WO2019155577A1 - Oxide sputtering target and method for producing oxide sputtering target - Google Patents

Oxide sputtering target and method for producing oxide sputtering target Download PDF

Info

Publication number
WO2019155577A1
WO2019155577A1 PCT/JP2018/004430 JP2018004430W WO2019155577A1 WO 2019155577 A1 WO2019155577 A1 WO 2019155577A1 JP 2018004430 W JP2018004430 W JP 2018004430W WO 2019155577 A1 WO2019155577 A1 WO 2019155577A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
oxide
oxygen concentration
oxygen
target
Prior art date
Application number
PCT/JP2018/004430
Other languages
French (fr)
Japanese (ja)
Inventor
野中 荘平
理恵 森
昌芳 長尾
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020197014613A priority Critical patent/KR102115126B1/en
Priority to CN201880004813.4A priority patent/CN110352263A/en
Priority to PCT/JP2018/004430 priority patent/WO2019155577A1/en
Publication of WO2019155577A1 publication Critical patent/WO2019155577A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air

Definitions

  • the present invention relates to an oxide sputtering target containing zirconium oxide, silicon dioxide, and indium oxide, and a method for manufacturing the oxide sputtering target.
  • phase change optical discs such as DVD and BD [Blu-ray (registered trademark) Disc] are known. These phase change optical disks are generally a laminate in which a plurality of layers such as a dielectric layer, a recording layer, a dielectric layer, and a reflective layer are laminated on a substrate. A sputtering method is widely used as a method for forming each layer. A phase-change optical disc records information by irradiating a recording laser beam onto an optical recording medium to cause a phase change of a recording layer.
  • Patent Documents 1 and 2 An oxide film containing zirconium oxide, silicon dioxide, and indium oxide is used as a dielectric layer and a protective layer of a phase change optical disk (Patent Documents 1 and 2).
  • Patent Document 2 contains, as a sputtering target for forming an optical recording medium protective film, mol%, zirconium oxide: 10 to 70%, silicon dioxide: 50% or less (not including 0%), and the balance: indium oxide. And an oxide sputtering target having a composition comprising inevitable impurities.
  • Patent Document 2 as a method for producing this oxide sputtering target, a predetermined amount of ZrO 2 powder, amorphous SiO 2 powder and In 2 O 3 powder are weighed and uniformly mixed with a Henschel mixer, and then this mixed powder is used. A method is described in which press molding is performed, and the obtained molded body is fired and sintered in an oxygen atmosphere.
  • phase change type optical discs In phase change type optical discs, recording pits and track pitches are becoming finer as the recording density increases, and management of foreign matters is becoming stricter. Therefore, in an oxide sputtering target used for manufacturing a phase change optical disk, it is required that particles are not easily scattered.
  • oxygen in the firing atmosphere may be insufficient during firing of the molded body.
  • the oxygen concentration in the resulting oxide sputtering target becomes non-uniform.
  • the specific resistance in the target plane becomes non-uniform and the potential concentrates on a specific location, causing abnormal discharge during sputtering. It has been found that the problem arises that particles are scattered by the abnormal discharge.
  • the present invention has been made in view of the above-described circumstances, and includes an oxide sputtering target that can suppress the occurrence of abnormal discharge during sputtering and particle scattering, and a method for manufacturing the oxide sputtering target.
  • the purpose is to provide.
  • the oxide sputtering target of the present invention is an oxide sputtering target made of an oxide containing zirconium, silicon and indium as metal components, and has a maximum oxygen concentration in the target plane.
  • the ratio of the difference between the maximum value and the minimum value of the oxygen concentration with respect to the sum of the value and the minimum value is 15% or less.
  • the maximum value and the minimum value of the oxygen concentration in the target surface satisfy the above-described relationship.
  • the variation is suppressed. For this reason, since the uniformity of the oxygen concentration in the target surface is high and the specific resistance in the target surface becomes uniform, abnormal discharge during sputtering is suppressed, and generation of particles is suppressed accordingly.
  • the ratio of the difference between the maximum value and the minimum value of the specific resistance to the sum of the maximum value and the minimum value of the specific resistance in the target surface is preferably 15% or less.
  • the method for producing an oxide sputtering target according to the present invention is a method for producing the above-described oxide sputtering target, in which a zirconium oxide powder, a silicon dioxide powder, and an indium oxide powder are mixed to have a specific surface area of 11.
  • the mixed powder obtained by mixing the zirconium oxide powder, the silicon dioxide powder, and the indium oxide powder as a raw material has a specific surface area of 11.5 m 2 / g or more and 13.5 m 2 / Since it is set to g or less, the reactivity is high.
  • the molded body is fired while oxygen is circulated in the firing apparatus, there is no shortage of oxygen in the firing atmosphere, so that the molded body is sintered uniformly, and the dense and high-density fire is obtained. A ligation can be obtained.
  • the sintered compact is cooled at the cooling rate of 200 degrees C / hr or less, a rapid temperature change does not occur easily and the oxygen concentration of a sintered compact is stabilized. Therefore, an oxide sputtering target with small variation in oxygen concentration in the target surface can be stably manufactured.
  • an oxide sputtering target that can suppress the occurrence of abnormal discharge and the scattering of particles during sputtering, and a method for manufacturing the oxide sputtering target.
  • the oxide sputtering target according to this embodiment can be used, for example, when an oxide film used as a dielectric layer and a protective layer of a phase change optical disk such as DVD or BD is formed by a sputtering method.
  • the oxide sputtering target of this embodiment can also be used when an oxide film used as an underlayer and a protective layer of a magnetic recording medium such as an HDD (hard disk drive) is formed by a sputtering method.
  • the oxide sputtering target of this embodiment is made of an oxide containing zirconium, silicon, and indium as metal components.
  • the contents of zirconium, silicon and indium are not particularly limited, and can be the same as the oxide used as a conventional sputtering target for forming an optical recording medium protective film.
  • the total content of the metal components is 100% by mass
  • the zirconium content is set in the range of 10% by mass to 75% by mass
  • the silicon content is 35% by mass or less (however, 0% by mass). %)
  • the indium content is set as the balance.
  • a part of zirconium, silicon and indium may each form a composite oxide.
  • In 2 Si 2 O 7 can be given.
  • the oxide sputtering target of this embodiment is a ratio of the difference between the maximum value and the minimum value of the oxygen concentration with respect to the sum of the maximum value and the minimum value of the oxygen concentration in the target surface, that is, oxygen represented by the following formula (1).
  • the density variation is 15% or less.
  • Variation in oxygen concentration (%) [(maximum value of oxygen concentration) ⁇ (minimum value of oxygen concentration)] / [(maximum value of oxygen concentration) + (minimum value of oxygen concentration)] ⁇ 100
  • the oxide sputtering target of this embodiment is represented by the ratio of the difference between the maximum value and the minimum value of the specific resistance with respect to the sum of the maximum value and the minimum value of the specific resistance in the target surface, that is, the following formula (2).
  • the specific resistance variation is 15% or less.
  • the variation of the oxygen concentration in the target surface represented by the above formula (1) is set to 15% or less. If the variation in oxygen concentration exceeds 15%, abnormal discharge and particles are generated, and foreign matter may adhere to the surface of the deposited oxide film, and the in-plane variation of the film composition may increase.
  • the oxygen concentration of the oxide sputtering target varies depending on the contents of zirconium, silicon, and indium, but is preferably in the range of 15% by mass to 35% by mass.
  • the oxygen concentration can be measured by EPMA or gas analysis.
  • the variation of the oxygen concentration in the target surface is calculated by the above equation (1) by measuring the oxygen concentration at a plurality of locations in the target surface, extracting the maximum value and the minimum value of the measured oxygen concentration. To do.
  • the number of oxygen concentration measurement points is preferably 5 or more.
  • the oxide sputtering target is disk-shaped, as shown in FIG. 1, at the center point (1) of the target surface (circle) and the center point of the target surface. Measure the oxygen concentration at 5 points in total (4 points (2) to (5)) on two straight lines perpendicular to each other and 20 mm from the outer edge, and the maximum and minimum values of the measured oxygen concentration To extract the variation in oxygen concentration.
  • the oxygen concentration is measured at a total of five points located 20 mm from the outer edge and at equal intervals in the circumferential direction, and the maximum and minimum values of the measured oxygen concentration are determined. Extraction can be performed to determine variation in oxygen concentration.
  • the variation of the specific resistance in the target surface represented by the above formula (2) is set to 15% or less. If the variation in specific resistance exceeds 15%, abnormal discharge and particles are generated, and foreign matter may adhere to the surface of the deposited oxide film, and the in-plane variation of the film composition may increase.
  • the specific resistance of the oxide sputtering target is preferably 0.1 ⁇ ⁇ cm or less.
  • the variation of the specific resistance in the target surface is calculated by the above formula (2) by measuring the specific resistance at a plurality of locations in the target surface, extracting the maximum value and the minimum value of the measured specific resistance. To do. It is preferable that the specific resistance is measured at five or more locations.
  • the oxide sputtering target is disk-shaped, as shown in FIG. 1, at the center point (1) of the target surface (circle) and the center point of the target surface.
  • the specific resistance is measured at a total of five points (4) (2) to (5) on two straight lines orthogonal to each other and 20 mm from the outer edge, and the maximum and minimum values of the measured specific resistance are measured. To extract the variation in specific resistance.
  • the specific resistance is measured at a total of five points located 20 mm from the outer edge and at equal intervals in the circumferential direction, and the maximum and minimum values of the measured specific resistance are measured. By extracting, it is possible to determine the variation in specific resistance.
  • the manufacturing method of the oxide sputtering target includes a pulverizing and mixing step S01 for pulverizing and mixing the raw material powder, and a forming step S02 for forming the pulverized and mixed mixed powder into a predetermined shape. It includes a sintering step S03 for sintering the molded body, a cooling step S04 for cooling the obtained sintered body, and a processing step S05 for processing the cooled sintered body.
  • the ZrO 2 powder preferably has a purity of 99.9% by mass or more and an average particle size of 0.2 ⁇ m or more and 20 ⁇ m or less.
  • the SiO 2 powder preferably has a purity of 99.8% by mass or more and an average particle size of 0.2 ⁇ m or more and 20 ⁇ m or less.
  • the In 2 O 3 powder preferably has a purity of 99.9% by mass or more and an average particle size of 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the mixed powder obtained is pulverized and mixed so that the specific surface area (BET specific surface area) is 11.5 m 2 / g or more and 13.5 m 2 / g or less.
  • the specific surface area BET specific surface area
  • the mixed powder obtained in the pulverization and mixing step S01 is molded into a predetermined shape to obtain a molded body.
  • the molded body molded in the molding step S02 is sintered.
  • the molded body is fired and sintered while introducing oxygen into the inside using a firing device having an oxygen inlet. Since the sublimation of the In 2 O 3 powder in the mixed powder is suppressed by performing the firing of the molded body while introducing oxygen into the firing apparatus, it has a uniform oxygen concentration, a specific resistance, and a high sintering density. It becomes easy to obtain a sputtering target.
  • the optimum flow rate of oxygen introduced into the firing apparatus varies depending on conditions such as the internal volume of the firing apparatus and the size and quantity of the compact to be sintered, so it is necessary to select appropriately.
  • the flow rate required for simultaneously firing 6 or less of a compact having a diameter of 100 to 300 mm and a thickness of 15 mm or less in a firing apparatus having an internal volume of 15000 to 30000 cm 3 is in the range of 3 L / min to 10 L / min. .
  • a flow rate exceeding 10 L / min is generally not economically desirable.
  • the gas to be circulated in the firing apparatus is preferably 100% oxygen, that is, pure oxygen. However, if the oxygen volume ratio is 80% or more, a gas mixed with other gas such as nitrogen or argon is used. Also good.
  • the holding temperature during firing is preferably in the range of 1300 ° C or higher and 1600 ° C or lower.
  • the heating rate during firing is preferably 200 ° C./hour or less, and more preferably in the range of 10 ° C./hour to 200 ° C./hour. If it exceeds 200 ° C./hour, uneven reaction, sintering and shrinkage between the raw material powders may occur, which may cause warping and cracking. On the other hand, if it is less than 10 ° C./hour, it takes too much time and the productivity may be lowered.
  • the sintered body obtained in the sintering step S03 is cooled.
  • this cooling step S04 the sintered body is cooled while introducing oxygen into the firing apparatus until the temperature reaches at least 600 ° C. or less.
  • the flow rate of oxygen introduced into the firing apparatus is preferably the same as the flow rate introduced into the firing apparatus in the sintering step S03.
  • the circulation of oxygen in the cooling step S04 is preferably performed until the sintered body is taken out, but may be appropriately stopped when the temperature reaches 600 ° C. or less in consideration of economy.
  • the cooling rate when cooling to a temperature of 600 ° C. or lower is preferably 200 ° C./hour or less, and more preferably in the range of 1 ° C./hour to 200 ° C./hour. When it exceeds 200 ° C./hour, cooling of the sintered body is difficult to proceed uniformly, and the uniformity of the oxygen concentration is impaired, and the sintered body may be easily cracked by thermal stress. On the other hand, if it is less than 1 ° C./hour, it takes too much cooling time and the productivity may be lowered.
  • the cooling rate is preferably constant throughout the cooling step S04, but may be appropriately changed during the cooling in the range of 200 ° C./hour or less. Further, after cooling to 600 ° C. or lower, cooling may be performed at a cooling rate exceeding 200 ° C./hour, but the operation of taking out the sintered body from the firing apparatus is preferably performed at a temperature of 100 ° C. or lower.
  • processing step S05 In the processing step S05, the sintered body cooled in the cooling step S05 is processed into a predetermined shape sputtering target by cutting or grinding.
  • the variation in the oxidation concentration in the target surface is 15% or less, so the uniformity of the oxygen concentration in the target surface is high.
  • the specific resistance in the target plane becomes uniform. For this reason, abnormal discharge during sputtering is suppressed, and the generation of particles is suppressed accordingly.
  • the crushing and mixing step S01 the mixed powder obtained by crushing and mixing the ZrO 2 powder, the SiO 2 powder, and the In 2 O 3 powder, which are raw materials, Since the specific surface area is 11.5 m 2 / g or more and 13.5 m 2 / g or less, the reactivity is high. Further, in the sintering step S03, the molded body is fired while introducing oxygen into the firing apparatus, and oxygen in the firing atmosphere is not insufficient, so that the sintered body of the molded body becomes uniform, A dense and dense sintered body can be obtained.
  • the shape of the oxide sputtering target is a disk shape
  • the shape of the oxide sputtering target is not particularly limited.
  • the oxide sputtering target may be a square plate.
  • the oxygen concentration and specific resistance measurement points should be a total of five points: the intersection where the diagonal lines intersect and the four points near the corners on each diagonal line. it can.
  • the oxide sputtering target may be cylindrical. When the shape of the oxide sputtering target is cylindrical, the oxygen concentration and specific resistance can be measured at a total of five points at equal intervals in the circumferential direction.
  • the oxide sputtering target of this embodiment may contain inevitable impurities.
  • the inevitable impurities mean impurities inevitably contained in the raw material powder and impurities inevitably mixed in the manufacturing process.
  • the raw material ZrO 2 powder, the SiO 2 powder, and the In 2 O 3 powder are pulverized and mixed. It is good.
  • the mixed powder obtained by mixing needs to have a specific surface area of 11.5 m 2 / g or more and 13.5 m 2 / g or less.
  • the weighed raw material powder was put into a bead mill using zirconia balls having a diameter of 0.5 mm as a grinding medium together with a solvent, and pulverized and mixed.
  • a solvent Solmix A-11 manufactured by Nippon Alcohol Sales Co., Ltd. was used.
  • the grinding / mixing time was 1 hour.
  • zirconia balls were separated and recovered to obtain a slurry containing raw material powder and a solvent.
  • the obtained slurry was heated and the solvent was removed to obtain a mixed powder.
  • the BET specific surface area of the obtained mixed powder was measured with a specific surface area measuring device (Mounttech, Macsorb model 1201). The results are shown in Table 1.
  • the obtained mixed powder was filled in a mold having a diameter of 200 mm and pressed at a pressure of 150 kg / cm 2 to produce two disk-shaped molded bodies having a diameter of 200 mm and a thickness of 10 mm. .
  • the obtained two molded bodies are put into an electric furnace (furnace volume 27000 cm 3 ), and maintained at the firing temperature shown in Table 1 for 7 hours while flowing oxygen through the electric furnace at a flow rate of 4 L / min. Was fired to produce a sintered body.
  • the sintered body was cooled to 600 ° C. at a cooling rate shown in Table 1 while oxygen was continuously passed through the electric furnace, and then the oxygen flow was stopped and cooled to room temperature by cooling in the furnace. Thereafter, the sintered body was taken out from the electric furnace.
  • the obtained sintered body was machined to obtain two disk-shaped sputtering targets having a diameter of 152.4 mm and a thickness of 6 mm.
  • the metal component composition, relative density, oxygen content and specific resistance of the sputtering target were measured. Moreover, the sputtering test of the sputtering target was conducted. One of the two produced sputtering targets was used for measurement of relative density, specific resistance, and oxygen content, and the remaining one was used for the sputtering test. In the sputtering test, first, the number of occurrences of abnormal discharge during sputtering was measured. Next, after forming an oxide film by sputtering, the presence or absence of cracks in the target was confirmed. Further, the indium concentration in the formed oxide film was measured. The method of each evaluation is as follows.
  • the relative density was calculated as a ratio of the actual density to the theoretical density (actual density / theoretical density ⁇ 100).
  • the actually measured density was obtained by actually measuring the weight and dimensions of the sputtering target.
  • the theoretical density was calculated from the concentration and density of each oxide contained in the sputtering target. Specifically, the mass% concentration of ZrO 2 is C1, the density is ⁇ 1, the mass% concentration of SiO 2 is C2, the density is ⁇ 2, the mass% concentration of In 2 O 3 is C3, and the density is ⁇ 3.
  • the density ⁇ was calculated by the following formula.
  • 1 / [C1 / 100 ⁇ 1 + C2 / 100 ⁇ 2 + C3 / 100 ⁇ 3]
  • ⁇ 1 5.60g / cm 3
  • ⁇ 2 2.20g / cm 3
  • ⁇ 3 7.18g / cm 3.
  • C1, C2, and C3 were calculated from the blending amount of the raw material powder.
  • the specific resistance was measured by the four probe method. In order to measure the variation in specific resistance, as shown in FIG. 1, the center point (1) of the target surface (circle) and two straight lines orthogonal to each other at the center point of the target surface and the outer edge Measured at a total of 5 points of 4 points (2) to (5) located 20 mm from the center. The maximum value and the minimum value of the measured specific resistance were extracted, and the variation in specific resistance was calculated by the above equation (2). Table 2 shows measured values and variations of specific resistance at each measurement point.
  • the conditions for quantitative analysis of oxygen by EPMA were as follows. Acceleration voltage: 15 kV Irradiation current: 5 ⁇ 10 ⁇ 8 A Beam diameter: 100 ⁇ m
  • the spectral crystal used for the quantitative analysis of oxygen is LDE1. The measurement was carried out at 10 locations at random from within a 10 mm square sample piece, and the average value was taken as the measurement value of the oxygen concentration at one location shown in FIG. The maximum value and the minimum value of the five oxygen concentrations measured in FIG. 1 were extracted, and the variation in the oxygen concentration was calculated by the above equation (1). Table 2 shows the measured values and variations of the oxygen concentration of each oxygen concentration measurement sample.
  • the sputtering target was soldered to a backing plate made of oxygen-free copper, and this was mounted in a magnetron type sputtering apparatus (ULVAC, SIH-450H).
  • UAVAC magnetron type sputtering apparatus
  • Ar gas and O 2 gas are introduced, the sputtering gas pressure is adjusted to 0.67 Pa, and pre-sputtering for 1 hour is performed.
  • the processed layer on the target surface was removed.
  • the flow ratio of Ar gas to O 2 gas was 47: 3
  • the power was pulsed DC 1000 W
  • the pulse condition was frequency 50 kHz
  • the duty ratio was 0.08.
  • the composition of the solution obtained by dissolving each obtained oxide film with an acid was analyzed by an inductively coupled plasma emission spectroscopy (ICP-OES) apparatus (Agilent 5100) manufactured by Agilent Technologies, and the In concentration in each oxide film was determined. The variation was calculated from the following equation (3). Table 3 shows measured values and variations in the In concentration in the oxide film (mass% when the total content of metal elements is 100).
  • ICP-OES inductively coupled plasma emission spectroscopy
  • Comparative Example 1 in which the BET specific surface area of the mixed powder of the raw material powder was less than 11.5 m 2 / g
  • Comparative Example 2 in which the cooling rate of the sintered body to 600 ° C. exceeded 200 ° C./hour, and firing the molded body
  • the variation in oxygen concentration in the target surface exceeded 15%
  • the variation in specific resistance increased to 15% or more
  • the number of abnormal discharges during sputtering increased.
  • the oxide film formed by sputtering has a large variation in In concentration.
  • the sputtering targets of Comparative Examples 2 and 4 were cracked after sputtering.
  • the BET specific surface area of the mixed powder of the raw material powder is in the range of 11.5 m 2 / g to 13.5 m 2 / g, and the cooling rate of the sintered body to 600 ° C. is 200 ° C./hour or less.
  • the variation in oxygen concentration in the target surface was all 15 % Or less.
  • an oxide sputtering target capable of suppressing the occurrence of abnormal discharge and the scattering of particles during sputtering, and a method for producing the oxide sputtering target. It was confirmed that it would be possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

