WO2021172242A1 - 冷却装置及び冷却方法 - Google Patents

冷却装置及び冷却方法 Download PDF

Info

Publication number
WO2021172242A1
WO2021172242A1 PCT/JP2021/006525 JP2021006525W WO2021172242A1 WO 2021172242 A1 WO2021172242 A1 WO 2021172242A1 JP 2021006525 W JP2021006525 W JP 2021006525W WO 2021172242 A1 WO2021172242 A1 WO 2021172242A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
cooling medium
nozzle
hollow material
injection
Prior art date
Application number
PCT/JP2021/006525
Other languages
English (en)
French (fr)
Inventor
富澤 淳
一夫 植松
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US17/779,060 priority Critical patent/US20220395881A1/en
Priority to JP2022503361A priority patent/JP7295485B2/ja
Priority to CN202180007031.8A priority patent/CN114786834A/zh
Publication of WO2021172242A1 publication Critical patent/WO2021172242A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/16Auxiliary equipment, e.g. for heating or cooling of bends
    • B21D7/165Cooling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/16Auxiliary equipment, e.g. for heating or cooling of bends
    • B21D7/162Heating equipment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating

Definitions

  • the present invention relates to a cooling device and a cooling method.
  • the present application claims priority based on Japanese Patent Application No. 2020-032058 filed in Japan on February 27, 2020, the contents of which are incorporated herein by reference.
  • metal strength members, reinforcing members or structural members having a hollow bent shape used in automobiles, various machines, etc. are required to be lightweight and have high strength.
  • this type of hollow bent part has been manufactured by, for example, cold bending, welding of pressed products, punching of thick plates, and forging.
  • weight reduction and high strength of hollow bent parts manufactured by these manufacturing methods there is a limit to weight reduction and high strength of hollow bent parts manufactured by these manufacturing methods, and it has not been easy to realize them.
  • Non-Patent Document 1 the production of this type of hollow bent part by the so-called tube hydroforming method has also been actively studied.
  • the tube hydroforming method has problems such as development of a material as a material and expansion of the degree of freedom of formable shape, and will be further improved in the future. Needs development.
  • FIG. 15 is an explanatory diagram schematically showing an outline of the bending apparatus 100.
  • a steel pipe hereinafter, hollow material Pm
  • a feeding device not shown
  • bending is performed at a downstream position of the supporting means 101, 101 to manufacture a hollow bent part Pp made of steel.
  • the hollow material Pm is rapidly heated to a temperature range in which the hollow material Pm can be partially hardened by the high frequency heating coil 102 at the downstream position of the support means 101 and 101, and the hollow material is rapidly heated by the water cooling device 103 arranged downstream of the high frequency heating coil 102. Quench Pm. Then, the position of the movable roller die 104 having at least one set of roll pairs 104a and 104a to be fed while supporting the hollow material Pm is changed in the three-dimensional direction (in some cases, the two-dimensional direction), and the heated portion of the hollow material Pm is changed.
  • the hollow material Pm is bent by applying a bending moment to the hollow material Pm. According to this bending apparatus 100, it becomes possible to manufacture a high-strength hollow bending component Pp with high working efficiency.
  • the bending radius of the bent portion is, for example, the diameter of the metal pipe (when the metal pipe has a rectangular cross section, the side edge of the bent inner peripheral surface and the side edge of the bent outer peripheral surface are connected in the cross section perpendicular to the longitudinal direction thereof.
  • the hollow bent parts having extremely small bent portions, which are 1 to 2 times or less than the length of one side).
  • bending is performed so that the bending radius is, for example, 1 to 2 times or less than the diameter of the metal pipe (the length of one side when the metal pipe has a rectangular cross section). If this is done, wrinkles or folds may occur on the inner peripheral side of the bent portion, or the plate thickness on the outer peripheral side of the bent portion may be significantly reduced to cause breakage. Therefore, it has been difficult to manufacture a hollow bent part having a small bent portion. Further, in the cold bending process of a hollow bent part, as described in Non-Patent Document 2, tensile stress acts on the outer peripheral side of the bent portion, so that the plate thickness is reduced. Since the method of Patent Document 1 is also bending, it is unavoidable to reduce the plate thickness on the outer peripheral side of the bent portion.
  • the shear bending apparatus 200 includes a first support means 201, a heating means 202, a cooling means 203, and a gripping means 204.
  • the first support means 201 supports the hollow metal material Pm at the first position A while relatively feeding it in the longitudinal direction thereof.
  • the heating means 202 partially heats the hollow material Pm at a second position B downstream of the first position A along the feeding direction of the hollow material Pm.
  • the cooling means 203 cools (forced cooling or natural cooling) the heated portion of the hollow material Pm at the third position C downstream of the second position B along the feeding direction of the hollow material Pm.
  • the gripping means 204 moves the hollow material Pm in a two-dimensional direction or a three-dimensional direction while positioning the hollow material Pm at a fourth position D downstream of the third position C along the feeding direction of the hollow material Pm.
  • Shear force is applied to the heated part of the hollow material Pm. Therefore, according to this shear bending apparatus 200, it is possible to apply shearing and heat treatment to the heated portion of the hollow material Pm.
  • the shear bending apparatus 200 has a bent portion having a bending radius of 1 to 2 times or less than the diameter of the metal pipe (the length of one side when the metal pipe has a rectangular cross section). It is possible to mass-produce high-strength hollow bent parts at low cost.
  • Patent Document 2 has made it possible to manufacture parts having high strength and a small bending radius, and significantly reduced the weight of mechanical parts such as a large number of automobiles.
  • Patent Document 3 discloses a cooling device for a steel material shown in FIG. This steel cooling device heats a part of the steel Pm in the longitudinal direction while feeding the steel Pm in the longitudinal direction while grasping one end of the long steel Pm, and heats the one end in two or three dimensions.
  • the secondary cooling device 23 With the device 22; with the secondary cooling device 23 provided on the downstream side of the primary cooling device 22 when viewed along the feeding direction of the steel material Pm, and injecting a second cooling medium into the heated portion; A plurality of secondary cooling devices 23 are arranged along the feeding direction, and the flow rate of the second cooling medium can be controlled independently of each other; a plurality of secondary cooling devices 23 are arranged along the circumferential direction of the steel material Pm. Moreover, each of them is provided with a cooling mechanism that injects the second cooling medium independently of each other so that the flow rate can be controlled.
  • the bent portion having an extremely small bending radius of 1 to 2 times or less than the diameter of the metal pipe (the length of the one side when the metal pipe has a rectangular cross section)
  • the bent portion The bending angle may be close to a right angle.
  • the machining direction changes abruptly, so that it cannot be dealt with only by changing the configuration of the secondary cooling device.
  • the reason for this is that a portion where the cooling medium from the primary cooling device does not hit the bent portion immediately after heating is generated, or the cooling medium flows in the direction opposite to the feeding direction of the hollow material Pm. This problem is more likely to occur when performing shear bending than normal bending.
  • the primary cooling device is cooling immediately after heating, and if sufficient and uniform cooling is not provided in the circumferential direction, the deformation resistance of the deformation region becomes non-uniform in the circumferential direction. In this case, it becomes difficult to obtain good shear deformation. In addition, the hardness of the finished product becomes non-uniform in the circumferential direction. In addition, so-called uneven baking may occur.
  • the present invention has been made in view of the above circumstances, and even when a hollow bent part having a bent portion having an extremely small bending radius is obtained, the collision pressure of the cooling medium is secured to obtain a sufficient cooling capacity, and the product is produced. It is an object of the present invention to provide a cooling device and a cooling method capable of uniform cooling that suppresses non-uniformity of hardness in the circumferential direction.
  • One aspect of the present invention is A feeding mechanism that supports and feeds a hollow metal material at the first position along the feeding direction, which is the longitudinal direction thereof.
  • a heating coil that heats the hollow material at a second position downstream of the first position
  • a cooling device that cools the hollow material by injecting a cooling medium at a third position downstream of the second position.
  • a bending force applying portion that grips the hollow material at a fourth position downstream of the third position and moves the gripping position in a two-dimensional direction or a three-dimensional direction to form a bent portion in the hollow material.
  • the cooling device used in the hollow bending component manufacturing device including the above.
  • the first cooling mechanism Seen in a first virtual plane including an extension of the axis along the feed direction of the hollow material at the first position, the hollow material is arranged side by side on the downstream side of the heating coil, and the injection direction of the cooling medium is the first.
  • the first nozzle which is one injection direction
  • a second nozzle which is arranged side by side on the downstream side of the first nozzle when viewed in the first virtual plane and is a second injection direction in which the injection directions of the cooling medium intersect with the first injection direction
  • a first valve that selectively switches the supply destination of the cooling medium between one and the other of the first nozzle and the second nozzle.
  • the second cooling mechanism Seen in the first virtual plane, the first nozzle and the second nozzle are arranged on opposite sides of the extension line, and the injection direction of the cooling medium is on the bent inner peripheral surface of the bent portion.
  • it has a third nozzle which is a third injection direction which forms 20 degrees or more and 70 degrees or less.
  • the second cooling mechanism The first division nozzle and the second division nozzle constituting the third nozzle, and A second valve that selectively switches the supply destination of the cooling medium between one and the other of the first split nozzle and the second split nozzle.
  • the injection direction of the cooling medium from the first split nozzle as seen in the first virtual plane is 20 degrees or more and 70 degrees or less with respect to the extension line;
  • the injection direction of the cooling medium from the second split nozzle as seen in the first virtual plane is the third injection direction.
  • a third cooling mechanism having a fourth nozzle and a fifth nozzle arranged in a second virtual plane orthogonal to the first virtual plane with the line of intersection as an intersection;
  • the injection direction of the cooling medium of the fourth nozzle as seen in the first virtual plane is the fourth injection direction along the extension line;
  • the injection direction of the cooling medium of the fifth nozzle as seen on the first virtual plane is the fifth injection direction intersecting the fourth injection direction.
  • the third cooling mechanism A third valve that selectively switches the supply destination of the cooling medium between one and the other of the fourth nozzle and the fifth nozzle.
  • a third control unit that controls the third valve is further provided.
  • a fourth cooling mechanism having a sixth nozzle arranged in a second virtual plane orthogonal to the first virtual plane with the line of intersection as an intersection;
  • the injection direction of the sixth nozzle as seen from the first virtual plane is the sixth injection direction forming approximately 1/2 of the shear angle ⁇ of the bent portion with respect to the feed direction.
  • Another aspect of the present invention is The process of feeding a hollow metal material while supporting it at the first position along the feeding direction, which is the longitudinal direction thereof, A step of heating the hollow material at a second position downstream of the first position, and A step of cooling the hollow material by injecting a cooling medium at a third position downstream of the second position. A step of gripping the hollow material at a fourth position downstream of the third position and moving the gripping position in a two-dimensional direction or a three-dimensional direction to form a bent portion in the hollow material.
  • the first cooling step The cooling medium is injected from the third position toward the first injection direction when viewed on a first virtual plane including an extension of the axis of the hollow material along the feed direction at the first position.
  • the second cooling step The cooling medium is injected from the third position toward the third injection direction which is 20 degrees or more and 70 degrees or less with respect to the bent inner peripheral surface of the bent portion when viewed from the first virtual plane.
  • the second cooling step A fourth step of injecting the cooling medium in an injection direction of 20 degrees or more and 70 degrees or less with respect to the extension line when viewed in the first virtual plane.
  • a third cooling step of injecting the cooling medium toward the hollow material from the fourth injection direction and the fifth injection direction is further performed.
  • the third cooling step Seen in the first virtual plane, the seventh step of injecting the cooling medium in the fourth injection direction along the extension line, and It has an eighth step of injecting the cooling medium toward a fifth injection direction intersecting the fourth injection direction when viewed in the first virtual plane.
  • the third cooling step It further has a ninth step in which the eighth step is stopped when the seventh step is carried out, and the seventh step is stopped when the eighth step is carried out.
  • the following steps may be adopted: Further, it has a fourth cooling step of injecting the cooling medium toward the hollow material in the second virtual plane orthogonal to the first virtual plane with the extension line as an intersection.
  • the cooling device and the cooling method according to each of the above aspects even when a hollow bent part having a bent portion having an extremely small bending radius is obtained, the collision pressure of the cooling medium is secured to obtain a sufficient cooling capacity, and the product Uniform cooling that suppresses non-uniformity of hardness in the circumferential direction is possible.
  • FIG. 1 It is a top view which shows typically the manufacturing apparatus provided with the cooling apparatus which concerns on one Embodiment of this invention. It is a figure which shows the main part of the cooling device, and is the enlarged plan view of the part X of FIG. It is a figure which shows the conventional cooling method at the time of feeding a hollow material without shear bending, and is the enlarged plan view of the part corresponding to the part X of FIG. It is a figure which shows the conventional cooling method at the time of performing a shear bending process on a hollow material, and is the enlarged plan view of the part corresponding to the part X of FIG. It is an enlarged plan view of the part corresponding to the part X of FIG.
  • FIG. 6A It is a figure which shows the modification of the same embodiment, and is the enlarged plan view which shows the part corresponding to the Q part of FIG. It is a figure which shows the main part of the cooling device of this embodiment, and is the Y1-Y1 arrow view of FIG.
  • the hollow bent parts to be manufactured are made of steel and have a rectangular cross-sectional shape as a material (hereinafter referred to as hollow material Pm), and are strength parts used in automobiles and various machines.
  • a material hereinafter referred to as hollow material Pm
  • manufacturing apparatus 10 a manufacturing apparatus for hollow bent parts
  • the manufacturing apparatus 10 is provided with a cooling apparatus according to the present embodiment.
  • the components common to the present embodiment and its modifications may be designated by the same reference numerals and duplicate description thereof may be omitted.
  • FIG. 1 is a plan view schematically showing a manufacturing apparatus 10 for hollow bent parts according to the present embodiment.
  • the cooling device of the present invention can perform both normal bending and shear bending, but in the following description, a case where shear bending is performed will be illustrated. Here, as it includes both normal bending and shear bending (shearing), it may be simply referred to as bending.
  • the hollow material Pm is shear-bent by the manufacturing apparatus 10 to obtain a hollow bent part Pp.
  • the hollow material Pm is a long square tube having a closed cross-sectional shape having a hollow rectangular cross section perpendicular to the longitudinal direction thereof.
  • the processing target of the present embodiment is not limited to the square pipe, and can be applied to, for example, other steel pipes having a circular shape, an elliptical shape, and various irregular cross-sectional shapes.
  • the hollow material Pm having a rectangular cross section the cross-sectional shape thereof can be applied to either a square or a rectangular shape.
  • a metal pipe other than the steel pipe may be used as the hollow material Pm. That is, the hollow material Pm may be a metal tube made of a metal other than steel, such as titanium or stainless steel.
  • the manufacturing apparatus 10 includes a support device 11, a heating device 12, a cooling device 50, and a shearing force applying device 14.
  • FIG. 1 shows a plan view. Since the hollow material Pm of the present embodiment is a square tube, the two surfaces parallel to the paper surface in FIG. 1 are called the upper surface and the lower surface (the paper surface labor side is the upper surface a and the back surface side thereof is the lower surface b), and these upper surface a and the lower surface
  • the two side surfaces connecting b may be referred to as a left side surface c and a right side surface d.
  • Support device 11 As shown by the arrow F in FIG. 1, in the support device 11, the hollow material Pm is fed in the longitudinal direction by a feeding device (not shown).
  • the reference numeral CL shown in FIG. 1 is the central axis of the hollow material Pm at the position of the support device 11. At the position of the support device 11, since the shear bending process has not been applied yet, the central axis CL forms a straight line.
  • the hollow material Pm also bends the central axis CL by being subjected to shear bending. Therefore, in the following description, instead of the central axis CL, the extension line EX of the central axis CL is used as a reference when indicating the direction. Specifically, as shown in the XYZ coordinate axes of FIG.
  • the feeding direction of the hollow material Pm along the extension line EX (leftward on the paper surface of FIG. 1) is set to the + X direction.
  • the + X direction may be simply referred to as the feed direction or the downstream direction
  • the ⁇ X direction may be simply referred to as the upstream direction.
  • the left direction (downward direction of the paper surface in FIG. 1) is set to the + Y direction.
  • the + Z direction is orthogonal to both the X direction and the Y direction and above the vertical direction (the front side of the paper in FIG. 1).
  • XYZ coordinate axes are also attached to each of the figures after FIG. 1 to standardize information on the direction.
  • the type of the feeding device is exemplified by using an electric servo cylinder, but the type is not limited to a specific type, and a known type such as a type using a ball screw or a type using a timing belt or a chain can be adopted.
  • the hollow material Pm is fed by the feeding device in the + X direction (feeding direction toward the left side of the paper along the arrow F) at a predetermined feeding speed.
  • the hollow material Pm is supported by the support device 11 at the first position A. That is, the support device 11 supports the hollow material Pm fed in the + X direction by the feed device at the first position A.
  • a block is used as the support device 11.
  • the block has a through hole 11a through which the hollow material Pm can be inserted with a gap.
  • a block may be divided into a plurality of blocks, a hydraulic cylinder or an air cylinder may be connected, and a hollow material Pm may be sandwiched and supported.
  • the support device 11 is not limited to a specific type, and a known support device of this type can be adopted. For example, as another configuration, one set or two or more sets of hole-shaped rolls arranged so as to face each other can be used side by side.
  • the support device 11 is fixedly arranged on a mounting table (not shown).
  • the present invention is not limited to this aspect, and the support device 11 may be supported by an end effector (not shown) of an industrial robot.
  • the hollow material Pm is further sent in the + X direction after passing through the first position A in which the support device 11 is installed.
  • Heating device 12 The heating device 12 is arranged at a second position B downstream of the first position A along the feeding direction of the hollow material Pm.
  • the heating device 12 heats the entire circumference of the cross section of the hollow material Pm sent from the support device 11 in the longitudinal direction.
  • An induction heating device is used as the heating device 12.
  • any known device may be used as long as it has a coil for inducing and heating the hollow material Pm, for example, at a high frequency.
  • the heating coil 12a of the heating device 12 is arranged so as to surround the entire circumference of the cross section in a part of the hollow material Pm in the longitudinal direction at a predetermined distance from the outer surface of the hollow material Pm.
  • the hollow material Pm is partially rapidly heated by the heating device 12.
  • the installation means (not shown) of the heating device 12 can adjust the inclination angle of the heating coil 12a at the second position B. That is, the installation means of the heating device 12 can incline the heating coil 12a at a set angle with respect to the feeding direction of the hollow material Pm.
  • the heating coils 12a are inclined so as to intersect the hollow material Pm in the + X direction (the feeding direction of the hollow material Pm shown by the arrow F) at an inclination angle ⁇ in a side view.
  • the inclination angle ⁇ By setting the inclination angle ⁇ to 90 ° or less, the heating coils 12a can be arranged in an inclined manner.
  • the heating device 12 As a means for installing the heating device 12, for example, an end effector of a well-known and commonly used industrial robot can be exemplified, but a known one can be adopted as long as the inclination angle ⁇ can be adjusted as specified.
  • the adjustment of the inclination angle ⁇ by the installation means of the heating device 12 may be configured to be automatically controlled by the installation means receiving a control signal from the control device 15 provided in the manufacturing device 10.
  • the installation means receiving a control signal from the control device 15 provided in the manufacturing device 10.
  • the installation means receiving a control signal from the control device 15 provided in the manufacturing device 10.
  • the installation means receiving a control signal from the control device 15 provided in the manufacturing device 10.
  • the installation means receiving a control signal from the control device 15 provided in the manufacturing device 10.
  • the relationship between the position where the shear bending process is performed and the inclination angle ⁇ to be set at the same position is stored in advance in the control device 15, and the feed amount of the hollow material Pm is predetermined.
  • one or more preheating devices capable of preheating the hollow material Pm are arranged at an upstream position of the heating device 12 along the feeding direction of the hollow material Pm.
  • the hollow material Pm can also be heated by using the preheating means in combination with the heating device 12. In this case, the hollow material Pm can be heated a plurality of times.
  • Cooling device 50 The cooling device 50 is arranged at a third position C downstream of the second position B along the feeding direction of the hollow material Pm.
  • the cooling device 50 rapidly cools the portion of the hollow material Pm heated at the second position B.
  • the region sh between the first portion heated by the heating device 12 and the second portion cooled by the cooling device 50 has a high temperature. Therefore, the deformation resistance is significantly reduced.
  • the cooling device 50 is arranged adjacent to the heating coil 12a immediately after the downstream side. If necessary, this cooling device 50 may be used as a primary cooling device, and another cooling device may be provided as a secondary cooling device on the downstream side of the cooling device 50. Of course, as shown in FIG. 1, only the cooling device 50 may be provided.
  • the cooling device 50 can perform effective cooling even when the hollow material Pm is bent or sheared to obtain a hollow bent part having a bent portion having a large bending angle with an extremely small bending radius.
  • the cooling water injected from the cooling water discharge hole located on the most downstream side in the feeding direction of the hollow material Pm is so small that it does not collide with the outer circumference of the deformed hollow material Pm. According to this embodiment, effective cooling can be performed without backflow of the cooling medium even under processing conditions having a bending radius and a large bending angle.
  • the cooling device 50 of the present embodiment includes a first cooling medium injection device 51 (first cooling mechanism), a second cooling medium injection device 52 (first cooling mechanism), and a valve V1 (first cooling mechanism). 1 valve), a third cooling medium injection device 53 (second cooling mechanism), and an upper cooling medium injection device and a lower cooling medium injection device, which will be described later using FIGS. 8 and later.
  • first cooling mechanism first cooling mechanism
  • second cooling medium injection device first cooling mechanism
  • upper cooling medium injection device and the lower cooling medium injection device are not shown for the sake of clarity.
  • the hollow material Pm When the hollow material Pm is viewed in a cross section perpendicular to its longitudinal direction, the upper surface a is cooled by the upper cooling medium injection device, the lower surface b is cooled by the lower cooling medium injection device, and the right side surface is the first cooling medium.
  • the injection device 51 and the second cooling medium injection device 52 cool, and the third cooling medium injection device 53 cools the left side surface c. Therefore, the four outer peripheral surfaces of the hollow material Pm are individually and uniformly cooled by being injected with the cooling medium.
  • the first cooling medium injection device 51 has a nozzle 51a arranged adjacent to the downstream side of the heating coil 12a when viewed along the feeding direction of the hollow material Pm.
  • the nozzle 51a is connected to the valve V1 via a pipe.
  • the injection direction of the cooling medium injected from the nozzle 51a is the first direction (first injection direction) W1.
  • the first direction W1 is the center line of the cooling medium ejected from the nozzle 51a, and as shown in the virtual line of FIG.
  • the hollow material Pm is sent as it is along the arrow F without shear bending. Is a direction forming an acute angle ⁇ 1 with reference to (0 degree). That is, the injection direction of the cooling medium ejected from the nozzle 51a is the positive direction (+ X direction) in which the vector component parallel to the arrow F faces the feed direction in the plan view shown in FIG. Further, by setting the angle ⁇ 1 to 20 degrees or more and 70 degrees or less, the collision pressure of the cooling medium can be secured to obtain a sufficient cooling capacity, and the cooling medium can be prevented from flowing back in the feed direction.
  • the cooling medium for example, cooling water can be used.
  • the second cooling medium injection device 52 has nozzles 52a arranged side by side next to the nozzle 51a of the first cooling medium injection device 51 when viewed along the feeding direction of the hollow material Pm. That is, when viewed along the feed direction, the heating coil 12a, the nozzle 51a, and the nozzle 52a are arranged in this order.
  • the nozzle 52a is connected to the valve V1 via another pipe.
  • the injection direction of the cooling medium injected from the nozzle 52a is the second direction (second injection direction) W2.
  • the second direction W2 intersects the first direction W1 at an intersection x.
  • the intersection x is on the front side where the distances of the nozzles 51a and 52a from the nozzle outlets of the nozzles 51a and 52a are closer to the bending outer peripheral surface of the bending portion Pb in the plan view shown in FIG.
  • the second direction W2 is the center line of the cooling medium injected from the nozzle 52a, and is directed to the right side surface d of the bent portion Pb formed by the shear bending process, as shown by the solid line in FIG. That is, the injection direction of the cooling medium ejected from the nozzle 52a is such that the vector component parallel to the arrow F faces the negative direction ( ⁇ X direction) opposite to the feed direction in the plan view shown in FIG. ..
