrer to generate a raw material slurry.
This raw material slurry was dried, and zirconia balls were removed with a 250 μm sieve to obtain a sintered raw material powder. It was dried by spray drying and sieved to 250 μm to obtain a sintered raw material powder.
 得られた焼結原料粉を、芯金を配置したゴム型(外径205mm、内径165mm、高さ200mm)に充填し、CIP(冷間等方圧加圧法)成形を実施した。CIP成形の条件は、常温(25℃)、表1に記載の加圧圧力とした。また、芯金として表に記載のものを使用した。なお、比較例2では、プレス法によって成形体を成形した。 The obtained sintered raw material powder was filled in a rubber mold (outer diameter 205 mm, inner diameter 165 mm, height 200 mm) in which a core metal was arranged, and CIP (cold isotropic pressure pressurization method) molding was performed. The conditions for CIP molding were normal temperature (25 ° C.) and the pressurizing pressure shown in Table 1. In addition, the core metal shown in the table was used. In Comparative Example 2, the molded product was molded by the pressing method.
 得られた円筒形状の成形体について、軸線方向の密度のばらつきを測定した。測定結果を表1に示す。
 得られた成形体を、大気炉で、昇温速度20℃/hr、到達温度350℃で10時間保持し、その後、到達温度600℃まで加熱して10時間保持し、脱脂を行った。
With respect to the obtained cylindrical molded body, the variation in density in the axial direction was measured. The measurement results are shown in Table 1.
The obtained molded product was held in an atmospheric furnace at a heating rate of 20 ° C./hr and an ultimate temperature of 350 ° C. for 10 hours, and then heated to an ultimate temperature of 600 ° C. and held for 10 hours to perform degreasing.
 そして、脱脂した成形体を、酸素導入機能を有する焼成装置内(装置内容積27000cm)に装入し、酸素を導入しながら加熱して焼結する。このとき、酸素の導入量は6L/分とした。また、昇温速度は120℃/hとした。
 そして、焼結の昇温時において、1200℃で3時間の温度保持を行い、1410℃で5時間の焼成条件で本焼成し、焼結体を得た。
Then, the degreased molded product is placed in a firing device having an oxygen introduction function (internal volume of the device is 27,000 cm 3 ), heated while introducing oxygen, and sintered. At this time, the amount of oxygen introduced was 6 L / min. The rate of temperature rise was 120 ° C./h.
Then, when the temperature of the sintering was raised, the temperature was maintained at 1200 ° C. for 3 hours, and the main firing was performed at 1410 ° C. for 5 hours to obtain a sintered body.
 得られた焼結体に対して湿式研削加工を施し、外径155mm、内径135mm、高さ150mmのターゲットを得た。これを4個用いて、長さ600mmの円筒型スパッタリングターゲットとした。 The obtained sintered body was subjected to wet grinding to obtain a target having an outer diameter of 155 mm, an inner diameter of 135 mm, and a height of 150 mm. Four of these were used to make a cylindrical sputtering target with a length of 600 mm.
 得られた酸化物スパッタリングターゲットについて、以下の項目について評価した。評価結果を表2に示す。 The obtained oxide sputtering target was evaluated for the following items. The evaluation results are shown in Table 2.
(金属成分組成)
 作製された酸化物スパッタリングターゲットからサンプルを切り出して粉砕し、酸で前処理した後、ICP-AESによってZr,Si,Inの金属成分を分析し、得られた結果から、上述の全金属成分の含有量に対する各金属成分の含有量を計算し、表2に示した。
(Metal component composition)
A sample was cut out from the produced oxide sputtering target, pulverized, pretreated with an acid, and then the metal components of Zr, Si, and In were analyzed by ICP-AES. The content of each metal component relative to the content was calculated and shown in Table 2.
(密度、及び、密度のばらつき)