This oxide sputtering target is formed of an oxide containing zirconium, silicon, and indium as metal components, and is characterized in that, in a target plane, the difference between the maximum and minimum oxygen concentrations as a percentage of the total of the maximum and the minimum oxygen concentrations is 15% or less.

Description

酸化物スパッタリングターゲット、及び酸化物スパッタリングターゲットの製造方法Oxide sputtering target and manufacturing method of oxide sputtering target
 本発明は、酸化ジルコニウムと二酸化ケイ素と酸化インジウムとを含む酸化物スパッタリングターゲット、及び酸化物スパッタリングターゲットの製造方法に関する。 The present invention relates to an oxide sputtering target containing zirconium oxide, silicon dioxide, and indium oxide, and a method for manufacturing the oxide sputtering target.
 情報記録媒体として、DVD、BD[Blu-ray(登録商標) Disc]などの相変化形光ディスクが知られている。これらの相変化形光ディスクは、一般に、基板上に誘電体層、記録層、誘電体層、及び反射層などの複数の層を積層した積層体とされている。各層の成膜方法としては、スパッタリング法が広く利用されている。相変化形光ディスクは、記録用レーザービームを光記録媒体に照射して、記録層の相変化を生じさせることによって、情報を記録する。 As the information recording medium, phase change optical discs such as DVD and BD [Blu-ray (registered trademark) Disc] are known. These phase change optical disks are generally a laminate in which a plurality of layers such as a dielectric layer, a recording layer, a dielectric layer, and a reflective layer are laminated on a substrate. A sputtering method is widely used as a method for forming each layer. A phase-change optical disc records information by irradiating a recording laser beam onto an optical recording medium to cause a phase change of a recording layer.
 相変化形光ディスクの誘電体層や保護層として、酸化ジルコニウムと二酸化ケイ素と酸化インジウムとを含む酸化物膜が用いられている(特許文献1、2)。
 特許文献2には、光記録媒体保護膜形成用スパッタリングターゲットとして、モル%で、酸化ジルコニウム:10~70%、二酸化ケイ素:50%以下(0%を含まず)を含有し、残部:酸化インジウムおよび不可避不純物からなる組成を有する酸化物スパッタリングターゲットが開示されている。この特許文献2には、この酸化物スパッタリングターゲットの製造方法として、ZrO粉末、非晶質SiO粉末およびIn粉末を所定量秤量しヘンシェルミキサーで均一に混合した後、この混合粉末をプレス成形し、得られた成形体を酸素雰囲気中で焼成して焼結させる方法が記載されている。
An oxide film containing zirconium oxide, silicon dioxide, and indium oxide is used as a dielectric layer and a protective layer of a phase change optical disk (Patent Documents 1 and 2).
Patent Document 2 contains, as a sputtering target for forming an optical recording medium protective film, mol%, zirconium oxide: 10 to 70%, silicon dioxide: 50% or less (not including 0%), and the balance: indium oxide. And an oxide sputtering target having a composition comprising inevitable impurities. In Patent Document 2, as a method for producing this oxide sputtering target, a predetermined amount of ZrO 2 powder, amorphous SiO 2 powder and In 2 O 3 powder are weighed and uniformly mixed with a Henschel mixer, and then this mixed powder is used. A method is described in which press molding is performed, and the obtained molded body is fired and sintered in an oxygen atmosphere.
日本国特許第4567750号公報(B)Japanese Patent No. 4567750 (B) 日本国特許第5088464号公報(B)Japanese Patent No. 5088464 (B)
 相変化形光ディスクでは、記録密度の増加に伴って、記録ピットやトラックピッチの微細化が進み、異物の混入に対する管理が厳しくなっている。従って、相変化形光ディスクの製造に使用する酸化物スパッタリングターゲットにおいては、パーティクルが飛散しにくいことが要求されている。 In phase change type optical discs, recording pits and track pitches are becoming finer as the recording density increases, and management of foreign matters is becoming stricter. Therefore, in an oxide sputtering target used for manufacturing a phase change optical disk, it is required that particles are not easily scattered.
 しかしながら、特許文献2に記載されている酸化物スパッタリングターゲットの製造方法では、成形体の焼成時において焼成雰囲気中の酸素が不足することがあった。焼成雰囲気中の酸素が不足した状態で成形体を焼成すると、得られる酸化物スパッタリングターゲット内の酸素濃度が不均一となる。そして、酸化物スパッタリングターゲットのターゲット面内での酸素濃度のばらつきが大きくなると、ターゲット面内での比抵抗が不均一となり、特定箇所に電位が集中することに起因してスパッタリング中に、異常放電が発生し、その異常放電によってパーティクルが飛散するという問題が発生することが判明した。 However, in the method for producing an oxide sputtering target described in Patent Document 2, oxygen in the firing atmosphere may be insufficient during firing of the molded body. When the molded body is fired in a state where oxygen in the firing atmosphere is insufficient, the oxygen concentration in the resulting oxide sputtering target becomes non-uniform. And when the variation of oxygen concentration in the target plane of the oxide sputtering target becomes large, the specific resistance in the target plane becomes non-uniform and the potential concentrates on a specific location, causing abnormal discharge during sputtering. It has been found that the problem arises that particles are scattered by the abnormal discharge.
 この発明は、前述した事情に鑑みてなされたものであって、スパッタリング中の異常放電の発生並びにパーティクルの飛散を抑制することができる酸化物スパッタリングターゲット、及び、この酸化物スパッタリングターゲットの製造方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and includes an oxide sputtering target that can suppress the occurrence of abnormal discharge during sputtering and particle scattering, and a method for manufacturing the oxide sputtering target. The purpose is to provide.
 上記の課題を解決するために、本発明の酸化物スパッタリングターゲットは、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲットであって、ターゲット面内の酸素濃度の最大値と最小値の合計に対する前記酸素濃度の最大値と最小値の差の比率が15%以下であることを特徴としている。 In order to solve the above problems, the oxide sputtering target of the present invention is an oxide sputtering target made of an oxide containing zirconium, silicon and indium as metal components, and has a maximum oxygen concentration in the target plane. The ratio of the difference between the maximum value and the minimum value of the oxygen concentration with respect to the sum of the value and the minimum value is 15% or less.
 このような構成とされた本発明の酸化物スパッタリングターゲットによれば、ターゲット面内の酸素濃度の最大値と最小値とが上述の関係を満足しているので、ターゲット面内での酸素濃度のばらつきが抑えられていることになる。このため、ターゲット面内の酸素濃度の均一性が高く、ターゲット面内の比抵抗が均一となるので、スパッタリング中の異常放電が抑えられ、これに伴ってパーティクルの発生が抑制される。 According to the oxide sputtering target of the present invention configured as described above, the maximum value and the minimum value of the oxygen concentration in the target surface satisfy the above-described relationship. The variation is suppressed. For this reason, since the uniformity of the oxygen concentration in the target surface is high and the specific resistance in the target surface becomes uniform, abnormal discharge during sputtering is suppressed, and generation of particles is suppressed accordingly.
 ここで、本発明の酸化物スパッタリングターゲットにおいては、ターゲット面内の比抵抗の最大値と最小値の合計に対する前記比抵抗の最大値と最小値の差の比率が15%以下であることが好ましい。 Here, in the oxide sputtering target of the present invention, the ratio of the difference between the maximum value and the minimum value of the specific resistance to the sum of the maximum value and the minimum value of the specific resistance in the target surface is preferably 15% or less. .
 この場合、ターゲット面内での比抵抗のばらつきが上記の範囲に抑えられているので、スパッタリング中の異常放電がより抑えられ、これに伴ってパーティクルの発生が確実に抑制される。 In this case, since the variation in specific resistance within the target surface is suppressed within the above range, abnormal discharge during sputtering is further suppressed, and the generation of particles is reliably suppressed along with this.
 本発明の酸化物スパッタリングターゲットの製造方法は、上述の酸化物スパッタリングターゲットを製造する方法であって、酸化ジルコニウム粉末と、二酸化ケイ素粉末と、酸化インジウム粉末とを混合して、比表面積が11.5m/g以上13.5m/g以下の混合粉末を得る工程と、前記混合粉末を成形して成形体を得る工程と、前記成形体を、焼成装置内に酸素を流通させながら、1300℃以上1600℃以下の温度にて焼成して焼結体を生成させる工程と、前記焼結体を、前記焼成装置内に酸素を流通させながら、200℃/時間以下の冷却速度で少なくとも600℃以下の温度になるまで冷却する工程と、を備えていることを特徴としている。 The method for producing an oxide sputtering target according to the present invention is a method for producing the above-described oxide sputtering target, in which a zirconium oxide powder, a silicon dioxide powder, and an indium oxide powder are mixed to have a specific surface area of 11. A step of obtaining a mixed powder of 5 m 2 / g or more and 13.5 m 2 / g or less, a step of forming the mixed powder to obtain a molded body, and the molded body 1300 while circulating oxygen in a firing apparatus. A step of producing a sintered body by firing at a temperature of from 1 ° C. to 1600 ° C., and at least 600 ° C. at a cooling rate of 200 ° C./hour or less while circulating oxygen through the sintered body. And a step of cooling to the following temperature.
 この構成の酸化物スパッタリングターゲットの製造方法によれば、原料となる酸化ジルコニウム粉末と二酸化ケイ素粉末と酸化インジウム粉末を混合した混合粉末は、比表面積が11.5m/g以上13.5m/g以下とされているので反応性が高い。また、成形体の焼成を、焼成装置内に酸素を流通させながら行っており、焼成雰囲気中の酸素が不足することがないので、成形体の焼結が均一になり、緻密で密度の高い焼結体を得ることができる。そして、その焼結体を、200℃/時間以下の冷却速度で冷却するので、急激な温度変化が起こりにくく、焼結体の酸素濃度が安定する。よって、ターゲット面内の酸素濃度のばらつきが小さい酸化物スパッタリングターゲットを安定して製造することができる。 According to the manufacturing method of the oxide sputtering target having this configuration, the mixed powder obtained by mixing the zirconium oxide powder, the silicon dioxide powder, and the indium oxide powder as a raw material has a specific surface area of 11.5 m 2 / g or more and 13.5 m 2 / Since it is set to g or less, the reactivity is high. In addition, since the molded body is fired while oxygen is circulated in the firing apparatus, there is no shortage of oxygen in the firing atmosphere, so that the molded body is sintered uniformly, and the dense and high-density fire is obtained. A ligation can be obtained. And since the sintered compact is cooled at the cooling rate of 200 degrees C / hr or less, a rapid temperature change does not occur easily and the oxygen concentration of a sintered compact is stabilized. Therefore, an oxide sputtering target with small variation in oxygen concentration in the target surface can be stably manufactured.
 本発明によれば、スパッタリング中の異常放電の発生並びにパーティクルの飛散を抑制することができる酸化物スパッタリングターゲット、及び、この酸化物スパッタリングターゲットの製造方法を提供することが可能となる。 According to the present invention, it is possible to provide an oxide sputtering target that can suppress the occurrence of abnormal discharge and the scattering of particles during sputtering, and a method for manufacturing the oxide sputtering target.
本発明の一実施形態に係る酸化物スパッタリングターゲットにおける酸素濃度および比抵抗の測定位置を示す説明図である。It is explanatory drawing which shows the measurement position of the oxygen concentration and specific resistance in the oxide sputtering target which concerns on one Embodiment of this invention. 本発明の一実施形態に係る酸化物スパッタリングターゲットの製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the oxide sputtering target which concerns on one Embodiment of this invention. 実施例において成膜した酸化物膜のIn濃度を測定した位置を説明する説明図である。It is explanatory drawing explaining the position which measured In density | concentration of the oxide film formed in the Example.