  • the angle ⁇ 2 formed with the tangent ta at the intersection with the right side surface d is 20 degrees or more and 70 degrees or less.
  • the collision pressure of the cooling medium can be secured, and the vapor film (boiling bubble membrane) formed by boiling the film formed on the outer surface of the hollow material Pm can be destroyed. This prevents the formation of a vapor film on the outer surface of the hollow material Pm, and a sufficient cooling capacity can be obtained.
  • the nozzle 52a has a nozzle surface 52a1 in which a plurality of nozzle outlets are formed. As shown by the alternate long and short dash line in FIG. 2, the nozzle surface 52a1 may be a concave curved surface in accordance with the convex curved surface of the bent portion Pb. In this case, the distance from each nozzle outlet to the outer peripheral surface of the bent portion Pb can be made more even.
  • the valve V1 is connected to a pipe from the first cooling medium injection device 51 and a pipe from the second cooling medium injection device 52.
  • the valve V1 is further connected to a main pipe from the cooling medium supply pump that supplies the cooling medium.
  • the valve V1 receives an instruction from the control device (first control unit) 15 and selects the supply destination of the cooling medium sent from the cooling medium supply pump between one and the other of the nozzles 51a and 52a. Switch to.
  • the control device first control unit
  • the third cooling medium injection device 53 has nozzles 53a arranged side by side on the downstream side of the heating coil 12a when viewed along the feeding direction of the hollow material Pm.
  • the nozzle 53a is arranged at a position facing the nozzles 51a and 52a with the hollow material Pm sandwiched between them in a plan view.
  • the nozzle 53a is connected to the cooling medium supply pump via a pipe (not shown).
  • the nozzle 53a has a nozzle surface 53a1 having a curvature that matches the curved surface shape of the bending inner peripheral surface (left side surface c) of the bent portion Pb.
  • the nozzle surface 53a1 faces the inner peripheral surface (left side surface c) of the bent portion Pb, and is provided with a gap so as not to cause interference with the left side surface c of the hollow material Pm after shear bending. It is said that.
  • a plurality of nozzle holes are formed on the nozzle surface 53a1 along the feeding direction of the hollow material Pm.
  • a cooling medium is ejected from each nozzle hole toward the third direction W3 to mainly cool the left side surface c.
  • the third direction W3 is the center line of the cooling medium injected from each nozzle hole, and the angle ⁇ 3 formed with the left side surface c is 20 degrees or more and 70 degrees or less.
  • both the left side surface c and the right side surface d of the bent portion Pb are evenly formed. It becomes possible to cool.
  • the reason will be described in detail with reference to FIGS. 3A to 5B.
  • the cooling of the left side surface c and the right side surface d by the nozzles 51a, 52a, and 53a will be mainly described.
  • the cooling by the upper cooling medium injection device and the lower cooling medium injection device is also performed at the same time.
  • the description of cooling by the upper cooling medium injection device and the lower cooling medium injection device will be described later.
  • FIG. 3A and 3B show the part corresponding to the X part of FIG. Specifically, FIG. 3A is a diagram showing a conventional cooling method when feeding the hollow material Pm without shear bending, and FIG. 3B is a diagram showing a conventional cooling method when shear bending the hollow material Pm is performed. 3C is a diagram showing a case where the injection direction of the cooling medium is changed when the hollow material Pm is shear-bent.
  • FIGS. 4A and 4B show a part corresponding to the X part of FIG.
  • FIG. 4A is a diagram showing a conventional cooling method when feeding the hollow material Pm without shear bending
  • FIG. 4B is a diagram showing a conventional cooling method when shear bending the hollow material Pm is performed. Is shown.
  • FIGS. 5A and 5B are diagrams of the present embodiment showing the X portion of FIG.
  • FIG. 5A is a diagram showing a cooling method when feeding the hollow material Pm without shear bending
  • FIG. 5B is a diagram showing a cooling method when shear bending the hollow material Pm is performed. be.
  • the hollow material Pm is cooled.
  • the cooling medium injected from the cooling device 50 collides with the hollow material Pm at an incident angle ⁇ 0 with respect to the traveling direction of the hollow material Pm.
  • the cooling medium may flow back along the surface of the hollow material Pm.
  • the cooling medium flows backward, sufficient cooling capacity cannot be obtained, and the boundary line between the heating region and the cooling region is not constant in the circumferential direction, so that the hardness distribution of the hollow bent part Pp is not only uneven.
  • the bending process due to the shearing force becomes non-uniform.
  • it is necessary to prevent backflow of the cooling medium so that the boundary line between the heating region and the cooling region is constant in the circumferential direction.
  • the bending radius is, for example, the diameter (when the hollow material Pm has a rectangular cross section, the length of one side connecting the side edges of the bending inner peripheral surface and the side edges of the bending outer peripheral surface in the cross section perpendicular to the longitudinal direction thereof). ),
  • the cooling medium may not directly hit the outer peripheral side of the bent portion Pb of the hollow material Pm, and cooling may not be possible. Therefore, as shown in FIG. 3C, good cooling is possible by setting the incident angle ⁇ so as to satisfy Equation 1 on the outer peripheral side of the bent portion Pb of the sharply bent hollow material Pm. For that purpose, a compact cooling device is required.
  • FIGS. 4A and 4B a case of manufacturing a hollow bent part Pp having a rectangular cross section perpendicular to the longitudinal direction and bending at 90 degrees by using the shear bending process shown in Patent Document 2 will be described with reference to FIGS. 4A and 4B. do.
  • the hollow material Pm moves in the direction of the arrow F while the tip is being gripped by the shear force applying device 14.
  • the hollow material Pm is rapidly heated by the heating coil 12a arranged at an inclination angle ⁇ with respect to the feeding direction, and is cooled by receiving the cooling medium injected from the cooling medium injection nozzles 501 and 502.
  • the cooling medium does not directly hit the portion d1 of the outer peripheral surface (right side surface d) of the bent portion Pb. Therefore, the cooling capacity may be insufficient in this portion, and the strength non-uniformity in the hollow bent part Pp may occur.
  • the incident angle ⁇ exceeds 70 degrees at the portion c1 of the inner peripheral surface (left side surface c) of the bent portion Pb, there is a possibility that backflow of the cooling medium may occur.
  • the cooling device of the present embodiment adopts the configurations shown in FIGS. 5A and 5B. Since the detailed configuration has already been described with reference to FIG. 2, duplicate description will be omitted here.
  • the incident angles ⁇ of the cooling medium injected from the nozzles 51a and 53a all satisfy 20 degrees or more and 70 degrees or less. Therefore, it is possible to secure a collision pressure, obtain a sufficient cooling capacity, and evenly cool the cooling medium without backflow.
  • the cooling medium injection from the nozzle 53a of the present embodiment is continuously performed.
  • the cooling medium injection from the nozzle 51a is stopped and the cooling medium injection from the nozzle 52a is started.
  • the cooling medium injection from the nozzle 52a is not hindered.
  • the portion d1 that could not be cooled by the conventional cooling medium injection nozzle 501 shown in FIG. 4B can be cooled by the cooling medium from the nozzle 52a shown in FIG. 5B.
  • the portion c1 where there is a risk of backflow in the conventional cooling medium injection nozzle 502 shown in FIG. 4B can be cooled by the cooling medium from the nozzle 53a shown in FIG. 5B without backflow. Therefore, according to the present embodiment, it is possible to secure the collision pressure required for the membrane vapor film fracture to obtain a sufficient cooling capacity, and to cool the film evenly without backflow of the cooling medium.
  • each nozzle hole is formed in the nozzles 51a and 52a to be hollow.
  • the nozzle surfaces 51a1 and 52a1 facing the material Pm may be flat surfaces.
  • the nozzle surfaces 51a1 and 52a1 may be concave curved surfaces. In any of these cases of FIGS. 6A and 6B, the distance from each nozzle hole to the outer surface (upper surface) of the hollow material Pm can be made equal to make the water pressure on the outer surface more even.
  • the third cooling medium injection device 53 shown in FIG. 2 includes a single nozzle 53a is illustrated, but the present invention is not limited to this configuration.
  • a combination of split nozzles 153a1 and 153a2 may be adopted instead of the nozzle 53a.
  • the split nozzle 153a1 (first split nozzle) is relatively closer to the extension line EX than the split nozzle 153a1, and the injection direction of the cooling medium jetted from each nozzle hole is 20 degrees or more and 70 degrees or more with respect to the extension line EX. It is less than the degree.
  • the split nozzles 153a2 (second split nozzles) are arranged side by side with the split nozzles 153a1, and the injection direction of the cooling medium jetted from each nozzle hole is 20 degrees with respect to the left side surface c of the hollow material Pm after bending.
  • the angle ⁇ 3 is 70 degrees or less.
  • the split nozzles 153a1 and 153a2 are connected to the valve V3 via individual pipes, respectively. Similar to the valve V1, a main pipe for supplying a cooling medium is connected to the valve V3. The cooling medium supplied from the main pipe is switched to the supply destination to the split nozzles 153a1 and 153a2 by the switching operation of the valve V3. Specifically, when the hollow material Pm is fed straight in the downstream direction along the extension line EX without shear bending, the cooling medium is supplied to the split nozzle 153a1 by switching the valve V3. In this case, the cooling medium is not ejected from the split nozzle 153a2, and the cooling medium is jetted from only the split nozzle 153a1 onto the left side surface c of the hollow material Pm.
  • the supply destination of the cooling medium is set to the split nozzle 153a2 by switching the valve V3.
  • the cooling medium is not ejected from the split nozzle 153a1, and the cooling medium is jetted from only the split nozzle 153a2 onto the left side surface c of the hollow material Pm.
  • the portion c1 shown in FIG. 7 can be effectively cooled, and the cooling medium injected from the split nozzle 153a1 can be more effectively prevented from flowing back toward the upstream side.
  • valve V1 is switched to ensure that the injection destination of the cooling medium is reached (FIG. The role is different from (see 1).
  • the switching timing of the valve V3 may be synchronized with the switching timing of the valve V1, or may be switched at different timings depending on the bending condition of the hollow material Pm. Both of the valves V1 and V3 are switched by the control device 15.
  • the cooling device 50 includes the vertical cooling device 70 shown in FIG. FIG. 8 is a view taken along the arrow Y1-Y1 of FIG. 2, but for the sake of explanation, the illustration of the first cooling medium injection device 51 to the third cooling medium injection device 53 is omitted.
  • the vertical cooling device 70 includes the upper cooling medium injection devices 71 and 72, the lower cooling medium injection devices 73 and 74, and a valve V2 (second valve).
  • the upper cooling medium injection device (fifth cooling medium injection device) 71 sees the nozzles 71a adjacent to the downstream side of the heating coil 12a when viewed along the feed direction (direction along the arrow F) of the hollow material Pm. Have.
  • the nozzle 71a is connected to the valve V2 via a pipe.
  • the injection direction of the cooling medium injected from the nozzle 71a is the sixth direction (third injection direction) W6.
  • the curved surface a1 shown in FIG. 8 is a portion of the upper surface a that serves as a bent portion Pb.
  • the sixth direction W6 is the center line of the cooling medium ejected from the nozzle 71a, and forms an acute angle ⁇ 6 with reference to the straight line when the center line is projected onto the upper surface a in a plan view (0 degree).
  • the direction by setting the angle ⁇ 6 to 20 degrees or more and 70 degrees or less, it is possible to prevent the cooling medium from flowing back in the feed direction.
  • the sixth direction W6 is inclined with respect to the curved surface a1 in the line of sight along the ⁇ Y direction shown in FIG. On the other hand, as shown in FIG. 9, the sixth direction W6 is inclined with respect to the feed direction in the line of sight facing the curved surface a1.
  • the upper cooling medium injection device (sixth cooling medium injection device) 72 has nozzles 72a arranged side by side next to the nozzle 71a when viewed along the feeding direction of the hollow material Pm. That is, the heating coils 12a, the nozzles 71a, and the nozzles 72a are arranged in this order when viewed along the feed direction.
  • the nozzle 72a is connected to the valve V2 via another pipe.
  • the injection direction of the cooling medium injected from the nozzle 72a is the seventh direction (fourth injection direction) W7.
  • the seventh direction W7 is the center line of the cooling medium ejected from the nozzle 72a, and is directed to the curved surface a1 as shown by the solid line in FIG.
  • the seventh direction W7 is a direction forming an acute angle with respect to a straight line when the center line is projected onto the upper surface a in a plan view.
  • the angle in the seventh direction to 20 degrees or more and 70 degrees or less, the collision pressure required for vapor film destruction is secured to obtain sufficient cooling capacity, and the cooling medium flows back in the feed direction. Can be prevented.
  • the sixth direction (third injection direction) W6 and the seventh direction (fourth injection direction) W7 which are the injection directions of the cooling medium, intersect at the intersection y. There is.
  • the lower cooling medium injection devices 73 and 74 are arranged below the hollow material Pm as shown in FIG. That is, the lower cooling medium injection devices 73 and 74 face the upper cooling medium injection devices 71 and 72 with the hollow material Pm sandwiched between them in a side view.
  • the lower cooling medium injection device (fifth cooling medium injection device) 73 is a nozzle 73a arranged adjacent to the downstream side of the heating coil 12a when viewed along the feed direction (direction along the arrow F) of the hollow material Pm.
  • the nozzle 73a is connected to the valve V2 via a pipe.
  • the injection direction of the cooling medium injected from the nozzle 73a is the eighth direction (third injection direction) W8.
  • the eighth direction W8 is the center line of the cooling medium ejected from the nozzle 73a, and has an acute angle ⁇ 8 with reference to the straight line when the center line is projected onto the lower surface b in bottom view.
  • the direction to make by setting the angle ⁇ 8 to 20 degrees or more and 70 degrees or less, it is possible to secure the collision pressure required for the vapor film destruction, obtain a sufficient cooling capacity, and prevent backflow.
  • the eighth direction W8 is inclined with respect to the curved surface b1 when viewed along the ⁇ Y direction.
  • the curved surface b1 refers to a portion of the lower surface b that becomes a bent portion Pb.
  • the eighth direction W8 is inclined with respect to the feed direction in the line of sight facing the curved surface b1.
  • the lower cooling medium injection device (sixth cooling medium injection device) 74 has nozzles 74a arranged side by side next to the nozzles 73a when viewed along the feeding direction of the hollow material Pm. That is, the heating coils 12a, the nozzles 73a, and the nozzles 74a are arranged in this order when viewed along the feed direction.
  • the nozzle 74a is connected to the valve V2 via another pipe.
  • the injection direction of the cooling medium injected from the nozzle 74a is the ninth direction (fourth injection direction) W9.
  • the ninth direction W9 is the center line of the cooling medium injected from the nozzle 74a, and is directed to the curved surface b1 as shown by the solid line in FIG.
  • the ninth direction W9 is a direction forming an acute angle with respect to a straight line when the center line is projected onto the lower surface b in bottom view.
  • the valve V2 is connected to the pipes from the upper cooling medium injection devices 71 and 72 and the pipes from the lower cooling medium injection devices 73 and 74.
  • the valve V2 receives an instruction from the control device (second control unit) 15 and selects the supply destination of the cooling medium sent from the cooling medium supply pump between one and the other of the nozzles 71a and 72a. Switch to. At the same time, the valve V2 selectively switches the supply destination of the cooling medium sent from the cooling medium supply pump between one and the other of the nozzles 73a and 74a.
  • the injection direction of the cooling medium is changed from the sixth direction W6 (eighth direction W8) according to the bending of the bent portion Pb. It can be changed to the 7th direction W7 (9th direction W9). As a result, the cooling medium can be injected to the depths of the curved ends of the curved surfaces a1 and b1. The reason will be described in detail with reference to FIGS. 10A and 10B.
  • FIG. 10A is a schematic view showing a conventional primary cooling method, in which cooling of the upper surface a when quenching a hollow material Pm (steel pipe) having a rectangular cross section while shear bending so that the shear angle ⁇ is 90 degrees. It shows the situation.
  • the injection direction of the cooling medium is parallel to the feed direction indicated by the arrow F. Therefore, it is difficult for the cooling medium to directly hit the bending destination (part p) of the bending surface a1 having a sharp bend. As a result, the cooling capacity for the portion p may be insufficient, and the product strength of the hollow bent component Pp may become non-uniform.
  • FIG. 10B is a schematic view showing the primary cooling method of the present embodiment, and is used when quenching a hollow material Pm (steel pipe) having a rectangular cross section while shear bending so that the shear angle ⁇ is 90 degrees.
  • the cooling state of the upper surface a is shown.
  • the angle of the injection direction is set according to the shear angle ⁇ , and the directions of the seventh direction W7 and the ninth direction W9 are cooled to the bending destinations (partial p) of the bending surfaces a1 and b1. It is tilted so that the medium directly hits it.
  • the cooling medium comes into direct contact with the bending destinations (partial p) of the bending surfaces a1 and b1. Therefore, the cooling capacity for the portion p is sufficiently secured, and the product-predetermined uniform strength of the hollow bent component Pp can be obtained.
  • the upper surface a and the lower surface b are also cooled at the third position C.
  • the cooling rate at the time of cooling to 100 ° C./sec or more, the bent portion Pb can be hardened to increase its strength.
  • the cooling medium is injected onto the upper surface a from the nozzle 71a toward the sixth direction W6. Similarly, the cooling medium is injected onto the lower surface b from the nozzle 73a toward the eighth direction W8. At this time, the injection of the cooling medium from the nozzles 72a and 74a is stopped.
  • the control device 15 switches the valve V2.
  • the cooling medium is injected onto the upper surface a from the nozzle 72a toward the seventh direction W7.
  • the cooling medium is injected onto the lower surface b from the nozzle 74a toward the ninth direction W9.
  • the injection of the cooling medium from the nozzles 71a and 73a is stopped. Therefore, the cooling medium can be injected from the nozzles 72a and 74a without being hindered by the cooling medium from the nozzles 71a and 73a. Therefore, even when the shear bending process in which the shear angle ⁇ is close to a right angle is performed, the cooling medium can be injected so as to reach the inner side of the bending destination. Therefore, uniform and sufficient primary cooling is possible.
  • a part of the hollow material Pm in the feeding direction is fed while the hollow material Pm is fed in the feeding direction in a state where one end of the long hollow material (steel material) Pm is gripped at the gripping position g (see FIG. 1).
  • the cooling device 50 includes a vertical cooling device 70 that cools the heated portion including the curved surfaces a1 and b1 connecting the outer peripheral surfaces) d with a cooling medium.
  • the injection directions (sixth direction W6, eighth direction W8) of the cooling medium with respect to the curved surfaces a1 and b1 are inclined in the line of sight along the ⁇ Y direction shown in FIG.
  • the injection directions of the cooling medium (sixth direction W6, eighth direction W8) are inclined with respect to the feeding direction in the third injection direction (sixth direction W6, eighth direction W8).
  • a certain upper cooling medium injection device 71 and a lower cooling medium injection device 73 are arranged side by side on the downstream side of the upper cooling medium injection device 71 and the lower cooling medium injection device 73 along the feeding direction. In the line of sight along the ⁇ Y direction shown in FIG.
  • the injection direction of the cooling medium is inclined with respect to the curved surfaces a1 and b1, and in the line of sight facing the curved surfaces a1 and b1 shown in FIG. 9, the injection direction of the cooling medium is inclined.
  • the upper cooling medium injection device 72 and the lower cooling medium injection device 74 (sixth cooling medium injection device), which are the seventh direction W7 and the ninth direction W9 intersecting with the sixth direction W6 and the eighth direction W8.
  • a valve (second valve) V2 that selectively switches the supply destination of the cooling medium between one and the other of the fifth cooling medium injection device and the sixth cooling medium injection device, and a control device that controls the valve V2 ( Second control unit) 15 and the like.
  • the supply destinations of the cooling medium are the upper cooling medium injection device 71 and the lower cooling medium injection device 73, and the upper cooling medium injection device 72 and the lower side. It can be switched between the cooling medium injection device 74 and the cooling medium injection device 74. As a result, the cooling medium can be injected so as to reach the inner side of the bending destination on the bending surfaces a1 and b1. Therefore, uniform and sufficient primary cooling is possible.
  • the primary cooling method of the present embodiment is at the first position along the feed direction, and is inclined with respect to the curved surfaces a1 and b1 in the line of sight along the ⁇ Y direction shown in FIG.
  • the line of sight along the ⁇ Y direction shown in FIG. 8 is inclined with respect to the curved surfaces a1 and b1, and the curved surfaces a1 and b1 shown in FIG.
  • the line of sight facing the third direction includes a step (fourth step) of injecting a cooling medium toward the seventh direction W7 and the ninth direction W9 (fourth injection direction), which intersect with the third injection direction. .. Then, when the third step is carried out, the fourth step is stopped, and when the fourth step is carried out, the third step is stopped.
  • the supply destination of the cooling medium can be switched between the third process and the fourth process.
  • the cooling medium can be injected so as to reach the inner side of the bending destination on the bending surfaces a1 and b1. Therefore, uniform and sufficient primary cooling is possible.
  • FIG. 11 is a view taken along the arrow Y1-Y1 of FIG. 2, and is a diagram corresponding to FIG.
  • the vertical cooling device 170 shown in FIG. 11 is provided in place of the vertical cooling device 70 shown in FIG.
  • the vertical cooling device 170 includes an upper cooling medium injection device 171, the lower cooling medium injection devices 73 and 74, and the valve (second valve) V2.
  • the upper cooling medium injection device 171 has a nozzle 171a arranged adjacent to the downstream side of the heating coil 12a when viewed along the feeding direction (direction along the arrow F) of the hollow material Pm.
  • the nozzle 171a is arranged directly above the hollow material Pm.
  • the nozzle 171a is directly connected to the main pipe without passing through the valve V2.
  • the nozzle 171a is formed by integrally forming the nozzle 71a and the nozzle 72a.
  • the nozzle 171a has the same nozzle hole as the nozzle hole 71a has. Therefore, when viewed along the ⁇ Y direction shown in FIG. 11, the injection direction of the cooling medium injected from the nozzle 171a is the sixth direction (third injection direction) W6. Since the details of the sixth direction W6 are as described above, the duplicate description will be omitted here.
  • the nozzle 171a also has the same nozzle holes as those of the nozzle 72a.
  • the injection direction of the cooling medium injected from the nozzle hole is the seventh direction (fourth injection direction) W7. Since the details of the seventh direction W7 are as described above, the duplicate description will be omitted here.
  • the relative positions of the nozzle holes are adjusted so that the cooling medium injected toward the sixth direction W6 and the cooling medium injected toward the seventh direction W7 do not interfere with each other. .. Specifically, the cooling medium injected toward the sixth direction W6 is sewn between the cooling media injected toward the sixth direction W6, and the cooling medium is injected toward the seventh direction W7.
  • the nozzle 171a is located downstream of the nozzle hole in which the injection direction of the cooling medium is the sixth direction W6 when viewed along the feeding direction (direction along the arrow F) of the hollow material Pm.
  • Nozzle holes whose injection direction of the cooling medium is the seventh direction W7 are arranged side by side. Both the flow path leading to the nozzle hole whose injection direction of the cooling medium is the sixth direction W6 and the flow path leading to the nozzle hole whose injection direction of the cooling medium is the seventh direction W7 are directly connected to the main pipe. ing. That is, the pipe from the nozzle 171a is connected to the main pipe without passing through the valve V2.
  • the cooling medium supplied from the main pipe is simultaneously injected into the sixth direction W6 and the seventh direction W7 from all the nozzle holes of the nozzle 171a.
  • the cooling medium injected in the sixth direction W6 and the cooling medium injected in the seventh direction W7 do not interfere with each other, the upper surface a of the hollow material Pm can be formed even though the device configuration is simple and inexpensive. Can be cooled.
  • the nozzles 73a and 74a having the above-described configuration, position, and orientation are similarly arranged on the side opposite to the nozzle 171a arranged directly above the hollow material Pm, that is, directly below the hollow material Pm.
  • the nozzles 73a and 74a are connected to the valve V2 via individual pipes, respectively.
  • the valve V2 is connected to the main pipe. Therefore, the supply destination of the cooling medium supplied from the main pipe is switched to one or the other of the nozzles 73a and 74a by the switching operation of the valve V2.
  • the control device 15 gives an instruction to the valve V2. With the feed and the cooling medium injection from the nozzle 74a stopped, the cooling medium is injected from the nozzle 73a along the third injection direction W8.
  • an instruction is sent from the control device 15 to the valve V2 to stop the cooling medium injection from the nozzle 73a. Then, the cooling medium is injected from the nozzle 74a along the fourth injection direction W9. Before and after these switching is performed by the valve V2, the cooling medium is sprayed from the nozzle 171a on the upper surface a of the hollow material Pm along the two directions of the sixth direction W6 and the seventh direction W7.
  • the cooling medium can be sprayed toward the lower surface b of the hollow material Pm from below without causing interference of the cooling medium between the nozzles 73a and 74a. Since these nozzles 73a and 74a blow the cooling medium upward toward the lower surface b of the hollow material Pm while resisting gravity, the water pressure is slightly insufficient as compared with the nozzles 171a that blow the cooling medium downward. Prone. However, in this configuration, since the supply destination of the cooling medium can be concentrated on either of the nozzles 73a and 74a, the water pressure does not decrease. Therefore, it is possible to cool the lower surface b of the hollow material Pm with a cooling capacity not inferior to that of the upper surface a.
  • FIG. 13 is an arrow view of Y1-Y1 of FIG. 2, and is a view from the same line of sight as that of FIG.
  • the vertical cooling device 60 shown in FIG. 13 is provided in place of the vertical cooling device 70 shown in FIG.
  • FIG. 13 is a side view of the portion corresponding to the part X in FIG. 1, but for the sake of explanation, the illustration of the first cooling medium injection device 51 to the third cooling medium injection device 53 is omitted. ..
  • the vertical cooling device 60 includes a fourth cooling medium injection device 61 (upper cooling medium injection device) and a fifth cooling medium injection device 62 (lower cooling medium injection device).
  • the fourth cooling medium injection device 61 has a nozzle 61a arranged adjacent to the downstream side of the heating coil 12a when viewed along the feeding direction of the hollow material Pm.
  • the nozzle 61a is connected to the cooling medium supply pump via a pipe (not shown).
  • the injection direction of the cooling medium injected from the nozzle 61a is the fourth direction W4.