 円筒型スパッタリングターゲットの片方の端面を下側にして置き、軸線に直交する平面において、X軸を任意の端面方向、Y軸をX軸と垂直に交差する端面方向、Z軸を軸線方向とし、中心を(X,Y,Z)=(0mm,0mm,0mm)座標とした際に、(-72.5mm,0mm,-70mm)、(+72.5mm,0mm,-70mm)、(0mm,-72.5mm、-70mm)、(0mm,+72.5mm,-70mm)、(-72.5mm,0mm,0mm)、(+72.5mm,0mm,0mm)、(0mm,-72.5mm,0mm)、(0mm,+72.5mm,0mm)、(-72.5mm,0mm,+70mm)、(+72.5mm,0mm,+70mm)、(0mm,-72.5mm,+70mm)、(0mm,+72.5mm,+70mm)のそれぞれ12点を中心とした10mm×10mm×10mmのブロックに切断した。得られた10mm×10mm×10mmのブロック12個について、寸法密度を測定した。そして、これら12個の試料の密度の平均値を表に示した。
 密度のばらつきについては、12ブロックを、軸線方向に連なる3ブロックを1セットとする4セットに分けた。下記の式により、密度の平均値、最大値及び最小値から、それぞれのセットごとの密度ばらつきを、算出した。
 密度のばらつき= (最大値-最小値)/平均値 ×100(%)そして、4セットの密度ばらつきの平均値を求めて、円筒型スパッタリングターゲット全体の密度ばらつきとした。
(Density and variation in density)
Place one end face of the cylindrical sputtering target on the lower side, and in a plane orthogonal to the axis, the X axis is the arbitrary end face direction, the Y axis is the end face direction that intersects the X axis perpendicularly, and the Z axis is the axis direction. When the center is (X, Y, Z) = (0 mm, 0 mm, 0 mm) coordinates, (-72.5 mm, 0 mm, -70 mm), (+ 72.5 mm, 0 mm, -70 mm), (0 mm,- 72.5mm, -70mm), (0mm, +72.5mm, -70mm), (-72.5mm, 0mm, 0mm), (+72.5mm, 0mm, 0mm), (0mm, -72.5mm, 0mm) , (0mm, +72.5mm, 0mm), (-72.5mm, 0mm, +70mm), (+72.5mm, 0mm, +70mm), (0mm, -72.5mm, +70mm), (0mm, +72.5mm, It was cut into blocks of 10 mm × 10 mm × 10 mm centered on each of 12 points (+70 mm). The dimensional density of the obtained 12 blocks of 10 mm × 10 mm × 10 mm was measured. Then, the average value of the densities of these 12 samples is shown in the table.
Regarding the variation in density, 12 blocks were divided into 4 sets including 3 blocks connected in the axial direction as one set. The density variation for each set was calculated from the average value, the maximum value, and the minimum value of the density by the following formula.
Density variation = (maximum value-minimum value) / average value × 100 (%) Then, the average value of the four sets of density variation was obtained and used as the density variation of the entire cylindrical sputtering target.
(比抵抗、及び、比抵抗のばらつき)
 密度測定用のサンプルと同様の12ブロックについて、三菱化学株式会社製の低抵抗率計(Loresta-GP)を用い、四探針法で測定した。測定時の温度は23±5℃、湿度は50±20%にて測定した。そして、密度と同様に、比抵抗のばらつきを算出した。また、比抵抗の平均値を表に示した。
(Specific resistance and variation in specific resistance)
Twelve blocks similar to the sample for density measurement were measured by a four-probe method using a low resistivity meter (Loresta-GP) manufactured by Mitsubishi Chemical Corporation. The temperature at the time of measurement was 23 ± 5 ° C., and the humidity was 50 ± 20%. Then, the variation in resistivity was calculated in the same manner as the density. The average value of resistivity is shown in the table.
(異常放電、割れ)
 得られた酸化物スパッタリングターゲットをバッキングチューブにInはんだを用いてはんだ付けし、マグネトロンスパッタ装置に装着した。そして、マグネトロンスパッタ装置により、スパッタガスとしてArガスを用いて、流量50sccm,圧力0.67Paとし、投入電力として5W/cmの電力にて1時間のスパッタを行い、DC電源装置に備えられているアークカウント機能により、異常放電の回数を計測した。
 また、スパッタ後の酸化物スパッタリングターゲットを目視で観察し、割れの有無を評価した。
(Abnormal discharge, cracking)