 以下に、本発明の実施形態である酸化物スパッタリングターゲットについて、添付した図面を参照して説明する。
 本実施形態に係る酸化物スパッタリングターゲットは、例えば、DVDやBDなどの相変化形光ディスクの誘電体層および保護層として用いられる酸化物膜をスパッタリング法によって成膜する際に用いることができる。また、本実施形態の酸化物スパッタリングターゲットは、HDD(ハードディスクドライブ)のような磁気記録媒体の下地層および保護層として用いられる酸化物膜をスパッタリング法によって成膜する際に用いることもできる。
Hereinafter, an oxide sputtering target according to an embodiment of the present invention will be described with reference to the accompanying drawings.
The oxide sputtering target according to this embodiment can be used, for example, when an oxide film used as a dielectric layer and a protective layer of a phase change optical disk such as DVD or BD is formed by a sputtering method. The oxide sputtering target of this embodiment can also be used when an oxide film used as an underlayer and a protective layer of a magnetic recording medium such as an HDD (hard disk drive) is formed by a sputtering method.
 本実施形態の酸化物スパッタリングターゲットは、金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる。ジルコニウム、ケイ素およびインジウムの含有量は特に制限はなく、従来の光記録媒体保護膜形成用スパッタリングターゲットとして用いられる酸化物と同一とすることができる。本実施形態では、金属成分の合計含有量を100質量%として、ジルコニウムの含有量は10質量%以上75%質量以下の範囲と設定され、ケイ素の含有量は35質量%以下(但し、0質量%を含まず)と設定され、インジウムの含有量が残部と設定されている。ジルコニウム、ケイ素およびインジウムの一部は、それぞれ複合酸化物を形成してもよい。複合酸化物の例としては、InSiを挙げることができる。 The oxide sputtering target of this embodiment is made of an oxide containing zirconium, silicon, and indium as metal components. The contents of zirconium, silicon and indium are not particularly limited, and can be the same as the oxide used as a conventional sputtering target for forming an optical recording medium protective film. In this embodiment, the total content of the metal components is 100% by mass, the zirconium content is set in the range of 10% by mass to 75% by mass, and the silicon content is 35% by mass or less (however, 0% by mass). %), And the indium content is set as the balance. A part of zirconium, silicon and indium may each form a composite oxide. As an example of the composite oxide, In 2 Si 2 O 7 can be given.
 本実施形態の酸化物スパッタリングターゲットは、ターゲット面内の酸素濃度の最大値と最小値の合計に対する酸素濃度の最大値と最小値の差の比率、即ち下記の式(1)で表される酸素濃度のばらつきが15%以下とされている。 The oxide sputtering target of this embodiment is a ratio of the difference between the maximum value and the minimum value of the oxygen concentration with respect to the sum of the maximum value and the minimum value of the oxygen concentration in the target surface, that is, oxygen represented by the following formula (1). The density variation is 15% or less.
式(1):
酸素濃度のばらつき(%)=[(酸素濃度の最大値)-(酸素濃度の最小値)]/[(酸素濃度の最大値)+(酸素濃度の最小値)]×100
Formula (1):
Variation in oxygen concentration (%) = [(maximum value of oxygen concentration) − (minimum value of oxygen concentration)] / [(maximum value of oxygen concentration) + (minimum value of oxygen concentration)] × 100
 さらに、本実施形態の酸化物スパッタリングターゲットは、ターゲット面内の比抵抗の最大値と最小値の合計に対する比抵抗の最大値と最小値の差の比率、即ち下記の式(2)で表される比抵抗のばらつきが15%以下とされている。 Furthermore, the oxide sputtering target of this embodiment is represented by the ratio of the difference between the maximum value and the minimum value of the specific resistance with respect to the sum of the maximum value and the minimum value of the specific resistance in the target surface, that is, the following formula (2). The specific resistance variation is 15% or less.
式(2):
 比抵抗のばらつき=[(比抵抗の最大値)-(比抵抗の最小値)]/[(比抵抗の最大値)+(比抵抗の最小値)]×100
Formula (2):
Variation in specific resistance = [(maximum specific resistance) − (minimum specific resistance)] / [(maximum specific resistance) + (minimum specific resistance)] × 100
 以下に、本実施形態の酸化物スパッタリングターゲットの酸素濃度および比抵抗のばらつきを上述のように規定した理由について説明する。 Hereinafter, the reason why the variation in oxygen concentration and specific resistance of the oxide sputtering target of this embodiment is defined as described above will be described.
(酸素濃度のばらつき)
 酸化物スパッタリングターゲットの酸素濃度のばらつきが大きくなると、スパッタリング中に異常放電、及びパーティクルが発生し易くなる。このため、本実施形態の酸化物スパッタリングターゲットでは、上記の式(1)で表されるターゲット面内の酸素濃度のばらつきを15%以下と設定している。酸素濃度のばらつきが15%を超えると、異常放電及びパーティクルが発生して、成膜された酸化物膜の表面に異物が付着すると共に、膜組成の面内ばらつきが大きくなるおそれがある。なお、酸化物スパッタリングターゲットの酸素濃度は、ジルコニウム、ケイ素およびインジウムの含有量によって異なるが、15質量%以上35質量%以下の範囲にあることが好ましい。酸素濃度は、EPMAやガス分析で測定できる。
(Oxygen concentration variation)
When the variation in the oxygen concentration of the oxide sputtering target becomes large, abnormal discharge and particles are likely to occur during sputtering. For this reason, in the oxide sputtering target of this embodiment, the variation of the oxygen concentration in the target surface represented by the above formula (1) is set to 15% or less. If the variation in oxygen concentration exceeds 15%, abnormal discharge and particles are generated, and foreign matter may adhere to the surface of the deposited oxide film, and the in-plane variation of the film composition may increase. Note that the oxygen concentration of the oxide sputtering target varies depending on the contents of zirconium, silicon, and indium, but is preferably in the range of 15% by mass to 35% by mass. The oxygen concentration can be measured by EPMA or gas analysis.
 ここで、ターゲット面内の酸素濃度のばらつきは、ターゲット面内において複数箇所で酸素濃度を測定し、測定された酸素濃度の最大値と最小値を抽出して、上記の式(1)により算出する。酸素濃度の測定箇所は、5箇所以上とすることが好ましい。ここで、本実施形態においては、酸化物スパッタリングターゲットが円板状である場合には、図1に示すように、ターゲット面(円)の中心点(1)と、ターゲット面の中心点にて互いに直交する2つの直線上であって、かつ外縁から20mmの位置にある4点(2)~(5)の合計5点で酸素濃度を測定し、測定された酸素濃度の最大値と最小値を抽出して、酸素濃度のばらつきを求めている。
 酸化物スパッタリングターゲットが円筒形状である場合には、外縁から20mmの位置にあり周方向で等間隔に位置する合計5点で酸素濃度を測定し、測定された酸素濃度の最大値と最小値を抽出して、酸素濃度のばらつきを求めることができる。
Here, the variation of the oxygen concentration in the target surface is calculated by the above equation (1) by measuring the oxygen concentration at a plurality of locations in the target surface, extracting the maximum value and the minimum value of the measured oxygen concentration. To do. The number of oxygen concentration measurement points is preferably 5 or more. Here, in this embodiment, when the oxide sputtering target is disk-shaped, as shown in FIG. 1, at the center point (1) of the target surface (circle) and the center point of the target surface. Measure the oxygen concentration at 5 points in total (4 points (2) to (5)) on two straight lines perpendicular to each other and 20 mm from the outer edge, and the maximum and minimum values of the measured oxygen concentration To extract the variation in oxygen concentration.
When the oxide sputtering target has a cylindrical shape, the oxygen concentration is measured at a total of five points located 20 mm from the outer edge and at equal intervals in the circumferential direction, and the maximum and minimum values of the measured oxygen concentration are determined. Extraction can be performed to determine variation in oxygen concentration.
(比抵抗のばらつき)
 酸化物スパッタリングターゲットの比抵抗のばらつきが大きくなると、スパッタリング中に異常放電、及びパーティクルが発生し易くなる。このため、本実施形態の酸化物スパッタリングターゲットでは、上記の式(2)で表されるターゲット面内の比抵抗のばらつきを15%以下と設定している。比抵抗のばらつきが15%を超えると、異常放電及びパーティクルが発生して、成膜された酸化物膜の表面に異物が付着すると共に、膜組成の面内ばらつきが大きくなるおそれがある。なお、酸化物スパッタリングターゲットの比抵抗は、0.1Ω・cm以下であることが好ましい。
(Resistivity variation)
When the variation in specific resistance of the oxide sputtering target is increased, abnormal discharge and particles are likely to occur during sputtering. For this reason, in the oxide sputtering target of this embodiment, the variation of the specific resistance in the target surface represented by the above formula (2) is set to 15% or less. If the variation in specific resistance exceeds 15%, abnormal discharge and particles are generated, and foreign matter may adhere to the surface of the deposited oxide film, and the in-plane variation of the film composition may increase. Note that the specific resistance of the oxide sputtering target is preferably 0.1 Ω · cm or less.
 ここで、ターゲット面内の比抵抗のばらつきは、ターゲット面内において複数箇所で比抵抗を測定し、測定された比抵抗の最大値と最小値を抽出して、上記の式(2)により算出する。比抵抗の測定箇所は、5箇所以上とすることが好ましい。ここで、本実施形態においては、酸化物スパッタリングターゲットが円板状である場合には、図1に示すように、ターゲット面(円)の中心点(1)と、ターゲット面の中心点にて互いに直交する2つの直線上であって、かつ外縁から20mmの位置にある4点(2)~(5)の合計5点で比抵抗を測定し、測定された比抵抗の最大値と最小値を抽出して、比抵抗のばらつきを求めている。
 酸化物スパッタリングターゲットが円筒形状である場合には、外縁から20mmの位置にあり周方向で等間隔に位置する合計5点で比抵抗を測定し、測定された比抵抗の最大値と最小値を抽出して、比抵抗のばらつきを求めることができる。
Here, the variation of the specific resistance in the target surface is calculated by the above formula (2) by measuring the specific resistance at a plurality of locations in the target surface, extracting the maximum value and the minimum value of the measured specific resistance. To do. It is preferable that the specific resistance is measured at five or more locations. Here, in this embodiment, when the oxide sputtering target is disk-shaped, as shown in FIG. 1, at the center point (1) of the target surface (circle) and the center point of the target surface. The specific resistance is measured at a total of five points (4) (2) to (5) on two straight lines orthogonal to each other and 20 mm from the outer edge, and the maximum and minimum values of the measured specific resistance are measured. To extract the variation in specific resistance.
When the oxide sputtering target has a cylindrical shape, the specific resistance is measured at a total of five points located 20 mm from the outer edge and at equal intervals in the circumferential direction, and the maximum and minimum values of the measured specific resistance are measured. By extracting, it is possible to determine the variation in specific resistance.
 次に、本実施形態に係る酸化物スパッタリングターゲットの製造方法について、図2のフロー図を参照して説明する。
 本実施形態に係る酸化物スパッタリングターゲットの製造方法は、図2に示すように、原料粉末を粉砕混合する粉砕混合工程S01と、粉砕混合された混合粉末を所定の形状に成形する成形工程S02、成形された成形体を焼結させる焼結工程S03と、得られた焼結体を冷却する冷却工程S04と、冷却した焼結体を加工する加工工程S05と、を備えている。
Next, the manufacturing method of the oxide sputtering target which concerns on this embodiment is demonstrated with reference to the flowchart of FIG.
As shown in FIG. 2, the manufacturing method of the oxide sputtering target according to the present embodiment includes a pulverizing and mixing step S01 for pulverizing and mixing the raw material powder, and a forming step S02 for forming the pulverized and mixed mixed powder into a predetermined shape. It includes a sintering step S03 for sintering the molded body, a cooling step S04 for cooling the obtained sintered body, and a processing step S05 for processing the cooled sintered body.
