WO2021172260A1 - 燃料電池排ガスを除湿しフィルタリングする窒素ガス生成装置及び方法 - Google Patents

燃料電池排ガスを除湿しフィルタリングする窒素ガス生成装置及び方法 Download PDF

Info

Publication number
WO2021172260A1
WO2021172260A1 PCT/JP2021/006587 JP2021006587W WO2021172260A1 WO 2021172260 A1 WO2021172260 A1 WO 2021172260A1 JP 2021006587 W JP2021006587 W JP 2021006587W WO 2021172260 A1 WO2021172260 A1 WO 2021172260A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
nitrogen
fuel cell
exhaust gas
filter
Prior art date
Application number
PCT/JP2021/006587
Other languages
English (en)
French (fr)
Inventor
勝通 田上
壮一 羽柴
健 北沢
昇 藤井
Original Assignee
マイクロコントロールシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020029364A external-priority patent/JP2021136084A/ja
Priority claimed from JP2021010474A external-priority patent/JP2022114256A/ja
Application filed by マイクロコントロールシステムズ株式会社 filed Critical マイクロコントロールシステムズ株式会社
Priority to US17/617,870 priority Critical patent/US11978935B2/en
Priority to EP21760750.6A priority patent/EP4112542A4/en
Priority to CN202180003784.1A priority patent/CN113924672A/zh
Publication of WO2021172260A1 publication Critical patent/WO2021172260A1/ja
Priority to US18/432,952 priority patent/US20240178423A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • B01D53/227Multiple stage diffusion in parallel connexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • B01D2053/223Devices with hollow tubes
    • B01D2053/224Devices with hollow tubes with hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0062Water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a technique for producing high-purity nitrogen gas.
  • the inventors of the present application have paid attention to the potential of such a fuel cell, and have invented a soldering device using a fuel cell as described in Patent Documents 1 and 2.
  • this soldering device not only the electric power generated by the fuel cell but also the exhaust gas generated by the power generation is supplied to the soldering device and used.
  • the inventors of the present application use the inert gas and electric power for a processing apparatus for processing by heating an object to be heated with electric power in an inert gas.
  • a power generation device that uses a fuel cell to supply electricity. This power generation device can also remove or reduce oxygen, water vapor, and water contained in the exhaust gas from the fuel cell, and convert the exhaust gas into an inert gas suitable for use in the processing device. It is.
  • the inventors of the present application connect N fuel cell units from the first fuel cell unit to the Nth fuel cell unit to obtain a sufficient amount of oxygen.
  • a power and gas supply device capable of supplying a small low oxygen gas.
  • air and fuel gas having a pressure exceeding the atmospheric pressure are supplied to the fuel cell to operate the fuel cell, and exceed the atmospheric pressure taken out from the fuel cell.
  • a nitrogen gas generator in which a pressure exhaust gas is allowed to act on a nitrogen filter at a pressure exceeding atmospheric pressure, and a gas having an increased nitrogen concentration is extracted from the filter.
  • Such high-purity nitrogen gas is an inert gas and has neither flammability nor flammability, and is a very useful gas.
  • air is used as a raw material, and pressure fluctuation adsorption (PSA) method is used for deep cooling. At present, it is produced by an air separation method, a membrane separation method, or the like.
  • the exhaust gas extracted from the fuel cell usually contains a large amount of water (H 2 O) generated by the fuel cell reaction, and its relative humidity is approximately 100%. Therefore, if it is left as it is, there will be an adverse effect in carrying out the subsequent purification treatment, and it will be difficult to carry out the treatment reliably and stably.
  • H 2 O water
  • an object of the present invention is to provide an apparatus, system and method for reliably and stably producing high-purity nitrogen gas using a fuel cell.
  • a fuel cell that operates by taking in air or a gas containing nitrogen and oxygen and a fuel gas, and (B) having an oxygen concentration lower than that of air taken out from the fuel cell. It is equipped with a dehumidifying means for reducing the water content or water vapor content in the exhaust gas, and (C) a filter using fibers having different degrees of permeation for nitrogen and oxygen.
  • a nitrogen gas generator and a nitrogen gas generation system having a filtering means for converting the gas into the gas are provided.
  • the above filter is a filter in which the recovery rate increases as the oxygen concentration of the gas to be filtered decreases.
  • the dehumidifying means is preferably a pump unit including a water-sealed pump, and in this case, an adiabatic expansion chamber is provided in which the exhaust gas taken out from the fuel cell expands adiabatically there. preferable.
  • a step of taking out the exhaust gas to have, a step of reducing the water content or water vapor content in the extracted exhaust gas, and a filter using fibers having different degrees of permeation of the exhaust gas having reduced water content or water vapor content with respect to nitrogen and oxygen.
  • a method for producing a nitrogen gas is provided, which comprises a step of taking out the exhaust gas having an increased nitrogen concentration from the filter.
  • a fuel cell can be used to reliably and stably generate high-purity nitrogen gas.
  • FIG. 1 is a schematic view showing an embodiment of a nitrogen gas generator / system according to the present invention.
  • the nitrogen gas generator 1 (or nitrogen gas generation system 1) as an embodiment of the present invention shown in FIG. 1 is (A) A “fuel cell (in the fuel cell U (unit) 11)” that operates by incorporating a “air or a gas containing nitrogen and oxygen” and a “fuel gas” (hydrogen in this embodiment). (B) Dehumidifying means for reducing water or water vapor in “exhaust gas (off gas)” having an oxygen concentration lower than that of air, taken out from the "fuel cell” (gas-liquid separation U122 in FIG. 1, water seal in FIG. 6).
  • a "nitrogen gas filter 12f" using fibers having different degrees of permeation for nitrogen and oxygen (for example, hollow fiber fibers) is provided, and "exhaust gas” with reduced water content or water vapor content is increased in nitrogen concentration. It is characterized by having a filtering means (nitrogen filter U12 in FIG. 1) for converting the gas into a gas.
  • the "nitrogen gas filter 12f" of the above (C) is a filter using fibers having different degrees of permeation for nitrogen and oxygen as described above, and the inventors of the present application will explain the contents later.
  • the "oxygen concentration reduction index" in the “exhaust gas” having an oxygen concentration lower than that of air is its. Experiments have confirmed that the lower the oxygen concentration, the higher the increase.
  • the nitrogen gas generator (system) 1 low oxygen can be efficiently achieved by combining the "fuel cell” and the “nitrogen gas filter 12f", which are very compatible with each other from the viewpoint of low oxygen concentration. It is possible to generate nitrogen gas with high concentration, that is, high purity.
  • the inventors of the present application have also confirmed through experiments that the lower the oxygen concentration of the gas to be filtered, the higher the recovery rate in the "nitrogen gas filter 12f" used in the present embodiment. Therefore, by using such a “nitrogen gas filter 12f” for filtering "exhaust gas” having an oxygen concentration lower than that of air, it is possible to further increase the recovery rate in high-purity nitrogen gas. This recovery rate will also be described in detail later.
  • the "nitrogen gas filter 12f” is a filter using fibers having different degrees of permeation for nitrogen and oxygen as described above, and the inventors of the present application act on the filter using the fibers. It has been experimentally confirmed that the higher the pressure of the "exhaust gas", the lower the oxygen concentration of the "exhaust gas” taken out from the filter, that is, the higher the purity of nitrogen gas can be obtained. Therefore, in the present embodiment, a pressure boosting U124 is provided in front of the nitrogen filter U to increase the pressure of the "exhaust gas" on which it acts, so that nitrogen gas having a low oxygen concentration, that is, high purity can be efficiently generated. It is.
  • the pressure of the "exhaust gas” acting on the "nitrogen gas filter 12f” is a pressure threshold determined by the “nitrogen gas filter 12f” and is the “nitrogen gas filter 12f". It has been confirmed by experiments that it is also preferable to set the pressure to a value exceeding the pressure threshold, which takes a larger value as the flow rate of the "exhaust gas” when taken out from the above.
  • the wording "high purity” or “high purity” described above means a state in which the oxygen concentration in the nitrogen gas is sufficiently reduced.
  • the nitrogen concentration in the "high-purity” or “high-purity” nitrogen gas produced in the present embodiment is the field and application of the nitrogen gas. Depending on the situation, for example, it may be 95 vol% or more, 99 vol% or more, or 99.9 vol% or more or 99.99 vol% or more.
  • the dehumidifying means of the above (B) reduces the water content or water vapor content in the "exhaust gas" whose relative humidity is usually about 100%, and the subsequent purification treatment is adversely affected by these water vapor content. It is an important means for ensuring reliable and stable implementation without receiving water vapor, and thereby efficiently producing high-purity nitrogen gas.
  • this important dehumidifying means which will be described in detail later with reference to FIG. 6, it is also preferable to adopt a water sealing pump U30 including a water sealing type pump.
  • the nitrogen gas generator (system) 1 of the present embodiment is (A) A fuel cell U (unit) 11 having a "fuel cell” and (B) At a position in front of the fuel cell U11, a renewable energy power generation unit U101, a storage U101s, a hydrogen generation U102, a hydrogen generation reforming U103, a hydrogen tank 104, a flow control U105, and an air compression U106. , Air tank 107, filter U108, flow control U109, (C) A drain 111, a pressure control U113, a gas-liquid separation U114, and a hydrogen recovery U115 are located at a position after the hydrogen electrode side of the fuel cell U11.
  • a drain 112 A drain 112, a pressure control U121, a gas-liquid separation U122, an off-gas buffer tank 123, a pressure boosting U124, and a corrosive gas removal U125 are located at positions after the air electrode side of the fuel cell U11. , Temperature control U126, flow control U127, nitrogen filter U12 provided with nitrogen gas filter 12f, pressure boosting U128, nitrogen tank 129, and (E) It is a device (system) equipped with an overall control U131, and has high purity by incorporating natural energy such as air, water, and sunlight, and in some cases city gas, and even commercial electric power. It is possible to supply nitrogen gas, electric power, and heat energy to the outside.
  • the nitrogen gas generator (system) 1 of the present embodiment can also provide the electric power and heat energy generated by the operated "fuel cell” to the outside in accordance with the generated nitrogen gas, and nitrogen. It can also be regarded as a gas, electric power and heat supply device (system).
  • the nitrogen gas generator (system) 1 includes at least a fuel cell U11 and a component directly connected to the fuel cell U11, a gas-liquid separation U122, and a nitrogen filter U12, and at least together with a renewable energy power generation U101 outside the device. It may constitute a nitrogen gas generation system.
  • the nitrogen gas generator (system) 1 is other than the renewable energy power generation U101, the storage U101s, the hydrogen generation U102, the hydrogen generation reforming U103, the hydrogen tank 104, the air compression U106, the air tank 107, the pressure boosting U128, and the nitrogen tank 129. It can also be a device (system) that includes all the constituent parts of the above.
  • the nitrogen gas generator (system) 1 may include, for example, a piping joint as an exhaust gas intake port that can be connected to an exhaust gas outlet in a fuel cell installed outside, and is discharged from the external fuel cell. It can also be used as a device (system) that takes in exhaust gas and outputs nitrogen gas with a reduced oxygen concentration. So to speak, it may be a "fuel cell-mounted filtering device (system)" that can be attached to a fuel cell.
  • a piping joint as an exhaust gas intake port that can be connected to an exhaust gas outlet in a fuel cell installed outside, and is discharged from the external fuel cell. It can also be used as a device (system) that takes in exhaust gas and outputs nitrogen gas with a reduced oxygen concentration. So to speak, it may be a "fuel cell-mounted filtering device (system)" that can be attached to a fuel cell.
  • the nitrogen gas generator (system) 1 has (a) an exhaust gas intake port for receiving the exhaust gas discharged from the external fuel cell, and (b) dehumidification for reducing the water content or water vapor content in the received exhaust gas.
  • the substance / energy transfer and the flow of the processing to be performed shown by connecting the components in the device / system configuration diagram of FIG. 1 with arrows are also understood as one embodiment of the nitrogen gas generation method according to the present invention. NS.
  • the renewable energy power generation unit U101 may be a solar cell power generation unit having a solar cell and converting sunlight into electric power, and a generator by rotating a rotor with blades (wings) by wind power. It may be a wind power generation unit that drives and generates electric power, or it may be a micro-hydraulic power generation unit that drives a generator by rotating a turbine (water wheel) by a water flow (hydraulic power) to generate electric power.
  • the renewable energy power generation unit 101 can be adopted as the renewable energy power generation unit 101 as long as the light energy of sunlight and the kinetic energy of wind and water flow are finally converted into electric energy.
  • the renewable energy power generation unit 101 may be a combination of two or more of the power generation units as described above.
  • the output unit of the generated power is provided with a power meter so that the presence or absence of power generation and the amount of generated power can be measured at each time point.
  • the power storage U101s includes a secondary battery such as a lithium (Li) battery or a lead (Pb) storage battery, and is a power storage unit that stores and stores the electric power supplied from the renewable energy power generation unit 101. It is also preferable that the electricity storage U101s is provided with an electricity storage meter so that the amount of electricity stored at each time point and whether or not the battery is fully charged can be measured.
  • electric power is supplied from the electricity storage U101s to the hydrogen generating U102 and the air compressed U106 (which electrolyzes water), which will be described later, but instead of or together with them, commercial electric power is supplied to the hydrogen generating U102 and the air. It may be supplied to the compressed U106.
  • hydrogen generation U102 and air compression can be performed directly from the renewable energy power generation unit 101 without using the electricity storage U101s equipped with an expensive secondary battery (or to provide it as an auxiliary only). It is also preferable that power is supplied to the U106. In this case, the natural energy is directly converted into the chemical energy of hydrogen and the physical energy of compressed air and used.
  • the renewable energy power generation unit 101 When the renewable energy power generation unit 101 generates AC power (for example, when an AC power generator is provided), the AC power and commercial power are converted into direct current by a converter and then stored in storage U101s and hydrogen generation U102. Will be supplied to. Further, even when the air-compressed U106 includes the DC-driven compressor 22, the air-compressed U106 is converted into a direct current and then supplied to the air-compressed U106.
  • the overall control U131 monitors the power supply to the hydrogen generation U102 and the air compressed U106 as described above, for example, the power generation status of the renewable energy power generation unit 101 and the power storage status of the storage U101s. , It is possible to switch and control appropriately.
  • the hydrogen generation U102 is a hydrogen supply unit provided with an electrolysis unit capable of electrolyzing the acquired water with the supplied electric power to generate hydrogen and oxygen.
  • electrolysis various known electrolysis methods can be adopted. For example, a method in which a large number of electrolytic cells having a structure in which a solid polymer electrolyte membrane is sandwiched between a catalyst and electrodes from both sides is used. Electrolysis may be performed.
  • the hydrogen generation U102 is provided with a dehumidifying unit that removes water from the generated hydrogen and oxygen. Further, a mechanism may be provided in which the water removed here is returned to the electrolysis section for electrolysis. It is also preferable to have a wattmeter that can measure the power consumed at each time point and the presence or absence of power consumption, and a flow meter or gas pressure gauge that can measure the amount of generated hydrogen and oxygen and the presence or absence of generation. You may have it.
  • Hydrogen production reforming U103 is introduced a hydrocarbon gas such as city gas or LPG, mixed with the hydrocarbon gas and steam, as a main component hydrogen (H 2) by the steam reforming reaction from the mixed gas Produces hydrogen-containing gas.
  • a mechanism for reducing the carbon monoxide gas content in the generated hydrogen-containing gas by using a CO modification catalyst or the like, or further reducing the carbon monoxide concentration by using a CO selective oxidation catalyst is provided. It is also preferable to have it.
  • the nitrogen gas generator (system) 1 may be provided with either hydrogen generation U102 or hydrogen generation reforming U103 as a hydrogen (fuel) supply source, or various supply sources. It is also preferable to have both in order to secure. Further, the hydrogen gas itself may be supplied from another system / device in place of or in combination with these sources.
  • the hydrogen tank 104 is a gas tank that temporarily stores and stores hydrogen gas supplied from hydrogen generation U102 and hydrogen generation reforming U103 in a compressed (high pressure) state, and is provided with a hydrogen storage alloy cylinder. May be good. It is also preferable that the hydrogen tank 104 is provided with a gas pressure gauge so that the gas pressure in the tank at each time point can be measured.
  • the flow control U105 is a unit that controls the pressure and flow rate of the hydrogen gas supplied from the hydrogen tank 104 to the fuel cell U11. Specifically, it may be provided with a hydrogen gas regulator and a hydrogen gas mass flow controller (or flow switch).
  • the hydrogen gas is supplied to the hydrogen electrode side of the fuel cell U11 in a state of high pressure (for example, 1.1 to 7 atm, about 0.11 to 0.7 MPa) having a pressure exceeding atmospheric pressure (1 atm, about 0.1 MPa).
  • the back pressure of the "fuel cell” provided in the fuel cell U11 can be set to, for example, atmospheric pressure or a pressure exceeding atmospheric pressure.
  • the back pressure is 1 atm (about 0.1 MPa) when the outlet side of the "fuel cell" is in the open state, that is, when the pressure of the exhaust gas is atmospheric pressure.
  • the pressure from the hydrogen tank 104 is, for example, about 1 to 2 atm (about 0.1 to 0.2 MPa) larger than the set pressure (back pressure). It is also preferable to receive the hydrogen gas of the above, adjust the pressure with a regulator, and then flow the hydrogen gas to the mass flow controller. Incidentally, it has been experimentally found that the above-mentioned pressure difference increases as the flow rate decreases (the flow is reduced).
  • the air compression U106 is a unit provided with a compressor that compresses (makes high pressure) air taken in from the atmosphere and supplies it to the air tank 107, for example.
  • a compression method in this compressor various methods such as a reciprocating type, a scroll type, a screw type, a rotary type, a swing type, or a combination of two or more of these can be adopted.
  • the air tank 107 is a gas tank that temporarily stores and stores the compressed air supplied from the air-compressed U106 in a compressed state. It is also preferable that the air tank 107 is also provided with a gas pressure gauge so that the gas pressure in the tank at each time point can be measured.
  • the filter U108 is provided with an air filter and an oil filter, and is a unit for removing minute dust, oil components, etc. from the high-pressure air supplied from the air tank 107 by these filters.
  • the flow control U109 is a unit that controls the pressure and flow rate of compressed air supplied from the air tank 107 to the air electrode side of the fuel cell U11 via the filter U108. Specifically, it may be provided with a gas regulator and a mass flow controller (or flow switch).
  • this compressed air also remains in a high pressure state (for example, 1.1 to 7 atmospheres, about 0.11 to 0.7 MPa) having a pressure exceeding the atmospheric pressure (1 atmosphere, about 0.1 MPa) (for example, large). It may be supplied to the air electrode side of the fuel cell U11 (with a back pressure exceeding the atmospheric pressure). At this time, in consideration of the pressure difference of the mass flow controller, compressed air having a pressure larger than the set back pressure, for example, about 1 to 2 atm (about 0.1 to 0.2 MPa) is received from the air tank 107, and the pressure is adjusted by the regulator. Then, the compressed air may be flowed to the mass flow controller as in the case of the hydrogen gas described above.
  • a high pressure state for example, 1.1 to 7 atmospheres, about 0.11 to 0.7 MPa
  • the atmospheric pressure (1 atmosphere, about 0.1 MPa) (for example, large). It may be supplied to the air electrode side of the fuel cell U11 (with a back pressure exceeding the atmospheric pressure).
  • the fuel cell U11 is provided with a "fuel cell”, and exhaust gas, electric power, heat, and water (steam) having an oxygen concentration lower than that of air are extracted from the "fuel cell” and output. It is a unit to do.
  • the fuel cell U11 can be used by setting the back pressure of the "fuel cell” to atmospheric pressure (1 atm, about 0.1 MPa), but as one preferred embodiment, (A) Back pressure exceeding atmospheric pressure (for example, 1.1 to 7 atmospheres, about 0.11 to 0.7 MPa) is set. (B) From the flow control U105, hydrogen gas having a pressure exceeding the atmospheric pressure (for example, 1.1 to 7 atm, about 0.11 to 0.7 MPa) is received, and further, from the flow control U109, a pressure exceeding the atmospheric pressure (for example, 2 to 7 atm) is received. ) To receive compressed air and operate, (C) It is also preferable that the unit is equipped with a "fuel cell” that emits exhaust gas having a pressure exceeding atmospheric pressure (for example, 1.1 to 7 atmospheres, about 0.11 to 0.7 MPa).
  • this "fuel cell” can have a known configuration, for example, an electrolyte is sandwiched between a hydrogen electrode (fuel electrode, anode, anode) and an air electrode (oxygen electrode, cathode, cathode).
  • the cells having a structure may have a structure in which a plurality of cells are stacked (stacked) with a separator in between.
  • a polymer electrolyte fuel cell PEFC
  • SOFC solid oxide fuel cell
  • PAFC phosphoric acid fuel cell
  • MCFC molten carbonate fuel cell
  • SOFCs have high power generation efficiency, usually operate at about 700 to about 1000 ° C., and can supply exhaust gas at a considerably high temperature.
  • SOFC can supply a large amount of heat required for the steam reforming.
  • the PEFC method is used in many fuel cell vehicles, for example, because it operates at a relatively low temperature and the battery size can be made compact.
  • the JARI type fuel cell developed for research and development by the Japan Automobile Research Institute is a "fuel cell”. It is also possible to adopt it as.
  • the JARI type fuel cell has a structure in which the back pressure can be increased and pressure can be applied to the inside of the battery, and on top of that, all the exhaust gas having a high back pressure can be recovered.
  • a fuel cell manufactured by PowerCell a Swedish fuel cell manufacturer
  • the hydrogen gas flow rate and air flow rate required to output 10 kW of electricity are 150 liters / minute (L / min) and 500 L, respectively. / Min, and in that case, the flow rate of nitrogen gas contained in the exhaust gas is 400 L / min.
  • the flow rate of water vapor contained in the exhaust gas is 150 L / min, which is 5.3 liters / hour (L / h) when converted to water.
  • the dehumidifying means Qi in FIG. 1.
  • the liquid separation U122 and the water sealing pump U30) in FIG. 6 are required.
  • the water recovered by this dehumidifying means is preferably provided to the outside as pure water or highly pure water.
  • both air and hydrogen gas suppress the decrease in proton conductivity (due to wet deficiency) of the electrolytic membrane, which causes heat loss in the fuel cell reaction (Fig. It is also preferred to be introduced via a wetting device (not shown).
  • the pressure in the "fuel cell”, that is, the back pressure is adjusted and controlled by the back pressure valve of the pressure control U113 and the back pressure valve of the pressure control U121, which will be described later.
  • the back pressure on the hydrogen electrode side which is mainly adjusted by the back pressure valve of the pressure control U113
  • the back pressure on the air electrode side which is mainly adjusted by the back pressure valve of the pressure control U121, is controlled to be substantially the same. In fact, if there is a difference of about 0.1 atm (0.01 MPa) between both back pressures, a slight gas leak may occur from the "fuel cell", but if both back pressures are equal, it is considerably taller. It has been experimentally found that pressure does not cause any problems. In particular, when the "fuel cell” is PEFC, the electrolytic film is relatively thin, so it is more preferable to make both back pressures equal.
  • the fuel cell U11 provided with the "fuel cell” as described above may be used.
  • A Flow rate, pressure, and / or temperature of hydrogen gas or air taken into the "fuel cell”
  • B It is possible to measure the flow rate, pressure and / or temperature of the exhaust gas discharged from the "fuel cell” and the discharged water vapor / moisture, and
  • c the complex impedance between the hydrogen electrode and the air electrode of the "fuel cell”. It is also preferable that the operation of the "fuel cell” is controlled by the overall control U131 which includes the measurement system / sensor group and receives the information from the measurement system / sensor group.
  • a machine learning model is constructed with the above (b) and (c) as explanatory variables and the above (a) as an objective variable (for example, using a DNN (Deep Neural Network) algorithm).
  • the flow rate, pressure, and / or temperature of hydrogen gas or air supplied to the "fuel cell” may be adjusted using this constructed model so that the "fuel cell” produces the desired output.
  • control such as stopping the supply of hydrogen gas and stopping the "fuel cell”.
  • a heat exchanger that circulates a heat exchange medium such as water is arranged in or around the "fuel cell", and heat is taken out from the "fuel cell” that has been operated and generated heat to the outside of the unit. It is also preferable to transfer it.
  • the heat exchangers that can be used here include multi-tube heat exchangers such as shell and tube heat exchangers and plate heat exchangers such as Alfa Laval's brazing plate heat exchangers.
  • the heat exchanger instead of the heat exchanger, it is also possible to directly take out the heat inside the "fuel cell" to the outside by using a heat conduction system in which the conductive separator and the heat pipe in the "fuel cell” are connected.
  • the temperature of the cell of the "fuel cell” can be controlled to a predetermined temperature (for example, 80 ° C.) or less, and the suitable operation of the "fuel cell” can be maintained. It is.
  • water cooling water
  • the heat transferred by the heat exchange medium or the heat pipe in this way is supplied not only to the outside but also to the inside of the system and can be used, and in the present embodiment, it is supplied to the off-gas buffer tank 123 described later. Therefore, the exhaust gas supplied to the nitrogen filter U12 can be heated to a higher temperature (for example, 45 ° C.). Of course, when the temperature of the exhaust gas is sufficiently high, such heat treatment in the off-gas buffer tank 123 becomes unnecessary.
  • the heat can be transferred to the hydrogen reforming U103 by such a heat exchange medium or a heat pipe to replenish the amount of heat required for steam reforming. Further, the heat can be used to turn the water to be electrolyzed in the hydrogen generation U102 into steam or raise the temperature of the water to improve the hydrogen generation efficiency in electrolysis.
  • a high-temperature medium from a heat exchanger or a high-temperature medium that receives heat transferred by a heat pipe for example, heating the facility in which the present device (system) 1 is installed can be performed.
  • a high-temperature medium is put into a cooling tower to lower the temperature, and cold air is generated in a condenser / evaporator and an air conditioner using the low-temperature medium to cool the facility, for example.
  • the nitrogen gas generator (system) 1 can also assist the operation of these air-conditioning equipment by using the electric power from the "fuel cell", and therefore functions as the energy-saving equipment in the facility. You can also do that.
  • the fuel cell U11 As another embodiment of the fuel cell U11, two or more "fuel cells” are connected in series, and the exhaust gas of the previous fuel cell is sequentially taken in and used for the battery reaction, thereby finally. It is also easy to take out an exhaust gas having a lower oxygen concentration, for example, an exhaust gas having an oxygen concentration of 2.5 vol% or less.
  • an exhaust gas having an oxygen concentration of 2.5 vol% or less for example, the inventors of the present application have published the invented fuel cell system having such a configuration in Japanese Patent Application Laid-Open No. 2019-129110.
  • drains 111 and 112 are provided at the fuel cell outlet (on the hydrogen electrode side) and the air channel outlet (on the air electrode side) of the "fuel cell" in the fuel cell U11, respectively, and have a relative humidity (usually, relative humidity). (Approximately 100%) Recovers water generated by condensation of water vapor contained in the exhaust gas. As a result, the adverse effect on the battery reaction due to the so-called flooding phenomenon can be suppressed. Further, the water recovered in this way may be sent to the hydrogen generation U102 and reused as a hydrogen generation material.