  • the fourth direction W4 is the center line of the cooling medium ejected from the nozzle 61a, and has an acute angle ⁇ 4 with respect to a straight line when the center line is projected onto the upper surface a in a plan view (0 degree). The direction to make.
  • the collision pressure required for vapor film destruction can be secured and sufficient cooling capacity can be obtained, and the cooling medium can be prevented from flowing back in the feed direction. Can be prevented.
  • the injection direction of the cooling medium with respect to the curved surface a1 when the shear bending process is performed is inclined when viewed from the line of sight along the ⁇ Y direction.
  • FIG. 14A and 14B are views of FIG. 13 in a plan view.
  • FIG. 14A shows a cooling state when the hollow material Pm is fed without shear bending.
  • FIG. 14B shows a cooling state when the hollow material Pm is shear-bent.
  • the fourth direction W4 of the cooling medium ejected from the nozzle 61a is based on the feed direction (direction along the arrow F) as a reference (0 degree) when viewed from the line of sight facing the curved surface a1 as shown in FIG. 14B.
  • the angle ⁇ formed is approximately 1/2 of the shear angle ⁇ . That is, when the shear bending process in which the shear angle ⁇ is 90 degrees (right angle) is performed, the angle ⁇ is 45 degrees, which is 1/2 of 90 degrees.
  • Such an angle ⁇ may be performed by a support mechanism (not shown) that holds the nozzle 61a so that the angle can be adjusted.
  • the control device 15 changes the shear angle ⁇ and at the same time sends an instruction to the support mechanism so that the angle ⁇ of the nozzle 61a is within the above range.
  • the support mechanism changes the direction of the nozzle 61a so that the angle ⁇ is within the above range.
  • the nozzle 61a may be integrally fixed to the heating coil 12a. In this case, the angle ⁇ is automatically changed according to the change in the inclination angle ⁇ of the heating coil 12a.
  • the fifth cooling medium injection device 62 has the same configuration as the fourth cooling medium injection device 61. As shown in FIG. 13, the fifth cooling medium injection device 62 is arranged at a position facing the fourth cooling medium injection device 61 with the hollow material Pm in between. That is, the fourth cooling medium injection device 61 is arranged above the hollow material Pm, and the fifth cooling medium injection device 62 is arranged below the hollow material Pm.
  • the fifth cooling medium injection device 62 has a nozzle 62a arranged adjacent to the downstream side of the heating coil 12a when viewed along the feeding direction of the hollow material Pm.
  • the nozzle 62a is connected to the cooling medium supply pump via a pipe (not shown).
  • the injection direction of the cooling medium injected from the nozzle 62a is the fifth direction W5.
  • the fifth direction W5 is the center line of the cooling medium ejected from the nozzle 62a, and has an acute angle ⁇ 5 with reference to the straight line when the center line is projected onto the lower surface b in bottom view. The direction to make.
  • the collision pressure required for vapor film destruction is secured to obtain a sufficient cooling capacity, and the cooling medium is prevented from flowing back in the feed direction. be able to.
  • the fifth cooling medium injection device 62 is viewed sideways along the ⁇ Y direction, and the injection direction of the cooling medium is inclined with respect to the curved surface b1 when the shear bending process is performed.
  • the fifth direction W5 when the nozzle 62a is viewed from the bottom is in agreement with the fourth direction W4.
  • the fifth direction W5 of the cooling medium ejected from the nozzle 62a has an angle ⁇ formed with the feed direction (direction along the arrow F) as a reference (0 degree) when viewed from the line of sight facing the curved surface b1.
  • the shear angle ⁇ is approximately 1/2.
  • the angle ⁇ does not have to be exactly 1/2, and may deviate as long as it is within the range of plus 20 degrees to minus 20 degrees. That is, the lower limit of the angle ⁇ is (1/2) ⁇ ⁇ (degrees) -20 (degrees), and the upper limit is (1/2) ⁇ ⁇ (degrees) + 20 (degrees). Since the method of adjusting the angle ⁇ is the same as that of the fourth cooling medium injection device 61, the description thereof will be omitted here.
  • the fourth cooling medium injection device 61 and the fifth cooling medium injection device 62 described above as shown in FIG. 14B, even when the shear bending process is performed at a shear angle ⁇ close to a right angle, the curved surface a1 , B1 can be cooled evenly. The reason is as described above with reference to FIGS. 10A and 10B.
  • the cooling medium is injected toward the hollow material Pm from the nozzles 61a and 62a of the vertical cooling device 60 arranged at the third position C downstream from the second position B along the feeding direction of the hollow material Pm. ..
  • the heated portion is cooled at the third position C.
  • the bent portion Pb can be hardened to increase its strength.
  • the hollow material Pm when the hollow material Pm is fed straight without shear bending, it is directed to the upper surface a toward the fourth direction W4 which forms an angle ⁇ with respect to the feed direction in a plan view. Inject a cooling medium. Similarly, the cooling medium is injected onto the lower surface b toward the fifth direction W5 forming the angle ⁇ . In addition, the cooling medium is also injected onto the left side surface c and the right side surface d, but the specific method thereof has already been described in the above embodiment, and thus the description thereof will be omitted here.
  • the cooling medium is injected onto the upper surface a toward the fourth direction W4 which forms an angle ⁇ with respect to the feed direction in a plan view. .. Similarly, the cooling medium is injected onto the lower surface b toward the fifth direction W5 forming the angle ⁇ . At this time, the angle ⁇ is adjusted according to the shear angle ⁇ . By adjusting the angle ⁇ , the cooling medium can be injected so as to reach the inner side of the bending destination on each of the bending surfaces a1 and b1. Therefore, uniform and sufficient primary cooling is possible.
  • the cooling medium is also injected onto the left side surface c and the right side surface d, but the specific method thereof has already been described in the first embodiment, and thus the description thereof will be omitted here.
  • the gripping position while heating a part of the hollow material Pm in the feeding direction while feeding the hollow material Pm in the feeding direction in a state where one end of the long hollow material Pm (steel material) is gripped at the gripping position g.
  • the cooling device 50 includes a vertical cooling device 60 that cools the heated portion including the curved surface a1 connecting the outer peripheral surfaces) with a cooling medium.
  • the fourth direction W4 of the cooling medium is inclined with respect to the curved surface a1 in the line of sight of FIG. 13 viewed along the ⁇ Y direction, and feed is provided in the line of sight of FIG. 14B facing the curved surface a1.
  • the fourth cooling medium injection device 61 is provided, wherein the angle formed by the fourth direction W4 of the cooling medium with respect to the direction is approximately 1/2 of the shear angle ⁇ .
  • the fifth direction W5 of the cooling medium with respect to the curved surface b1 is inclined in the line of sight of FIG.
  • the fifth cooling medium injection device 62 is provided, in which the angle formed by the fifth direction W5 of the cooling medium is approximately 1/2 of the shear angle ⁇ .
  • the line of sight of FIG. 13 viewed along the ⁇ Y direction is inclined with respect to the curved surface a1, and the line of sight facing the curved surface a1 has a shear angle ⁇ with respect to the feed direction.
  • a primary cooling method including a step of injecting a cooling medium toward the fourth direction W4, which is approximately 1/2 of the above, is adopted.
  • the line of sight of FIG. 13 viewed along the ⁇ Y direction is inclined with respect to the curved surface b1, and the line of sight facing the curved surface b1 has a shear angle ⁇ with respect to the feed direction. It also has a step of injecting a cooling medium toward the fifth direction W5, which is approximately 1/2.
  • the injection direction of the cooling medium with respect to the feeding direction is approximately 1/2 of the shear angle ⁇ , it reaches the back side of the bending destination on each of the bending surfaces a1 and b1.
  • the cooling medium can be injected into. Therefore, uniform and sufficient primary cooling is possible.
  • the means for installing the cooling device 50 may be any means as long as the cooling device 50 can be arranged at the third position C, and is not limited to a specific installation means.
  • heating is performed by setting the distance between the second position B and the third position C as short as possible. It is desirable to set the region sh between the first portion heated by the device 12 and the second portion cooled by the cooling device 50 as small as possible. For this purpose, it is desirable to arrange the cooling device 50 close to the heating coil 12a. Therefore, as shown in FIG. 2, it is desirable to arrange the nozzles 51a, 52a, and 53a at positions immediately after the heating coil 12a.
  • the cooling device 50 may be fixed to the installation means of the heating device 12.
  • both the nozzles 51a, 52a, 53a and the heating coil 12a can be tilted at the same tilt angle ⁇ while maintaining the relative positional relationship between the nozzles 51a, 52a, 53a and the heating coil 12a. ..
  • the present invention is not limited to this configuration, and the cooling device 50 may be provided separately from the heating device 12 installation means.
  • a known one such as an end effector of a well-known and commonly used industrial robot can be adopted.
  • the shearing force applying device (bending force applying portion) 14 is arranged at a fourth position D downstream of the third position C along the feeding direction of the hollow material Pm.
  • the shearing force applying device 14 has an arm (not shown) that grips the hollow material Pm at the gripping position g, and the gripping position g is moved in the two-dimensional direction or the three-dimensional direction by the operation of this arm.
  • the gripping position g moves in a two-dimensional direction without moving along the feeding direction by moving along a plane orthogonal to the feeding direction.
  • the gripping position g moves in the three-dimensional direction accompanied by the movement along the feed direction by moving along an arbitrary direction in the three-dimensional space.
  • the shearing force applying device 14 applies a shearing force to the region sh between the first portion of the hollow material Pm heated by the heating device 12 and the second portion cooled by the cooling device 50. It is given and shear bending is performed on the hollow material Pm.
  • the shearing force applying device 14 includes a pair of gripping means 14a and 14b connected to the tip of the arm. These gripping means 14a and 14b move the hollow material Pm while determining the support position by contacting the outer surface or the inner surface of the hollow material Pm. Then, the shear angle ⁇ shown in FIG. 1 can be adjusted by adjusting the support position.
  • the shear angle ⁇ is an angle between the feeding direction of the hollow material Pm and the outer surface of the hollow material Pm after passing through the cooling device 50.
  • the means for gripping the hollow material Pm is not limited to the pair of gripping means 14a and 14b, and other configurations may be adopted instead.
  • an inner chuck having a plurality of claws connected to the tip of the arm and holding the hollow material Pm from the inside by inserting these claws into the opening tip of the hollow material Pm and then opening the claws is adopted.
  • an outer surface chuck may be similarly provided with an annular body connected to the tip of the arm, the hollow material Pm is passed through the annular body, and the outer peripheral surface thereof is restrained by the annular body over the entire circumference.
  • the cross section of the hollow material Pm in a part in the longitudinal direction is heated by the heating device 12, and the deformation resistance is significantly reduced. Therefore, by moving the gripping position g by the pair of gripping means 14a and 14b in the three-dimensional direction at the fourth position D downstream from the third position C along the feeding direction of the hollow material Pm, FIG. As shown in 1, the shear force Ws can be applied to the region sh between the first portion heated by the heating device 12 and the second portion cooled by the cooling device 50 in the hollow material Pm. ..
  • a bent portion is formed by the action of a shearing force Ws on the hollow material Pm.
  • a shearing force is applied to the heated portion of the hollow material Pm instead of applying a bending moment as in the invention disclosed in Patent Document 1. Therefore, the bending radius is an extremely small bending radius that is 1 to 2 times or less than the width W (product width), which is the distance between the outer curve on the inner peripheral side and the outer curve on the outer peripheral side of the bent portion.
  • W product width
  • the processable range of the bending radius can be widened by appropriately setting the combination of the shear angle ⁇ and the inclination angle ⁇ . Therefore, it is possible to process a large bending radius in which the bending radius exceeds twice.
  • the diameter of the metal pipe when the metal pipe has a rectangular cross section, the bending inner circumference in the cross section perpendicular to the longitudinal direction, which was difficult in the prior art. It is also possible to obtain an extremely small bending radius of 1 to 2 times or less than the length of one side connecting the side edges of the surface and the side edges of the bending outer peripheral surface).
  • the shearing force applying device 14 may be installed via a mechanism capable of movably arranging a pair of gripping means 14a and 14b in a two-dimensional direction or a three-dimensional direction like the above-mentioned arm.
  • a mechanism capable of movably arranging a pair of gripping means 14a and 14b in a two-dimensional direction or a three-dimensional direction like the above-mentioned arm.
  • the gripping means 14a and 14b may be held by a well-known industrial robot end effector.
  • a moving device that combines a linear guide and a servomotor (not shown) may be used.
  • the heating device 12 partially rapidly heats the sent hollow material Pm.
  • the hollow material Pm is made of steel, it is desirable that the heating temperature of the hollow material Pm is at least 3 points of Ac of the steel constituting the hollow material Pm.
  • the bent portion Pb of the hollow material Pm can be hardened by appropriately setting the cooling rate at the time of cooling performed after heating.
  • the deformation resistance of the region sh between the first portion and the second portion of the hollow material Pm can be sufficiently reduced to such an extent that processing having a desired small bending radius can be performed. It will be possible.
  • the cooling medium is injected toward the hollow material Pm from the nozzles 51a, 52a, 53a of the cooling device 50 arranged at the third position C downstream from the second position B along the feeding direction of the hollow material Pm. do.
  • the heated portion is cooled at the third position C.
  • the bent portion Pb can be hardened to increase its strength.
  • the cooling medium from the nozzle 52a is stopped and the cooling medium from the nozzle 51a is placed on the right side d of the hollow material Pm. Spray towards.
  • the cooling medium of the nozzle 51a is stopped, and then the cooling medium from the nozzle 52a is applied to the right side surface d which is the outer peripheral surface of the bent portion Pb. Spray towards.
  • a first portion heated by the heating device 12 and a second portion cooled by the cooling device 50 are formed on the hollow material Pm.
  • the region sh between the first portion and the second portion of the hollow material Pm is in a high temperature state, and its deformation resistance is significantly reduced.
  • the gripping means 14a, 14b is used as a starting point of the hollow material Pm.
  • the shear angle by the shear force applying device 14 is set to ⁇ . In this way, a shear force Ws is applied to the region sh between the first portion and the second portion of the hollow material Pm, the hollow material Pm is subjected to shear bending, and the hollow bending component Pp is performed. Is obtained.
  • the one end while holding one end of a long steel material (hollow material Pm) and feeding the hollow material Pm in the feeding direction, the one end is two-dimensionally heated while heating a part of the hollow material Pm in the feeding direction.
  • a cooling device 50 is adopted in which the heated portion including the bent outer peripheral surface of the bent portion Pb is cooled by a cooling medium immediately after being formed into a predetermined shape including the bent portion Pb by moving in the three-dimensional direction. Then, the injection direction of the cooling medium viewed from the direction orthogonal to the feed direction is arranged side by side with the first cooling medium injection device 51 which is the first direction W1 and the first cooling medium injection device 51 along the feed direction.
  • the second cooling medium injection device 52 which is the second direction W2 in which the injection directions of the cooling medium viewed from the orthogonal direction intersect with the first direction W1, and the supply destination of the cooling medium are the first cooling medium injection device 51.
  • a valve (first valve) that selectively switches between one and the other of the second cooling medium injection device 52, and a control device 15 that controls the valve are provided.
  • the supply destination of the cooling medium can be switched between the first cooling medium injection device 51 and the second cooling medium injection device 52.
  • the outer peripheral surface of the bent portion Pb can be cooled from an appropriate direction, so that uniform and sufficient primary cooling is possible.
  • the angle formed by the injection direction of the cooling medium with respect to the bending inner peripheral surface of the hollow material Pm is 20 degrees or more and 70 degrees or less. 53 is provided. According to this configuration, the injection direction of the cooling medium is 20 degrees or more and 70 degrees or less with respect to the bending inner peripheral surface, so that a collision pressure is secured to obtain a sufficient cooling capacity and the cooling medium is directed to the feeding direction. Effectively prevent backflow. Therefore, uniform primary cooling is possible.
  • the hollow material Pm is fed in the feeding direction while holding one end of the long steel material (hollow material Pm), and a part of the hollow material Pm in the feeding direction is heated.
  • the heated portion including the bent outer peripheral surface of the bent portion Pb is cooled by a cooling medium (cooling medium).
  • a primary cooling method is used. Then, this primary cooling method includes a first step of injecting a cooling medium toward the first direction W1 at a first position on the downstream side of the heating coil 12a when viewed along the feed direction, and along the feed direction.
  • it has a second step of injecting a cooling medium toward a second direction W2 that intersects the first direction W1 at a second position that is further downstream of the first position. Then, when the shear bending process is not performed, the first step is carried out and the second step is stopped. On the other hand, when the shear bending process is performed, the second step is carried out and the first step is stopped.
  • the supply destination of the cooling medium can be switched between the first step and the second step depending on the presence or absence of shear bending.
  • the outer peripheral surface (right side surface d) of the bent portion Pb can be cooled from an appropriate direction, so that uniform and sufficient primary cooling is possible.
  • the present embodiment includes a step of injecting the cooling medium in the injection direction of 20 degrees or more and 70 degrees or less with respect to the bending inner peripheral surface (left side surface c) of the hollow material Pm when viewed along the feeding direction. According to the above method, it is possible to effectively prevent the cooling medium from flowing back in the feed direction. Therefore, uniform and sufficient primary cooling is possible.
  • the present invention is not limited to this aspect. That is, even if the cross-sectional shape of the metal hollow material is a round pipe or a polygonal pipe having a cross-sectional shape other than a rectangle or a pipe having an arbitrary curved surface shape, similarly, according to each embodiment, a good hollow bent part Pp Can be obtained.
  • the hollow bent part Pp manufactured by the manufacturing method including the cooling method of the present embodiment and various modifications is manufactured by performing heat treatment (for example, quenching) at the same time as processing by shearing force. Therefore, a hollow bent part Pp having a high-strength portion of, for example, 1470 MPa or more is a simpler step as compared with a hollow bent part which is subjected to cold shear bending and then heat treatment (for example, quenching). Moreover, it can be manufactured with high processing accuracy.
  • the hollow bent part Pp manufactured by the manufacturing method including the cooling method of the present embodiment and various modifications can be applied to, for example, the applications (i) to (vii) illustrated below.
  • Structural members of automobile bodies such as front side members, cross members, side members, suspension members, roof members, A-pillar reinforcements, B-pillar reinforcements, bumper reinforcements, etc.
  • ii For example, seats.
  • Automobile strength members and reinforcement members such as frames and seat cross members
  • Exhaust system parts such as automobile exhaust pipes
  • Reinforcement members and trolley parts for vehicles such as trains
  • Vehicle frame, various beams, etc. Vehicle frame, various beams, etc.
  • Frame parts such as hulls, reinforcing members
  • a metal hollow material Pm is placed at a first position A along a feeding direction (+ X direction) which is a longitudinal direction thereof.
  • a feeding mechanism that feeds while supporting; a heating coil 12a that heats the hollow material Pm at a second position B downstream of the first position A; and a second position that heats the hollow material Pm downstream of the second position B.
  • a cooling device 50 that cools by injecting a cooling medium at position C of 3; the hollow material Pm is gripped at a fourth position D downstream of the third position C, and the gripping position g is held in a two-dimensional direction or three-dimensionally. It is used in a hollow bending component manufacturing apparatus including the arm (bending force applying portion) that is moved in a direction to form a bending portion Pb on the hollow material Pm.
  • the cooling device 50 includes a first cooling medium injection device 51 and a second cooling medium injection device 52, which are first cooling mechanisms, and a third cooling medium injection device 53, which is a second cooling mechanism. To be equipped with.
  • the first cooling mechanism is arranged on the downstream side of the heating coil 12a when viewed in a first virtual plane (FIG. 2) including an extension line EX of the axis along the feeding direction of the hollow material Pm at the first position A.
  • Nozzles (first nozzles) 51a that are arranged and the injection direction of the cooling medium is the first injection direction W1;
  • It has a valve (first valve) V1 and a control device (first control unit) 15 for controlling the valve V1.
  • the second cooling mechanism is arranged on the side opposite to the nozzle 51a and the nozzle 52a with the extension line EX in between when viewed in the first virtual plane, and the injection direction of the cooling medium is the bending inner circumference of the bending portion Pb. It has a nozzle (third nozzle) 53a in the third injection direction W3 which is 20 degrees or more and 70 degrees or less with respect to the left side surface c which is a surface.
  • the second cooling mechanism has the split nozzle (first split nozzle) 153a1 and the split nozzle (second split nozzle) 153a2 constituting the third nozzle; the supply destination of the cooling medium is the split nozzle 153a1 and the split nozzle. It has a valve (second valve) V3 that selectively switches between one and the other of 153a2; and a control device (second control unit) 15 that controls the valve V3.
  • the injection direction of the cooling medium from the split nozzle 153a1 seen in the first virtual plane is 20 degrees or more and 70 degrees or less with respect to the extension line EX; the cooling medium from the split nozzle 153a2 seen in the first virtual plane. Is the third injection direction W3.
  • a vertical cooling device (third cooling mechanism) 70 having nozzles) 71a and 73a and nozzles (fifth nozzles) 72a and 74a may be further provided.
  • the injection directions of the cooling media of the nozzles 71a and 73a as seen in the first virtual plane are the fourth injection directions W6 and W8 along the extension line EX.
  • the injection directions of the cooling media of the nozzles 72a and 74a as seen in the first virtual plane are the fifth injection directions W7 and W9 intersecting the fourth injection directions W6 and W8.
  • the third cooling mechanism controls a valve (third valve) V2 that selectively switches the supply destination of the cooling medium between one and the other of the nozzles 71a and 73a and the nozzles 72a and 74a; and the valve V2.
  • a control device (third control unit) 15 and; are further provided.
  • the hollow metal material Pm is supported at the first position A along the feeding direction (+ X direction) which is the longitudinal direction thereof.
  • the hollow material Pm is gripped at the fourth position D downstream of the third position C, and the gripping position g is moved in the two-dimensional direction or the three-dimensional direction to be hollow. It is used in a method for manufacturing a hollow bent part Pp having a step of forming a bent portion Pb on a material Pm;
  • this cooling method has a 1st cooling step and a 2nd cooling step.
  • the first cooling step is performed in the first injection direction W1 when viewed in the first virtual plane including the extension line EX of the axis CL along the feed direction of the hollow material Pm at the first position A.
  • the first step of injecting the cooling medium from the third position C toward the third position C; as seen in the first virtual plane, the third position C toward the second injection direction W2 intersecting with the first injection direction W1.
  • It has a second step of injecting a cooling medium; a third step of stopping the second step when the first step is carried out, and stopping the first step when the second step is carried out.
  • the second cooling step is directed toward the third injection direction W3 which is 20 degrees or more and 70 degrees or less with respect to the left side surface c which is the bending inner peripheral surface of the bending portion Pb when viewed in the first virtual plane.
  • the cooling medium is injected from the third position C.
  • the second cooling step is a fourth step of injecting a cooling medium in an injection direction of 20 degrees or more and 70 degrees or less with respect to the extension line EX when viewed in the first virtual plane; Seen in a plane, the fifth step of injecting the cooling medium in the third injection direction W3; the fifth step is stopped when the fourth step is carried out, and the fourth step is carried out when the fifth step is carried out. It has a sixth step of stopping and;
  • the cooling medium is made of a hollow material from the fourth injection directions W6 and W8 and the fifth injection directions W7 and W9. It further has a third cooling step of injecting towards Pm.
  • the third cooling step includes a seventh step of injecting a cooling medium in the fourth injection directions W6 and W8 along the extension line EX when viewed in the first virtual plane shown in FIG. 9; It has an eighth step of injecting a cooling medium toward the fifth injection directions W7 and W9 intersecting the fourth injection directions W6 and W8 when viewed in a plane.
  • the third cooling step further includes a ninth step of stopping the eighth step when the seventh step is carried out and stopping the seventh step when the eighth step is carried out.
  • the cooling method further includes a fourth cooling step of injecting a cooling medium toward the hollow material Pm in a second virtual plane orthogonal to the first virtual plane with an extension line EX as an intersection.
  • the fourth cooling step is in the sixth injection direction W4 in which the angle formed by the injection direction of the cooling medium with respect to the feed direction is approximately 1/2 of the shear angle ⁇ of the bent portion Pb when viewed in the first virtual plane. It has a tenth step of injecting a cooling medium toward it.
  • the cooling device and the cooling method of the present invention even when a hollow bent part having a bent portion having an extremely small bending radius is obtained, the collision pressure of the cooling medium is secured to obtain a sufficient cooling capacity, and the circumferential direction of the product is obtained. Uniform cooling that suppresses non-uniformity of hardness is possible.
  • Cooling device 1st control unit, 2nd control unit, 3rd control unit 50 Cooling device 51 First cooling medium injection device (first cooling mechanism) 51a nozzle (first nozzle) 52 Second cooling medium injection device (first cooling mechanism) 52a nozzle (second nozzle) 53 Third cooling medium injection device (second cooling mechanism) 53a nozzle (third nozzle) 60 Vertical cooling device (4th cooling mechanism) 61a, 62a nozzle (6th nozzle) 70 Vertical cooling device (third cooling mechanism) 71a, 73a nozzle (4th nozzle) 72a, 74a nozzle (fifth nozzle) 153a1 split nozzle (first split nozzle) 153a2 split nozzle (second split nozzle) 170 Vertical cooling device (third cooling mechanism) A 1st position B 2nd position C 3rd position c Left side surface (bending inner peripheral surface) D 4th position EX extension line F arrow (feed direction) g Gripping position Pb Bending part Pm Hollow material V1 valve (1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