 原料粉末としては、ZrO粉末、SiO粉末、In粉末を用意する。ZrO粉末は、純度が99.9質量%以上、平均粒子径が0.2μm以上20μm以下であることが好ましい。SiO粉末は、純度が99.8質量%以上、平均粒径が0.2μm以上20μm以下であることが好ましい。In粉末は、純度が99.9質量%以上、平均粒径が0.1μ以上10μm以下であることが好ましい。 As the raw material powder, ZrO 2 powder, SiO 2 powder, and In 2 O 3 powder are prepared. The ZrO 2 powder preferably has a purity of 99.9% by mass or more and an average particle size of 0.2 μm or more and 20 μm or less. The SiO 2 powder preferably has a purity of 99.8% by mass or more and an average particle size of 0.2 μm or more and 20 μm or less. The In 2 O 3 powder preferably has a purity of 99.9% by mass or more and an average particle size of 0.1 μm or more and 10 μm or less.
(粉砕混合工程S01)
 上記の原料粉末を、得られる混合粉末中の金属成分の合計含有量を100質量%とした場合、ジルコニウムの含有量が10質量%以上75%質量以下の範囲、ケイ素の含有量が35質量%以下(但し、0質量%を含まず)、インジウムの含有量が残部となるように秤量して、粉砕混合する。本実施形態においては、粉砕混合は、直径0.5mmのジルコニアボールを粉砕媒体としたビーズミル装置を用いて湿式粉砕混合する。
 この粉砕混合工程S01では、得られる混合粉末の比表面積(BET比表面積)が11.5m/g以上13.5m/g以下になるように粉砕混合する。比表面積が上記の範囲にある混合粉末を用いることにより、後述の焼結工程において、雰囲気酸素との反応性および焼結性が高まり、均一な酸素濃度と比抵抗、そして高い焼結密度を有するスパッタリングターゲットが得られ易くなる。一方、比表面積が11.5m/g未満の混合粉末を用いると、焼成時に均一な反応が起こらず、スパッタリングターゲットの酸素濃度のばらつきが大きくなるおそれがある。また、混合粉末の比表面積を13.5m/gを超えるように粉砕することは、粉砕混合時間が長くなり経済的に不利になるおそれがある。
(Crushing and mixing step S01)
When the total content of the metal components in the obtained mixed powder is 100% by mass, the zirconium content is in the range of 10% to 75% by mass, and the silicon content is 35% by mass. Below (however, 0 mass% is not included), it is weighed so that the content of indium is the balance, and pulverized and mixed. In this embodiment, the pulverization and mixing are performed by wet pulverization and mixing using a bead mill apparatus using zirconia balls having a diameter of 0.5 mm as a pulverization medium.
In this pulverization and mixing step S01, the mixed powder obtained is pulverized and mixed so that the specific surface area (BET specific surface area) is 11.5 m 2 / g or more and 13.5 m 2 / g or less. By using a mixed powder having a specific surface area in the above range, in the sintering process described later, reactivity with atmospheric oxygen and sinterability are enhanced, and a uniform oxygen concentration, specific resistance, and high sintering density are obtained. It becomes easy to obtain a sputtering target. On the other hand, when a mixed powder having a specific surface area of less than 11.5 m 2 / g is used, a uniform reaction does not occur at the time of firing, and there is a possibility that variation in the oxygen concentration of the sputtering target becomes large. Moreover, if the specific surface area of the mixed powder is pulverized so as to exceed 13.5 m 2 / g, the pulverization and mixing time becomes longer, which may be disadvantageous economically.
(成形工程S02)
 次に、粉砕混合工程S01にて得られた混合粉末を所定の形状に成形して、成形体を得る。本実施形態においては、プレス成形を用いて成形する。
(Molding step S02)
Next, the mixed powder obtained in the pulverization and mixing step S01 is molded into a predetermined shape to obtain a molded body. In this embodiment, it shape | molds using press molding.
(焼結工程S03)
 次に、成形工程S02にて成形した成形体を焼結させる。この焼結工程S03では、酸素導入口を備えた焼成装置を用い、内に酸素を導入しながら、成形体を焼成して焼結させる。成形体の焼成を焼成装置内に酸素を導入しながら行うことによって、混合粉末中のIn粉末の昇華が抑制されるので、均一な酸素濃度と比抵抗、そして高い焼結密度を有するスパッタリングターゲットが得られ易くなる。焼成装置内に導入する酸素の最適な流量は、焼成装置の内容積や焼結させる成形体の大きさや数量などの条件により変動するため、適切に選択する必要がある。例えば目安として直径100~300mm、厚さ15mm以下の成形体を内容積15000~30000cmの焼成装置で同時に6枚以下焼成するのに必要な流量は3L/分以上10L/分以下の範囲である。10L/分を超える流量は一般に経済的に好ましくない。なお焼成装置内に流通させる気体は酸素の体積率が100%、すなわち純酸素が好ましいが、酸素の体積率が80%以上であれば窒素やアルゴン等他の気体と混合された気体を用いても良い。
(Sintering step S03)
Next, the molded body molded in the molding step S02 is sintered. In the sintering step S03, the molded body is fired and sintered while introducing oxygen into the inside using a firing device having an oxygen inlet. Since the sublimation of the In 2 O 3 powder in the mixed powder is suppressed by performing the firing of the molded body while introducing oxygen into the firing apparatus, it has a uniform oxygen concentration, a specific resistance, and a high sintering density. It becomes easy to obtain a sputtering target. The optimum flow rate of oxygen introduced into the firing apparatus varies depending on conditions such as the internal volume of the firing apparatus and the size and quantity of the compact to be sintered, so it is necessary to select appropriately. For example, as a guideline, the flow rate required for simultaneously firing 6 or less of a compact having a diameter of 100 to 300 mm and a thickness of 15 mm or less in a firing apparatus having an internal volume of 15000 to 30000 cm 3 is in the range of 3 L / min to 10 L / min. . A flow rate exceeding 10 L / min is generally not economically desirable. The gas to be circulated in the firing apparatus is preferably 100% oxygen, that is, pure oxygen. However, if the oxygen volume ratio is 80% or more, a gas mixed with other gas such as nitrogen or argon is used. Also good.
 焼成時の保持温度は、1300℃以上1600℃以下の範囲が好ましい。1300℃未満の温度では、焼結体が緻密になりにくく、密度が低くなるおそれがある。1600℃を超える温度を常態的な生産に用いることは一般的に経済的に好ましくない。焼成時の昇温の速度は200℃/時間以下が好ましく、10℃/時間以上200℃/時間の範囲がより好ましい。200℃/時間を超えると原料粉末間の不均一な反応、焼結、収縮を生じることから反りや割れの原因となるおそれがある。一方、10℃/時間未満では、時間が掛かりすぎて生産性が低下するおそれがある。 The holding temperature during firing is preferably in the range of 1300 ° C or higher and 1600 ° C or lower. When the temperature is lower than 1300 ° C., the sintered body is difficult to be dense and the density may be lowered. It is generally not economically preferable to use temperatures above 1600 ° C. for normal production. The heating rate during firing is preferably 200 ° C./hour or less, and more preferably in the range of 10 ° C./hour to 200 ° C./hour. If it exceeds 200 ° C./hour, uneven reaction, sintering and shrinkage between the raw material powders may occur, which may cause warping and cracking. On the other hand, if it is less than 10 ° C./hour, it takes too much time and the productivity may be lowered.
(冷却工程S04)
 次に、焼結工程S03にて得られた焼結体を冷却する。この冷却工程S04では、少なくとも600℃以下の温度になるまでは焼成装置内に酸素を導入しながら、焼結体を冷却する。焼結体の冷却を、焼成装置内に酸素を導入しながら行うことによって、冷却中での焼結体中の酸素の離脱が抑制され、均一な酸素濃度と比抵抗を有するスパッタリングターゲットが得られ易くなる。焼成装置内に導入する酸素の流量は、焼結工程S03にて焼成装置内に導入する流量と同じとすることが好ましい。冷却工程S04での酸素の流通は、焼結体の取り出し時まで実施することが好ましいが、経済性を考慮して600℃以下の温度になった時点で適宜停止してもよい。
(Cooling step S04)
Next, the sintered body obtained in the sintering step S03 is cooled. In this cooling step S04, the sintered body is cooled while introducing oxygen into the firing apparatus until the temperature reaches at least 600 ° C. or less. By cooling the sintered body while introducing oxygen into the firing apparatus, the release of oxygen in the sintered body during cooling is suppressed, and a sputtering target having a uniform oxygen concentration and specific resistance is obtained. It becomes easy. The flow rate of oxygen introduced into the firing apparatus is preferably the same as the flow rate introduced into the firing apparatus in the sintering step S03. The circulation of oxygen in the cooling step S04 is preferably performed until the sintered body is taken out, but may be appropriately stopped when the temperature reaches 600 ° C. or less in consideration of economy.
 600℃以下の温度になるまで冷却するときの冷却速度は、200℃/時間以下が好ましく、1℃/時間以上200℃/時間以下の範囲がより好ましい。200℃/時間を超えると、焼結体の冷却が均一に進みにくくなり、酸素濃度の均一性が損なわれるほか、焼結体が熱応力によって割れやすくなるおそれがある。一方、1℃/時間未満では、冷却時間が掛かりすぎて生産性が低下するおそれがある。冷却速度は冷却工程S04を通じて一定であることが好ましいが、200℃/時間以下の範囲において冷却途中で適宜変化させてもよい。また600℃以下まで冷却された後は200℃/時間を越える冷却速度で冷却しても良いが、焼結体を焼成装置から取り出す作業は100℃以下の温度で行なうことが好ましい。 The cooling rate when cooling to a temperature of 600 ° C. or lower is preferably 200 ° C./hour or less, and more preferably in the range of 1 ° C./hour to 200 ° C./hour. When it exceeds 200 ° C./hour, cooling of the sintered body is difficult to proceed uniformly, and the uniformity of the oxygen concentration is impaired, and the sintered body may be easily cracked by thermal stress. On the other hand, if it is less than 1 ° C./hour, it takes too much cooling time and the productivity may be lowered. The cooling rate is preferably constant throughout the cooling step S04, but may be appropriately changed during the cooling in the range of 200 ° C./hour or less. Further, after cooling to 600 ° C. or lower, cooling may be performed at a cooling rate exceeding 200 ° C./hour, but the operation of taking out the sintered body from the firing apparatus is preferably performed at a temperature of 100 ° C. or lower.
(加工工程S05)
 加工工程S05では、冷却工程S05で冷却された焼結体に対して切削加工又は研削加工を施すことにより、所定形状のスパッタリングターゲットに加工する。
(Processing step S05)
In the processing step S05, the sintered body cooled in the cooling step S05 is processed into a predetermined shape sputtering target by cutting or grinding.
 以上のような構成とされた本実施形態である酸化物スパッタリングターゲットによれば、ターゲット面内の酸化濃度のばらつきが15%以下とされているので、ターゲット面内の酸素濃度の均一性が高く、ターゲット面内の比抵抗が均一となる。このため、スパッタリング中の異常放電が抑えられ、これに伴ってパーティクルの発生が抑制される。 According to the oxide sputtering target according to the present embodiment configured as described above, the variation in the oxidation concentration in the target surface is 15% or less, so the uniformity of the oxygen concentration in the target surface is high. The specific resistance in the target plane becomes uniform. For this reason, abnormal discharge during sputtering is suppressed, and the generation of particles is suppressed accordingly.