The obtained oxide sputtering target was soldered to the backing tube using In solder, and mounted on a magnetron sputtering apparatus. Then, using Ar gas as the sputter gas by the magnetron sputtering device, the flow rate is 50 sccm, the pressure is 0.67 Pa, and the input power is 5 W / cm 2 for 1 hour of sputtering, which is provided in the DC power supply device. The number of abnormal discharges was measured by the arc count function.
In addition, the oxide sputtering target after sputtering was visually observed to evaluate the presence or absence of cracks.
(穴の有無)
 目視にてターゲット外周面を観察し、直径0.5mm以上の穴の個数を数えて、4個以下の場合を〇、5個以上の場合を△とした。
(Presence or absence of holes)
The outer peripheral surface of the target was visually observed, and the number of holes having a diameter of 0.5 mm or more was counted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 バインダーを添加せずに焼結原料粉を得た比較例1においては、成形工程において円筒形状の成形体を得ることができなかった。
 プレス成形によって成形体を成形した比較例2においては、酸化物スパッタリングターゲットの軸線方向の密度のばらつきが5.1%と大きくなった。このため、スパッタ時に割れが確認された。
In Comparative Example 1 in which the sintered raw material powder was obtained without adding a binder, a cylindrical molded product could not be obtained in the molding step.
In Comparative Example 2 in which the molded product was formed by press molding, the variation in the density of the oxide sputtering target in the axial direction was as large as 5.1%. Therefore, cracking was confirmed during spattering.
 これに対して、本発明例1~7においては、軸線方向の密度のばらつきが3%以下となり、スパッタ時に割れが確認されず、安定して成膜することができた。
 なお、ワックスを添加しなかった本発明例2では、酸化物スパッタリングターゲットの外周面に直径0.5mm以上の穴が5個以上確認され、異常放電が若干認められたが、問題のないレベルであった。
 成形時の加圧圧力が50MPaとされた本発明例3においては、酸化物スパッタリングターゲットの密度が若干低く、かつ、比抵抗値が大きくなり、異常放電が若干認められたが、問題のないレベルであった。
 芯金に表面平滑化処理を行わず、芯金の表面の算術平均粗さRaが3.2μm、ビッカース硬さが150Hvとされた本発明例4では、成形体に微小な割れが確認されたが、問題のないレベルであった。
On the other hand, in Examples 1 to 7 of the present invention, the variation in density in the axial direction was 3% or less, cracks were not confirmed during sputtering, and stable film formation was possible.
In Example 2 of the present invention to which no wax was added, five or more holes having a diameter of 0.5 mm or more were confirmed on the outer peripheral surface of the oxide sputtering target, and some abnormal discharges were observed, but at a level where there was no problem. there were.
In Example 3 of the present invention in which the pressurizing pressure during molding was 50 MPa, the density of the oxide sputtering target was slightly low, the specific resistance value was large, and some abnormal discharge was observed, but there was no problem. Met.
In Example 4 of the present invention in which the arithmetic average roughness Ra of the surface of the core metal was 3.2 μm and the Vickers hardness was 150 Hv without performing the surface smoothing treatment on the core metal, minute cracks were confirmed in the molded body. However, it was a level without problems.
 以上のことから、本発明例によれば、円筒型スパッタリングターゲットであっても、安定してスパッタ成膜を行うことが可能な酸化物スパッタリングターゲット、及び、この酸化物スパッタリングターゲットの製造方法を提供可能であることが確認された。 From the above, according to the example of the present invention, there is provided an oxide sputtering target capable of stably performing sputtering deposition even with a cylindrical sputtering target, and a method for producing the oxide sputtering target. It was confirmed that it was possible.