この冷却装置は、第1冷却機構及び第2冷却機構を備える。前記第1冷却機構は、加熱コイルの下流側に並んで配置され、冷却媒体の噴射方向が第1噴射方向である第1ノズルと;前記第1ノズルの下流側に並んで配置され、前記冷却媒体の噴射方向が前記第1噴射方向に対して交差する第2噴射方向である第2ノズルと;前記冷却媒体の供給先を、前記第1ノズル及び前記第2ノズルの一方及び他方間で択一的に切り換える第1弁と、前記第1弁を制御する第1制御部と、を有する。前記第2冷却機構は、前記延長線を間に挟んで前記第1ノズル及び前記第2ノズルとは反対側に配置され、前記冷却媒体の噴射方向が屈曲部の屈曲内周面に対して20度以上70度以下をなす第3噴射方向である第3ノズルを有する。

Description

冷却装置及び冷却方法
 本発明は、冷却装置及び冷却方法に関する。
 本願は、2020年2月27日に、日本国に出願された特願2020-032058号に基づき優先権を主張し、その内容をここに援用する。
 周知のように、自動車や各種機械等に用いられる、中空の屈曲した形状を有する金属製の強度部材、補強部材または構造部材には、軽量かつ高強度であること等が求められる。従来、この種の中空屈曲部品は、例えば、冷間の曲げ加工、プレス加工品の溶接、厚板の打ち抜き、さらには鍛造等により製造されてきた。しかし、これらの製造方法により製造される中空屈曲部品の軽量化および高強度化には限界があり、その実現は容易なことではなかった。
 近年では、例えば非特許文献1に開示されるように、いわゆるチューブハイドロフォーミング工法によりこの種の中空屈曲部品を製造することも積極的に検討されている。しかし、非特許文献1の28頁にも記載されているように、チューブハイドロフォーミング工法には、素材となる材料の開発や成形可能な形状の自由度の拡大等といった課題があり、今後より一層の開発が必要である。
 このような現状に鑑み、本発明者らは、先に特許文献1により曲げ加工装置に係る発明を開示した。図15は、この曲げ加工装置100の概略を模式的に示す説明図である。
 図15に示すように、この曲げ加工装置100では、一対の支持手段101,101によりその軸方向へ移動自在に支持された鋼管(以下、中空素材Pm)を上流側から下流側へ向けて矢印F方向へ図示しない送り装置により送りながら、支持手段101,101の下流位置で曲げ加工を行って、鋼製の中空屈曲部品Ppを製造する。すなわち、支持手段101,101の下流位置で高周波加熱コイル102によって中空素材Pmを部分的に焼入れ可能な温度域に急速加熱するとともに、高周波加熱コイル102の下流に配置される水冷装置103により中空素材Pmを急冷する。そして、中空素材Pmを支持しながら送るロール対104a,104aを少なくとも一組有する可動ローラダイス104の位置を三次元方向(場合によっては二次元方向)に変更して中空素材Pmの加熱された部分に曲げモーメントを付与することにより、中空素材Pmに曲げ加工を行う。この曲げ加工装置100によれば、高い作業効率で高強度の中空屈曲部品Ppを製造することが可能になる。
国際公開第2006/093006号 国際公開第2011/024741号 日本国特許第6015878号公報
自動車技術 Vol.57,No.6,2003 23~28頁 チューブフォーミング,コロナ社,初版第3刷 2002年11月25日, 51~55頁
 自動車や各種機械等に用いられる中空屈曲部品には、種々の形状を持つものが存在する。中でも、曲げ部の曲げ半径が例えば金属管の直径(金属管が矩形断面の場合には、その長手方向に垂直な断面において、屈曲内周面の側縁及び屈曲外周面の側縁間を繋ぐ一辺の長さ)の1~2倍あるいは、それ以下の、極めて小さな曲げ部を有する中空屈曲部品が多く存在する。
 しかしながら、特許文献1の方法により、曲げ半径が例えば金属管の直径(金属管が矩形断面の場合には前記一辺の長さ)の1~2倍あるいはそれ以下の曲げ半径を持つように曲げ加工をした場合、曲げ部の内周側にしわや折れこみを生じたり、あるいは曲げ部の外周側の板厚が大きく減少して破断が発生したりするおそれがある。そのため、小さな曲げ部を有する中空屈曲部品を製造することは困難であった。
 さらに、中空屈曲部品の冷間曲げ加工においては、非特許文献2に記載されているように、曲げ部の外周側に引張応力が作用するため、板厚が減少する。特許文献1の方法も曲げ加工であるため、曲げ部の外周側の板厚減少は避けらない。
 そこで、これらの課題解決に応えるために、本発明者らは、特許文献2によりせん断曲げ加工装置に係る発明を開示した。
 図16に示すように、このせん断曲げ加工装置200は、第1の支持手段201と、加熱手段202と、冷却手段203と、把持手段204と、を備える。第1の支持手段201は、金属製の中空素材Pmを、その長手方向へ相対的に送りながら、第1の位置Aにおいて支持する。加熱手段202は、中空素材Pmの送り方向に沿った第1の位置Aよりも下流にある第2の位置Bにおいて中空素材Pmを部分的に加熱する。冷却手段203は、中空素材Pmの送り方向に沿った第2の位置Bよりも下流にある第3の位置Cにおいて中空素材Pmの加熱部分を冷却(強制冷却または自然冷却)する。把持手段204は、中空素材Pmの送り方向に沿った第3の位置Cよりも下流にある第4の位置Dにおいて中空素材Pmを位置決めしながら二次元方向または三次元方向に移動させることによって、中空素材Pmの加熱部分にせん断力を与える。よって、このせん断曲げ加工装置200によれば、中空素材Pmの加熱部分に対してせん断加工と熱処理とを加えることが可能になる。そして、このせん断曲げ加工装置200によれば、金属管の直径(金属管が矩形断面の場合には前記一辺の長さ)の1~2倍、あるいは、それ以下の曲げ半径の曲げ部を有する高強度の中空屈曲部品を、低コストで量産することが可能である。
 この特許文献2の発明により、高強度でありながら小さな曲げ半径を有する部品の製造が可能となり、多数の自動車をはじめとする機械部品の大幅な軽量化がなされた。
 特許文献2の発明では、良好な製品を得るために周方向および軸方向の均一冷却が重要である。この均一冷却に着目し、特許文献3により、図17に示す鋼材の冷却装置が開示された。この鋼材の冷却装置は、長尺の鋼材Pmの一端部を把持した状態で鋼材Pmをその長手方向に送りながら鋼材Pmの前記長手方向の一部分を加熱しつつ前記一端部を二次元又は三次元方向に移動させることで曲げを含む所定の形状に形成した後、前記曲げを含む被加熱部を冷却する冷却装置であって、前記被加熱部に対して第1の冷却媒体を噴射する一次冷却装置22と;鋼材Pmの送り方向に沿って見た場合に一次冷却装置22よりも下流側に設けられ、前記被加熱部に対して第2の冷却媒体を噴射する二次冷却装置23と;を備え、二次冷却装置23が、前記送り方向に沿って複数配置され、かつ互いに独立して前記第2の冷却媒体の流量が制御可能であり;鋼材Pmの周方向に沿って複数配置されてかつ、それぞれが相互に独立して前記第2の冷却媒体を流量制御可能に噴射する冷却機構を備える。
 この特許文献3に記載の鋼材の冷却装置によれば、特許文献2に示される曲げ加工法における比較的大きな曲げ半径を有する曲げ鋼材Pmの硬度の不均一を低減することが可能である。しかしながら、特許文献3に記載の冷却装置を特許文献2に記載のせん断曲げ加工に適用する場合、加工条件によっては、均一冷却を得るための更なる改良が求められる場合がある。
 すなわち、金属管の直径(金属管が矩形断面の場合には前記一辺の長さ)の1~2倍、あるいは、それ以下の極めて小さい曲げ半径の曲げ部を有する中空屈曲部品では、曲げ部の曲げ角が直角に近い場合もある。このような極めて小さい曲げ半径で大きな曲げ角を形成する場合、急激に加工方向が変化することから、二次冷却装置の構成の変更だけでは対応できない。この原因は、加熱直後の曲げ部に一次冷却装置からの冷却媒体が当たらない部分が発生したり、あるいは、冷却媒体が中空素材Pmの送り方向とは逆方向に流れたりするためである。この問題は、通常の曲げ加工よりもせん断曲げ加工を行う際に生じやすい。
 せん断加工がなされる際に、せん断変形を受ける領域は高温であり、変形抵抗が低下している。一次冷却装置は、加熱直後の冷却であり、周方向において十分かつ均一な冷却を与えないと、変形領域の変形抵抗が周方向において不均一になる。この場合、良好なせん断変形を得ることが困難となる。また、出来上がった製品も周方向で硬度が不均一となる。また、いわゆる焼きむらを生じてしまうことがある。
 本発明は、上記事情に鑑みてなされたものであり、極めて小さい曲げ半径の曲げ部を有する中空屈曲部品を得る場合でも、冷却媒体の衝突圧力を確保して十分な冷却能力を得るとともに、製品の周方向における硬度の不均一を抑制する均一な冷却を可能とする、冷却装置及び冷却方法の提供を目的とする。
 上記課題を解決して係る目的を達成するために、本発明は以下の態様を採用している。
(1)本発明の一態様は、
 金属製の中空素材をその長手方向である送り方向に沿って第1の位置で支持しながら送る送り機構と、
 前記中空素材を、前記第1の位置よりも下流の第2の位置で加熱する加熱コイルと、
 前記中空素材を、前記第2の位置よりも下流の第3の位置で冷却媒体の噴射により冷却する冷却装置と、
 前記中空素材を、前記第3の位置よりも下流の第4の位置で把持し、把持位置を二次元方向又は三次元方向に移動させて前記中空素材に屈曲部を形成する曲げ力付与部と、
を備える中空屈曲部品製造装置に用いられる、前記冷却装置であって、
 第1冷却機構及び第2冷却機構を備え;
 前記第1冷却機構が、
  前記第1の位置における前記中空素材の前記送り方向に沿った軸線の延長線を含む第1仮想平面で見て、前記加熱コイルの下流側に並んで配置され、前記冷却媒体の噴射方向が第1噴射方向である第1ノズルと、
  前記第1仮想平面で見て、前記第1ノズルの下流側に並んで配置され、前記冷却媒体の噴射方向が前記第1噴射方向に対して交差する第2噴射方向である第2ノズルと、
  前記冷却媒体の供給先を、前記第1ノズル及び前記第2ノズルの一方及び他方間で択一的に切り換える第1弁と、
  前記第1弁を制御する第1制御部と、を有し;
 前記第2冷却機構が、
  前記第1仮想平面で見て、前記延長線を間に挟んで前記第1ノズル及び前記第2ノズルとは反対側に配置され、前記冷却媒体の噴射方向が前記屈曲部の屈曲内周面に対して20度以上70度以下をなす第3噴射方向である第3ノズルを有する。
(2)上記(1)において、以下の構成を採用してもよい:
 前記第2冷却機構が、
  前記第3ノズルを構成する第1分割ノズル及び第2分割ノズルと、
  前記冷却媒体の供給先を、前記第1分割ノズル及び前記第2分割ノズルの一方及び他方間で択一的に切り換える第2弁と、
  前記第2弁を制御する第2制御部と、
を有し;
 前記第1仮想平面で見た前記第1分割ノズルからの前記冷却媒体の噴射方向が、前記延長線に対して20度以上70度以下であり;
 前記第1仮想平面で見た前記第2分割ノズルからの前記冷却媒体の噴射方向が、前記第3噴射方向である。
(3)上記(1)または上記(2)において、以下の構成を採用してもよい:
 前記第1仮想平面に対し前記延長線を交線として直交する第2仮想平面に配置された第4ノズル及び第5ノズルを有する第3冷却機構をさらに備え;
 前記第4ノズルの、前記第1仮想平面で見た前記冷却媒体の噴射方向が、前記延長線に沿った第4噴射方向であり;
 前記第5ノズルの、前記第1仮想平面で見た前記冷却媒体の噴射方向が、前記第4噴射方向に交差する第5噴射方向である。
(4)上記(3)において、以下の構成を採用してもよい:
 前記第3冷却機構が、
  前記冷却媒体の供給先を、前記第4ノズル及び前記第5ノズルの一方及び他方間で択一的に切り換える第3弁と、
  前記第3弁を制御する第3制御部と、をさらに備える。
(5)上記(1)~上記(4)の何れか1項において、以下の構成を採用してもよい:
 前記第1仮想平面に対し前記延長線を交線として直交する第2仮想平面に配置された第6ノズルを有する第4冷却機構をさらに備え;
 前記第1仮想平面で見た前記第6ノズルの噴射方向が、前記送り方向に対し、前記屈曲部の剪断角度θの略1/2をなす第6噴射方向である。
(6)本発明の他の態様は、
 金属製の中空素材をその長手方向である送り方向に沿って第1の位置で支持しながら送る工程と、
 前記中空素材を、前記第1の位置よりも下流の第2の位置で加熱する工程と、
 前記中空素材を、前記第2の位置よりも下流の第3の位置で冷却媒体の噴射により冷却する工程と、
 前記中空素材を、前記第3の位置よりも下流の第4の位置で把持し、把持位置を二次元方向又は三次元方向に移動させて前記中空素材に屈曲部を形成する工程と、
を有する中空屈曲部品の製造方法に用いられる、冷却方法であって、
 第1冷却工程及び第2冷却工程を有し;
 前記第1冷却工程が、
  前記第1の位置における前記中空素材の前記送り方向に沿った軸線の延長線を含む第1仮想平面で見て、第1噴射方向に向けて前記第3の位置より前記冷却媒体を噴射する第1工程と、
  前記第1仮想平面で見て、前記第1噴射方向に対して交差する第2噴射方向に向けて前記第3の位置より前記冷却媒体を噴射する第2工程と、
 前記第1工程の実施時には前記第2工程を停止し、前記第2工程の実施時には前記第1工程を停止する第3工程と、を有し;
 前記第2冷却工程が、
  前記第1仮想平面で見て、前記屈曲部の屈曲内周面に対して20度以上70度以下である第3噴射方向に向けて前記第3の位置より前記冷却媒体を噴射する。
(7)上記(6)において、以下の工程を採用してもよい:
 前記第2冷却工程が、
  前記第1仮想平面で見て、前記延長線に対して20度以上70度以下の噴射方向に向けて前記冷却媒体を噴射する第4工程と、
  前記第1仮想平面で見て、前記第3噴射方向に向けて前記冷却媒体を噴射する第5工程と、
  前記第4工程の実施時には前記第5工程を停止し、前記第5工程の実施時には前記第4工程を停止する第6工程と、を有する。
(8)上記(6)または上記(7)において、以下の工程を採用してもよい:
 前記第1仮想平面に対し前記延長線を交線として直交する第2仮想平面において、第4噴射方向及び第5噴射方向より前記冷却媒体を前記中空素材に向けて噴射する第3冷却工程をさらに有し;
 前記第3冷却工程が、
  前記第1仮想平面で見て、前記延長線に沿った第4噴射方向に向けて前記冷却媒体を噴射する第7工程と、
 前記第1仮想平面で見て、前記第4噴射方向に交差する第5噴射方向に向けて前記冷却媒体を噴射する第8工程と、を有する。
(9)上記(8)において、以下の工程を採用してもよい:
 前記第3冷却工程が、
  前記第7工程の実施時には前記第8工程を停止し、前記第8工程の実施時には前記第7工程を停止する第9工程をさらに有する。
(10)上記(6)~上記(9)の何れか1項において、以下の工程を採用してもよい:
 前記第1仮想平面に対し前記延長線を交線として直交する第2仮想平面において、前記冷却媒体を前記中空素材に向けて噴射する第4冷却工程をさらに有し;
 前記第4冷却工程が、前記第1仮想平面で見て、前記送り方向に対して前記冷却媒体の噴射方向がなす角度が前記屈曲部のせん断角度θの略1/2である第6噴射方向に向けて前記冷却媒体を噴射する第10工程を有する。
 上記各態様に係る冷却装置及び冷却方法によれば、極めて小さい曲げ半径の曲げ部を有する中空屈曲部品を得る場合でも、冷却媒体の衝突圧力を確保して十分な冷却能力を得るとともに、製品の周方向における硬度の不均一を抑制する均一な冷却が可能となる。
本発明の一実施形態に係る冷却装置を備えた製造装置を、模式的に示す平面図である。 同冷却装置の要部を示す図であって、図1のX部の拡大平面図である。 中空素材にせん断曲げ加工をせずに送る際の従来の冷却方法を示す図であって、図1のX部に対応する部分の拡大平面図である。 中空素材にせん断曲げ加工を行う際の従来の冷却方法を示す図であって、図1のX部に対応する部分の拡大平面図である。 図1のX部に対応する部分の拡大平面図であり、中空素材にせん断曲げ加工を行う際の冷却媒体の噴射方向を変えた場合を示す。 中空素材にせん断曲げ加工をせずに送る際の従来の冷却方法を示す図であって、図1のX部に対応する部分の拡大平面図である。 中空素材にせん断曲げ加工を行う際の従来の冷却方法を示す図であって、図1のX部に対応する部分の拡大平面図である。 中空素材にせん断曲げ加工をせずに送る際の本実施形態の冷却方法を示す図であって、図1のX部の拡大平面図である。 中空素材にせん断曲げ加工を行う際の本実施形態の冷却方法を示す図であって、図1のX部の拡大平面図である。 本実施形態の冷却装置の要部を示す図であって、図2のP-P矢視図である。 同実施形態の変形例を示す図であって、図6Aに対応する図である。 同実施形態の変形例を示す図であって、図2のQ部に対応する部分を示す拡大平面図である。 本実施形態の冷却装置の要部を示す図であって、図2のY1-Y1矢視図である。 同冷却装置による冷却方法を示す図であって、中空素材のせん断曲げ加工部を図8の矢視Rより見た拡大平面図である。 従来の冷却方法により中空素材のせん断曲げ加工部の上面を冷却する場合を示す拡大平面図である。 本実施形態の冷却方法により中空素材のせん断曲げ加工部の上面を冷却する図であって、図10Aに対応する拡大平面図である。 本実施形態の冷却装置の変形例を示す図であって、図2のY1-Y1矢視図である。 同変形例を示す図であって、中空素材を図11の矢視Uより見た底面図である。 本実施形態の変形例を示す図であって、図2のY1-Y1矢視図である。 同変形例でせん断曲げ加工を加えずに中空素材を送る場合を示す図であって、図13の矢視Tより見た拡大平面図である。 同変形例でせん断曲げ加工を加えた際の中空素材を示す図であって、図13の矢視Tより見た拡大平面図である。 特許文献1に開示された従来の曲げ加工装置の概略構成を示す説明図である。 特許文献2に開示された従来のせん断曲げ加工装置の概略構成を示す説明図である。 特許文献3に開示された従来の冷却装置の概略構成を示す説明図である。
 以下、本発明の一実施形態及びその各種変形例について図面を参照しながら説明する。以下の説明では、製造される中空屈曲部品が、鋼製であって矩形の横断面形状を有する中空の角管を素材(以下、中空素材Pm)とし、自動車や各種機械に用いられる強度部品、補強部品または構造部品等の製品(以下、中空屈曲部品Pp)を製造する場合を例示する。まず、中空屈曲部品の製造装置(以下、製造装置10)を説明し、続いて中空屈曲部品の製造方法を説明する。製造装置10には、本実施形態に係る冷却装置が備わっている。
 なお、本実施形態及びその変形例において共通する構成要素には同一符号を付してそれらの重複説明を省略する場合がある。
[中空屈曲部品の製造装置]
 図1は、本実施形態に係る中空屈曲部品の製造装置10を模式的に示す平面図である。なお、本発明の冷却装置は、通常の曲げ加工とせん断曲げ加工との両方を行えるが、以下の説明では、せん断曲げ加工を行う場合を例示する。ここで、通常の曲げ加工とせん断曲げ加工(せん断加工)との双方を包含するものとして、単に屈曲加工と呼ぶ場合がある。
 製造装置10により、中空素材Pmをせん断曲げ加工して中空屈曲部品Ppを得る。中空素材Pmは、その長手方向に垂直な断面が中空矩形の閉断面形状を有する長尺な角管である。なお、本実施形態の加工対象は、角管に限定されるものではなく、例えば、円形、楕円形、さらには各種異形の横断面形状を有するその他の鋼管にも適用可能である。また、矩形断面を持つ中空素材Pmとしては、その横断面形状が正方形、長方形の何れにも適用可能である。さらに言うと、鋼管以外の金属管を中空素材Pmとしてもよい。すなわち、中空素材Pmは、チタンあるいはステンレスなど、鋼以外の金属からなる金属管であってもよい。
 図1に示すように、この製造装置10は、支持装置11と、加熱装置12と、冷却装置50と、せん断力付与装置14と、を備える。なお、図1は平面図を示している。本実施形態の中空素材Pmは角管であるため、図1の紙面に平行な2面を上面及び下面(紙面手間側が上面aであり、その裏面側が下面b)と呼び、これら上面a及び下面b間を繋ぐ2側面を左側面c及び右側面dと呼ぶ場合がある。
(1)支持装置11
 図1の矢印Fに示すように、支持装置11においては、中空素材Pmを図示しない送り装置によりその長手方向へ送る。図1に示す符号CLは、支持装置11の位置における中空素材Pmの中心軸線である。支持装置11の位置では、まだせん断曲げ加工を加えていないので、中心軸線CLは直線をなしている。中空素材Pmは、せん断曲げ加工を加えられることにより、中心軸線CLも屈曲する。そのため、以下の説明においては、中心軸線CLの代わりに、この中心軸線CLの延長線EXを、方向を示す際の基準として用いる。具体的には、図1のXYZ座標軸に示すように、延長線EXに沿った中空素材Pmの送り方向(図1の紙面左方向)を+X方向とする。そして、以下の説明では、+X方向を単に送り方向あるいは下流方向、-X方向を単に上流方向という場合もある。また、支持装置11の位置より延長線EXに沿った下流方向を見て、左方向(図1の紙面下方向)を+Y方向とする。さらに、X方向及びY方向の双方に対して直交してかつ鉛直方向上方(図1の紙面手前側)を+Z方向とする。図1以降の各図にも、XYZ座標軸を付して方向に関する情報を共通化する。
 前記送り装置は、電動サーボシリンダーを用いたタイプが例示されるが、特定型式のものに限らず、ボールネジを用いたタイプやタイミングベルトやチェーンを用いたタイプ等、公知のものが採用できる。
 中空素材Pmは、前記送り装置によって所定の送り速度で+X方向(矢印Fに沿って紙面左手に向かう送り方向)へ送られる。中空素材Pmは、第1の位置Aにおいて支持装置11により支持される。すなわち、支持装置11は、前記送り装置によって+X方向へ送られる中空素材Pmを、第1の位置Aにおいて支持する。
 本実施形態では、支持装置11としてブロックを用いている。ブロックは、中空素材Pmが隙間を有して挿通することができる貫通穴11aを有する。図示を省略するが、ブロックを複数分割し、油圧シリンダーやエアシリンダーを接続し、中空素材Pmを挟持して支持する構成としてもよい。また、支持装置11は、特定型式のものに限定されず、この種の支持装置として公知のものが採用できる。例えばその他の構成として、互いに対向配置される一対の孔型のロールを1組もしくは2組以上並設して用いることが可能である。
 支持装置11は、図示されない搭載台上に固定配置されている。しかし、この態様のみに限定されるものではなく、支持装置11を産業用ロボットのエンドエフェクター(図示略)によって支持してもよい。
 中空素材Pmは、支持装置11が設置された第1の位置Aを通過した後、さらに+X方向へ送られる。
(2)加熱装置12
 加熱装置12は、中空素材Pmの送り方向に沿った第1の位置Aよりも下流にある第2の位置Bに配置されている。加熱装置12は、支持装置11から送られてくる中空素材Pmの長手方向の一部分における横断面の全周を加熱する。加熱装置12として誘導加熱装置を用いる。この誘導加熱装置は、中空素材Pmを例えば高周波誘導加熱するコイルを有するものであればよく、公知のものが採用できる。