 また、本実施形態の酸化物スパッタリングターゲットの製造方法によれば、粉砕混合工程S01において、原料となるZrO粉末とSiO粉末とIn粉末を粉砕混合して得た混合粉末は、比表面積が11.5m/g以上13.5m/g以下とされているので反応性が高い。また、焼結工程S03において、成形体の焼成を、焼成装置内に酸素を導入しながら行っており、焼成雰囲気中の酸素が不足することがないので、成形体の焼結が均一になり、緻密で密度の高い焼結体を得ることができる。そして、冷却工程S04において、200℃/時間以下の冷却速度で冷却するので、急激な温度変化が起こりにくく、焼結体の酸素濃度が安定する。よって、ターゲット面内の酸素濃度のばらつきが小さい酸化物スパッタリングターゲットを安定して製造することができる。 Moreover, according to the manufacturing method of the oxide sputtering target of this embodiment, in the crushing and mixing step S01, the mixed powder obtained by crushing and mixing the ZrO 2 powder, the SiO 2 powder, and the In 2 O 3 powder, which are raw materials, Since the specific surface area is 11.5 m 2 / g or more and 13.5 m 2 / g or less, the reactivity is high. Further, in the sintering step S03, the molded body is fired while introducing oxygen into the firing apparatus, and oxygen in the firing atmosphere is not insufficient, so that the sintered body of the molded body becomes uniform, A dense and dense sintered body can be obtained. And in cooling process S04, since it cools with the cooling rate of 200 degrees C / hour or less, a rapid temperature change does not occur easily and the oxygen concentration of a sintered compact is stabilized. Therefore, an oxide sputtering target with small variation in oxygen concentration in the target surface can be stably manufactured.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、酸化物スパッタリングターゲットの形状が円板状である場合を説明したが、酸化物スパッタリングターゲットの形状には特に制限はない。酸化物スパッタリングターゲットは四角板状であってもよい。酸化物スパッタリングターゲットの形状が四角板状である場合は、酸素濃度および比抵抗の測定箇所は、対角線が交差する交点と、各対角線上の角部近傍の4点の合計5点とすることができる。
 また、酸化物スパッタリングターゲットは円筒形状であってもよい。酸化物スパッタリングターゲットの形状が円筒形状である場合は、酸素濃度および比抵抗の測定箇所は、周方向等間隔に合計5点とすることができる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the present embodiment, the case where the shape of the oxide sputtering target is a disk shape has been described, but the shape of the oxide sputtering target is not particularly limited. The oxide sputtering target may be a square plate. When the shape of the oxide sputtering target is a square plate, the oxygen concentration and specific resistance measurement points should be a total of five points: the intersection where the diagonal lines intersect and the four points near the corners on each diagonal line. it can.
The oxide sputtering target may be cylindrical. When the shape of the oxide sputtering target is cylindrical, the oxygen concentration and specific resistance can be measured at a total of five points at equal intervals in the circumferential direction.
 また、本実施形態の酸化物スパッタリングターゲットは不可避不純物を含有していてもよい。ここで、不可避不純物は、原料粉末に不可避的に含まれている不純物および製造工程において不可避的に混入する不純物を意味する。 Moreover, the oxide sputtering target of this embodiment may contain inevitable impurities. Here, the inevitable impurities mean impurities inevitably contained in the raw material powder and impurities inevitably mixed in the manufacturing process.
 さらに、本実施形態の酸化物スパッタリングターゲットの製造方法によれば、粉砕混合工程S01において、原料となるZrO粉末とSiO粉末とIn粉末を粉砕混合しているが、単に混合のみとしてもよい。但し、混合して得た混合粉末の比表面積が11.5m/g以上13.5m/g以下とされていることが必要である。 Furthermore, according to the manufacturing method of the oxide sputtering target of this embodiment, in the crushing and mixing step S01, the raw material ZrO 2 powder, the SiO 2 powder, and the In 2 O 3 powder are pulverized and mixed. It is good. However, the mixed powder obtained by mixing needs to have a specific surface area of 11.5 m 2 / g or more and 13.5 m 2 / g or less.
 以下に、本発明に係る酸化物スパッタリングターゲットの作用効果について評価した評価試験の結果について説明する。 Hereinafter, the results of an evaluation test for evaluating the function and effect of the oxide sputtering target according to the present invention will be described.
[本発明例1~7]
 原料粉末として、純度が99.9質量%以上で、平均粒径が2μmのZrO粉末と、純度が99.8質量%以上で、平均粒径が2μmのSiO粉末と、純度が99.9質量%以上で、平均粒径が1μmのIn粉末とを準備した。用意した各原料粉末を、それぞれ表1に示すモル比となるように秤量した。
[Invention Examples 1 to 7]
As the raw material powder, a purity of 99.9% by mass or more and a ZrO 2 powder having an average particle diameter of 2 μm, a purity of 99.8% by mass or more and a SiO 2 powder having an average particle diameter of 2 μm, and a purity of 99. 9% by mass or more of In 2 O 3 powder having an average particle diameter of 1 μm was prepared. Each prepared raw material powder was weighed so as to have a molar ratio shown in Table 1.
 秤量した原料粉末を、粉砕媒体として直径0.5mmのジルコニアボールを用いたビーズミル装置に、溶媒とともに投入して粉砕・混合した。溶媒としては、日本アルコール販売社製のソルミックスA-11を用いた。粉砕・混合の時間は1時間とした。粉砕・混合の終了後、ジルコニアボールを分離回収し、原料粉末と溶媒を含むスラリーを得た。得られたスラリーを加熱し、溶媒を除去して混合粉末を得た。 The weighed raw material powder was put into a bead mill using zirconia balls having a diameter of 0.5 mm as a grinding medium together with a solvent, and pulverized and mixed. As a solvent, Solmix A-11 manufactured by Nippon Alcohol Sales Co., Ltd. was used. The grinding / mixing time was 1 hour. After completion of the pulverization / mixing, zirconia balls were separated and recovered to obtain a slurry containing raw material powder and a solvent. The obtained slurry was heated and the solvent was removed to obtain a mixed powder.
 得られた混合粉末のBET比表面積を、比表面積測定装置(マウンテック社製、Macsorb model 1201)により測定した。その結果を表1に示す。 The BET specific surface area of the obtained mixed powder was measured with a specific surface area measuring device (Mounttech, Macsorb model 1201). The results are shown in Table 1.
 次に、得られた混合粉末を直径200mmの金型に充填して、150kg/cmの圧力にてプレスすることにより、直径200mm、厚さ10mmの円板状の成形体を2枚作製した。
 得られた2枚の成形体を、電気炉(炉内容積27000cm)に投入し、毎分4Lの流量で酸素を電気炉内に流通させながら表1に示す焼成温度で7時間保持することにより焼成して焼結体を生成させた。次いで、焼結体を、継続して酸素を電気炉内に流通させながら表1に示す冷却速度で600℃まで冷却し、その後、酸素の流通を停止し、室温まで炉内放冷により冷却した後、焼結体を電気炉から取り出した。
Next, the obtained mixed powder was filled in a mold having a diameter of 200 mm and pressed at a pressure of 150 kg / cm 2 to produce two disk-shaped molded bodies having a diameter of 200 mm and a thickness of 10 mm. .
The obtained two molded bodies are put into an electric furnace (furnace volume 27000 cm 3 ), and maintained at the firing temperature shown in Table 1 for 7 hours while flowing oxygen through the electric furnace at a flow rate of 4 L / min. Was fired to produce a sintered body. Next, the sintered body was cooled to 600 ° C. at a cooling rate shown in Table 1 while oxygen was continuously passed through the electric furnace, and then the oxygen flow was stopped and cooled to room temperature by cooling in the furnace. Thereafter, the sintered body was taken out from the electric furnace.
 得られた焼結体に対し、機械加工を施して、直径152.4mm、厚さ6mmの2枚の円板状のスパッタリングターゲットを得た。 The obtained sintered body was machined to obtain two disk-shaped sputtering targets having a diameter of 152.4 mm and a thickness of 6 mm.
[比較例1]
 秤量した原料粉末を、ヘンシェルミキサーで混合したこと以外は、本発明例1と同様にして、2枚のスパッタリングターゲットを製造した。
[Comparative Example 1]
Two sputtering targets were produced in the same manner as in Example 1 except that the weighed raw material powders were mixed with a Henschel mixer.
[比較例2]
 600℃までの焼結体の冷却速度を、250℃/時間としたこと以外は、本発明例1と同様にして、2枚のスパッタリングターゲットを製造した。
[Comparative Example 2]
Two sputtering targets were produced in the same manner as Example 1 except that the cooling rate of the sintered body up to 600 ° C. was 250 ° C./hour.
[比較例3]
 成形体の焼成時に、酸素を電気炉内に流通させなかったこと以外は、本発明例1と同様にして、2枚のスパッタリングターゲットを製造した。
[Comparative Example 3]
Two sputtering targets were produced in the same manner as in Example 1 except that oxygen was not circulated in the electric furnace when the molded body was fired.
[比較例4]
 焼結体の焼成温度を1250℃としたこと以外は、本発明例1と同様にして、2枚のスパッタリングターゲットを製造した。
[Comparative Example 4]
Two sputtering targets were produced in the same manner as in Example 1 except that the sintering temperature of the sintered body was 1250 ° C.
[評価]
 スパッタリングターゲットの金属成分組成、相対密度、酸素含有量および比抵抗を測定した。また、スパッタリングターゲットのスパッタ試験を行なった。
 製造した2枚のスパッタリングターゲットのうちの1枚を相対密度、比抵抗、酸素含有量の測定に用い、残りの1枚をスパッタ試験に用いた。スパッタ試験では、まずスパッタリング中の異常放電の発生数を測定した。次いで、酸化物膜をスパッタにより成膜した後、ターゲットの割れの有無を確認した。さらに、成膜した酸化物膜中のインジウム濃度を測定した。
 各評価の方法は、以下の通りである。
[Evaluation]
The metal component composition, relative density, oxygen content and specific resistance of the sputtering target were measured. Moreover, the sputtering test of the sputtering target was conducted.
One of the two produced sputtering targets was used for measurement of relative density, specific resistance, and oxygen content, and the remaining one was used for the sputtering test. In the sputtering test, first, the number of occurrences of abnormal discharge during sputtering was measured. Next, after forming an oxide film by sputtering, the presence or absence of cracks in the target was confirmed. Further, the indium concentration in the formed oxide film was measured.
The method of each evaluation is as follows.
(スパッタリングターゲットの金属成分組成)
 スパッタリングターゲットに機械加工する前の焼結体の端部の一部を、試料として採取した。採取した試料を酸に溶解し、得られた溶液の組成を、アジレントテクノロジー社製誘導結合プラズマ発光分光(ICP-OES)装置(Agilent 5100)により分析して、Zr、Si、Inの金属成分組成を分析した。その測定結果を、表2に示す。
(Metal component composition of sputtering target)
A part of the end of the sintered body before being machined into the sputtering target was sampled. The collected sample was dissolved in acid, and the composition of the obtained solution was analyzed by an inductively coupled plasma emission spectroscopy (ICP-OES) apparatus (Agilent 5100) manufactured by Agilent Technologies, and the metal component composition of Zr, Si, and In Was analyzed. The measurement results are shown in Table 2.
(相対密度)
 相対密度は、理論密度に対する実測密度の比率(実測密度/理論密度×100)として算出した。実測密度は、スパッタリングターゲットの重量と寸法を実測することにより求めた。理論密度は、スパッタリングターゲットに含まれている各酸化物の濃度と密度から算出した。具体的には、ZrOの質量%濃度をC1、密度をρ1とし、SiOの質量%濃度をC2、密度をρ2とし、Inの質量%濃度をC3、密度をρ3として、理論密度ρを以下の式により計算した。
 ρ=1/[C1/100ρ1+C2/100ρ2+C3/100ρ3]
 ここで、ρ1=5.60g/cm、ρ2=2.20g/cm、ρ3=7.18g/cmの値を用いた。なお、C1、C2、C3は、原料粉末の配合量から算出した。
(Relative density)
The relative density was calculated as a ratio of the actual density to the theoretical density (actual density / theoretical density × 100). The actually measured density was obtained by actually measuring the weight and dimensions of the sputtering target. The theoretical density was calculated from the concentration and density of each oxide contained in the sputtering target. Specifically, the mass% concentration of ZrO 2 is C1, the density is ρ1, the mass% concentration of SiO 2 is C2, the density is ρ2, the mass% concentration of In 2 O 3 is C3, and the density is ρ3. The density ρ was calculated by the following formula.
ρ = 1 / [C1 / 100ρ1 + C2 / 100ρ2 + C3 / 100ρ3]
Here, ρ1 = 5.60g / cm 3, ρ2 = 2.20g / cm 3, it was used a value of ρ3 = 7.18g / cm 3. C1, C2, and C3 were calculated from the blending amount of the raw material powder.
(比抵抗)