  • the dew point is raised and the amount of water falling to the drains 111 and 112 is reduced. It can also be increased to enhance the dehumidifying effect. It is also preferable that the drains 111 and 112 have an auto-drain function that automatically discharges the water to the outside when a predetermined amount of water is accumulated.
  • the pressure control U113 flows the hydrogen gas dehumidified at the drain 111 toward the fuel passage inlet (on the hydrogen electrode side) of the “fuel cell” while maintaining the set back pressure of the “fuel cell” (for example, flow). (After the control U105), for example, a unit for returning via a hydrogen mixer.
  • the pressure control U113 includes a back pressure valve and a pressure gauge, and by adjusting the back pressure valve, the pressure (back pressure) in the "fuel cell", particularly on the hydrogen electrode side, is controlled.
  • the gas-liquid separation U114 is for removing residual water vapor and water from the exhaust gas discharged from the fuel passage outlet (on the hydrogen electrode side) of the "fuel cell" and passing through the drain 111 and the pressure control U113. It is a unit. Specifically, a dehumidifier, a dehumidifier equipped with a pressurizing mechanism, a gas-liquid separator, and a dry filter can be used to remove water vapor and water.
  • the dehumidifier one containing silica gel and / or zeolite can be used.
  • a gas-liquid separator type a gravity separation type, a centrifuge type, a mist remover pad type, an airfoil type separation type, an atmospheric pressure separation corelesser type, or the like can be adopted.
  • the hydrogen recovery U115 is a unit for extracting unreacted residual hydrogen gas from the exhaust gas discharged from the fuel passage outlet (on the hydrogen electrode side) and reusing it using a known hydrogen gas filter or executor.
  • the hydrogen gas taken out can be sent back to, for example, the hydrogen mixer at the subsequent stage of the flow control U105. Further, the gas after taking out the hydrogen gas may be discharged to the outside.
  • the pressure control U121 is a unit for sending the exhaust gas (on the air electrode side) dehumidified by the drain 112 to the gas-liquid separation U122 while maintaining the set back pressure of the "fuel cell".
  • this pressure control U121 also has a back pressure valve and a pressure gauge like the pressure control U113, and by adjusting the back pressure valve, the pressure (back pressure) in the "fuel cell", particularly on the air electrode side, is controlled. To do.
  • the gas-liquid separation U122 is discharged from the air passage outlet (on the air electrode side) of the “fuel cell”, and still has residual water vapor and moisture from the exhaust gas that has passed through the drain 112 and the pressure control U121. It is a unit for removing. Specifically, a dehumidifier, a dehumidifier equipped with a pressurizing mechanism, or a gas-liquid separator can be used to remove water vapor and water.
  • the gas-liquid separation U122 may suppress the relative humidity in the exhaust gas to 60% or less, more preferably 30% or less.
  • the gas-liquid separation U122 may be a dry filter unit using the dry filter 122f (FIG. 7).
  • a water sealing pump U30 provided with a water sealing pump 301 can be adopted as a dehumidifying means instead of the gas-liquid separation U122.
  • the gas-liquid separation U122 can be used as a pump unit provided with a dry vacuum pump.
  • a dry vacuum pump is a vacuum pump that does not use oil or liquid in a vacuum chamber and can be used for exhausting water vapor, for example.
  • an air-cooled dry vacuum pump for example, an air-cooled dry vacuum pump NeoDry 60E manufactured by Kashiyama Industries Co., Ltd. may be adopted.
  • This air-cooled dry vacuum pump has a structure in which a pair of multi-stage roots rotors rotate in a non-contact manner to compress and exhaust gas.
  • the off-gas buffer tank 123 is a gas tank that temporarily stores and stores the exhaust gas introduced from the gas-liquid separation U122. This exhaust gas is introduced into the off-gas buffer tank 123 until the pressure becomes the same as the set back pressure (for example, 1.1 to 7 atm, about 0.11 to 0.7 MPa). Further, in order to allow the exhaust gas to flow into the nitrogen filter U12 described later at a desired pressure (for example, 7 atm, about 0.7 MPa), the flow rate of the exhaust gas to the off-gas buffer tank 123 is equal to the required introduction flow rate to the nitrogen filter U12. , Or a flow rate exceeding that is also preferable.
  • the off-gas buffer tank 123 is provided with a check valve for preventing the backflow of the exhaust gas to the "fuel cell”. It is also preferable that the off-gas buffer tank 123 is also provided with a gas pressure gauge so that the gas pressure in the tank at each time point can be measured.
  • the off-gas buffer tank 123 uses a "heating means” capable of heat treatment by the heat generated by the "fuel cell” in the fuel cell U11 to heat the exhaust gas in the tank to a temperature higher than room temperature (for example, 30 to 45 ° C.). ) Is also preferable. This makes it possible to supply the exhaust gas at a temperature suitable for the nitrogen filtering process to the nitrogen gas filter 12f of the nitrogen filter U12, which will be described later.
  • heating means the heat exchanger already described or the separator / heat pipe connection system may be adopted. This makes it possible to effectively utilize the heat of the "fuel cell” and carry out a suitable nitrogen filtering process without using an energy consuming means such as an electric heater. Of course, when the temperature of the exhaust gas introduced into the off-gas buffer tank 123 is sufficiently high, such a heating means becomes unnecessary.
  • the pressure-increasing U124 is taken out from the "fuel cell" of the fuel cell U11, and the exhaust gas with reduced water content or water vapor content is further increased in pressure (for example, at a pressure of 7 atm (about 0.7 MPa)) to form a nitrogen filter U12. Supply to.
  • a known compression pump for example, Babycon (registered trademark) POD-7.5VNB manufactured by Hitachi Industrial Equipment Systems Co., Ltd.
  • a known pressure boosting valve for example, a pressure booster valve for inert gas VB11A or VBA42 manufactured by SMC Corporation can be adopted. It is also preferable to have a pressure gauge for monitoring the exhaust gas pressure increase.
  • the booster U124 is of course unnecessary.
  • the hydrogen gas taken out from the hydrogen tank 104 can also be used as this support gas.
  • the corrosive gas removal U125 is subsequently subjected to sulfide, chloride, and hydrocarbons with respect to the exhaust gas (taken out from the “fuel cell”) to act on the nitrogen gas filter 12f of the nitrogen filter U12.
  • the exhaust gas includes hydrocarbons such as hydrogen sulfide, sulfite gas, and methane gas.
  • hydrocarbons such as hydrogen sulfide, sulfite gas, and methane gas.
  • gas components other than hydrogen gas such as gas, ammonia, and formaldehyde, are mixed.
  • SOFC sulfur-driven combustion gas
  • nitrogen gas in the air may combine with oxygen in a high temperature atmosphere of about 800 ° C., and nitrogen oxides (NOx) may be generated. These gases not only become impurities in the final product nitrogen gas, but also pose a risk of adversely affecting the fibers (of the hollow fibers) of the nitrogen gas filter 12f.
  • the corrosive gas removal U125 is provided with, for example, an activated carbon filter, and plays a role of removing or reducing the above-mentioned impurity gas in the exhaust gas as much as possible.
  • the concentration of hydrocarbon gas is suppressed to 0.013 mg / Nm 3 (0.01 ppm wt) or less, and strong acidity of hydrogen sulfide, sulfurous acid gas, hydrogen chloride, fluorine, etc. It is also preferable to keep the concentration of the gas and the strongly alkaline gas such as amine, ammonia and caustic soda below the detection limit in the predetermined detection method.
  • the mist filter is a filter that removes or reduces mist such as water mist, solvent mist, and oil mist in the exhaust gas.
  • this mist filter preferably keeps the concentration of residual oil from these mists to 0.01 mg / Nm 3 (0.008 ppm wt) or less.
  • the dust filter is a filter that removes or reduces dust in the exhaust gas.
  • the dust filter preferably excludes almost all particles having a particle size of 0.01 ⁇ m or more.
  • the temperature control U126 is provided with, for example, an electric heater, and the temperature of the taken-in exhaust gas is brought close to or matched with a preset suitable temperature based on the characteristics of the nitrogen gas filter 12f, and the temperature-adjusted exhaust gas is sent to the nitrogen filter U12. It is a unit for supplying. Further, as a preferred embodiment, the temperature control U126 may receive the heat supplied from the fuel cell U11 via the heat exchanger and use it for temperature control, or is also supplied from the fuel cell U11. The exhaust gas temperature may be adjusted by electric power.
  • the nitrogen gas filter manufactured by Ube Industries can be used as 12f UBE N 2 separator NM-B01a to be described later, the filtering when the temperature of the introduced gas is 30 ⁇ 45 ° C. above room temperature (25 ° C.) It is said that the effect will be higher. In this case, when the exhaust gas of the "fuel cell" is higher than the room temperature (25 ° C.), it is possible to enjoy this high filtering effect without using the temperature control U126. In addition, it is possible to suppress the power consumption for temperature adjustment by that amount.
  • the recovery rate is greatly reduced as the temperature of the introduced exhaust gas rises. Therefore, depending on the content of the nitrogen gas output performance set in this system, in order to secure a predetermined recovery rate, the temperature of the exhaust gas is generally kept at the temperature inside the off-gas buffer tank 123 without using the temperature control U126. It is possible to do so.
  • the nitrogen filter U12 causes the exhaust gas supplied from the flow control U127 to act on the nitrogen gas filter 12f using fibers having different degrees of permeation for nitrogen and oxygen, and from the nitrogen gas filter 12f. It is a unit that takes out exhaust gas having an increased nitrogen concentration, that is, high-purity nitrogen gas in the present embodiment.
  • the nitrogen filter U12 is (A) Nitrogen gas filter 12f and (B) A filter input / output unit that introduces exhaust gas to act on the nitrogen gas filter 12f and extracts exhaust gas having an increased nitrogen concentration from the nitrogen gas filter 12f. (C) A filter purge unit that takes out a gas containing oxygen molecules (hereinafter abbreviated as filter exhaust gas) separated from nitrogen molecules (in the exhaust gas) by the nitrogen gas filter 12f separately from the exhaust gas taken out in the above (b). And have.
  • filter exhaust gas a gas containing oxygen molecules
  • a hollow fiber filter using a polymer fiber material that allows oxygen molecules to permeate more preferentially than nitrogen molecules
  • a polymer fiber material that allows oxygen molecules to permeate more preferentially than nitrogen molecules
  • Ube Industries of UBE N 2 separator NM-B01a with polyimide hollow fibers This is a mechanism in which oxygen molecules selectively permeate the hollow fiber membrane while the high-pressure exhaust gas flows through the hollow fiber, and finally, nitrogen gas with increased purity is taken out from the outlet of the hollow fiber. It has become.
  • the nitrogen gas filter 12f is not limited to this separator.
  • a UBE N2 separator NM series separator manufactured by Ube Industries, a SEPURAN N2 membrane module manufactured by Daicel Ebonic, or a selective type nitrogen gas filter also manufactured by Daicel Ebonic may be adopted as the nitrogen gas filter 12f. It is possible.
  • the outlet flow rate of (a) above can be measured by a flow meter installed on the outlet side of the nitrogen filter U12 and controlled by a flow control U127 described later. Further, the outlet oxygen concentration in (b) above can also be measured by an oxygen concentration meter installed on the outlet side of the nitrogen filter U12.
  • the flow control U127 is installed immediately after these oxygen concentration meters and flow meters.
  • the overall control U131 controls, for example, the back pressure valve of the pressure control U121 to adjust the set back pressure of the "fuel cell" based on the measured value of the outlet oxygen concentration by the oxygen concentration meter.
  • the mass flow controller of the flow control U127 controls the mass flow controller of the flow control U127 to adjust the flow rate of the exhaust gas to the filter, it is possible to supply high-purity nitrogen gas having a desired extremely low oxygen concentration.
  • the flow control U127 controls the flow rate of the exhaust gas having an increased nitrogen concentration generated by the nitrogen filter U12, that is, the high-purity nitrogen gas in the present embodiment, and boosts the pressure of the nitrogen gas. It is a unit that sends to the nitrogen tank 129 via U128. That is, as described above, it is a unit that controls the outlet flow rate (f_out) in the nitrogen gas filter 12f. Specifically, it may be provided with a gas regulator and a mass flow controller (or flow switch).
  • the pressure-increasing U128 further increases the pressure of the high-purity nitrogen gas whose flow rate is controlled by the flow control U127 (for example, to a pressure of 8 to 15 atm (about 0.8 to 1.5 MPa)). It is a unit for sending to 129 and storing and storing a larger amount of high-purity nitrogen gas in the nitrogen tank 129.
  • a boost pressure boosting valve or a boost compressor can be adopted.
  • Booster Babycon registered trademark
  • OBB-7.5GP manufactured by Hitachi Industrial Equipment Systems Co., Ltd., which can increase the pressure to 10 atm (about 1.0 MPa) or more, may be adopted.
  • a pressure gauge is provided for monitoring the pressure increase.
  • the nitrogen tank 129 temporarily stores and stores the high-purity nitrogen gas supplied from the nitrogen filter U12 via the pressure boosting U128, and stably externally stores the high-purity nitrogen gas according to, for example, the control by the overall control U131. It is a nitrogen gas supply interface that supplies to. It is also preferable that the nitrogen tank 129 is also provided with a gas pressure gauge so that the gas pressure in the tank at each time point can be measured.
  • the nitrogen tank 129 (and the pressure boosting U128) as such a nitrogen gas supply interface is not used and the generated nitrogen gas is directly supplied from the nitrogen filter U12 via a predetermined flow control means to the outside. good.
  • this supply destination is a soldering device or the like
  • high-purity nitrogen gas that is directly supplied and has a temperature exceeding at least room temperature (25 ° C.) can be used as a soldering atmosphere to further increase the temperature. It is more preferable because it can save the required amount of heat.
  • the overall control U131 communicates by wire or wirelessly with the main components including the fuel cell U11 and the nitrogen filter U12 described above, preferably all the components (including, for example, the water sealing pump U30 (FIG. 6)). Communication is possible via the network, and the measured quantities output from the measuring units and sensors of each component, such as pressure, gas flow rate, temperature, nitrogen concentration, oxygen concentration, hydrogen concentration, and the presence or absence of hydrogen leakage, are received. However, it is a control unit that monitors and controls each component as appropriate.
  • the overall control U131 includes a processor and a memory, and the memory stores and mounts a nitrogen gas generation system monitoring / control program for monitoring / controlling each component, and this processor. It is also preferable that the program is executed by.
  • control performed by the overall control U131 includes adjustment / control of pressure, gas flow rate, temperature, nitrogen concentration, oxygen concentration, hydrogen concentration, etc. between each component and each component.
  • control the back pressure in the "fuel cell" of the fuel cell U11 and to control the balance between the back pressure on the hydrogen electrode side and the back pressure on the air electrode side.
  • the overall control U131 monitors the temperature (cell temperature) of the "fuel cell” of the fuel cell U11, the temperature of the exhaust gas introduced into the nitrogen gas filter 12f of the nitrogen filter U12, the temperature of the hydrogen generating U102, and the like. Therefore, it is also preferable to appropriately control the fuel cell reaction, the filtering operation, and the hydrogen generation (electrolysis) reaction in the nitrogen gas generator (system) 1. Further, it is also preferable to monitor the presence or absence of hydrogen leakage between each component and each component, and when it is determined that a problem has occurred, send an alarm including information on the hydrogen leak location to the outside.
  • Example 1] 2 to 4 are graphs for explaining Example 1 according to the nitrogen gas generation treatment according to the present invention.
  • FIG. 1 Figure in 2 to Example 1 showing the measurement results and analysis results in 4, using Ube Industries of UBE N 2 separator NM-B01a as a nitrogen gas filter 12f (FIG. 1), with respect to the nitrogen gas filter 12f , At room temperature (25 ° C), the oxygen concentration is 10.3vol%, 5.1vol%, and 1.1vol%, respectively, which is a mixed gas of nitrogen gas and oxygen gas and air having an oxygen concentration of 20.8vol%.
  • the oxygen concentrations of 10.3vol%, 5.1vol%, and 1.1vol% in the above-mentioned introduced gas are all the values realized in the exhaust gas of the actual "fuel cell".
  • the introduced oxygen concentration c_in_O2 is 1.1%
  • the introduced pressure p_in is 7.0 atm (about 0.7 MPa)
  • the outlet flow rate f_out is set to 1.0 L / min (the graph points shown in FIG. 2 (C)).
  • the outlet oxygen concentration c_out_O2 is 325ppm (0.0325vol%).
  • the outlet oxygen concentration c_out_O2 becomes a very small value of 190 ppm (0.0190 vol%).
  • high-purity nitrogen gas with extremely low oxygen concentration can be obtained. Incidentally, it has been experimentally confirmed that the tendency of such a result is almost the same even when the temperature of the gas introduced into the nitrogen gas filter 12f is 40 ° C. and 50 ° C.
  • the mechanism of contribution of the outlet flow rate to the outlet oxygen concentration is a dynamic one related to the fiber state of the filter 12f determined by the introduction pressure. it is conceivable that.
  • FIG. 3 (A), (B) and (C) show the introduced oxygen concentration c_in_O2 and the oxygen concentration under the conditions that the outlet flow rates f_out are 2.0 L / min, 1.5 L / min, and 1.0 L / min, respectively.
  • a graph showing the relationship with the reduction index is shown.
  • the four graph curves shown in each of these graphs have an introduction pressure of 4.0 atm (about 0.40 MPa), 5.0 atm (about 0.51 MPa), 6.0 atm (about 0.61 MPa), and 7.0 atm (about 0.61 MPa), respectively. It is a power approximation curve for the data points when it is about 0.71 MPa).
  • the introduced oxygen concentration c_in_O2 10vol% at which the rate of increase of the oxygen concentration reduction index in (a) above begins to increase rapidly corresponds to the oxygen concentration in the exhaust gas of the "fuel cell" having an oxygen utilization rate of 50%.
  • the introduced oxygen concentration c_in_O2 should be 2.5 vol% or less regardless of the setting of the introduced pressure p_in and the outlet flow rate f_out.
  • the value of c_in_O2 2.5vol% is the average value of the introduced oxygen concentration values at which the oxygen concentration reduction index is 10 in the four power approximation curves in each graph.
  • the exhaust gas having an oxygen concentration of 2.5 vol% or less is allowed to act on the nitrogen gas filter 12f, so that air is discharged from the filter 12f. It is also possible to extract exhaust gas whose oxygen concentration is 1/10 or less of that of the result of the action.
  • FIG. 4 shows the ratio of the quadratic coefficient and the linear coefficient in the four polynomial (quadratic) approximation formulas corresponding to the four graph curves in each of the graphs shown in FIGS. 2 (A) to 2 (C).
  • It is a graph showing the relationship between the introduction pressure p_in and (secondary coefficient) / (first order coefficient).
  • the introduction pressure p_in is 4.0 atm (about 0.40 MPa), 5.0 atm (about 0.51 MPa), 6.0 atm (about 0.61 MPa) and 7.0, respectively.
  • Four graph curves showing the relationship between the introduced oxygen concentration c_in_O2 and the outlet oxygen concentration c_out_O2 at atmospheric pressure (about 0.71 MPa) are shown, and further, in the vicinity of each graph curve, it corresponds to the graph curve.
  • the introduced oxygen concentration c_in_O2 not only contributes (proportionally) to the outlet oxygen concentration c_out_O2 as a primary term, but also affects it as a secondary term. That is, if the introduced oxygen concentration c_in_O2 is reduced to 1/N, the outlet oxygen concentration c_out_O2 is not simply reduced to 1/N, and the quadratic term of the introduced oxygen concentration c_in_O2 is effective for the outlet oxygen concentration c_out_O2. It is.
  • the (second-order coefficient) / (first-order coefficient), which is the value of the ratio of the second-order coefficient to the first-order coefficient as described above, is obtained for each graph curve of each graph of FIGS. 2 (A) to 2 (C).
  • the vertical axis is (secondary coefficient) / (first order coefficient)
  • the horizontal axis is the introduction pressure p_in
  • the ratio of the quadratic term in the introduced oxygen concentration c_in_O2 that is, the (secondary coefficient) / (first-order coefficient) is set.
  • the ratio of the quadratic term in the introduced oxygen concentration c_in_O2 that is, the (secondary coefficient) / (first-order coefficient) is set.
  • It is preferable to make it larger in the positive value and it is understood that it is important to make it at least a value exceeding 0 (zero) at which the contribution of the quadratic term disappears. That is, it is preferable to express a secondary term exceeding a positive value.
  • the outlet flow rates f_out were 1.0 L / min, 1.5 L / min, and 2.0.
  • the condition is that the introduction pressure p_in exceeds 2.94 atm (about 0.298 MPa), 3.40 atm (about 0.344 MPa) and 3.86 atm (about 0.391 MPa), respectively.
  • these pressure threshold values take a larger value as the outlet flow rate f_out increases. That is, when the outlet flow rate f_out is set smaller, the introduction pressure p_in can be set based on the smaller pressure threshold value.
  • the pressure (introduction pressure) of the exhaust gas acting on the nitrogen gas filter 12f is determined by the nitrogen gas filter 12f. It is understood that it is also preferable to set the pressure to a value exceeding the pressure threshold value, which is larger as the flow rate (outlet flow rate) of the exhaust gas when taken out from the nitrogen gas filter 12f increases. It is.
  • FIG. 5 is a graph for explaining Example 2 in which the recovery rate of the nitrogen gas filter 12f in the nitrogen gas generation treatment according to the present invention was investigated.
  • the direction of increasing the recovery rate and the direction of decreasing the outlet oxygen concentration c_out_O2 are the same, and are concrete.
  • the introduced oxygen concentration c_in_O2 it is possible to further reduce the outlet oxygen concentration and increase the recovery rate. Therefore, in order to generate more nitrogen gas having higher purity, it is more preferable to use a nitrogen gas filter in which the lower the oxygen concentration of the gas to be filtered, the higher the recovery rate.
  • the coupling system between the "fuel cell” that outputs low oxygen concentration exhaust gas and the above-mentioned "nitrogen gas filter” that uses the exhaust gas has both the outlet oxygen concentration and its recovery rate. From the viewpoint, it is also understood that the system is very compatible, that is, it is a system capable of efficiently producing nitrogen gas.
  • the direction of increasing the recovery rate and the direction of decreasing the outlet oxygen concentration c_out_O2 (as shown in FIG. 2, for example) are In opposite directions, the recovery rate and the outlet oxygen concentration c_out_O2 are in a so-called trade-off relationship.
  • the nitrogen gas generator (system) 1 (Fig. 1). It is also preferable to adjust the settings of the pressure p_in and the outlet flow rate f_out. For example, the performance content of producing high-purity nitrogen gas of a predetermined value or more (for example, 99.9 vol% or more) at a predetermined production cost (for example, equal to or less than the production cost in a PSA device as described later) is realized. Therefore, it is also preferable to determine the introduction pressure p_in and the outlet flow rate f_out (furthermore, the recovery rate depending on these) while controlling them.
  • Example 2 Examplementation in which the filter fibers form hollow fibers.
  • the nitrogen gas filter 12f of Example 1 As the introduction pressure p_in increases, the hollow fiber expands, and not only the oxygen molecule selectivity of the filter fiber but also the permeability to molecules other than oxygen molecules changes. I think it has something to do with it.
  • the inventors of the present application have stated that the higher the temperature of the gas introduced into the nitrogen gas filter 12f, the smaller the recovery rate, and at a temperature equal to or higher than a predetermined value, the recovery rate is significantly reduced. Is confirmed. Therefore, in the temperature control U126 (FIG. 1) installed in front of the nitrogen filter U12 in the nitrogen gas generator (system) 1 (FIG. 1), the exhaust gas is exhaust gas in consideration of ensuring a predetermined recovery rate in the nitrogen gas filter 12f. It is also preferable to adjust the temperature of.
  • the inventors of the present application also expand the hollow fiber of the nitrogen gas filter 12f as the temperature rises, and only the oxygen molecule selectivity of the filter fiber.
  • the permeability to molecules other than oxygen molecules also changes.
  • Examples 1 and 2 have been described above with reference to FIGS. 2 to 5, the inventors of the present application have used the nitrogen gas generator (system) 1 based on the findings obtained from these experiments.
  • Such high-purity nitrogen gas can also be used in reflow soldering equipment with strict purity-related conditions.
  • nitrogen gas having a purity (nitrogen concentration) of 99 vol% can be used depending on the type of solder paste used.
  • nitrogen gas is not limited to the fields of electronic equipment and electrical equipment that use soldering equipment.
  • the field of metals and resins that use nitrogen gas during laser processing and heat treatment the field of transport equipment that requires nitrogen gas for tire filling and in-ship purging equipment, various process gases, pressure transport gas, and cooling.
  • the chemical field that uses nitrogen gas as gas, etc. in the mechanical field that requires nitrogen gas in dry cutting equipment, etc., for food storage and gas filling, and in CA (Controlled Atmosphere) storage atmosphere supply equipment and flyer equipment.
  • Nitrogen gas is used for various purposes in various fields such as the food field where nitrogen gas is used.
  • nitrogen concentration also varies depending on the field and application. For example, there are cases where the concentration of oxygen gas as an impurity gas (oxygen concentration) is required to be on the order of 0.01 vol% (100 ppm vol), and there are cases where the oxygen concentration is allowed up to several vol%. be.
  • the introduced oxygen concentration c_in_O2 the introduced pressure p_in, and the outlet flow rate f_out are adjusted so that the residual oxygen reaches the required upper limit oxygen concentration.
  • the suppressed nitrogen gas can be appropriately provided.
  • the introduced oxygen concentration c_in_O2 is set to, for example, 10 vol%, the introduction pressure p_in is kept lower, the outlet flow rate f_out is made larger, and the recovery rate is increased. It is also possible to increase it.
  • this nitrogen gas generator (system) 1, it is possible to provide the electric power and heat required at the same time according to the field and application according to the generated nitrogen gas. In this respect, it is, of course, difficult or impossible for conventional nitrogen gas generators to cover such energy supply.
  • the inventors of the present application have confirmed that the nitrogen gas generation cost can be significantly suppressed according to the nitrogen gas generator (system) 1 according to the present invention, based on the findings described above.
  • the selling price of a nitrogen gas cylinder is, for example, about 430 yen / Nm 3
  • the selling price of liquid nitrogen is, for example, about 120 yen / Nm 3.
  • the nitrogen gas generation cost is, for example, about 48 yen / Nm 3.
  • the PSA as described above can be set by appropriate condition setting including the standard output of the "fuel cell", the possible exhaust gas flow rate, and the expected hydrogen procurement cost. It has also been confirmed by trial calculation that it is possible to realize a production cost equal to or less than the production cost of the device. Furthermore, as described above, in the case where the nitrogen gas generator (system) 1 also provides the (required) electric power and heat, the total procurement cost including these can be significantly reduced as compared with the conventional case. It becomes.
  • FIG. 6 is a schematic diagram for explaining another embodiment of the dehumidifying means according to the present invention.
  • the exhaust gas taken out from the air electrode side (drain 112) of the “fuel cell” of the fuel cell U11 is received via the flow control valve to reduce the water content or water vapor content in the exhaust gas.
  • a water sealing pump U30 is shown in which the exhaust gas subjected to such a dehumidifying treatment is sent out toward the off-gas buffer tank 123.
  • the water-sealing pump U30 includes a water-sealing pump 301, which is a water-sealing type vacuum pump, and a gas-liquid separation tank 302, and further cools the circulating sealing liquid (one of the heat exchange U40). It incorporates a heat exchanger (which is a part).
  • the water seal pump 301 is (A) The sealing liquid (sealing water) contained in the cage of the pump forms a crescent-shaped water film inside the pump due to the centrifugal force accompanying the eccentric rotation of the impeller 301a, which is an impeller. (B) The volume of the sealed space formed between the water film of the sealing liquid and the two adjacent blades of the impeller 301a changes periodically with the eccentric rotation of the impeller 301a, so that the sealing liquid is formed.