 加熱装置12の加熱コイル12aは、中空素材Pmの外表面から所定の距離だけ離れて、中空素材Pmの長手方向の一部における横断面の全周を囲むように、配置される。中空素材Pmは、加熱装置12により部分的に急速加熱される。
 加熱装置12の設置手段(不図示)は、加熱コイル12aの傾斜角度を第2の位置Bにおいて調整可能である。すなわち、加熱装置12の前記設置手段は、加熱コイル12aを、中空素材Pmの送り方向に対して設定した角度に傾斜させることができる。図1の例では、中空素材Pmの+X方向(矢印Fに示す、中空素材Pmの送り方向)に対し、側面視で傾斜角度αをもって交差するように、加熱コイル12aが傾斜配置されている。この傾斜角度αを90°以下とすることで、加熱コイル12aを傾斜配置することができる。
 加熱装置12の設置手段としては、例えば周知慣用の産業用ロボットのエンドエフェクターを例示することができるが、前記傾斜角度αを指定通り調整可能であればよく、公知のものが採用できる。加熱装置12の設置手段による傾斜角度αの調整は、製造装置10に備わる制御装置15からの制御信号を前記設置手段が受けて、自動制御する構成としてもよい。この場合、中空素材Pmの長手方向において、せん断曲げ加工を行う位置と、同位置において設定すべき傾斜角度αとの関係を予め制御装置15に保存しておき、中空素材Pmの送り量が所定の送り量に達した際の加熱コイル12aの傾斜角度αが、所定の角度をなすように制御することが、一例として考えられる。
 図示を省略するが、中空素材Pmの送り方向に沿った加熱装置12の上流側位置に、中空素材Pmを予熱できる予熱装置(例えば小型の高周波加熱装置)を一つ以上配置しておき、この予熱手段を加熱装置12と併用して中空素材Pmを加熱することもできる。この場合、中空素材Pmを複数回、加熱することが可能になる。
(3)冷却装置50
 冷却装置50は、中空素材Pmの送り方向に沿って第2の位置Bよりも下流にある第3の位置Cに配置される。冷却装置50は、中空素材Pmのうち、第2の位置Bで加熱された部分を急速に冷却する。中空素材Pmは、冷却装置50で冷却されることによって、加熱装置12により加熱された第1の部分と、冷却装置50により冷却された第2の部分との間の領域shが、高温であって変形抵抗が大幅に低下した状態となる。冷却装置50は、加熱コイル12aの下流側直後に隣接配置されている。必要に応じて、この冷却装置50を一次冷却装置とし、そして冷却装置50の下流側に二次冷却装置として他の冷却装置を併設してもよい。もちろん、図1に示すように冷却装置50のみを備えてもよい。
 冷却装置50は、中空素材Pmを曲げ加工あるいはせん断曲げ加工して、極めて小さい曲げ半径で大きな曲げ角の曲げ部を有する中空屈曲部品を得る場合にも、効果的な冷却を行える。具体的には、従来の冷却機構であると中空素材Pmの送り方向で最も下流側に位置する冷却水吐出孔から噴射された冷却水が変形後の中空素材Pmの外周に衝突しないような小さい曲げ半径でかつ、大きな曲げ角度の加工条件であっても、本実施形態によれば、冷却媒体の逆流を伴うことなく効果的な冷却を実施できる。
 本実施形態の冷却装置50は、図2に示すように、第1冷却媒体噴射装置51(第1冷却機構)と、第2冷却媒体噴射装置52(第1冷却機構)と、弁V1(第1弁)と、第3冷却媒体噴射装置53(第2冷却機構)と、図8以降を用いて後述する上側冷却媒体噴射装置及び下側冷却媒体噴射装置と、を備える。図2では、説明を明確にするために、前記上側冷却媒体噴射装置及び前記下側冷却媒体噴射装置の図示を省略している。
 中空素材Pmをその長手方向に垂直な断面で見た場合、上面aを前記上側冷却媒体噴射装置が冷却し、下面bを前記下側冷却媒体噴射装置が冷却し、右側面を第1冷却媒体噴射装置51及び第2冷却媒体噴射装置52が冷却し、左側面cを第3冷却媒体噴射装置53が冷却する。よって、中空素材Pmの外周4面は、それぞれ個別に冷却媒体の噴射を受けて均等に冷却される。
 まず、中空素材Pmの左側面c及び右側面bを冷却する第1冷却媒体噴射装置51、第2冷却媒体噴射装置52、第3冷却媒体噴射装置53について説明する。
 第1冷却媒体噴射装置51は、中空素材Pmの送り方向に沿って見て、加熱コイル12aの下流側に隣接配置されたノズル51aを有する。ノズル51aは、配管を介して弁V1に接続されている。平面視で見て、ノズル51aから噴射される冷却媒体の噴射方向は、第1方向(第1噴射方向)W1となっている。この第1方向W1は、ノズル51aから噴射される冷却媒体の中心線であり、図2の仮想線に示すように中空素材Pmにせん断曲げ加工を行わずに矢印Fに沿ってそのまま送るX方向を基準(0度)とした鋭角である角度ψ1をなす方向である。すなわち、ノズル51aから噴射される冷却媒体の噴射方向は、図2に示す平面視において、矢印Fに平行なベクトル成分が、送り方向を向く正方向(+X方向)となっている。さらに、角度ψ1を20度以上70度以下とすることにより、冷却媒体の衝突圧力を確保して十分な冷却能力を得るとともに、冷却媒体が送り方向に対して逆流するのを防ぐことができる。なお、冷却媒体としては、例えば冷却水を用いることができる。
 第2冷却媒体噴射装置52は、中空素材Pmの送り方向に沿って見て、第1冷却媒体噴射装置51のノズル51aの隣りに並んで配置されたノズル52aを有する。すなわち、送り方向に沿って見て、加熱コイル12a、ノズル51a、ノズル52aの順に並んでいる。
 ノズル52aは、他の配管を介して弁V1に接続されている。平面視で見て、ノズル52aから噴射される冷却媒体の噴射方向は、第2方向(第2噴射方向)W2となっている。この第2方向W2は、第1方向W1に対して交点xで交差している。この交点xは、図2に示す平面視で、ノズル51a,52aの各ノズル出口からの距離が、曲げ部Pbの屈曲外周面よりも近い手前側にある。
 第2方向W2は、ノズル52aから噴射される冷却媒体の中心線であり、図2の実線に示すように、せん断曲げ加工により形成された曲げ部Pbにおける右側面dに向けられている。すなわち、ノズル52aから噴射される冷却媒体の噴射方向は、図2に示す平面視において、矢印Fに平行なベクトル成分が、送り方向とは逆である負方向(-X方向)を向いている。
 さらに、第2方向W2は、右側面dとの交点における接線taとなす角度ψ2が20度以上70度以下なしている。角度ψ2を20度以上にすることで、冷却媒体の衝突圧力を確保して、中空素材Pmの外表面に冷却媒体が形成する膜沸騰により形成される蒸気膜(boiling bubble membrane)を破壊できる。これにより、中空素材Pmの外面に蒸気膜が形成されるのを防いで、十分な冷却能力を得ることができる。角度ψ2を大きくするほど冷却媒体の衝突圧力を高められるが、70度を超えると冷却媒体が送り方向に対して逆流するおそれが生じる。そのため、角度ψ2を70度以下に制限することで冷却媒体の逆流を防止する。
 ノズル52aは、ノズル出口が複数形成されたノズル面52a1を有する。このノズル面52a1は、図2の二点鎖線に示すように、曲げ部Pbの凸曲面に合わせて凹曲面としてもよい。この場合、各ノズル出口から曲げ部Pbの外周面までの距離を、より均等に揃えられる。
 弁V1は、第1冷却媒体噴射装置51からの配管と、第2冷却媒体噴射装置52からの配管とが接続されている。この弁V1には、さらに、冷却媒体を供給する前記冷却媒体供給ポンプからの主配管が接続されている。
 弁V1は、制御装置(第1制御部)15からの指示を受けて、前記冷却媒体供給ポンプから送られてくる冷却媒体の供給先を、ノズル51a及びノズル52aの一方及び他方間で択一的に切り換える。これにより、ノズル51aから冷却媒体を噴射しているときはノズル52aからの冷却媒体噴射が止められ、逆に、ノズル52aから冷却媒体を噴射しているときはノズル51aからの冷却媒体噴射が止められる。
 より具体的には、図2の仮想直線に示すように中空素材Pmにせん断曲げ加工を行わずにそのまま送り方向に送る場合には、制御装置15から弁V1に指示を送り、ノズル52aからの冷却媒体噴射を停止させた状態で、ノズル51aから冷却媒体を噴射する。一方、図2の実線に示すように中空素材Pmのせん断曲げ加工を行った場合には、制御装置15から弁V1に指示を送り、ノズル51aからの冷却媒体噴射を停止させた状態で、ノズル52aから冷却媒体を噴射する。これら何れの場合においても、右側面dに向けて適切な傾斜の吹き付け角度をもって冷却媒体を当てることができる。その結果、極めて小さい曲げ半径の曲げ部Pbを有する中空屈曲部品Ppをせん断曲げ加工により得る場合でも、冷却媒体の衝突圧力を確保して十分な冷却能力を得るとともに、製品の特に右側面dにおける硬度の不均一を抑制した均一な一次冷却が可能となる。
 前記第3冷却媒体噴射装置53は、図2に示すように、中空素材Pmの送り方向に沿って見て、加熱コイル12aの下流側に並んで配置されたノズル53aを有する。ノズル53aは、平面視で、中空素材Pmを間に挟んでノズル51a,52aと対向する位置に配置されている。
 ノズル53aは、図示されない配管を介して前記冷却媒体供給ポンプに接続されている。ノズル53aは、曲げ部Pbの曲げ内周面(左側面c)の曲面形状に合わせた曲率を持つノズル面53a1を有している。このノズル面53a1は、曲げ部Pbの内周面(左側面c)に対向しており、せん断曲げ加工後の中空素材Pmの左側面cに対し、干渉を生じないように隙間を設けた配置とされている。ノズル面53a1には、中空素材Pmの送り方向に沿って複数のノズル孔が形成されている。各ノズル孔からは冷却媒体が第3方向W3に向かって噴出され、主に左側面cを冷却する。第3方向W3は、各ノズル孔から噴射される冷却媒体の中心線であり、左側面cとなす角度ψ3が20度以上70度以下となっている。これにより、冷却媒体の蒸気膜破壊に必要な衝突圧力を確保して十分な冷却能力を得るとともに、左側面cに当たった冷却媒体が送り方向に対して逆流するのを防ぐことができる。
 以上説明の第1冷却媒体噴射装置51と、第2冷却媒体噴射装置52と、第3冷却媒体噴射装置53とによれば、曲げ部Pbの左側面c及び右側面dの双方を、むらなく冷却することが可能になる。その理由について、図3A~図5Bを用いて詳細に説明する。ここでは、ノズル51a、52a、53aによる左側面c及び右側面dの冷却を中心に説明する。実際には、これらノズル51a、52a、53aによる冷却に加えて、前記上側冷却媒体噴射装置及び前記下側冷却媒体噴射装置による冷却も同時に行う。しかし、説明を明瞭にするために、前記上側冷却媒体噴射装置及び前記下側冷却媒体噴射装置による冷却の説明は、後述で行うものとする。
 図3A及び図3Bは、図1のX部に対応する部分を示す。具体的には、図3Aが中空素材Pmにせん断曲げ加工をせずに送る際の従来の冷却方法を示す図であり、図3Bが中空素材Pmにせん断曲げ加工を行う際の従来の冷却方法を示す図であり、図3Cが中空素材Pmにせん断曲げ加工を行う際の冷却媒体の噴射方向を変えた場合を示す図である。
 また、図4A及び図4Bは、図1のX部に対応する部分を示す。具体的には、図4Aが中空素材Pmにせん断曲げ加工をせずに送る際の従来の冷却方法を示す図であり、図4Bが中空素材Pmにせん断曲げ加工を行う際の従来の冷却方法を示す。また、図5A及び図5Bは、図1のX部を示す本実施形態の図である。具体的には、図5Aが中空素材Pmにせん断曲げ加工をせずに送る際の冷却方法を示す図であり、図5Bが中空素材Pmにせん断曲げ加工を行う際の冷却方法を示す図である。
 図3Aに示すように加熱コイル12aが傾斜角度αに傾け、そして、図3Bに示すようにせん断角度θのせん断曲げ加工を行う場合を説明する。
 図3Aにおいて、中空素材Pmを送りつつ、加熱コイル12aにより局部的に加熱し、その直後に冷却装置50から送り方向に対して入射角度ψ=ψで中空素材Pmに冷却媒体が噴射され、中空素材Pmが冷却される。冷却装置50から噴射される冷却媒体は、中空素材Pmの進行方向に対して入射角度ψで中空素材Pmに衝突する。
 良好な冷却のためには、中空素材Pmに対する冷却媒体の衝突圧力を確保して蒸気膜を破壊することが必要である。すなわち、入射角度ψが90度に近いほど良好となる。一方、入射角度ψが大き過ぎると、中空素材Pmの表面に沿って冷却媒体が逆流してしまう可能性がある。冷却媒体が逆流すると、十分な冷却能力が得られないことに加え、加熱領域と冷却領域との境界線が周方向で一定にならないため、中空屈曲部品Ppの硬度分布が不均一となるばかりではなく、せん断力による曲げ加工が不均一となる。良好なせん断曲げ加工を行うためには、加熱領域と冷却領域との境界線が周方向において一定とするよう、冷却媒体の逆流を防止する必要がある。
 本発明者らは、中空素材Pmの送り速度や冷却装置の構成を変更しながら、数々の実験を繰り返した。その結果、せん断曲げ加工において衝突圧力を確保しつつ冷却媒体の逆流を発生させない良好な入射角度ψは、下記の式1の範囲であることが判明した。
 20度≦ψ≦70度・・・(式1)
 続いて、図3Bに示すように、せん断角度θでせん断曲げ加工を行った場合について説明する。この場合、曲げ部Pbの外周側における冷却媒体の入射角度をψ’と、曲げ部Pbの内周側における冷却媒体の入射角度ψ”は、それぞれ以下の(式2)及び(式3)の関係となる。式2から明らかなように、中空素材Pmの曲げ部Pbの外周側における入射角度ψ’は減少するため、衝突圧力が低下し、冷却不良が発生するおそれがある。
 ψ’=ψ-θ・・・(式2)
 ψ”=ψ+θ・・・(式3)
 特に、曲げ半径が、例えば直径(中空素材Pmが矩形断面の場合には、その長手方向に垂直な断面において、屈曲内周面の側縁及び屈曲外周面の側縁間を繋ぐ一辺の長さ)の1~2倍あるいは、それ以下の、極めて小さい急激な曲げ部Pbを有する中空屈曲部品Ppを製造する場合には、この問題が顕著になる。すなわち、式1と式2から、たとえばψ=30度の場合,せん断角度θが10度を超えると入射角度ψ’が20度を下回り、冷却能力が低下するおそれがある。せん断角度θがさらに大きくなり30度を超えると幾何学的に、中空素材Pmの曲げ部Pbの外周側に冷却媒体が直接当たらずに冷却出来なくなるおそれがある。
 そこで、図3Cに示す様に、急激に曲げられた中空素材Pmの曲げ部Pbの外周側に式1を満たすように入射角度ψを設定することで、良好な冷却が可能になる。そのためには、コンパクトな冷却装置が必要となる。
 一方、中空素材Pmの曲げ部Pbの内周側における入射角ψ”は、式3より明らかなように増加するため、逆流が発生しやすくなる。式1と式3より、せん断角度θが40度超えになると入射角ψ”が70度を超え、逆流が発生するおそれが高い。そこで、急激に曲げられた中空素材Pmの曲げ部Pbの内周側において式1が満たされるように入射角度ψを設定することで、良好な冷却が可能になる。そのためには、コンパクトな冷却装置が必要となる。
 続いて、特許文献2に示したせん断曲げ加工を用いて、長手方向に垂直な断面が矩形断面でかつ90度に曲がる中空屈曲部品Ppを製造する場合を、図4A及び図4Bを用いて説明する。
 図4Aに示すように、せん断曲げ加工を行わない場合には、中空素材Pmは、せん断力付与装置14により先端が把持されたまま矢印Fの方向に移動する。中空素材Pmは、送り方向に対して傾斜角度αに配置された加熱コイル12aにより急速加熱され、冷却媒体噴射ノズル501,502から噴射される冷却媒体を受けて冷却される。
 一方、図4Bに示すように、せん断曲げ加工を行う場合には、曲げ部Pbの外周面(右側面d)のうちの部分d1には冷却媒体が直接当たらない。したがって、この部分で冷却能力が不足し、中空屈曲部品Ppにおける強度不均一が生じる場合がある。加えて、曲げ部Pbの内周面(左側面c)のうちの部分c1では入射角度ψが70度を超えてしまうため、冷却媒体の逆流が生じるおそれがある。
 以上説明の従来構成に対し、本実施形態の冷却装置は、図5A及び図5Bに示す構成を採用している。その詳細構成は図2において既に説明したので、ここでは重複説明を省略する。
 まず、図5Aに示すように、中空素材Pmを送りつつ、加熱コイル12aにより局部的に加熱し、その直後に冷却装置のノズル51a,53aから送り方向に対して入射角度ψ=ψで冷却媒体を噴射する。この冷却媒体を受けて、中空素材Pmが冷却される。この時、ノズル52aからの冷却媒体噴射は止められているため、ノズル51aからの冷却媒体噴射を妨げない。
 冷却装置のノズル51a,53aから噴射される冷却媒体は、中空素材Pmの進行方向に対して入射角度ψで中空素材Pmに衝突する。このとき、各ノズル51a,53aから噴射される冷却媒体の入射角度ψは全て20度以上70度以下を満たしている。そのため、衝突圧力を確保して十分な冷却能力を得るとともに、冷却媒体の逆流を伴うことなく、むらなく冷却することが可能である。
 また、図5Bに示すように、直角にせん断曲げ加工を行う場合には、本実施形態のノズル53aからの冷却媒体噴射は継続して行われる。一方、ノズル51aからの冷却媒体噴射を止めると共にノズル52aからの冷却媒体噴射を開始する。この時、ノズル51aからの冷却媒体噴射は止められているため、ノズル52aからの冷却媒体噴射を妨げない。
 その結果、図4Bに示した従来の冷却媒体噴射ノズル501では冷却出来なかった部分d1を、図5Bに示すノズル52aからの冷却媒体により冷却することが可能になる。加えて、図4Bに示した従来の冷却媒体噴射ノズル502では逆流のおそれがあった部分c1を、図5Bに示すノズル53aからの冷却媒体によって逆流を伴うことなく冷却することが可能になる。従って、本実施形態によれば、膜蒸気膜破壊に必要な衝突圧力を確保して十分な冷却能力を得るとともに、冷却媒体の逆流を伴うことなく、むらなく冷却することが可能となる。
 なお、図6Aに示すように、延長線EXに垂直な断面における中空素材Pmの外形が本実施形態のように矩形状である場合には、ノズル51a,52aにおいて各ノズル孔が形成されて中空素材Pmの面するノズル面51a1,52a1を、平坦面としてもよい。あるいは、図6Bの変形例に示すように、延長線EXに垂直な断面における中空素材Pmの外形が円形である場合には、ノズル面51a1,52a1を、凹型の湾曲面としてもよい。これら図6A,図6Bの何れの場合も、各ノズル孔から中空素材Pmの外面(上面)までの距離を等しくして前記外面における水圧をより均等にすることができる。
 また、本実施形態では、図2に示した第3冷却媒体噴射装置53が単体のノズル53aを備える場合を例示したが、本発明はこの構成のみに限られない。例えば図7の変形例に示すように、ノズル53aの代わりに分割ノズル153a1,153a2の組み合わせを採用してもよい。
 分割ノズル153a1(第1分割ノズル)は、分割ノズル153a1よりも相対的に延長線EXに近く、各ノズル孔から噴射される冷却媒体の噴射方向が、前記延長線EXに対して20度以上70度以下となっている。
 分割ノズル153a2(第2分割ノズル)は、分割ノズル153a1に並んで配置され、各ノズル孔から噴射される冷却媒体の噴射方向が、屈曲加工後における中空素材Pmの左側面cに対して20度以上70度以下の角度ψ3をなしている。
 分割ノズル153a1,153a2は、それぞれ、個別の配管を介して弁V3に接続されている。弁V3には、前記弁V1と同様に、冷却媒体を供給する主配管が接続されている。前記主配管より供給された冷却媒体は、弁V3の切り換え動作により、分割ノズル153a1,153a2への供給先が切り換えられる。
 具体的には、中空素材Pmにせん断曲げ加工を行わずに延長線EXに沿って下流方向に真っ直ぐ送る場合には、弁V3の切り換えにより冷却媒体の供給先を分割ノズル153a1とする。この場合、分割ノズル153a2からは冷却媒体が噴射されず、分割ノズル153a1のみから冷却媒体が中空素材Pmの左側面cに噴射される。
 一方、中空素材Pmにせん断曲げ加工を行う場合には、弁V3の切り換えにより冷却媒体の供給先を分割ノズル153a2とする。この場合、分割ノズル153a1からは冷却媒体が噴射されず、分割ノズル153a2のみから冷却媒体が中空素材Pmの左側面cに噴射される。これにより、図7に示す部分c1を効果的に冷却できる上に、分割ノズル153a1から噴射される冷却媒体が上流側に向かって逆流するのをより効果的に防止できる。
 中空素材Pmに対する冷却媒体の噴射角度が30度を超えて直角に近付くと冷却効率は高くなるが、逆流のおそれも高くなる。図7に例示したようにせん断曲げ加工で90度に曲げる場合、曲げの内周面を冷却する部分で逆流が生じやすい。特に、元の直線形状から曲がり始める部分では逆流が生じて冷却媒体が加熱コイル12aに向かいやすい。これに対し、本変形例では、せん断曲げ加工時に分割ノズル153a1からの冷却媒体の噴射を止めるため、逆流が生じない。このように、本変形例では、逆流を防止するために弁V3を設けて冷却媒体の供給先を切り換えるものであるが、冷却媒体の噴射先が行き届くようにするために切り換える前記弁V1(図1参照)とは、その役目が異なる。
 なお、弁V3の切り換えタイミングは、前記弁V1の切り換えタイミングと同期させてもよいし、あるいは、中空素材Pmの曲げ具合に応じて別々のタイミングで切り替えてもよい。弁V1,V3の切り替えは、共に制御装置15により行われる。
 続いて、前記上側冷却媒体噴射装置及び前記下側冷却媒体噴射装置について説明する。
 本実施形態は、前記冷却装置50が、図8に示す上下冷却装置70を備えている。図8は、図2のY1-Y1矢視図であるが、説明のために、前記第1冷却媒体噴射装置51~第3冷却媒体噴射装置53の図示を省略している。
 上下冷却装置70は、前記上側冷却媒体噴射装置71,72と、前記下側冷却媒体噴射装置73,74と、弁V2(第2弁)と、を備える。
 上側冷却媒体噴射装置(第5冷却媒体噴射装置)71は、中空素材Pmの送り方向(矢印Fに沿った方向)に沿って見て、加熱コイル12aの下流側に隣接配置されたノズル71aを有する。ノズル71aは、配管を介して弁V2に接続されている。図8に示す側面視で、ノズル71aから噴射される冷却媒体の噴射方向は、第6方向(第3噴射方向)W6となっている。図8に示す曲がり面a1は、上面aのうち、曲げ部Pbとなる部分である。
 第6方向W6は、ノズル71aから噴射される冷却媒体の中心線であり、この中心線を平面視で上面aに投影した際の直線を基準(0度)とした鋭角である角度ψ6をなす方向である。ここで、角度ψ6を20度以上70度以下とすることにより、冷却媒体が送り方向に対して逆流することを防げる。第6方向W6は、図8に示す-Y方向に沿った視線では、曲がり面a1に対して傾斜している。一方、この第6方向W6は、図9に示すように、曲がり面a1に対向する視線では、送り方向に対して傾斜している。
 上側冷却媒体噴射装置(第6冷却媒体噴射装置)72は、中空素材Pmの送り方向に沿って見て、ノズル71aの隣りに並んで配置されたノズル72aを有する。すなわち、送り方向に沿って見て、加熱コイル12a、ノズル71a、ノズル72aの順に並んでいる。