 比抵抗は、四探針法により測定した。比抵抗のばらつきを測定するために、図1に示すように、ターゲット面(円)の中心点(1)と、ターゲット面の中心点にて互いに直交する2つの直線上であって、かつ外縁から20mmの位置にある4点(2)~(5)の合計5点で測定した。測定された比抵抗のうちの最大値と最小値を抽出し、前記の式(2)により、比抵抗のばらつきを算出した。表2に、各測定点での比抵抗の測定値とばらつきを示す。
(Specific resistance)
The specific resistance was measured by the four probe method. In order to measure the variation in specific resistance, as shown in FIG. 1, the center point (1) of the target surface (circle) and two straight lines orthogonal to each other at the center point of the target surface and the outer edge Measured at a total of 5 points of 4 points (2) to (5) located 20 mm from the center. The maximum value and the minimum value of the measured specific resistance were extracted, and the variation in specific resistance was calculated by the above equation (2). Table 2 shows measured values and variations of specific resistance at each measurement point.
(酸素濃度)
 図1に示すように、ターゲット面(円)の中心点(1)と、ターゲット面の中心点にて互いに直交する2つの直線上であって、かつ外縁から20mmの位置にある4点(2)~(5)の合計5点から10mm角の小片を酸素濃度測定用試料片として切り出し、その酸素濃度測定用試料片の表面(ターゲット面)の酸素濃度を、次のようにして測定した。
 先ず、酸素濃度測定用試料を樹脂に埋め、樹脂埋めした酸素濃度測定用試料片の表面(ターゲット面)を、研磨装置にて鏡面研磨した。そして研磨の後、研磨面の酸素濃度を、EPMA(日本電子製、JXA-8500F)により定量分析した。EPMAによる酸素の定量分析の条件は、次のとおりとした。
 加速電圧:15kV
 照射電流:5×10-8
 ビーム径:100μm
 なお、酸素の定量分析にあたり使用した分光結晶はLDE1である。
 測定は10mm角の試料片内から無作為に10箇所について行ない、その平均値を図1に示される一つの箇所の酸素濃度の測定値とした。
 測定された図1に示す5箇所の酸素濃度のうちの最大値と最小値を抽出し、前記の式(1)により、酸素濃度のばらつきを算出した。表2に、各酸素濃度測定用試料の酸素濃度の測定値とばらつきを示す。
(Oxygen concentration)
As shown in FIG. 1, the center point (1) of the target surface (circle) and four points (2) on two straight lines orthogonal to each other at the center point of the target surface and at a position 20 mm from the outer edge. ) To (5), a 10 mm square piece was cut out as a sample piece for measuring oxygen concentration, and the oxygen concentration on the surface (target surface) of the sample piece for measuring oxygen concentration was measured as follows.
First, the oxygen concentration measurement sample was embedded in a resin, and the surface (target surface) of the oxygen concentration measurement sample piece embedded in the resin was mirror-polished with a polishing apparatus. After polishing, the oxygen concentration on the polished surface was quantitatively analyzed by EPMA (JXA-8500F, manufactured by JEOL Ltd.). The conditions for quantitative analysis of oxygen by EPMA were as follows.
Acceleration voltage: 15 kV
Irradiation current: 5 × 10 −8 A
Beam diameter: 100 μm
The spectral crystal used for the quantitative analysis of oxygen is LDE1.
The measurement was carried out at 10 locations at random from within a 10 mm square sample piece, and the average value was taken as the measurement value of the oxygen concentration at one location shown in FIG.
The maximum value and the minimum value of the five oxygen concentrations measured in FIG. 1 were extracted, and the variation in the oxygen concentration was calculated by the above equation (1). Table 2 shows the measured values and variations of the oxygen concentration of each oxygen concentration measurement sample.
(スパッタ試験)
 スパッタリングターゲットを無酸素銅製のバッキングプレートに半田付けし、これをマグネトロン式のスパッタ装置(ULVAC社製、SIH-450H)内に装着した。次いで、真空排気装置にてスパッタ装置内を5×10-5Pa以下まで排気した後、ArガスとOガスを導入して、スパッタガス圧を0.67Paに調整し、1時間のプレスパッタリングを実施し、これによりターゲット表面の加工層を除去した。この時のArガスとOガスの流量比は47対3、電力はパルスDC1000W、パルス条件は周波数50kHz、duty比0.08とした。
(Spatter test)
The sputtering target was soldered to a backing plate made of oxygen-free copper, and this was mounted in a magnetron type sputtering apparatus (ULVAC, SIH-450H). Next, after the inside of the sputtering apparatus is evacuated to 5 × 10 −5 Pa or less with a vacuum evacuation apparatus, Ar gas and O 2 gas are introduced, the sputtering gas pressure is adjusted to 0.67 Pa, and pre-sputtering for 1 hour is performed. As a result, the processed layer on the target surface was removed. At this time, the flow ratio of Ar gas to O 2 gas was 47: 3, the power was pulsed DC 1000 W, the pulse condition was frequency 50 kHz, and the duty ratio was 0.08.
(異常放電回数)
 上記のプレスパッタリングと同条件にて、1時間の連続スパッタリングを行った。この1時間の間に発生した異常放電回数を、使用したスパッタ装置の直流電源に備えられたアーキングカウント機能を用いて計測した。その結果を表3に示す。
(Number of abnormal discharges)
Continuous sputtering for 1 hour was performed under the same conditions as the pre-sputtering. The number of abnormal discharges that occurred during this one hour was measured using an arcing count function provided in the DC power supply of the used sputtering apparatus. The results are shown in Table 3.
(酸化物膜の成膜と、酸化物膜の組成分析)
 上記の異常放電回数の測定後、直径6インチのSi基板上に20mm角サイズのポリカーボネート基板を図3に示す5点(Si基板中心1点と中心から半径60mmの部分4点)に貼り付けしたものを準備し、これをスパッタ装置に装填してターゲット直上で静止させ、真空排気装置にてスパッタ装置内を5×10-5Pa以下まで排気した後、上記のプレスパッタと同条件にてスパッタリングを行い、基板上に厚さ200nmの酸化物膜を形成した。この時の基板とターゲットの距離は70mmとした。得られた各酸化物膜を酸で溶解した溶液の組成を、アジレントテクノロジー社製誘導結合プラズマ発光分光(ICP-OES)装置(Agilent 5100)により分析して、各酸化物膜中のIn濃度を測定し、そのばらつきを下記の式(3)より算出した。表3に、酸化物膜中のIn濃度(金属元素の合計含有量を100とした時の質量%)の測定値とばらつきを示す。
(Oxide film formation and oxide film composition analysis)
After measuring the number of abnormal discharges described above, a 20 mm square polycarbonate substrate was pasted on a 6 inch diameter Si substrate at 5 points shown in FIG. 3 (one Si substrate center and 4 points with a radius of 60 mm from the center). Prepare a sample, put it in the sputtering device, let it stand just above the target, evacuate the inside of the sputtering device to 5 × 10 −5 Pa or less with a vacuum evacuation device, and then perform sputtering under the same conditions as the above pre-sputtering And an oxide film having a thickness of 200 nm was formed on the substrate. The distance between the substrate and the target at this time was 70 mm. The composition of the solution obtained by dissolving each obtained oxide film with an acid was analyzed by an inductively coupled plasma emission spectroscopy (ICP-OES) apparatus (Agilent 5100) manufactured by Agilent Technologies, and the In concentration in each oxide film was determined. The variation was calculated from the following equation (3). Table 3 shows measured values and variations in the In concentration in the oxide film (mass% when the total content of metal elements is 100).
式(3):
酸化物膜のIn濃度のばらつき(%)=[(In濃度の最大値)-(In濃度の最小値)]/[(In濃度の最大値)+(In濃度の最小値)]×100
Formula (3):
Variation in In concentration of oxide film (%) = [(maximum value of In concentration) − (minimum value of In concentration)] / [(maximum value of In concentration) + (minimum value of In concentration)] × 100
(割れの有無)
 酸化物膜の成膜後、スパッタ装置を大気開放した。そして、スパッタ装置からスパッタリングターゲットを取り出して、その外観を目視にて観察して、割れの発生の有無を確認した。その結果を表3に示す。
(Presence or absence of cracks)
After the oxide film was formed, the sputtering apparatus was opened to the atmosphere. Then, the sputtering target was taken out from the sputtering apparatus, and the appearance was visually observed to confirm the occurrence of cracks. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 原料粉末の混合粉末のBET比表面積が11.5m/g未満であった比較例1、焼結体の600℃までの冷却速度が200℃/時間を超えた比較例2、成形体を焼成装置内に酸素を流通させずに焼成した比較例3、成形体の焼成温度が1300℃未満であった比較例4のいずれについても得られたスパッタリングターゲットは、ターゲット面内の酸素濃度のばらつきが15%を超えていた。 Comparative Example 1 in which the BET specific surface area of the mixed powder of the raw material powder was less than 11.5 m 2 / g, Comparative Example 2 in which the cooling rate of the sintered body to 600 ° C. exceeded 200 ° C./hour, and firing the molded body The sputtering target obtained for both Comparative Example 3 fired without circulating oxygen in the apparatus and Comparative Example 4 where the firing temperature of the molded body was less than 1300 ° C. had a variation in oxygen concentration in the target plane. It was over 15%.
 ターゲット面内の酸素濃度のばらつきが15%を超えた比較例1~4のスパッタリングターゲットは、いずれも比抵抗のばらつきが15%以上と大きくなり、スパッタリング中の異常放電回数が多くなった。また、スパッタにより成膜された酸化物膜は、In濃度のばらつきが大きくなった。特に、比較例2および4のスパッタリングターゲットは、スパッタ後に割れが発生した。 In the sputtering targets of Comparative Examples 1 to 4 in which the variation in oxygen concentration in the target surface exceeded 15%, the variation in specific resistance increased to 15% or more, and the number of abnormal discharges during sputtering increased. In addition, the oxide film formed by sputtering has a large variation in In concentration. In particular, the sputtering targets of Comparative Examples 2 and 4 were cracked after sputtering.
 これに対して、原料粉末の混合粉末のBET比表面積が11.5m/g以上13.5m/g以下の範囲とされ、焼結体の600℃までの冷却速度が200℃/時間以下とされ、成形体を焼成装置内に酸素を流通させながら、1300℃以上1600℃以下の温度で焼成した本発明例1~7のスパッタリングターゲットは、ターゲット面内の酸素濃度のばらつきがいずれも15%以下であった。 On the other hand, the BET specific surface area of the mixed powder of the raw material powder is in the range of 11.5 m 2 / g to 13.5 m 2 / g, and the cooling rate of the sintered body to 600 ° C. is 200 ° C./hour or less. In the sputtering targets of Examples 1 to 7 of the present invention, in which the compact was fired at a temperature of 1300 ° C. or higher and 1600 ° C. or lower while oxygen was passed through the baking apparatus, the variation in oxygen concentration in the target surface was all 15 % Or less.
 ターゲット面内の酸素濃度のばらつきが15%以下であった本発明例1~7のスパッタリングターゲットは、いずれも比抵抗のばらつきが15%以下と低くなり、スパッタリング中の異常放電回数が顕著に低減した。また、スパッタにより成膜された酸化物膜は、In濃度のばらつきが低減した。さらに、スパッタ後に割れは発生しなかった。 In all of the sputtering targets of Invention Examples 1 to 7 in which the variation in oxygen concentration in the target surface was 15% or less, the variation in specific resistance was as low as 15% or less, and the number of abnormal discharges during sputtering was significantly reduced. did. In addition, variation in In concentration of the oxide film formed by sputtering was reduced. Furthermore, no cracks occurred after sputtering.
 以上の評価試験の結果から、本発明例によれば、スパッタリング中の異常放電の発生並びにパーティクルの飛散を抑制することができる酸化物スパッタリングターゲット、及び、この酸化物スパッタリングターゲットの製造方法を提供することが可能となることが確認された。 From the results of the above evaluation tests, according to the example of the present invention, there are provided an oxide sputtering target capable of suppressing the occurrence of abnormal discharge and the scattering of particles during sputtering, and a method for producing the oxide sputtering target. It was confirmed that it would be possible.