  • the water film acts like a piston and a seal, and specifically, it becomes a vacuum pump that activates a series of processes in which exhaust gas is sucked into the caging, compressed in the caging, and then discharged out of the caging together with the sealing liquid. ing.
  • the structure of the water-sealed pump 301 is not limited to that shown in FIG. 6 (A), and various structures related to the water-sealed pump can be adopted as the structure. be.
  • the gas-liquid separation tank 302 receives the mixture of the exhaust gas discharged from the water sealing pump 301 and the sealing liquid, separates the water / water vapor content in the exhaust gas and the sealing liquid from the exhaust gas, and separates them ( It is a water storage tank that stores the sealing liquid (including water and water vapor).
  • the stored sealing liquid is returned to the water sealing pump 301 (via the heat exchanger which is a part of the heat exchange U40) by the pump and used again. Further, when the amount of the stored sealing liquid exceeds a predetermined value, a part of the sealed liquid is discharged to the outside of the tank as overflow water.
  • the impeller 301a since the impeller 301a is rotated at high speed by the motor, the temperature of the sealing liquid usually rises due to the frictional heat, and the sealing liquid may boil if it is not cooled. Therefore, for example, when the sealing liquid reaches a predetermined temperature (for example, 50 ° C.) or higher, the sealing liquid is passed through a heat exchanger (which is a part of the heat exchange U40) to be cooled.
  • a predetermined temperature for example, 50 ° C.
  • the heat exchange U40 adjusts (cools) the temperature of the sealing liquid in the water sealing pump U30 in this way, but in the embodiment shown in FIG. 6A, another heat exchanger that is a part of itself is further used. It is applied to the inside of the fuel cell U11, and the temperature of the "fuel cell" is adjusted (cooled).
  • the heat exchanger incorporated in the water sealing pump U30 and the heat exchanger incorporated in the fuel cell U11 are arranged in series, and for example, a common chiller pump is used to seal the liquid and ". It is possible to receive heat from the "fuel cell” and adjust the temperature (cooling) of them all at once. Alternatively, both heat exchangers may be arranged in parallel to adjust the temperature (cooling) at once. Of course, it is also possible to control both heat exchangers independently. Further, the heat exchange U40 may supply the heat recovered in this way to an external device or facility, or may be used, for example, for heating and cooling in the facility where the device (system) 1 is installed. It is. In this case, the chiller can be omitted.
  • the water-sealed pump 301 described above sucks exhaust gas by its vacuum pump action even when the outlet pressure on the air electrode side of the "fuel cell” is in a "low pressure” state close to atmospheric pressure (about 0.1 MPa). It is dehumidified and can be transferred to the off-gas buffer tank 123.
  • the outlet pressure on the air electrode side of the "fuel cell” falls below 1 atm (about 0.1 MPa) due to the suction action of the water sealing pump 301, and as a result, the "fuel cell” It is also expected that the power generation efficiency of the "fuel cell” will be improved by actively drawing out the gas after the fuel cell reaction in the cell.
  • the water-sealed pump 301 is very suitable for combination with the "fuel cell".
  • the exhaust gas from a "fuel cell” with an outlet pressure of 1.2 atm (about 0.12 MPa) and a relative humidity of approximately 100% is dehumidified using the LEH100SMS water-sealed vacuum pump manufactured by Kashiyama Industries.
  • an exhaust gas having a relative humidity (several tens of percent) comparable to that of a typical value in the atmosphere was obtained, and the exhaust gas could be quickly stored in the tank 123.
  • the rotation speed of the impeller 301a in the water sealing pump 301 so that the transfer flow rate to the off-gas buffer tank 123 does not exceed the reference value of the introduction flow rate. Further, in order to appropriately carry out such adjustment, it is also preferable to install a flow meter and a pressure gauge immediately before the intake port and immediately after the take-out port of the water sealing pump U30 to monitor the flow rate and pressure of the exhaust gas. ..
  • an adiabatic expansion chamber 50 is provided between the fuel cell U11 and the water sealing pump U30.
  • the exhaust gas taken out from the air electrode side of the "fuel cell” via the flow control valve is taken into the adiabatic expansion chamber 50 by the suction force of the water sealing pump 301.
  • the exhaust gas taken in is discharged from the air electrode side outlet pipe into the adiabatic expansion chamber 50 having a predetermined volume at a stretch, so that it expands adiabatically and lowers its own temperature.
  • a part of the water and water vapor contained in the exhaust gas condenses due to the decrease in the saturated water vapor density and accumulates in the lower part of the adiabatic expansion chamber 50.
  • the vacuum pumping action of the water sealing pump 301 (the number of rotations of the impeller 301a) is increased within a predetermined limit, and the flow rate of the exhaust gas flowing into the adiabatic expansion chamber 50 is adjusted by the flow control valve to adjust the flow rate of the exhaust gas. If the pressure drops sharply, the degree of adiabatic expansion will increase and the dehumidifying effect due to condensation will also increase. For example, it is possible to lower the temperature of the exhaust gas to a level of several tens of degrees Celsius and condense a large amount of water vapor to exclude it from the exhaust gas.
  • the adiabatic expansion chamber 50 functions as a dehumidifying means for exhaust gas in the front stage of the water sealing pump U30.
  • the water sealing pump U30 takes in the exhaust gas having the reduced water / water vapor content after adiabatic expansion, and further reduces the water / water vapor content in the exhaust gas. That is, by providing the adiabatic expansion chamber 50, it is possible to send the exhaust gas having a lower relative humidity to the off-gas buffer tank 123.
  • the heat exchange U60 also adjusts the temperature as described above by using a chiller pump, but since the heat exchange medium is cooled in the adiabatic expansion chamber 50, a chiller pump having low power consumption is used. be able to. Further, of course, also in the heat exchange U60, the heat recovered in this way may be supplied to an external device or facility, or may be utilized for heating and cooling in the facility where the device (system) 1 is installed, for example. Is also good. Even in this case, the chiller can be omitted.
  • the heat exchanger in the "fuel cell” is omitted in the heat exchange U60, and the heat exchange U60 is a heat transfer means for removing heat from the sealing liquid of the water sealing pump U30 and transferring the heat to the adiabatic expansion chamber 50. It can also be. Here, even in this case, it is possible to omit the chiller or reduce the power consumption.
  • the water sealing pump U30 is omitted in the configuration of FIG. 6B, and further.
  • the pressure of the exhaust gas from the "fuel cell" of the fuel cell U11 is set to a pressure exceeding atmospheric pressure (1 atm, about 0.1 MPa), for example, a pressure of 3 atm (about 0.3 MPa) or more (that is, pressure control U121).
  • pressure control U113 Fig. 1 to drive the "fuel cell” under high pressure
  • B It is also possible to release such a high-pressure exhaust gas into the adiabatic expansion chamber 50 to release it from the high-pressure state, and remove a considerable amount of water and water vapor in the exhaust gas. In this case, it is possible to reliably proceed with the dehumidification treatment of the exhaust gas without using the water sealing pump U30 that requires driving power.
  • the dehumidifying means using the water sealing pump 301 has been described above with reference to FIGS. 6A and 6B. However, in any of the embodiments shown in both figures, the water sealing pump U30 and the water sealing pump U30 have been described. At least a part of the electric power for driving the chiller pump can be supplied from the "fuel cell”, and of course, it may be supplied from the renewable energy power generation U101 (FIG. 1) or the electricity storage U101s (FIG. 1). .. Also, the water discharged from the "fuel cell”, the water taken out of the adiabatic expansion chamber 50 (for example, in the case of FIG. 6B) (for example, overflowing), and the air (although its purity is high).
  • a pure water recovery means (specifically, for example, a pipe, a pump, a filter, etc.) is provided so that the overflow water of the liquid separation tank 302 can be recovered and provided to the outside as pure water or high-purity water.
  • the present device (system) 1 also functions as a pure water supply device (system).
  • FIG. 7 is a schematic diagram for explaining one embodiment of the gas-liquid separation U122 as the dehumidifying means according to the present invention.
  • the gas-liquid separation U122 is a dry filter unit using the dry filter 122f.
  • This dry filter 122f (A) Receiving exhaust gas having a pressure exceeding atmospheric pressure (1 atm, about 0.1 MPa), for example, a pressure of 3 atm (about 0.3 MPa) or more, (B) The exhaust gas is rapidly changed in direction at the lower part of the container to separate the water, oil and fine mixture in the exhaust gas. (C) The exhaust gas that has changed direction and entered the mesh tube 122f1 is filtered by the mesh of the mesh tube 122f1 and a hollow fiber filter (which allows more water vapor to permeate than air) inside the mesh tube 122f1 and is contained in the exhaust gas. Removes fine particles, water and water vapor, (D) Further, it is a filter that makes it possible to evaporate the water content in the exhaust gas by the heat generated during filtration.
  • the water and water vapor extracted from the exhaust gas are discharged to the outside of the filter 122f via the drain 122f2, but this may be supplied to the outside as pure water or high-purity water.
  • the structure of the dry filter 122f is not limited to that shown in FIG. 7, and various known dry filter structures can be adopted as the structure.
  • the high-pressure exhaust gas with reduced water content or water vapor content discharged from the dry filter 112f is sent out to the nitrogen filter U12 without (or may be) through the off-gas buffer tank 123.
  • the nitrogen gas filter 12f of the nitrogen filter U12 as described above, the higher the pressure of the exhaust gas to act on, the lower the oxygen concentration of the exhaust gas taken out, that is, the higher purity nitrogen gas can be obtained. be. Therefore, it is understood that the dry filter 112f and the nitrogen filter U12 are also a very suitable combination by forming a series of high pressure systems.
  • the nitrogen filter U12 shown in FIG. 1 takes out "filter exhaust gas” containing oxygen molecules separated from nitrogen molecules (in exhaust gas) by permeating through the hollow fiber fibers of the nitrogen gas filter 12f. It has a filter purge section.
  • the "filter exhaust gas” discharged from the filter purge section contains a considerable amount of oxygen molecules in this way, it may be used again for the fuel cell reaction or the filtering process may be performed again. Is also a possible gas.
  • the nitrogen gas generator (system) 1 of the present embodiment is provided with a gas return flow path as shown by the “circled“ B ”” in FIG. 1, and the filter exhaust gas is discharged.
  • (A) It is sent back to the flow control U109 installed in the front stage on the air electrode side of the "fuel cell” and used again in the "fuel cell” as a gas containing oxygen and nitrogen, and / or
  • (B) It is sent back to the off-gas buffer tank 123 installed in front of the nitrogen filter U12, and is re-acted on the nitrogen gas filter 12f together with the exhaust gas. This makes it possible to use the oxygen gas component more effectively and to take out nitrogen gas having a lower oxygen concentration.
  • the exhaust gas of this "fuel cell” can be the exhaust gas having a lower oxygen concentration. .. Further, as a result, the recovery rate of the nitrogen gas filter 12f into which such an exhaust gas is introduced is increased (as described with reference to FIG. 5), so that it is possible to finally take out more nitrogen gas. Further, although it depends on the setting of various conditions in the nitrogen gas generator (system) 1, by increasing the final recovery rate in the nitrogen gas filter 12f in this way, the nitrogen gas generation cost is significantly reduced. You can also do it.
  • the filter By the way, under the condition that the oxygen concentration of the exhaust gas from the "fuel cell” is about 15 vol% and the oxygen concentration of the filter exhaust gas is, for example (typically) 1.4 times the introduced oxygen concentration c_in_O2, the filter It can be seen that the oxygen concentration of the exhaust gas is equal to or higher than that of air (20.8vol%), and as a result, the above-mentioned merit of returning the filter exhaust gas to the air electrode side of the "fuel cell” does not occur. ..
  • the oxygen concentration of the filter exhaust gas is also 1.4 times the introduced oxygen concentration and the oxygen concentration of the exhaust gas from the "fuel cell” is about 10 vol%, the oxygen concentration of the filter exhaust gas is about 14 vol% ( ⁇ 20.8vol%), and the above-mentioned remand of filter exhaust gas is significant. Furthermore, if the oxygen concentration of the exhaust gas from the "fuel cell” is about 5 vol%, the oxygen concentration of the filter exhaust gas will be about 7 vol%, which is expected to improve the recovery rate and, depending on the system settings, nitrogen. The economic effect of significantly reducing gas production costs can also be achieved.
  • FIG. 8 is a schematic diagram for explaining another embodiment of the filtering means according to the present invention.
  • three nitrogen gas filters 12f1, 12f2 and 12f3 are installed in the nitrogen filter U12 so as to be connected in parallel.
  • the number of nitrogen gas filters arranged in parallel is not limited to three, and may be two or four or more.
  • the exhaust gas supplied to the nitrogen filter U12 is split and taken into each of the three nitrogen gas filters 12f1, 12f2 and 12f3, and each nitrogen gas filter is taken into itself in the supplied exhaust gas. It acts to produce a gas with an increased nitrogen concentration, that is, a high-purity nitrogen gas, and finally these high-purity nitrogen gases merge and are sent out to the nitrogen tank 129.
  • the filter exhaust gas discharged from each of the three nitrogen gas filters 12f1, 12f2 and 12f3 is the flow control U109 (FIG. 1) in the pre-stage of the "fuel cell” and / or the off-gas buffer tank 123 in the pre-stage of the nitrogen filter U12. It is also preferable that the fuel is sent back to (Fig. 1) and reused. Further, if the oxygen concentration in the filter exhaust gas discharged from these nitrogen gas filters is equal to or higher than a predetermined value, the filter exhaust gas may be sent to an external oxygen tank for storage and storage. In any case, such treatment makes it possible to use the oxygen gas component more effectively and to take out nitrogen gas having a lower oxygen concentration.
  • a 4-inch diameter nitrogen gas filter manufactured by Daicel Ebonic has an oxygen concentration of about 0.1 vol% when air at 7 atm (about 0.7 MPa) is received at a flow rate of 40 L / min. It is said that high-purity nitrogen gas is discharged at a flow rate of about 10 L / min (assuming a recovery rate of about 0.25).
  • each nitrogen gas filter is arranged in parallel, and the exhaust gas (having an oxygen concentration lower than that of air, for example, an oxygen concentration of 5 to 10 vol%) is discharged to each nitrogen gas filter at 7 atm (about 0.7 MPa).
  • a nitrogen gas filter having a larger diameter for example, a diameter of 6 inches
  • a larger amount of high-purity nitrogen gas can be supplied.
  • the selective type 6-inch diameter nitrogen gas filter manufactured by Daicel Ebonic has a recovery rate of about 0.32, which is significantly improved compared to the recovery rate (about 0.25) of the 4-inch diameter nitrogen gas filter. Therefore, it is possible to provide more high-purity nitrogen gas to the outside.
  • the overall control U131 (FIG. 1) has the oxygen concentration, pressure and flow rate of the exhaust gas of the "fuel cell", and the introduction oxygen concentration, introduction pressure, introduction flow rate and introduction gas in each nitrogen gas filter. It is also preferable to constantly monitor the temperature, outlet oxygen concentration, outlet pressure, outlet flow rate, etc., and control each unit so that a predetermined amount (predetermined flow rate) of nitrogen gas having a predetermined high nitrogen concentration can be provided in a timely manner. ..
  • the water-sealed pump U30 (FIG. 6 (A)) is used as the dehumidifying means according to the present invention, and the exhaust gas subjected to the dehumidifying treatment in the water-sealed pump U30 is discharged with high-purity nitrogen using the nitrogen filter U12 (FIG. 1).
  • the control using machine learning of the nitrogen gas generation process in the nitrogen gas generation device (system) 1 for changing to gas will be described. Incidentally, this control can be carried out in the overall control U131 (FIG. 1).
  • a nitrogen gas generation model using a DNN (Deep Neural Network) algorithm is constructed, and the operating state of the nitrogen gas generation device (system) 1 is determined by a control program incorporating this model. It is also preferable to control.
  • the above (a) to (k) can be set as explanatory variables, and the above (l) and (m) can be set as objective variables.
  • a nitrogen gas generation control model is constructed with the above (b) to (f) and the above (h) to (m) as explanatory variables and the above (a) and (g) as objective variables. It is also possible to control the operating state of the nitrogen gas generator (system) 1 by using a control program incorporating the model.
  • the target supply flow rate and the target purity (or oxygen concentration) of the high-purity nitrogen gas to be supplied are (a) the flow rate of air introduced into the "fuel cell", and (g) the water-sealed pump 301.
  • the overall control U131 constructs a nitrogen gas generation model and a nitrogen gas generation control model according to the demands of such individual users, and incorporates a model suitable for the performance desired by the user. It is also preferable to use a control program to cause the nitrogen gas generator (system) 1 to exhibit high performance that meets the user's requirements.
  • FIG. 9 is a schematic diagram for explaining still another embodiment of the nitrogen gas generator / system according to the present invention.
  • the catalyst combustion U90 is provided in the subsequent stage of the nitrogen filter U12 (for example, immediately after the flow control U127).
  • the catalyst combustion U90 combines hydrogen gas and oxygen in the exhaust gas on a combustion catalyst composed of a noble metal-based compound such as palladium (Pd) or platinum (Pt), or another transition metal-based compound. It is a unit that makes contact and performs catalytic combustion, which is a controlled oxidation reaction rather than flame combustion.
  • the catalyst combustion U90 is (A) Nitrogen gas with a low oxygen concentration (for example, an oxygen concentration of 0.1 to several vol%) taken out from the nitrogen filter U12, and (B) Hydrogen gas taken out from the hydrogen electrode side outlet of the fuel cell U11, passed through the drain 111, the pressure control U113, and the gas-liquid separation U114, and then recovered by the hydrogen recovery U115, and then the flow control U902 and the reverse.
  • the hydrogen gas sent through the stop valve is taken in, and these nitrogen gas and hydrogen gas are brought into contact with each other on the surface of the solid catalyst 90a, which is a combustion catalyst installed in the unit, to cause a catalytic combustion reaction, and finally.
  • high-purity nitrogen gas having an extremely low oxygen concentration for example, an oxygen concentration on the order of 0.01 vol% (100 ppm vol)
  • hydrogen gas can be supplied to the catalyst combustion U90 from, for example, the hydrogen generation U102 or the hydrogen generation reforming U103.
  • the solid catalyst 90a which is a combustion catalyst installed in the catalyst combustion U90, has a large number of fine holes and uses a metal such as platinum (Pt) or palladium (Pd) as a catalyst on the surface including the inside of the holes. It is also preferable to use a supported ceramic honeycomb.
  • a solid catalyst 90a for example, NA honeycomb, which is an oxidation catalyst (platinum catalyst) manufactured by Nagamine Seisakusho, can be adopted.
  • NA honeycomb is formed on the surface of a carrier containing calcium aluminate (CaO Al 2 O 3 ), fused silica (SiO 2 ) and titanium dioxide (TiO 2 ) as main components, and platinum (Pt). ) And a platinum group metal such as palladium (Pd).
  • this carrier has a honeycomb shape, and the contact area of the platinum group metal supported on the carrier is very large, so that an oxidation reaction is efficiently caused.
  • the optimum operating temperature of NA honeycomb is 200 to 850 ° C.
  • the solid catalyst 90a is heated to, for example, 250 ° C. and used as a catalyst for contact combustion.
  • this heating can be performed, for example, by an electric heating method in which a heating wire is wound around a solid catalyst 90a and energized and heated.
  • induction heating may be performed on the solid catalyst 90a.
  • an iron-based alloy such as iron (Fe) or stainless steel is mixed inside the carrier of the solid catalyst 90a, and an electromagnetic field generator is used to mix the solid catalyst 90a with, for example, a dozen kilohertz.
  • a magnetic field (electromagnetic field) of (kHz) to several hundred kHz is applied, and the solid catalyst 90a is directly heated by Joule heat due to the eddy current generated by the principle of electromagnetic induction.
  • iron powder / iron pieces, powdery / flake stainless steel, etc. are placed near the surface of the carrier of the solid catalyst 90a, for example, inside the carrier having a depth of at least a penetration depth of ⁇ or more. It is also preferable to disperse the iron-based alloy. As a result, the portion of the solid catalyst 90a near the surface to be heated can be heated to a predetermined temperature with a uniform temperature distribution.
  • a plate piece of an iron-based alloy such as iron or stainless steel in contact with, for example, the side surface of the solid catalyst 90a, and induce and heat the solid catalyst 90a via the plate piece by electromagnetic induction. ..
  • a plate piece of an iron-based alloy such as iron or stainless steel
  • electromagnetic induction for example, the induced heating of the solid catalyst 90a, for example, even when a plurality of solid catalysts 90a are used, wiring such as a heating wire is not required for each solid catalyst 90a, and the plurality of solid catalysts 90a are used at once. Moreover, it can be easily heated.
  • the solid catalyst 90a is heated in order to promote the catalyst combustion, but in order to reduce the electric power required for the heating, the nitrogen gas taken out from the nitrogen filter U12 is used. It is also possible to set the oxygen concentration in the above slightly higher. When the oxygen concentration is increased in this way, the heat generated by the contact combustion increases, and the electric power for heating the solid catalyst 90a can be suppressed by that amount.
  • the filtering conditions for example, the introduction flow rate of the exhaust gas
  • the catalyst combustion conditions (for example, the solid catalyst) in the nitrogen filter U12 are taken into consideration in consideration of the purity and the supply amount (flow rate) required for the nitrogen gas to be finally supplied. It is important to properly adjust the temperature of 90a).
  • the nitrogen gas having an extremely low oxygen concentration sent out from the catalyst combustion U90 comes out in a high temperature state, but the plate type or multi-tube heat exchanger 901 installed at the outlet of the catalyst combustion U90 can be used.
  • the heat may be recovered.
  • the heat recovered by the heat exchanger 901 is supplied to the off-gas buffer tank 123 and the exhaust gas supplied to the nitrogen filter U12 at a higher temperature (for example, 45 ° C.), similarly to the heat recovered from the fuel cell U11. It is also preferable that it is used for making or supplied to the outside.
  • the nitrogen gas may be sent to the hydrogen filter U903 described later without passing through the heat exchanger 901.
  • the nitrogen gas having an extremely low oxygen concentration output from the catalyst combustion U90 usually includes residual hydrogen gas that has not been burned in the catalytic combustion reaction.
  • the hydrogen filter U903 takes in the high-purity nitrogen gas that has passed through the heat exchange U901, and the residual hydrogen gas is separated from the nitrogen gas having an extremely low oxygen concentration by a known hydrogen gas filter installed inside. And output higher purity nitrogen gas.
  • the output high-purity nitrogen gas is then stored and stored in the nitrogen tank 129 (Fig. 1) via a check valve, an oxygen concentration meter, a flow meter, and a pressure boosting U128 (Fig. 1), and is appropriately externally stored. It is also preferable to be provided in.
  • a filter provided with a palladium (Pd) -based hydrogen permeation membrane can be used, but a hydrogen gas filter provided with an aromatic polyimide-based gas separation membrane may be adopted.
  • a hydrogen gas filter provided with an aromatic polyimide-based gas separation membrane may be adopted.
  • UBE GAS SEPARATOR manufactured by Ube Industries which uses a pipe in which hollow filamentous membranes are bundled, and SEPURUN Noble manufactured by EVONIC can be adopted.
  • the hydrogen gas separated from the nitrogen gas by the hydrogen filter U903 is sent to the hydrogen recovery U115 via the flow control U904 and used again in the fuel cell U11 or again in the catalyst combustion U90. It can be used for catalytic combustion.
  • the nitrogen gas supply destination requires a reducing atmosphere, for example, if the nitrogen gas supply destination is an antioxidant atmosphere furnace, a flyer, etc., the nitrogen gas to be supplied contains a small amount of hydrogen while ensuring safety. It is also possible to set it to be.
  • the nitrogen gas filter 12f can be used. Can introduce a considerably large flow rate (outlet flow rate) of exhaust gas (as can be seen from the graph of FIG. 2). As a result, the recovery rate of the nitrogen gas filter 12f can be increased (as can be seen from the graph of FIG. 5).
  • nitrogen gas having a lower oxygen concentration is efficiently generated only by the fuel cell U11 and the catalyst combustion U90 without using the nitrogen filter U12. It is also possible.
  • the combination of "fuel cell” and “catalytic combustion” is very suitable in terms of making it possible to share the required hydrogen gas and efficiently generate nitrogen gas. It is understood that there is.
  • the apparatus (system) configuration of FIG. 9 is an apparatus (system) that efficiently generates high-purity nitrogen gas with sufficiently reduced water content or water vapor content. It is also possible to omit the fuel cell U11 from the above, that is, to adopt a device (system) including a nitrogen filter U12 and a catalyst combustion U90 as main components.
  • FIG. 10 is a schematic diagram for explaining another embodiment of the "fuel cell" according to the present invention.
  • FIG. 10 shows a fuel cell 11F suitable as a "fuel cell” included in the fuel cell U11 (FIG. 1).
  • the fuel cell 11F includes a plurality of cells which are constituent units including a hydrogen electrode and an air electrode with an electrolyte sandwiched between them. These cells are laminated and sequentially from a cell having a good fuel supply to a cell having a poor fuel supply. Hydrogen (fuel gas) and air (gas containing nitrogen and oxygen) are designed to pass through the hydrogen and air poles in the cell, respectively.
  • each of these functional cell parts contains one or more contiguous cells (two or three in FIG. 10, actually, for example, several to several hundreds). Further, it is not electrically connected in series with other functional cell units, but is electrically connected to individually provided power generation amount control units (11Ca, 11Cb, 11Cc).
  • control units 11Ca, 11Cb, and 11Cc generate electromotive forces between the hydrogen pole and the air pole in the power generation priority cell unit 11Fa, the intermediate cell unit 11Fb, and the oxygen removal cell unit 11Fc, respectively. It receives and outputs the power that matches the functional cell in charge. At this time, it is also preferable to measure the complex impedance of the functional cell unit in charge and perform control and management according to the functional cell unit.
  • PEFC type fuel cells since the electromotive force in one cell is usually less than 1 V (volt), they are electrically connected in series in order to secure the power required as an actual power source. It is composed of a series of cells, for example, hundreds of cells.
  • the amount of power generation that can be performed in a cell with a small amount of oxygen supply is also small, but the power generation efficiency (relative to the amount of hydrogen supply) in the entire cell connected in series including such a cell is determined in each cell. Since it is necessary to arrange the amount of power generation to some extent, it will be considerably impaired.
  • the fuel cell 11F is a very suitable fuel cell as a "fuel cell" of the fuel cell U11 (FIG. 1), that is, for producing high-purity nitrogen gas.
  • the fuel cell 11F can also be used for other general purposes as a suitable fuel cell that can optimize power generation efficiency.
  • the number of functional cells in the fuel cell 11F is not limited to three, but may be two or four or more.
  • the lower 150-stage cell group and the upper remaining cell group can be used as the first functional cell unit and the second functional cell unit, respectively.
  • the present invention it is possible to reliably and stably generate high-purity nitrogen gas by using a fuel cell.
  • the exhaust gas from the fuel cell is dehumidified using a water-sealed pump or a dry filter, and further, a nitrogen gas filter or even catalytic combustion is used to ensure higher purity nitrogen gas. , It is also possible to generate more stably and efficiently.
  • the present invention will greatly contribute to the efficient production of nitrogen gas in such an era.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池を用い、純度の高い窒素ガスを確実に且つ安定的に生成する装置を提供する。本窒素ガス生成装置は、空気(又は窒素及び酸素を含む気体)と燃料気体とを取り入れて稼働する燃料電池と、燃料電池から取り出された、空気よりも低い酸素濃度を有する排ガスにおける水分又は水蒸気分を低減させる除湿手段と、窒素と酸素とについて透過する度合いの異なる繊維を使用したフィルタを備えており、水分又は水蒸気分の低減した排ガスを窒素濃度の増大したガスに変えるフィルタリング手段とを有している。ここで、上記のフィルタは、フィルタリング対象気体の酸素濃度が低いほど回収率が高くなるフィルタであることも好ましい。また、除湿手段は水封式のポンプを含むポンプユニットであることも好ましく、さらにこの場合、燃料電池から取り出された当該排ガスが、そこで断熱的に膨張する断熱膨張室が設けられていることも好ましい。