 ノズル72aは、他の配管を介して弁V2に接続されている。ノズル72aから噴射される冷却媒体の噴射方向は、第7方向(第4噴射方向)W7となっている。この第7方向W7は、ノズル72aから噴射される冷却媒体の中心線であり、図8の実線に示すように、曲がり面a1に向けられている。ここで、第7方向W7は、その中心線を平面視で上面aに投影した際の直線を基準(0度)とした鋭角をなす方向である。第7方向の前記角度を20度以上70度以下とすることにより、蒸気膜破壊に必要な衝突圧力を確保して十分な冷却能力を得るとともに、冷却媒体が送り方向に対して逆流するのを防ぐことができる。そして、曲がり面a1に対向する図9の視線では、冷却媒体の噴射方向である第6方向(第3噴射方向)W6と第7方向(第4噴射方向)W7とが交点yにおいて交差している。
 下側冷却媒体噴射装置73,74は、図8に示すように中空素材Pmの下方に配置されている。すなわち、下側冷却媒体噴射装置73,74は、側面視で、中空素材Pmを間に挟んで上側冷却媒体噴射装置71,72と対向している。
 下側冷却媒体噴射装置(第5冷却媒体噴射装置)73は、中空素材Pmの送り方向(矢印Fに沿った方向)に沿って見て、加熱コイル12aの下流側に隣接配置されたノズル73aを有する。ノズル73aは、配管を介して弁V2に接続されている。図8に示すように-Y方向に沿って見た場合、ノズル73aから噴射される冷却媒体の噴射方向は、第8方向(第3噴射方向)W8となっている。この第8方向W8は、ノズル73aから噴射される冷却媒体の中心線であり、この中心線を底面視で下面bに投影した際の直線を基準(0度)とした鋭角である角度ψ8をなす方向である。ここで、角度ψ8を20度以上70度以下とすることにより、蒸気膜破壊に必要な衝突圧力を確保して十分な冷却能力を得てかつ、逆流も防止可能である。第8方向W8は、図8に示すように-Y方向に沿って見た場合、曲がり面b1に対して傾斜している。ここで、曲がり面b1とは、下面bのうち、曲げ部Pbとなる部分を言う。
 一方、この第8方向W8は、曲がり面b1に対向する視線では、送り方向に対して傾斜している。
 下側冷却媒体噴射装置(第6冷却媒体噴射装置)74は、中空素材Pmの送り方向に沿って見て、ノズル73aの隣りに並んで配置されたノズル74aを有する。すなわち、送り方向に沿って見て、加熱コイル12a、ノズル73a、ノズル74aの順に並んでいる。
 ノズル74aは、他の配管を介して弁V2に接続されている。ノズル74aから噴射される冷却媒体の噴射方向は、第9方向(第4噴射方向)W9となっている。この第9方向W9は、ノズル74aから噴射される冷却媒体の中心線であり、図8の実線に示すように、曲がり面b1に向けられている。ここで、第9方向W9は、その中心線を底面視で下面bに投影した際の直線を基準(0度)とした鋭角をなす方向である。第9方向W9の前記角度を20度以上70度以下とすることにより、冷却媒体が送り方向に対して逆流するのを防ぐことができる。そして、曲がり面b1に対向する視線では、冷却媒体の噴射方向である第8方向(第3噴射方向)W8と第9方向(第4噴射方向)W9とが交差している。
 弁V2は、上側冷却媒体噴射装置71,72からの配管と、下側冷却媒体噴射装置73,74からの配管と、が接続されている。
 弁V2は、制御装置(第2制御部)15からの指示を受けて、前記冷却媒体供給ポンプから送られてくる冷却媒体の供給先を、ノズル71a,72aの一方及び他方間で択一的に切り換える。同時に、この弁V2は、前記冷却媒体供給ポンプから送られてくる冷却媒体の供給先を、ノズル73a,74aの一方及び他方間で択一的に切り換える。
 これにより、ノズル71a,73aから冷却媒体を噴射しているときはノズル72a,74aからの冷却媒体噴射は止められ、逆に、ノズル72a,74aから冷却媒体を噴射しているときはノズル71a,73aからの冷却媒体噴射は止められる。
 より具体的に言うと、図8及び図9の仮想線に示すように、中空素材Pmにせん断曲げ加工を行わずにそのまま送り方向に送る場合には、制御装置15から弁V2に指示を送り、ノズル72a,74aからの冷却媒体噴射を停止させた状態で、ノズル71a,73aから冷却媒体を噴射する。
 一方、図8及び図9の実線に示すように中空素材Pmのせん断曲げ加工を行った場合には、制御装置15から弁V2に指示を送り、ノズル71a,73aからの冷却媒体噴射を停止させた状態で、ノズル72a,74aから冷却媒体を噴射する。
 上記構成によれば、図9に示す平面視(あるいはその裏面より見た底面視)において、冷却媒体の噴射方向を、曲げ部Pbの曲がりに応じて第6方向W6(第8方向W8)から第7方向W7(第9方向W9)に変更することができる。
 これらにより、曲がり面a1,b1の曲がり先の奥まで冷却媒体を噴射することができる。その理由について、図10A及び図10Bを用いて詳細に説明する。
 図10Aは、従来の一次冷却方法を示す模式図であり、矩形断面の中空素材Pm(鋼管)を、せん断角度θが90度となるようにせん断曲げ加工しながら焼入れする際の上面aの冷却状況を示している。従来の一次冷却方法では、冷却媒体の噴射方向が矢印Fに示す送り方向に平行であった。そのため、急激な曲がりを持つ曲がり面a1の曲がり先(部分p)まで冷却媒体が直接当たりにくい。その結果、部分pに対する冷却能力が不足し、中空屈曲部品Ppの製品強度が不均一になるおそれがある。
 一方、図10Bは、本実施形態の一次冷却方法を示す模式図であり、矩形断面の中空素材Pm(鋼管)を、せん断角度θが90度となるようにせん断曲げ加工しながら焼入れする際の上面aの冷却状況を示している。本実施形態の一次冷却方法では、せん断角度θに応じて噴射方向の角度を設定し、第7方向W7及び第9方向W9の方向を、曲がり面a1,b1の曲がり先(部分p)まで冷却媒体が直接当たるように傾斜させている。これにより、曲がり面a1,b1の曲がり先(部分p)まで冷却媒体が直接当たるようになる。したがって、部分pに対する冷却能力が十分に確保され、中空屈曲部品Ppの製品所定の均一な強度が得られる。
 以上説明の上下冷却装置70を備える冷却装置50によれば、左側面c及び右側面dに加えて、上面a及び下面bも第3の位置Cで冷却する。中空素材Pmの鋼種にもよるが、冷却時の冷却速度を100℃/秒以上とすることにより、曲げ部Pbに焼入れを行ってその強度を高めることができる。
 中空素材Pmにせん断曲げ加工を加えず真っ直ぐのまま送る場合には、ノズル71aから第6方向W6に向かって、上面aに冷却媒体を噴射する。同様に、ノズル73aから第8方向W8に向かって、下面bに冷却媒体を噴射する。この時、ノズル72a,74aからの冷却媒体噴射は止められている。
 続いて、中空素材Pmにせん断曲げ加工を加える場合には、制御装置15が弁V2を切り換える。その結果、ノズル72aから第7方向W7に向かって、上面aに冷却媒体を噴射する。同様に、ノズル74aから第9方向W9に向かって、下面bに冷却媒体を噴射する。この時、ノズル71a,73aからの冷却媒体噴射は止められている。従って、ノズル71a,73aからの冷却媒体による妨げを受けることなく、ノズル72a,74aからの冷却媒体噴射を行える。したがって、せん断角度θが直角に近いせん断曲げ加工を行う場合であっても、曲がり先の奥側まで届くように冷却媒体を噴射することができる。したがって、均一で十分な一次冷却が可能となる。
 本実施形態では、長尺の中空素材(鋼材)Pmの一端部を把持位置g(図1参照)で把持した状態で中空素材Pmをその送り方向に送りながら中空素材Pmの送り方向の一部分を加熱しつつ把持位置gを二次元又は三次元方向に移動させることで曲げ部Pbを含む所定の形状に形成した直後に、曲げ部Pbの左側面(曲げ内周面)c及び右側面(曲げ外周面)d間を繋ぐ曲がり面a1,b1を含む被加熱部を冷却媒体によって冷却する上下冷却装置70を、冷却装置50が備える。
 この上下冷却装置70は、図8に示す-Y方向に沿う視線では、曲がり面a1,b1に対する冷却媒体の噴射方向(第6方向W6、第8方向W8)が傾斜し、図9に示す曲がり面a1,b1に対向する視線では、冷却媒体の噴射方向(第6方向W6、第8方向W8)が送り方向に対して傾斜する第3噴射方向(第6方向W6、第8方向W8)である上側冷却媒体噴射装置71及び下側冷却媒体噴射装置73(第5冷却媒体噴射装置)と、送り方向に沿って上側冷却媒体噴射装置71及び下側冷却媒体噴射装置73の下流側に並んで配置され、図8に示す-Y方向に沿う視線では、曲がり面a1,b1に対する冷却媒体の噴射方向が傾斜し、図9に示す曲がり面a1,b1に対向する視線では、冷却媒体の噴射方向が第6方向W6、第8方向W8に対して交差する第7方向W7、第9方向W9である上側冷却媒体噴射装置72及び下側冷却媒体噴射装置74(第6冷却媒体噴射装置)と、冷却媒体の供給先を、前記第5冷却媒体噴射装置及び前記第6冷却媒体噴射装置の一方及び他方間で択一的に切り換える弁(第2弁)V2と、弁V2を制御する制御装置(第2制御部)15と、を備える。
 上記構成によれば、制御装置15により弁V2を制御することで、冷却媒体の供給先を、上側冷却媒体噴射装置71及び下側冷却媒体噴射装置73と、上側冷却媒体噴射装置72及び下側冷却媒体噴射装置74との間で、切り換えることができる。これにより、曲がり面a1,b1における曲がり先の奥側まで届くように冷却媒体を噴射することができる。したがって、均一で十分な一次冷却が可能となる。
 別の観点より、本実施形態の一次冷却方法は、送り方向に沿った第1の位置で、図8に示す-Y方向に沿う視線では曲がり面a1,b1に対して傾斜し、図9に示す曲がり面a1,b1に対向する視線では送り方向に対して傾斜する、第6方向W6及び第8方向W8(第3噴射方向)に向かって、冷却媒体を噴射する工程(第3工程)と、送り方向に沿って前記第1の位置に並ぶ第2の位置で、図8に示す-Y方向に沿う視線では曲がり面a1,b1に対して傾斜し、図9に示す曲がり面a1,b1に対向する視線では前記第3噴射方向に対して交差する、第7方向W7及び第9方向W9(第4噴射方向)に向かって、冷却媒体を噴射する工程(第4工程)と、を有する。そして、前記第3工程の実施時には前記第4工程を停止し、前記第4工程の実施時には前記第3工程を停止する。
 この一次冷却方法によれば、冷却媒体の供給先を、第3工程及び第4工程間で切り換えることができる。これにより、曲がり面a1,b1における曲がり先の奥側まで届くように冷却媒体を噴射することができる。したがって、均一で十分な一次冷却が可能となる。
 本実施形態の図8に示した構成に代えて、図11に示す変形例も採用可能である。図11は、図2のY1-Y1矢視図であり、図8に対応する図である。
 この変形例では、図8に示した前記上下冷却装置70に代えて、図11に示す上下冷却装置170を備えている。上下冷却装置170は、上側冷却媒体噴射装置171と、前記下側冷却媒体噴射装置73,74と、前記弁(第2弁)V2と、を備える。
 上側冷却媒体噴射装置171は、中空素材Pmの送り方向(矢印Fに沿った方向)に沿って見て、加熱コイル12aの下流側に隣接配置されたノズル171aを有する。ノズル171aは、中空素材Pmの直上に配置されている。ノズル171aは、弁V2を介さずに前記主配管に直接接続されている。ノズル171aは、前記ノズル71aと前記ノズル72aとが一体に構成されたものである。
 ノズル171aは、前記ノズル71aが有するノズル孔と同じノズル孔を有する。よって、図11に示す-Y方向に沿って見たとき、ノズル171aから噴射される冷却媒体の噴射方向は、前記第6方向(第3噴射方向)W6となっている。この第6方向W6の詳細は上述した通りであるので、ここではその重複説明を省略する。
 ノズル171aは、上記のノズル孔に加えて、前記ノズル72aが有するノズル孔と同じノズル孔も有する。このノズル孔から噴射される冷却媒体の噴射方向は、第7方向(第4噴射方向)W7となっている。この第7方向W7の詳細は上述した通りであるので、ここではその重複説明を省略する。
 ただし、本変形例では、第6方向W6に向けて噴射される冷却媒体と第7方向W7に向けて噴射される冷却媒体とが互いに干渉しないように各ノズル孔の相対位置が調整されている。具体的には、第6方向W6に向けて噴射される冷却媒体の間を縫って第7方向W7に向かう冷却媒体が噴射される。
 図11に示すように、ノズル171aは、中空素材Pmの送り方向(矢印Fに沿った方向)に沿って見て、冷却媒体の噴射方向が第6方向W6であるノズル孔の下流側に、冷却媒体の噴射方向が第7方向W7であるノズル孔が並んで配置されている。冷却媒体の噴射方向が第6方向W6であるノズル孔に通じる流路と、冷却媒体の噴射方向が第7方向W7であるノズル孔に通じる流路との両方が、前記主配管に直接接続されている。すなわち、ノズル171aからの配管は、弁V2を介することなく主配管に接続されている。したがって、主配管から供給される冷却媒体は、ノズル171aの全てのノズル孔より、同時に、第6方向W6及び第7方向W7へと噴射される。ここで、第6方向W6へ噴射される冷却媒体と第7方向W7へと噴射される冷却媒体とが互いに干渉しないので、シンプルで安価な装置構成でありながらも、中空素材Pmの上面aを冷却することができる。
 中空素材Pmの直上に配置されたノズル171aとは反対側、すなわち、中空素材Pmの真下には、上述した構成、位置、向きを有する前記ノズル73a,74aが同様に配置されている。
 これらノズル73a,74aは、それぞれ、個別の配管を介して弁V2に接続されている。弁V2は、前記主配管に接続されている。よって、主配管から供給される冷却媒体は、弁V2の切り換え動作により、その供給先が、ノズル73a,74aの一方または他方に切り換えられる。
 ここで、弁V2の切り換え動作により、ノズル73a,74aの一方から冷却媒体を噴射している際には、他方からの冷却媒体の噴射が止められる。逆に、弁V2の切り換え動作により、ノズル73a,74aの前記他方から冷却媒体を噴射している際には、前記一方からの冷却媒体の噴射が止められる。
 より具体的に言うと、図11及び図12の仮想線に示したように、中空素材Pmにせん断曲げ加工を行わずにそのまま送り方向に送る場合には、制御装置15から弁V2に指示を送り、ノズル74aからの冷却媒体噴射を停止させた状態で、ノズル73aから第3噴射方向W8に沿って冷却媒体を噴射する。一方、図11及び図12の実線に示すように中空素材Pmのせん断曲げ加工を行った場合には、制御装置15から弁V2に指示を送り、ノズル73aからの冷却媒体噴射を停止させた状態で、ノズル74aから第4噴射方向W9に沿って冷却媒体を噴射する。なお、これら切り替えを弁V2で行う前後において、ノズル171aからは、第6方向W6及び第7方向W7の2方向に沿って、中空素材Pmの上面aに冷却媒体が吹き付けられる。
 よって、ノズル73a,74a間における冷却媒体の干渉を生じることなく、冷却媒体を中空素材Pmの下面bに向けてその下方より吹き付けることができる。これらノズル73a,74aは、中空素材Pmの下面bに向かって、重力に逆らいながら上に向けて冷却媒体を吹き付けるので、冷却媒体を下方に向けて吹き付けるノズル171aに比べると、水圧が不足気味になりやすい。しかし、本構成では、冷却媒体の供給先をノズル73a,74aのどちらか一方に集中させることができるので、水圧低下が生じない。よって、中空素材Pmの下面bを上面aに劣らない冷却能力をもって冷却することが可能である。
 さらに他の変形例として、本実施形態の図8に示した構成に代えて、図13に示す構成も採用可能である。図13は、図2のY1-Y1矢視図であり、図8と同じ視線からの図である。
 この変形例では、図8に示した前記上下冷却装置70に代えて、図13に示す上下冷却装置60を備えている。なお、図13は、図1のX部に対応する部分の側面図であるが、説明のために、前記第1冷却媒体噴射装置51~第3冷却媒体噴射装置53の図示を省略している。
 上下冷却装置60は、第4冷却媒体噴射装置61(上側冷却媒体噴射装置)と第5冷却媒体噴射装置62(下側冷却媒体噴射装置)とを備える。
 第4冷却媒体噴射装置61は、中空素材Pmの送り方向に沿って見て、加熱コイル12aの下流側に隣接配置されたノズル61aを有する。ノズル61aは、図示されない配管を介して前記冷却媒体供給ポンプに接続されている。図13に示すように、-Y方向に沿って見たとき、ノズル61aから噴射される冷却媒体の噴射方向は、第4方向W4となっている。この第4方向W4は、ノズル61aから噴射される冷却媒体の中心線であり、この中心線を平面視で上面aに投影した際の直線を基準(0度)とした鋭角である角度ψ4をなす方向である。ここで、角度ψ4を20度以上70度以下とすることにより、蒸気膜破壊に必要な衝突圧力を確保して十分な冷却能力が得られるとともに、冷却媒体が送り方向に対して逆流するのを防ぐことができる。このように、第4冷却媒体噴射装置61は、-Y方向に沿う視線で見て、せん断曲げ加工を行った場合の曲がり面a1に対する冷却媒体の噴射方向が傾斜している。
 図14A及び図14Bは、図13を平面視した図である。図14Aは、中空素材Pmにせん断曲げ加工をせずに送る際の冷却状態を示す。図14Bは、中空素材Pmにせん断曲げ加工を行った際の冷却状態を示す。
 ノズル61aから噴射される冷却媒体の第4方向W4は、図14Bに示すように曲がり面a1に対向する視線で見た場合、送り方向(矢印Fに沿った方向)を基準(0度)としてなす角度βが、前記せん断角度θの略1/2となっている。すなわち、せん断角度θが90度(直角)のせん断曲げ加工を行う場合には、90度の1/2である45度が角度βとなる。ただし、角度βは、厳密に1/2である必要はなく、プラス20度からマイナス20度の範囲内であればずれていてもよい。すなわち、角度βは、(1/2)×θ(度)-20(度)を下限とし、(1/2)×θ(度)+20(度)を上限とする。例えばせん断角度θが90度であれば、角度βの下限は25度であり上限は65度となる(β=25度~65度)。
 このような角度βは、ノズル61aを角度調整可能に保持する支持機構(不図示)により行うようにしてもよい。この場合、制御装置15は、せん断角度θを変化させると同時に、前記支持機構に対してノズル61aの角度βが上記範囲内となるように指示を送る。この指示を受けた前記支持機構が、ノズル61aの向きを変えて角度βが上記範囲内となるようにする。
 または、ノズル61aを加熱コイル12aに対して一体に固定してもよい。この場合、加熱コイル12aの傾斜角度αの変化に応じて自動的に角度βも変更される。
 第5冷却媒体噴射装置62は、第4冷却媒体噴射装置61と同じ構成を有する。図13に示すように、第5冷却媒体噴射装置62は、中空素材Pmを間に挟んで第4冷却媒体噴射装置61と対向する位置に配置されている。すなわち、第4冷却媒体噴射装置61は中空素材Pmの上方に配置され、第5冷却媒体噴射装置62は中空素材Pmの下方に配置されている。
 第5冷却媒体噴射装置62は、中空素材Pmの送り方向に沿って見て、加熱コイル12aの下流側に隣接配置されたノズル62aを有する。ノズル62aは、図示されない配管を介して前記冷却媒体供給ポンプに接続されている。送り方向に沿って見て、ノズル62aから噴射される冷却媒体の噴射方向は、第5方向W5となっている。この第5方向W5は、ノズル62aから噴射される冷却媒体の中心線であり、この中心線を底面視で下面bに投影した際の直線を基準(0度)とした鋭角である角度ψ5をなす方向である。ここで、角度ψ5を20度以上70度以下とすることにより、蒸気膜破壊に必要な衝突圧力を確保して十分な冷却能力を得るとともに、冷却媒体が送り方向に対して逆流するのを防ぐことができる。このように、第5冷却媒体噴射装置62は、-Y方向に沿って側面視して、せん断曲げ加工を行った場合の曲がり面b1に対する冷却媒体の噴射方向が傾斜している。
 ノズル62aを底面視した場合における第5方向W5は、第4方向W4と一致している。ノズル62aから噴射される冷却媒体の第5方向W5は、曲がり面b1に対向する視線で見た場合、送り方向(矢印Fに沿った方向)を基準(0度)としてなす角度βが、前記せん断角度θの略1/2となっている。角度βは、厳密に1/2である必要はなく、プラス20度からマイナス20度の範囲内であればずれていてもよい。すなわち、角度βは、(1/2)×θ(度)-20(度)を下限とし、(1/2)×θ(度)+20(度)を上限とする。
 なお、角度βの調整方法は第4冷却媒体噴射装置61と同じであるため、ここでは説明を省略する。
 以上説明の第4冷却媒体噴射装置61と第5冷却媒体噴射装置62とによれば、図14Bに示すように、直角に近いせん断角度θでせん断曲げ加工を行った場合においても、曲がり面a1,b1をむらなく冷却することが可能になる。その理由は、図10A及び図10Bを用いて上述した通りである。
 続いて、本変形例による装置構成を用いた場合の冷却方法について、以下に説明する。
 中空素材Pmの送り方向に沿った第2の位置Bよりも下流にある第3の位置Cに配置された上下冷却装置60のノズル61a,62aから、冷却媒体を中空素材Pmへ向けて噴射する。これにより、加熱された部分を第3の位置Cで冷却する。中空素材Pmの鋼種にもよるが、この冷却時の冷却速度を100℃/秒以上とすることにより、曲げ部Pbに焼入れを行ってその強度を高めることができる。
 ここで、図14Aに示すように、中空素材Pmにせん断曲げ加工を加えず真っ直ぐのまま送る場合には、平面視で送り方向に対し角度βをなす第4方向W4に向かって、上面aに冷却媒体を噴射する。同様に、角度βをなす第5方向W5に向かって、下面bに冷却媒体を噴射する。
 加えて、左側面c及び右側面dへも冷却媒体噴射を行うが、その具体的な方法については上記実施形態で説明済みであるためここでは説明を省略する。
 続いて、図14Bに示すように、中空素材Pmにせん断曲げ加工を加える場合にも、平面視で送り方向に対し角度βをなす第4方向W4に向かって、上面aに冷却媒体を噴射する。同様に、角度βをなす第5方向W5に向かって、下面bに冷却媒体を噴射する。この時、角度βはせん断角度θに応じて調整される。この角度βの調整により、曲がり面a1,b1それぞれにおける曲がり先の奥側まで届くように冷却媒体を噴射することができる。したがって、均一で十分な一次冷却が可能となる。
 加えて、左側面c及び右側面dへも冷却媒体噴射を行うが、その具体的な方法については上記第1実施形態で説明済みであるためここでは説明を省略する。
 以下に本変形例の骨子を述べる。
 本変形例は、長尺の中空素材Pm(鋼材)の一端部を把持位置gで把持した状態で中空素材Pmをその送り方向に送りながら中空素材Pmの送り方向の一部分を加熱しつつ把持位置gを二次元又は三次元方向に移動させることでせん断角度θの曲げ部Pbを含む所定の形状に形成した直後に、曲げ部Pbの左側面c(曲げ内周面)及び右側面d(曲げ外周面)間を繋ぐ曲がり面a1を含む被加熱部を冷却媒体によって冷却する上下冷却装置60を、冷却装置50が備える。
 この上下冷却装置60は、-Y方向に沿う視線で見た図13の視線では、曲がり面a1に対する冷却媒体の第4方向W4が傾斜し、曲がり面a1に対向する図14Bの視線では、送り方向に対して冷却媒体の第4方向W4がなす角度がせん断角度θの略1/2である第4冷却媒体噴射装置61を備える。
 さらに、上下冷却装置60は、-Y方向に沿う視線で見た図13の視線では、曲がり面b1に対する冷却媒体の第5方向W5が傾斜し、曲がり面b1に対向する視線では、送り方向に対して冷却媒体の第5方向W5がなす角度がせん断角度θの略1/2である第5冷却媒体噴射装置62を備える。
 別の観点より、本実施形態は、-Y方向に沿う視線で見た図13の視線では、曲がり面a1に対して傾斜し、曲がり面a1に対向する視線では送り方向に対してせん断角度θの略1/2となる、第4方向W4に向かって、冷却媒体を噴射する工程を有する一次冷却方法を採用している。
 加えて、この一次冷却方法では、-Y方向に沿う視線で見た図13の視線では、曲がり面b1に対して傾斜し、曲がり面b1に対向する視線では送り方向に対してせん断角度θの略1/2となる、第5方向W5に向かって、冷却媒体を噴射する工程も有する。
 上記の上下冷却装置60及び一次冷却方法によれば、送り方向に対する冷却媒体の噴射方向がせん断角度θの略1/2であるため、曲がり面a1,b1それぞれにおける曲がり先の奥側まで届くように冷却媒体を噴射することができる。したがって、均一で十分な一次冷却が可能となる。
 図1に示す本実施形態の説明に戻る。
 冷却装置50の設置手段は、冷却装置50を第3の位置Cに配置できる手段であればよく、特定の設置手段のみに限定されない。ただし、本実施形態の製造装置10により高い寸法精度を有する中空屈曲部品Ppを製造するためには、第2の位置B及び第3の位置C間の距離をできる限り短く設定することによって、加熱装置12により加熱された第1の部分と、冷却装置50により冷却された第2の部分との間の領域shをできるだけ小さく設定することが望ましい。このためには、冷却装置50を加熱コイル12aに近接配置することが望ましい。そのため、図2に示したように、ノズル51a、52a、53aを加熱コイル12aの直後の位置に配置することが望ましい。さらには、前記加熱装置12の設置手段に対し、冷却装置50を固定してもよい。この場合、ノズル51a、52a、53aと加熱コイル12aとの相対位置関係を保ったまま、これらノズル51a、52a、53aと加熱コイル12aとの双方を同じ傾斜角度αで傾斜させることが可能になる。
 しかし、この構成のみに限らず、冷却装置50の設置手段を、前記加熱装置12の設置手段とは別に備えてもよい。この場合の冷却装置50の設置手段としては、例えば周知慣用の産業用ロボットのエンドエフェクターなど、公知のものが採用できる。
(4)せん断力付与装置14
 せん断力付与装置(曲げ力付与部)14は、中空素材Pmの送り方向に沿った第3の位置Cよりも下流にある第4の位置Dに配置される。せん断力付与装置14は、把持位置gにおいて中空素材Pmを把持するアーム(不図示)を有し、このアームの動作により把持位置gを二次元方向または三次元方向に移動させる。例えば、把持位置gは、送り方向に直交する平面に沿って移動することで、送り方向に沿った移動を伴わない二次元方向の移動をする。また、把持位置gは、三次元空間の任意の方向に沿って移動することで、送り方向に沿った移動を伴う三次元方向の移動をする。これにより、せん断力付与装置14は、中空素材Pmにおける、加熱装置12により加熱された第1の部分と、冷却装置50により冷却された第2の部分との間の領域shに、せん断力を与えて中空素材Pmにせん断曲げ加工を行う。
 せん断力付与装置14は、前記アームの先端に接続された一対の把持手段14a,14bを備える。これら把持手段14a,14bは、中空素材Pmの外表面あるいは内表面に接触することによって中空素材Pmの支持位置を決めながらその位置を移動する。そして、その支持位置の調整により、図1に示すせん断角度θを調整することができる。このせん断角度θは、中空素材Pmの送り方向と、冷却装置50を経た後の中空素材Pmの外表面との間の角度である。
 なお、中空素材Pmを把持する手段としては、上記一対の把持手段14a,14bのみに限定されるものではなく、その他の構成を代わりに採用することも可能である。例えば、前記アームの先端に接続された複数本の爪を備え、これら爪を中空素材Pmの開口先端内に挿入後に開くことで、中空素材Pmをその内方より保持する内面チャックを採用してもよい。あるいは、同様に前記アームの先端に接続された環状体を備え、この環状体内に中空素材Pmを通し、その外周面を全周において環状体で拘束する外面チャックを採用してもよい。
 中空素材Pmの長手方向の一部における横断面は、加熱装置12により加熱されて変形抵抗が大幅に低下する。このため、中空素材Pmの送り方向に沿った第3の位置Cよりも下流にある第4の位置Dにおいて一対の把持手段14a,14bによる把持位置gを三次元方向に移動させることによって、図1に示すように、中空素材Pmにおける、加熱装置12により加熱された第1の部分と、冷却装置50により冷却された第2の部分との間の領域shにせん断力Wsを与えることができる。
 中空素材Pmにせん断力Wsが作用することにより、曲げ部が形成される。本実施形態では、特許文献1により開示された発明のように中空素材Pmの加熱された部分に曲げモーメントを与えるのではなく、せん断力を与える。このため、曲げ半径が曲げ部の内周側の外形曲線と外周側の外形曲線との間の間隔である幅W(製品幅)の1~2倍、あるいは、それ以下の極めて小さい曲げ半径の曲げ部を持つ中空屈曲部品Ppを製造することができる。
 本実施形態の製造装置10を用いた製造方法は、せん断角度θと傾斜角度αの組み合わせを適宜設定することにより、曲げ半径の加工可能範囲を広くとることができる。そのため、前記曲げ半径が2倍を超える大きな曲げ半径の加工も可能である。一方、製品設計上の理由により小さな曲げ半径が求められる場合も、従来技術では難しかった、金属管の直径(金属管が矩形断面の場合には、その長手方向に垂直な断面において、屈曲内周面の側縁及び屈曲外周面の側縁間を繋ぐ一辺の長さ)の1~2倍、あるいは、それ以下の極めて小さい曲げ半径を得ることも可能としている。
 せん断力付与装置14は、一対の把持手段14a,14bを、上述したアームのように二次元方向または三次元方向に移動自在に配置できる機構を介して、設置されればよい。そのような機構は特に限定を要さない。例えば、周知の産業用ロボットのエンドエフェクターにより、把持手段14a,14bを保持してもよい。例えば、図示しないリニアガイドとサーボモータを組み合わせた移動装置などを利用してもよい。
[中空屈曲部品の製造方法]
 続いて、上記した本実施形態の製造装置10を用いて、中空素材Pmより中空屈曲部品Ppを製造する方法について以下に説明する。
 すなわち、図1において、始めに、鋼製で長尺な中空素材Pmを、送り装置によりその長手方向へ相対的に送りながら、第1の位置Aに配置された支持装置11により支持する。
 次に、加熱装置12により、送られてくる中空素材Pmを部分的に急速加熱する。
 中空素材Pmの加熱温度は、鋼を素材とした場合には、中空素材Pmを構成する鋼のAc3点以上とすることが望ましい。Ac3点以上とすることにより、加熱に続いて行われる冷却時の冷却速度を適宜設定することによって中空素材Pmの曲げ部Pbを焼入れすることができる。しかも、中空素材Pmの前記第1の部分と前記第2の部分との間の領域shの変形抵抗を、所望の小さな曲げ半径を有する加工を行うことができる程度に、十分に低下させることが可能になる。
 中空素材Pmの送り方向に沿った第2の位置Bよりも下流にある第3の位置Cに配置された冷却装置50のノズル51a、52a、53aから、冷却媒体を中空素材Pmへ向けて噴射する。これにより、加熱された部分を第3の位置Cで冷却する。中空素材Pmの鋼種にもよるが、この冷却時の冷却速度を100℃/秒以上とすることにより、曲げ部Pbに焼入れを行ってその強度を高めることができる。
 なお、上述したように、中空素材Pmにせん断曲げ加工を加えず真っ直ぐのまま送る場合には、ノズル52aの冷却媒体を止めた上でノズル51aからの冷却媒体を中空素材Pmの右側面dに向けて吹き付ける。一方、中空素材Pmにせん断曲げ加工を加えて曲げ部Pbを形成する場合には、ノズル51aの冷却媒体を止めた上でノズル52aからの冷却媒体を曲げ部Pbの外周面である右側面dに向けて吹き付ける。
 この冷却によって、中空素材Pmに、加熱装置12により加熱された第1の部分と、冷却装置50により冷却された第2の部分とが形成される。中空素材Pmの第1の部分と第2の部分との間の領域shは、高温状態にあってその変形抵抗が大幅に低下する。
 中空素材Pmのせん断曲げ加工予定部の先端部が、せん断力付与装置14の一対の把持手段14a,14bに到達した時に、把持手段14a,14bを、その原位置を起点として、中空素材Pmの送り方向、および、加熱装置12により加熱された中空素材Pmの長手方向における横断面と略平行な方向の2方向が合成された方向(図1における紙面下方向)へ、一対の把持手段14a,14bを移動させる。この時、せん断力付与装置14によるせん断角度がθとなるようにする。
 このようにして、中空素材Pmの前記第1の部分と前記第2の部分との間の領域shに、せん断力Wsが与えられ、中空素材Pmにせん断曲げ加工が行われ、中空屈曲部品Ppが得られる。
 以下に本実施形態の骨子を述べる。
 本実施形態は、長尺の鋼材(中空素材Pm)の一端部を把持した状態で中空素材Pmをその送り方向に送りながら中空素材Pmの送り方向の一部分を加熱しつつ前記一端部を二次元又は三次元方向に移動させることで曲げ部Pbを含む所定の形状に形成した直後に、曲げ部Pbの曲げ外周面を含む被加熱部を冷却媒体によって冷却する冷却装置50を採用している。そして、送り方向に対する直交方向より見た冷却媒体の噴射方向が、第1方向W1である第1冷却媒体噴射装置51と、送り方向に沿って第1冷却媒体噴射装置51に並んで配置され、前記直交方向より見た冷却媒体の噴射方向が第1方向W1に対して交差する第2方向W2である第2冷却媒体噴射装置52と、冷却媒体の供給先を、第1冷却媒体噴射装置51及び第2冷却媒体噴射装置52の一方及び他方間で択一的に切り換える前記弁(第1弁)と、前記弁を制御する制御装置15と、を備える。
 上記構成によれば、制御装置15により前記弁を制御することで、冷却媒体の供給先を、第1冷却媒体噴射装置51及び第2冷却媒体噴射装置52間で切り換えることができる。これにより、曲げ部Pbの外周面を適切な方向より冷却できるので、均一で十分な一次冷却が可能となる。
 さらに、本実施形態は、送り方向に沿って見て、冷却媒体の噴射方向が中空素材Pmの曲げ内周面に対してなす角度が、20度以上70度以下である第3冷却媒体噴射装置53を備える。
 この構成によれば、冷却媒体の噴射方向が曲げ内周面に対して20度以上70度以下であるので、衝突圧力を確保して十分な冷却能力を得るとともに、冷却媒体が送り方向に対し逆流するのを効果的に防げる。したがって、均一な一次冷却が可能となる。
 別の観点より、本実施形態は、長尺の鋼材(中空素材Pm)の一端部を把持した状態で中空素材Pmをその送り方向に送りながら中空素材Pmの送り方向の一部分を加熱しつつ前記一端部を二次元又は三次元方向に移動させることで曲げ部Pbを含む所定の形状に形成した直後に、曲げ部Pbの曲げ外周面を含む被加熱部を冷却媒体(冷却媒体)によって冷却する一次冷却方法を採用している。
 そして、この一次冷却方法は、送り方向に沿って見て加熱コイル12aの下流側である第1の位置で、第1方向W1に向かって冷却媒体を噴射する第1工程と、送り方向に沿って見て、前記第1の位置のさらに下流側に並ぶ第2の位置で、第1方向W1に対して交差する第2方向W2に向かって冷却媒体を噴射する第2工程と、を有する。そして、せん断曲げ加工を行わない場合には、前記第1工程を実施すると共に前記第2工程を停止する。一方、せん断曲げ加工を行う場合には、前記第2工程を実施すると共に前記第1工程を停止する。
 上記方法によれば、せん断曲げ加工の有無に応じて、冷却媒体の供給先を、第1工程及び第2工程間で切り換えることができる。これにより、曲げ部Pbの外周面(右側面d)を、適切な方向から冷却できるので、均一で十分な一次冷却が可能となる。
 さらに、本実施形態は、送り方向に沿って見て、中空素材Pmの曲げ内周面(左側面c)に対し20度以上70度以下の噴射方向に冷却媒体を噴射する工程を有する。
 上記方法によれば、冷却媒体が送り方向に対し逆流するのを効果的に防げる。したがって、均一で十分な一次冷却が可能となる。
 なお、以上の説明では、せん断変形を、矩形断面を有する金属製の中空素材Pmに与える場合を例示したが、本発明はこの態様のみに限定されない。すなわち、金属製の中空素材の断面形状が矩形以外である丸管や多角形管あるいは任意の曲面形状を持つ管であっても、同様に、各実施形態によれば、良好な中空屈曲部品Ppを得ることができる。
 本実施形態及び各種変形例の冷却方法を含む製造方法により製造された中空屈曲部品Ppは、せん断力による加工と同時に熱処理(例えば焼入れ)が行われて製造される。そのため、冷間でせん断曲げ加工が行われてその後に熱処理(例えば焼入れ)を行った中空屈曲部品に比較して、例えば1470MPa以上の高強度の部分を有する中空屈曲部品Ppを、より単純な工程かつ高い加工精度で製造することができる。
 本実施形態及び各種変形例の冷却方法を含む製造方法により製造される中空屈曲部品Ppは、例えば以下に例示する用途(i)~(vii)に対して適用可能である。
(i)例えば、フロントサイドメンバー、クロスメンバー、サイドメンバー、サスペンションメンバー、ルーフメンバー、Aピラーのレインフォース、Bピラーのレインフォース、バンパーのレインフォース等といった自動車車体の構造部材
(ii)例えば、シートフレーム、シートクロスメンバー等といった自動車の強度部材や補強部材
(iii)自動車の排気管等の排気系部品
(iv)自転車や自動二輪車のフレームやクランク
(v)電車等の車輛の補強部材、台車部品(台車枠、各種梁等)
(vi)船体等のフレーム部品、補強部材
(vii)家電製品の強度部材、補強部材または構造部材
 以上説明の実施形態に各種変形例を含めた骨子を、改めて以下に纏める。
(1)図1に示したように、本発明の一態様に係る冷却装置50は、金属製の中空素材Pmをその長手方向である送り方向(+X方向)に沿って第1の位置Aで支持しながら送る送り機構と;中空素材Pmを、第1の位置Aよりも下流の第2の位置Bで加熱する加熱コイル12aと;中空素材Pmを、第2の位置Bよりも下流の第3の位置Cで冷却媒体の噴射により冷却する冷却装置50と;中空素材Pmを、第3の位置Cよりも下流の第4の位置Dで把持し、把持位置gを二次元方向又は三次元方向に移動させて中空素材Pmに屈曲部Pbを形成する前記アーム(曲げ力付与部)と;を備える中空屈曲部品製造装置に用いられる。
 図2に示したように、冷却装置50は、第1冷却機構である第1冷却媒体噴射装置51及び第2冷却媒体噴射装置52と、第2冷却機構である第3冷却媒体噴射装置53とを備える。
 前記第1冷却機構は、第1の位置Aにおける中空素材Pmの送り方向に沿った軸線の延長線EXを含む第1仮想平面(図2)で見て、加熱コイル12aの下流側に並んで配置され、冷却媒体の噴射方向が第1噴射方向W1であるノズル(第1ノズル)51aと;前記第1仮想平面で見て、ノズル51aの下流側に並んで配置され、冷却媒体の噴射方向が第1噴射方向W1に対して交差する第2噴射方向W2であるノズル(第2ノズル)52aと;冷却媒体の供給先を、ノズル51a及びノズル52aの一方及び他方間で択一的に切り換える弁(第1弁)V1と;弁V1を制御する制御装置(第1制御部)15と;を有する。
 前記第2冷却機構は、前記第1仮想平面で見て、延長線EXを間に挟んでノズル51a及びノズル52aとは反対側に配置され、冷却媒体の噴射方向が屈曲部Pbの屈曲内周面である左側面cに対して20度以上70度以下をなす第3噴射方向W3であるノズル(第3ノズル)53aを有する。
(2)図7に示したように、上記(1)において、以下の構成を採用してもよい。
 すなわち、前記第2冷却機構が、前記第3ノズルを構成する分割ノズル(第1分割ノズル)153a1及び分割ノズル(第2分割ノズル)153a2と;冷却媒体の供給先を、分割ノズル153a1及び分割ノズル153a2の一方及び他方間で択一的に切り換える弁(第2弁)V3と;弁V3を制御する制御装置(第2制御部)15と;を有する。
 前記第1仮想平面で見た分割ノズル153a1からの冷却媒体の噴射方向が、延長線EXに対して20度以上70度以下であり;前記第1仮想平面で見た分割ノズル153a2からの冷却媒体の噴射方向が、前記第3噴射方向W3である。
(3)図8に示したように、上記(1)または上記(2)において、前記第1仮想平面に対し延長線EXを交線として直交する第2仮想平面に配置されたノズル(第4ノズル)71a,73a及びノズル(第5ノズル)72a,74aを有する上下冷却装置(第3冷却機構)70をさらに備えてもよい。
 ノズル71a,73aの、前記第1仮想平面で見た冷却媒体の噴射方向が、延長線EXに沿った第4噴射方向W6,W8である。そして、ノズル72a,74aの、前記第1仮想平面で見た冷却媒体の噴射方向が、第4噴射方向W6,W8に交差する第5噴射方向W7,W9である。
(4)同じく図8に示したように、上記(3)において、以下の構成を採用してもよい。
 すなわち、前記第3冷却機構が、冷却媒体の供給先を、ノズル71a,73a及びノズル72a,74aの一方及び他方間で択一的に切り換える弁(第3弁)V2と;弁V2を制御する制御装置(第3制御部)15と;をさらに備える。
(5)図13に示したように、上記(1)~上記(4)の何れか1項において、以下の構成を採用してもよい。
 前記第1仮想平面に対し延長線EXを交線として直交する第2仮想平面に配置されたノズル(第6ノズル)61a,62aを有する冷却装置(第4冷却機構)60をさらに備える。そして、前記第1仮想平面で見たノズル61a,62aの噴射方向が、送り方向に対し、屈曲部Pbの剪断角度θの略1/2をなす第4方向W4及び第5方向W5(第6噴射方向)である。
(6)図1に示したように、本発明の一態様に係る冷却方法は、金属製の中空素材Pmをその長手方向である送り方向(+X方向)に沿って第1の位置Aで支持しながら送る工程と;中空素材Pmを、第1の位置Aよりも下流の第2の位置Bで加熱する工程と;中空素材Pmを、第2の位置Bよりも下流の第3の位置Cで冷却媒体の噴射により冷却する工程と;中空素材Pmを、第3の位置Cよりも下流の第4の位置Dで把持し、把持位置gを二次元方向又は三次元方向に移動させて中空素材Pmに屈曲部Pbを形成する工程と;を有する中空屈曲部品Ppの製造方法に用いられる。
 そして、この冷却方法は、第1冷却工程及び第2冷却工程を有する。
 図2に示すように、第1冷却工程は、第1の位置Aにおける中空素材Pmの送り方向に沿った軸線CLの延長線EXを含む第1仮想平面で見て、第1噴射方向W1に向けて第3の位置Cより冷却媒体を噴射する第1工程と;前記第1仮想平面で見て、第1噴射方向W1に対して交差する第2噴射方向W2に向けて第3の位置Cより冷却媒体を噴射する第2工程と;第1工程の実施時には第2工程を停止し、第2工程の実施時には第1工程を停止する第3工程と;を有する。
 そして、前記第2冷却工程は、前記第1仮想平面で見て、屈曲部Pbの屈曲内周面である左側面cに対して20度以上70度以下である第3噴射方向W3に向けて第3の位置Cより冷却媒体を噴射する。
(7)図7に示したように、上記(6)において、以下の工程を採用してもよい。
 すなわち、前記第2冷却工程が、前記第1仮想平面で見て、延長線EXに対して20度以上70度以下の噴射方向に向けて冷却媒体を噴射する第4工程と;前記第1仮想平面で見て、第3噴射方向W3に向けて冷却媒体を噴射する第5工程と;前記第4工程の実施時には前記第5工程を停止し、前記第5工程の実施時には前記第4工程を停止する第6工程と;を有する。
(8)図8に示したように、上記(6)または上記(7)において、以下の工程を採用してもよい。
 すなわち、前記冷却方法が、前記第1仮想平面に対し延長線EXを交線として直交する第2仮想平面において、第4噴射方向W6,W8及び第5噴射方向W7,W9より冷却媒体を中空素材Pmに向けて噴射する第3冷却工程をさらに有する。
 この第3冷却工程は、図9に示す前記第1仮想平面で見て、延長線EXに沿った第4噴射方向W6,W8に向けて冷却媒体を噴射する第7工程と;前記第1仮想平面で見て、第4噴射方向W6,W8に交差する第5噴射方向W7,W9に向けて冷却媒体を噴射する第8工程と;を有する。
(9)図8に示したように、上記(8)において、以下の工程を採用してもよい。
 前記第3冷却工程が、前記第7工程の実施時には前記第8工程を停止し、前記第8工程の実施時には前記第7工程を停止する第9工程をさらに有する。
(10)図13に示したように、上記(6)~上記(9)の何れか1項において、以下の工程を採用してもよい。
 すなわち、前記冷却方法が、前記第1仮想平面に対し延長線EXを交線として直交する第2仮想平面において、冷却媒体を中空素材Pmに向けて噴射する第4冷却工程をさらに有する。
 前記第4冷却工程は、前記第1仮想平面で見て、送り方向に対して冷却媒体の噴射方向がなす角度が屈曲部Pbのせん断角度θの略1/2である第6噴射方向W4に向けて冷却媒体を噴射する第10工程を有する。
 本発明の冷却装置及び冷却方法によれば、極めて小さい曲げ半径の曲げ部を有する中空屈曲部品を得る場合でも、冷却媒体の衝突圧力を確保して十分な冷却能力を得るとともに、製品の周方向における硬度の不均一を抑制する均一な冷却が可能となる。
 10 製造装置(中空屈曲部品製造装置)
 12a 加熱コイル
 15 制御装置(第1制御部、第2制御部、第3制御部)
 50 冷却装置
 51 第1冷却媒体噴射装置(第1冷却機構)
 51a ノズル(第1ノズル)
 52 第2冷却媒体噴射装置(第1冷却機構)
 52a ノズル(第2ノズル)
 53 第3冷却媒体噴射装置(第2冷却機構)
 53a ノズル(第3ノズル)
 60 上下冷却装置(第4冷却機構)
 61a,62a ノズル(第6ノズル)
 70 上下冷却装置(第3冷却機構)
 71a,73a ノズル(第4ノズル)
 72a,74a ノズル(第5ノズル)
 153a1 分割ノズル(第1分割ノズル)
 153a2 分割ノズル(第2分割ノズル)
 170 上下冷却装置(第3冷却機構)
 A 第1の位置
 B 第2の位置
 C 第3の位置
 c 左側面(屈曲内周面)
 D 第4の位置
 EX 延長線
 F 矢印(送り方向)
 g 把持位置
 Pb 屈曲部
 Pm 中空素材
 V1 弁(第1弁)
 V2 弁(第3弁)
 V3 弁(第2弁)
 W1 第1噴射方向
 W2 第2噴射方向
 W3 第3噴射方向
 W6,W8 第4噴射方向
 W7,W9 第5噴射方向

Claims (10)

  1.  金属製の中空素材をその長手方向である送り方向に沿って第1の位置で支持しながら送る送り機構と、
     前記中空素材を、前記第1の位置よりも下流の第2の位置で加熱する加熱コイルと、
     前記中空素材を、前記第2の位置よりも下流の第3の位置で冷却媒体の噴射により冷却する冷却装置と、
     前記中空素材を、前記第3の位置よりも下流の第4の位置で把持し、把持位置を二次元方向又は三次元方向に移動させて前記中空素材に屈曲部を形成する曲げ力付与部と、
    を備える中空屈曲部品製造装置に用いられる、前記冷却装置であって、
     第1冷却機構及び第2冷却機構を備え;
     前記第1冷却機構が、
      前記第1の位置における前記中空素材の前記送り方向に沿った軸線の延長線を含む第1仮想平面で見て、前記加熱コイルの下流側に並んで配置され、前記冷却媒体の噴射方向が第1噴射方向である第1ノズルと、
      前記第1仮想平面で見て、前記第1ノズルの下流側に並んで配置され、前記冷却媒体の噴射方向が前記第1噴射方向に対して交差する第2噴射方向である第2ノズルと、
      前記冷却媒体の供給先を、前記第1ノズル及び前記第2ノズルの一方及び他方間で択一的に切り換える第1弁と、
      前記第1弁を制御する第1制御部と、を有し;
     前記第2冷却機構が、
      前記第1仮想平面で見て、前記延長線を間に挟んで前記第1ノズル及び前記第2ノズルとは反対側に配置され、前記冷却媒体の噴射方向が前記屈曲部の屈曲内周面に対して20度以上70度以下をなす第3噴射方向である第3ノズルを有する;
    ことを特徴とする冷却装置。
  2.  前記第2冷却機構が、
      前記第3ノズルを構成する第1分割ノズル及び第2分割ノズルと、
      前記冷却媒体の供給先を、前記第1分割ノズル及び前記第2分割ノズルの一方及び他方間で択一的に切り換える第2弁と、
      前記第2弁を制御する第2制御部と、
    を有し;
     前記第1仮想平面で見た前記第1分割ノズルからの前記冷却媒体の噴射方向が、前記延長線に対して20度以上70度以下であり;
     前記第1仮想平面で見た前記第2分割ノズルからの前記冷却媒体の噴射方向が、前記第3噴射方向である;
    ことを特徴とする請求項1に記載の冷却装置。
  3.  前記第1仮想平面に対し前記延長線を交線として直交する第2仮想平面に配置された第4ノズル及び第5ノズルを有する第3冷却機構をさらに備え;
     前記第4ノズルの、前記第1仮想平面で見た前記冷却媒体の噴射方向が、前記延長線に沿った第4噴射方向であり;
     前記第5ノズルの、前記第1仮想平面で見た前記冷却媒体の噴射方向が、前記第4噴射方向に交差する第5噴射方向である;
    ことを特徴とする請求項1または2に記載の冷却装置。
  4.  前記第3冷却機構が、
      前記冷却媒体の供給先を、前記第4ノズル及び前記第5ノズルの一方及び他方間で択一的に切り換える第3弁と、
      前記第3弁を制御する第3制御部と、をさらに備える
    ことを特徴とする請求項3に記載の冷却装置。
  5.  前記第1仮想平面に対し前記延長線を交線として直交する第2仮想平面に配置された第6ノズルを有する第4冷却機構をさらに備え;
     前記第1仮想平面で見た前記第6ノズルの噴射方向が、前記送り方向に対し、前記屈曲部の剪断角度θの略1/2をなす第6噴射方向である;
    ことを特徴とする請求項1~4の何れか1項に記載の冷却装置。
  6.  金属製の中空素材をその長手方向である送り方向に沿って第1の位置で支持しながら送る工程と、
     前記中空素材を、前記第1の位置よりも下流の第2の位置で加熱する工程と、
     前記中空素材を、前記第2の位置よりも下流の第3の位置で冷却媒体の噴射により冷却する工程と、
     前記中空素材を、前記第3の位置よりも下流の第4の位置で把持し、把持位置を二次元方向又は三次元方向に移動させて前記中空素材に屈曲部を形成する工程と、
    を有する中空屈曲部品の製造方法に用いられる、冷却方法であって、
     第1冷却工程及び第2冷却工程を有し;
     前記第1冷却工程が、
      前記第1の位置における前記中空素材の前記送り方向に沿った軸線の延長線を含む第1仮想平面で見て、第1噴射方向に向けて前記第3の位置より前記冷却媒体を噴射する第1工程と、
      前記第1仮想平面で見て、前記第1噴射方向に対して交差する第2噴射方向に向けて前記第3の位置より前記冷却媒体を噴射する第2工程と、
     前記第1工程の実施時には前記第2工程を停止し、前記第2工程の実施時には前記第1工程を停止する第3工程と、を有し;
     前記第2冷却工程が、
      前記第1仮想平面で見て、前記屈曲部の屈曲内周面に対して20度以上70度以下である第3噴射方向に向けて前記第3の位置より前記冷却媒体を噴射する;
    ことを特徴とする冷却方法。
  7.  前記第2冷却工程が、
      前記第1仮想平面で見て、前記延長線に対して20度以上70度以下の噴射方向に向けて前記冷却媒体を噴射する第4工程と、
      前記第1仮想平面で見て、前記第3噴射方向に向けて前記冷却媒体を噴射する第5工程と、
      前記第4工程の実施時には前記第5工程を停止し、前記第5工程の実施時には前記第4工程を停止する第6工程と、を有する;
    ことを特徴とする請求項6に記載の冷却方法。
  8.  前記第1仮想平面に対し前記延長線を交線として直交する第2仮想平面において、第4噴射方向及び第5噴射方向より前記冷却媒体を前記中空素材に向けて噴射する第3冷却工程をさらに有し;
     前記第3冷却工程が、
      前記第1仮想平面で見て、前記延長線に沿った第4噴射方向に向けて前記冷却媒体を噴射する第7工程と、
     前記第1仮想平面で見て、前記第4噴射方向に交差する第5噴射方向に向けて前記冷却媒体を噴射する第8工程と、を有する
    ことを特徴とする請求項6または7に記載の冷却方法。
  9.  前記第3冷却工程が、
      前記第7工程の実施時には前記第8工程を停止し、前記第8工程の実施時には前記第7工程を停止する第9工程をさらに有する
    ことを特徴とする請求項8に記載の冷却方法。
  10.  前記第1仮想平面に対し前記延長線を交線として直交する第2仮想平面において、前記冷却媒体を前記中空素材に向けて噴射する第4冷却工程をさらに有し;
     前記第4冷却工程が、前記第1仮想平面で見て、前記送り方向に対して前記冷却媒体の噴射方向がなす角度が前記屈曲部のせん断角度θの略1/2である第6噴射方向に向けて前記冷却媒体を噴射する第10工程を有する
    ことを特徴とする請求項6~9の何れか1項に記載の冷却方法。
PCT/JP2021/006525 2020-02-27 2021-02-22 冷却装置及び冷却方法 WO2021172242A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/779,060 US20220395881A1 (en) 2020-02-27 2021-02-22 Cooling device and cooling method
JP2022503361A JP7295485B2 (ja) 2020-02-27 2021-02-22 冷却装置及び冷却方法
CN202180007031.8A CN114786834A (zh) 2020-02-27 2021-02-22 冷却装置以及冷却方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-032058 2020-02-27
JP2020032058 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021172242A1 true WO2021172242A1 (ja) 2021-09-02

Family

ID=77489971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006525 WO2021172242A1 (ja) 2020-02-27 2021-02-22 冷却装置及び冷却方法

Country Status (4)

Country Link
US (1) US20220395881A1 (ja)
JP (1) JP7295485B2 (ja)
CN (1) CN114786834A (ja)
WO (1) WO2021172242A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144332A (en) * 1979-04-26 1980-11-11 Dai Ichi High Frequency Co Ltd Bending process of metal pipe
JPS5770721U (ja) * 1980-10-09 1982-04-28
JPH0280125A (ja) * 1988-09-13 1990-03-20 Hitachi Ltd 高周波誘導加熱装置
WO2016031970A1 (ja) * 2014-08-28 2016-03-03 新日鐵住金株式会社 曲げ部材の製造方法及び鋼材の熱間曲げ加工装置
JP6015878B2 (ja) * 2014-10-07 2016-10-26 新日鐵住金株式会社 鋼材の冷却装置及び冷却方法
JP3222016U (ja) * 2019-04-19 2019-07-04 日本製鉄株式会社 曲げ加工管の製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149021A (ja) * 1986-07-25 1988-06-21 Dai Ichi High Frequency Co Ltd 内管挿入方式による二重管ベンドの製造方法及び装置
WO2011024741A1 (ja) 2009-08-25 2011-03-03 住友金属工業株式会社 屈曲部材、その製造装置および製造方法
JP5770721B2 (ja) 2010-05-24 2015-08-26 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 情報処理システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144332A (en) * 1979-04-26 1980-11-11 Dai Ichi High Frequency Co Ltd Bending process of metal pipe
JPS5770721U (ja) * 1980-10-09 1982-04-28
JPH0280125A (ja) * 1988-09-13 1990-03-20 Hitachi Ltd 高周波誘導加熱装置
WO2016031970A1 (ja) * 2014-08-28 2016-03-03 新日鐵住金株式会社 曲げ部材の製造方法及び鋼材の熱間曲げ加工装置
JP6015878B2 (ja) * 2014-10-07 2016-10-26 新日鐵住金株式会社 鋼材の冷却装置及び冷却方法
JP3222016U (ja) * 2019-04-19 2019-07-04 日本製鉄株式会社 曲げ加工管の製造装置

Also Published As

Publication number Publication date
US20220395881A1 (en) 2022-12-15
CN114786834A (zh) 2022-07-22
JPWO2021172242A1 (ja) 2021-09-02
JP7295485B2 (ja) 2023-06-21

Similar Documents

Publication Publication Date Title
KR100878647B1 (ko) 금속재의 굽힘 가공 방법, 굽힘 가공 장치 및 굽힘 가공 설비열, 및 그것들을 이용한 굽힘 가공제품
JP4825019B2 (ja) 金属材の曲げ加工方法、曲げ加工装置および曲げ加工設備列、並びにそれらを用いた曲げ加工製品
JP5162102B2 (ja) 異形管の曲げ加工方法およびその曲げ加工装置、並びにそれらを用いた曲げ加工製品
JP5587890B2 (ja) 屈曲部材、その製造装置および製造方法
US8919171B2 (en) Method for three-dimensionally bending workpiece and bent product
KR20120104411A (ko) 굽힘가공제품의 제조 방법, 제조 장치 및 연속 제조 장치
CN107234443B (zh) 机器人主动牵引的三维变曲率型材在线弯曲成形装置
US10625321B2 (en) Cooling apparatus and cooling method for steel material
JP7238660B2 (ja) 中空屈曲部品の製造方法、中空屈曲部品の製造装置、及び中空屈曲部品
US10335843B2 (en) Method for manufacturing bent member, and hot-bending apparatus for steel material
WO2021172242A1 (ja) 冷却装置及び冷却方法
JP6970692B2 (ja) 熱処理方法及び熱処理装置
JP2023140799A (ja) 冷却装置及び冷却方法
WO2022208744A1 (ja) 中空屈曲部材の製造方法及び中空屈曲部材の製造装置
JP3311211B2 (ja) 角形鋼管の矯正設備
JP7205409B2 (ja) 中空屈曲部品の製造方法及び中空屈曲部品
JP2023096563A (ja) 中空屈曲部品の製造装置及び中空屈曲部品の製造方法
JP5187010B2 (ja) 金属材の熱間曲げ加工方法及びその装置
JP6569534B2 (ja) ねじり部材の製造方法及び製造装置
JPH09164448A (ja) 金属板の増肉加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760595

Country of ref document: EP

Kind code of ref document: A1