Claims (3)

  1.  金属成分として、ジルコニウム、ケイ素およびインジウムを含有した酸化物からなる酸化物スパッタリングターゲットであって、ターゲット面内の酸素濃度の最大値と最小値の合計に対する前記酸素濃度の最大値と最小値の差の比率が15%以下であることを特徴とする酸化物スパッタリングターゲット。 An oxide sputtering target made of an oxide containing zirconium, silicon and indium as a metal component, the difference between the maximum value and the minimum value of the oxygen concentration relative to the sum of the maximum value and the minimum value of the oxygen concentration in the target surface The oxide sputtering target is characterized by having a ratio of 15% or less.
  2.  ターゲット面内の比抵抗の最大値と最小値の合計に対する前記比抵抗の最大値と最小値の差の比率が15%以下であることを特徴とする請求項1に記載の酸化物スパッタリングターゲット。 2. The oxide sputtering target according to claim 1, wherein a ratio of a difference between the maximum value and the minimum value of the specific resistance to a total of the maximum value and the minimum value of the specific resistance in the target plane is 15% or less.
  3.  請求項1または2に記載の酸化物スパッタリングターゲットを製造する方法であって、
     酸化ジルコニウム粉末と、二酸化ケイ素粉末と、酸化インジウム粉末とを混合して、比表面積が11.5m/g以上13.5m/g以下の混合粉末を得る工程と、
     前記混合粉末を成形して成形体を得る工程と、
     前記成形体を、焼成装置内に酸素を流通させながら、1300℃以上1600℃以下の温度にて焼成して焼結体を生成させる工程と、
     前記焼結体を、前記焼成装置内に酸素を流通させながら、200℃/時間以下の冷却速度で少なくとも600℃以下の温度になるまで冷却する工程と、
     を備えていることを特徴とする酸化物スパッタリングターゲットの製造方法。
    A method for producing the oxide sputtering target according to claim 1, comprising:
    A step of mixing a zirconium oxide powder, a silicon dioxide powder, and an indium oxide powder to obtain a mixed powder having a specific surface area of 11.5 m 2 / g or more and 13.5 m 2 / g or less;
    Molding the mixed powder to obtain a molded body;
    Firing the molded body at a temperature of 1300 ° C. or higher and 1600 ° C. or lower while allowing oxygen to flow through the firing apparatus;
    Cooling the sintered body to a temperature of at least 600 ° C. at a cooling rate of 200 ° C./hour or less while circulating oxygen in the firing apparatus;
    A method for producing an oxide sputtering target, comprising:
PCT/JP2018/004430 2018-02-08 2018-02-08 Oxide sputtering target and method for producing oxide sputtering target WO2019155577A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197014613A KR102115126B1 (en) 2018-02-08 2018-02-08 Oxide sputtering target and manufacturing method of oxide sputtering target
CN201880004813.4A CN110352263A (en) 2018-02-08 2018-02-08 The manufacturing method of oxide sputtering target and oxide sputtering target
PCT/JP2018/004430 WO2019155577A1 (en) 2018-02-08 2018-02-08 Oxide sputtering target and method for producing oxide sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004430 WO2019155577A1 (en) 2018-02-08 2018-02-08 Oxide sputtering target and method for producing oxide sputtering target