Description

燃料電池排ガスを除湿しフィルタリングする窒素ガス生成装置及び方法
 本発明は、純度の高い窒素ガスを生成する技術に関する。
 本出願は、パリ条約の下、2020年2月25日に出願された日本国特許出願JP2020-029364及び2021年1月26日に出願された日本国特許出願JP2021-010474についての優先権の利益を主張しており、それらの日本国特許出願は、PCT規則第20.6の規定によって、引用によりその全体が本明細書に組み込まれる。
 近年、燃料電池の利用が盛んに進められている。例えば、燃料電池自動車が実用化され、家庭用及び産業用燃料電池設備も普及しつつある。燃料電池を用いれば高効率の発電が実現するのみならず、従来の内燃機関を用いた発電手段とは異なり、二酸化炭素の排出を概ねゼロにすることも可能となる。このことから、燃料電池技術は、カーボンゼロ社会の実現に大きく資するものと期待されている。
 本願発明者等は、このような燃料電池のポテンシャルに注目し、特許文献1及び2に記載されているように、燃料電池を利用した半田付け装置を発明してきた。この半田付け装置では、燃料電池で生成した電力だけでなく、発電によって発生する排ガスをも半田付け装置に供給して利用している。
 また、本願発明者等は、特許文献3及び4に記載されているように、被加熱対象物を不活性ガス中において電力加熱して加工を行う加工装置に対し、この不活性ガスと電力とを供給する燃料電池を利用した発電装置も発明している。この発電装置は、燃料電池からの排ガスに含まれる酸素分や水蒸気分・水分を除去し又は低減させて、この排ガスを、加工装置での使用に好適な不活性なガスに変換することもできるのである。
 さらに、本願発明者等は、特許文献5に記載されているように、第1の燃料電池部から第Nの燃料電池部までのN個の燃料電池部を連結して、酸素量の十分に小さい低酸素ガスを供給可能な電力及びガス供給装置も発明している。またさらに、特許文献6に記載されているように、大気圧を超える圧力を有する空気及び燃料気体を燃料電池へ供給して、この燃料電池を稼働させ、この燃料電池から取り出した大気圧を超える圧力を有する排ガスを、窒素フィルタに対し、大気圧を超える圧力をもって作用させ、このフィルタから窒素濃度の増大したガスを取り出す窒素ガス生成装置も発明している。
特開2013-233549号公報 特開2016-164987号公報 特開2017-084796号公報 特開2018-163890号公報 特開2019-129110号公報 特開2020-149838号公報
 このように本願発明者等は、燃料電池を利用すれば、各種生産・サービス提供現場において多くの需要が存在する純度の高い窒素ガスを供給することが可能となることに思い至った。
 このような高純度の窒素ガスは、不活性ガスであり支燃性も助燃性もなく、非常に有用なガスではあるが、現在、空気を原料として、圧力変動吸着(PSA)法、深冷空気分離法や、膜分離法等により生成されているのが現状である。
 ここで、従来のように空気をそのまま原料とするのではなく、燃料電池の排ガスを利用すれば、効率的に純度の高い窒素ガスを生成することも可能となるのではないかと考えたのである。また勿論、燃料電池を用いるのであるから、高純度の窒素ガスに合わせて、電力も供給可能となる。
 ただし、燃料電池から取り出された排ガスは通常、燃料電池反応で発生する多量の水(H2O)を含み、その相対湿度は概ね100%となっている。したがって、そのままでは、この後の高純度化処理を実施するのに弊害が生じ、当該処理を確実に且つ安定的に行うことが困難となってしまう。
 そこで、本発明は、燃料電池を用い、純度の高い窒素ガスを確実に且つ安定的に生成する装置、システム及び方法を提供することを目的とする。
 本発明によれば、(A)空気、又は窒素及び酸素を含む気体と、燃料気体とを取り入れて稼働する燃料電池と、(B)燃料電池から取り出された、空気よりも低い酸素濃度を有する排ガスにおける水分又は水蒸気分を低減させる除湿手段と、(C)窒素と酸素とについて透過する度合いの異なる繊維を使用したフィルタを備えており、水分又は水蒸気分の低減した当該排ガスを窒素濃度の増大したガスに変えるフィルタリング手段とを有する窒素ガス生成装置及び窒素ガス生成システムが提供される。ここで、上記のフィルタは、フィルタリング対象気体の酸素濃度が低いほど回収率が高くなるフィルタであることも好ましい。また、除湿手段は水封式のポンプを含むポンプユニットであることも好ましく、さらにこの場合、燃料電池から取り出された当該排ガスが、そこで断熱的に膨張する断熱膨張室が設けられていることも好ましい。
 また本発明によれば、空気、又は窒素及び酸素を含む気体と、燃料気体とを燃料電池へ供給して、この燃料電池を稼働させるステップと、この燃料電池から、空気よりも低い酸素濃度を有する排ガスを取り出すステップと、取り出した当該排ガスにおける水分又は水蒸気分を低減させるステップと、水分又は水蒸気分の低減した当該排ガスを、窒素と酸素とについて透過する度合いの異なる繊維を使用したフィルタに対して作用させ、このフィルタから窒素濃度の増大した当該排ガスを取り出すステップとを有する窒素ガス生成方法が提供される。
 本発明によれば、燃料電池を用い、純度の高い窒素ガスを確実に且つ安定的に生成することができる。
本発明による窒素ガス生成装置・システムの一実施形態を示す模式図である。 本発明による窒素ガス生成処理に係る実施例1を説明するためのグラフである。 本発明による窒素ガス生成処理に係る実施例1を説明するためのグラフである。 本発明による窒素ガス生成処理に係る実施例1を説明するためのグラフである。 本発明による窒素ガス生成処理における窒素ガスフィルタの回収率を調べた実施例2を説明するためのグラフである。 本発明に係る除湿手段における他の実施形態を説明するための模式図である。 本発明に係る除湿手段としての気液分離Uにおける一実施形態を説明するための模式図である。 本発明に係るフィルタリング手段についての他の実施形態を説明するための模式図である。 本発明による窒素ガス生成装置・システムについての更なる他の実施形態を説明するための模式図である。 本発明に係る燃料電池についての他の実施形態を説明するための模式図である。
 以下に、本発明を実施するための形態について、添付図面を参照しながら詳細に説明する。なお、各図面において、同一の構成要素は、同一の参照番号を用いて示される。また、同様の構造及び機能を有することが可能な構成要素も、同一の参照番号を用いて示される場合がある。さらに、図面中の構成要素内及び構成要素間の寸法比は、図面の見易さのため、それぞれ任意となっている。
[窒素ガス生成装置・システム]
 図1は、本発明による窒素ガス生成装置・システムの一実施形態を示す模式図である。
 図1に示した本発明の一実施形態としての窒素ガス生成装置1(又は窒素ガス生成システム1)は、
(A)「空気、又は窒素及び酸素を含む気体」と、「燃料気体」(本実施形態では水素)とを取り入れて稼働する「(燃料電池U(ユニット)11内の)燃料電池」と、
(B)「燃料電池」から取り出された、空気よりも低い酸素濃度を有する「排ガス(オフガス)」における水分又は水蒸気分を低減させる除湿手段(図1では気液分離U122、図6では水封ポンプU30)と、
(C)窒素と酸素とについて透過する度合いの異なる繊維(例えば、中空糸繊維)を使用した「窒素ガスフィルタ12f」を備えており、水分又は水蒸気分の低減した「排ガス」を窒素濃度の増大したガスに変えるフィルタリング手段(図1では窒素フィルタU12)と
を有することを特徴としている。
 ここで、上記(C)の「窒素ガスフィルタ12f」は、上述したように、窒素と酸素とについて透過する度合いの異なる繊維を使用したフィルタであり、本願発明者等は、後にその内容を詳述するが、当該繊維を使用したフィルタにおいては、空気よりも低い酸素濃度(媒体100ml中のmlであり単位は体積(vol)%)を有する「排ガス」における「酸素濃度低減指数」が、その酸素濃度が低いほどより増大することを実験により確認している。
 このように、窒素ガス生成装置(システム)1によれば、低酸素濃度の観点から非常に相性の良い「燃料電池」と「窒素ガスフィルタ12f」とを結合させることによって効率的に、低酸素濃度の、すなわち純度の高い窒素ガスを生成することが可能となるのである。
 ちなみに、これも後に詳細に説明するが、本願発明者等は、酸素濃度が2.5vol%以下である「排ガス」を「窒素ガスフィルタ12f」に対して作用させることによって、「窒素ガスフィルタ12f」から、空気を作用させた結果と比較して酸素濃度がその1/10以下となる「排ガス」を取り出すことができることを、実験により確認している。
 またさらに、本願発明者等は、本実施形態において使用した「窒素ガスフィルタ12f」において、フィルタリング対象気体の酸素濃度が低いほど回収率が高くなることも、実験により確認している。したがって、空気よりも低い酸素濃度を有する「排ガス」のフィルタリングに、このような「窒素ガスフィルタ12f」を用いることによって、純度の高い窒素ガスにおける回収率をより高めることも可能となるのである。なお、この回収率についても、後に詳細に説明を行う。
 ここで、「窒素ガスフィルタ12f」は、上述したように窒素と酸素とについて透過する度合いの異なる繊維を使用したフィルタであり、本願発明者等は、当該繊維を使用したフィルタにおいては、作用させる「排ガス」の圧力が高いほど、当該フィルタより取り出される「排ガス」の酸素濃度がより低くなる、すなわちより純度の高い窒素ガスが得られることを実験により確認している。そこで本実施形態では、窒素フィルタUの前段に増圧U124を設けて、作用させる「排ガス」の圧力を増加させ、効率的に低酸素濃度の、すなわち純度の高い窒素ガスを生成可能にしているのである。
 ちなみに、これも後に詳細に説明するが、「窒素ガスフィルタ12f」に対して作用させる「排ガス」の圧力を、「窒素ガスフィルタ12f」によって決定される圧力閾値であって、「窒素ガスフィルタ12f」から取り出される際の「排ガス」の流量が大きくなるほどより大きい値をとる圧力閾値を超える値の圧力に設定することも好ましいことが、実験により確認されている。
 ここで、以上に述べた文言である「高純度」又は「純度の高い」は、当該窒素ガス中における酸素濃度が十分に低減した状態をさす意味となっている。具体的に、本実施形態で生成された「高純度」の又は「純度の高い」窒素ガスにおける窒素濃度(媒体100ml中のmlであり単位はvol%)は、当該窒素ガスの使用分野・用途によって、例えば95vol%以上や、99vol%以上であるとされることもあり、さらには99.9vol%以上や99.99vol%以上と規定されることもあるのである。
 また、上記(B)の除湿手段は、通常その相対湿度が概ね100%である「排ガス」における水分又は水蒸気分を低減させることによって、この後の高純度化処理がこれら水分又は水蒸気分によって悪影響を受けることなく確実に且つ安定的に実施されるようにし、またこれにより、純度の高い窒素ガスを効率的に生成可能とする重要な手段となっている。ここでこの重要な除湿手段として、後に図6を用いて詳細に説明するが、水封式のポンプを含む水封ポンプU30を採用することも好ましいのである。
[装置・システム構成]
 同じく図1に示すように、本実施形態の窒素ガス生成装置(システム)1は、
(a)「燃料電池」を有する燃料電池U(ユニット)11と、
(b)燃料電池U11の前段となる位置に、自然エネルギー発電ユニットU101と、蓄電U101sと、水素生成U102と、水素生成改質U103と、水素タンク104と、フロー制御U105と、空気圧縮U106と、空気タンク107と、フィルタU108と、フロー制御U109と、
(c)燃料電池U11の水素極側の後段となる位置に、ドレイン111と、圧力制御U113と、気液分離U114と、水素回収U115と、
(d)燃料電池U11の空気極側の後段となる位置に、ドレイン112と、圧力制御U121と、気液分離U122と、オフガスバッファタンク123と、増圧U124と、腐食性ガス等除去U125と、温度調整U126と、フロー制御U127と、窒素ガスフィルタ12fを備えた窒素フィルタU12と、増圧U128と、窒素タンク129と、
(e)全体制御U131と
を備えた装置(システム)となっており、空気、水、太陽光等の自然エネルギーや、場合によっては都市ガスや、さらには商用電力等も取り入れて、純度の高い窒素ガス、電力や、熱エネルギーを外部に供給することが可能となっている。
 すなわち、本実施形態の窒素ガス生成装置(システム)1は、生成した窒素ガスに合わせて、稼動させた「燃料電池」で発生する電力及び熱エネルギーを外部に提供することも可能であり、窒素ガス、電力及び熱供給装置(システム)として捉えることもできるのである。
 なお、窒素ガス生成装置(システム)1は、少なくとも燃料電池U11及びそれに直結する構成部と、気液分離U122と、窒素フィルタU12とを含んでおり、少なくとも装置外である自然エネルギー発電U101とともに、窒素ガス生成システムを構成するものであってもよい。例えば、窒素ガス生成装置(システム)1は、自然エネルギー発電U101、蓄電U101s、水素生成U102、水素生成改質U103、水素タンク104、空気圧縮U106、空気タンク107、増圧U128及び窒素タンク129以外の構成部を全て包含する装置(システム)とすることもできる。
 また、窒素ガス生成装置(システム)1は、例えば外部に設置された燃料電池における排ガス出口と接続可能な、排ガス取り入れ口としての配管ジョイントを備えていてもよく、この外部の燃料電池から排出される排ガスを取り込んで、酸素濃度の低下した窒素ガスを出力する装置(システム)とすることもできる。いわば、燃料電池への取り付け可能な「燃料電池取り付け型フィルタリング装置(システム)」であってもよい。
 すなわちこの場合、窒素ガス生成装置(システム)1は、(a)外部の燃料電池から排出される排ガスを受け取るための排ガス取り入れ口と、(b)受け取った排ガスにおける水分又は水蒸気分を低減させる除湿手段と、(c)窒素と酸素とについて透過する度合いの異なる繊維を使用したフィルタであって、水分又は水蒸気分の低減した当該排ガスを作用させることによって、窒素濃度の増大したガスを出力するフィルタとを有する装置(システム)となる。
 ちなみに、図1の装置・システム構成図における構成部間を矢印で接続して示した物質・エネルギー移動や実施される処理の流れは、本発明による窒素ガス生成方法の一実施形態としても理解される。
 同じく図1において、自然エネルギー発電ユニットU101は、太陽電池を備えていて太陽光を電力に変換する太陽電池発電ユニットであってもよく、風力によってブレード(羽)付きのロータを回転させて発電機を駆動させ電力を生成する風力発電ユニットとすることもでき、また、水流(水力)によってタービン(水車)を回転させて発電機を駆動させ電力を生成するマイクロ水力発電ユニットであってもよい。
 また、太陽光の光エネルギーや、風・水流の運動エネルギーを最終的に電気エネルギーに変換するものであれば、その他様々な発電ユニットを自然エネルギー発電ユニット101として採用することが可能である。さらに、自然エネルギー発電ユニット101は、以上に述べたような発電ユニットのうちの2つ以上を組み合わせたものであってもよい。いずれにしても、生成された電力の出力部に電力計を備えており、各時点での発電の有無や生成された電力量を測定可能となっていることも好ましい。
 蓄電U101sは、例えばリチウム(Li)電池や、鉛(Pb)蓄電池等の二次電池を備えており、自然エネルギー発電ユニット101から供給された電力を蓄電・保存する蓄電部である。また、蓄電U101sは、蓄電量計を備えていて、各時点での蓄電量や、フル充電されているか否かを測定可能となっていることも好ましい。ここで、蓄電U101sから、後述する(水の電気分解を行う)水素生成U102や空気圧縮U106へ電力が供給されるのであるが、それらの代わりに又はそれらと共に、商用電力が水素生成U102や空気圧縮U106へ供給されてもよい。
 さらに、蓄電量にも所定の限界がありまた高価な二次電池を備えた蓄電U101sを用いずに(若しくはあくまで補助として備えておき)、自然エネルギー発電ユニット101から直接、水素生成U102や空気圧縮U106へ電力が供給されることも好ましい。この場合、自然エネルギーが直接的に、水素の化学的エネルギーや圧縮空気の物理的エネルギーに変換され利用されることになるのである。
 なお、自然エネルギー発電ユニット101が交流電力を生成する場合(例えば交流発電器を備えている場合)におけるこの交流電力や、商用電力は、コンバータによって直流に変換された上で蓄電U101sや水素生成U102に供給されることになる。また、空気圧縮U106が直流駆動型コンプレッサ22を備えている場合も、直流に変換された上で空気圧縮U106へ供給されるのである。
 いずれにしても、全体制御U131は、以上に述べたような水素生成U102や空気圧縮U106への電力供給を、例えば自然エネルギー発電ユニット101での発電状況や蓄電U101sでの蓄電状況をモニタしつつ、適切に切り替え・制御可能となっている。
 同じく図1において、水素生成U102は、供給された電力により、取得した水を電気分解して水素及び酸素を生成可能な電気分解部を備えた水素供給ユニットである。ここで、電気分解の方式として公知の種々のものが採用可能であるが、例えば、固体高分子電解質膜を両面側から触媒及び電極で挟み込んだ構造の電解セルを多数積層したものを利用して電気分解を行ってもよい。
 また、水素生成U102は、生成した水素や酸素から水分を除去する除湿部を備えていることも好ましい。さらに、ここで除去された水分を再び電気分解部に戻して電気分解する仕組みが設けられていてもよい。また、各時点での消費した電力や電力消費の有無を測定可能な電力計を備えていることも好ましく、生成された水素及び酸素の量や生成の有無を測定可能な流量計やガス圧計を備えていてもよい。
 水素生成改質U103は、都市ガス又はLPG等の炭化水素ガスを取り入れて、この炭化水素ガスと水蒸気とを混合し、この混合ガスから水蒸気改質反応によって水素(H)を主成分とする水素含有ガスを生成する。また、CO変性触媒等を用いて、生成された水素含有ガスに含まれる一酸化炭素ガス分を低減させたり、さらにCO選択酸化触媒を用いて、一酸化炭素濃度をより低減させたりする仕組みを備えていることも好ましい。
 ちなみに、後述する燃料電池U11の「燃料電池」としてSOFC(固体酸化物型燃料電池)を採用する場合、水素生成改質U103において水蒸気改質に必要となる高温(大熱量)を、この「燃料電池」からの排熱によって賄うことも可能となる。
 なお、窒素ガス生成装置(システム)1は、水素(燃料)供給源として、水素生成U102及び水素生成改質U103のいずれか一方を備えているものであってもよく、または、多様な供給源を確保するべく両方を備えていることも好ましい。さらに、これらの供給源の代わりに又はこれらとともに、別のシステム・装置から水素ガスそのものを供給されてもよい。
 水素タンク104は、水素生成U102や水素生成改質U103から供給された水素ガスを、圧縮(高圧)状態で一時的に保存・貯蔵するガスタンクであり、水素吸蔵合金ボンベを備えたものであってもよい。また、この水素タンク104に、ガス圧計が設けられていて、各時点でのタンク内ガス圧を測定可能となっていることも好ましい。
 フロー制御U105は、水素タンク104から燃料電池U11へ供給される水素ガスの圧力や流量を制御するユニットである。具体的には、水素ガス用レギュレータ及び水素ガス用マスフローコントローラ(又はフロースイッチ)を備えたものとすることができる。
 ここで、水素ガスは、大気圧(1気圧,約0.1MPa)を超える圧力を有する高圧(例えば1.1~7気圧,約0.11~0.7MPa)の状態で、燃料電池U11の水素極側へ供給されてもよい。すなわち本実施形態において、燃料電池U11に備えられた「燃料電池」の背圧は、例えば大気圧又は大気圧を超える圧力に設定可能となっている。なお、この背圧は、「燃料電池」の出口側が解放状態の場合、すなわち排ガスの圧力が大気圧の場合において1気圧(約0.1MPa)とする。
 ただし、フロー制御U105でマスフローコントローラを使用する場合、通常ここで圧力差損が発生するので、水素タンク104から、設定圧力(背圧)より例えば1~2気圧(約0.1~0.2MPa)程度大きな圧力の水素ガスを受け取り、レギュレータでその圧力を調節した上で、当該水素ガスをマスフローコントローラへ流すことも好ましい。ちなみに、上記の圧力差損は、流量を小さくするほど(フローを絞るほど)大きくなることが実験により分かっている。
 同じく図1において、空気圧縮U106は、例えば大気中から取り込んだ空気を圧縮して(高圧にして)空気タンク107へ供給するコンプレッサを備えたユニットである。このコンプレッサにおける圧縮方式として、例えばレシプロ型、スクロール型、スクリュー型、ロータリ型、若しくはスイング型等、又はこれらのうちの2つ以上の組合せ等、様々な方式が採用可能である。
 空気タンク107は、空気圧縮U106から供給された圧縮空気を、圧縮状態のまま一時的に保存・貯蔵するガスタンクである。この空気タンク107にも、ガス圧計が設けられていて、各時点でのタンク内ガス圧を測定可能となっていることも好ましい。
 フィルタU108は、エアフィルタ及びオイルフィルタを備えており、空気タンク107から供給された高圧の空気から微小ゴミやオイル成分等を、これらのフィルタによって除去するためのユニットである。
 フロー制御U109は、空気タンク107からフィルタU108を介して燃料電池U11の空気極側へ供給される圧縮空気の圧力や流量を制御するユニットである。具体的には、ガスレギュレータ及びマスフローコントローラ(又はフロースイッチ)を備えたものとすることができる。
 ここで本実施形態においては、この圧縮空気も、大気圧(1気圧,約0.1MPa)を超える圧力を有する高圧(例えば1.1~7気圧,約0.11~0.7MPa)の状態のまま、(例えば大気圧を超える背圧の設定された)燃料電池U11における空気極側へ供給されてもよい。またこの際、マスフローコントローラの圧力差損を勘案して、空気タンク107から、設定背圧より例えば1~2気圧(約0.1~0.2MPa)程度大きな圧力の圧縮空気を受け取り、レギュレータでその圧力を調節した上で、当該圧縮空気をマスフローコントローラへ流してもよいことは、上述した水素ガスの場合と同様である。
 同じく図1において、燃料電池U11は、「燃料電池」を備えていてこの「燃料電池」から、空気よりも低い酸素濃度を有する排ガスと、電力と、熱と、水(水蒸気)とを取り出し出力するユニットである。
 この燃料電池U11は勿論、「燃料電池」の背圧を大気圧(1気圧,約0.1MPa)に設定して使用することも可能であるが、好適な1つの実施形態として、
(a)大気圧を超える背圧(例えば1.1~7気圧,約0.11~0.7MPa)が設定されており、
(b)フロー制御U105から、大気圧を超える圧力(例えば1.1~7気圧,約0.11~0.7MPa)を有する水素ガスを受け取り、さらにフロー制御U109から、大気圧を超える圧力(例えば2~7気圧)を有する圧縮空気を受け取って稼働し、
(c)大気圧を超える圧力(例えば1.1~7気圧,約0.11~0.7MPa)を有する排ガスを排出する
「燃料電池」を備えたユニットであることも好ましい。
 ここで、この「燃料電池」は、公知の構成のものとすることができ、例えば、水素極(燃料極,陽極,アノード)と空気極(酸素極,陰極,カソード)とで電解質を挟み込んだ構造を有するセルが、間にセパレータを介して複数スタック(積層)したような構造を有していてもよい。
 さらに、「燃料電池」における電池方式としては、固体高分子型燃料電池(PEFC)、固体酸化物型燃料電池(SOFC)、リン酸型燃料電池(PAFC)や、溶融炭酸塩型燃料電池(MCFC)等が採用可能である。このうち、SOFCは、発電効率が高く、通常約700~約1000℃で稼働し、相当に高温の排ガスを供給することも可能となっている。上述したように、水素生成改質U103を用いて都市ガス等から水素ガスを生成する場合、SOFCならば、その水蒸気改質に必要な大熱量を賄うことも可能となる。また、PEFC方式は、比較的低温で稼働し、電池サイズもコンパクト化可能であることから、例えば多くの燃料電池自動車にも採用されているものである。
 なお、燃料電池U11における「燃料電池」をPEFCとする場合、例えば一般財団法人の日本自動車研究所(Japan Automobile Research Institute,JARI)が研究開発用に開発したJARI型の燃料電池を、「燃料電池」として採用することも可能である。JARI型の燃料電池は、背圧を高めて電池内に圧力を印加することができ、またその上で、高い背圧の排ガスを全て回収することも可能な構造となっている。
 また「燃料電池」として、例えばスウェーデンの燃料電池メーカであるPowerCell社製の、例えば最大出力が10kWを超える燃料電池を採用することも可能である。例えば、最大出力が12.9kWである96セルのPowerCell社製燃料電池において、10kWの電力を出力するのに必要となる水素ガス流量及び空気流量は、それぞれ150リットル/分(L/min)及び500L/minであり、またその場合に、排ガスに含まれる窒素ガスの流量は、400L/minとなる。さらに、排ガスに含まれる水蒸気の流量は150L/分であり、水に換算すると5.3リットル/時(L/h)となる。
 ちなみに、「燃料電池」から排出されるこのような多量の水蒸気分・水分を低減させて、この後の窒素ガス生成処理を確実に且つ安定的に実施するために、除湿手段(図1では気液分離U122、図6では水封ポンプU30)が必要となるのである。なお、この除湿手段で回収した水は、純水若しくは純度の高い水として外部に提供されることも好ましい。また、このような「燃料電池」に対し、空気及び水素ガスはいずれも、燃料電池反応における熱損失の原因となる電解膜の(湿潤欠乏による)プロトン伝導度の低下を抑制するため、(図示していない)湿潤器を介して導入されることも好ましい。
 ここで本実施形態において、「燃料電池」内の圧力、すなわち背圧は、後に説明する圧力制御U113の背圧弁、及び圧力制御U121の背圧弁によって調整・制御されるが、
(a)主に圧力制御U113の背圧弁によって調整される水素極側の背圧と、
(b)主に圧力制御U121の背圧弁によって調整される空気極側の背圧と
は、ほぼ同等となるように制御されることも好ましい。実際、両背圧の間に0.1気圧(0.01MPa)程度の差が生じると、「燃料電池」から若干のガス漏れが生じる場合もあり得る一方、両背圧を同等にすると、相当に高い背圧でも問題の生じないことが実験的に分かっている。特に、「燃料電池」がPEFCの場合、その電解膜は比較的に薄いので、両背圧を同等にすることがより好ましい。
 また、以上に説明したような「燃料電池」を備えた燃料電池U11は、
(a)「燃料電池」に取り込ませた水素ガスや空気の流量、圧力、及び/又は温度、
(b)「燃料電池」から排出される排ガスや排出される水蒸気・水分の流量、圧力及び/又は温度、及び
(c)「燃料電池」の水素極・空気極間における複素インピーダンス
を測定可能な測定系・センサ群を備えており、さらに、当該測定系・センサ群からの情報を受け取った全体制御U131によって、「燃料電池」の稼働が制御されることも好ましい。
 例えば単純な制御の例として、上記(b)及び上記(c)を説明変数とし、上記(a)を目的変数とした(例えばDNN(Deep Neural Network)アルゴリズムを用いた)機械学習モデルを構築し、「燃料電池」が所望の出力を行うように、この構築したモデルを用いて「燃料電池」へ供給する水素ガスや空気の流量、圧力、及び/又は温度を調整してもよい。また、上記(c)の複素インピーダンス値が所定の許容範囲から外れた場合、水素ガスの供給を取り止めて「燃料電池」を停止させるといったような制御を行うことも好ましい。
 また、燃料電池U11は、水等の熱交換媒体を循環させる熱交換器を「燃料電池」内に又はその周囲に配置して、稼働し発熱した「燃料電池」から熱を取り出し、ユニット外部へ移送させることも好ましい。ちなみに、ここで使用可能な熱交換器として、シェル&チューブ式熱交換器等の多管式熱交換器や、アルファ・ラバル製ブレージングプレート式熱交換器等のプレート式熱交換器が挙げられる。
 または、熱交換器の代わりに、「燃料電池」における伝導性のセパレータとヒートパイプとを連結した熱伝導システムを用いて、「燃料電池」内の熱を直接外部に取り出すことも可能である。いずれにしても、このような熱交換・伝導手段によって、「燃料電池」のセルの温度を所定温度(例えば80℃)以下に制御し、「燃料電池」の好適な稼働を維持することができるのである。なお、熱交換媒体として水(冷却水)を使用する場合、イオン交換器によって、循環する冷却水からイオン(カチオン、アニオン)を除去することも好ましい。
 ちなみに、このように熱交換媒体やヒートパイプで移送された熱は、外部だけでなくシステム内にも供給され利用可能となっており、本実施形態においては、後述するオフガスバッファタンク123に供給されて、窒素フィルタU12へ供給される排ガスをさらに高温(例えば45℃)にすることが可能となっている。勿論、排ガスの温度が十分に高温の場合には、このようなオフガスバッファタンク123における加熱処理は不要となる。
 また、このような熱交換媒体やヒートパイプによって当該熱を水素生成改質U103へ移送し、水蒸気改質の際に必要となる熱量を補給することもできる。さらに、当該熱を用いて、水素生成U102における電気分解対象の水を水蒸気にしたり、当該水の温度を上昇させたりして、電気分解における水素発生効率を向上させることも可能となる。
 なおこの際、所望の水素発生効率を達成し安定的に維持すべく、電気分解セルの温度を、設置された温度センサでモニタし、全体制御U131によって電気分解動作の制御を行うことも好ましい。さらに、電極間の印加電圧を高くして、電解質を使用せず電解質のモニタやメンテナンス等を不要とした電気分解処理を行うことも可能である。
 さらに、熱交換器からの高温の媒体や、ヒートパイプで移送された熱を受けた高温の媒体を利用して、例えば本装置(システム)1の設置された施設内の暖房を行ったり、このような高温の媒体を冷却塔(クーリングタワー)に投入して低温にし、低温となった媒体を用いて凝縮・蒸発器及び空調装置において冷風を生成し、例えば当該施設内の冷房を行ったりすることも可能となる。またこの場合、窒素ガス生成装置(システム)1は、「燃料電池」からの電力を用いてこれらの冷暖房設備の稼働を補助することもでき、それ故、当該施設内の省エネ用設備として機能することもできるのである。
 またさらに、燃料電池U11における他の実施形態として、「燃料電池」を2つ又はそれ以上直列に接続し、順次1つ前の燃料電池の排ガスを取り込んで電池反応に用いることによって、最終的に酸素濃度のより低い排ガス、例えば酸素濃度が2.5vol%以下の排ガスを取り出すことも容易となる。ちなみに本願発明者等は、特開2019-129110号公報において、発明したこのような構成の燃料電池系を公開している。
 同じく図1において、ドレイン111及び112はそれぞれ、燃料電池U11における「燃料電池」の(水素極側の)燃料路出口及び(空気極側の)空気路出口に設けられ、(通常、相対湿度が概ね100%である)排ガス中に含まれた水蒸気が結露して生じる水を回収する。これにより、いわゆるフラッディング現象による電池反応への悪影響が抑制可能となる。また、このように回収された水は、水素生成U102へ送られ、水素生成材料として再利用されてもよい。
 ここで、「燃料電池」の背圧を、大気圧を超える値(例えば2~7気圧,約0.2~0.7MPa)に設定することにより、露点をより高くしてドレイン111及び112に落ちる水量を増加させ、除湿効果を高めることもできるのである。なお、ドレイン111及び112は、所定量の水が溜まると当該水を自動的に外部へ排出するオートドレイン機能を有するものであることも好ましい。
 圧力制御U113は、ドレイン111で除湿処理を受けた水素ガスを、「燃料電池」の設定背圧を維持しつつ、「燃料電池」の(水素極側の)燃料路入口の方へ(例えばフロー制御U105の後段に)、例えば水素混合器を介して戻すためのユニットである。具体的に圧力制御U113は、背圧弁及び圧力計を備えており、この背圧弁の調整によって「燃料電池」内における、特に水素極側の圧力(背圧)を制御する。
 気液分離U114は、「燃料電池」の(水素極側の)燃料路出口より排出されてドレイン111及び圧力制御U113を経てきた排ガスから、なお残留している水蒸気分や水分を除去するためのユニットである。具体的に、除湿器、加圧機構を備えた除湿装置、気液分離器や、ドライフィルタを用いて水蒸気分や水分を除去することができる。ここで、除湿器として、シリカゲル及び/又はゼオライトを含むものが使用可能である。また、気液分離器の方式としては、重力分離型、遠心分離型、ミスト除去器パッド型、翼型分離型や、気圧分離コアレッサ型等を採用することができる。
 水素回収U115は、公知の水素ガスフィルタやエグゼクタを用い、(水素極側の)燃料路出口より排出された排ガスから未反応の残留水素ガスを取り出し、再利用するためのユニットである。ここで、取り出した水素ガスは、例えばフロー制御U105の後段の水素混合器へ送り返すことができる。また、水素ガスを取り出した後のガスは、外部へ排出されてもよい。
 圧力制御U121は、ドレイン112で除湿処理を受けた(空気極側の)排ガスを、「燃料電池」の設定背圧を維持しつつ、気液分離U122に送り出すためのユニットである。具体的にこの圧力制御U121も、圧力制御U113と同様、背圧弁及び圧力計を備えており、この背圧弁の調整によって「燃料電池」内における、特に空気極側の圧力(背圧)を制御するのである。
 同じく図1において、気液分離U122は、「燃料電池」の(空気極側の)空気路出口より排出され、ドレイン112及び圧力制御U121を経てきた排ガスから、なお残留している水蒸気分や水分を除去するためのユニットである。具体的に、除湿器、加圧機構を備えた除湿装置や、気液分離器を用いて水蒸気分や水分を除去するものとすることができる。ちなみに1つの基準として、気液分離U122は、排ガス中の相対湿度を60%以下に、より好ましくは30%以下に抑制するものであってもよい。
 また、後に図7を用いて詳細に説明するが、気液分離U122は、ドライフィルタ122f(図7)を利用したドライフィルタユニットであってもよい。さらに、好適な他の実施形態として、後に図6を用いて詳細に説明するが、気液分離U122に代わる除湿手段として、水封ポンプ301を備えた水封ポンプU30を採用することもできる。またさらに、気液分離U122を、ドライ真空ポンプを備えたポンプユニットとすることも可能である。ドライ真空ポンプは、真空室内において油や液体を使用しない、例えば水蒸気の排気にも使用可能な真空ポンプである。このようなドライ真空ポンプとして、例えば樫山工業社製の空冷ドライ真空ポンプNeoDry 60Eを採用してもよい。この空冷ドライ真空ポンプは、一対の多段ルーツロータが非接触で回転して気体の圧縮排気を行う構造となっている。
 オフガスバッファタンク123は、気液分離U122から導入した排ガスを一時的に保存・貯蔵するガスタンクである。この排ガスは、設定背圧(例えば1.1~7気圧,約0.11~0.7MPa)と同圧となるまでオフガスバッファタンク123に導入される。また、排ガスを後述する窒素フィルタU12へ所望の圧力(例えば7気圧,約0.7MPa)で流入させるべく、この排ガスのオフガスバッファタンク123への流量は、窒素フィルタU12への必要導入流量と同等に、又はそれを超えた流量に設定されることも好ましい。
 ちなみに、「燃料電池」を停止した場合、オフガスバッファタンク123への配管内圧力は例えば大気圧に戻ってしまう。そこで、オフガスバッファタンク123は、「燃料電池」への排ガスの逆流を防止するための逆止弁を備えていることも好ましい。また、オフガスバッファタンク123にも、ガス圧計が設けられていて、各時点でのタンク内ガス圧を測定可能となっていることも好ましい。
 さらに、オフガスバッファタンク123は、燃料電池U11における「燃料電池」の発する熱による加熱処理が可能な「加熱手段」を用いて、タンク内の排ガスを、室温よりも高い温度(例えば30~45℃)の排ガスにすることも好ましい。これにより、後述する窒素フィルタU12の窒素ガスフィルタ12fへ、窒素フィルタリング処理上好適とされる温度の排ガスを供給することも可能となる。
 ここで、上記の「加熱手段」として、既に説明した熱交換器や、セパレータ・ヒートパイプ連結系を採用してもよい。これにより、電熱ヒータ等のエネルギー消費手段を使用せずに、「燃料電池」の熱を有効活用して好適な窒素フィルタリング処理を実施することが可能となるのである。勿論、オフガスバッファタンク123へ導入される排ガスの温度が十分に高温の場合は、このような加熱手段は不要となる。
 増圧U124は、燃料電池U11の「燃料電池」から取り出され、さらに水分又は水蒸気分の低減した排ガスを、さらに増圧させて(例えば7気圧(約0.7MPa)の圧力にして)窒素フィルタU12へ供給する。この増圧U124としては、公知の圧縮ポンプ、例えば日立産機システム社製のベビコン(登録商標)POD-7.5VNBを採用することができる。または、公知の増圧弁、例えばSMC社製の不活性ガス用増圧弁VB11A又はVBA42を採用することも可能である。また、排ガス増圧のモニタのために圧力計を備えていることも好ましい。
 ここで、公知の増圧弁の多くはエア駆動タイプのものであるが、この場合、「燃料電池」へ供給する圧縮空気の一部、すなわち空気タンク107から取り出した圧縮空気をサポートガスとして用いて、この増圧弁を駆動させてもよい。これにより、増圧弁の駆動に対し、更なる電力消費等の負担をかけずに済む。また、増圧U124として、ブースタ型コンプレッサを使用することも好ましい。
 ちなみに、上述したように、オフガスバッファタンク123からの排ガスの圧力が十分に高い(例えば7気圧(約0.7MPa)である)場合には勿論、増圧U124は不要となる。また、取り扱いに注意が必要となるが、水素タンク104から取り出した水素ガスを、このサポートガスとして利用することも可能である。
 同じく図1において、腐食性ガス等除去U125は、この後、窒素フィルタU12の窒素ガスフィルタ12fに対して作用させるべき(「燃料電池」から取り出した)排ガスに対し、硫化物、塩化物、炭化水素、フッ化物及び強アルカリ化合物のうちの少なくとも1つを除去若しくは低減する処理を施すことの可能なユニットである。
 例えば、水素生成改質U103を用いて都市ガス等から水素ガスを生成し、当該水素ガスを「燃料電池」の燃料とした場合、その排ガスには、硫化水素、亜硫酸ガス、メタンガス等の炭化水素ガス、アンモニア、ホルムアルデヒド等、水素ガス以外の種々のガス成分が混入してしまう。また、「燃料電池」にSOFCを使用した場合、800℃前後の高温雰囲気で空気中の窒素ガスが酸素と結合し、窒素酸化物(NOx)も発生し得る。これらのガスは、最終的な生成物である窒素ガスにおける不純物となるだけでなく、窒素ガスフィルタ12fの(中空糸の)繊維に悪影響を及ぼすリスクとなる。
 そこで腐食性ガス等除去U125は、例えば活性炭フィルタを備えており、排ガス中における上記の不純物ガスを除去する、又は極力低減させる役割を果たすのである。ちなみに、腐食性ガス等除去U125は1つの基準として、炭化水素ガスについてはその濃度を0.013mg/Nm3(0.01ppm wt)以下に抑え、硫化水素、亜硫酸ガス、塩化水素、フッ素等の強酸性ガスや、アミン、アンモニア、苛性ソーダ等の強アルカリ性ガスについてはその濃度を、所定検出方法における検出限界以下に抑えることも好ましい。
 またさらに、図1に示したように、この腐食性ガス等除去U125の前後に、ミストフィルタ及びダストフィルタが設置されることも好ましい。このうちミストフィルタは、排ガス中の水ミスト、溶剤ミストや、オイルミスト等のミストを除去する又は低減させるフィルタである。このミストフィルタは1つの基準として、これらのミストによる残油分についてその濃度を0.01mg/Nm3(0.008ppm wt)以下に抑えることも好ましい。一方、ダストフィルタは、排ガス中の粉塵を除去する又は低減させるフィルタである。ダストフィルタは1つの基準として、粒径0.01μm以上のパーティクルを概ね全て排除することも好ましい。
 温度調整U126は、例えば電熱ヒータを備えており、取り入れた排ガスの温度を、窒素ガスフィルタ12fの特性に基づき予め設定された好適温度に近づけ又は一致させ、温度調整された排ガスを窒素フィルタU12へ供給するためのユニットである。また、好適な一態様として、温度調整U126は、燃料電池U11から供給される熱を、熱交換器を介して受け取って温度調整に利用してもよく、または、同じく燃料電池U11から供給される電力によって排ガス温度を調節してもよい。
 ちなみに、後に詳述する窒素ガスフィルタ12fとして採用可能である宇部興産製のUBE NセパレーターNM-B01Aでは、導入ガスの温度が室温(25℃)よりも高い30~45℃である場合にフィルタリング効果が高くなるとされている。この場合、「燃料電池」の排ガスが室温(25℃)よりも高い状況では、温度調整U126を用いることなく、この高いフィルタリング効果を享受することも可能となる。また、その分温度調整のための電力消費量を抑制することも可能となる。
 また、窒素と酸素とについて透過する度合いの異なる繊維を使用した窒素ガスフィルタ12fでは、導入される排ガスの温度が高くなると、その回収率が大きく減少することも分かっている。したがって、本システムで設定される窒素ガス出力のパフォーマンスの内容次第では、所定の回収率を確保すべく、温度調整U126を用いず、排ガスの温度を概ねオフガスバッファタンク123内での温度のままとすることもあり得るのである。
 同じく図1において、窒素フィルタU12は、フロー制御U127から供給された排ガスを、窒素と酸素とについて透過する度合いの異なる繊維を使用した窒素ガスフィルタ12fに対して作用させ、この窒素ガスフィルタ12fから窒素濃度の増大した排ガス、すなわち本実施形態において高純度の窒素ガスを取り出すユニットである。
 具体的に本実施形態において、窒素フィルタU12は、
(a)窒素ガスフィルタ12fと、
(b)排ガスを窒素ガスフィルタ12fへ作用させるべく導入し、この窒素ガスフィルタ12fから窒素濃度の増大した排ガスを取り出すフィルタ入出力部と、
(c)窒素ガスフィルタ12fによって(排ガス中の)窒素分子から分離された酸素分子を含むガス(以下、フィルタ排出ガスと略称)を、上記(b)で取り出される排ガスとは別に取り出すフィルタパージ部と
を備えている。
 また具体的に、この窒素ガスフィルタ12fとして、窒素分子よりも酸素分子をより優先して透過させる高分子繊維素材を用いた中空糸フィルタ(中空糸繊維フィルタ)を使用することができる。例えば、ポリイミド中空糸を用いた宇部興産製のUBE NセパレーターNM-B01Aを採用してもよい。これは、高圧の排ガスが中空糸の中を流れていく間に、酸素分子が選択的に中空糸膜を透過し、最終的に、中空糸の出口から純度の高まった窒素ガスが取り出される仕組みとなっている。
 なお勿論、窒素ガスフィルタ12fはこのセパレータに限定されるものではない。例えば、宇部興産製のUBE N2セパレーターNMシリーズのセパレータ、ダイセル・エボニック社製のSEPURAN N2 メンブランモジュールや、同じくダイセル・エボニック社製のselectiveタイプの窒素ガスフィルタを、窒素ガスフィルタ12fとして採用することも可能である。
 ここで、このような窒素ガスフィルタ12fにおける、
(a)導入される排ガスの酸素濃度(導入酸素濃度)、導入される排ガスの圧力(導入圧力)や、フィルタ12f出口での排ガスの流量(出口流量)と、
(b)フィルタ12f出口での排ガスの酸素濃度(出口酸素濃度)や、フィルタ12fの回収率と
の関係については、後に図2~5に示した実施例を用いて詳細に説明を行う。またそこで、純度の高い窒素ガスを得るための種々の条件についても説明する。
 なお、上記(a)の出口流量は、窒素フィルタU12の出口側に設置された流量計によって計測し、後述するフロー制御U127によって制御することができる。また、上記(b)の出口酸素濃度も、同じく窒素フィルタU12の出口側に設置された酸素濃度計によって計測可能となっている。ここで勿論、フロー制御U127は、これらの酸素濃度計や流量計の直後に設置されることも好ましい。
 また本実施形態においては、この酸素濃度計による出口酸素濃度の測定値に基づき、全体制御U131は、例えば圧力制御U121の背圧弁を制御して「燃料電池」の設定背圧を調整したり、フロー制御U127のマスフローコントローラを制御してフィルタへの排ガス流量を調整したりして、所望の極低酸素濃度の高純度窒素ガスを供給させることも可能となるのである。
 同じく図1において、フロー制御U127は、窒素フィルタU12で生成された、窒素濃度の増大した排ガス、すなわち本実施形態において高純度窒素ガスに対してその流量を制御し、当該窒素ガスを、増圧U128を介し窒素タンク129へ送るユニットである。すなわち上述したように、窒素ガスフィルタ12fにおける出口流量(f_out)を制御するユニットとなる。具体的には、ガスレギュレータ及びマスフローコントローラ(又はフロースイッチ)を備えたものとすることができる。
 増圧U128は、本実施形態において、フロー制御U127で流量の制御された高純度窒素ガスを、さらに増圧させて(例えば8~15気圧(約0.8~1.5MPa)の圧力にして)窒素タンク129へ送り、より多量の高純度窒素ガスを窒素タンク129に保存・貯蔵させるためのユニットである。この増圧U128として、例えば、ブースト増圧弁やブーストコンプレッサを採用することができる。例えば、10気圧(約1.0MPa)以上に増圧可能な日立産機システム社製のブースタベビコン(登録商標)OBB-7.5GPを採用してもよい。また、増圧のモニタのために圧力計が備えられていることも好ましい。
 また、窒素タンク129は、窒素フィルタU12から増圧U128を介して供給された高純度窒素ガスを一時的に保存・貯蔵し、例えば全体制御U131による制御に従って、高純度窒素ガスを安定的に外部へ供給する窒素ガス供給インタフェースとなっている。窒素タンク129にも、ガス圧計が設けられていて、各時点でのタンク内ガス圧を測定可能となっていることも好ましい。
 なお、このような窒素ガス供給インタフェースとしての窒素タンク129(及び増圧U128)を使用せず、窒素フィルタU12から所定のフロー制御手段を介して直接、生成した窒素ガスを外部に供給してもよい。例えばこの供給先が半田付け装置等である場合においては、直接供給されて少なくとも室温(25℃)を超える温度を有する高純度窒素ガスは、半田付け雰囲気として利用される際、更なる高温化に必要な熱量を節約できる点からして、より好ましいものとなっている。
 全体制御U131は、以上に説明した燃料電池U11及び窒素フィルタU12を含む主要な構成部、好ましくは(例えば水封ポンプU30(図6)を含む)全ての構成部との間で有線又は無線通信ネットワークを介して通信可能となっており、各構成部の測定部・センサから出力された測定量、例えば圧力、ガス流量、温度、窒素濃度、酸素濃度、水素濃度、水素漏洩の有無等を受信し、適宜モニタして、各構成部の監視及び制御を行う制御部である。
 例えば、この全体制御U131は、プロセッサ及びメモリを備えており、このメモリには、各構成部の監視・制御を行うための窒素ガス生成システム監視・制御プログラムが保存・搭載されていて、このプロセッサによって当該プログラムが実行されることも好ましい。
 ここで、全体制御U131が実施する制御には、各構成部及び各構成部間における圧力、ガス流量、温度、窒素濃度、酸素濃度、水素濃度等の調整・制御が含まれる。特に、燃料電池U11の「燃料電池」における背圧制御や、水素極側背圧と空気極側背圧とのバランス制御を行うことも好ましい。
 また、全体制御U131は、燃料電池U11の「燃料電池」の温度(セル温度)や、窒素フィルタU12の窒素ガスフィルタ12fに導入される排ガスの温度、さらには水素生成U102の温度等をモニタして、窒素ガス生成装置(システム)1における燃料電池反応や、フィルタリング動作、さらには水素生成(電気分解)反応を適切に制御することも好ましい。さらに、各構成部及び各構成部間における水素漏洩の有無をモニタし、問題が発生したと判断した際は、水素漏洩箇所の情報を含むアラームを外部に発信することも好ましい。
[実施例1]
 図2~4は、本発明による窒素ガス生成処理に係る実施例1を説明するためのグラフである。
 図2~4に測定結果・分析結果を示した実施例1においては、窒素ガスフィルタ12f(図1)として宇部興産製のUBE NセパレーターNM-B01Aを使用し、この窒素ガスフィルタ12fに対し、室温(25℃)下で、酸素濃度が20.8vol%である空気と、窒素ガス及び酸素ガスの混合ガスであって酸素濃度がそれぞれ10.3vol%、5.1vol%、及び1.1vol%である3種の混合ガスの各々とを個別に導入して、
(a)導入したガスの酸素濃度(導入酸素濃度c_in_O2(vol%))、導入したガスの圧力(導入圧力p_in(気圧))、及び窒素ガスフィルタ12f出口での排ガスの流量(出口流量f_out(L/min,リットル/分))と、
(b)窒素ガスフィルタ12f出口でのガスの酸素濃度(出口酸素濃度c_out_O2(ppm vol))と
を計測し、上記(a)及び(b)の関係を調べた。
 ちなみに、上記の導入ガスにおける酸素濃度10.3vol%、5.1vol%、及び1.1vol%はいずれも、実際の「燃料電池」の排ガスにおいて実現する値となっている。
 図2(A)、(B)及び(C)には、それぞれ出口流量f_outが2.0L/min、1.5L/min、及び1.0L/minの条件下における、導入酸素濃度c_in_O2と、出口酸素濃度c_out_O2との関係を表すグラフが示されている。
 これらのグラフによれば、
(a)導入酸素濃度c_in_O2が小さくなるほど、
(b)導入圧力p_inが大きくなるほど、さらに、
(c)出口流量f_outが小さくなるほど、
出口酸素濃度c_out_O2はより小さくなり、より純度の高い窒素ガスが窒素ガスフィルタ12fから出力されることが理解される。
 例えば、導入酸素濃度c_in_O2を1.1%として、導入圧力p_inを7.0気圧(約0.7MPa)とし、出口流量f_outを1.0L/minに設定した場合、(図2(C)に示されたグラフ点となるが)出口酸素濃度c_out_O2は、325ppm(0.0325vol%)となる。ちなみに、同じ導入酸素濃度及び導入圧力の条件下で、出口流量f_outをさらに小さい0.75L/minに設定した場合には、出口酸素濃度c_out_O2は、190ppm(0.0190vol%)と非常に小さな値となり、極低酸素濃度の高純度窒素ガスが得られることも分かっている。ちなみにこのような結果の傾向は、窒素ガスフィルタ12fへ導入されるガスの温度が40℃及び50℃である場合にも概ね変わらないことが、実験により確認されている。
<出口流量と出口酸素濃度>
 ここで最初に、出口流量f_outと、出口酸素濃度c_out_O2とのより具体的な関係を説明する。図2(A)~(C)に示したグラフのデータから、両者の間には、次式
  (1) (c_out_O2)=C・(f_out)
で表される関係の成立することが導出される。ここで、
(a)項係数Cは正値をとり、導入酸素濃度c_in_O2が小さいほど、また、導入圧力p_inが大きいほど小さな値をとる。例えば、導入酸素濃度c_in_O2が1.1%であって導入圧力p_inが7.0気圧(約0.7MPa)である場合、このC値は319(ppm)となり、非常に小さな値を示す。一方、
(b)べき係数aは、導入酸素濃度c_in_O2にはほとんど依存せず、導入圧力p_inが4.0気圧(約0.4MPa)で1.6前後となり、また導入圧力p_inが大きくなるほど大きな値をとって、導入圧力p_inが7.0気圧(約0.7MPa)で2.0前後となる。
 したがって、いずれにしても、出口流量f_outを小さくするほど、出口酸素濃度c_out_O2をより小さくすることができる、すなわち酸素濃度のより低い高純度の窒素ガスが得られることが理解される。ここで、べき係数aは、導入圧力p_inのみで決まっていることから、出口酸素濃度に対する出口流量の寄与のメカニズムは、その導入圧力によって決定されるフィルタ12fの繊維の状態にかかわる動的なものと考えられる。
<導入酸素濃度とフィルタリング効果>
 次に、図3に示した分析結果を用いて、導入酸素濃度c_in_O2と、窒素ガスフィルタ12fによるフィルタリング効果、すなわち酸素濃度低減効果の度合いとの関係を説明する。
 図3(A)、(B)及び(C)には、それぞれ出口流量f_outが2.0L/min、1.5L/min、及び1.0L/minである条件下における、導入酸素濃度c_in_O2と、酸素濃度低減指数との関係を表すグラフが示されている。なお、これらのグラフの各々に示されている4つのグラフ曲線はそれぞれ、導入圧力p_inが4.0気圧(約0.40MPa)、5.0気圧(約0.51MPa)、6.0気圧(約0.61MPa)及び7.0気圧(約0.71MPa)である場合のデータ点に対する累乗近似曲線となっている。
 ここで、酸素濃度低減指数は、酸素濃度20.8vol%の空気を窒素ガスフィルタ12fに導入した際の出口酸素濃度をc_out_O2(Air)として、次式
  (2) (酸素濃度低減指数)=c_out_O2(Air)/c_out_O2
をもって算出される指数であり、空気を作用させた結果を基準とした、フィルタリングによる絶対的な酸素濃度低減の度合い、すなわち(空気の場合を基準とした相対的な)フィルタリング効果の大きさを表す指標となっている。
 図3(A)、(B)及び(C)のグラフによれば、
(a)酸素濃度低減指数は、導入酸素濃度c_in_O2が小さくなるほど増加し、特に導入酸素濃度c_in_O2が10vol%を超えたあたりから、その増加の割合が急激に大きくなり、
(b)酸素濃度低減指数は、導入圧力p_inに対して顕著な依存性を示しておらず、さらに、
(c)酸素濃度低減指数は、出口流量f_outに対しても顕著な依存性を示していない
ことが分かる。ちなみに、上記(a)における酸素濃度低減指数の増加割合が急増し始める導入酸素濃度c_in_O2=10vol%は、酸素利用率が50%である「燃料電池」の排ガスにおける酸素濃度に概ね相当する。
 また以上の分析結果から、例えば酸素濃度低減指数が10となるような、すなわちフィルタリング効果が(空気の場合と比較して)10倍となるような(一桁高くなるような)フィルタリング条件を求めてみると、導入圧力p_inや出口流量f_outの設定にかかわらず、導入酸素濃度c_in_O2を2.5vol%以下にすればよいことが理解される。ここで、c_in_O2=2.5vol%との値は、各グラフのおける4つの累乗近似曲線において酸素濃度低減指数が10となる導入酸素濃度値の平均値となっている。ちなみに、各グラフのグラフ曲線におけるc_in_O2=1.1vol%あたりでの接線の横軸切片も、この2.5vol%(=c_in_O2)付近の値となっている。
 したがって図1に示した実施形態の窒素ガス生成装置(システム)1においては、酸素濃度が2.5vol%以下である排ガスを窒素ガスフィルタ12fに対して作用させることにより、このフィルタ12fから、空気を作用させた結果と比較して酸素濃度がその1/10以下となる排ガスを取り出すことも可能となるのである。ちなみに、以上に説明した図3のグラフについては、窒素ガスフィルタ12fへ導入されるガスの温度が40℃及び50℃である場合にも、特に低酸素濃度領域で概ね一致することが実験により確認されている。
<導入圧力と出口酸素濃度>
 次いで、図4に示した分析結果を用いて、導入圧力p_inと、出口酸素濃度c_out_O2との関係について説明を行う。
 図4は、図2(A)~(C)に示した各グラフにおける4つのグラフ曲線に相当する4つの多項式(2次)近似式における2次係数と1次係数との比をとった上での、
  導入圧力p_inと、(2次係数)/(1次係数)との関係
を示すグラフとなっている。
 ここで、図2(A)~(C)に示した各グラフには、それぞれ導入圧力p_inが4.0気圧(約0.40MPa)、5.0気圧(約0.51MPa)、6.0気圧(約0.61MPa)及び7.0気圧(約0.71MPa)である場合における、導入酸素濃度c_in_O2と出口酸素濃度c_out_O2との関係を表す4つのグラフ曲線が示されており、さらに各グラフ曲線の近傍には、当該グラフ曲線に相当する多項式(2次)近似式が記載されている。例えば、図2(C)のグラフにおけるp_in=7.0気圧(且つf_out=1.0L/min)のグラフ曲線の近傍には、
  (3) y=6.6246x2+161.96
      ここで、yはc_out_O2(vol%),xはc_in_O2(vol%)
との多項式近似式が記載されているが、この場合、2次係数は6.6246であって、1次係数は161.96となる。
 このように、導入酸素濃度c_in_O2は、出口酸素濃度c_out_O2に対し、1次項として(比例的に)寄与するだけでなく、2次項としても影響していることが分かる。すなわち、導入酸素濃度c_in_O2がN分の1になれば、単純に出口酸素濃度c_out_O2もN分の1になるわけではなく、出口酸素濃度c_out_O2には、導入酸素濃度c_in_O2の2次項が効いてくるのである。
 以上に述べたような2次係数と1次係数との比の値である(2次係数)/(1次係数)を、図2(A)~(C)の各グラフの各グラフ曲線について算出した上で、縦軸を(2次係数)/(1次係数)とし、横軸を導入圧力p_inとしてこれらの算出値をプロットしたグラフが、図4のグラフとなる。
 図4のグラフによれば、それぞれ出口流量f_outが1.0L/min、1.5L/min及び2.0L/minである3つのグラフ曲線(図4では直線)が得られており、図4のグラフ点は、出口流量毎に決定される直線近似式をもって近似可能となっていることが分かる。
 これらのグラフ曲線(直線)によると、導入圧力p_inが大きくなるほど、また、出口流量f_outが小さくなるほど、(2次係数)/(1次係数)は大きくなる。したがって、上述した導入酸素濃度c_in_O2の2次項は、出口酸素濃度c_out_O2をより小さくする方向に寄与することが分かる。
 またこのことから、より純度の高い窒素ガスを得る(出口酸素濃度c_out_O2をより小さくする)ためには、導入酸素濃度c_in_O2における2次項の割合、すなわち(2次係数)/(1次係数)を、正値においてより大きくすることが好ましく、少なくとも、2次項の寄与が消滅する0(ゼロ)を超える値にすることが重要になると理解される。すなわち正値を超える2次項を発現させることが好ましいのである。
 そこで、図4のグラフから、(2次係数)/(1次係数)が0(ゼロ)を超える値となる条件を求めたところ、出口流量f_outが1.0L/min、1.5L/min及び2.0L/minである場合において、導入圧力p_inがそれぞれ、2.94気圧(約0.298MPa)、3.40気圧(約0.344MPa)及び3.86気圧(約0.391MPa)を超える値であることが、その条件となることが分かる。ここで、これらの圧力閾値は、出口流量f_outが大きくなるほど大きい値をとることも理解される。すなわち、出口流量f_outをより小さく設定した場合、より小さな圧力閾値に基づいて、導入圧力p_inを設定することが可能となるのである。
 また以上の分析結果から、図1に示した実施形態の窒素ガス生成装置(システム)1においては、窒素ガスフィルタ12fに対して作用させる排ガスの圧力(導入圧力)を、窒素ガスフィルタ12fによって決定される圧力閾値であって、窒素ガスフィルタ12fから取り出される際の排ガスの流量(出口流量)が大きくなるほどより大きい値をとる圧力閾値を超える値の圧力とすることも好ましい、ことが理解されるのである。
[実施例2]
 図5は、本発明による窒素ガス生成処理における窒素ガスフィルタ12fの回収率を調べた実施例2を説明するためのグラフである。
 なお実施例2においては、実施例1と同じシステムを用い、導入酸素濃度、導入圧力や、出口流量に関しても実施例1と同様の条件設定を行って、窒素ガスフィルタ12fの回収率を測定している。ただし、この実施例2では、導入酸素濃度c_in_O2=0(ゼロ)の場合の測定、すなわち純窒素ガスをフィルタ12fに導入しての測定も追加で行っている。またここで、この実施例2の測定項目である回収率は、フィルタ12fにおけるガス回収の度合い・程度であり、フィルタ12fの入口における導入ガスの流量(導入流量)をf_inとして、次式
  (4) (回収率)=(f_out)/(f_in)
によって算出される比の値となっている。
 図5(A)、(B)及び(C)には、それぞれ出口流量f_outが2.0L/min、1.5L/min、及び1.0L/minの条件下における、導入酸素濃度c_in_O2と、回収率との関係を表すグラフが示されている。
 これらのグラフによれば、
(a)(4.0気圧(約0.40MPa)の条件下で若干外れる場合もあるが)導入酸素濃度c_in_O2が小さくなるほど、
(b)(4.0気圧(約0.40MPa)と5.0気圧(約0.51MPa)との差は非常に小さいが)導入圧力p_inが小さくなるほど、さらに、
(c)(これは回収率の定義からして蓋然性の高いこととなるが)出口流量f_outが大きくなるほど、
回収率はより大きくなり、例えば、所定流量の排ガスを窒素ガスフィルタ12fに導入したとしても、より多くの(酸素濃度の低下した排ガスである)窒素ガスが取得されることが分かる。
 ここで、上記(a)の導入酸素濃度c_in_O2については、回収率を高める方向と、(例えば図2に示したような)出口酸素濃度c_out_O2を低減させる方向とは、ともに一致しており、具体的には、導入酸素濃度c_in_O2を小さくすることによって、出口酸素濃度をより低減させ、且つ回収率を高めることが可能となる。したがって、より高い純度の窒素ガスをより多く生成するべく、フィルタリング対象気体の酸素濃度が低いほど回収率が高くなるような窒素ガスフィルタを使用することが、より好ましいのである。
 またこのことから、低酸素濃度の排ガスを出力する「燃料電池」と、その排ガスを利用する上記のような「窒素ガスフィルタ」との結合系は、その出口酸素濃度及びその回収率の両方の観点からして、非常に相性の良い、すなわち効率的に窒素ガスを生成可能とする系であることも理解される。
 一方、上記(b)の導入圧力p_inや、上記(c)の出口流量f_outに関しては、回収率を高める方向と、(例えば図2に示したような)出口酸素濃度c_out_O2を低減させる方向とは互いに反対方向であって、回収率と出口酸素濃度c_out_O2とは、いわゆるトレードオフの関係となっている。
 したがって例えば、導入圧力p_inを大きくすると、より低酸素濃度の高純度窒素ガスを得ることができるが、一方で、所定量の当該窒素ガスを得るために必要となる排ガス量、ひいては「燃料電池」への空気の必要投入量は、増加することとなる。
 したがって、窒素ガス生成装置(システム)1(図1)で設定される窒素ガス出力のパフォーマンスの内容に合わせて、所望の低い出口酸素濃度c_out_O2を実現しつつ所定の回収率を確保するべく、導入圧力p_inや、出口流量f_outの設定を調整することも好ましいのである。例えば、所定以上(例えば99.9vol%以上)の高純度の窒素ガスを、所定の生成コストで(例えば、後述するようなPSA装置での生成コストと同等又はそれ未満で)製造するパフォーマンス内容を実現すべく、導入圧力p_inや、出口流量f_out(さらにはこれらに依存する回収率)を、制御しつつ決定していくことも好ましいのである。
 なお、上記(b)の導入圧力p_inに関して、回収率と出口酸素濃度c_out_O2とがトレードオフの関係となることについて、本願発明者等は、フィルタ繊維が中空糸をなしている実施例2(実施例1)の窒素ガスフィルタ12fでは、導入圧力p_inが高くなるにつれて、この中空糸が膨張し、フィルタ繊維の酸素分子選択能のみならず、酸素分子以外の分子に対する透過能にも変化が生じてしまうことも関係している、と考えている。
 また、以上に説明した回収率に関し、本願発明者等は、窒素ガスフィルタ12fへ導入するガスの温度が高くなるほど回収率がより小さくなり、所定以上の温度では、回収率が顕著に減少することを確認している。したがって、窒素ガス生成装置(システム)1(図1)において窒素フィルタU12の前段に設置された温度調整U126(図1)では、窒素ガスフィルタ12fにおける所定の回収率の確保も考慮して、排ガスの温度調整を行うことも好ましい。
 ここで、このような導入ガスの温度による回収率への影響について、本願発明者等はやはり、温度が高くなるにつれて、窒素ガスフィルタ12fの中空糸が膨張し、フィルタ繊維の酸素分子選択能のみならず、酸素分子以外の分子に対する透過能にも変化が生じてしまうことも関係している、と考えている。
 以上、図2~5を用いて実施例1及び2の説明を行ったが、これらの実験から得られた知見に基づき、本願発明者等は、窒素ガス生成装置(システム)1を用いて、99.9vol%を超える純度(窒素濃度)を有し酸素濃度が0.1vol%(1000ppm vol)未満である高純度窒素ガスを生成することに成功している。このような高純度の窒素ガスは、純度に関する条件の厳しいリフロー半田付け装置にも使用可能なものとなっている。ちなみに、リフロー半田付け装置においても、使用される半田ペーストの種類によっては、純度(窒素濃度)が99vol%の窒素ガスが使用可能となる。
 なお、窒素ガスの需要は勿論、半田付け装置を用いるような電子機器・電機分野に限定されるものではない。実際、レーザ加工や熱処理等の際に窒素ガスを使用する金属・樹脂分野、タイヤ充填や船舶内パージ装置等で窒素ガスを必要とする輸送機分野、各種プロセス用ガス、圧力輸送ガスや、冷却ガス等として窒素ガスを使用する化学分野、ドライカット装置等で窒素ガスを必要とする機械分野、さらには、食品保存やガス充填用に、またCA(Controlled Atmosphere)貯蔵雰囲気供給装置やフライヤ装置で窒素ガスを使用する食品分野等、様々な分野において、窒素ガスが種々の用途に使用されているのである。
 またそれ故、要求される窒素ガスの純度(窒素濃度)も、分野・用途によって様々である。例えば、不純物ガスとしての酸素ガスの濃度(酸素濃度)が0.01vol%(100ppm vol)のオーダであることを要求されるケースもあれば、当該酸素濃度が数vol%までは許容されるケースもある。
 このような状況に対し、本窒素ガス生成装置(システム)1によれば、例えば導入酸素濃度c_in_O2、導入圧力p_inや出口流量f_outを調整して、残留酸素が、要求される上限酸素濃度にまで抑えられた窒素ガスを、適宜提供することが可能となるのである。例えば、酸素濃度が数vol%程度であってもよいケースでは、導入酸素濃度c_in_O2を例えば10vol%とした上で、導入圧力p_inをより低く抑え、出口流量f_outをより大きくして、回収率を高めることも可能となる。
 さらに、本窒素ガス生成装置(システム)1によれば、その分野・用途によっては同時に必要となる電力や熱を、生成した窒素ガスに合わせて提供することも可能となっている。この点、従来の窒素ガス生成装置では当然ながら、そのようなエネルギーの供給までカバーすることは困難又は不可能である。
 またさらに、本願発明者等は、以上に説明した知見に基づき、本発明に係る窒素ガス生成装置(システム)1によれば、窒素ガスの生成コストも大幅に抑制可能であることを確認している。例えば、本願発明者等の調べによれば、現状、窒素ガスボンベの販売価格は例えば430円/Nm3程度であり、液体窒素の販売価格は例えば120円/Nm3程度となっている。また、普及している窒素ガス生成装置であるPSA(圧力変動吸着)装置によれば、窒素ガス生成コストは例えば48円/Nm3程度となる。
 これらに対し、窒素ガス生成装置(システム)1によれば、「燃料電池」の規格出力や可能排ガス流量、さらには見込まれる水素調達コストも含む、適切な条件設定によって、例えば上述したようなPSA装置での生成コストと同等又はそれ未満の生成コストを実現可能であることも試算により確認されている。さらに、上述したように窒素ガス生成装置(システム)1が(必要とされる)電力や熱も提供するケースにおいては、これらも合せた総合的な調達コストは、従来と比べて大幅に低減可能となるのである。
[除湿手段における他の実施形態:水封ポンプU]
 図6は、本発明に係る除湿手段における他の実施形態を説明するための模式図である。
 最初に図6(A)には、燃料電池U11の「燃料電池」の空気極側(ドレイン112)から取り出された排ガスを、フロー制御弁を介して受け取り、当該排ガスにおける水分又は水蒸気分を低減させ、このような除湿処理を施した排ガスを、オフガスバッファタンク123に向けて送り出す水封ポンプU30が示されている。
 ここで水封ポンプU30は、水封式の真空ポンプである水封ポンプ301と、気液分離槽302とを備えており、さらに、循環する封液を冷却するための(熱交換U40の一部である)熱交換器を取り込んでいる。
 このうち、水封ポンプ301は、
(a)ポンプのケージングに入れられた封液(封水)が、羽根車であるインペラ301aの偏心回転に伴う遠心力によって、ポンプの内部に三日月状の水膜を形成し、
(b)この封液の水膜と、インペラ301aの隣接する2つの羽根との間に形成される密閉空間の容積が、インペラ301aの偏心回転に伴い周期的に変化することによって、この封液の水膜がピストン及びシールのような役割を果たし、具体的には排ガスをケージング内に吸い込み、ケージング内で圧縮し、さらに封液とともにケージング外へ吐き出す一連の過程を発動させる
といった真空ポンプとなっている。なお勿論、水封ポンプ301の構造は、図6(A)に示されたものに限定されるものではなく、水封式のポンプに係る構造であれば種々のものがその構造として採用可能である。
 また、気液分離槽302は、水封ポンプ301から排出された排ガスと封液との混合体を受け取って、排ガス中の水分・水蒸気分と封液とを当該排ガスから分離し、分離した(水分・水蒸気分を含む)封液を溜めておく貯水槽となっている。ここで、溜め置かれた封液は、ポンプによって、(熱交換U40の一部である熱交換器を介し)水封ポンプ301へ戻され、再び使用される。また、溜め置かれた封液が所定以上になれば、その一部をオーバーフロー水として槽外に排出する。
 ここで水封ポンプ301では、インペラ301aがモータによって高速で回転するので通常、その摩擦熱により封液の温度が上昇し、冷却しなければ封液が沸騰する場合もある。そこで例えば封液が所定温度(例えば50℃)以上になれば、封液を(熱交換U40の一部である)熱交換器に通して冷却するのである。
 熱交換U40は、このように水封ポンプU30において封液の温度調整(冷却)を行うが、図6(A)に示した実施形態ではさらに、自身の一部である別の熱交換器を燃料電池U11内に及ぼし、「燃料電池」の温度調整(冷却)も行う。
 すなわち熱交換U40は、水封ポンプU30に取り込まれた熱交換器と、燃料電池U11に取り込まれた熱交換器とを直列に配し、例えば共通のチラー・ポンプを用いて、封液及び「燃料電池」から熱を受け取ってそれらの温度調整(冷却)を一挙に行うものとすることができる。または、両熱交換器を並列に配して温度調整(冷却)を一挙に行ってもよい。なお勿論、両熱交換器をそれぞれ独立に制御することも可能である。さらに、熱交換U40は、このようにして回収した熱を、外部の装置や施設に供給してもよく、また、例えば装置(システム)1の設置された施設内の冷暖房に活用してもよいのである。なおこの場合、チラーを省略することができる。
 以上説明した水封ポンプ301は、例えば「燃料電池」の空気極側の出口圧力が大気圧(約0.1MPa)に近い「低圧」の状態であっても、その真空ポンプ作用によって、排ガスを吸引して除湿処理を施し、オフガスバッファタンク123に移送することを可能にする。ここで、このような「低圧」の場合において、「燃料電池」の空気極側の出口圧力は、水封ポンプ301の吸引作用により1気圧(約0.1MPa)を下回り、その結果、「燃料電池」のセル内における燃料電池反応後のガスが積極的に引き出されることによって「燃料電池」の発電効率が向上することも見込まれるのである。
 このように水封ポンプ301は、「燃料電池」との取り合わせが非常に好適なものとなっている。実際に、出口圧力が1.2気圧(約0.12MPa)であって相対湿度が概ね100%である「燃料電池」の排ガスに対し、樫山工業社製の水封式真空ポンプLEH100SMSを用いて除湿処理を施したところ、大気における典型値と同程度の相対湿度(数十%)を有する排ガスを得て、さらにそれをタンク123に速やかに収納することができた。
 ちなみに、水封ポンプ301の真空ポンプ作用が大きすぎると、「燃料電池」のセル内のガスを引き出しすぎ、燃料電池反応に支障をきたす可能性も生じる。そのため、水封ポンプ301におけるインペラ301aの回転数を調整し、オフガスバッファタンク123への移送流量が、導入流量の基準値を超えないようにすることも好ましい。また、このような調整を適切に実施するため、水封ポンプU30の取り込み口の直前及び取り出し口の直後のそれぞれに流量計や圧力計を設置し、排ガスの流量や圧力をモニタすることも好ましい。
 次に、図6(B)に示した実施形態では、燃料電池U11と水封ポンプU30との間に断熱膨張室50が設けられている。ここで、「燃料電池」の空気極側からフロー制御弁を介して取り出された排ガスは、水封ポンプ301の吸引力によってこの断熱膨張室50内に取り込まれる。この際、取り込まれた排ガスは、空気極側出口配管から所定の容積を有する断熱膨張室50内へ一気に放出されるので断熱的に膨張し、自らの温度を低下させる。またその結果、排ガス中に含まれている水分・水蒸気分の一部が、飽和水蒸気密度の低下により凝結して、断熱膨張室50の下部に溜まるのである。ここで、水封ポンプ301の真空ポンプ作用(インペラ301aの回転数)を所定限度内で大きくし、さらに、フロー制御弁において断熱膨張室50内へ流入する排ガスの流量を調整して、排ガスの圧力の急激な低下を引き起こせば、断熱膨張の度合いもより大きくなり、凝結による除湿効果も高まる。例えば、排ガスの温度を数十℃のレベルで低下させ、多量の水蒸気分を凝結させて排ガス中から除外することも可能となるのである。
 このように断熱膨張室50は、水封ポンプU30の前段における排ガスの除湿手段として機能する。なおこの場合、水封ポンプU30は、断熱的に膨張した後の、水分・水蒸気分の低減した排ガスを取り込んで、当該排ガスにおける水分・水蒸気分をさらに低減させることになる。すなわち、断熱膨張室50を設けることによって、より相対湿度の低い排ガスをオフガスバッファタンク123へ送り込むことが可能となるのである。
 また本実施形態では、
(a)水封ポンプU30に取り込まれた熱交換器と、断熱膨張室50内に仕込まれた熱交換器(図6(B)では管束501)と、燃料電池U11に取り込まれた熱交換器とを直列(又は並列)に配し、
(b)水封ポンプU30の封液及び「燃料電池」から熱を受け取って断熱膨張室50に熱を伝え、封液、断熱膨張室50及び「燃料電池」の温度調整を一挙に行う
熱交換U60が設けられている。
 ここで、熱交換U60もチラー・ポンプを用いて上記の温度調整を行うのであるが、断熱膨張室50で熱交換媒体が冷却されるので、このチラー・ポンプとして低消費電力のものを使用することができる。さらに勿論、熱交換U60においても、このようにして回収した熱を、外部の装置や施設に供給してもよく、また、例えば装置(システム)1の設置された施設内の冷暖房に活用してもよいのである。なおこの場合においても、チラーを省略することが可能となる。
 また変更態様として、熱交換U60において「燃料電池」内の熱交換器を省略し、熱交換U60を、水封ポンプU30の封液から熱を奪って断熱膨張室50に熱を伝える熱移送手段とすることもできる。ここでこの場合においても、チラーを省略又は低消費電力化することが可能となる。
 さらに、断熱膨張室50を除湿手段とした他の実施形態となるが、図6(B)の構成において、水封ポンプU30を省略し、さらに、
(a)燃料電池U11の「燃料電池」からの排ガスの圧力を、大気圧(1気圧,約0.1MPa)を超える圧力、例えば3気圧(約0.3MPa)以上の圧力とし(すなわち、圧力制御U121及び圧力制御U113(図1)を用いて「燃料電池」を高圧下で駆動させ)、
(b)このような高圧の排ガスを断熱膨張室50内へ放出して高圧状態から開放させ、当該排ガスにおける相当量の水分・水蒸気分を除去する
こともできる。この場合、駆動電力のかかる水封ポンプU30を使用せずに、排ガスの除湿処理を確実に進めることも可能となるのである。
 以上、図6(A)及び図6(B)を用いて、水封ポンプ301を利用した除湿手段について説明を行ったが、両図に示したいずれの実施形態においても、水封ポンプU30やチラー・ポンプを駆動させるための電力の少なくとも一部は、「燃料電池」から供給することができ、さらに勿論、自然エネルギー発電U101(図1)や蓄電U101s(図1)から供給してもよい。また、「燃料電池」から排出される水や、(図6(B)の場合に)断熱膨張室50から取り出される(例えばオーバーフローした)水、さらには(その純度が高い場合ではあるが)気液分離槽302のオーバーフロー水を回収し、純水若しくは高純度の水として外部に提供可能とする純水回収手段(具体的は例えば配管、ポンプ及びフィルタ等)が設けられていることも好ましい。この場合、本装置(システム)1は、純水供給装置(システム)としても機能するのである。
[気液分離Uの一実施形態:ドライフィルタ]
 図7は、本発明に係る除湿手段としての気液分離U122における一実施形態を説明するための模式図である。
 図7に示した実施形態では、気液分離U122は、ドライフィルタ122fを用いたドライフィルタユニットとなっている。このドライフィルタ122fは、
(a)大気圧(1気圧,約0.1MPa)を超える圧力、例えば3気圧(約0.3MPa)以上の圧力を有する排ガスを受け取り、
(b)当該排ガスを、容器下部で急激に方向転換させて、当該排ガス中の水分、油分や微小混合物を分離し、
(c)方向転換してメッシュ管122f1へ入ってきた当該排ガスを、メッシュ管122f1のメッシュ及びその内部の(空気よりも水蒸気をより多く透過させる)中空糸フィルタによって濾過して、当該排ガス中の微粒子・水分・水蒸気分を取り除き、
(d)さらに濾過の際に発生する熱によって、当該排ガス中の水分を蒸発させる
ことを可能にするフィルタである。
 ここで、排ガスから取り出された水分・水蒸気分は、ドレイン122f2を介してフィルタ122f外に排出されるが、これを純水又は純度の高い水として外部に供給してもよい。なお、ドライフィルタ122fの構造は、図7に示したものに限定されず、公知のドライフィルタの構造ならば種々のものがその構造として採用可能である。
 ここで、ドライフィルタ122fへ高圧(例えば3~7気圧(約0.3~0.7MPa)の)排ガスを供給するため、本実施形態では図7に示すように、
(a)圧力制御U121及び圧力制御U113を用いて、高圧(例えば3~7気圧(約0.3~0.7MPa)の空気(又は窒素及び酸素を含む気体)と、高圧(例えば3~7気圧(約0.3~0.7MPa)の水素(燃料気体)とを「燃料電池」へ供給し、
(b)「燃料電池」から、高圧(例えば3~7気圧(約0.3~0.7MPa)の排ガスを取り出して、ドライフィルタ122fへ送り出す
仕組みとなっている。
 このように、高圧対応の「燃料電池」とドライフィルタ112fとは、一連の高圧系とすることにより、電池反応の効率を促進しつつ発生する水分・水蒸気分を効率的に除去することができるので、非常に好適な取り合わせとなっているのである。
 また本実施形態では、ドライフィルタ112fから排出される、水分又は水蒸気分の低減した高圧の排ガスを、オフガスバッファタンク123を介さずに(又は介してもよいが)窒素フィルタU12へ向けて送り出している。ここで、窒素フィルタU12の窒素ガスフィルタ12fにおいては、上述したように、作用させる排ガスの圧力が高いほど、取り出される排ガスの酸素濃度がより低くなる、すなわちより純度の高い窒素ガスが得られるのである。したがって、ドライフィルタ112fと窒素フィルタU12も、一連の高圧系とすることによって非常に好適な取り合わせとなることが理解される。
[窒素フィルタUについての他の実施形態]
 以下、窒素フィルタU12についての好適な他の実施形態を説明する。図1に示した窒素フィルタU12は、上述したように、窒素ガスフィルタ12fの中空糸繊維を透過することによって(排ガス中の)窒素分子から分離された酸素分子を含む「フィルタ排出ガス」を取り出すフィルタパージ部を備えている。ここで、このフィルタパージ部から排出される「フィルタ排出ガス」は、このように酸素分子を相当に含んでいるので、再度燃料電池反応に使用したり、または、再度フィルタリング処理を行ったりすることも可能なガスとなっている。
 ちなみに、窒素ガスフィルタ12fとして宇部興産製のUBE NセパレーターNM-B01Aを採用した場合において、酸素濃度が10.2vol%のガスを、導入圧力6.0気圧(約0.61MPa)及び出口流量1.0L/minの条件の下、この窒素ガスフィルタ12fへ導入して、そこから排出されるフィルタ排出ガスの酸素濃度を調べたところ14.9vol%との実験結果が得られ、さらに、回収率は0.29との実験結果が得られている。また、フィルタ排出ガスの酸素濃度は、(a)導入酸素濃度が大きくなるほど、(b)導入圧力が小さくなるほど、さらに、(c)出口流量が大きくなるほど、より大きくなることが実験によって確認されている。
 ここで、(フィルタ12f出口での酸素濃度は桁違いに小さいので)導入されたガスの酸素分子の概ね全てが窒素ガスフィルタ12fのフィルタパージ部から排出されるとすると、フィルタ排出ガスの酸素濃度は、上記の実験結果として得られた回収率(0.29)を用いた計算では0.102/0.71=14.4となり、上記の実験結果として得られた14.9vol%と概ね一致する。したがって、窒素ガスフィルタ12fのフィルタパージ部からは、不要であるとして分離された酸素ガス分を概ね全て回収できていることが分かるのである。
 そこで、本実施形態の窒素ガス生成装置(システム)1は、図1における「丸で囲んだ"B"」で示すようにガス戻し流路を設けて、このフィルタ排出ガスを、
(a)「燃料電池」の空気極側の前段に設置されたフロー制御U109へ送り返し、酸素及び窒素を含む気体として「燃料電池」で再度使用したり、及び/又は、
(b)窒素フィルタU12の前段に設置されたオフガスバッファタンク123へ送り返し、排ガスとともに窒素ガスフィルタ12fに再度作用させたり
している。これにより、酸素ガス分をより有効に利用したり、酸素濃度のより低い窒素ガスを取り出したりすることも可能となるのである。
 ここで、酸素濃度が空気と比べてより低減しているフィルタ排出ガスを「燃料電池」で再度使用するならば、この「燃料電池」の排ガスを、酸素濃度のより低い排ガスとすることもできる。またこれにより、(図5を用いて説明したように)このような排ガスを導入した窒素ガスフィルタ12fでは回収率が大きくなるので、最終的により多くの窒素ガスを取り出すことも可能となる。さらに、窒素ガス生成装置(システム)1における各種条件の設定にも依存するが、このように窒素ガスフィルタ12fでの最終的な回収率を大きくすることによって、窒素ガスの生成コストを大幅に低減することもできるのである。
 ちなみに、「燃料電池」からの排ガスの酸素濃度が15vol%程度であって、さらにフィルタ排出ガスの酸素濃度が導入酸素濃度c_in_O2の例えば(典型値として)1.4倍となるような条件下では、フィルタ排出ガスの酸素濃度は、空気(20.8vol%)と同程度、またはそれ以上となり、その結果、フィルタ排出ガスを「燃料電池」の空気極側へ差し戻すことの上記メリットは生じないことが分かる。
 一方、フィルタ排出ガスの酸素濃度が同じく導入酸素濃度の1.4倍であって、「燃料電池」からの排ガスの酸素濃度が10vol%程度であれば、フィルタ排出ガスの酸素濃度は14vol%前後(<20.8vol%)となり、フィルタ排出ガスの上記差し戻しには意義が生じる。また、さらに「燃料電池」からの排ガスの酸素濃度が5vol%程度となれば、フィルタ排出ガスの酸素濃度は7vol%前後となり、回収率の向上が見込まれるだけでなく、システム設定次第では、窒素ガス生成コストが相当に低減するという経済的効果も奏功可能となる。
 以下、窒素フィルタU12についての更なる他の実施形態を説明する。図8は、本発明に係るフィルタリング手段についての他の実施形態を説明するための模式図である。
 図8に示した実施形態によれば、窒素フィルタU12には、3つの窒素ガスフィルタ12f1、12f2及び12f3が、並列に接続される形で設置されている。なお勿論、並列される窒素ガスフィルタの数は3つに限定されるものではなく、2つ又は4つ以上であってもよい。
 具体的に、窒素フィルタU12に供給された排ガスは分流して、3つの窒素ガスフィルタ12f1、12f2及び12f3の各々に取り込まれ、各窒素ガスフィルタが、供給された排ガスにおける自身への取り込み分に作用して、窒素濃度の増大したガス、すなわち高純度の窒素ガスを生成し、最後にこれらの高純度窒素ガスが合流して、窒素タンク129へ向けて送り出されるのである。
 また、3つの窒素ガスフィルタ12f1、12f2及び12f3の各々から排出されたフィルタ排出ガスは、「燃料電池」前段のフロー制御U109(図1)、及び/又は、窒素フィルタU12前段のオフガスバッファタンク123(図1)へ送り返され、再利用されることも好ましい。さらに、これらの窒素ガスフィルタから排出されたフィルタ排出ガス中の酸素濃度が所定以上であれば、当該フィルタ排出ガスを外部の酸素タンクに送って保存・貯蔵してもよい。いずれにしてもこのような処理によって、酸素ガス分をより有効に利用したり、酸素濃度のより低い窒素ガスを取り出したりすることも可能となるのである。
 このように、複数の窒素ガスフィルタを並列に配してフィルタ処理を行うことによって、多量の排ガスを同時に取り込んで、より多くの高純度の窒素ガスを外部に提供することも可能となる。例えば、ダイセル・エボニック社製の4インチ径窒素ガスフィルタは、そのカタログ値によれば、7気圧(約0.7MPa)の空気を流量40L/minで受け取った場合に、酸素濃度約0.1vol%の高純度窒素ガスを(回収率を約0.25として)流量約10L/minで吐出するとされている。
 このような窒素ガスフィルタを例えば3つ並列に配置して、各窒素ガスフィルタに対し(空気よりも酸素濃度の低い、例えば酸素濃度が5~10vol%の)排ガスを、7気圧(約0.7MPa)且つ流量40L/minで投入すれば、酸素濃度が0.01vol%(100ppm vol)台の、又は酸素濃度が0.1vol%(1000ppm vol)を大きく下回る高純度窒素ガスを、合計流量約30(=10×3)L/minで外部に提供することも可能となるのである。
 ここで、各窒素ガスフィルタには、元の全流量120(=40×3)L/minの3分の1の流量で排ガスが流入するので、1つの窒素ガスフィルタを使用した場合と比較して、各窒素ガスフィルタの酸素分離能はより向上しているのである。また勿論、より径の大きな(例えば6インチ径の)窒素ガスフィルタを用いれば、さらに多量の高純度窒素ガスを供給可能となる。さらに例えば、ダイセル・エボニック社製のselectiveタイプ6インチ径窒素ガスフィルタでは、回収率は約0.32となっていて、4インチ径窒素ガスフィルタの回収率(約0.25)と比較して大幅に向上しており、その分より多くの高純度窒素ガスを外部に提供することが可能となる。
 また本実施形態においても、全体制御U131(図1)は、「燃料電池」の排ガスの酸素濃度、圧力や流量、さらには、各窒素ガスフィルタにおける導入酸素濃度、導入圧力、導入流量、導入ガス温度や、出口酸素濃度、出口圧力、出口流量等を常時モニタし、適時、所定の高い窒素濃度を有する窒素ガスを、所定量(所定流量)提供できるように個々のユニットを制御することも好ましい。
[機械学習による制御]
 以下、本発明に係る除湿手段として水封ポンプU30(図6(A))を用い、水封ポンプU30において除湿処理の施された排ガスを、窒素フィルタU12(図1)を用いて高純度窒素ガスに変える窒素ガス生成装置(システム)1における、窒素ガス生成処理の機械学習を用いた制御について説明を行う。ちなみに本制御は、全体制御U131(図1)において実施することができる。
 最初に、空気及び水素を取り込んで高純度窒素ガスを生成する所定構成の窒素ガス生成装置(システム)1が、安定的に稼働している状態を考える。この状態における、例えば、
(a)燃料電池U11(図1)における「燃料電池」への空気の導入流量、
(b)「燃料電池」の水素極・空気極間での複素インピーダンス値、
(c)「燃料電池」の温度、
(d)「燃料電池」の発電量、
(e)「燃料電池」の空気極側における排ガスの出口流量、
(f)「燃料電池」の空気極側における排ガスの出口圧力、
(g)水封ポンプ301におけるインペラ301aの回転数(又は駆動電力)、
(h)水封ポンプ301位置又は気液分離槽302位置での封液の温度、
(i)水封ポンプU30の排出口での排ガスの相対湿度、
(j)窒素フィルタU12における導入排ガスの温度、
(k)窒素フィルタU12における導入排ガスの圧力、
(l)窒素フィルタU12における(窒素ガスの)出口流量、及び
(m)窒素フィルタU12における(窒素ガスの)出口酸素濃度
の測定値のデータセットを多数用意する。
 次いで、これらのデータセットを用いて、例えばDNN(Deep Neural Network)アルゴリズムを用いた窒素ガス生成モデルを構築し、このモデルを取り込んだ制御プログラムによって、窒素ガス生成装置(システム)1の稼働状態を制御することも好ましい。ここで、この窒素ガス生成モデルにおいては、例えば上記(a)~(k)を説明変数として、上記(l)及び(m)を目的変数に設定することができる。
 これにより、燃料電池U11、水封ポンプU30及び窒素フィルタU12の稼働状態に係る情報をこのモデルへ入力すれば、装置(システム)1のパフォーマンスとしての
(l’)外部に供給可能な高純度窒素ガスの供給流量、及び
(m’)外部に供給可能な高純度窒素ガスの純度(又は酸素濃度)
を知得若しくは予測することができるのである。ここで、モデル構築・パフォーマンス予測の際の説明変数として、少なくとも上記(a)及び(g)を採用することが好ましい。また、目的変数として、上記(l)及び(m)のいずれか一方を設定してもよい。
 さらに変更態様として、上記(b)~(f)及び上記(h)~(m)を説明変数とし、上記(a)及び(g)を目的変数とした窒素ガス生成制御モデルを構築し、このモデルを取り込んだ制御プログラムを用いて、窒素ガス生成装置(システム)1の稼働状態を制御することも可能である。これにより、供給する高純度窒素ガスにおける目標供給流量及び目標純度(又は酸素濃度)を達成するために必要な
(a)「燃料電池」への空気の導入流量、及び
(g)水封ポンプ301におけるインペラ301aの回転数(又は駆動電力)
を求めることができ、これに合わせた制御を行うことによって目標が達成可能となるのである。ここで、モデル構築・制御量予測の際の説明変数として、少なくとも上記(l)及び(m)のいずれか一方を採用することが好ましい。また、目的変数として、上記(a)及び(g)のいずれか一方を設定してもよい。
 ちなみに、窒素ガスユーザによる窒素ガスの純度や供給量(流量)に対する要求は、すでに述べたように、その分野や具体的な用途によって多種多様である。全体制御U131(図1)は場合によっては、そのような個々のユーザの要求に合わせて窒素ガス生成モデルや窒素ガス生成制御モデルを構築し分け、ユーザの所望するパフォーマンスに適合したモデルを取り込んだ制御プログラムを用いて、ユーザの当該要求に叶う高いパフォーマンスを、窒素ガス生成装置(システム)1に発揮させることも好ましい。
[触媒燃焼を利用した他の実施形態]
 図9は、本発明による窒素ガス生成装置・システムについての更なる他の実施形態を説明するための模式図である。
 図9に示した実施形態では、図1に示した窒素ガス生成装置(システム)1において、窒素フィルタU12の後段(例えばフロー制御U127の直後)に、触媒燃焼U90が設けられている。ここで、この触媒燃焼U90は、パラジウム(Pd)や白金(Pt)等の貴金属系の化合物、又は他の遷移金属系の化合物からなる燃焼触媒上で、水素ガスと排ガス中の酸素分とを接触させ、火炎燃焼よりも制御された酸化反応である触媒燃焼を行うユニットである。
 具体的に本実施形態において、触媒燃焼U90は、
(a)窒素フィルタU12から取り出された低酸素濃度の(例えば酸素濃度が0.1~数vol%の)窒素ガスと、
(b)燃料電池U11の水素極側出口から取り出され、ドレイン111、圧力制御U113や、気液分離U114を経た後、水素回収U115で回収された水素ガスであって、その後フロー制御U902及び逆止弁を介して送られてきた水素ガスと
を取り込み、これら窒素ガス及び水素ガスを、ユニット内に設置された燃焼触媒である固体触媒90aの表面上で接触させて触媒燃焼反応を起こし、最終的に、極低酸素濃度の(例えば酸素濃度が0.01vol%(100ppm vol)オーダの)高純度窒素ガス、及び微量の水蒸気を外部に送出するのである。なお勿論、上記(b)の水素ガスの代わりに、例えば、水素生成U102や水素生成改質U103から、水素ガスを触媒燃焼U90へ供給することも可能である。
 ここで、触媒燃焼U90に設置された燃焼触媒である固体触媒90aは、細かい穴が多数開いていて当該穴の内部を含めた表面に白金(Pt)やパラジウム(Pd)等の金属を触媒として担持しているセラミックスハニカムとすることも好ましい。このような固体触媒90aとして例えば、長峰製作所製の酸化触媒(白金触媒)であるNAハニカムを採用することが可能である。
 NAハニカムは、そのカタログにあるように、カルシウム・アルミネート(CaO・Al23)、溶融シリカ(SiO2)及び二酸化チタン(TiO2)を主成分とした担体の表面に、白金(Pt)及びパラジウム(Pd)等の白金族金属を担持させた固体触媒である。ここで、この担体はハニカム形状を有し、その上に担持された白金族金属の接触面積は非常に大きくなっており、効率良く酸化反応を引き起こすものとなっている。ちなみに、NAハニカムの最適使用温度は200~850℃とされている。
 本実施形態では、水素を微量の酸素で燃焼させるので、一般的な接触燃焼に比べてその反応熱は非常に小さい。したがって固体触媒90aを、例えば250℃にまで加熱して接触燃焼の触媒として使用するのである。ここで、この加熱は、例えば電熱線を固体触媒90aに巻き付けて通電加熱する電熱式で行うことができる。
 また、この加熱に係る他の好適な実施形態として、固体触媒90aに対し誘導加熱を行ってもよい。具体的には、固体触媒90aの担体の内部に、鉄(Fe)やステンレス等の鉄系合金を混入させておき、このような固体触媒90aに対し、電磁場発生装置を用いて例えば十数キロヘルツ(kHz)~数百kHzの磁場(電磁場)を印加し、電磁誘導の原理によって発生するうず電流によるジュール熱をもって、固体触媒90aを直接加熱するのである。
 ここで、電磁誘導の表皮効果に合わせ、固体触媒90aの担体における表面近く、例えば少なくとも浸透深さδ以上の深さの担体内部に、鉄粉・鉄片や、粉状・片状のステンレス等の鉄系合金を分散させることも好ましい。これにより、固体触媒90aにおける高温にすべき表面近くの部分を、均一な温度分布をもって所定の高温にすることができる。
 または、鉄又はステンレス等の鉄系合金の板片を、固体触媒90aの例えば側面に接触させる形で設置し、電磁誘導により当該板片を介して固体触媒90aを誘導加熱することも可能である。いずれにしても、固体触媒90aの誘導加熱においては、例えば複数の固体触媒90aを使用する場合でも、各固体触媒90aに対する電熱線等の配線を必要とせず、また複数の固体触媒90aを一挙に且つ簡便に加熱することができるのである。
 以上説明したように、本実施形態では、触媒燃焼を促進させるため、固体触媒90aを加熱するのであるが、その加熱のために必要となる電力を低減させるため、窒素フィルタU12から取り出される窒素ガスにおける酸素濃度を若干高く設定することも可能である。このように酸素濃度を高くすれば、接触燃焼で発生する熱が大きくなり、その分、固体触媒90aを加熱するための電力を抑えることもできるのである。いずれにしても、最終的に供給する窒素ガスに求められる純度や供給量(流量)を勘案し、窒素フィルタU12におけるフィルタリング条件(例えば、排ガスの導入流量)と、触媒燃焼条件(例えば、固体触媒90aの温度)とを適切に調整することが重要となる。
 また、触媒燃焼U90から送出される極低酸素濃度の窒素ガスは、高温状態で出てくるのであるが、触媒燃焼U90出口に設置された、プレート式又は多管式の熱交換器901でその熱を回収されてもよい。この場合、熱交換器901で回収された熱は、燃料電池U11から回収された熱と同様、オフガスバッファタンク123に供給されて、窒素フィルタU12へ供給される排ガスをさらに高温(例えば45℃)にするのに使用されたり、または外部へ供給されたりすることも好ましい。なお、触媒燃焼U90から出力される窒素ガスは、その温度がそれほど高くないときには、熱交換器901を介さずに、この後説明する水素フィルタU903へ送られてもよい。
 ここで、触媒燃焼U90から出力される極低酸素濃度の窒素ガスには通常、触媒燃焼反応で燃焼されなかった残留水素ガスも含まれることになる。本実施形態では、水素フィルタU903が、熱交換U901を経てきたこの高純度窒素ガスを取り込み、内部に設置された公知の水素ガスフィルタによって、この極低酸素濃度の窒素ガスから残留水素ガスを分離し、より高純度の窒素ガスを出力する。この出力された高純度窒素ガスは、この後、逆止弁、酸素濃度計、流量計、及び増圧U128(図1)を介して窒素タンク129(図1)に保存・貯蔵され、適宜外部に提供されることも好ましい。
 ちなみに、上記の水素ガスフィルタとして、例えばパラジウム(Pd)系の水素透過膜を備えたフィルタを用いることもできるが、芳香族ポリイミド系のガス分離膜を備えた水素ガスフィルタを採用してもよい。例えば、中空糸状膜を束ねたパイプを利用した宇部興産製のUBE GAS SEPARATORや、さらには、エボニック(EVONIK)製のSEPURUN Nobleが採用可能となっている。
 また、水素フィルタU903で窒素ガスから分離された水素ガスは、本実施形態において、フロー制御U904を介して水素回収U115へ送られ、燃料電池U11で再度使用されたり、または、触媒燃焼U90で再度触媒燃焼に供されたりすることができるのである。なお、窒素ガスの供給先において還元雰囲気を必要とする場合、例えば窒素ガス供給先が酸化防止雰囲気炉やフライヤ等である場合、安全性を担保した上で、供給する窒素ガスに水素が若干含まれるように設定することも可能である。
 さらに、以上述べたように窒素ガス生成装置(システム)1(図1)において触媒燃焼U90を採用することによって、窒素フィルタU12の窒素ガスフィルタ12f(図1)における回収率を向上させることも可能となる。すなわち、最終的に触媒燃焼U90で極低酸素濃度にすることを踏まえ、窒素ガスフィルタ12fから出力されるガスの酸素濃度を例えば数vol%となるように設定するならば、窒素ガスフィルタ12fには、(図2のグラフからも分かるように)相当に大きい流量(出口流量)の排ガスを導入することが可能となる。その結果、(図5のグラフからも分かるように)窒素ガスフィルタ12fにおける回収率を高めることができるのである。
 また、図9に示した実施形態の窒素ガス生成装置(システム)において、窒素フィルタU12を用いずに、酸素濃度のより低い窒素ガスを、燃料電池U11及び触媒燃焼U90だけで効率的に生成することも可能となるのである。いずれにしても、「燃料電池」と「触媒燃焼」との取り合わせは、必要となる水素ガスを共有可能とし、また窒素ガスを効率的に生成可能とする点からして非常に好適なものであることが理解される。
 ちなみに、燃料電池を用いない実施形態とはなるが、水分又は水蒸気分が十分に低減された、純度の高い窒素ガスを効率的に生成する装置(システム)として、図9の装置(システム)構成から燃料電池U11を省略した、すなわち窒素フィルタU12と触媒燃焼U90とを主要構成要素として含む装置(システム)を採用することも可能となっている。
[燃料電池の他の実施形態]
 図10は、本発明に係る「燃料電池」についての他の実施形態を説明するための模式図である。
 図10には、燃料電池U11(図1)に含まれる「燃料電池」として好適な燃料電池11Fが示されている。燃料電池11Fは、電解質を間に挟んだ水素極及び空気極を含む構成単位であるセルを複数備えており、これらのセルは積層されていて、燃料供給上手のセルから下手のセルまで順次、水素(燃料気体)及び空気(窒素及び酸素を含む気体)がそれぞれ、セル内の水素極及び空気極を通るように設計されている。
 また、これらのセルの全体は複数の機能セル部、図10では発電優先セル部11Fa、中間セル部11Fb及び酸素除去セル部11Fc、に分けられる。これらの機能セル部(11Fa,11Fb,11Fc)の各々は、1つの又は連続する複数の(図10では2つ又は3つの、実際には例えば数~数百個の)セルを含んでおり、また、他の機能セル部と電気的に直列に接続されておらず、個別に設けられた発電量の制御部(11Ca,11Cb,11Cc)に電気的に接続されている。
 ここで図10に示したように、制御部11Ca、11Cb及び11Ccはそれぞれ、発電優先セル部11Fa、中間セル部11Fb、及び酸素除去セル部11Fcにおける水素極・空気極間に発生した起電力を受け、担当する機能セル部に合わせた電力を出力するのである。またこの際、担当する機能セル部の複素インピーダンスを計測し、当該機能セル部に合わせた制御・管理を行うことも好ましい。
 一方従来の、特にPEFC型の燃料電池は、1つのセルにおける起電力が通常1V(ボルト)未満であるので、実際の電力源として要求される電力を確保するため、電気的に直列に接続された一連の、例えば数百段のセルによって構成されている。ここで、酸素供給量が少ないセルにおいては当然、可能となる発電量も小さくなるが、このようなセルを含めて直列に接続されたセル全体における(水素供給量に対する)発電効率は、各セルの発電量をある程度揃える必要があることから、相当に損なわれてしまうのである。
 これに対し、燃料電池11Fにおいては、
(a)酸素供給量の多い(供給された空気中の酸素がまだそれほど消費されていない)発電優先セル部11Faと、
(b)酸素供給量に関し中間となる中間セル部11Fbと、
(c)酸素供給量の少ない(供給された空気中の酸素が相当に消費されている)酸素除去セル部11Fcと
が、その酸素供給量に適合した発電量制御を受けることができる。したがって、このような発電量制御を実施することによって、燃料電池11Fにおける酸素低減効率及び(水素供給量に対する)発電効率をともに最大化若しくは向上させることも可能となるのである。
 このように、燃料電池11Fは、燃料電池U11(図1)の「燃料電池」として、すなわち高純度の窒素ガス生成のために、非常に適した燃料電池となっている。ただし勿論、燃料電池11Fは、発電効率を最適化可能にする好適な燃料電池として、他の一般的な目的に使用されることも可能である。
 ちなみに、燃料電池11Fにおける機能セル部の数は当然、3つに限定されるものではなく、2つ又は4つ以上とすることもできる。例えば、数百段のセルのうち、下手の150段のセル群と、上手の残りのセル群とをそれぞれ、第1の機能セル部及び第2の機能セル部とすることも可能である。
 以上詳細に説明したように、本発明によれば、燃料電池を用いて、純度の高い窒素ガスを確実に且つ安定的に生成することが可能となる。特に、燃料電池からの排ガスに対し水封ポンプやドライフィルタを利用して除湿処理を施し、さらに、窒素ガスフィルタや、さらには触媒燃焼を利用すれば、より純度の高い窒素ガスをより確実に、より安定して且つ効率的に生成することも可能となる。
 また将来、水素ガス社会・カーボンゼロ社会が到来した場合に、水素ガスを燃料気体として利用する燃料電池の活用は、至るところで大いに普及するものと考えられる。本発明は、このような時代において、効率的な窒素ガスの製造に大きく貢献するものとなる。勿論併せてその場で、電力や熱、さらに場合によっては純水を供給するニーズに応えることも可能となるのである。すなわち、本発明は、将来における1つの理想形とされる地産地消型の且つカーボンゼロのエネルギー・生産物需給体制を構築することにも大いに貢献するものと考えられる。
 さらに、本発明のあくまで一実施形態ではあるが、本発明では、電気分解部を備えた水素生成Uを利用して、燃料電池に対し、水素ガスを燃料気体として供給することも可能となっている。このような構成も、上述した水素ガス社会・カーボンゼロ社会において大いに活用されるものと考えられる。
 なお、以上に述べた実施形態は全て、本発明を例示的に示すものであって限定的に示すものではなく、本発明は、他の種々の変形態様及び変更態様で実施することができる。従って、本発明の範囲は、特許請求の範囲及びその均等範囲によってのみ規定されるものである。
 1 窒素ガス生成装置・システム
 101 自然エネルギー発電ユニット(U)
 101s 蓄電U
 102 水素生成U
 103 水素生成改質U
 104 水素タンク
 105、109、127、902、904 フロー制御U
 106 空気圧縮U
 107 空気タンク
 108 フィルタU
 11 燃料電池U
 11Ca、11Cb、11Cc 制御部
 11F 燃料電池
 11Fa 発電優先セル部
 11Fb 中間セル部
 11Fc 酸素除去セル部
 111、112 ドレイン
 113、121 圧力制御U
 114、122 気液分離U
 115 水素回収U
 12 窒素フィルタU
 12f、12f1、12f2、12f3 窒素ガスフィルタ
 122f ドライフィルタ
 122f1 メッシュ管
 122f2 ドレイン
 123 オフガスバッファタンク
 124、128 増圧U
 125 腐食性ガス等除去U
 126 温度調整U
 129 窒素タンク
 131 全体制御U
 30 水封ポンプU
 301 水封ポンプ
 301a インペラ
 302 気液分離槽
 40、60、901 熱交換U
 50 断熱膨張室
 501 管束
 90 触媒燃焼U
 90a 固体触媒
 903 水素フィルタU

 

Claims (17)

  1.  空気、又は窒素及び酸素を含む気体と、燃料気体とを取り入れて稼働する燃料電池と、
     前記燃料電池から取り出された、空気よりも低い酸素濃度を有する排ガスにおける水分又は水蒸気分を低減させる除湿手段と、
     窒素と酸素とについて透過する度合いの異なる繊維を使用したフィルタを備えており、水分又は水蒸気分の低減した当該排ガスを窒素濃度の増大したガスに変えるフィルタリング手段と
    を有することを特徴とする窒素ガス生成装置。
  2.  水分又は水蒸気分の低減した当該排ガスを増圧させる増圧手段を更に有し、
     前記フィルタリング手段は、増圧した当該排ガスを窒素濃度の増大したガスに変える
    ことを特徴とする請求項1に記載の窒素ガス生成装置。
  3.  当該フィルタは、フィルタリング対象気体の酸素濃度が低いほど回収率が高くなるフィルタであることを特徴とする請求項1に記載の窒素ガス生成装置。
  4.  当該排ガスを作用させた当該フィルタから、当該繊維を透過したガスを含むフィルタ排出ガスであって、当該窒素濃度の増大したガスとは別のガスであるフィルタ排出ガスを取り出し、取り出した当該フィルタ排出ガスを、前記燃料電池へ供給する空気、若しくは窒素及び酸素を含む気体に加えて使用させる、及び/又は、前記フィルタリング手段へ供給する当該排ガスに加えて使用させるガス戻し流路を更に有することを特徴とする請求項1に記載の窒素ガス生成装置。
  5.  前記フィルタリング手段は、並列に配置された複数の当該フィルタを備えており、当該フィルタの各々が、供給された当該排ガスにおける自身への取り込み分に作用することを特徴とする請求項1に記載の窒素ガス生成装置。
  6.  前記除湿手段は水封式のポンプを含むポンプユニットであることを特徴とする請求項1に記載の窒素ガス生成装置。
  7.  前記ポンプユニットの封液及び前記燃料電池から熱を受け取り、当該封液及び該燃料電池の温度を調整する熱交換手段を更に有することを特徴とする請求項6に記載の窒素ガス生成装置。
  8.  前記燃料電池から取り出された当該排ガスが、そこで断熱的に膨張する断熱膨張室を更に有し、
     前記ポンプユニットは、断熱的に膨張した後の当該排ガスを取り込んで当該排ガスにおける水分又は水蒸気分を低減させる
    ことを特徴とする請求項6に記載の窒素ガス生成装置。
  9.  前記ポンプユニットの封液及び前記燃料電池から熱を受け取って前記断熱膨張室に熱を伝え、当該封液、該断熱膨張室及び該燃料電池の温度を調整する熱交換手段を更に有することを特徴とする請求項8に記載の窒素ガス生成装置。
  10.  前記燃料電池、前記断熱膨張室、及び/又は前記ポンプユニットから取り出した高純度の水を提供する純水回収手段を更に有することを特徴とする請求項9に記載の窒素ガス生成装置。
  11.  当該フィルタから取り出した窒素濃度の増大したガスと、当該燃料気体とを燃焼触媒上で反応させて、当該窒素濃度の増大したガスを、より低い酸素濃度を有するガスにする触媒燃焼手段を更に有することを特徴とする請求項1に記載の窒素ガス生成装置。
  12.  前記触媒燃焼手段は、当該窒素濃度の増大したガスと当該燃料気体とを、電磁誘導によって加熱した当該燃焼触媒上で反応させることを特徴とする請求項11に記載の窒素ガス生成装置。
  13.  大気圧を超える圧力を有する空気、又は大気圧を超える圧力を有する窒素及び酸素を含む気体と、大気圧を超える圧力を有する燃料気体とを前記燃料電池へ供給可能とする圧力制御手段を更に有し、
     前記フィルタリング手段は、大気圧を超える圧力を有する当該排ガスを窒素濃度の増大したガスに変える
    ことを特徴とする請求項1に記載の窒素ガス生成装置。
  14.  前記除湿手段は、前記燃料電池から取り出された、大気圧を超える圧力を有する当該排ガスにおける水分又は水蒸気分を低減させるドライフィルタユニットであり、
     前記フィルタリング手段は、大気圧を超える圧力を有しており水分又は水蒸気分の低減した当該排ガスを窒素濃度の増大したガスに変える
    ことを特徴とする請求項13に記載の窒素ガス生成装置。
  15.  前記燃料電池は、電解質を間に挟んだ2つの極を含む構成単位であるセルを複数備えており、複数の当該セルの全体は複数の機能セル部に分けられ、各機能セル部は、1つの又は連続する複数のセルを含み、他の機能セル部と電気的に直列に接続されず、個別の発電量の制御部に電気的に接続されることを特徴とする請求項1に記載の窒素ガス生成装置。
  16.  空気、又は窒素及び酸素を含む気体と、燃料気体とを取り入れて稼働する燃料電池と、
     前記燃料電池から取り出された、空気よりも低い酸素濃度を有する排ガスにおける水分又は水蒸気分を低減させる除湿手段と、
     窒素と酸素とについて透過する度合いの異なる繊維を使用したフィルタを備えており、水分又は水蒸気分の低減した当該排ガスを窒素濃度の増大したガスに変えるフィルタリング手段と
    を有することを特徴とする窒素ガス生成システム。
  17.  空気、又は窒素及び酸素を含む気体と、燃料気体とを燃料電池へ供給して、該燃料電池を稼働させるステップと、
     前記燃料電池から、空気よりも低い酸素濃度を有する排ガスを取り出すステップと、
     取り出した当該排ガスにおける水分又は水蒸気分を低減させるステップと、
     水分又は水蒸気分の低減した当該排ガスを、窒素と酸素とについて透過する度合いの異なる繊維を使用したフィルタに対して作用させ、該フィルタから窒素濃度の増大した当該排ガスを取り出すステップと
    を有することを特徴とする窒素ガス生成方法。

     
PCT/JP2021/006587 2020-02-25 2021-02-22 燃料電池排ガスを除湿しフィルタリングする窒素ガス生成装置及び方法 WO2021172260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/617,870 US11978935B2 (en) 2020-02-25 2021-02-22 Apparatus and system for generating nitrogen gas through dehumidifying and filtering fuel cell exhaust gas
EP21760750.6A EP4112542A4 (en) 2020-02-25 2021-02-22 METHOD AND DEVICE FOR GENERATING NITROGEN GAS FOR DEHUMIDIFICATION AND FILTERING FUEL CELL EXHAUST GAS
CN202180003784.1A CN113924672A (zh) 2020-02-25 2021-02-22 通过除湿并过滤燃料电池废气来产生氮气的装置和方法
US18/432,952 US20240178423A1 (en) 2020-02-25 2024-02-05 Apparatus, system and method for generating nitrogen gas from fuel-cell exhaust gas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-029364 2020-02-25
JP2020029364A JP2021136084A (ja) 2020-02-25 2020-02-25 燃料電池排ガスをフィルタリングする窒素ガス生成方法及び装置
JP2021-010474 2021-01-26
JP2021010474A JP2022114256A (ja) 2021-01-26 2021-01-26 燃料電池排ガスを除湿しフィルタリングする窒素ガス生成装置及び方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/617,870 A-371-Of-International US11978935B2 (en) 2020-02-25 2021-02-22 Apparatus and system for generating nitrogen gas through dehumidifying and filtering fuel cell exhaust gas
US18/432,952 Continuation US20240178423A1 (en) 2020-02-25 2024-02-05 Apparatus, system and method for generating nitrogen gas from fuel-cell exhaust gas

Publications (1)

Publication Number Publication Date
WO2021172260A1 true WO2021172260A1 (ja) 2021-09-02

Family

ID=77491036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006587 WO2021172260A1 (ja) 2020-02-25 2021-02-22 燃料電池排ガスを除湿しフィルタリングする窒素ガス生成装置及び方法

Country Status (4)

Country Link
US (2) US11978935B2 (ja)
EP (1) EP4112542A4 (ja)
CN (1) CN113924672A (ja)
WO (1) WO2021172260A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132193A1 (ja) * 2022-01-07 2023-07-13 マイクロコントロールシステムズ株式会社 燃料電池排ガスを水交換により除湿する窒素ガス生成装置及び方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230047889A1 (en) * 2021-08-16 2023-02-16 HyTech Power, Inc. Hydrogen fuel cell exhaust system
CN115798618A (zh) * 2022-10-28 2023-03-14 武汉城市职业学院 一种变压吸附高效提纯氢气的优化方法及系统
CN118572145A (zh) * 2024-07-31 2024-08-30 深圳市乐惠光电科技有限公司 一种燃料电池应急电源

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151602A (ja) * 1986-12-16 1988-06-24 Kawasaki Steel Corp 高純度窒素ガス精製法
JPH067752A (ja) * 1992-06-27 1994-01-18 Marusan Shokai:Kk 真空洗浄および乾燥装置における真空排気方法および真空排気装置
US5330857A (en) * 1991-10-30 1994-07-19 International Fuel Cells Corporation Method of generating high-purity nitrogen gas
JP2000044209A (ja) * 1998-07-28 2000-02-15 Enshu Ltd 窒素ガス生成方法とこれを使用したワーク加工方法および装置
JP2008108667A (ja) * 2006-10-27 2008-05-08 Toshiba Fuel Cell Power Systems Corp 燃料電池システム
JP2009161370A (ja) * 2007-12-28 2009-07-23 Panasonic Corp 燃料改質装置
JP2013114997A (ja) * 2011-11-30 2013-06-10 Denso Corp 燃料電池システム
JP2013233549A (ja) 2012-05-07 2013-11-21 Micro Control Systems Kk 発電の際の電力及び排ガスを利用する半田付け装置及び半田付け方法
JP2016164987A (ja) 2016-03-17 2016-09-08 マイクロコントロールシステムズ株式会社 発電の際の電力及び排ガスを利用する半田付け装置及び半田付け方法
JP2017084796A (ja) 2016-12-02 2017-05-18 マイクロコントロールシステムズ株式会社 加工装置に電力及び不活性ガスを供給可能な発電装置及び加工システム
JP2018163890A (ja) 2018-06-27 2018-10-18 マイクロコントロールシステムズ株式会社 加工装置に電力及び不活性ガスを供給可能な発電装置及び加工システム
JP2019129110A (ja) 2018-01-26 2019-08-01 マイクロコントロールシステムズ株式会社 電力・低酸素ガスを供給可能な装置及び方法
JP2020029364A (ja) 2018-08-24 2020-02-27 キヤノンファインテックニスカ株式会社 画像形成システムおよび後処理装置
JP2020149838A (ja) 2019-03-13 2020-09-17 マイクロコントロールシステムズ株式会社 高圧の燃料電池排ガスをフィルタリングする窒素ガス生成方法及び装置
JP2021010474A (ja) 2019-07-04 2021-02-04 トヨタ自動車株式会社 車椅子乗員用拘束装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690695A (en) * 1986-04-10 1987-09-01 Union Carbide Corporation Enhanced gas separation process
EP0958887B1 (en) 1998-05-13 2003-03-19 Enshu Limited Nitrogen gas supply system for dry-cut working machine
JP4961698B2 (ja) * 2005-09-01 2012-06-27 株式会社日立製作所 燃料電池システム
US7803214B2 (en) * 2006-07-21 2010-09-28 Ube Industries, Ltd. Asymmetric hollow-fiber gas separation membrane, gas separation method and gas separation membrane module
JP5838491B1 (ja) 2015-02-13 2016-01-06 株式会社フクハラ 高純度加圧窒素ガス生成システム並びに高純度加圧窒素ガス生成方法
US10300431B2 (en) 2016-05-31 2019-05-28 Hamilton Sundstrant Corporation On-board vehicle inert gas generation system
JP7176716B2 (ja) * 2018-03-29 2022-11-22 マイクロコントロールシステムズ株式会社 自然エネルギーを利用した圧縮ガス供給システム及び装置、並びに電力供給システム

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151602A (ja) * 1986-12-16 1988-06-24 Kawasaki Steel Corp 高純度窒素ガス精製法
US5330857A (en) * 1991-10-30 1994-07-19 International Fuel Cells Corporation Method of generating high-purity nitrogen gas
JPH067752A (ja) * 1992-06-27 1994-01-18 Marusan Shokai:Kk 真空洗浄および乾燥装置における真空排気方法および真空排気装置
JP2000044209A (ja) * 1998-07-28 2000-02-15 Enshu Ltd 窒素ガス生成方法とこれを使用したワーク加工方法および装置
JP2008108667A (ja) * 2006-10-27 2008-05-08 Toshiba Fuel Cell Power Systems Corp 燃料電池システム
JP2009161370A (ja) * 2007-12-28 2009-07-23 Panasonic Corp 燃料改質装置
JP2013114997A (ja) * 2011-11-30 2013-06-10 Denso Corp 燃料電池システム
JP2013233549A (ja) 2012-05-07 2013-11-21 Micro Control Systems Kk 発電の際の電力及び排ガスを利用する半田付け装置及び半田付け方法
JP2016164987A (ja) 2016-03-17 2016-09-08 マイクロコントロールシステムズ株式会社 発電の際の電力及び排ガスを利用する半田付け装置及び半田付け方法
JP2017084796A (ja) 2016-12-02 2017-05-18 マイクロコントロールシステムズ株式会社 加工装置に電力及び不活性ガスを供給可能な発電装置及び加工システム
JP2019129110A (ja) 2018-01-26 2019-08-01 マイクロコントロールシステムズ株式会社 電力・低酸素ガスを供給可能な装置及び方法
JP2018163890A (ja) 2018-06-27 2018-10-18 マイクロコントロールシステムズ株式会社 加工装置に電力及び不活性ガスを供給可能な発電装置及び加工システム
JP2020029364A (ja) 2018-08-24 2020-02-27 キヤノンファインテックニスカ株式会社 画像形成システムおよび後処理装置
JP2020149838A (ja) 2019-03-13 2020-09-17 マイクロコントロールシステムズ株式会社 高圧の燃料電池排ガスをフィルタリングする窒素ガス生成方法及び装置
JP2021010474A (ja) 2019-07-04 2021-02-04 トヨタ自動車株式会社 車椅子乗員用拘束装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4112542A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132193A1 (ja) * 2022-01-07 2023-07-13 マイクロコントロールシステムズ株式会社 燃料電池排ガスを水交換により除湿する窒素ガス生成装置及び方法

Also Published As

Publication number Publication date
CN113924672A (zh) 2022-01-11
EP4112542A1 (en) 2023-01-04
US20240178423A1 (en) 2024-05-30
US11978935B2 (en) 2024-05-07
US20220311035A1 (en) 2022-09-29
EP4112542A4 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
WO2021172260A1 (ja) 燃料電池排ガスを除湿しフィルタリングする窒素ガス生成装置及び方法
JP7466167B2 (ja) 高圧の燃料電池排ガスをフィルタリングする窒素ガス生成装置、システム及び方法
US6887601B2 (en) Regenerative electrochemical cell system and method for use thereof
US7014932B2 (en) Drainage system and process for operating a regenerative electrochemical cell system
US8790840B2 (en) Systems and methods for fuel cell thermal management
US10144641B2 (en) System and method for high pressure, passive condensing of water from hydrogen in a reversible solid oxide fuel cell system
CA2231437C (en) Process for operating a fuel cell installation and fuel cell installation for carrying out the process
JP2017520685A (ja) 再循環する洗浄媒体を用いる電解法及び電解装置
JP6291402B2 (ja) 圧縮水素供給装置
US11710841B2 (en) Reaction device and fuel cell power generation system
US20220290310A1 (en) Method and apparatus for dosing hydrogen in a centrifugal compression system
JP3522769B2 (ja) 燃料電池プラントの運転方法及び燃料電池プラント
WO2012120835A1 (ja) エネルギーシステム
JP5383111B2 (ja) 燃料電池
JP2019173925A (ja) 自然エネルギーを利用した圧縮ガス供給システム及び装置、並びに電力供給システム
JP2021136084A (ja) 燃料電池排ガスをフィルタリングする窒素ガス生成方法及び装置
CN112619384A (zh) 一种极低压力湿氢加压干燥系统
JP2022114256A (ja) 燃料電池排ガスを除湿しフィルタリングする窒素ガス生成装置及び方法
WO2023132193A1 (ja) 燃料電池排ガスを水交換により除湿する窒素ガス生成装置及び方法
CN214378520U (zh) 一种结合co2捕集的熔融碳酸盐燃料电池系统
NL2030263B1 (en) A Hydrogen-X flow battery system coupled to a hydrogen pipeline network.
JP2000067891A (ja) 燃料電池発電システム
WO2024195081A1 (ja) 水電解水素製造システム、水電解水素製造システムの運転方法
WO2024195686A1 (ja) 固体酸化物形電解セルシステム
JP2020041172A (ja) 水素生成システムとその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021760750

Country of ref document: EP

Effective date: 20220926