Claims (12)

  1.  円筒形状をなし、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲットであって、
     前記円筒形状の軸線方向における密度のばらつきが3%以内とされていることを特徴とする酸化物スパッタリングターゲット。
    An oxide sputtering target consisting of an oxide having a cylindrical shape and containing zirconium, silicon, and indium as metal components.
    An oxide sputtering target characterized in that the variation in density in the axial direction of the cylindrical shape is within 3%.
  2.  前記円筒形状の軸線方向における比抵抗のばらつきが10%以内とされていることを特徴とする請求項1に記載の酸化物スパッタリングターゲット。 The oxide sputtering target according to claim 1, wherein the variation in specific resistance in the axial direction of the cylindrical shape is within 10%.
  3.  前記円筒形状の外周面に形成される穴は、直径が0.5mm未満であることを特徴とする請求項1又は請求項2に記載の酸化物スパッタリングターゲット。 The oxide sputtering target according to claim 1 or 2, wherein the hole formed on the outer peripheral surface of the cylindrical shape has a diameter of less than 0.5 mm.
  4.  前記金属成分の合計を100mass%として、前記ジルコニウムの含有量が2mass%以上27mass%以下の範囲内、前記インジウムの含有量が65mass%以上95mass%以下の範囲内、前記ケイ素の含有量が0.5mass%以上15mass%以下の範囲内であり、前記ジルコニウム、前記インジウム、前記ケイ素以外に不可避不純物金属元素が含有されていることを特徴とする請求項1から請求項3のいずれか一項に記載の酸化物スパッタリングターゲット。 Assuming that the total of the metal components is 100 mass%, the zirconium content is in the range of 2 mass% or more and 27 mass% or less, the indium content is in the range of 65 mass% or more and 95 mass% or less, and the silicon content is 0. The invention according to any one of claims 1 to 3, wherein the content is in the range of 5 mass% or more and 15 mass% or less, and contains an unavoidable impurity metal element in addition to the zirconium, the indium, and the silicon. Oxide sputtering target.
  5.  比抵抗値が1.0×10-2Ω・cm以下であることを特徴とする請求項1から請求項4のいずれか一項に記載の酸化物スパッタリングターゲット。 The oxide sputtering target according to any one of claims 1 to 4, wherein the specific resistance value is 1.0 × 10 -2 Ω · cm or less.
  6.  円筒形状をなし、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲットの製造方法であって、
     酸化ジルコニウム粉、酸化ケイ素粉および酸化インジウム粉を混合し、バインダーを添加してスラリー化する原料スラリー生成工程と、
     前記原料スラリーをスプレードライ法によって乾燥させて焼結原料粉を得る乾燥工程と、
     得られた前記焼結原料粉を、芯金を配置したゴム型に充填して、冷間等方圧加圧法によって円筒形状の成形体を得る成形工程と、
     前記成形体から前記バインダーを除去する脱脂工程と、
     脱脂した前記成形体を酸素雰囲気下で焼結して焼結体を得る焼結工程と、を備えていることを特徴とする酸化物スパッタリングターゲットの製造方法。
    A method for producing an oxide sputtering target composed of an oxide having a cylindrical shape and containing zirconium, silicon, and indium as metal components.
    A raw material slurry generation step in which zirconium oxide powder, silicon oxide powder and indium oxide powder are mixed and a binder is added to form a slurry.
    A drying step of drying the raw material slurry by a spray-drying method to obtain a sintered raw material powder,
    A molding step of filling the obtained sintered raw material powder into a rubber mold in which a core metal is arranged to obtain a cylindrical molded body by a cold isotropic pressure method.
    A degreasing step of removing the binder from the molded product,
    A method for producing an oxide sputtering target, which comprises a sintering step of sintering a degreased molded product in an oxygen atmosphere to obtain a sintered body.
  7.  円筒形状をなす前記成形体の軸線方向における密度のばらつきが3%以内とされていることを特徴とする請求項6に記載の酸化物スパッタリングターゲットの製造方法。 The method for producing an oxide sputtering target according to claim 6, wherein the density variation in the axial direction of the cylindrical molded body is within 3%.
  8.  前記原料スラリー生成工程において、ワックスを添加することを特徴とする請求項6又は請求項7に記載の酸化物スパッタリングターゲットの製造方法。 The method for producing an oxide sputtering target according to claim 6 or 7, wherein wax is added in the raw material slurry generation step.
  9.  前記芯金に表面平滑化処理が施されていることを特徴とする請求項6から請求項8のいずれか一項に記載の酸化物スパッタリングターゲットの製造方法。 The method for producing an oxide sputtering target according to any one of claims 6 to 8, wherein the core metal is subjected to a surface smoothing treatment.
  10.  前記芯金の表面の算術平均粗さRaが1.6μm以下とされていることを特徴とする請求項6から請求項9のいずれか一項に記載の酸化物スパッタリングターゲットの製造方法。 The method for producing an oxide sputtering target according to any one of claims 6 to 9, wherein the arithmetic mean roughness Ra of the surface of the core metal is 1.6 μm or less.
  11.  前記芯金のビッカース硬さが180Hv以上であることを特徴とする請求項6から請求項10のいずれか一項に記載の酸化物スパッタリングターゲットの製造方法。 The method for producing an oxide sputtering target according to any one of claims 6 to 10, wherein the Vickers hardness of the core metal is 180 Hv or more.
  12.  前記成形工程における加圧圧力が100MPa以上であることを特徴とする請求項6から請求項11のいずれか一項に記載の酸化物スパッタリングターゲットの製造方法。 The method for producing an oxide sputtering target according to any one of claims 6 to 11, wherein the pressurizing pressure in the molding step is 100 MPa or more.
PCT/JP2021/007096 2020-02-27 2021-02-25 Oxide sputtering target, and production method for oxide sputtering target WO2021172428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-031509 2020-02-27
JP2020031509A JP7028268B2 (en) 2020-02-27 2020-02-27 Oxide sputtering target and manufacturing method of oxide sputtering target

Publications (1)

Publication Number Publication Date
WO2021172428A1 true WO2021172428A1 (en) 2021-09-02

Family

ID=77490226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007096 WO2021172428A1 (en) 2020-02-27 2021-02-25 Oxide sputtering target, and production method for oxide sputtering target

Country Status (2)

Country Link
JP (1) JP7028268B2 (en)
WO (1) WO2021172428A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040032A (en) * 2016-09-06 2018-03-15 三菱マテリアル株式会社 Oxide sputtering target and manufacturing method of oxide sputtering target
WO2019155577A1 (en) * 2018-02-08 2019-08-15 三菱マテリアル株式会社 Oxide sputtering target and method for producing oxide sputtering target
JP2019194352A (en) * 2018-04-26 2019-11-07 三菱マテリアル株式会社 Shield layer and manufacturing method of shield layer and oxide sputtering target
WO2020044798A1 (en) * 2018-08-27 2020-03-05 三菱マテリアル株式会社 Oxide sputtering target and production method for oxide sputtering target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040032A (en) * 2016-09-06 2018-03-15 三菱マテリアル株式会社 Oxide sputtering target and manufacturing method of oxide sputtering target
WO2019155577A1 (en) * 2018-02-08 2019-08-15 三菱マテリアル株式会社 Oxide sputtering target and method for producing oxide sputtering target
JP2019194352A (en) * 2018-04-26 2019-11-07 三菱マテリアル株式会社 Shield layer and manufacturing method of shield layer and oxide sputtering target
WO2020044798A1 (en) * 2018-08-27 2020-03-05 三菱マテリアル株式会社 Oxide sputtering target and production method for oxide sputtering target

Also Published As

Publication number Publication date
JP7028268B2 (en) 2022-03-02
JP2021134392A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
KR101301662B1 (en) Oxide Sintered Body, Manufacturing Method therefor, Manufacturing Method for Transparent Conductive Film Using the Same, and Resultant Transparent Conductive Film
KR20040030048A (en) Sputtering target and transparent conductive film
KR20110093949A (en) Sputtering target, transparent conductive film and transparent electrode
CN103469167A (en) Sputtering target, transparent conductive film, transparent electrode, electrode substrate, and method for producing same
KR20120068967A (en) Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
WO2016047236A1 (en) Sputtering target for magnetic recording film formation and production method therefor
KR100814321B1 (en) Oxide sintered body and preparation process thereof, sputtering target and transparent electroconductive films
KR101583693B1 (en) Ito sputtering target material and method for producing same
JP5987105B2 (en) ITO sputtering target and manufacturing method thereof
JP6705526B2 (en) Shield layer, method for manufacturing shield layer, and oxide sputtering target
WO2019208240A1 (en) Shield layer, method for producing shield layer, and oxide sputtering target
WO2020044798A1 (en) Oxide sputtering target and production method for oxide sputtering target
WO2021172428A1 (en) Oxide sputtering target, and production method for oxide sputtering target
JP2003183820A (en) Sputtering target
JP7086080B2 (en) Oxide sintered body and sputtering target
Norfauzi et al. Comparison machining performance of Al2O3, ZTA and ZTA doped Cr2O3 cutting tools on AISI 1045
TWI592383B (en) Indium oxide-based oxide sintering article and method for producing the same
TW201816158A (en) Mn-Zn-O based sputtering target and production method thereror
WO2021111970A1 (en) Oxide sputtering target and oxide sputtering target production method
JP6390142B2 (en) Oxide sputtering target and manufacturing method thereof
JP2007290875A (en) Titanium oxide-based sintered compact and its manufacturing method
WO2021112006A1 (en) Oxide sputtering target, and method for producing oxide sputtering target
JP2021091963A (en) Oxide sputtering target, and method for producing oxide sputtering target
KR102404834B1 (en) Oxide sintered compact, method for producing same, and sputtering target
KR20210047878A (en) Oxide sputtering target and manufacturing method of oxide sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761531

Country of ref document: EP

Kind code of ref document: A1