Publications (1)

Publication Number Publication Date
WO2019155577A1 true WO2019155577A1 (en) 2019-08-15

Family

ID=67548975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004430 WO2019155577A1 (en) 2018-02-08 2018-02-08 Oxide sputtering target and method for producing oxide sputtering target

Country Status (3)

Country Link
KR (1) KR102115126B1 (en)
CN (1) CN110352263A (en)
WO (1) WO2019155577A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172428A1 (en) * 2020-02-27 2021-09-02 三菱マテリアル株式会社 Oxide sputtering target, and production method for oxide sputtering target
CN114853447A (en) * 2021-02-04 2022-08-05 光洋应用材料科技股份有限公司 Indium zirconium silicon oxide target material and preparation method thereof and indium zirconium silicon oxide film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088730A (en) * 2019-12-02 2021-06-10 三菱マテリアル株式会社 Oxide sputtering target and oxide sputtering target production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302835A (en) * 1998-04-21 1999-11-02 Sumitomo Metal Mining Co Ltd Production of zinc oxide base sintered compact
WO2009116213A1 (en) * 2008-03-17 2009-09-24 日鉱金属株式会社 Sintered target and method for production of sintered material
JP5061802B2 (en) * 2007-09-06 2012-10-31 三菱マテリアル株式会社 Sputtering target for forming a protective film for a ZrO2-In2O3-based optical recording medium excellent in crack resistance
JP2013151390A (en) * 2012-01-25 2013-08-08 Ulvac Japan Ltd Methods of manufacturing oxide powder and sputtering target
WO2014156234A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Ito sputtering target and method for manufacturing same
JP2018040032A (en) * 2016-09-06 2018-03-15 三菱マテリアル株式会社 Oxide sputtering target and manufacturing method of oxide sputtering target

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302240A (en) 2000-04-17 2001-10-31 Central Glass Co Ltd Electroconductive oxide powder and method for producing the same
JP4567750B2 (en) 2005-12-02 2010-10-20 パナソニック株式会社 Information recording medium and manufacturing method thereof
JP5088464B2 (en) 2006-06-08 2012-12-05 三菱マテリアル株式会社 Sputtering target for forming a high-strength optical recording medium protective film
JPWO2011040028A1 (en) * 2009-09-30 2013-02-21 出光興産株式会社 In-Ga-Zn-O-based oxide sintered body
JP5767015B2 (en) * 2011-05-10 2015-08-19 出光興産株式会社 Thin film transistor
JP6278229B2 (en) * 2012-08-10 2018-02-14 三菱マテリアル株式会社 Sputtering target for forming transparent oxide film and method for producing the same
CN110257782B (en) * 2016-03-28 2021-12-21 Jx金属株式会社 Cylindrical sputtering target and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302835A (en) * 1998-04-21 1999-11-02 Sumitomo Metal Mining Co Ltd Production of zinc oxide base sintered compact
JP5061802B2 (en) * 2007-09-06 2012-10-31 三菱マテリアル株式会社 Sputtering target for forming a protective film for a ZrO2-In2O3-based optical recording medium excellent in crack resistance
WO2009116213A1 (en) * 2008-03-17 2009-09-24 日鉱金属株式会社 Sintered target and method for production of sintered material
JP2013151390A (en) * 2012-01-25 2013-08-08 Ulvac Japan Ltd Methods of manufacturing oxide powder and sputtering target
WO2014156234A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石金属株式会社 Ito sputtering target and method for manufacturing same
JP2018040032A (en) * 2016-09-06 2018-03-15 三菱マテリアル株式会社 Oxide sputtering target and manufacturing method of oxide sputtering target

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172428A1 (en) * 2020-02-27 2021-09-02 三菱マテリアル株式会社 Oxide sputtering target, and production method for oxide sputtering target
JP2021134392A (en) * 2020-02-27 2021-09-13 三菱マテリアル株式会社 Oxide sputtering target, and manufacturing method of oxide sputtering target
JP7028268B2 (en) 2020-02-27 2022-03-02 三菱マテリアル株式会社 Oxide sputtering target and manufacturing method of oxide sputtering target
CN114853447A (en) * 2021-02-04 2022-08-05 光洋应用材料科技股份有限公司 Indium zirconium silicon oxide target material and preparation method thereof and indium zirconium silicon oxide film
CN114853447B (en) * 2021-02-04 2023-09-26 光洋应用材料科技股份有限公司 InZr-Si oxide target material, preparation method thereof and InZr-Si oxide film

Also Published As

Publication number Publication date
KR102115126B1 (en) 2020-05-25
KR20190096974A (en) 2019-08-20
CN110352263A (en) 2019-10-18

Similar Documents

Publication Publication Date Title
JP6414165B2 (en) Oxide sputtering target and manufacturing method of oxide sputtering target
US10937455B2 (en) Fe—Pt based magnetic material sintered compact
JP5497904B2 (en) Sputtering target for magnetic recording film
TWI583812B (en) Non - magnetic material dispersion type Fe - Pt sputtering target
TWI636149B (en) Ferromagnetic sputtering target
TWI510656B (en) Particle dispersive sputtering target for inorganic particles
TWI564416B (en) Magnetic sputtering target for magnetic recording film
WO2019155577A1 (en) Oxide sputtering target and method for producing oxide sputtering target
JP6422096B2 (en) Fe-Pt sputtering target in which C particles are dispersed
CN109844167B (en) Magnetic material sputtering target and method for producing same
JP6713489B2 (en) Sputtering target and magnetic thin film for magnetic recording medium
TWI657159B (en) Oxide sputtering target and method of producing oxide sputtering target
JP6108064B2 (en) Sputtering target for forming a magnetic recording medium film and method for producing the same
TWI582250B (en) A magnetite sputtering target containing chromium oxide
WO2017141558A1 (en) Sputtering target for magnetic recording medium, and magnetic thin film
CN111183244B (en) Ferromagnetic material sputtering target
JP6859837B2 (en) Oxide sputtering target
JP6030271B2 (en) Magnetic material sputtering target
JP6361543B2 (en) Bi-Ge target for sputtering and manufacturing method thereof
JP2019112669A (en) Oxide sputtering target
JP5534191B2 (en) BiTi-based oxide target containing Bi4Ti3O12 phase and method for producing the same
JP2017088983A (en) Rare earth metal-transition metal alloy sputtering target

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197014613

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP